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Abstract

Climate change is predicted to change the distribution of species worldwide. Predictive mod-

els are required to help forecast these ecosystem responses. However, to build such models,

the mechanisms behind the ecological and evolutionary dynamics of species distributions

need to be better understood. One central driver and modulator of eco-evolutionary dynam-

ics is temperature and its changes due to human impacts, for example. Yet, temperature

dependence of ecological and evolutionary processes is often modelled in very simplified ways

with unrealistic assumptions. To build a more productive theory of the temperature impacts

in ecology and evolution, I take a bottom-up approach, integrating molecular mechanisms

and large-scale population dynamics: I study how different assumptions of protein level

dynamics that constrain thermal evolution may scale up to the macroecological level and

change range dynamic predictions. Importantly, this mechanistic approach allows me to in-

clude likely targets of selection and model feedback with the evolutionary dynamics of local

adaptation of the thermal performance curve (TPC) and dispersal. I build an individual-

based metapopulation model of range expansion along a temperature gradient. Using three

different models of thermal adaptation at the protein level, I show the importance of the

mechanism considered under selection in determining range expansion trends. The TPCs

described by protein thermal stability are more flexible and lead to accelerated expansion

along an increasing temperature gradient. While TPCs described by enzyme-substrate re-

action rates are much less flexible and lead to much slower expansion. Overall, my project

shows the importance of defining TPCs realistically and its large-scale consequences.
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Introduction

Understanding and forecasting the dynamics of species distributions is a central challenge

in ecology and evolution. Traditionally, species’ ranges have been considered from a purely

ecological perspective driven by their abiotic environment. However, recent evidence suggests

that both rapid evolution and biotic factors may play important roles [85, 75] that have led

to more nuanced insights regarding biodiversity under global change [74]. To improve our

understanding of forces driving the shift under climate change and the eco-evolutionary

feedback that would be generated, it is important to understand how dispersal processes

and local adaptation of species to novel temperatures would interact [4].

Dispersal ability is a heritable trait and subject to evolution [86, 46] driving regional

dynamics. The rapid evolution of dispersal ability and local adaptation in expanding species

ranges has been empirically observed [54, 22, 19]. When Drosophila subobscura was intro-

duced to North America, it evolved the clinal variation in wing size, spanning more than 15

degrees of latitude as observed in Europe [54]. Wing size reduced from cold to hot, with

a noticeable change emerging within 2 decades. The hypothesised mechanism is increasing

wing area compensated for reduced wing beat frequency in colder temperatures [42]. Similar

latitudinal clines are observed with life history traits in Lythrum salicaria, a highly invasive

plant in North America. Earlier flowering was observed in colder regions with shorter growing

seasons resulting in smaller plants while in the hotter regions late flowering but bigger-sized

plants were selected for [22]. A more recent study on damselflies Ischnura elegans who have

seen to be rapidly expanding their ranges polewards didn’t show evolution across tempera-

tures of a faster life history but due to lowered metabolic rate and increased feeding rate,

larvae evolved faster development rate at the hotter rearing temperature. Further theoretical

studies expect the evolution of dispersal ability to interact with environmental gradients to

affect invasion speed and available genetic variation at the range fronts [53]. With projected
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climate change, many species are expected to shift their ranges in response to rising habitat

temperatures [49].

Temperature is an important determinant of biological rates across scales of hierarchy,

but there is still a lack of understanding of the underlying mechanisms of thermal evolution.

Local adaptation to new temperatures is determined by the thermal performance curves

(TPCs) of organisms, i.e., an individual’s fitness as a function of temperature. Physiological,

ecological and interactive biological rates often show a steep initial rise with lower tempera-

tures. Hence, the Metabolic theory of ecology (MTE) drew analogy to rising temperatures

increasing collision between molecules and suggested that the Boltzmann–Arrhenius model

from chemical reaction kinetics can be used to fit the rise of many biological rates with tem-

perature [15, 29, 44]. For enzyme-catalysed reactions, temperature increases the likelihood

of enzyme-substrate collisions, which increases reaction rates. But excessive increase can

break intramolecular bonds in proteins and lead to denaturation, decreasing reaction rates.

The underlying assumption is that species do not experience extreme temperatures to lie in

the decreasing part of the TPC. Hence thermal performance curves have been predominantly

described by an exponential function despite evidence of a unimodal curve on a wide enough

temperature range [29, 93, 111, 31, 5]. But with predicted climate change, many species are

set to experience inhospitable temperatures [102].

Temperature dependence of enzyme kinetics translates to similar dependence of metabolic

rate and individual growth rates on temperature. The effect is felt strongly by ectotherms

where increased metabolic reactions may decrease energy allocation to growth and reproduc-

tion. Further interspecific variations in temperature sensitivity of population and individual

growth rate affect community dynamics and assembly [61]. Analysis by Dell et al. [29] on

a wide range of TPCs for traits covering several levels of organisation found that TPCs

were widely unimodal, left-skewed curves. The Boltzmann-Arrhenius equation showed a

good fit with the rising phase of the curve with a small range for the activation energies

observed. The range of activation energies or the exponential scaling factors observed were

within the range observed for metabolic reactions. But the scaling consequences of temper-

ature makes it daunting to understand the mechanisms underlying effect of temperature on

population dynamics. Recent progress has been made at understanding effect of tempera-

ture at the level of single proteins [36, 52] but not of their eco-evolutionary implications.

Theoretical evolutionary studies of TPCs to understand thermal evolution have relied on

quantitative genetics models owing to the complex genetic architecture underlying it [16].
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Abstract asymmetric TPCs are often assumed with no mechanistic basis. But model results

are strongly dependent on assumed trade-offs such as generalist-specialist trade-offs, which

have not found much evidence in experiments, but the ’hotter is better’ trade-offs based

on thermodynamic effects has found better support [16]. Hence I wish to understand the

thermodynamic implications of changing temperature on growth rates from first principles.

Taking into account the unimodality of TPCs is of central importance for prediction-

making. Studies that have considered the empirical unimodal and skewed TPC concluded

that the inclusion of asymmetry in fitness curves in ecological models suggests asymmetric

responses of species along latitudes, such as in response to climate fluctuations [103, 70].

The asymmetry is predicted to strengthen selection at warm than at cold temperatures. A

study in the fly Sepsis punctum from northern, central and southern Europe was measured

for divergence in juvenile development rate at 5 experimental temperatures. They found

that hot development temperatures were associated with lower genetic variances for all cases

[10, 27]. At a community level, theory predicts that consumer-resource interactions where

the maturation rate of resources are more temperature sensitive i.e with narrower breadth of

their TPC than their consumers, are more susceptible to extinction from warming. Resource

maturation rate decreases with the temperature at the fall of their developmental rate TPC,

and higher mortality at very low and very high temperatures of adult resource population

limits the consumers’ thermal range. If the consumer is less sensitive to temperature change,

then they end of exploiting the resource at a faster rate with increase in temperature [3].

Adaptive evolution studies have found biochemical or biophysical properties of metabol-

ically important proteins show latitudinal clines [13]. Recent work by [7] put forward a

general theory of temperature dependence of biological rates using the Eyring equation, a

mechanistic analogue of the Boltzmann-Arrhenius equation, which is widely accepted as the

basis for temperature scaling of chemical reaction rates. It is derived from the Macromolec-

ular Rate Theory [51] that suggests that biological rates are modulated by temperature

as it changes the rigidity and stability of the activated enzyme-substrate complex during

biomolecular reactions. They argue that the inclusion of the effect of temperature on the

entropy of activation of the transition state complex is enough to explain the wide variety of

TPCs observed as the equation provides a good fit over many organisational levels and taxa.

But it is difficult to comment on the mechanism behind thermal evolution from the goodness

of fit. Genetics of protein evolutions are highly constrained by epistasis, which result in a

rugged genotype-phenotype map [13, 47]. Mechanisms other than the increased effect of
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temperature on the entropy of activation of enzyme-substrate complex may be limiting pop-

ulation growth at high temperatures. It is difficult to formulate a single integrating theory,

especially when there can be various protein level changes for the same stress [110, 83].

My project investigates the effect of different mechanisms underlying thermal evolution

at lower-level processes of protein reaction rates whose unimodal dependence is better stud-

ied and how it may affect higher-level population growth responses. First, I performed a

literature review to identify mechanistic models of temperature scaling at the microscopic

level. Subsequently, I incorporated these protein-level mechanistic models into a general

population growth model taking differential impacts of birth, death and density dependence

into account. This allows me to derive TPCs with different underlying assumptions regard-

ing the mechanisms responsible for temperature scaling. In addition, I assessed empirical

support for the evolutionary potential of different model parameters which ultimately allows

me to include TPC evolution into my model. Second, I used the model system Tetrahy-

mena thermophila, a freshwater ciliate, to confront these models with empirical growth rate

data. Bayesian fitting allows me to identify more and less supported TPC models. Finally,

I use simulations to investigate the macroscopic consequences of assuming different TPCs

models for range expansion dynamics. For this final part of my work, I have developed a

continuous-time individual-based range expansion model that includes an abiotic tempera-

ture gradient. Importantly, the model is eco-evolutionary in that both TPCs and dispersal,

as well as interaction strengths, are subject to evolution.

8



Chapter 1

Literature review

Several models have attempted to understand the rise and fall of enzyme kinetics in response

to temperature more mechanistically [30, 51, 20, 56, 82, 90, 39]. Overall there seem to be

two major mechanisms being proposed which are either temperature dependence of protein

folding or of enzymatic rates. For a given series of chemical reactions, there is a series

of enthalpy (∆Hi), entropy (∆Si), and free energy (∆Gi) changes, which are individually

related as follows:

∆Gi = ∆Hi − T∆Si (1.1)

Based on the statistical mechanical justification of the transition state theory, the Eyring-

Polanyi equation describes how the rate of chemical kinetics should change with temperature.

The rate constants (ki) are related as follows:

ki =
kBT

h
e∆

Si
R e∆

−Hi
RT (1.2)

where kB is the Boltzmann constant, h is Planck’s constant, ∆Hi is the enthalpy of activation

that is the enthalpy difference between transition complex and the active form, ∆Si is the

entropy of activation. Enthalpy change is the heat absorbed during the reaction or in case

of protein-ligand reactions sum of the bond energies of the bonds broken during a reaction

minus the sum of the bond energies of the bonds formed during the reaction. Entropy change

relates to the number of ways energy can be distributed in a system. Entropy is higher

where there are more ways to distribute energy. Proteins that can adopt many different

conformations have more ways to distribute energy and are higher in entropy than proteins
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whose movements are constrained. Bonds within proteins are all associated with specific

amounts of energy; when more movements are possible, there are more ways to distribute

energy.

When ∆Hi and ∆Si are considered constant, the Eyring equation is analogous to the

empirical Arrhenius equation. But temperature affects conformational stability of proteins

changing fraction of proteins in their native state and binding affinities of enzymes. Further

∆Hi and ∆Si of protein folding and protein-ligand reactions are temperature dependent.

The theory used to describe the same considers a temperature-independent heat capacity to

describe the nonlinear temperature dependence of free energy ∆G and is given by:

T
∆Si

dT
= ∆Cp (1.3)

∆Hi

dT
= ∆Cp (1.4)

Therefore temperature dependence of ∆Hi and ∆Si for a reference temperature T0:

∆H‡
T = ∆H‡

T0
+∆Cp(T − T0) (1.5)

∆S‡
T = ∆S‡

T0
+∆Cp ln

(
T

T0

)
(1.6)

A major assumption when these equations have been used to describe higher-level properties

such as metabolism and growth rate is that, on average the higher-level property follows the

same functional form as a single protein-level reaction. Mathematical models have found

a good fit for such assumptions for large data sets [23, 64]. It is also possible that the

steps involved have similar temperature dependence as found in yeast glycolytic enzymes

[25] though there hasn’t been a consensus [92].

Multiple studies on metabolically crucial enzymes have shown evolution to temperature

with ligand binding and catalytic rate being under selection [36, 13]. These properties can be

changed by both evolution of flexibility and stability of proteins and enzymes. But pervasive

epistasis can severely restrict the trajectories that protein evolution can take [47]. Proteins

with similar folds and functions can have different sequences, and mutations will affect them

differently. But when sequentially similar proteins are subject to selection for the same

stress, they have a shared set of mutational trajectories as they have similar constraints and

epistatic interactions [76, 47].
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For example, Couñago et al. [24] replacing the gene for adenylate kinase, an important

metabolic enzyme in a thermophile, makes it poorly adapted to its environment. After 1500

generations, sequencing showed mutations that increased the stability and activity of the

enzyme at higher temperatures and the new structure of the protein being slightly different

from its wild type. Clonal bacterial strains grown at across a range of temperatures showed

different pathways of cold and hot evolution at their growth temperature with different trade-

offs though some were more common than others [9]. The effect of evolutionary history may

be strong and strongly constrain thermal evolution. Hence amino acid substitutions in one

species environment may not be beneficial in another species’ environment [14, 99, 110, 107].

A single mechanism of thermostability may not arise to deal with the same thermal stress

[48]. Hyperthermophiles share the same catalytic mechanisms as their mesophilic counter-

parts. Analysis of the molecular mechanism behind the thermostability of hyperthermophilic

and thermophilic enzymes suggests use of multiple mechanisms to increase thermodynamic

stability, including increasing stability across the temperature range, shifting the stability

curve to higher temperatures, or flattening the stability curve or a combination of them

though increasing melting temperature. [105, 83]

To summarise, when considering the effect of thermal evolution through changes in pro-

tein level properties, it is important to consider that there can be multiple means to the

same end. Overall, protein thermal stability could change, [105, 83] or there can be changes

to enzyme properties which influence rates of biochemical reactions [73] or both. Changes

in enzyme thermal stabilities may also affect their catalysis efficiency [36]. Hence, I wish to

consider modelling three major mechanisms that have been considered to be controlling the

thermal evolution of reactions rates:

• Temperature dependence of protein denaturation

• Temperature dependence of enzyme reaction rates

• Temperature dependence enzyme denaturation on enzyme reaction rates

11



1.1 Proteome Model

Johnson and Lewin[56] noticed that Escherichia Coli grown at 45 ◦C ceased to grow but

started to grow exponentially when shifted to 37 ◦C. They declared that cells underwent

reversible damage. They assumed one master enzyme (En) limits the population growth

rate:

s(T ) = En
kBT

h
e

−∆G
‡
i

RT (1.7)

The enzyme can go from a native form to a denatured form reversibly:

En

k1−−→←−−
k2

Ed (1.8)

In its native state, a protein has low enthalpy and conformational entropy, while both increase

when it denatures. The effective energy of a protein is the intra-protein interactions and the

protein solvent interactions that change as it folds and unfolds. A protein unfolds when

the energy of its native state becomes equal to its unfolded state, i.e. ∆G between folded

and unfolded equals zero. Point mutations seem to mostly affect the energy (or enthalpy

as the difference is negligible at normal pressures) of the native state of the proteins [113].

Equilibrium concentrations are given as:

k1
k2

=
En

Ed

= e
−∆G
RT (1.9)

Where ∆H is the enthalpy difference and ∆S is the entropy difference between active and

inactive forms. If E0 is the total amount of enzyme:

En =
E0

1 + e
−∆G
RT

(1.10)

Substituting Eqn. 1.10 in Eqn. 1.7 completes the model:

s(T ) =
E0kBTe

−∆G
‡
i

RT

h(1 + e
−∆G
RT

)

(1.11)

Chen and Shakhnovich [20] use the above model and link the replication rate of an

organism to the functionality of each protein encoded by the essential genes. This assumption
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was motivated by recent experiments that showed the knockout of a few ’essential’ genes is

enough to confer a lethal phenotype [38]. Therefore an organism is assumed to be viable if all

its essential genes encode stable proteins. Further, greater protein stability is not assumed

to confer greater fitness i.e. it is a neutral trait. The frequency of each rate-determining

protein i (RDP) with ∆Gi is given by:

fi =
1

1 + e
−∆Gi

RT

(1.12)

Therefore temperature scaling s(T ) is given by :

s(∆G, T ) = b0
e

−∆H‡
RT∏n

i=1 1 + e
−∆Gi

RT

(1.13)

where n is the number of RDPs, ∆H‡ is the metabolic free energy barrier. Temperature

dependence of ∆Gi is given by (combining Eqn. 1.20 and Eqn. 1.21):

∆Gi(T ) = ∆Hr +∆Cp(T − Tr)− T∆Sr −∆CpT ln

(
T

Tr

)
(1.14)

where Tr, ∆Hr, ∆Sr are the reference temperature, enthalpy change at Tr, entropy change

at Tr respectively. ∆Cp is assumed to be constant. It is further modified:

∆Gi(T ) = ∆Gi(Tr) +∆Cp(δT )− δT∆Sr +∆CpTr ln

(
Tr + δT

Tr

)
(1.15)

where δT = T − Tr. As
δT
Tr

<< 1 and reduce the expression to a linear dependance:

∆G(T ) = ∆G(Tr)− δT∆Sr (1.16)

I consider the model by Chen and Shakhnovich [20] for a single RDP:

s(∆G(Tr), ∆Sr) = b0
e

−∆H‡
RT

1 + e
−∆G(T )

RT

(1.17)
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1.1.1 Empirical support

The key premise of the model proposed by Chen and Shakhnovich [20] is that thermal evo-

lution of individual growth rate occurs by modulating copy numbers of folded proteins given

by Eqn. 1.12. It results in a ’Hotter is better’ trend as seen in Fig. 3.2- I J as protein denat-

uration occurs at higher temperatures and the exponential rise at lower temperatures does

not change with changes in the activation free energy and entropy for denaturation at lower

temperatures. Support for such a trend has been found with viruses, bacteria and insects

[16, 39, 60]. Studies with Escherichia Coli adapted at a higher temperature have been shown

to out-compete bacteria reared at the original environmental temperatures [26, 63] suggest-

ing a lack of evolutionary trade-off with growth at lower temperatures for evolution to hotter

temperatures. Further, a recent analysis [98] found evidence of stability compensation in the

metabolically important enzyme Ketosteroid isomerase (KSI) in hot versus cold variants of

the bacteria Pseudomonas putida and found a lack of rate compensation. Though cellular

proteomes are known to have a wide distribution of thermal stability, and a recent study in

Escherichia Coli checked if loss of cell viability at high temperatures occurs due to global

protein denaturation but found that few thermal-sensitive proteins were under stronger se-

lection, [13] implying a drop in the copy number of these folded proteins will reduce growth

rate. The study, Chen and Shakhnovich [20], fitted their equation data used by Ratkowsky

et al. [81] consisting of 35 sets of data for thermal evolution of different bacteria strains, with

2 free parameters, ∆H‡ and n, number of RDPs, and found a good fit. Hence the proposed

model is applicable in cases where thermal evolution primarily occurs by changing in folded

fractions of a small number of essential proteins. The model does not explicitly consider the

number of folded proteins and only considers the fraction of folded proteins. It does not

consider an increase in growth rate by increase in protein copies though a smaller number

of copies may select for faster evolution of new phenotypes, as recently shown by [58].

1.1.2 Evolving variables

In the above model, after using a first-order approximation, the parameters describing the

scaling function are the activation free energy for denaturation, ∆G(Tr), and the activation

entropy of denaturation, ∆Sr at the reference temperature Tr. Evolutionary potential for

both these paramters has been observed. As noted by Zeldovich et al. [113] most point
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mutations in proteins seem to be changing the activation-free energy and as noted before

increase in thermal stability of proteins has been observed in certain taxa as means of

evolution to hotter temperatures [98, 13]. Entropy-changing mutations in Escherichia coli ’s

adenylate kinase are important for cold adaptation [88]. Such flexibility increasing changes

in protein sequences have been widely identified in psychrophilic enzymes [94, 35].

1.2 Macromolecular rate theory model

Recently, Hobbs et al. [51] put forth the Macromolecular rate theory, an alternative model

to describe the unimodality of enzyme rate kinetics based on the transition state theory [32].

It considers temperature dependence of the Gibbs energy of activation for protein ligand

interactions as I described before Eqn. 1.20 and Eqn. 1.21.

∆G‡
i = ∆H‡

i − T∆S‡
i (1.18)

ki =
kBT

h
e∆

S
‡
i
R e∆

−H
‡
i

RT (1.19)

Therefore temperature scaling s(T ) is given by for a reference temperature Tr:

∆H‡
T = ∆H‡

Tr
+∆Cp(T − Tr) (1.20)

∆S‡
T = ∆S‡

Tr
+∆Cp ln

(
T

Tr

)
(1.21)

s(∆H‡
Tr
, ∆S‡

Tr
, ∆Cp) =

kBT

h
e
∆S

‡
T

R e
−∆H

‡
T

RT (1.22)

1.2.1 Empirical support

The Macromolecular rate theory [51], in contrast to our previous model, assumes that the

fall in the TPC curve occurs due to the temperature dependence of the enthalpy and entropy

change accompanying enzyme-substrate reactions. The temperature dependence is linear and

scaled by the heat capacity. Explanation of the curvature of the TPC by protein denaturation

is inadequate as enzymes have been observed to lose their activity at lower temperatures than

their denaturation temperatures especially in psychrophilic enzymes [34]. For negative heat
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capacity changes during enzyme-substrate reactions, the increase in rate at temperatures is

driven by the enthalpic term in Eqn. 1.20 but with increasing temperatures, term is taken

over by the entropic term Eqn. 1.21. To shift Topt higher or lower , ∆Cp values need to

increase and decrease respectively. This correlation has been demonstrated by Hobbs et al.

[51] by mutagenesis on enzyme barnase and studying reaction kinetics data from IPMDH

enzymes of mesophilic and psychrophilic Bacillus species. Increasingly negative ∆Cp can be

achieved by increasing the Cp of enzyme substrate complex and/or decreasing the Cp of the

enzyme transition-state species. It would result in a higher KM and kcat for the enzyme,

leading to stronger enzyme-substrate binding which has been observed to show thermal

evolution in both interspecific and intraspecific comparisons [52, 92, 96, 13]. Further, the

model has been used to characterise soil microbial growth rates [2] and leaf respiration [65].

To summarise, the Macromolecular rate theory may be applicable when enzymes lose their

activity before they denature as is often seen in cold adapted enzymes. The ∆Cp values are

expected to increase for lower optimal temperatures while for hotter optimal temperatures

they will increasingly tend towards 0.

1.2.2 Evolving variables

As discussed above, changes in heat capacity change may be important for thermal evolution

especially at colder temperatures. Large variation of heat capacity is seen among enzymes

[2, 114]. Further, a study on modern hyperthermophilic, mesophilic, and psychrophilic or-

ganisms change in transition state heat capacity as the evolution driver of fitness in different

temperature niches [73]. Heat capacity term serves to describe the temperature dependence

of enthalpy and entropy changes to explain the curvature of the TPC.

But since I consider evolution of the TPC is also important to look at the evolutionary

potential of the enthalpy (∆H‡
Tr
) and entropy changes (∆STr) accompanying enzyme sub-

strate reactions. Changes in enthalpy and entropy of enzyme-substrate bonding are related

through the phenomena of Enthalpy-Entropy Compensation (EEC) [84, 66, 37]. Stronger

covalent binding results in a large negative enthalpy change but reduces mobility resulting

a large negative entropic change. Similarly, positive entropy increase may result in positive

enthalpic change as interactions are disrupted. For example, in psychrophilic enzymes, the

dampening of catalytic activity by lowered temperature is increased by a lower activation

enthalpy in order to increase their turnover. This is structurally achieved by a decreasing
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energy releases during bond breaking and forming during protein denaturation and folding,

i.e enthalpic changes, leading to a more flexible structure [67, 35]. For enzyme-subtrate

reactions, which are modeled by the Macromolecular Rate Theory [51], it would mean that

a high flexibility comes with a reduced binding affinity in the enzyme substrate complex

[51, 37]. The relationship of enthalpy and entropy change or between activation energy and

pre-exponential factor during protein denaturation and folding has been measured [84, 79, 12]

and has often found to be approximately linear. Similar assumption was made by Grimaud

[45] for fitting the Hinshelwood model [50] to TPCs of phytoplankton. I will try to incor-

porate the trend by constraining the model to have a linear relationship between the terms

∆H‡
Tr
) and ∆STr .

1.3 Enzyme-Assisted Arrhenius Rate model

Till now the models above have assumed a maximum growth rate that reduces with increasing

temperature as enzymes lose their catalytic ability. But enzymes reduce the free energy

barriers of biological reactions and increase the reaction rate from a baseline. DeLong et al.

[30] propose the Enzyme-Assisted Arrhenius Rate (EAAR) model taking into consideration

the thermostability of enzymes on reduced free energy barrier for the reaction. Mechanistic

derivations of protein stability curves give that the temperature dependence of ∆G follows

from combining Eqn. 1.20 and Eqn. 1.21 with a further simplification for protein folding by

considering Tm = T0, where Tm is the melting temperature at which ∆Gi = 0 and represents

the midpoint for transition from native to denatured state [33]:

∆G = ∆H

(
1− T

Tm

)
+∆Cp

(
T − Tm − T ln

T

Tm

)
(1.23)

The EAAR model suggests that the enzyme lowers the activation energy Eb by E∆H
for

change in enthlapy and E∆Cp
with respect to change in heat capacity, The total decrease in

activation energy (Ec) is given by:

Ec = E∆H

(
1− T

Tm

)
+ E∆Cp

(
T − Tm − T ln

T

Tm

)
(1.24)

s(EH , ECp , Tm) = b0e
Eb−Ec

kT (1.25)
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1.3.1 Empirical support

The EAAR model uses the protein thermostability to describe how increase in unfolded en-

zymes increases activation energy as temperatures rise. Though its parameters have mecha-

nistic meaning it obscures whether they describe an averaged phenomena or dependency of a

single enzyme. The model has been applied to Paramecium bursari population growth rate

curves and predicts increased enthalpy of reaction and greater enzyme heat capacity, which

can be achieved by changing enzyme thermal stability or introduction of heatshock proteins

[69]. Fitting the model on TPC of population growth rates of zebra mussels found that

thermal evolution seems to occur through changing the melting temperature (Tm) param-

eter. It could suggest the increase in thermal stability of the membrane-embedded protein

oxidative phosphorylation complexes that has been shown to be an important rate limiting

factor in aerobic metabolism [30]. Since the EAAR model assumes a functional relationship

between fraction of enzymes in folded state and the reduction in the activation energy, it is

more abstract than the other two models and can be used to get insight into mechanisms

underlying thermal evolution in different environments.

1.3.2 Evolving variables

The EAAR model is considering the same mechanism as Proteome model, that is the ther-

mostability of enzymes except it is considering the effect of enzyme denaturation on the

enzyme reaction rate. The model is assumes a linearly relationship between unfolded en-

zymes and decrease in metabolic activation energy by them. As noted by the authors it is

difficult to assign a particular mechanism behind each of the free paramters E∆Cp
, E∆H

and E∆Tm
but changes in each affects the TPC differently and hence it provides multiple

pathways for the TPC to evolve along.
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Chapter 2

Methods

2.1 Thermal Performance Curve fitting

I fit the three models to observed temperature population growth data of freshwater cil-

iate Tetrahymena thermophila of mating type I. These microorganisms are increasingly

used as model organisms in ecology and evolution [40]. Data has been collected from a

strain kept at 20◦C and assayed for population growth at at ten different temperatures:

25, 10, 15, 20, 25, 30, 33, 36, 39, 40◦C over 3 weeks with 5 replicates. I used posterior distri-

butions of population growth rates extracted from the empirical times series by fitting a

modified continuous time logistic growth model, with decay in carrying capacity after a

threshold time, to the population density estimates using Bayesian statistical model from

rstan R packages [97].

Using this already existing data set of fitness (population growth rate) as a function of

temperature, I fitted the three TPC models: Proteome model (Eqn. 1.7), MMRT model

(Eqn. 1.22) and EAAR model (Eqn. 1.23), to the estimated population growth rates using

Bayesians statistical tools in R version 4.2.1 ’rstan’ [97] and ’brms’ [18] which allowed for the

propagation of the error associated with growth rate posterior distributions. I used 4 Markov

chain Monte Carlo (MCMC) chains of 10,000 iterations for each replicate and model and

visually checked for convergence. Maximum tree depth was 15 and adapt delta was 0.999.

Uninformed Gaussian priors were used with approximate means of expected magnitude. R

code used for fitting can be found in the Supplementary Material.
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I performed model selection on the fits, using three information criterions: Akaike In-

formation Criterion (WAIC) [106], Pareto Smoother Importance Sampling - Leave One Out

Pseudo Bayesian Model Averaging (PSIS-LOO) [104] and Bayesian stacked weights of PSIS-

LOO [112]. I use more than one information criterion as pWAIC is found to be high when

computing WAIC, hence I use the PSIS-LOO averaging. I also use Bayesian stacked weights

which is good for similar models and it keeps weight of the best model unchanged.

2.2 Individual-Based Model

In order to explore the macroscopic consequences of assuming different temperature scaling

models of underlying mechanisms as described above, I use a stochastic, individual-based

model to simulate the population dynamics of a single species in a landscape with n identical

patches using a Gillespie algorithm [43]. My model is based on a continuous-time version of

the discrete Beverton-Holt population growth model with emigration [11].

dNx

dt
=

b

(1 + βNx)
Nx − dNx − eNx +

e(1− µ)Nx+1

2
+

e(1− µ)Nx−1

2
(2.1)

where Nx, N1 and Nn are populations of the species in the xth, 1st and last patch respectively.

b is the species birth rate, d is the death rate, e is the emigration rate, µ is the emigration

mortality and β is the intraspecific competition coefficient

Individuals in the model are asexual and can move to the neighboring patch. They

are characterized by traits describing the temperature scaling functions for birth rate (b)

associated with the three models: Proteome model (Eqn. 1.7), MMRT model (Eqn. 1.22)

and EAAR model (Eqn. 1.23); temperature scaling of death rate ((d) and emigration rate

(e). Emigration mortality (µ) are kept constant for all individuals (N).

In each time step an individual may experience one of the three events: birth, death

or emigration. To choose the event, I follow the modified Gillespie algorithm by Allen and

Dytham, 2009 [1]. To understand the modification, in a direct Gillespie algorithm:

1. Probabilities of giving birth, death or dispersing for an individual i are given by its

trait bi, di, ei, respectively.
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2. Each time-step is picked from an exponential distribution with mean λ = Σ(bi+di+ei).

3. The next event is calculated where The probability of birth, death or dispersal for

individual j is
bj

Σ(bi+di+ei)
,

dj

Σ(bi+di+ei)
and

dj

Σ(bi+di+ei)
respectively.

Each event requires rates to be calculated for every member of the population. In the

modified Gillespie algorithm, per event calculation is independent of population size, which

implies and important gain in simulation time:

1. Probabilities of giving birth, death or dispersing for an individual i are given by its

trait bi, di, ei, respectively.

2. Each time-step is picked from an exponential distribution with mean λ = (cb+cd+ce)N

where cb >= max(bi : ∀i), ce >= max(ei : ∀i) and cd >= max(di : ∀i).

3. The event is selected where The probability of birth, death or dispersal is cb
(cb+ce+cd)

,
ce

(cb+ce+cd)
and cd

(cb+ce+cd)
respectively.

4. For individual j the The probability of the selected event occurring is
bj
cb
,

ej
ce

and
dj
cd

respectively.

5. The next event is selected where the The probability of birth, death or dispersal for

individual j is cb
(cb+ce+cd)

, ce
(cb+ce+cd)

and cd
(cb+ce+cd)

, respectively.

The birth rates, death rates, and intraspecific competition coefficient were assumed to scale

with temperature. Details of temperature scaling are given below.

2.2.1 Birth

The continuous-time Beverton-Holt model can be derived mechanistically assuming that a

focal population of individuals consumes an abiotic resource (following a chemostat model)

with a linear, Lotka-Volterra-type, functional response [101]. Using a time-scale separation

argument one can obtain the dynamics of the focal consumer population as follows:

dN

dt
=

caS

1 + a
w
N
N − dN (2.2)
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where w is the flow rate of resources in and out of the system, S is the constant resource

flowing into the system, c is the efficiency of resource consumption, a is the feeding rate.

Considering b = eaS and β = a
w
:

dN

dt
=

b

1 + βN
N − dN (2.3)

In order to include temperature dependence into this model, note that both b and β are

constant multiples of a which has been shown to be temperature-dependent [28]. Hence, I

assume that β scales with the same exponential rate as b. Temperature scaling s(T ) defined

by each of the three models: Proteome model (Eqn. 1.7), MMRT model (Eqn. 1.22) and

EAAR model (Eqn. 1.23). Birth rate temperature dependence is given by:

dN

dt
=

b

1 + βN
N − dN (2.4)

Both b and β are constant multiples of a which has been shown to be temperature-dependent

[28], hence I assume that β scales with the same exponential rate as b. Temperature scaling

s(T ) defined by each of the three models. Birth rate temperature dependence is given by:

bi(T ) = b0s(T ) (2.5)

b0 is calculated using approximately the observed birth rate of Tetrahymena thermophila [41]

at 20◦C :

b0 = 0.15s−1(293K) (2.6)

The temperature dependence of the intraspecific competition coefficient is assumed to

scale at the same exponential rate as the birth rate:

βi(T ) = β0s(T ) (2.7)

where β0 is:

β0 = 0.004s−1(293K) (2.8)

An event is selected by relative maximum rate constants. Hence, the The probability of

birth event is :
cb

(cb + cd + ce)
(2.9)
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taking density-regulation into account, the The probability of the birth event being executed

is given by:
bi

(1 + βiN)cb
(2.10)

2.2.2 Emigration

Emigration is density-independent. The The probability of choosing an emigration event is

given by:
ce

(cb + cd + ce)
(2.11)

The The probability of executing an emigration event is given by:

ei
ce

(2.12)

A dispersal cost is applied as emigration mortality µ if executed.

2.2.3 Death

Death rate temperature dependence is taken to be of the Boltzmann-Arrhenius equation

form as has been widely observed [71] :

d(T ) = d0e
−(E)i/RT (2.13)

where d0 is calculated using the observed death rate of Tetrahymena thermophila [41] at

20 ◦C:

d0 = 0.05e(E)i/293R (2.14)

All individuals have equal death rates. The probability of choosing a death event is given

by:
cd

(cb + cd + ce)
(2.15)

The probability of executing a death event is given by:

di
cd

(2.16)
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2.2.4 Full birth-death model

Hence, the temperature-dependent logistic equation can be given as:

dNx

dt
=

b0s(T )

1 + β0s(T )Nx

Nx − d0e
−E/RTNx (2.17)

As temperature modulates the growth and death rate it also affects the number of individuals

each patch can hold. Equilibrium density for the continuous-time Beverton-Holt model is

given by:

N̂ =
b− d

dβ
(2.18)

Considering temperature dependence of the parameters:

N̂(T ) =
b− d

dβ
=

b0s(T )− d0e
−E/RT

d0e−E/RTβ0s(T )
=

b0
β0d0e−E/RT

− 1

β0s(T )
(2.19)

The above equation is an approximation as I am not considering dispersal here.

2.2.5 Initialisation and analysis

To see the effect of thermal evolution on the range expansion, the evolving parameters are

the individual emigration trait and the individual temperature scaling function traits. I wish

to compare range dynamcis with and without local adaptation as well as with and without

dispersal evolution. I also wish to provide a control for the effect of asymmetry in the TPC.

Hence I compare the mechanistic TPCs with a Gaussian TPC with mean T0 and standard

deviation σ. The temperature scaling function is given by:

s(T ) = b0e
(T−T0)

2

2(σ)2 (2.20)

The individual traits are given by the mean T0 and standard deviation σ.

To keep relevant controls, for each model: Proteome model (Eqn. 1.7), MMRT model

(Eqn. 1.22), EAAR model (Eqn. 1.23) and the Gaussian Curve (Eqn. 2.20), four simulations

are run and are summarised in Fig. 2.2:
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1. With thermal adaption where free parameters specified in the previous section are

allowed to evolve , with dispersal evolution

2. With thermal evolution, without dispersal evolution

3. Without thermal evolution, with dispersal evolution

4. Without thermal evolution, without dispersal evolution

Figure 2.1: The linear landscape has 150 patches. Patch temperatures start from 278K and
increase with a 0.5K step, till 353K. A) Growth rate given by Eqn. 2.6 for each model across
the landscape. B) Carrying capacities across landscape, neglecting effect of dispersal and
edge effects.

To minimise differences in initialisation, Proteome model, MMRT model and a Gaussian

curve were fitted to a fixed EAAR curve using a least square algorithm to derive the initial

parameters for each. The resulting curves can be seen in Fig. 2.1.

The metapopulation model consists of a 150-patch linear landscape. Each patch is kept

at a fixed temperature and temperature increases linearly from 278K to 353K as shown in

Fig. 2.1. The central 10 patches, i.e., the patches with temperatures from 55K to 65K are

initialised with 200 individuals each. Dispersal to either ends of the landscapes is not allowed

for the first 2000 hours to let the individual traits evolve to an equilibrium in the central

patches as can be seen in Fig. 5.11 . After 2000 hours of burn-in, which is nearly 9500
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generations on average in the ecological control in a patch at 20C, individuals can disperse

across the whole landscape.

All TPC models were run for the four scenarios in Fig. 2.2. 40 replicates are run for

each case and temperature scaling model described in the previous section: EAAR model

Proteome model, MMRT model. I output the population density of each patch, mean and

interquartile range of each mutating parameter, every 2 hours in simulation time. I stop the

simulations when the first replicate reaches either end of the landscape.

I compare the range front speeds between the four models under consideration. As the

population is initialised at the centre of the landscape, there are two range fronts, one along

an increasing temperature gradient and another along a decreasing temperature gradient. I

hereby refer to the first as the ’hot range front’ and the second as the ’cold range front’. The

ecology control is the MMRT model’s ecology control for both the cases with and without

dispersal evolution. As the patch front dynamics of the ecology controls for all models are

similar, as seen in Fig. 5.9 and Fig. 5.10, I do not show them all.
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Figure 2.2: If a birth event chosen, individual i reproduces with a probability proportional
to the density-dependent birth rate where Nx is total population in the patch x as in Eqn.
2.10. Each thermal adaptation model is run with ecological controls for both the dispersal
trait and the thermal adaptation traits. Hence the four cases are: A) Parameters describing
the TPC pi and the emigration trait mutates at birth; B) Parameters describing the TPC pi
and not the emigration trait mutates at birth; C) Parameters describing the TPC pi do not
mutate and only the emigration trait mutates at birth; D) No trait mutates so the individual
clones itself at birth. Hence with 3 alternative models of the TPC, I have 12 scenarios.
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2.2.6 Evolution

In the simulations with evolution, the mutating parameters start with standing genetic

variation given by a Gaussian curve whose standard deviation is the mean rounded down to

the nearest variable of 10. At each birth, the traits may evolve with the probability 0.01.

The evolved trait values are chosen from a Gaussian mutation kernel whose mean is the

same as the mean of the parent individual and standard deviation is a magnitude less than

the initial standard deviation. For each model, evolving parameters and their mutational

kernels are given in the Tables 2.2,2.3 and 2.5.

Model parameters and variables

Table 2.1: Common parameters for all simulations. Mean values are utilised for the dispersal
traits when they are not mutating. Mutation kernel distribution is a Gaussian curve. The
probability of mutation is 0.01.

IBM Description Value
Parameters
Nx Population density in

patch x
Initial value: 200 for
patch 55-65

β Intraspecific compe-
tition coefficient at
20 ◦C

0.004

d Death rate of all indi-
viduals at 20 ◦C

0.05

b Birth rate of all indi-
viduals at 20 ◦C

0.15

ei Emigration rate of in-
dividual i

0.01, Initial: uniform dis-
tribution [0, 0.2], Muta-
tion S.D: a magnitude
less than the nearest dec-
imal

µ Dispersal cost 0.01
T Temperature 5-80 ◦C with 0.5 ◦C in-

crease per patch
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Table 2.2: Parameters for the MMRT model of the TPC. All mutational kernels and initiali-
sation are Gaussian curves. The standard deviation (SD) are given for both. The probability
of mutation is 0.01 for each parameter.

MMRT
Model

Description Value

Parameters

∆H‡
T0

Enthalpy change at
20 ◦C

Mean: 0.05 eV, Initial
S.D: 0.01, Mutation S.D:
0.001

∆S‡
T0

Entropy change at
20 ◦C

Mean: -0.0015 eV, corre-

lated
(∆H‡

T0
−0.5)

300

∆Cp Heat capacity change Mean: -0.05 eV, Initial
S.D: 0.01, Mutation S.D:
0.001

E Activation energy for
d

0.3 eV, does not evolve

Table 2.3: Parameters for the EAAR model of the TPC. All mutational kernels and initiali-
sation are Gaussian curves. The standard deviation (SD) are given for both. The probability
of mutation is 0.01 for each parameter.

Proteome
Model

Description Value

Parameters
∆H‡ Metabolic free energy

barrier
0.75 eV

∆Gr Activation free energy
at 20 ◦C

-0.0091 eV, Initial S.D:
0.1, Mutation S.D: 0.01

∆Sr Activation entropy at
20 ◦C

-0.0051 eV, Initial S.D:
0.001, Mutation S.D:
0.0001

E Activation energy for
d

0.3 eV, does not evolve
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Table 2.4: Parameters for the Proteome model of the TPC. All mutational kernels and
initialisation are Gaussian curves. The standard deviation (SD) are given for both. The
probability of mutation is 0.01 for each parameter.

EAAR Description Value
Parameters
Eb Baseline activation en-

ergy
0.1 eV

E∆Cp
Lowered activation
energy wrt ∆Cp

0.05 eV, Initial S.D: 0.01,
Mutation S.D: 0.001

E∆H
Lowered activation
energy wrt ∆H

0.05 eV, Initial S.D: 0.01,
Mutation S.D: 0.001

Tm Enzyme melting tem-
perature

310.5 K, Initial S.D: 10,
Mutation S.D: 1

E Activation energy for
d

0.3 eV

Table 2.5: Parameters for the Gaussian curve model of the TPC. All mutational kernels and
initialisation are Gaussian curves. The standard deviation (SD) are given for both. The
probability of mutation is 0.01 for each parameter.

EAAR Description Value
Parameters
T0 Mean of the gaussian

curve
312 K, Initial S.D: 10,
Mutation S.D: 1

σ Standard deviation of
the gaussian curve

13 K, Initial S.D: 1, Mu-
tation S.D: 0.1
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Chapter 3

Results

3.1 Data fitting

Over the 3 replicates I found that the Proteome model fits best for replicate A and replicate

B according to all the information criterion weights. Similarly for replicate C, the EAAR

model gives the best fit. Hence there is no consensus on the best model to describe the data.
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Figure 3.1: Fits of the three temperature scaling models to 3 replicates of TPC data for
Tetrahymena thermophila. Black points represent experimental estimates of population
growth rates, verical black lines show the 95% compatibility interval of the posteriors. The
colored lines and corresponding shaded areas are posterior predictive means and 95% pre-
diction intervals of the corresponding TPC models.
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Table 3.1: Model selection for the 3 replicates. Column 1: Replicate and Models; Column
2: Weights for each model by the Akaike Information Criterion; Column 3: Weights for
Pareto Smoother Importance Sampling - Leave One Out Pseudo Bayesian Model Averaging;
Column 4: Bayesian stacking weights

Replicate WAIC LOO Stacking
A IC SE Weight IC SE Weight

EAAR 13.7 4.9 0.18 16.3 6.6 0.13 0
Proteome 11.7 5.7 0.48 13.5 7.0 0.55 0.65
MMRT 14.5 5.1 0.34 12.4 4.0 0.33 0.35

B
EAAR 13.2 3.5 0.09 14.9 4.5 0.07 0

Proteome 8.7 3.6 0.82 9.8 4.9 0.087 1
MMRT 12.9 4.7 0.1 16.1 6.4 0.06 0

C
EAAR 18.9 7.9 0.74 21.4 9.6 0.76 0.81

Proteome 24.7 5.2 0.04 26.3 6.0 0.06 0.19
MMRT 21.3 6.5 0.22 24.3 8.5 0.08 0

33



3.2 Modelling range expansion dynamics

3.2.1 Local adaptation without dispersal evolution

In the absence of dispersal evolution the Proteome model shows the fastest range expansion

speeds on both the hot and cold fronts as seen in Fig. 3.3-B. The Proteome model follows a

’hotter is better’ trend in thermal adaptation, i.e., adaptation to higher temperatures causes

the maximum growth rate to rise. This hotter-is-better pattern is a consequence of mod-

elling protein denaturation at higher temperatures. Hence, the exponential rise at lower

temperatures does not change with changes in the activation free energy and entropy for

denaturation, as seen in Fig. 3.2-I J. Increasing the activation free energy of denaturation

increases stability and allows for exponential increase up to higher optimum temperatures,

consequently increasing the maximum growth rate across the temperature spectrum. There-

fore hotter adaptation also increases population growth rates at colder temperatures but not

as much as for hotter temperatures. TPC at the end of the burn-in for both cold and hot

fronts in Fig. 3.4-D are shifted rightwards and upwards, leading to a spatially increasing

growth rate at the hot patch front in Fig. 3.3-C. Changes in activation free energy of de-

naturation seems to be the driving force behind thermal adaptation as the average value for

the cold and hot patch fronts are much larger than the initialised values. There is not much

difference for activation entropy. Further, there does not seem to be much difference between

hot and cold patch front traits as in Fig. 5.1, confirming that an increase in activation-free

energy is utilised for both cold and hot adaptation. As at the end of the burn in, the shifted

TPC covers the whole hotter landscape there does not seem to be any directional change in

the traits during range expansion accumulating lot more variation, which may be leading to

the reduced growth rate of the equilibrium TPCs in Fig. 3.4-D.

Thermal evolution in the MMRT and EAAR model is much more constrained which is

reflected in their patch front dynamics which do not differ from the ecology control in Fig.

3.3-A. Initial patch front speeds as observed in Fig. 3.3-B do not seem to differ qualitatively

from the ecology control patch front speeds for the MMRT model and with slower hot patch

front speeds for the EAAR model.

As observed in Fig. 3.2 - G, for the MMRT model the TPC may widen by changing

the heat capacity as it changes the sensitivity of enthalpy change and entropy change to
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Figure 3.2: For the 4 considered model: Proteome model (Eqn. 1.7), MMRT model (Eqn.
1.22), EAAR model (Eqn. 1.23) and the Gaussian curve, average TPCs with rate on the
y-axis and temperature on the x-axis that is used to initialise respective simulations are
shown along with effect of respective parameter variation. Row EAAR model A): Birth,
death and growth rate as functions of temperature; B): Effect of variation in enthalpy of
folding the enzymes; C): Effect of variation in entropy of folding the enzymes; D): Effect
of variation in heat capacity of folding the enzymes on the TPC. Row MMRT model E):
Birth, death and growth rate as functions of temperature; F): Effect of variation in enthalpy
change at 20C; G): Effect of variation in entropy change at 20C; Row Proteome model H):
Birth, death and growth rate as functions of temperature; I): Effect of variation in activation
energy of denaturation at 20C; J): Effect of variation in entropy change of denaturation at
20C.; Row Gaussian curve K): Birth, death and growth rate as functions of temperature;
L): Effect of variation in standard deviation of curve; M): Effect of variation in mean of
the curve. Parameters are varied about their mean, within the standard deviations of its
mutation kernel.

temperature, or shift its peak upwards and rightwards with decreased growth at colder

temperatures, due to the assumed Enthalpy-Entropy compensation. From Fig. 3.4 the TPC

seems to adapt by broadening its curve at the cold patch front and the hot patch front does

not seem different from its burn-in TPC. The trend is confirmed in patch front dynamics of

the evolving traits at the hot patch front stay the same throughout the expansion while the

mean of the traits of the cold patch front change from its initial value as seen in Fig. 5.2.

There is high overlap in the inter-quartile ranges of the trait means and there is significant

difference in hot and cold patch front traits for heat capacity changes only.
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Figure 3.3: Range front dynamics from simulations with local adaptation and no dispersal
evolution. Patch front and their properties are averaged across 40 replicates. At every 2
hours, the last 3 occupied patches with more than 10 individuals are considered as patch
front. A): Patch front which is the furthest occupied patch versus time in hours; Panel B:
Initial speeds of expansion at the cold and hot patch front calculated by fitting a linear
curve to patch front dynamics versus time for time ¡ 2100 hours; Panel C: Growth rate
from respective TPCs versus time calculated using traits at each patch front and patch
temperature.

The EAAR model, despite being mathematically similar to the MMRT model, is more

flexible within the assumed mutation kernel due to consideration of the enzyme melting

temperature. Changing the melting temperature of the enzyme, practically shifts the curve

to a new optimum and displays a ’hotter is better’ trend. Trait patterns in Fig. 5.3 reflect the

same; the only significant difference in hot versus cold trait is for the melting temperature.

But it does not change the patch front speed significantly. For both the models, looking

at Fig. 3.3-C, growth rate at the hot front increases with time and the within population

inter-quartile ranges for all the traits in Fig. 5.2 and Fig. 5.3 increase near the end of the

landscape. This could imply that the mutation kernel assumed is too narrow or a longer

landscape is required.

Last, for the traditionally assumed Gaussian TPC, the cold patch-front speed is higher

than in the other scenarios. This is due to the ’colder is better’ trend shown by the Gaussian

curve as seen in Fig. 3.2 - L M where shift in the mean leads to a reduced optimal growth

rate while the effect of widening the curve is dampened at the hot end. Also the trend is
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Figure 3.4: Comparison of TPCs at different time points in the simulations without dispersal
evolution. For all panels A-D): Purple curve is the ecological control without dispersal
evolution and local adaptation. The dotted lined TPC is the TPC for the cold patch front
and solid lined TPC is for the hot patch front. Light colored TPC is the equilibrium TPC at
the end of the burn-in and the darker colored TPCs are equilibrium TPC at the end of the
simulation which is reached when the first replicate reaches either end of the landscape. To
plot the TPCs, patch front trait values were calculated by averaging the median trait values
in the last 3 occupied patches with more than 10 individual at respective patch fronts. The
IQR of the curves were calculated by measuring the IQR of growth rates for the TPC for
each replicate, at discrete range of temperatures.

seen in the Fig. 3.3-C as the cold patch front growth rate is faster than the hot patch front

growth rate. The symmetric change in Gaussian Curve when its mean and variance are

varied, cannot track the exponential increase in death rate which is unlike enzyme melting

temperature in the EAAR model that can also shift the optimum of the curve almost linearly.

3.2.2 Local adaptation with dispersal evolution

Next I introduce the evolution of the emigration trait during range expansion. The ecology

control in this case has dispersal evolution without local adaptation. Dispersal evolution

makes individuals, including in the ecology control to Fig. 3.5-A reach the end of the

landscape on the cold side. However, individuals cannot survive beyond patch 10, because

of high stochasticity at the patch front. This implies that sinks are being created at either

ends of the landscape. Overall the differences between models decreased as they reach the

end of the landscape much faster.
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The dispersal trait evolves to almost a magnitude higher than the starting value and it

leads to a lot of gene flow for the local adaptation traints as can be seen in Fig. 5.5-5.8 as

well as in Fig. 3.6 where equilibrium TPC are intermediates of the cold and hot patch front

TPCs after burn-in.

Figure 3.5: Range front dynamics from simulations with local adaptation and dispersal
evolution are shown. Patch front and their properties are averaged across 40 replicates. At
every 2 hours, the last 3 occupied patches with more than 10 individuals are considered
as patch front. A): Patch front which is the furthest occupied patch versus time in hours;
Panel B: Initial speeds of expansion at the cold and hot patch front calculated by fitting a
linear curve to patch front dynamics versus time for time ¡ 2100 hours.; Panel C: Growth
rate from respective TPCs versus time calculated using traits at each patch front and patch
temperature.
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Figure 3.6: Comparison of TPCs at different time points in the simulations with dispersal
evolution. For all panels A-D): Purple curve is the ecological control with dispersal evolution
and no local adaptation. The dotted lined TPC is the TPC for the cold patch front, and
solid lined TPC is for the hot patch front. Light colored TPC is the equilibrium TPC at
the end of the burn-in and the darker colored TPCs are equilibrium TPC at the end of the
simulation which is reached when the first replicate reaches either end of the landscape. To
plot the TPCs, patch front trait values were calculated by averaging the median trait values
in the last 3 occupied patches with more than 10 individual at respective patch fronts across
40 replicates. The IQR of the curves were calculated by measuring the IQR of growth rates
for the TPC for each replicate, at discrete range of temperatures.
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Chapter 4

Discussion

I studied a comprehensive set of mechanistic models describing TPCs with an evolutionary

framework during range expansions across a temperature gradient. Importantly, I consider

mechanisms at the molecular level behind thermal adaptation and show how these micro-

scopic assumptions cascade up to impact large scale patterns such as range expansion dy-

namics. I have identified three models from literature: Proteome model (Eqn. 1.7), MMRT

model (Eqn. 1.22) and EAAR model (Eqn. 1.23) that represent different mechanisms. I

primarily consider protein thermal stability adaptation through the Proteome Model (Eqn.

1.7). I consider evolution of enzyme catalysis through the Macromolecular Rate Theory

(Eqn. 1.22). Finally I combine the two in the Enzyme Activated Arrhenius Rate theory

(Eqn. 1.23) which proposes a functional form for effect of enzyme denaturation on enzyme

catalysis.

In addition to my theoretical work, I have confronted the different models with empirical

data from protist microcosms. The differences among the models were reflected in their fit

in Fig. 3.1. I find support for the Proteome model in 2 replicates and the EAAR model

in 1 replicate. It is difficult to comment on underlying mechanisms from the fit, especially

because the small number of data points leads to high Pareto k values.

Regardless of selected model, I find that assumption of thermal scaling of the feeding

rate in the Beverton-Holt model leads to asymmetry in carrying capacity in hot and cold

patches in Fig. 2.1. From simulations, with the Proteome model, when protein stability does

not have genetic constrains to evolve and is the limiting condition for thermal evolution,
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one would predict rapid evolution to hot patches and accelerated patch front expansion.

There is not much difference among the range dynamics of EAAR and MMRT models. The

Gaussian curve shows a ’colder is better’ trend as the maximum growth rate decrease with

increase in optimum temperature due to the exponentially increasing death rate, hence it

ends up showing faster cold patch front speed than hot patch front speed. Despite the same

exponentially scaling death rate assumption and almost symmetrical growth curves for the

other models (except the Proteome model), changes in their parameters were asymmetrical

i.e when optimal temperature is shifted to higher temperatures, the increase in optimal birth

rate is more than the increase in death rate at the new optimal temperature. If the adapting

TPC is not able to compensate it leads to a ’colder is better’ dynamics observed for the

Gaussian curve. Hence, asymmetry in the functional form and fitness effect of the adapting

parameters is shown to be important in assumed TPC curves.

4.0.1 Empirical observations

Metabolic rate is dependent on environmental factors and variation of metabolic reaction

norms have been observed widely across latitudes for ectotherms [109, 59, 95]. For example,

in a study by White et al. [109] they analysed a data-set for fishes where metabolic rate

and citrate synthase activity is found to be higher for inidivudals from colder latitutudes

compared to hotter latitudes at intermediate temperatures. But when absolute activity at

their habitat temperatures are measured cold adapted species have lower metabolic rates.

I find support for this behaviour in the EAAR and MMRT models where below the peak

temperatures, the cold adapted TPCs have higher growth rate than the hot adapted TPC

but since the above studies do not measure the whole TPC it is difficult to provide the

models as possible mechanisms. Further, intraspecific variations in metabolic enzymes along

latitudinal gradients in some insects have been attributed to thermal evolution [80, 57, 95]

and is reviewed in [13]. For example, extensive work has been done on the PGI (phosphoglu-

cose isomerase). Isoforms of the enzyme with higher activity are shown to be less thermally

stable while low-activity isoforms are more thermally stable [95]. In Glanville butterflies,

the enzyme property has been shown to affect flight capacity as it affect how fast their flight

muscles can be warmed. Early oviposition of Glanville butterflies with heterozygous PGI

isoforms occurs as they can fly at lower temperatures and has been shown to increase clutch

size [87]. But homozygous isoforms are shown to be better for extreme temperature evolu-
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tion and distribution of PGI genotypes among natural populations correlates with habitat

temperature [95]. The PGI enzyme shows a thermal stability - kinetic efficiency trade off.

The explanations provided for thermal-stability - kinetic efficiency trade offs is often that

changes needed to increase protein thermal stability make the enzyme more inflexible hence

reducing activity at colder temperatures. Though the models I consider do not encode the

phenomena explicitly, by assuming the Enthalpy-Entropy compensation in MMRT model, I

get a similar trend. The hot adapted mean TPC in Fig. 3.3 is narrower but with a higher

rate peak compared to its cold adapted patch front. In MMRT model, I do not consider

thermal stability, but it could be that thermal stability is correlated with enthalpic changes

occurring during enzyme-substrate reactions. These differences in thermal tolerances play

an important role in invasion success of novel species. Better cold adaptation has been key

to the widespread invasion of the redback spider [72] and the woolly hemlock adelgid [17].

Stronger correlation is found between minimum lethal temperature and ambient temper-

ature compared to maximum lethal temperature and ambient temperature. Hence colder

tolerances have been thought to be more evolutionary labile than heat tolerance. The asym-

metry results from limited variation in organisms to compensate for protein denaturation

and membrane disruption[6]. Heat shock proteins have been shown not to change heat toler-

ance but just avoid aggregation of denatured protein [55]. Rapid evolution to colder regimes

has been documented in damselflies with increased niche breadth at colder patch fronts due

thermal release of the heat tolerance [62, 19]. Further cold-adapted damsel flies have higher

developmental rate at hotter temperatures as well, as seen in the Proteome model. My

results may be suggesting better evolution to colder temperatures as burn-in TPCs seem

more shifted than their ecological controls. Density effects due to the asymmetry in carrying

capacity may be underlying the phenomena and may be worth looking into.

4.0.2 Effect of temperature fluctuations

Climate change is predicted to bring higher temperatures but also widely erratic climate

[103, 8]. Additionally, latitudinal clines observed for metabolic properties don’t necessar-

ily need to correlate with mean temperatures as temperature fluctuations are increase with

increase in latitudes [109]. Effect of temperature fluctuations are translated to fitness ef-

fects depending on the TPC’s skewness. High variation in environmental temperature near

optimum temperature of TPC reduces the peak performance temperature as temperatures
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above the optimum temperatures lead to a sharp decrease in fitness. While high variation in

environmental temperatures colder than the optimal temperature would increase the peak

performance due to the sharp rise of the TPC [103]. Hence, different mechanisms of TPC

evolution as in our models would lead to different effects of temperature fluctuations,such

as the rapid acceleration of the Proteome model into hot patches may not be as rapid if

temperature fluctuations were also increasing with mean temperature. On the other hand it

would make cold adaptation even faster. This could be an interesting study in the future.

4.0.3 Sensitivity to dispersal rates

TPC describes the plastic phenotypic response of an individual to temperature. Phenotypic

plasticity could reduce the effect of environmental shift letting the population persist for

longer and can both speed up or slow down genetic change [78]. Effect of phenotypic plasticity

in evolutionary rescue has been theorised to be dependent on the cost of plasticity [89].

Low costs, high migration and environmental heterogeneity could select for high phenotypic

plasticity [100] so it may be interesting to look at sensitivity of the results to dispersal rates

in the absence of dispersal evolution. High dispersal rates due to dispersal evolution also

lead to a lot more mixing as can be seen in the adapting trait dynamics in Fig. 5.5 - 5.8 for

all cases where trait means converge. In case of a sexual reproduction model it could lead to

a high genetic load if hot and cold adapted individuals will reproduce more often to generate

sub-optimal phenotype.

4.0.4 Shortcomings

I conduct my simulations with a single parameter set and landscape properties. I need to

check the robustness of my results with sensitivity analysis on landscape length and gradient

steepness, as well as different initial TPCs. A longer landscape is required to understand

effect of dispersal evolution more as the evolving dispersal traits makes range front speed

very fast. In several cases, patch front traits do not seem to differ from those at the end of the

burn in and IQR of the trait within the patch population of the of all adapting traits drops

to zero during range expansion which seems to suggest almost a single genotype is expanding

till the border of its TPC and then increase in population IQR of all adapting traits is seen

near the end of the landscape. Alternatively, changes can be made for initialised TPC to
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be narrower. Finally, I stop my simulations when the first replicate reaches the end of the

landscape and only consider the dynamics during range expansion and not at stationary

state. But it would be interesting to study the spatial distribution of the traits after all

patches have reached their equilibrium and effect of the asymmetry in carrying capacity

across the landscape in Fig. 2.2.

My study takes into consideration protein level properties and associated trade offs which

have been empirically observed from my limited literature review. I consider effect of tem-

perature on stability of enzymes and their reaction rates separately. As pointed out by the

authors of Hobbs et al. [51], for a complete picture, it will be important to combine the two

phenomena. Additionally, it is important to consider that substrate is limited in real systems

and substrate binding or the Michealis constant Km has been widely shown to demonstrate

thermal evolution [92]. It could also allow one to look into effect of the flexibility-stability

trade off hypothesis [68, 36] where hotter adapted enzymes lack flexibility which reduces

catalytic efficiency. Possible way to include evolution of Km could be to establish a rela-

tion between reduced flexibility of enzymes that would affect the heat capacity difference of

enzyme catalysis and thermostability of enzymes. Apart from changes in properties of en-

zymes, general responses to temperature stress can be changes in enzyme concentration and

modification to membrane properties and intracellular environment which can be induced

by genotypic changes or acclimation [21, 52].

Observations of latitudinal cline of enzyme properties are usually studies on a single

enzyme or protein and though they provide correlation between organism fitness and enzyme

function, they need to be put in context of the complex ecosystem that individuals interact

with. Since selection acts on functional phenotype, trade offs I consider in my project

will not translate to higher levels of organisation such as population growth rate as I have

assumed. Trade offs in traits more closely related to fitness need to be considered. Growth

rates are often more constrained by resource limitations and higher foraging rates would

come at the higher risk of predation [108]. Additionally in organisms with more complex life

histories, one can have trade offs between faster developmental rate and size [22] and more

energy allocation to growth rate could decrease reproductive output [77]. Our results hence

hold for limited cases of ectotherms when thermal evolution is limited by protein properties

and functional forms of TPC for protein reaction rates can translate to population growth

rates. But it is unlikely that the a TPC is going to follow a single biochemical process as

many reactions are involved in metabolic pathway and there are probably different biphysical
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constraints across the thermal range like at extreme high and low temperatures [91].

4.0.5 Conclusion

In my study I consider three different mechanisms, but as discussed in the Literature review,

pervasive epistasis can severely restrict the trajectories that protein evolution can take [47].

Therefore it is difficult to apply the models generally or assume they form an exhaustive set

of mechanisms. I instead hope to show that assumptions of different mechanism defining

the TPC will constrain how the TPC would change in response to temperature gradients.

Apart from the shape of the curve, it becomes important to consider the effect of variation

of the evolving parameters. Despite starting with almost the same TPCs when different

protein level properties are under selection, they can show very different range dynamics.

Further, I find that, generally, if intraspecific competition scales with birth rate as I assume,

carrying capacity will be decrease with temperatures. Consequences of the same need to be

studies further. Hence, integration of explicit mechanisms shaping TPCs and constraining its

evolution could lead to more insights into the eco-evolutionary feedback of thermal evolution.

46



Chapter 5

Supplementary Material

5.1 Supplementary Figures
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Figure 5.1: Comparison of average evolving trait value, its population level variation and
among replicate variation. At every 2 hours simulation time, median and IQR of the evolving
trait values of the last 3 occupied patches with more than 10 individuals across 40 replicates
are averaged, for simulations without dispersal evolution of the Proteome model. Adapting
parameters are ∆Gr: Activation free energy for denaturation at reference temperature, ∆Sr:
Activation entropy for denaturation at reference temperature. Panel A): Median of ∆Gr

trait with IQR for among replicates variation; Panel B): Median of patch population level
IQR of ∆Gr trait with IQR for among replicates; Panel C): Median of ∆Sr trait with IQR
for among replicates variation; Panel D): Median of patch population level IQR of ∆Sr trait
with IQR for among replicates.
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Figure 5.2: Comparison of average evolving trait value, its population level variation and
among replicate variation. At every 2 hours simulation time, median and IQR of the evolving
trait values of the last 3 occupied patches with more than 10 individuals across 40 replicates
are averaged, for simulations without dispersal evolution of the MMRT model. Adapting
parameters are ∆H‡

T0
:Enthalpy change at reference temperature, ∆S‡

T0
: Entropy change at

reference temperature, ∆Cp: Heat capacity difference. Panel A): Median of ∆H‡
T0

trait with

IQR for among replicates variation; Panel B): Median of patch population level IQR of ∆H‡
T0

trait with IQR for among replicates; Panel C): Median of ∆S‡
T0

trait with IQR for among

replicates variation; Panel D): Median of patch population level IQR of ∆S‡
T0

trait with IQR
for among replicates; Panel E): Median of ∆Cp trait with IQR for among replicates variation;
Panel F): Median of patch population level IQR of ∆Cp trait with IQR for among replicates.
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Figure 5.3: Comparison of average evolving trait value, its population level variation and
among replicate variation. At every 2 hours simulation time, median and IQR of the evolving
trait values of the last 3 occupied patches with more than 10 individuals across 40 replicates
are averaged, for simulations without dispersal evolution of the EAAR model. Adapting
parameters are E∆H

: Lowered activation energy wrt ∆H , Tm: Enzyme melting tempera-
ture, E∆Cp

: Lowered activation energy wrt ∆Cp; Panel A): Median of Tm trait with IQR for

among replicates variation; Panel B): Median of patch population level IQR of Tm trait with
IQR for among replicates; Panel C): Median ofE∆H

trait with IQR for among replicates
variation; Panel D): Median of patch population level IQR ofE∆H

trait with IQR for among
replicates; Panel E): Median of E∆Cp

trait with IQR for among replicates variation; Panel

F): Median of patch population level IQR of E∆Cp
trait with IQR for among replicates.
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Figure 5.4: Comparison of average evolving trait value, its population level variation and
among replicate variation. At every 2 hours simulation time, median and IQR of the evolv-
ing trait values of the last 3 occupied patches with more than 10 individuals across 40
replicates are averaged, for simulations without dispersal evolution of the Gaussian curve
model. Adapting parameters are σ: Standard deviation of the curve, T0: Mean of curve;
Panel A): Median of σ trait with IQR for among replicates variation; Panel B): Median of
patch population level IQR of σ trait with IQR for among replicates; Panel C): Median of T0

trait with IQR for among replicates variation; Panel D): Median of patch population level
IQR of T0 trait with IQR for among replicates.
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Figure 5.5: Comparison of average evolving trait value, its population level variation and
among replicate variation. At every 2 hours simulation time, median and IQR of the evolving
trait values of the last 3 occupied patches with more than 10 individuals across 40 replicates
are averaged, for simulations with dispersal evolution of the Proteome model. Adapting
parameters are ∆Gr: Activation free energy for denaturation at reference temperature, ∆Sr:
Activation entropy for denaturation at reference temperature, e: Dispersal trait; Panel A):
Median of ∆Gr trait with IQR for among replicates variation; Panel B): Median of patch
population level IQR of ∆Gr trait with IQR for among replicates; Panel C): Median of ∆Sr

trait with IQR for among replicates variation; Panel D): Median of patch population level
IQR of ∆Sr trait with IQR for among replicates; Panel E): Median of e trait with IQR for
among replicates variation; Panel F): Median of patch population level IQR of e trait with
IQR for among replicates.
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Figure 5.6: Comparison of average evolving trait value, its population level variation and
among replicate variation. At every 2 hours simulation time, median and IQR of the evolving
trait values of the last 3 occupied patches with more than 10 individuals across 40 replicates
are averaged, for simulations with dispersal evolution of the MMRT model. Adapting pa-
rameters are ∆H‡

T0
:Enthalpy change at reference temperature, ∆S‡

T0
: Entropy change at

reference temperature, ∆Cp: Heat capacity difference , e: Dispersal trait; Panel A): Median

of ∆H‡
T0

trait with IQR for among replicates variation; Panel B): Median of patch population

level IQR of ∆H‡
T0

trait with IQR for among replicates; Panel C): Median of ∆S‡
T0

trait with

IQR for among replicates variation; Panel D): Median of patch population level IQR of ∆S‡
T0

trait with IQR for among replicates; Panel E): Median of ∆Cp trait with IQR for among
replicates variation; Panel F): Median of patch population level IQR of ∆Cp trait with IQR
for among replicates; Panel E): Median of e trait with IQR for among replicates variation;
Panel F): Median of patch population level IQR of e trait with IQR for among replicates.
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Figure 5.7: Comparison of average evolving trait value, its population level variation and
among replicate variation. At every 2 hours simulation time, median and IQR of the evolving
trait values of the last 3 occupied patches with more than 10 individuals across 40 replicates
are averaged, for simulations with dispersal evolution of the EAAR model. Adapting pa-
rameters are E∆H

: Lowered activation energy wrt ∆H , Tm: Enzyme melting temperature,
E∆Cp

: Lowered activation energy wrt ∆Cp, e: Dispersal trait; Panel A): Median of Tm trait

with IQR for among replicates variation; Panel B): Median of patch population level IQR of
Tm trait with IQR for among replicates; Panel C): Median of E∆H

trait with IQR for among
replicates variation; Panel D): Median of patch population level IQR of E∆H

trait with IQR
for among replicates; Panel E): Median of E∆Cp

trait with IQR for among replicates vari-

ation; Panel F): Median of patch population level IQR of E∆Cp
trait with IQR for among

replicates; Panel E): Median of e trait with IQR for among replicates variation; Panel F):
Median of patch population level IQR of e trait with IQR for among replicates.
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Figure 5.8: Comparison of average evolving trait value, its population level variation and
among replicate variation. At every 2 hours simulation time, median and IQR of the evolving
trait values of the last 3 occupied patches with more than 10 individuals across 40 replicates
are averaged, for simulations with dispersal evolution of the Gaussian curve model. Adapting
parameters are σ: Standard deviation of the curve, T0: Mean of curve, e: Dispersal trait;
Panel A): Median of σ trait with IQR for among replicates variation; Panel B): Median of
patch population level IQR of σ trait with IQR for among replicates; Panel C): Median of T0

trait with IQR for among replicates variation; Panel D): Median of patch population level
IQR of T0 trait with IQR for among replicates; Panel E): Median of e trait with IQR for
among replicates variation; Panel F): Median of patch population level IQR of e trait with
IQR for among replicates.
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Figure 5.9: Range front dynamics from simulations with local adaptation and without disper-
sal evolution are shown. Patch front and their properties are averaged across 40 replicates.
At every 2 hours, the last 3 occupied patches with more than 10 individuals are considered
as patch front. A): Patch front which is the furthest occupied patch versus time in hours;
Panel B: Initial speeds of expansion at the cold and hot patch front calculated by fitting a
linear curve to patch front dynamics versus time for time ¡ 2100 hours.; Panel C: Growth
rate from respective TPCs versus time calculated using traits at each patch front and patch
temperature.
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Figure 5.10: Range front dynamics from simulations with local adaptation and dispersal
evolution are shown for all the ecology controls. Patch front and their properties are averaged
across 40 replicates. At every 2 hours, the last 3 occupied patches with more than 10
individuals are considered as patch front. A): Patch front which is the furthest occupied
patch versus time in hours; Panel B: Initial speeds of expansion at the cold and hot patch
front calculated by fitting a linear curve to patch front dynamics versus time for time ¡ 2100
hours.; Panel C: Growth rate from respective TPCs versus time calculated using traits at
each patch front and patch temperature.
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Figure 5.11: Comparison of average evolving trait value, its population level variation and
among replicate variation. At every 20 hours simulation time, median and IQR of the
evolving trait values of the 55th, 56th and 57th patch for the cold patch front and the 63th,
64th, 65th patch for the hot patch front are averaged, for simulations without dispersal
evolution of the Gaussian curve model. Adapting parameters are σ: Standard deviation of
the curve, T0: Mean of curve; Panel A): Median of σ trait with IQR for among replicates
variation; Panel B): Median of patch population level IQR of σ trait with IQR for among
replicates; Panel C): Median of T0 trait with IQR for among replicates variation; Panel D):
Median of patch population level IQR of T0 trait with IQR for among replicates.
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5.2 R code for fitting

rm(list=ls())

# Data from the video analysis
library(ggplot2)
library(ggplot2)
library(reshape)
library(dplyr)
library(plyr)
library(ggpubr)
library(RColorBrewer)
library(rstan)
library(deSolve)
library(coda)
library(loo)
library(cowplot)
library(gridExtra)
library(ggmcmc)
library(nls.multstart)
library(rTPC)
library(tidyverse)

library(rethinking)
library(tidybayes)
library(tidybayes.rethinking)
library(cowplot)

library(rstan)
library(janitor)
library(patchwork)
library(brms)
library(tidybayes)

# load packages -----------------------------------------------------------
library(tidyverse)
library(rstan)
library(janitor)
library(patchwork)
library(brms)
library(tidybayes)

# options -----------------------------------------------------------------
## stan options
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())

#
# ########################################################################################
# #r_tref * exp(e/k * (1/tref - 1/tK))*1/(1 + exp(eh/k * (1/(th + 273.15) - 1/tK)))
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# #4 parameter model
d<-read.csv(file="~/Desktop/dATA FOR sAISMIT/growth_model_data_sum.csv" ,header= TRUE)
d=d%>% filter(d$speciesMT==’Tet_I’)
d=d%>% filter(d$selection_temperature==’20’)
d$log_r0_mean=log(d$r0_mean)
d$tK=d$temperature+273.15
d$tref=293.15
d$k=8.62e-5
d$log_r0_sd=log(d$r0_sd)

rep_name="c"
data_subset <- d[which(d$replicate==rep_name),]

nlform <-bf(log_r0_mean ~ log((rtref *exp(Hdd/k * (1/tref - 1/tK))*(1 + exp(-dGr/(k*tref)))*1/(1 + exp((-dGr-(tK-tref)*(-dSr))/(k*tK))))-dtref*exp(dHdd/(k*tref))*exp(-dHdd/(k*tK))),
rtref ~ 1,
Hdd~1,
dGr ~ 1,
dSr~1,
#tref~1,
dtref~1,
dHdd~1,

nl = TRUE)

nlprior <- c(prior(normal(0.2,0.05), nlpar = "rtref",lb=0,ub=1),
prior(normal(0.75,0.05), nlpar = "Hdd",lb=0,ub=1),
prior(normal(0.087,0.005), nlpar = "dGr",lb=0),
prior(normal(0.0047,0.005), nlpar = "dSr",lb=0,ub=0.1),
#prior(normal(293,10), nlpar = "tref",lb=0),
prior(normal(0.02,0.005), nlpar = "dtref",lb=0),
prior(normal(0.3,0.05), nlpar = "dHdd",lb=0)

)

mod_prot <- brm(formula = nlform,

data = data_subset,

prior = nlprior,
control = list(adapt_delta = 0.999,max_treedepth=15),
family = gaussian(),
chains = 4,
init = c(0.2,0.75,0.087,0.005,0.01,0.3),init_r=15,
iter = 10000

)

print(summary(mod_prot))
pdf("~/Desktop/dATA FOR sAISMIT/Proteome/chain_plot.pdf")
pdf(paste("~/Desktop/dATA FOR sAISMIT/replicate_",rep_name,"/Proteome/chain_plot.pdf",sep=""))
plot(mod_prot)
dev.off()
#
pairs_plot<-pairs(mod_prot)
ggsave(plot = pairs_plot,
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filename = paste0("~/Desktop/dATA FOR sAISMIT/Proteome/pairs_plot.png"),
width = 15,
height = 6)

ggsave(plot = pairs_plot,
filename = paste("~/Desktop/dATA FOR sAISMIT/replicate_",rep_name,"/Proteome/pairs_plot.png",sep=""),
width = 15,
height = 6)

# Closing the graphical device
dev.off()
#
stancode(mod_prot)

prior_dist <-

(rnorm(1:80000,(0.2),0.05)) %>%
bind_cols() %>%
dplyr::rename("b_rtref_Intercept" = "...1") %>%
bind_cols()

prior_dist <-
(rnorm(1:80000,(0.75), 0.05)) %>%
bind_cols() %>%
dplyr::rename("b_Hdd_Intercept" = "...1") %>%
bind_cols(prior_dist)

prior_dist <-
(rnorm(1:80000,0.087, 0.005)) %>%
bind_cols() %>%
dplyr:: rename("b_dGr_Intercept" = "...1") %>%
bind_cols(prior_dist)

prior_dist <-
rnorm(1:80000,0.005,0.0005) %>%
bind_cols() %>%
# filter(...1 > 25) %>%
dplyr:: rename("b_dSr_Intercept" = "...1") %>%
bind_cols(prior_dist)
prior_dist <-
rnorm(1:80000,0.02,0.005) %>%
bind_cols() %>%
# filter(...1 > 25) %>%
dplyr:: rename("b_dtref_Intercept" = "...1") %>%
bind_cols(prior_dist)
prior_dist <-
rnorm(1:80000,0.3,0.05) %>%
bind_cols() %>%
# filter(...1 > 25) %>%
dplyr:: rename("b_dHdd_Intercept" = "...1") %>%
bind_cols(prior_dist) %>%

gather(., ’param’, ’estimate’, 1:ncol(.)) %>%
mutate(type = "prior")

dists <- mod_prot %>%
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spread_draws(‘b_.*‘, regex = TRUE) %>%
gather(., ’param’, ’estimate’, 4:ncol(.)) %>%
mutate(type = "post") %>%
bind_rows(prior_dist)

plot_grid<-ggplot(dists, aes(x = estimate)) +
facet_wrap(~param, scales = "free") +
geom_density(aes(colour = type))

print(plot_grid)

ggsave(plot = plot_grid,
filename = paste0("~/Desktop/dATA FOR sAISMIT/Proteome/post_curves.png"),
width = 15,
height = 6)

ggsave(plot = plot_grid,
filename = paste("~/Desktop/dATA FOR sAISMIT/replicate_",rep_name,"/Proteome/post_curves.png",sep=""),
width = 15,
height = 6)

params <- mod_prot %>%
spread_draws(‘b_.*‘, regex = TRUE) %>%
gather(., ’param’, ’estimate’, 4:ncol(.)) %>%
separate(., param, c(’blah’, ’term’, ’blah2’), sep = ’_’) %>%
select(., -starts_with(’blah’)) %>%
filter(., !is.nan(estimate)) %>%
group_by(., term) %>%
mean_qi()

write.csv(params,
file =paste0("~/Desktop/dATA FOR sAISMIT/Proteome/model_posteriors_parameters.csv"),
append = TRUE)

write.csv(params,
file = paste("~/Desktop/dATA FOR sAISMIT/replicate_",rep_name,"/Proteome/model_posteriors_parameters.csv",sep=""),
append = TRUE)

preds_prot <- data.frame(tK = seq(5+ 273.15, 40 + 273.15, length.out = 200),
tref = 20 + 273.15,
k = 8.62e-05,
log_r0_sd = 1) %>%

add_fitted_draws(mod_prot ,re_formula = NA) %>%
data.frame() %>%
group_by(tK) %>%
mean_qi(estimate = .value)
#
preds_prot$estimate<-exp(preds_prot$estimate)
preds_prot$.upper<-exp(preds_prot$.upper)
preds_prot$.lower<-exp(preds_prot$.lower)

write.csv(preds_prot,
file =paste0("~/Desktop/dATA FOR sAISMIT/Proteome/model_predictions.csv"),
append = TRUE)

write.csv(preds_prot,
file =paste("~/Desktop/dATA FOR sAISMIT/replicate_",rep_name,"/Proteome/model_predictions.csv",sep=""),
append = TRUE)

Niche_plot_prot <-ggplot(preds_prot, aes(x = tK-273.15, y = estimate)) +
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geom_line(color=’coral1’) +
geom_ribbon(aes(ymin = .lower, ymax = .upper), alpha = 0.2,fill=’coral1’) +
geom_pointrange(data = data_subset, aes(x = temperature, y = r0_mean, ymin =r0_mean-r0_sd, ymax = (r0_mean+r0_sd)))

ggsave(plot = Niche_plot_prot,
filename = paste0("~/Desktop/dATA FOR sAISMIT/Proteome/fit_model.png"),
width = 15,
height = 6)

ggsave(plot = Niche_plot_prot,
filename =paste("~/Desktop/dATA FOR sAISMIT/replicate_",rep_name,"/Proteome/fit_model.png",sep=""),
width = 15,
height = 6)

ggsave(plot = Niche_plot_prot,
filename = paste0("~/Desktop/dATA FOR sAISMIT/fit_model.png"),
width = 15,
height = 6)

##MMRT
############################################################
nlform <-bf(log_r0_mean ~ log((rtref *tK*(1/tref)*exp((Hdd-DCp*(tref-tm))/(k *tref))*exp(-DCp*log((tK*(1/tref)))/(k))* exp(-(Hdd-DCp*(tK-tm))/(k*tK)))-dtref*exp(dHdd/(k*tref))*exp(-dHdd/(k*tK))),
rtref ~ 1,
Hdd ~ 1,
DCp~1,
dtref~1,
dHdd~1,
tm~1,
nl = TRUE)

nlprior <- c(prior(normal(0.2,0.2), nlpar = "rtref",lb=0.01,ub=0.5),
prior(normal(0.1,0.05), nlpar = "Hdd",lb=0,ub=0.5),
prior(normal(0.06,0.025), nlpar = "DCp",lb=0.01),
# prior(normal(0.0047,0.001), nlpar = "dSr",lb=0),
prior(normal(0.05,0.005), nlpar = "dtref",lb=0.01,ub=0.1),
prior(normal(0.5,0.05), nlpar = "dHdd",lb=0),
prior(normal(310,10), nlpar = "tm",lb=270)

)

mod_mmrt <- brm(formula = nlform,
data = data_subset,

prior = nlprior,
control = list(adapt_delta = 0.999,max_treedepth=15),
family = gaussian(),
chains = 4,
init = c(0.2,0.5,0.06,0.05,0.3,310),init_r=15,
iter = 10000

)

print(summary(mod_mmrt))
pdf("~/Desktop/dATA FOR sAISMIT/MMRT/chain_plot.pdf")
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pdf( paste("~/Desktop/dATA FOR sAISMIT/replicate_",rep_name,"/MMRT/chain_plot.pdf",sep=""))
plot(mod_mmrt)
dev.off()

pairs_plot<-pairs(mod_mmrt)
ggsave(plot = pairs_plot,

filename = paste0("~/Desktop/dATA FOR sAISMIT/MMRT/pairs_plot.png"),
width = 15,
height = 6)

ggsave(plot = pairs_plot,
filename = paste("~/Desktop/dATA FOR sAISMIT/replicate_",rep_name,"/MMRT/pairs_plot.png",sep=""),
width = 15,
height = 6)

# Customizing the output
#pdf(paste0("~/Desktop/dATA FOR sAISMIT/Proteome/", file_name, "_pairs_plot.pdf"))# Paper size

# Creating a plot
#plot(fit_test_mod_2)

# Closing the graphical device
dev.off()

stancode(mod_mmrt)

prior_dist <-

(rnorm(1:80000,(0.2),0.2)) %>%
bind_cols() %>%
dplyr::rename("b_rtref_Intercept" = "...1") %>%
bind_cols()

prior_dist <-
(rnorm(1:80000,(0.1), 0.05)) %>%
bind_cols() %>%
dplyr::rename("b_Hdd_Intercept" = "...1") %>%
bind_cols(prior_dist)

prior_dist <-
(rnorm(1:80000,0.06, 0.025)) %>%
bind_cols() %>%
dplyr:: rename("b_DCp_Intercept" = "...1") %>%
bind_cols(prior_dist)

prior_dist <-
rnorm(1:80000,0.05,0.005) %>%
bind_cols() %>%
# filter(...1 > 25) %>%
dplyr:: rename("b_dtref_Intercept" = "...1") %>%
bind_cols(prior_dist)
prior_dist <-
rnorm(1:80000,0.5,0.05) %>%
bind_cols() %>%
# filter(...1 > 25) %>%
dplyr:: rename("b_dHdd_Intercept" = "...1") %>%
bind_cols(prior_dist)
prior_dist <-
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rnorm(1:80000,310,10) %>%
bind_cols() %>%
# filter(...1 > 25) %>%
dplyr:: rename("b_tm_Intercept" = "...1") %>%
bind_cols(prior_dist) %>%

gather(., ’param’, ’estimate’, 1:ncol(.)) %>%
mutate(type = "prior")
bind_rows(prior_dist)

dists <- mod_mmrt %>%
spread_draws(‘b_.*‘, regex = TRUE) %>%
gather(., ’param’, ’estimate’, 4:ncol(.)) %>%
mutate(type = "post") %>%
bind_rows(prior_dist)

plot_grid<-ggplot(dists, aes(x = estimate)) +
facet_wrap(~param, scales = "free") +
geom_density(aes(colour = type))

print(plot_grid)

ggsave(plot = plot_grid,
filename = paste0("~/Desktop/dATA FOR sAISMIT/MMRT/post_curves.png"),
width = 15,
height = 6)

ggsave(plot = plot_grid,
filename = paste("~/Desktop/dATA FOR sAISMIT/replicate_",rep_name,"/MMRT/post_curves.png",sep=""),
width = 15,
height = 6)

params <- mod_mmrt %>%
spread_draws(‘b_.*‘, regex = TRUE) %>%
gather(., ’param’, ’estimate’, 4:ncol(.)) %>%
separate(., param, c(’blah’, ’term’, ’blah2’), sep = ’_’) %>%
select(., -starts_with(’blah’)) %>%
filter(., !is.nan(estimate)) %>%
group_by(., term) %>%
mean_qi()

write.csv(params,
file =paste0("~/Desktop/dATA FOR sAISMIT/MMRT/model_posteriors_parameters.csv"),
append = TRUE)

write.csv(params,
file =paste("~/Desktop/dATA FOR sAISMIT/replicate_",rep_name,"/MMRT/model_posteriors_parameters.csv",sep=""),
)

preds_mmrt <- data.frame(tK = seq(5+ 273.15, 40 + 273.15, length.out = 200),
tref = 20 + 273.15,
k = 8.62e-05,
log_r0_sd = 1) %>%

add_fitted_draws(mod_mmrt ,re_formula = NA) %>%
data.frame() %>%
group_by(tK) %>%
mean_qi(estimate = .value)
#
preds_mmrt$estimate<-exp(preds_mmrt$estimate)
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preds_mmrt$.upper<-exp(preds_mmrt$.upper)
preds_mmrt$.lower<-exp(preds_mmrt$.lower)

write.csv(preds_mmrt,
file =paste0("~/Desktop/dATA FOR sAISMIT/MMRT/model_predictions.csv"),
append = TRUE)

write.csv(preds_mmrt,
file =paste("~/Desktop/dATA FOR sAISMIT/replicate_",rep_name,"/MMRT/model_predictions.csv",sep=""),
append = TRUE)

Niche_plot_mrt <-ggplot(preds_mmrt, aes(x = tK-273.15, y = estimate)) +
geom_line(color=’darkgoldenrod1’) +
geom_ribbon(aes(ymin = .lower, ymax = .upper), alpha = 0.2,fill=’darkgoldenrod1’) +
geom_pointrange(data = data_subset, aes(x = temperature, y = r0_mean, ymin =r0_mean-r0_sd, ymax = (r0_mean+r0_sd)))

#p<-p+
# geom_line(color=’darkgoldenrod1’) +
# geom_ribbon(aes(ymin = .lower, ymax = .upper), alpha = 0.2,fill=’darkgoldenrod1’)

ggsave(plot = Niche_plot_mrt,
filename = paste0("~/Desktop/dATA FOR sAISMIT/MMRT/fit_model.png"),
width = 15,
height = 6)

ggsave(plot = Niche_plot_mrt,
filename =paste("~/Desktop/dATA FOR sAISMIT/replicate_",rep_name,"/MMRT/fit_model.png",sep=""),
width = 15,
height = 6)

ggsave(plot =Niche_plot_mrt,
filename = paste0("~/Desktop/dATA FOR sAISMIT/fit_model.png"),
width = 15,
height = 6)

#EAAR
#######################
nlform <-bf(log_r0_mean ~ log((rtref*exp((Eb-(Edh*(1-tref/tm)+Edcp*(tref-tm-tref*log(tref/tm))))/(k*tref))*exp(-(Eb - (Edh*(1-tK/tm)+Edcp*(tK-tm-tK*log(tK/tm))))/(k*tK)))-dtref*exp(dHdd/(k*tref))*exp(-dHdd/(k*tK))),

rtref ~ 1,
Eb ~ 1,
Edcp~1,
Edh~1,
dtref~1,
dHdd~1,
tm~1,
nl = TRUE)

nlprior <- c(prior(normal(0.2,0.05), nlpar = "rtref",lb=0.01,ub=1),
prior(normal(0.1,0.05), nlpar = "Eb",lb=0.0, ub=1.2),
prior(normal(0.1,0.05), nlpar = "Edh",lb=0.0),
prior(normal(0.1,0.05), nlpar = "Edcp",lb=0.0),
# prior(normal(0.0047,0.001), nlpar = "dSr",lb=0),
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prior(normal(0.01,0.005), nlpar = "dtref",lb=0.001),
prior(normal(0.5,0.25), nlpar = "dHdd",lb=0.01,ub=1.2),
prior(normal(310,10), nlpar = "tm",lb=300)

)

mod_eaar <- brm(formula = nlform,
data = data_subset,

prior = nlprior,
control = list(adapt_delta = 0.999,max_treedepth=15),
family = gaussian(),
chains = 4,
init = c(0.2,0.1,0.5,0.05,0.01,0.3,310),init_r=15,
iter = 10000

)

print(summary(mod_eaar))
pdf("~/Desktop/dATA FOR sAISMIT/EAAR/chain_plot.pdf")
pdf(paste("~/Desktop/dATA FOR sAISMIT/replicate_",rep_name,"/EAAR/chain_plot.pdf",sep=""))
plot(mod_eaar)
dev.off()
dev.off()
pairs_plot<-pairs(mod_eaar)
ggsave(plot = pairs_plot,

filename = paste0("~/Desktop/dATA FOR sAISMIT/EAAR/pairs_plot.png"),
width = 15,
height = 6)

ggsave(plot = pairs_plot,
filename = paste("~/Desktop/dATA FOR sAISMIT/replicate_",rep_name,"/EAAR/pairs_plot.png",sep=""),
width = 15,
height = 6)

# Closing the graphical device
dev.off()

stancode(mod_eaar)

prior_dist <-

(rnorm(1:80000,(0.2),0.05)) %>%
bind_cols() %>%
dplyr::rename("b_rtref_Intercept" = "...1") %>%
bind_cols()

prior_dist <-
(rnorm(1:80000,(0.5), 0.05)) %>%
bind_cols() %>%
dplyr::rename("b_Eb_Intercept" = "...1") %>%
bind_cols(prior_dist)

prior_dist <-
(rnorm(1:80000,1, 0.05)) %>%
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bind_cols() %>%
dplyr:: rename("b_Edh_Intercept" = "...1") %>%
bind_cols(prior_dist)

prior_dist <-
rnorm(1:80000,1,0.05) %>%
bind_cols() %>%
# filter(...1 > 25) %>%
dplyr:: rename("b_Edcp_Intercept" = "...1") %>%
bind_cols(prior_dist)

prior_dist <-
rnorm(1:80000,0.5,0.25) %>%
bind_cols() %>%
# filter(...1 > 25) %>%
dplyr:: rename("b_dHdd_Intercept" = "...1") %>%
bind_cols(prior_dist)

prior_dist <-
rnorm(1:80000,0.01,0.005) %>%
bind_cols() %>%
# filter(...1 > 25) %>%
dplyr:: rename("b_dtref_Intercept" = "...1") %>%
bind_cols(prior_dist)

prior_dist <-
rnorm(1:80000,310,10) %>%
bind_cols() %>%
# filter(...1 > 25) %>%
dplyr:: rename("b_tm_Intercept" = "...1") %>%
bind_cols(prior_dist) %>%

gather(., ’param’, ’estimate’, 1:ncol(.)) %>%
mutate(type = "prior")

dists <- mod_eaar %>%
spread_draws(‘b_.*‘, regex = TRUE) %>%
gather(., ’param’, ’estimate’, 4:ncol(.)) %>%
mutate(type = "post") %>%
bind_rows(prior_dist)

dists <- mod_eaar %>%
spread_draws(‘b_.*‘, regex = TRUE) %>%
gather(., ’param’, ’estimate’, 4:ncol(.)) %>%
mutate(type = "post") %>%
bind_rows(prior_dist)

plot_grid<-ggplot(dists, aes(x = estimate)) +
facet_wrap(~param, scales = "free") +
geom_density(aes(colour = type))

print(plot_grid)

ggsave(plot = plot_grid,
filename = paste0("~/Desktop/dATA FOR sAISMIT/EAAR/post_curves.png"),
width = 15,
height = 6)

ggsave(plot = plot_grid,
filename = paste("~/Desktop/dATA FOR sAISMIT/replicate_",rep_name,"/EAAR/post_curves.png",sep=""),
width = 15,
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height = 6)
params <- mod_eaar %>%
spread_draws(‘b_.*‘, regex = TRUE) %>%
gather(., ’param’, ’estimate’, 4:ncol(.)) %>%
separate(., param, c(’blah’, ’term’, ’blah2’), sep = ’_’) %>%
select(., -starts_with(’blah’)) %>%
filter(., !is.nan(estimate)) %>%
group_by(., term) %>%
mean_qi()

write.csv(params,
file =paste0("~/Desktop/dATA FOR sAISMIT/EAAR/model_posteriors_parameters.csv"),
append = TRUE)

write.csv(params,
file =paste("~/Desktop/dATA FOR sAISMIT/replicate_",rep_name,"/EAAR/model_posteriors_parameters.csv",sep=""),
append = TRUE)

preds_eaar <- data.frame(tK = seq(5+ 273.15, 40 + 273.15, length.out = 200),
tref = 20 + 273.15,
k = 8.62e-05,
log_r0_sd = 1) %>%

add_fitted_draws(mod_eaar ,re_formula = NA) %>%
data.frame() %>%
group_by(tK) %>%
mean_qi(estimate = .value)

#
preds_eaar$estimate<-exp(preds_eaar$estimate)
preds_eaar$.upper<-exp(preds_eaar$.upper)
preds_eaar$.lower<-exp(preds_eaar$.lower)

write.csv(preds_eaar,
file =paste0("~/Desktop/dATA FOR sAISMIT/replicate_",rep_name,"/EAAR/model_predictions.csv"),
append = TRUE)

write.csv(preds_eaar,
file =paste0("~/Desktop/dATA FOR sAISMIT/EAAR/model_predictions.csv"),
append = TRUE)

Niche_plot_eaar <-ggplot(preds_eaar, aes(x = tK-273.15, y = estimate)) +
geom_line(color=’aquamarine3’) +
geom_ribbon(aes(ymin = .lower, ymax = .upper), alpha = 0.2,fill=’aquamarine3’) +
geom_pointrange(data = data_subset, aes(x = temperature, y = r0_mean, ymin =r0_mean-r0_sd, ymax = (r0_mean+r0_sd)))

ggsave(plot = Niche_plot_eaar,
filename = paste0("~/Desktop/dATA FOR sAISMIT/EAAR/fit_model.png"),
width = 15,
height = 6)

ggsave(plot = Niche_plot_eaar,
filename = paste0("~/Desktop/dATA FOR sAISMIT/replicate_",rep_name,"/EAAR/fit_model.png"),
width = 15,
height = 6)

ggsave(plot = Niche_plot_eaar,
filename = paste0("~/Desktop/dATA FOR sAISMIT/fit_model.png"),
width = 15,
height = 6)
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p<-ggplot(data=preds_eaar, mapping=aes(x = tK-273.15, y = estimate)) + geom_line(color=’cyan’,mapping = aes(color=’EAAR’))+
geom_ribbon(data=preds_eaar,mapping=aes(ymin = .lower, ymax = .upper), alpha = 0.2,fill=’cyan’) +geom_line(data=preds_prot, mapping=aes(x = tK-273.15, y = estimate,color=’Proteome’),color=’coral1’) +
geom_ribbon(data=preds_prot,mapping=aes(ymin = .lower, ymax = .upper), alpha = 0.2,fill=’coral1’) + geom_line(preds_mmrt, mapping=aes(x = tK-273.15, y = estimate,color=’MMRT’),color=’darkgoldenrod1’) +
geom_ribbon(data=preds_mmrt,mapping=aes(ymin = .lower, ymax = .upper), alpha = 0.2,fill=’darkgoldenrod1’) + geom_pointrange(data = data_subset, aes(x = temperature, y = r0_mean, ymin =r0_mean-r0_sd, ymax = (r0_mean+r0_sd)))+
theme(legend.position = "left")

ggsave(plot = p,
filename = paste0("~/Desktop/dATA FOR sAISMIT/fit_model.png"),
width = 15,
height = 6)

##weights

waic1 <- waic(mod_eaar)
write.csv(waic1$estimates,paste("replicate_",rep_name,"/EAAR/waic.csv",sep=""))
waic2 <- waic(mod_prot)
write.csv(waic2$estimates,paste("replicate_",rep_name,"/Proteome/waic.csv",sep=""))
waic3 <- waic(mod_mmrt)
write.csv(waic3$estimates,paste("replicate_",rep_name,"/MMRT/waic.csv",sep=""))
waics <- c(
waic1$estimates["elpd_waic", 1],
waic2$estimates["elpd_waic", 1],
waic3$estimates["elpd_waic", 1])

loo1 <- loo(mod_eaar)
write.csv(loo1$estimates,paste("replicate_",rep_name,"/EAAR/loo.csv",sep=""))
loo2 <- loo(mod_prot)
write.csv(loo2$estimates,paste("replicate_",rep_name,"/Proteome/loo.csv",sep=""))
loo3 <- loo(mod_mmrt)
write.csv(loo3$estimates,paste("replicate_",rep_name,"/MMRT/loo.csv",sep=""))
lpd_point <- cbind(
loo1$pointwise[,"elpd_loo"],
loo2$pointwise[,"elpd_loo"],
loo3$pointwise[,"elpd_loo"])

waic_wts <- exp(waics) / sum(exp(waics))
pbma_wts <- pseudobma_weights(lpd_point, BB=FALSE)
pbma_BB_wts <- pseudobma_weights(lpd_point) # default is BB=TRUE
stacking_wts <- stacking_weights(lpd_point)
round(cbind(waic_wts, pbma_wts, pbma_BB_wts, stacking_wts), 2)
write.csv(round(cbind(waic_wts, pbma_wts, pbma_BB_wts, stacking_wts), 2),paste("replicate_",rep_name,"/weights.csv",sep=""))
write.csv(data_subset,paste("replicate_",rep_name,"/data.csv",sep=""))
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