
Forecasting Air Pollutants
using Deep Learning

Masters Thesis

submitted to
Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the
BS-MS Dual Degree Programme

Submitted by

Sushrut Ishwar Gaikwad
20171197

Indian Institute of Science Education and Research, Pune

Supervisor : Dr. Bipin Kumar (IITM Pune)
TAC Expert: Dr. Amit Apte (IISER Pune)

Co-Supervisior : Dr. Manmeet Singh (IITM Pune)
© Sushrut Ishwar Gaikwad 2022

All rights reserved

Certificate

This is to certify that this dissertation entitled Forecasting Air Pollu-
tants using Deep Learning towards the partial fulfillment of the BS-MS
dual degree programme at the Indian Institute of Science Education and Re-
search, Pune, represents study/work carried out by Sushrut Ishwar Gaikwad
at Indian Institute of Tropical Meteorology, Pune under the supervision of
Dr. Bipin Kumar during the academic year 2021-2022.

Dr. Bipin Kumar
Scientist E, HPCS

IITM Pune

Committee:

Supervisor: Dr. Bipin Kumar
TAC Expert: Dr. Amit Apte
Co-Supervisor: Dr. Manmeet Singh

i

I dedicate this thesis to my family

ii

Declaration

I hereby declare that the matter embodied in the report entitled Fore-
casting Air Pollutants using Deep Learning are the results of the work
carried out by me at the Indian Institute of Tropical Meteorology, Pune,
under the supervision of Dr. Bipin Kumar, and the same has not been sub-
mitted elsewhere for any other degree.

Sushrut Ishwar Gaikwad

iii

Acknowledgments

I am grateful to my supervisor Dr. Bipin Kumar for allowing me to work
under his supervision at IITM Pune. I thank him for his motivation and
guidance.

I am grateful to Dr. Sachin Ghude, Dr. Gaurav Govardhan, and their
team for their invaluable inputs to this study. I thank my TAC expert Dr.
Amit Apte for his valuable suggestions and comments during my mid-year
evaluation. I thank my friends Shyam Krishna P for his input at the be-
ginning of this study, Rishabh Dev for his guidance at the beginning of my
machine learning journey, and Kaustubh Atey for his suggestions on the
model implementation.

I express my heartfelt gratitude towards my parents for their sacrifices,
hard work, and dedication toward me. I owe every bit of my achievement to
them.

I wish to thank my friends Shashank for being a great roommate and
Samyuktha for her constant support during various phases of my life at
IISER.

Last but not least, I express my gratitude to Dr. Andrew Ng for his
open-source lectures on machine learning and deep learning and to all the
machine learning researchers for their generous and invaluable open-source
contributions.

iv

Abstract

Fire incidences have recently increased due to climate change and other
human-induced factors. Due to incidents such as stubble burning in Punjab-
Haryana, forest fires in various parts of India, like the north-east and central
India, lead to dangerously high levels of particulate matter of aerodynamic
diameter smaller than 2.5 microns (PM2.5). Timely forecasts of PM2.5 can
help prevent air quality-related public health issues, plan ahead of time, and
implement temporary control measures. However, most operational air qual-
ity forecasting systems worldwide have to employ a persistent assumption
for representing fire emissions due to a lack of information about the future
evolution of fires. Under the persistence assumption, we assume near-real-
time fire emissions are constant for the entire forecast cycle, which can lead
to significant errors in air quality forecasts if the fire emissions change signifi-
cantly daily. We aim to fill this gap by forecasting fire emissions, like PM2.5,
for the next 2-3 days using spatiotemporal deep learning models such as the
convolutional long short-term memory (ConvLSTM). Using this approach,
we can get a reliable correlation coefficient. We attempt to improve further
by adding variables like normalized difference vegetation index (NDVI), rel-
ative humidity, temperature, surface pressure, and total cloud cover during
model training.

v

Contents

Abstract v

1 Introduction 1
1.1 Literature Review . 2

1.1.1 Statistical Methods . 3
1.1.2 Machine Learning Methods 3
1.1.3 Deep Learning Methods 4

1.2 Problem Statement . 5

2 Theoretical Background 6
2.1 Neural Networks and Deep Learning 6

2.1.1 Working of an Artificial Neuron 7
2.1.2 Feedforward Neural Networks 10
2.1.3 Activation Functions 13
2.1.4 Loss and Cost Functions 16
2.1.5 Gradient Descent (How a Neural Network Learns) . . . 18
2.1.6 Convolutional Neural Networks 18
2.1.7 Recurrent Neural Networks 22

2.2 Spatiotemporal Forecasting using Deep Learning 29
2.2.1 Convolutional LSTM (ConvLSTM) 29

3 Data and Methodology 31
3.1 Data . 31
3.2 Data Preprocessing . 32

3.2.1 Matching the Spatial Resolution 32
3.2.2 Temporal Resolution 32
3.2.3 Imputation of Missing Values 32
3.2.4 Data Slicing . 33
3.2.5 Supervised Splits . 35

vi

Contents

3.2.6 Data Transformation 36
3.2.7 Data Scaling . 38
3.2.8 Training-Validation-Test Split 39

3.3 Model . 40
3.3.1 Model Architecture . 40
3.3.2 Hyperparameter Tuning 40
3.3.3 Model Compilation and Callbacks 43

3.4 Data Preprocessing Pipeline 44
3.4.1 Choosing the Data Transformation and Data Scaling

Pair . 45
3.5 Total Models to Train . 46

4 Results and Discussion 47
4.1 Metrics . 47

4.1.1 Pearson Correlation Coefficient 47
4.2 Delhi-Punjab-Haryana . 49

4.2.1 Comparison with the Ground Truth 49
4.2.2 Correlation Distribution 49
4.2.3 Spatial Correlation . 51
4.2.4 Correlation Distribution for Different Combinations of

Variables on Day 1 . 51
4.2.5 Normalized Mean Squared Error vs. Number of Epochs 52

4.3 Northeast Indian Subcontinent 54
4.3.1 Comparison with the Ground Truth 54
4.3.2 Correlation Distribution 55
4.3.3 Spatial Correlation . 58
4.3.4 Correlation Distribution for Different Combinations of

Variables on Day 1 . 60
4.3.5 Normalized Mean Squared Error vs. Number of Epochs 61

4.4 Central India . 62
4.4.1 Comparison with the Ground Truth 62
4.4.2 Correlation Distribution 62
4.4.3 Spatial Correlation . 62
4.4.4 Correlation Distribution for Different Combinations of

Variables on Day 1 . 64
4.4.5 Normalized Mean Squared Error vs. Number of Epochs 65

5 Conclusion 69

vii

Contents

5.1 Future Work . 69

References 72

viii

List of Figures

2.1.1 A biological neuron . 6
2.1.2 An artificial neuron . 7
2.1.3 An artificial neuron for examples with multiple features . . 8
2.1.4 Schematic representation of equations 2.1.2 8
2.1.5 Neural network with one hidden layer 10
2.1.6 Sigmoid activation function 14
2.1.7 Hyperbolic tangent activation function 15
2.1.8 ReLU activation function 16
2.1.9 Leaky ReLU activation function 17
2.1.10 Gradient descent algorithm 19
2.1.11 Supervised deep learning task general workflow 20
2.1.12 2D Convolution . 21
2.1.13 One layer of a convolutional neural network 23
2.1.14 Recurrent Neural Network 24
2.1.15 Pictorial representation of RNN 26
2.1.16 Pictorial representation of GRU 27
2.1.17 Pictorial representation of LSTM 28

3.2.1 NaN Imputation . 33
3.2.2 Spatial Slicing . 34
3.2.3 Supervised Splits for the model 36
3.4.1 Data Preprocessing Pipeline 44

4.2.1 Ground Truth vs. Forecast (Delhi-Punjab-Haryana) 51
4.2.2 Correlation Distribution (Delhi-Punjab-Haryana) 52
4.2.3 Spatial Correlation (Delhi-Punjab-Haryana) 53
4.2.4 Correlation Distribution for Different Combinations of Vari-

ables (Delhi-Punjab-Haryana) 54
4.2.5 Normalized Mean Squared Error vs. Epochs (Delhi-Punjab-

Haryana) . 55

ix

List of Figures

4.3.1 Ground Truth vs. Forecast (Northeast Indian Subcontinent) 57
4.3.2 Correlation Distribution (Northeast Indian Subcontinent) . 58
4.3.3 Spatial Correlation (Northeast Indian Subcontinent) 59
4.3.4 Correlation Distribution for Different Combinations of Vari-

ables (Northeast Indian Subcontinent) 60
4.3.5 Normalized Mean Squared Error vs. Epochs (Northeast

Indian Subcontinent) . 61
4.4.1 Ground Truth vs. Forecast (Central India) 64
4.4.2 Correlation Distribution (Central India) 65
4.4.3 Spatial Correlation (Central India) 66
4.4.4 Correlation Distribution for Different Combinations of Vari-

ables (Central India) . 67
4.4.5 Normalized Mean Squared Error vs. Epochs (Central India) 68

5.1.1 Conclusion . 71

x

List of Tables

3.1 Data Summary . 31
3.2 Matching Spatial Resolution 32
3.3 Spatial Slicing . 35
3.4 Temporal Slicing . 35
3.5 Supervised Splits . 37
3.6 Training-Validation-Test Split 39
3.7 Model Architecture (Delhi-Punjab-Haryana) 40
3.8 Model Architecture (Northeast Indian Subcontinent) 41
3.9 Model Architecture (Central India) 41
3.10 Data Transformation and Data Scaling for each variable . . . 45

xi

Chapter 1

Introduction

Since the industrial revolution, particularly in the last several decades, air
pollution has been on a steep rise. Asian countries like Bangladesh, India,
and China frequently lead the list of most polluted countries on the planet.
Unfortunately, India has one of the world’s worst air quality indexes (AQI).
Indians have frequent exposure to unhealthy levels of ambient PM2.5 (par-
ticles with a size smaller than 2.5 microns, which is about one-thirtieth the
width of a human hair), the most harmful pollutant - emanating from mul-
tiple sources. Around 93% of Indians live in areas where PM2.5 levels are
worse than the World Health Organization’s (WHO) least stringent norms,
reducing the average life expectancy in the country by 1.5 years (more than
cancer), according to the reports of the US-based Health Effects Institute. It
claims that poor air quality accounts for at least one in nine global deaths.
PM2.5 particles, owing to their small size, can readily travel through the
respiratory tract and cause deadly diseases such as lung cancer, stroke, and
heart disease. An estimate is that unhealthy levels of PM2.5 caused 1.7 mil-
lion premature deaths in India in 2019, which is a huge cost to bear for the
Indian economy.

There are numerous sources of PM2.5. The most common is gasoline, oil,
diesel fuel, or wood combustion. In the northwest, particularly in the Delhi-
Punjab-Haryana region, stubble burning is one of the significant factors pro-
ducing PM2.5 emissions and, subsequently, poor air quality. Stubble burning
is intentionally setting fire to the straw stubble after the harvest. They do
this to clear the land for a new sowing season. New Delhi frequently slips into
the critical air quality zone in stubble burning season every year. From mid-
September to November each year, farmers, mainly in the Punjab-Haryana

1

1.1. Literature Review

region, burn an estimated 35 million tonnes of crop waste. The smoke cre-
ated from this process is so huge that it is visible from space, resulting in
declaring air pollution emergencies in New Delhi and nearby areas every year.
Forest fires also led to significant emissions of PM2.5, particularly in summer.
Due to changing climate and frequent heat waves, forest fire incidents have
also risen significantly. They mainly occur in drier Indian states like Mad-
hya Pradesh, Odisha, Chhattisgarh, central-eastern Maharashtra, and in the
northeastern Indian subcontinent that includes Assam, Meghalaya, Tripura,
Nagaland, Manipur, Mizoram, and countries like Myanmar.

So, analyzing and forecasting PM2.5 values can be crucial in preventing
air quality-related emergencies and preplanning and implementing tempo-
rary but crucial measures to avoid further damage. PM2.5 particles are light,
making them get carried away by the wind. When it comes to forest fire,
wind, available vegetation, temperature, precipitation, humidity, and vari-
ous other variables hugely affect how it would propagate. Human behavior
plays a role in fires caused due to stubble burning, along with the previously
mentioned factors. So, PM2.5 values have a very complex interaction with
these factors on many different temporal and spatial scales. The traditional
approach to forecasting using fluid dynamical equations and solving higher-
order non-linear differential equations would require an impractically large
amount of computational resources. Incorporating the effect of various vari-
ables would further increase the complexity. A machine learning approach
to forecasting could yield excellent results without using enormous compu-
tational resources, as seen in various other fields. The availability of massive
meteorological data is another reason promising us the same. Deep learning,
a machine learning subfield, is hugely data-hungry and can learn complex
non-linear mappings between input and output. Deep learning also does not
require hand-designing features (done in machine learning algorithms) to in-
corporate spatiotemporal variation since it learns them independently. We
use deep learning-based models to learn spatiotemporal variation in PM2.5
values and forecast for three days into the future.

1.1 Literature Review
Various methods are developed and applied for time series analysis and fore-
casting, broadly classified into three categories, whose discussion is as follows.

2

1.1. Literature Review

1.1.1 Statistical Methods
Some of the most common statistical methods for time series analysis and
forecasting are listed below:

• Exponential Smoothing (ETS),

• Holt-Winters,

• ARMA (AutoRegressive Moving Average),

• ARIMA (AutoRegressive Integrated Moving Average),

• SARIMA (Seasonal ARIMA),

• SARIMAX (SARIMA with eXogenous variable),

• VARMA (Vector ARMA).

These methods are designed specifically for time series analysis and fore-
casting. One of their most significant advantages is high interpretability.
They give us coefficients that indicate the trend and seasonality of the data,
which helps us gain a deeper insight into it and is fruitful in guiding us
towards approaching the forecasting problem.

1.1.2 Machine Learning Methods
General machine learning algorithms for regression can be applied for time
series forecasting. The only extra step needed is to split the data accordingly,
also known as forming the supervised splits of the data. Some standard
machine learning regression algorithms are listed below:

• Linear Regression,

• Support Vector Machine,

• Random Forest,

• Adaptive Boosting (AdaBoost),

• Extreme Gradient Boosting (XGBoost).

3

1.1. Literature Review

Although these algorithms are not explicit time series forecasting algo-
rithms, they can give a decent forecast after conducting various statistical
tests and transformations on the data and forming supervised splits before
using them.

1.1.3 Deep Learning Methods
Recent advancement in deep learning has generated much hype. Details
regarding deep learning are discussed in chapter 2. Some standard deep
learning algorithms are listed below:

• Feedforward Neural Network,

• Convolutional Neural Network (CNN),

• Recurrent Neural Network (RNN),

• Gated Recurrent Unit (GRU) Network,

• Long Short-Term Memory (LSTM) Network.
A feedforward neural network can be used for general regression tasks,

whereas CNN is designed to work with images. Again, though these are not
explicit time series forecasting algorithms, they can give a decent forecast
after carrying out the exact steps discussed earlier in the machine learning
section.

RNN is designed to work with sequence data. Due to its structure, it
allows differing amounts of input into it. Hence, it is one of the ideal choices
for working with time series data. However, RNN is prone to the problem
of vanishing and exploding gradients which makes learning long-term depen-
dencies very difficult. LSTM (Hochreiter & Schmidhuber, 1997) and GRU
(Cho et al., 2014) networks were developed to address this issue. They have
unique functions known as gates that help them “remember” the long-term
dependencies in the data, which can be helpful in forecasting, and “forget”
information that is not useful. Hence, GRU and LSTM networks are widely
used today for analyzing and forecasting sequence data.

In literature, these methods have been applied for PM2.5 forecasting.
(Huang & Kuo, 2018) proposed a deep CNN-LSTM model for PM2.5 fore-
casting, (Harishkumar, Yogesh, Gad, et al., 2020) used various machine learn-
ing regression models for forecasting PM2.5, whereas (Karimian et al., 2019)
evaluated various machine learning approaches for the same.

4

1.2. Problem Statement

The collective drawback of all these methods for our task is that they, by
default, do not work with spatiotemporal sequences. As mentioned earlier,
using these models would require us to hand-design features and feed them
to the model to incorporate spatiotemporal variation. We use deep learning-
based spatiotemporal forecasting models to address this issue.

Spatiotemporal Forecasting Methods

Deep learning-based spatiotemporal forecasting methods are mainly used for
precipitation nowcasting, i.e., short-term precipitation forecasting. Convolu-
tional LSTM or ConvLSTM (Shi et al., 2015) is one of the most fundamental
yet powerful methods for the same. Details regarding ConvLSTM are dis-
cussed in section 2.2.1. We propose using ConvLSTM to forecast PM2.5
emissions.

1.2 Problem Statement
Suppose we have a spatial region represented by an M×N grid (or a matrix).
Inside each grid cell, P variables can be measured at a particular time. So,
the observation at any time can be represented by a tensor X ∈ RP ×M×N ,
where R is the domain of the observed variables. Let X̂1, X̂2, . . . , X̂t, rep-
resent a sequence of observations. The spatiotemporal sequence forecasting
problem is to predict the most likely length-K sequence in the future given
the previous J observations, including the current one:

X̃t+1, . . . , X̃t+K = arg max
Xt+1,...,Xt+K

p
(
Xt+1, . . . ,Xt+K

∣∣∣ X̂t−J+1, X̂t−J+2, . . . , X̂t

)
(1.2.1)

The formulation is same as that given in (Shi et al., 2015). The following
bullet points summarize this formulation:

• We have a 3-D array1 corresponding to each observation, i.e., a 3-D
array for each time step.

• We want to predict the most likely sequence of K such arrays given the
past sequence of J arrays.

1We can think of this as a matrix with P values in each position since there are P
variables.

5

Chapter 2

Theoretical Background

2.1 Neural Networks and Deep Learning
Deep learning, a subfield of machine learning, has recently gained much trac-
tion due to its wide range of applications ranging from image analysis, object
detection, and self-driving cars to machine translation, sentiment analysis,
forecasting, and finance. It tries to mimic the human brain. The most funda-
mental element of any deep learning model is known as an artificial neuron
(figure 2.1.2). It is supposed to be a highly simplified version of the biological
neuron (figure 2.1.1).

Figure 2.1.1: A biological neuron.

Biological neurons take input electrical signals through dendrites and out-

6

2.1. Neural Networks and Deep Learning

put them through the axon. The output signals depend upon the input.

Figure 2.1.2: An artificial neuron.

2.1.1 Working of an Artificial Neuron
Say, we have m examples for training our artificial neuron. We can represent
them as

{(
x(1), y(1)

)
,
(
x(2), y(2)

)
, . . . ,

(
x(m), y(m)

) }
, where

(
x(i), y(i)

)
stands

for (feature, value) of the ith example. We represent the predicted value
from the neuron for the feature of the ith example as ŷ(i) (also known as
activation, denoted as a(i)). An artificial neuron combines the input x(i)

with some weight w and a bias b, applies some function g, and outputs ŷ(i).
Mathematically, this is nothing but the following equations.

z(i) = wx(i) + b (2.1.1a)

a(i) = ŷ(i) = g
(
z(i)

)
(2.1.1b)

This is only for one particular example i consisting of one feature x(i),
and one value y(i). Here, g is some (mostly a non-linear) function known
as activation function1. Weights and biases are parameters that a neural
network learns2 during training.

If examples consist of multiple features, say nx, then equations 2.1.1 take
the following form (see figure 2.1.3).

z(i) = w⊺x(i) + b (2.1.2a)

a(i) = ŷ(i) = g
(
z(i)

)
(2.1.2b)

Here, w ∈ Rnx is a column vector consisting of weights for all the features,
x(i) ∈ Rnx is a column vector consisting of features for the ith example.

1Activation functions are discussed in section 2.1.3.
2Details on how a neural network learns are discussed in section 2.1.5.

7

2.1. Neural Networks and Deep Learning

Figure 2.1.3: An artificial neuron for examples with multiple features.

We can write the column vectors w and x(i) as

w =

w1
w2
...

wnx

 and x(i) =

x1
x2
...

xnx

(i)

(2.1.3)

In equation 2.1.2, “w⊺x(i)” represents matrix multiplication between the
row vector w⊺ (transpose of the column vector w) and the column vector
x(i), and ŷ(i) is the value3 predicted by the neuron. Figure 2.1.4 schematically
represents equations 2.1.2.

Figure 2.1.4: Schematic representation of equations 2.1.2.

The input vector of features and the predicted values can be represented
in a matrix simultaneously for all the m examples in the following way.

3This is just a single value and not a vector since one neuron outputs only one value.

8

2.1. Neural Networks and Deep Learning

X
nx×m

=

 | | · · · |
x(1) x(2) · · · x(m)

| | · · · |

 (2.1.4a)

Ŷ
1×m

=
[
ŷ(1) ŷ(2) · · · ŷ(m)

]
(2.1.4b)

Using this matrix notation, we can write a single vectorized form of equa-
tion 2.1.2a for all the m examples, which is shown below.

[
z(1) z(2) · · · z(m)

]
=
[
w1 w2 · · · wnx

] | | · · · |
x(1) x(2) · · · x(m)

| | · · · |

+
[
b · · · b

]
︸ ︷︷ ︸

m times

The above equation in matrix notation is the following.

Z
1×m

= w⊺

1×nx

X
nx×m

+ b
1×m

∴
[
z(1) z(2) · · · z(m)

]
=
[
w⊺x(1) + b w⊺x(2) + b · · · w⊺x(m) + b

]
Similarly, we can write equation 2.1.2b as

A
1×m

=
[
a(1) a(2) · · · a(m)

]
= Ŷ

1×m

=
[
ŷ(1) ŷ(2) · · · ŷ(m)

]
= g (Z)

1×m

∴ A
1×m

= Ŷ
1×m

=
[
g
(
z(1)

)
g
(
z(2)

)
· · · g

(
z(m)

)]
Here, the activation function g is applied to the matrix Z element wise,

as shown. So, the vectorized version of equations 2.1.2, which includes all
the m examples simultaneously is the following.

Z
1×m

= w⊺

1×nx

X
nx×m

+ b
1×m

(2.1.5a)

A
1×m

= Ŷ
1×m

= g (Z)
1×m

(2.1.5b)

9

2.1. Neural Networks and Deep Learning

Figure 2.1.5: A neural network with one hidden layer4.

2.1.2 Feedforward Neural Networks
It is common to consider neural networks consisting of multiple layers of
neurons. These are known as feedforward neural networks or fully connected
neural networks. In such networks, the output (or the predicted value) of
each neuron in some lth layer is fed as input to each neuron in the (l + 1)th
layer. Figure 2.1.5 illustrates a neural network with one hidden layer.

4Biases are not represented for simplicity.

10

2.1. Neural Networks and Deep Learning

Notation

• a
[l]
i stands for the activation of the ith neuron in the lth layer,

• w[l]
i stands for the weights vector of the ith neuron in the lth

layer,

• b
[l]
i stands for the bias of the ith neuron in the lth layer,

• Activations in the lth layer can be collectively viewed as a column
vector denoted by a[l],

• Note that superscript (j) stands for the jth example, whereas
superscript [j] stands for the jth layer.

In figure 2.1.5, we have represented the input features as individual neu-
rons in a layer known as the input layer. Each example, in this case, consists
of three features, denoted by x1, x2, and x3. Equations 2.1.2 hold true for
all the neurons in the hidden and the output layer. We calculate the acti-
vation for each neuron in a particular layer denoted as a

[l]
i (activation of the

ith neuron in the lth layer) and then feed this activation as input to all the
neurons in the next layer. The input layer is also known as the zeroth layer,
and the inputs xi are also denoted as a

[0]
i (since l = 0). So, the activation

vectors for the neural network in figure 2.1.5 can be written as

x =

x1
x2
x3

 = a[0] =

a

[0]
1

a
[0]
2

a
[0]
3

 , a[1] =

a

[1]
1

a
[1]
2

a
[1]
3

a
[1]
4

 , a[2] =
[
a

[2]
1

]
= ŷ (2.1.6)

Writing equations 2.1.2 for all the neurons in the hidden layer, we get the
following.

z
[1]
1 = w[1]

1
⊺
x + b

[1]
1 , a

[1]
1 = g

(
z

[1]
1

)
z

[1]
2 = w[1]

2
⊺
x + b

[1]
2 , a

[1]
2 = g

(
z

[1]
2

)
z

[1]
3 = w[1]

3
⊺
x + b

[1]
3 , a

[1]
3 = g

(
z

[1]
3

)
z

[1]
4 = w[1]

4
⊺
x + b

[1]
4 , a

[1]
4 = g

(
z

[1]
4

)

11

2.1. Neural Networks and Deep Learning

Matrix version of the above equations is the following.
z

[1]
1

z
[1]
2

z
[1]
3

z
[1]
4

 =

— w[1]

1
⊺

—
— w[1]

2
⊺

—
— w[1]

3
⊺

—
— w[1]

4
⊺

—

x1
x2
x3

+

b

[1]
1

b
[1]
2

b
[1]
3

b
[1]
4

 =

w[1]

1
⊺
x + b

[1]
1

w[1]
2

⊺
x + b

[1]
2

w[1]
3

⊺
x + b

[1]
3

w[1]
4

⊺
x + b

[1]
4

Using the notation introduced in the notation box, we can write the above

equation as

z[1]
4×1

= w[1]
4×3

x
3×1

+ b[1]
4×1

= w[1]
4×3

a[0]
3×1

+ b[1]
4×1

And, the activation vector would be given by

a[1]
4×1

=

a

[1]
1

a
[1]
2

a
[1]
3

a
[1]
4

 =

g
(
z

[1]
1

)
g
(
z

[1]
2

)
g
(
z

[1]
3

)
g
(
z

[1]
4

)

 = g(z[1])
4×1

Similarly, for the second (or the output) layer for the neural network in
figure 2.1.5, the equations are the following.

z[2]
1×1

= w[2]
1×4

a[1]
4×1

+ b[2]
1×1

a[2]
1×1

= g(z[1])
1×1

= ŷ

So, for any layer l, the equations are given by

z[l] = w[l]a[l−1] + b[l] (2.1.7a)

a[l] = g
(
z[l]
)

(2.1.7b)

Vectorizing across multiple examples

To compute the output of our neural network shown in figure 2.1.5 across all
the m examples, we need to implement equations 2.1.7 for l = 1 and l = 2
m times, i.e., for i = 1, 2, . . . , m, implement the following

z[1](i) = w[1]a[0](i) + b[1]

12

2.1. Neural Networks and Deep Learning

a[1](i) = g
(

z[1](i)
)

z[2](i) = w[2]a[1](i) + b[2]

a[2](i) = g
(

z[2](i)
)

= ŷ(i)

A vectorized implementation would simultaneously include all the m ex-
amples, and hence would be computationally efficient. This is done in the
following way.

Z[1] = W[1]X + b[1] = W[1]A[0] + b[1]

A[1] = g
(
Z[1]

)
Z[2] = W[2]A[1] + b[2]

A[2] = g
(
Z[2]

)
= Ŷ

Here, the uppercase matrices are constructed by stacking the correspond-
ing lowercase vectors for each example (i) as columns, just like the definition
of X and Ŷ in equations 2.1.4. So, for any general lth layer in a feedforward
neural network, the vectorized equations are

Z[l] = W[l]A[l−1] + b[l] (2.1.8a)

A[l] = g
(
Z[l]

)
(2.1.8b)

2.1.3 Activation Functions
An activation function is (mostly a non-linear) function that gets applied to
the output of neurons before feeding it into the neurons of the proceeding
layer. The use of activation functions is one of the primary reasons behind
the competency of neural networks in learning non-linearity in the data.
Following is a description of some of the most commonly used activation
functions.

Sigmoid (σ)

Following is the mathematical expression for the sigmoid activation function.

g(x) = σ(x) = 1
1 + e−x

(2.1.9)

13

2.1. Neural Networks and Deep Learning

−6 −4 −2 2 4 6

0.2

0.4

0.6

0.8

1

x

y

σ(x)

Figure 2.1.6: The sigmoid activation function (see equation 2.1.9).

Figure 2.1.6 shows that the sigmoid function lies in the range (0, 1).
Hence, it is an ideal choice for tasks predicting probability. However, it
is flat for large and small values of x, which makes it prone to vanishing and
exploding gradients. Hence, the sigmoid activation function is mainly used
only in the output layer in tasks predicting probability.

Hyperbolic Tangent (tanh)

Following is the mathematical expression for the hyperbolic tangent (or the
tanh) activation function.

g(x) = tanh(x) = ex − e−x

ex + e−x
(2.1.10)

Figure 2.1.7 shows that the hyperbolic tangent or the tanh function lies
in the range (−1, 1), and is centered around 0. Like the sigmoid function,
tanh is also prone to vanishing and exploding gradients for similar reasons.
However, due to centering around 0, the movement of gradients is accessible
in both directions. The hidden layers mostly use tanh as the activation
function.

14

2.1. Neural Networks and Deep Learning

−6 −4 −2 2 4 6

−1

−0.5

0.5

1

x

y

tanh(x)

Figure 2.1.7: The hyperbolic tangent activation function (see equation
2.1.10).

Rectified Linear Unit (ReLU)

Following is the mathematical expression for the rectified linear unit (or the
ReLU) activation function.

g(x) = max (0, x) (2.1.11)

Figure 2.1.8 shows that the ReLU function is 0 for all x < 0, and is
equivalent to the line y = x for all x > 0. As the gradients are not flat for
x > 0, this partially solves the problem of vanishing and exploding gradients.
However, the zero gradients for the negative inputs can be a slight hindrance
while training since the weights corresponding to such inputs will not get
updated. This is also known as the dying ReLU problem. Again, the hidden
layers mostly use the ReLU activation function.

Leaky ReLU

Following is the mathematical expression for the leaky ReLU activation func-
tion.

g(x) = max (αx, x) (2.1.12)
where, α < 1.

Figure 2.1.9 shows the leaky ReLU activation function. The leaky ReLU
activation solves the dying ReLU problem by giving a slight negative slope

15

2.1. Neural Networks and Deep Learning

−6 −4 −2 2 4 6

2

4

6

x

y

ReLU(x)

Figure 2.1.8: The rectified linear unit (ReLU) activation function (see equa-
tion 2.1.11).

to the negative inputs. Again, the hidden layers mostly use the leaky ReLU
activation function.

2.1.4 Loss and Cost Functions
Learning refers to updating the parameters w and b of a neural network such
that the predicted output ŷ closely matches the actual value y. The loss
function (L) and the cost function (J) quantify this closeness. The loss
quantifies it for one particular example (i), whereas the cost simultaneously
quantifies it for all the m examples. So, the cost is nothing but the loss
summed over all the m examples.

Binary Cross-Entropy (BCE)

The BCE loss and cost is used in binary classification problems.

L = −
(
y(i) log ŷ(i) +

(
1− y(i)

)
log

(
1− ŷ(i)

))
(2.1.13)

J = −
m∑

i=1

(
y(i) log ŷ(i) +

(
1− y(i)

)
log

(
1− ŷ(i)

))
(2.1.14)

16

2.1. Neural Networks and Deep Learning

−6 −4 −2 2 4 6

−2

2

4

6

x

y

Leaky-ReLU(x)

Figure 2.1.9: The Leaky ReLU activation function with α = 0.1 (see equation
2.1.12).

Categorical Cross-Entropy (CCE)

The CCE loss and cost extends the idea of BCE to multi-class classification.
For n output classes, the CCE loss and cost are given by the following.

L =
n∑

c=1
yc log ŷc (2.1.15)

J =
m∑

i=1

(
n∑

c=1
yc log ŷc

)
(2.1.16)

Mean Squared Error (MSE)

Regression tasks most commonly use MSE. It is common to report it by
taking the square root to match the dimensions, also known as root-MSE
(RMSE).

L =
(
y(i) − ŷ(i)

)2
(2.1.17)

J = 1
m

m∑
i=1

(
y(i) − ŷ(i)

)2
(2.1.18)

Due to the square, outliers influence MSE a lot.

17

2.1. Neural Networks and Deep Learning

Mean Absolute Error (MAE)

Again, regression tasks most commonly use MAE.

L =
∣∣∣y(i) − ŷ(i)

∣∣∣ (2.1.19)

J = 1
m

m∑
i=1

∣∣∣y(i) − ŷ(i)
∣∣∣ (2.1.20)

Outliers do not influence MAE as much as MSE. It also, by default, gives
the error in the proper dimensions.

2.1.5 Gradient Descent (How a Neural Network Learns)
A neural network learns by updating the parameters w’s and b’s by trying
to minimize the cost function J (w, b). An optimization algorithm known
as gradient descent carries this out. We want to find all the parameters
w’s, b’s of the neural network that minimizes J (w, b). Gradient descent
first randomly initializes these parameters and then carries out the following
steps.

repeat until convergence: {

w ← w − α
∂J (w, b)

∂w

b← b− α
∂J (w, b)

∂b
}

(2.1.21)

Here, α is known as the learning rate. Usually, α < 1. The larger the learning
rate, the larger the strides taken by gradient descent, and vice versa.

The cost function J (w, b) can be thought of as a surface with respect to
the weights w and biases b. Each step of gradient descent can be thought
of as traversing this surface in the steepest instantaneous direction, finally
reaching a minima, as shown in figure 2.1.10. Once these weights and biases
are found corresponding to the minima, we say that the model is trained.
Figure 2.1.11 shows a general workflow of a supervised deep learning task.

2.1.6 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are used widely on spatial data like
images. Various cutting-edge deep learning applications, like self-driving

18

2.1. Neural Networks and Deep Learning

−4 −3 −2 −1 0 1 2 3−4

−2

0

2

−1

−0.5

0

0.5

1

w

b

J (w, b)

Figure 2.1.10: Pictorial representation of gradient descent algorithm.

cars, object detection, image segmentation, image classification, recommender
systems, medical image analysis, brain-computer interfaces, and many more,
involve CNNs.

A grayscale image is nothing but a 2D array (or a matrix) consisting of
a pixel value for each pixel. A colored image is a 3D array with three values
for each pixel (corresponding to RGB channels). If we want to feed in a
1000×1000×3 image into a fully connected neural network, the input would
be 1000×1000×3 = 3 million dimensional. So, the input layer will consist of
3 million neurons. Also, assuming the first hidden layer has 1000 neurons, the
weights between the input and the first hidden layer would be 3 billion. With
these many parameters, it is almost impossible to get enough data to prevent
the neural network from overfitting. Also, the computational and memory
requirements to train such a neural network is practically infeasible. This is

19

2.1. Neural Networks and Deep Learning

Figure 2.1.11: General workflow of a supervised deep learning task (Chollet,
2021).

where the convolution operation comes to our rescue, which is a fundamental
building block of CNNs.

2D Convolution

Figure 2.1.12 shows the convolution of image I with a kernel (also known
as a filter) K. Their convolution is denoted as I ∗K. Elements in their
convolution are obtained by placing the kernel over the image and adding
the element-wise product of the overlapping elements. We can also see that
if I is an n × n image and K is a k × k kernel, then their convolution has
dimensions (n−k+1)×(n−k+1). The kernel is what learns various patterns
in the image. A neural network can learn the kernel elements to perform a
particular task like image classification, edge detection, and much more.

Padding the given image with a border of zero-valued pixels around it is
common to ensure that the convolution does not shrink with each applied
kernel. In this case, the convolution has dimensions (n + 2p− k + 1)× (n +
2p− k + 1), where p is the number of padded borders.

Stride is also a standard adjustable parameter during convolution. It is

20

2.1. Neural Networks and Deep Learning

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0

I

∗
1 0 1

0 1 0

1 0 1

K

=

1 4 3 4 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

3 3 1 1 0

I ∗K

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 2.1.12: 2D Convolution of an image I with a kernel (also known as a
filter) K.

nothing but the number of rows or columns a kernel can skip while traversing
the image. In this case, the convolution has dimensions⌊

n + 2p− k

s
+ 1

⌋
×
⌊

n + 2p− k

s
+ 1

⌋
(2.1.22)

where s is the stride length5.

3D Convolution

RGB images, i.e., images with three channels, use 3D convolution. It works
analogously to 2D convolution, except the image and the kernel are now 3D
arrays. For a general case with an n×n image and a k×k kernel, both having
c channels, their convolution will again have dimensions given by equation
2.1.22. If there are nk kernels, then the resulting array formed by taking
convolutions will have the following dimensions.⌊

n + 2p− k

s
+ 1

⌋
×
⌊

n + 2p− k

s
+ 1

⌋
× nk (2.1.23)

Using multiple kernels allows the network to learn multiple patterns in
the images.

5⌊ ⌋ denotes the floor function.

21

2.1. Neural Networks and Deep Learning

One Layer of a Convolutional Neural Network

Figure 2.1.13 illustrates the working of a single layer of a convolutional neural
network with two kernels.

First, convolution between the image and the two kernels gives two 2D
matrices, as indicated by figure 2.1.13a. Then, we add6 biases b1 and b2 to
each element of these convolutions, and an activation function g is applied.
Then, we concatenate the resulting 2D matrices to form a 4× 4× 2 array, as
shown in figure 2.1.13b. For nk kernels, this operation would have resulted
in a 4× 4× nk array. This array would act as activation for this layer.

Convolutional vs. Fully Connected Neural Networks

Two significant advantages of using convolutional neural networks over fully
connected neural networks for image data are parameter sharing and sparsity
of connections.

Parameter Sharing A kernel learned to detect a particular feature (like
edges) is helpful in all the parts of an image. So, the same parameters
are useful to detect a particular feature in an image. So, using kernels on an
image results in far fewer parameters than flattening an image and using fully
connected layers. This makes a CNN computationally efficient as compared
to a fully connected neural network.

Sparsity of Connections As we can see in figure 2.1.12, each value in
I ∗K depends only on a small number of values in image I. Due to this, the
number of computations in a convolutional layer is far fewer than in a fully
connected layer, which makes a CNN computationally efficient.

2.1.7 Recurrent Neural Networks
By design, recurrent neural networks (RNNs) work with sequence data. Se-
quence data is only data ordered into sequences, such as audio, video, and
time series data. Some examples of tasks carried out by RNNs are speech
recognition, DNA sequence analysis, sentiment classification, machine trans-
lation, and time series analysis/forecasting. In each of these examples, the

6This is also known as broadcasting and is done using the NumPy library in Python.

22

2.1. Neural Networks and Deep Learning

(a) Convolution of the image with two kernels (“∗”
denotes the convolution operation).

(b) Adding biases, applying the activation function, and con-
catenation.

Figure 2.1.13: One layer of a convolutional neural network.

23

2.1. Neural Networks and Deep Learning

input to the model is a sequence. However, this sequence does not neces-
sarily have to be the same length. For example, in machine translation, the
input sequence can be lengthy, as well as a short sentence. The same is the
case with sentiment analysis. This is one of the significant reasons why fully
connected neural networks are useless for such tasks.

Notation

• We represent an input sequence of length Tx as x⟨1⟩, x⟨2⟩, . . . , x⟨t⟩,
. . . , x⟨Tx⟩. Likewise, we represent an output sequence of length
Ty as y⟨1⟩, . . . , y⟨Ty⟩.

• Wpq denotes the weights matrix which has to be multiplied by
a quantity corresponding to “q” to calculate a quantity corre-
sponding to “p” (see equations 2.1.24).

Figure 2.1.14 shows the construction of a simple recurrent neural network
with Tx = Ty. We can see how an input sequence x⟨1⟩, . . . , x⟨Tx⟩ is fed into

Figure 2.1.14: A recurrent neural network.

a neural network layer and the predicted output sequence ŷ⟨1⟩, . . . , ŷ⟨Ty⟩ is
obtained. Note that this is just a single neural network layer represented at
multiple time steps from left to the right. We can see that the layer predicts
ŷ⟨t⟩ using not just x⟨t⟩ but also the activation from the previous time step,
i.e., a⟨t−1⟩. The activation at the zeroth time step, i.e., a⟨0⟩, is usually just a
vector of zeros. The right side of the figure shows the general representation
of the same layer at a time step t. The parameters (i.e., the weights and
biases) this layer uses at each time step are shared. The matrices Waa, Wax,

24

2.1. Neural Networks and Deep Learning

and Wya, contain the weights. The following equations calculate the outputs
in an RNN.

a⟨t⟩ = g1
(
Waaa⟨t−1⟩ + Waxx⟨t⟩ + ba

)
(2.1.24a)

ŷ⟨t⟩ = g2
(
Wyaa⟨t⟩ + by

)
(2.1.24b)

where, g1 and g2 are activation functions, whereas ba and by are biases. Usu-
ally, g1 = tanh.

A simplified version of the above equations can be written as follows.

a⟨t⟩ = g1
(
Wa

[
a⟨t−1⟩, x⟨t⟩

]
+ ba

)
(2.1.25a)

ŷ⟨t⟩ = g2
(
Wya⟨t⟩ + by

)
(2.1.25b)

where, Wy = Wya, the matrix Wa is a matrix formed by horizontally stack-
ing the matrices Waa and Wax, i.e.,

Wa =
[
Waa Wax

]
and,

[
a⟨t−1⟩, x⟨t⟩

]
is a matrix formed by vertically stacking the vectors a⟨t−1⟩

and x⟨t⟩, i.e., [
a⟨t−1⟩, x⟨t⟩

]
=
[
a⟨t−1⟩

x⟨t⟩

]
We compute the cost score and apply gradient descent to minimize it.

This is how an RNN learns. Figure 2.1.15 shows a pictorial representation
of an RNN unit.

Vanishing Gradients Problem

Sometimes, sequences such as words, time series, and more can have long-
term dependencies. For example, whether a word at the end of a sentence
should be singular or plural may depend on the subject which comes right
at its beginning. It turns out that a basic RNN is not good at capturing
such long-term dependencies. For longer sequences, computing gradients to
carry out gradient descent is difficult. So, the gradients at the latter part
of the RNN may have a hard time affecting the gradients at the initial part
(see figure 2.1.14). This makes it difficult for the newly learned information
to affect the weights at the initial part of the network, making it harder to
capture long-term dependencies. So, the basic RNN model only has many
local influences, i.e., the output ŷ⟨t⟩ is mainly influenced by values close to it.

25

2.1. Neural Networks and Deep Learning

Figure 2.1.15: Pictorial representation of an RNN unit (see equations 2.1.25).

Gated Recurrent Unit (GRU)

The gated recurrent unit, or GRU (Cho et al., 2014), modifies the RNN
layer discussed in the previous section. It makes it much better at capturing
long-term dependencies in the data and helps with the vanishing gradients
problem. The GRU unit has a new variable, c, the memory cell, which
provides some “memory” to learn long-term dependencies. So, at time t, the
memory cell will have some value, c⟨t⟩, which will also be equal7 to the output
of the GRU unit, i.e., a⟨t⟩. Equations 2.1.268 that govern the computations
of a GRU unit.

c̃⟨t⟩ = tanh
(
Wc

[
Γr ◦ c⟨t−1⟩, x⟨t⟩

]
+ bc

)
(2.1.26a)

Γu = σ
(
Wu

[
c⟨t−1⟩, x⟨t⟩

]
+ bu

)
(2.1.26b)

Γr = σ
(
Wr

[
c⟨t−1⟩, x⟨t⟩

]
+ br

)
(2.1.26c)

c⟨t⟩ = Γu ◦ c̃⟨t⟩ + (1− Γu) ◦ c⟨t−1⟩ (2.1.26d)
a⟨t⟩ = c⟨t⟩ (2.1.26e)
ŷ⟨t⟩ = g

(
a⟨t⟩

)
(2.1.26f)

7For LSTMs (next sub-subsection), c⟨t⟩ ̸= a⟨t⟩.
8In these equations, “◦” denotes the Hadamard product (also known as element-wise

product).

26

2.1. Neural Networks and Deep Learning

At every time step t, we will consider overwriting the memory cell c⟨t⟩

with a value c̃⟨t⟩ given by equation 2.1.26a, which will be a candidate that
can replace c⟨t⟩. Γu is known as the update gate, given by equation 2.1.26b,
whose value lies between 0 and 1. The job of the update gate is to decide
when to update the memory cell c⟨t⟩ with its candidate value c̃⟨t⟩. Equation
2.1.26d reflects this decision. Γr is known as the relevance gate, given by
equation 2.1.26c, which tells us how relevant the previous memory cell value,
i.e., c⟨t−1⟩, is to calculate the next candidate value, i.e., c̃⟨t⟩. Figure 2.1.16
shows a pictorial representation (Olah, 2015) of a GRU unit.

Figure 2.1.16: Pictorial representation of a GRU unit (see equations 2.1.26).

Long Short-Term Memory (LSTM)

Long short-term memory, or LSTM (Hochreiter & Schmidhuber, 1997), is a
more robust and general version of the GRU. Equations 2.1.27 govern the
computations of an LSTM unit.

27

2.1. Neural Networks and Deep Learning

c̃⟨t⟩ = tanh
(
Wc

[
a⟨t−1⟩, x⟨t⟩

]
+ bc

)
(2.1.27a)

Γu = σ
(
Wu

[
a⟨t−1⟩, x⟨t⟩

]
+ bu

)
(2.1.27b)

Γf = σ
(
Wf

[
a⟨t−1⟩, x⟨t⟩

]
+ bf

)
(2.1.27c)

Γo = σ
(
Wo

[
a⟨t−1⟩, x⟨t⟩

]
+ bo

)
(2.1.27d)

c⟨t⟩ = Γu ◦ c̃⟨t⟩ + Γf ◦ c⟨t−1⟩ (2.1.27e)
a⟨t⟩ = Γo ◦ tanh

(
c⟨t⟩
)

(2.1.27f)

ŷ⟨t⟩ = g
(
a⟨t⟩

)
(2.1.27g)

Here, two new gates, the forget gate (Γf) and the output gate (Γo), are
introduced (see equations 2.1.27c and 2.1.27d, respectively). Figure 2.1.17
shows a pictorial representation (Olah, 2015) of an LSTM unit.

Figure 2.1.17: Pictorial representation of an LSTM unit (see equations
2.1.27).

Deep RNNs

We can construct a deep RNN/GRU/LSTM network by stacking layers of
the corresponding units shown in figures 2.1.15, 2.1.16, and 2.1.17. This is
mainly useful for learning complex functions.

28

2.2. Spatiotemporal Forecasting using Deep Learning

2.2 Spatiotemporal Forecasting using Deep
Learning

The use of deep learning-based spatiotemporal forecasting methods is mainly
for precipitation nowcasting, i.e., short-term precipitation forecasting. Here,
instead of forecasting a sequence of numbers (i.e., a temporal sequence), the
aim is to forecast a series of matrices (i.e., a spatiotemporal sequence), as
mentioned in section 1.2.

2.2.1 Convolutional LSTM (ConvLSTM)
Deep learning researchers have proposed various models for spatiotemporal
forecasting. Convolutional LSTM or ConvLSTM (Shi et al., 2015) is one
of the most fundamental yet powerful models for spatiotemporal forecast-
ing. A ConvLSTM unit is very similar to the LSTM unit, except it employs
the convolution operation instead of matrix multiplication that we see in
the LSTM equations (equations 2.1.27). Convolution helps extract spatial
patterns from the spatiotemporal sequence. Equations 2.2.1 govern the com-
putations of a ConvLSTM unit (“∗” denotes convolution). Compare these
with LSTM equations, i.e., equations 2.1.27.

C̃⟨t⟩ = tanh
(
WC̃X ∗X⟨t⟩ + WC̃A ∗A⟨t−1⟩ + bc

)
(2.2.1a)

Γu = σ
(
WΓuX ∗X⟨t⟩ + WΓuA ∗A⟨t−1⟩ + WΓuC ◦C⟨t−1⟩ + bu

)
(2.2.1b)

Γf = σ
(
WΓf X ∗X⟨t⟩ + WΓf A ∗A⟨t−1⟩ + WΓf C ◦C⟨t−1⟩ + bf

)
(2.2.1c)

Γo = σ
(
WΓoX ∗X⟨t⟩ + WΓoA ∗A⟨t−1⟩ + WΓoC ◦C⟨t−1⟩ + bo

)
(2.2.1d)

C⟨t⟩ = Γu ◦ C̃⟨t⟩ + Γf ◦C⟨t−1⟩ (2.2.1e)
A⟨t⟩ = Γo ◦ tanh

(
C⟨t⟩

)
(2.2.1f)

Ŷ⟨t⟩ = g
(
A⟨t⟩

)
(2.2.1g)

Like previously discussed RNN architectures, we can construct a deep
ConvLSTM network consisting of multiple ConvLSTM layers. Input to each
ConvLSTM layer is a 4D array of dimensions “sequence length × height ×
width×channels”. In our implementation, we provide multiple input samples
(training examples) simultaneously, which makes it a 5D array of dimensions
“samples×sequence length×height×width×channels”. In terms of our data

29

2.2. Spatiotemporal Forecasting using Deep Learning

(discussed in section 3.1), these dimensions can also be written as follows.

samples× sequence length× latitudes× longitudes× variables (2.2.2)

30

Chapter 3

Data and Methodology

3.1 Data
For PM2.5 emissions, we have used the FINN1 (Fire INventory from NCAR)
(Wiedinmyer et al., 2011) data. In addition, we have used NDVI2 (Normal-
ized Difference Vegetation Index) from National Oceanic and Atmospheric
Administration (Vermote et al., 2019), temperature, surface pressure, wind
(u, v), and total cloud cover from ECMWF reanalysis3 version 5 (Hersbach
et al., 2020) as additional variables. We have data from 2002 to 2018, i.e.,
17 years. Table 3.1 summarizes the variables.

Variable (Unit) Source Spatial Resolution Temporal Resolution
PM2.5 (µg m−2 s−1) FINN 0.1◦ × 0.1◦ Hourly

NDVI (None) NOAA 0.05◦ × 0.05◦ Daily
Temperature (K) ERA5 0.25◦ × 0.25◦ Hourly

Surface Pressure (Pa) ERA5 0.25◦ × 0.25◦ Hourly
Wind (u, v) (m s−1) ERA5 0.25◦ × 0.25◦ Hourly

Total Cloud Cover (None) ERA5 0.25◦ × 0.25◦ Hourly

Table 3.1: Summary of the data.

1https://www.acom.ucar.edu/Data/fire/
2https://www.ncei.noaa.gov/products/climate-data-records/normalized

-difference-vegetation-index
3https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5

31

https://www.acom.ucar.edu/Data/fire/
https://www.ncei.noaa.gov/products/climate-data-records/normalized-difference-vegetation-index
https://www.ncei.noaa.gov/products/climate-data-records/normalized-difference-vegetation-index
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5

3.2. Data Preprocessing

3.2 Data Preprocessing

3.2.1 Matching the Spatial Resolution
To construct the model, we need the spatial resolution of all the variables to
be consistent with each other. Depending upon the variable, we upscale or
downscale its spatial resolution to match the spatial resolution of the target
variable, i.e., PM2.5, which is 0.1◦ × 0.1◦. Table 3.2 summarizes this step.

Variable Before Scaling Technique After
PM2.5 0.1◦ × 0.1◦ None 0.1◦ × 0.1◦

NDVI 0.05◦ × 0.05◦ Nearest Coordinates 0.1◦ × 0.1◦

Temperature 0.25◦ × 0.25◦ Linear Interpolation 0.1◦ × 0.1◦

Surface Pressure 0.25◦ × 0.25◦ Linear Interpolation 0.1◦ × 0.1◦

Wind (u, v) 0.25◦ × 0.25◦ Linear Interpolation 0.1◦ × 0.1◦

Total Cloud Cover 0.25◦ × 0.25◦ Linear Interpolation 0.1◦ × 0.1◦

Table 3.2: Matching the spatial resolution of the variables.

3.2.2 Temporal Resolution
We want a three-day forecast for PM2.5 emissions. Hence, we convert the
temporal resolution of all the variables from hourly to daily. In other words,
we consider a single value for each day.

3.2.3 Imputation of Missing Values
A missing value occurs when the instrument does not record data at a partic-
ular point. Computers represent it as “NaN” (not a number). Missing values
are highly detrimental to deep learning models as they hinder calculating
cost scores and gradients. Hence, imputing these missing values with some
educated guesses is crucial.

NDVI

Fortunately, only NDVI had missing values in our data. There were two
types of missing values: a small amount of randomly missing values for some

32

3.2. Data Preprocessing

80.0 82.5 85.0 87.5
Longitude (◦ E)

16

18

20

22

24

26
L

at
it

u
d

e
(◦

N
)

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

N
O

A
A

C
lim

at
e

D
at

a
R

ec
or

d
of

N
or

m
al

iz
ed

D
iff

er
en

ce
V

eg
et

at
io

n
In

d
ex

[1
]

(a) NDVI before NaN imputation.

80.0 82.5 85.0 87.5
Longitude (◦ E)

16

18

20

22

24

26

L
at

it
u

d
e

(◦
N

)

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

N
O

A
A

C
lim

at
e

D
at

a
R

ec
or

d
of

N
or

m
al

iz
ed

D
iff

er
en

ce
V

eg
et

at
io

n
In

d
ex

[1
]

(b) NDVI after NaN imputation.

Figure 3.2.1: NDVI before and after NaN imputation.

(latitude, longitude) pairs and missing values corresponding to the Bay of
Bengal region in the central India and northeast Indian subcontinent data.

Random Missing Values We impute these randomly occurring missing
values using their surrounding values via interpolation.

Bay of Bengal Missing Values To impute these missing values, we mask
the bay of Bengal area with −1. The reason we select −1 is that the NDVI
value corresponding to water is −1.

Figure 3.2.1 shows the before imputation and after imputation plots of
NDVI for the central India region.

3.2.4 Data Slicing
Spatial Slicing

As we are only interested in the stubble burning region (Delhi-Punjab-Haryana),
the northeast Indian subcontinent, and central India, we spatially slice the
data into three subsets corresponding to these three regions. Table 3.3 shows
the latitudinal and longitudinal extent of these three regions of interest. Fig-
ure 3.2.2 shows the spatial extent of the three spatially sliced data corre-
sponding to the three regions of interest.

33

3.2. Data Preprocessing

74 76 78

Longitude (◦ E)

27

28

29

30

31

32

33

L
at
it
u
d
e
(◦

N
)

(a) Delhi-Punjab-Haryana.

80 82 84 86 88

Longitude (◦ E)

16

18

20

22

24

26

L
at
it
u
d
e
(◦

N
)

(b) Central India.

90 95

Longitude (◦ E)

14

16

18

20

22

24

26

28

L
at
it
u
d
e
(◦

N
)

(c) Northeast Indian
Subcontinent.

Figure 3.2.2: Spatial extent of the three subsets formed after spatially slicing
the data corresponding to the three regions of interest.

34

3.2. Data Preprocessing

Area Latitudinal Extent Longitudinal Extent
Delhi-Punjab-Haryana 27◦ N to 33◦ N 73◦ E to 80◦ E

Northeast India 13.5◦ N to 30◦ N 89◦ E to 98.3◦ E
Central India 16◦ N to 26◦ N 79◦ E to 88◦ E

Table 3.3: Spatially slicing the data corresponding to the three regions of
interest.

Temporal Slicing

Stubble burning and forest fires occur only in a particular period during
a year. Table 3.4 shows the corresponding periods of the three regions of
interest.

Area Period
Delhi-Punjab-Haryana September 15 to November 30

Northeast India January 1 to May 31
Central India February 1 to May 31

Table 3.4: Temporally slicing the data corresponding to the periods of the
three regions of interest.

As these events occur only in their corresponding period, including the
data for the entire year would add much noise to the model and hinder the
training process. Hence, we only consider the corresponding temporal slice
of the data for the three regions of interest to build the model.

3.2.5 Supervised Splits
Recall that in section 1.2, we said the following:

• We have a 3-D4 array corresponding to each observation, i.e., a 3-D
array for each time step.

• We want to predict the most likely sequence of K such arrays given the
past sequence of J arrays.

4We can think of this as a matrix with seven values in each position as there are seven
variables, namely, PM2.5, NDVI, temperature, surface pressure, wind (u, v), and total
cloud cover.

35

3.2. Data Preprocessing

Since our data is daily, we have a 3-D array corresponding to each day.
Now, we pick J = K = 5, i.e., given data for five consecutive days, we want
to forecast for the next five consecutive days. Figure 3.2.3 summarizes what
we want our model to do.

Figure 3.2.3: We want our model to take in five consecutive days as input
and forecast the next five consecutive days..

We must split the data according to this input-output format to train
the model. In other words, we must form the supervised splits of the data.
Table 3.5 shows the supervised splits for the three regions of interest. We
form these splits for all 17 years. We will simultaneously show our model the
input and output arrays during training.

3.2.6 Data Transformation
Data transformation helps convert the raw data into a format or structure
more suitable for model training. We need data transformation for the fol-
lowing principal reasons:

• It helps reduce the skewness of the data distribution.

• It helps in managing outliers present in the data.

There are three common types of transformations used in time series
analysis: log transformation, exponential transformation, and power trans-
formation.

36

3.2. Data Preprocessing

Input (X) Output
(
Ŷ
)

Sept. 15 to Sept. 19 Sept. 20 to Sept. 24
Sept. 16 to Sept. 20 Sept. 21 to Sept. 25

... ...
Nov. 21 to Nov. 25 Nov. 26 to Nov. 30

(a) Delhi-Punjab-Haryana.
Input (X) Output

(
Ŷ
)

Feb. 1 to Feb. 5 Feb. 6 to Feb. 10
Feb. 2 to Feb. 6 Feb. 7 to Feb. 11

... ...
May 22 to May 26 May 27 to May 31

(b) Central India.
Input (X) Output

(
Ŷ
)

Jan. 1 to Jan. 5 Jan. 6 to Jan. 10
Jan. 2 to Jan. 6 Jan. 7 to Jan. 11

... ...
May 22 to May 26 May 27 to May 31

(c) Northeast Indian Subcontinent.

Table 3.5: Supervised splits of the data.

Log Transformation

As the name suggests, log transformation is a data transformation technique
that replaces each data point x with log(x).

xfinal = log (xinitial)

If the data contains zeros, it is common to add one before taking the loga-
rithm, i.e.,

xfinal = log (xinitial + 1)

Log transformation generally helps in converting a right-skewed distribu-
tion to a normal distribution.

37

3.2. Data Preprocessing

Exponential Transformation

As the name suggests, exponential transformation is a data transformation
technique that replaces each data point x with exp(x). It is essentially the
inverse of log transformation.

xfinal = exp (xinitial)

Exponential transformation generally helps in converting a left-skewed
distribution to a normal distribution.

Power Transformation

As the name suggests, power transformation is a data transformation tech-
nique that replaces each data point x with xγ.

xfinal = (xinitial)γ

Commonly, γ = 1/2 (square root transform), 1/3 (cube root transform), . . .
Power transformation with γ < 1 helps convert a right-skewed distribu-

tion to a normal one, and power transformation with γ > 1 helps convert a
left-skewed distribution into a normal one.

3.2.7 Data Scaling
Scaling helps to scale the data down to a particular range, which significantly
benefits gradient descent to converge faster. Two common data scaling tech-
niques are standardization and normalization.

Standardization

Standardization changes the data distribution such that the values center
around the mean of the data with a unit standard deviation.

xfinal = xinitial − µ

σ

where, µ is the mean, and σ is the standard deviation of the raw data.

38

3.2. Data Preprocessing

Normalization

Normalization rescales the data such that the values end up ranging between
0 and 1. Gradient descent converges faster if all the variables/features in the
data are normalized.

xfinal = xinitial − xmin

xmax − xmin

where, xmax and xmin are the maximum and the minimum, respectively, of
the raw data.

Per-day Normalization Sometimes, instead of scaling with the maximum
and minimum of the entire data, it is beneficial to scale each day with its
corresponding maximum and minimum.

xifinal = xiinitial − (xiinitial)min
(xiinitial)max − (xiinitial)min

We do this for all the days, i.e., for all values of i.

3.2.8 Training-Validation-Test Split
Training-Validation-Test split is a common splitting technique used in data
science. The model is trained on the training set and evaluated on the val-
idation set. We make necessary changes in the model based on the model’s
performance on the validation set (also known as hyperparameter tuning).
Finally, using these parameters, we train the final model on the training and
the validation set and report the performance on the test set. Table 3.6 shows
the training-validation-test split.

Training Set Validation Set Test Set
2002 to 2014 2015 to 2016 2017 to 2018

Table 3.6: The training-validation-test split done on the data.

39

3.3. Model

3.3 Model
As mentioned earlier, we propose using ConvLSTM to forecast PM2.5 emis-
sions. It is a fundamental yet powerful deep learning-based model for spa-
tiotemporal forecasting. We will construct a multi-layered ConvLSTM model
architecture for the same using Keras API with TensorFlow as the backend.

3.3.1 Model Architecture
Tables 3.7, 3.8, and 3.9 show the ConvLSTM architectures that gave us the
best result for the Delhi-Punjab-Haryana, northeast Indian subcontinent,
and central India region. (Note: Names of the layers in the column “Layer
(type)”, written in typewriter font, follow the Keras/TensorFlow nomen-
clature.)

Layer no. Layer (type) Kernel Size Kernels Activation (g)
1 ConvLSTM2D (9, 9) 64 tanh
2 ConvLSTM2D (5, 5) 32 tanh
3 Conv3D (7, 7, 7) 32 tanh
4 Conv3D (5, 5, 5) 16 tanh
5 Conv3D (3, 3, 3) 16 tanh
6 Conv3D (1, 1, 1) 1 ReLU

Table 3.7: ConvLSTM architecture that gave us the best result for the Delhi-
Punjab-Haryana region.

ConvLSTM2D5 is an inbuilt layer in Keras consisting of convolutional LSTM
units, whereas Conv3D6 is another inbuilt layer in Keras that performs 3D
convolution.

3.3.2 Hyperparameter Tuning
We carried out hyperparameter tuning based on the model’s performance on
the validation set. We tuned the following parameters.

5https://keras.io/api/layers/recurrent layers/conv lstm2d/
6https://keras.io/api/layers/convolution layers/convolution3d/

40

https://keras.io/api/layers/recurrent_layers/conv_lstm2d/
https://keras.io/api/layers/convolution_layers/convolution3d/

3.3. Model

Layer no. Layer (type) Kernel Size Kernels Activation (g)
1 ConvLSTM2D (9, 9) 64 tanh
2 ConvLSTM2D (7, 7) 64 tanh
3 ConvLSTM2D (5, 5) 64 tanh
4 Conv3D (7, 7, 7) 64 tanh
5 Conv3D (7, 7, 7) 64 tanh
6 Conv3D (5, 5, 5) 32 tanh
7 Conv3D (5, 5, 5) 32 tanh
8 Conv3D (3, 3, 3) 16 tanh
9 Conv3D (3, 3, 3) 16 tanh
10 Conv3D (1, 1, 1) 1 ReLU

Table 3.8: ConvLSTM architecture that gave us the best result for the north-
east Indian subcontinent region.

Layer no. Layer (type) Kernel Size Kernels Activation (g)
1 ConvLSTM2D (9, 9) 64 tanh
2 ConvLSTM2D (5, 5) 32 tanh
3 Conv3D (7, 7, 7) 32 ReLU
4 Conv3D (5, 5, 5) 16 ReLU
5 Conv3D (3, 3, 3) 16 ReLU
6 Conv3D (1, 1, 1) 1 ReLU

Table 3.9: ConvLSTM architecture that gave us the best result for the central
India region.

Number of ConvLSTM2D and Conv3D layers

We observed that having the number of ConvLSTM2D layers to around 2 to 4
gave a good model performance. In contrast, increasing it further decreased
the model performance. We observed a similar situation for the Conv3D
layers, where 4 to 7 Conv3D layers seemed to be the sweet spot.

Number of Kernels

We observed that having more kernels in ConvLSTM2D layers improved the
model performance. Having more kernels increases computational complex-
ity. After a point, having more kernels does not substantially improve the

41

3.3. Model

model performance at the cost of computational complexity. Hence, we de-
cided to put a decreasing order of the number of kernels with depth.

Kernel Size

Kernel size refers to the size of the kernel used over an image (see figure
2.1.12). Generally, a larger kernel captures more spatial information in an
image but, on the other hand, also leads to a more considerable training
time. We observed that using a smaller kernel like 3 × 3 for ConvLSTM2D or
3 × 3 × 3 for Conv3D led to poorer model performance. At the same time,
having a larger kernel like 9× 9 or 9× 9× 9 did not significantly improve the
model at the cost of computational complexity. Hence, we decided to start
with a larger kernel and decrease the size for the deeper layers.

Activation Functions

The activation function is one of the most crucial hyperparameters for any
neural network. The activation function for the output layer depends upon
the task at hand. For example, in a task predicting probability, using sig-
moid (σ) as the activation function makes more sense since the output of
sigmoid lies between 0 and 1, which is the same as probability. The choice
of activation function for the input and the hidden layers can be arbitrary.
However, some activation functions work better with a particular layer (e.g.,
tanh works well with the ConvLSTM2D layer).

We tried various activation functions for the input and the hidden layers
like tanh, ReLU, sigmoid, PReLU (Parametric ReLU), ELU (Exponential
Linear Unit), etc. We found that for the ConvLSTM2D layer, tanh gave us the
best results. On the other hand, ReLU and tanh both worked well with the
Conv3D layers.

Since the output for our model lies between 0 and 1, we had to choose
the activation function for the output layer accordingly. We had two choices:
sigmoid or ReLU. On trying both, we observed that ReLU worked better for
our output layer.

Batch Normalization

Batch normalization is a technique in which we normalize the output of a
particular layer before feeding it into the next layer. For many applications,

42

3.3. Model

this reduces the learning time. However, we observed that not using batch
normalization worked well for our problem.

Dropout

Dropout is a regularization technique in which we shut off outputs from
some random neurons from a particular layer before feeding them into the
next layer. Using dropout makes sure that the model does not overfit the
training set. We observed that a dropout of 0.37 was the sweet spot for the
ConvLSTM2D layers. It is better to avoid dropout for convolutional layers as it
hinders the final matrix formation, which we also observed during training.

3.3.3 Model Compilation and Callbacks
Loss/Cost Function

Since we have a regression problem, we monitored mean squared error (MSE)
and mean absolute error (MAE) during model training. In other words, our
model calculated MAE and MSE between the ground truth (Y) and the
forecast

(
Ŷ
)
. We also used the ModelCheckpoint8 callback from Keras to

save our models.

Optimization Algorithm

We chose the AdaM (Adaptive Moment Estimation)9 algorithm with an ini-
tial learning rate (α) of 10−4 as our optimization algorithm to optimize our
loss/cost score. We also used the ReduceLROnPlateau10 callback from Keras
to decrease the learning rate whenever the loss/cost score plateaus.

Visualizing Model Training

We used the TensorBoard11 callback from Keras to help us visualize the
training process by plotting the loss/cost score with each iteration/epoch.

7A dropout of 0.3 means that the probability that a neuron in a given layer will shut
off is 0.3.

8https://keras.io/api/callbacks/model checkpoint/
9https://keras.io/api/optimizers/adam/

10https://keras.io/api/callbacks/reduce lr on plateau/
11https://keras.io/api/callbacks/tensorboard/

43

https://keras.io/api/callbacks/model_checkpoint/
https://keras.io/api/optimizers/adam/
https://keras.io/api/callbacks/reduce_lr_on_plateau/
https://keras.io/api/callbacks/tensorboard/

3.4. Data Preprocessing Pipeline

Epochs

A single epoch is when the following steps happen consecutively and exactly
once:

1. Calculation of the loss/cost score using the entire data,

2. Using the optimization algorithm to optimize the loss/cost score.

We repeat these two steps multiple times to improve the loss/cost score. In
other words, we train our model for multiple epochs. We chose the number
of epochs to be 1000. However, in most cases, the model got trained (i.e.,
the loss/cost score plateaued) within 500 epochs.

3.4 Data Preprocessing Pipeline
We tried many combinations of data transformation and data scaling tech-
niques discussed in subsections 3.2.6 and 3.2.7. Figure 3.4.1 shows a flowchart
of the entire data preprocessing pipeline.

Figure 3.4.1: A flowchart of the data preprocessing pipeline.

Since our data had a right-skewed distribution, we had to go ahead with
only either log transformation or with power transformation with γ < 1.

44

3.4. Data Preprocessing Pipeline

We chose a different pair of data transformation and data scaling techniques
for each variable. Table 3.10 summarizes these choices. Subsection 3.4.1
mentions the reasons for choosing these pairs of data transformation and
data scaling techniques.

Variable Data Transformation Data Scaling
PM2.5 log(x + 1) Per-day Normalization
NDVI None Normalization

Temperature None Normalization
Surface Pressure None Normalization

Wind (u, v) None Normalization
Total Cloud Cover None None

Table 3.10: Data Transformation and Data Scaling for each variable.

3.4.1 Choosing the Data Transformation and Data Scal-
ing Pair

PM2.5

The primary reason behind selecting the log(x+1) transform over the log(x)
transform is the presence of zeros in PM2.5 data. On the other hand, the
primary reason behind selecting the pair “log(x + 1)” and “Per-day Normal-
ization” was to improve the distribution of the data. The raw PM2.5 data
distribution has an extreme right skew. No other pair improved the right
skew compared to this. Per-day normalization helped scale this distribution
between 0 and 1, which is optimum for deep learning.

NDVI

The NDVI data already had a pretty normal-looking distribution. Hence, we
did not use any data transformation. On the other hand, the range of NDVI
is between −1 and 1, which is why we used per-day normalization to scale it
between 0 and 1.

45

3.5. Total Models to Train

Temperature

Temperature also had a pretty normal-looking distribution, so we did not
use any data transformation. It ranged between 220 K to 320 K. Hence, we
used per-day normalization to scale it between 0 and 1.

Surface Pressure

Surface pressure also had a pretty normal-looking distribution, so we did
not use any data transformation. It ranged between 50 000 Pa to 110 000 Pa.
Hence, we used per-day normalization to scale it between 0 and 1.

Wind (u, v)

Wind (u, v) also had a pretty normal-looking distribution, so we did not use
any data transformation. It ranged between −30 m s−1 to 30 m s−1. Hence,
we used per-day normalization to scale it between 0 and 1.

Total Cloud Cover

Total cloud cover did not have any significant skew in the data. Hence, using
a data transformation did not help significantly. It already ranged between
0 and 1, so we did not use any data scaling technique.

3.5 Total Models to Train
As mentioned in section 3.1, we have five variables in addition to PM2.5,
with PM2.5 being the variable we want to forecast. This means that we have
32 combinations of variables with PM2.5 since(

5
0

)
+
(

5
1

)
+
(

5
2

)
+
(

5
3

)
+
(

5
4

)
+
(

5
5

)
= 25 = 32

In other words, we have 32 models to train. We train these 32 models for the
three regions of interest, i.e., Delhi-Punjab-Haryana, the northeast Indian
subcontinent, and central India. So, we have a total of 32 × 3 = 96 models
to train.

46

Chapter 4

Results and Discussion

4.1 Metrics
We evaluate our model based on mean squared error (MSE) (refer subsub-
section 2.1.4) and Pearson correlation coefficient.

4.1.1 Pearson Correlation Coefficient
Pearson correlation coefficient (r) is a metric that shows the relationship
between two arrays. The following equation gives the Pearson correlation
coefficient between two 1-dimensional arrays, x and y.

r =
∑

i (xi − x̄) (yi − ȳ)√∑
i (xi − x̄)2∑

i (yi − ȳ)2
(4.1.1)

here, x̄ and ȳ denote the mean of the arrays x and y, respectively.
Correlation (r) ranges between −1 and 1.

• If r < 0, we say that the arrays are negatively correlated.

• If r > 0, we say that the arrays are positively correlated.

• If r ≈ 0, we say that the arrays are not correlated.

47

4.1. Metrics

Correlation Coefficient between two n-dimensional Arrays

To find the correlation between two n-dimensional arrays, we flatten1 them
into 1-dimensional arrays and then use equation 4.1.1.

As mentioned earlier, we forecast up to three days into the future. The
obtained forecast and its corresponding ground truth are 5-dimensional ar-
rays of dimensions (Samples × Forecasted Days × Latitude × Longitude ×
12), which can further split into three 4-dimensional arrays of dimensions
(Samples × Latitude × Longitude × 1), corresponding to each of the three
days. So, we have six 4-dimensional arrays per sample, three for the ground
truth and the remaining three for the forecast. We flatten them and find
the correlation between the corresponding arrays for the first, second, and
third days. We get a single value of correlation per sample. So, we get a
distribution of correlation values for all the available samples. We plot this
distribution for better visualization.

Spatial Correlation between two Arrays

Let G and P denote the ground truth and the predicted arrays for a particular
day having dimensions (Samples× Latitude× Longitude× 1). We have two
time series at each (Latitude, Longitude) pair, one from G and the other
from P. We find the correlation coefficient between these two time series. We
repeat this for all values of latitudes and longitudes and form a matrix with
dimensions (Latitude× Longitude) with correlation values corresponding to
each (Latitude, Longitude) pair. This matrix, known as spatial correlation,
shows how the two arrays, G and P, are related in time. In this way, we
compare the predictions of our model with the ground truth. We will plot
these two plots, i.e., correlation distribution and the spatial correlation for
all the day 1’s, day 2’s and day 3’s, for the three regions of interest.

1https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flatten
.html

2We have a 1 here since we are only forecasting one variable, i.e., PM2.5.

48

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flatten.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flatten.html

4.2. Delhi-Punjab-Haryana

4.2 Delhi-Punjab-Haryana

4.2.1 Comparison with the Ground Truth
For the Delhi-Punjab-Haryana region, the best-performing variable combina-
tion was with the two variables PM2.5 and wind (u, v). Figure 4.2.1 compares
the model forecast with the ground truth for a particular three consecutive
days.

Observations

• The model has captured the spatial pattern of PM2.5 emissions over
the Punjab region.

• PM2.5 emissions are denser on the first and the last days, whereas
they are sparser on the second. The model captures this pattern well
and gives the forecast accordingly. In other words, the model has also
captured the temporal pattern in the data.

• The forecast looks like a smoother version of the ground truth. In other
words, the model does not capture the sudden high-intensity peaks.
This smoothening is quite a common issue with all the spatiotemporal
forecasting models, including those more complicated than convolu-
tional LSTM.

4.2.2 Correlation Distribution
Figure 4.2.2 shows the correlation distribution for all sets of three consecutive
days.

Observations

• The correlation distribution plot has the most right shift for the first
day, an intermediate right shift for the second, and the least relative
right shift for the third. This decreasing forecast accuracy for future
time steps is typical in time series forecasting.

49

4.2. Delhi-Punjab-Haryana

74 76 78
Longitude (◦ E)

27

28

29

30

31

32

33

L
at
it
u
d
e
(◦

N
)

Ground Truth (Day 1)

0

5

10

15

20

25

(a) Ground Truth (Day 1).

74 76 78
Longitude (◦ E)

27

28

29

30

31

32

33

L
at
it
u
d
e
(◦

N
)

Forecast (Day 1)

0

5

10

15

20

25

(b) Forecast (Day 1).

74 76 78
Longitude (◦ E)

27

28

29

30

31

32

33

L
at
it
u
d
e
(◦

N
)

Ground Truth (Day 2)

0

2

4

6

8

10

12

14

16

(c) Ground Truth (Day 2).

74 76 78
Longitude (◦ E)

27

28

29

30

31

32

33

L
at
it
u
d
e
(◦

N
)

Forecast (Day 2)

0

2

4

6

8

10

12

14

16

(d) Forecast (Day 2).

50

4.2. Delhi-Punjab-Haryana

74 76 78
Longitude (◦ E)

27

28

29

30

31

32

33

L
at
it
u
d
e
(◦

N
)

Ground Truth (Day 3)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(e) Ground Truth (Day 3).

74 76 78
Longitude (◦ E)

27

28

29

30

31

32

33

L
at
it
u
d
e
(◦

N
)

Forecast (Day 3)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(f) Forecast (Day 3).

Figure 4.2.1: Ground Truth vs. Forecast for the Delhi-Punjab-Haryana re-
gion.

4.2.3 Spatial Correlation
Figure 4.2.3 shows the spatial correlation for all sets of three consecutive
days.

Observations

• Most of the points on day 1 in Punjab have a correlation value of 0.5
to 0.7.

• Correlation values decrease with the coming days.

4.2.4 Correlation Distribution for Different Combina-
tions of Variables on Day 1

Figure 4.2.4 shows the correlation distribution plot corresponding to the best
combination of 0, 1, 2, 3, 4, and 5 variables in addition to PM2.5 on the first
day.

51

4.2. Delhi-Punjab-Haryana

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
Correlation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
D

en
si

ty

Day 1

Day 2

Day 3

Figure 4.2.2: Correlation distribution plot for the Delhi-Punjab-Haryana re-
gion.

Observations

• The two-variable model consisting of PM2.5 and wind gave us the best
(most right-shifted) correlation distribution.

• We can infer that wind is the most crucial variable in forecasting
PM2.5 emitted due to stubble burning in the Punjab-Haryana region,
followed by variables like Surface Pressure, NDVI, Temperature, and
Total Cloud Cover.

4.2.5 Normalized Mean Squared Error vs. Number of
Epochs

Figure 4.2.5 shows the decrease in normalized mean squared error with the
number of epochs.

52

4.2. Delhi-Punjab-Haryana

74 76 78
Longitude (◦ E)

27

28

29

30

31

32

33

L
at
it
u
d
e
(◦

N
)

Day 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
or
re
la
ti
on

(a) Spatial Correlation (Day 1).

74 76 78
Longitude (◦ E)

27

28

29

30

31

32

33

L
at
it
u
d
e
(◦

N
)

Day 2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
or
re
la
ti
on

(b) Spatial Correlation (Day 2).

74 76 78
Longitude (◦ E)

27

28

29

30

31

32

33

L
at
it
u
d
e
(◦

N
)

Day 3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
or
re
la
ti
on

(c) Spatial Correlation (Day 3).

Figure 4.2.3: Spatial Correlation for all the day 1’s, day 2’s, and day 3’s in
the Delhi-Punjab-Haryana region.

53

4.3. Northeast Indian Subcontinent

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
Correlation (Day 1)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
D

en
si

ty

Additional Variables
None

Wind

Wind + Surface Pressure

NDVI + Wind + Surface Pressure

Wind + Surface Pressure + Temperature + Total Cloud Cover

All variables

Figure 4.2.4: Correlation distribution plot corresponding to the best combi-
nation of 0, 1, 2, 3, 4, and 5 variables in addition to PM2.5 for the Delhi-
Punjab-Haryana region on day 1.

Observations

• The normalized mean squared error decreases with every epoch till it
converges to a particular value at around epoch 140.

4.3 Northeast Indian Subcontinent

4.3.1 Comparison with the Ground Truth
For the northeast Indian subcontinent, adding additional variables did im-
prove the model performance, whereas performance between models corre-
sponding to different combinations of variables was comparable. Figure 4.3.1
compares the model forecast with the ground truth for a particular three
consecutive days.

54

4.3. Northeast Indian Subcontinent

0 50 100 150
5.5

6

6.5

7

7.5

·10−3

Number of Epochs

N
or
m
al
iz
ed

M
ea
n
S
q
u
ar
ed

E
rr
or PM2.5 + Wind

Figure 4.2.5: Normalized mean squared error vs. epochs plot for the “PM2.5
+ Wind” model (Delhi-Punjab-Haryana region).

Observations

• The model has captured the spatial pattern of PM2.5 emissions over
the northeast Indian subcontinent region. The model has captured
perfectly a region of no PM2.5 emissions in the center-right part of the
map.

• The forecast is sharper on the first day with relatively higher peaks
and gets smoother/blurrier for the following days. The intensity of the
forecast also decreases for the following days. Again, this smoothening
is quite a common issue with all spatiotemporal forecasting models.

4.3.2 Correlation Distribution
Figure 4.3.2 shows the correlation distribution for all sets of three consecutive
days.

55

4.3. Northeast Indian Subcontinent

90.0 92.5 95.0 97.5
Longitude (◦ E)

14

16

18

20

22

24

26

28

L
at
it
u
d
e
(◦

N
)

Ground Truth (Day 1)

0

2

4

6

8

10

12

(a) Ground Truth (Day 1).

90.0 92.5 95.0 97.5
Longitude (◦ E)

14

16

18

20

22

24

26

28

L
at
it
u
d
e
(◦

N
)

Forecast (Day 1)

0

2

4

6

8

10

12

(b) Forecast (Day 1).

90.0 92.5 95.0 97.5
Longitude (◦ E)

14

16

18

20

22

24

26

28

L
at
it
u
d
e
(◦

N
)

Ground Truth (Day 2)

0

2

4

6

8

10

12

(c) Ground Truth (Day 2).

90.0 92.5 95.0 97.5
Longitude (◦ E)

14

16

18

20

22

24

26

28

L
at
it
u
d
e
(◦

N
)

Forecast (Day 2)

0

2

4

6

8

10

12

(d) Forecast (Day 2).

56

4.3. Northeast Indian Subcontinent

90.0 92.5 95.0 97.5
Longitude (◦ E)

14

16

18

20

22

24

26

28

L
at
it
u
d
e
(◦

N
)

Ground Truth (Day 3)

0

2

4

6

8

10

12

14

16

(e) Ground Truth (Day 3).

90.0 92.5 95.0 97.5
Longitude (◦ E)

14

16

18

20

22

24

26

28

L
at
it
u
d
e
(◦

N
)

Forecast (Day 3)

0

2

4

6

8

10

12

14

16

(f) Forecast (Day 3).

Figure 4.3.1: Ground Truth vs. Forecast for the northeast Indian subconti-
nent region.

57

4.3. Northeast Indian Subcontinent

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Correlation

0.0

0.5

1.0

1.5

2.0

2.5

D
en

si
ty

Day 1

Day 2

Day 3

Figure 4.3.2: Correlation distribution plot for the northeast Indian subcon-
tinent region.

Observations

• The model gave a good correlation distribution for the first day. How-
ever, the correlation for the second and third days is relatively low.
This is also evident from the ground truth vs. forecast plot (see figure
4.3.1), as the intensity of the forecast decreases for the second and third
days.

4.3.3 Spatial Correlation
Figure 4.3.3 shows the spatial correlation for all sets of three consecutive
days.

Observations

• On the first day, many points have a correlation lying in the range of
0.5 to 0.8.

58

4.3. Northeast Indian Subcontinent

90.0 92.5 95.0 97.5
Longitude (◦ E)

14

16

18

20

22

24

26

28

L
at
it
u
d
e
(◦

N
)

Day 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
or
re
la
ti
on

(a) Spatial Correlation (Day 1).

90.0 92.5 95.0 97.5
Longitude (◦ E)

14

16

18

20

22

24

26

28

L
at
it
u
d
e
(◦

N
)

Day 2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
or
re
la
ti
on

(b) Spatial Correlation (Day 2).

90.0 92.5 95.0 97.5
Longitude (◦ E)

14

16

18

20

22

24

26

28

L
at
it
u
d
e
(◦

N
)

Day 3

0.2

0.3

0.4

0.5

0.6

0.7

C
or
re
la
ti
on

(c) Spatial Correlation (Day 3).

Figure 4.3.3: Spatial Correlation for all the day 1’s, day 2’s, and day 3’s in
the northeast Indian subcontinent region.

59

4.3. Northeast Indian Subcontinent

• The density of such high correlation points decreases for the following
days.

4.3.4 Correlation Distribution for Different Combina-
tions of Variables on Day 1

Figure 4.3.4 shows the correlation distribution plot corresponding to the best
combination of 0, 1, 2, 3, 4, and 5 variables in addition to PM2.5 on the first
day.

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Correlation (Day 1)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

D
en

si
ty

Additional Variables
None

Surface Pressure

Wind + Surface Pressure

NDVI + Wind + Surface Pressure

NDVI + Wind + Temperature + Total Cloud Cover

All variables

Figure 4.3.4: Correlation distribution plot corresponding to the best combi-
nation of 0, 1, 2, 3, 4, and 5 variables in addition to PM2.5 for the northeast
Indian subcontinent region on day 1.

Observations

• All the models have a very similar performance. Most of the points
have a correlation ranging between 0.4 and 0.8.

60

4.3. Northeast Indian Subcontinent

• The two-variable model consisting of PM2.5 and surface pressure, and
the four-variable model consisting of PM2.5, NDVI, wind, and surface
pressure seem to give the most right-shifted correlation distribution.

4.3.5 Normalized Mean Squared Error vs. Number of
Epochs

Figure 4.3.5 shows the decrease in normalized mean squared error with the
number of epochs.

0 50 100 150 200

1.9

2

2.1

2.2

·10−3

Number of Epochs

N
or
m
al
iz
ed

M
ea
n
S
q
u
ar
ed

E
rr
or PM2.5 + Surface Pressure

Figure 4.3.5: Normalized mean squared error vs. epochs plot for the “PM2.5
+ Surface Pressure” model (Northeast Indian Subcontinent region).

Observations

• The normalized mean squared error decreases with every epoch till it
converges to a particular value at around epoch 160.

61

4.4. Central India

4.4 Central India

4.4.1 Comparison with the Ground Truth
For the central Indian region, the best performing variable combination was
with the four variables PM2.5, temperature, surface pressure, and total cloud
cover. Figure 4.4.1 compares the model forecast with the ground truth for a
particular three consecutive days.

Observations

• The model has captured the spatial pattern of PM2.5 emissions over the
central Indian region, particularly the circular arc of PM2.5 emissions
seen in the map. The forecast is very close to the ground truth for the
first day.

• Just like in the case of the northeast Indian subcontinent, the forecast
is sharper on the first day and gets smoother/blurrier for the follow-
ing days, which is a common issue with all spatiotemporal forecasting
models.

4.4.2 Correlation Distribution
Figure 4.4.2 shows the correlation distribution for all sets of three consecutive
days.

Observations

• Just like in the case of the northeast Indian subcontinent region, the
model gave a good correlation distribution for the first day. However,
the correlation for the second and third days is relatively low. This is
also evident from the ground truth vs. forecast plot (see figure 4.4.1),
as the intensity of the forecast decreases for the second and third days.

4.4.3 Spatial Correlation
Figure 4.4.3 shows the spatial correlation for all sets of three consecutive
days.

62

4.4. Central India

80 82 84 86 88
Longitude (◦ E)

16

18

20

22

24

26

L
at
it
u
d
e
(◦

N
)

Ground Truth (Day 1)

0

1

2

3

4

5

6

7

8

(a) Ground Truth (Day 1).

80 82 84 86 88
Longitude (◦ E)

16

18

20

22

24

26

L
at
it
u
d
e
(◦

N
)

Forecast (Day 1)

0

1

2

3

4

5

6

7

8

(b) Forecast (Day 1).

80 82 84 86 88
Longitude (◦ E)

16

18

20

22

24

26

L
at
it
u
d
e
(◦

N
)

Ground Truth (Day 2)

0

2

4

6

8

(c) Ground Truth (Day 2).

80 82 84 86 88
Longitude (◦ E)

16

18

20

22

24

26

L
at
it
u
d
e
(◦

N
)

Forecast (Day 2)

0

2

4

6

8

(d) Forecast (Day 2).

63

4.4. Central India

80 82 84 86 88
Longitude (◦ E)

16

18

20

22

24

26

L
at
it
u
d
e
(◦

N
)

Ground Truth (Day 3)

0

2

4

6

8

10

12

14

16

(e) Ground Truth (Day 3).

80 82 84 86 88
Longitude (◦ E)

16

18

20

22

24

26

L
at
it
u
d
e
(◦

N
)

Forecast (Day 3)

0

2

4

6

8

10

12

14

16

(f) Forecast (Day 3).

Figure 4.4.1: Ground Truth vs. Forecast for the central Indian region.

Observations

• On the first day, many points have a correlation lying in the range of
0.4 to 0.6. For the following days, the density of such high correlation
points decreases.

4.4.4 Correlation Distribution for Different Combina-
tions of Variables on Day 1

Figure 4.4.4 shows the correlation distribution plot corresponding to the best
combination of 0, 1, 2, 3, 4, and 5 variables in addition to PM2.5 on the first
day.

Observations

• All models, excluding the univariate PM2.5 model, have a similar per-
formance. Most of the points have a correlation ranging between 0.4
and 0.8.

• The four variable model corresponding to the variables PM2.5, temper-
ature, surface pressure, and total cloud cover has the most right shift
and a higher second peak.

64

4.4. Central India

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Correlation

0.0

0.5

1.0

1.5

2.0

2.5

D
en

si
ty

Day 1

Day 2

Day 3

Figure 4.4.2: Correlation distribution plot for the central Indian region.

4.4.5 Normalized Mean Squared Error vs. Number of
Epochs

Figure 4.4.5 shows the decrease in normalized mean squared error with the
number of epochs.

Observations

• The normalized mean squared error decreases with every epoch till it
converges to a particular value at around epoch 100.

65

4.4. Central India

80 82 84 86 88
Longitude (◦ E)

16

18

20

22

24

26

L
at
it
u
d
e
(◦

N
)

Day 1

0.0

0.2

0.4

0.6

0.8

1.0

C
or
re
la
ti
on

(a) Spatial Correlation (Day 1).

80 82 84 86 88
Longitude (◦ E)

16

18

20

22

24

26

L
at
it
u
d
e
(◦

N
)

Day 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
or
re
la
ti
on

(b) Spatial Correlation (Day 2).

80 82 84 86 88
Longitude (◦ E)

16

18

20

22

24

26

L
at
it
u
d
e
(◦

N
)

Day 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
C
or
re
la
ti
on

(c) Spatial Correlation (Day 3).

Figure 4.4.3: Spatial Correlation for all the day 1’s, day 2’s, and day 3’s in
the central Indian region.

66

4.4. Central India

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Correlation (Day 1)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
en

si
ty

Additional Variables
None

Wind

Wind + NDVI

Temperature + Surface Pressure + Total Cloud Cover

Wind + NDVI + Temperature + Surface Pressure

All variables

Figure 4.4.4: Correlation distribution plot corresponding to the best combi-
nation of 0, 1, 2, 3, 4, and 5 variables in addition to PM2.5 for the central
Indian region on day 1.

67

4.4. Central India

0 20 40 60 80 100 120 140

0.92

0.94

0.96

0.98

1

1.02

1.04
·10−3

Number of Epochs

N
or
m
al
iz
ed

M
ea
n
S
q
u
ar
ed

E
rr
or PM2.5 + Temperature + Surface

Pressure + Total Cloud Cover

Figure 4.4.5: Normalized mean squared error vs. epochs plot for the “PM2.5
+ Temperature + Surface Pressure + Total Cloud Cover” model (Central
Indian region).

68

Chapter 5

Conclusion

We applied ConvLSTM for forecasting PM2.5 emissions for up to 3 days.
Our goal was to forecast PM2.5 emissions due to stubble burning in the
Punjab-Haryana-Delhi area and forest fires in the central and northeast In-
dian subcontinent. We obtained a good result for the Punjab-Haryana-Delhi
area. On the other hand, for the central and the northeast Indian subcon-
tinent, we obtained a good result on the first day. Our model captured the
spatial pattern of PM2.5 emissions for all three regions of interest. In other
words, our model can reasonably accurately predict the location (i.e., the
coordinates) where the burning activity occurs, as evident from the ground
truth vs. forecast plots. However, our model could not predict the intensity
accurately, i.e., the forecast was blurry, particularly for the second and third
days. We can take many steps to improve this result. Section 5.1 elaborates
on this. So, ConvLSTM can forecast spatiotemporal sequences in climate sci-
ence, particularly for short-term forecasting. Figure 5.1.1 shows a flowchart
of the conclusion.

5.1 Future Work
• Our study uses an older version of FINN data with a temporal extent

from 2002 to 2018. A newer version of FINN data is now available with
a temporal extent till 2021. Including it in the model can help improve
performance.

• We can use better methods to match the spatial resolution of the data
(see subsection 3.2.1) than linear interpolation. One of the best meth-

69

5.1. Future Work

ods to do the same is to apply SRGAN (Super Resolution Genera-
tive Adversarial Networks) (Ledig et al., 2017), a deep learning-based
method for resolution enhancement.

• We can use more complicated deep learning-based spatiotemporal fore-
casting models like convolutional GRU (Ballas, Yao, Pal, & Courville,
2015) or trajectory GRU (Shi et al., 2017).

• We can also try custom/hybrid models to improve the forecast accuracy.

• We can try hyperparameter tuning of the model, like trying different
architectures, number of layers, custom loss functions, learning rate,
regularization methods, and skip connections. Custom loss functions or
loss functions designed to work with spatiotemporal data may improve
the blurry forecast.

70

5.1. Future Work

PM2.5 Forecasting

Data:
FINN, NOAA, ERA5

Delhi-Punjab-Haryana

Data Pre-processing

AI Model:
Convolutional LSTM

3-Day Forecast

Conclusion:
➢ Delhi-Punjab-Haryana:

• Good result for day 1, day 2, and day 3
➢ Northeast and Central India:

• Good result for day 1

Future Work:
➢ New version of FINN data
➢ Use SRGAN
➢ Custom/hybrid models

Northeast India Central India

✓ Stubble Burning
✓ Sept. to Nov.

✓ Forest Fires
✓ Summer

✓ Forest Fires
✓ Summer

Figure 5.1.1: A flowchart of the conclusion.

71

References

Ballas, N., Yao, L., Pal, C., & Courville, A. (2015). Delving Deeper into
Convolutional Networks for Learning Video Representations. arXiv
preprint arXiv:1511.06432 . https://arxiv.org/abs/1511.06432.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations
using RNN Encoder-Decoder for Statistical Machine Translation. arXiv
preprint arXiv:1406.1078 . https://arxiv.org/abs/1406.1078.

Chollet, F. (2021). Deep learning with Python. Simon and Schuster.
https://www.manning.com/books/deep-learning-with-python.

Harishkumar, K., Yogesh, K., Gad, I., et al. (2020). Forecasting Air Pol-
lution Particulate Matter (PM2.5) Using Machine Learning Regression
Models. Procedia Computer Science, 171 , 2057–2066. https://www
.sciencedirect.com/science/article/pii/S1877050920312060.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-
Sabater, J., . . . others (2020). The ERA5 global reanalysis. Quar-
terly Journal of the Royal Meteorological Society, 146 (730), 1999–2049.
https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.3803.

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neu-
ral Computation, 9 (8), 1735–1780. https://ieeexplore.ieee.org/
abstract/document/6795963.

Huang, C.-J., & Kuo, P.-H. (2018). A Deep CNN-LSTM Model for Particu-
late Matter (PM2.5) Forecasting in Smart Cities. Sensors, 18 (7), 2220.
https://www.mdpi.com/1424-8220/18/7/2220.

Karimian, H., Li, Q., Wu, C., Qi, Y., Mo, Y., Chen, G., . . . others (2019).
Evaluation of Different Machine Learning Approaches to Forecasting
PM2.5 Mass Concentrations. Aerosol and Air Quality Research, 19 (6),
1400–1410. https://aaqr.org/articles/aaqr-18-12-oa-0450.

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta,

72

https://arxiv.org/abs/1511.06432
https://arxiv.org/abs/1406.1078
https://www.manning.com/books/deep-learning-with-python
https://www.sciencedirect.com/science/article/pii/S1877050920312060
https://www.sciencedirect.com/science/article/pii/S1877050920312060
https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.3803
https://ieeexplore.ieee.org/abstract/document/6795963
https://ieeexplore.ieee.org/abstract/document/6795963
https://www.mdpi.com/1424-8220/18/7/2220
https://aaqr.org/articles/aaqr-18-12-oa-0450

References

A., . . . others (2017). Photo-Realistic Single Image Super-Resolution
Using a Generative Adversarial Network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 4681–
4690). https://arxiv.org/abs/1609.04802.

Olah, C. (2015). Understanding LSTM Networks. https://colah.github
.io/posts/2015-08-Understanding-LSTMs/.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., & Woo, W.-c.
(2015). Convolutional LSTM Network: A Machine Learning Approach
for Precipitation Nowcasting. Advances in Neural Information Process-
ing Systems, 28 . https://arxiv.org/abs/1506.04214.

Shi, X., Gao, Z., Lausen, L., Wang, H., Yeung, D.-Y., Wong, W.-k., & Woo,
W.-c. (2017). Deep Learning for Precipitation Nowcasting: A Bench-
mark and A New Model. Advances in Neural Information Processing
Systems, 30 . https://arxiv.org/abs/1706.03458.

Vermote, E., et al. (2019). NOAA Climate Data Record (CDR) of
AVHRR Normalized Difference Vegetation Index (NDVI), Version 5.
NOAA CDR Program, NOAA National Centers for Environmental
Information. https://www.ncei.noaa.gov/products/climate-data
-records/normalized-difference-vegetation-index.

Wiedinmyer, C., Akagi, S., Yokelson, R. J., Emmons, L., Al-Saadi,
J., Orlando, J., & Soja, A. (2011). The Fire INventory from
NCAR (FINN): A high resolution global model to estimate the emis-
sions from open burning. Geoscientific Model Development, 4 (3),
625–641. https://gmd.copernicus.org/articles/4/625/2011/gmd
-4-625-2011.html.

73

https://arxiv.org/abs/1609.04802
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://arxiv.org/abs/1506.04214
https://arxiv.org/abs/1706.03458
https://www.ncei.noaa.gov/products/climate-data-records/normalized-difference-vegetation-index
https://www.ncei.noaa.gov/products/climate-data-records/normalized-difference-vegetation-index
https://gmd.copernicus.org/articles/4/625/2011/gmd-4-625-2011.html
https://gmd.copernicus.org/articles/4/625/2011/gmd-4-625-2011.html

	Abstract
	Introduction
	Literature Review
	Statistical Methods
	Machine Learning Methods
	Deep Learning Methods

	Problem Statement

	Theoretical Background
	Neural Networks and Deep Learning
	Working of an Artificial Neuron
	Feedforward Neural Networks
	Activation Functions
	Loss and Cost Functions
	Gradient Descent (How a Neural Network Learns)
	Convolutional Neural Networks
	Recurrent Neural Networks

	Spatiotemporal Forecasting using Deep Learning
	Convolutional LSTM (ConvLSTM)

	Data and Methodology
	Data
	Data Preprocessing
	Matching the Spatial Resolution
	Temporal Resolution
	Imputation of Missing Values
	Data Slicing
	Supervised Splits
	Data Transformation
	Data Scaling
	Training-Validation-Test Split

	Model
	Model Architecture
	Hyperparameter Tuning
	Model Compilation and Callbacks

	Data Preprocessing Pipeline
	Choosing the Data Transformation and Data Scaling Pair

	Total Models to Train

	Results and Discussion
	Metrics
	Pearson Correlation Coefficient

	Delhi-Punjab-Haryana
	Comparison with the Ground Truth
	Correlation Distribution
	Spatial Correlation
	Correlation Distribution for Different Combinations of Variables on Day 1
	Normalized Mean Squared Error vs. Number of Epochs

	Northeast Indian Subcontinent
	Comparison with the Ground Truth
	Correlation Distribution
	Spatial Correlation
	Correlation Distribution for Different Combinations of Variables on Day 1
	Normalized Mean Squared Error vs. Number of Epochs

	Central India
	Comparison with the Ground Truth
	Correlation Distribution
	Spatial Correlation
	Correlation Distribution for Different Combinations of Variables on Day 1
	Normalized Mean Squared Error vs. Number of Epochs

	Conclusion
	Future Work

	References

		2022-12-19T15:32:47+0530
	Bipin Kumar

