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Abstract

Humans have an inherent ability to visually perceive small numerosities (the cardinality

of a set). According to several studies, the LIP and other IPS regions of the brain include

the neurological substrates for the processes related to numbers. Computational models

play a crucial role in investigating the computations and dynamics behind the perception of

numbers. Existing models of number perception simulate a few of the fundamental aspects of

number perception, such as size and distance effects. However, most models usually work for

a limited range of numbers and lack explanations for important behavioral characteristics like

adaptation effects. In this study, we use a network of neurons with self-excitatory and mutual

inhibitory properties to build a computational model of number perception. We assume

that the network’s mean activation at steady-state can encode numerosity when it increases

monotonically with Setsize (the input to the network). By optimizing the total number of

inhibition strengths required so that the combined monotonic regions cover the full stretch

of numbers, we get three ranges of numbers (1:4, 5:17, and 21:50). This division of numbers

into three parts closely matches the elbows in numerosity perception discovered in behavioral

studies. Later in the study, we devised a method to decode the mean activation into a

continuous scale of numbers ranging from 1 to 50. Furthermore, we suggest a mechanism for

selecting inhibition strength based on current inputs, allowing the network to work for the

entire range of numerosities. Our model provides novel perspectives on how our brain can

generate various behavioral phenomena, such as the influences of continuous visual attributes

and adaptation effects on perceived numerosity.
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Chapter 1

Introduction

Over the course of civilization, humans have developed many systems for symbolic repre-

sentation of numbers, enabling us to easily communicate and store numerical information

as well as perform sophisticated algebraic operations on them. Our aptness to work with

numbers gives us an unparalleled ability to understand the world through mathematics and

science. But how much do we know about the cognition of numbers? Number cognition

research spans a wide range of disciplines, including neuroscience, cognitive linguistics, de-

velopment psychology, cognitive psychology, and others. Every one of these disciplines has

its own research interests regarding number cognition, focusing on different directions to

approach the subject. One of the most fundamental ways to approach the subject is through

the study of perception of numbers, which involves empirical methods to learn about how

our brain perceives numbers and their neural underpinnings. Number perception is one of

the most important cognitive tools available to humans. We perceive numbers through many

of our senses, and from various kinds of inputs. Through our vision, we can perceive the

numerosity of a set of objects presented in the visual field at once, or in a sequential manner,

or by looking at man-made symbols of numbers like ’5’ and ’two’. Through our auditory

sense, we can perceive the numerosity of a sequence of sounds or a sound assigned to a

number. We have the ability to perceive numbers even through haptics. It’s fascinating to

see how often we compare and translate numbers from various modes of perception without

paying much attention to them. We see a set of objects and can easily assign a word or

symbol to their numerosity. Numbers in their symbolic form are such an integral part of

our lives that it is hard to think about numbers independently from them. However, we
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have a biologically ancient ability known as ”number sense” that does not require formal

training or an understanding of symbols (Burr and Ross, 2008). Humans have an innate

ability to perceive the cardinality of sets; even non-verbal animals and children can perceive

non-symbolic numbers(referred to as “numerosity”) when presented in the form of a small

set of objects in the field of vision (Gelman and Gallistel, 1986; Xu and Spelke, 2000; Hauser

et al., 2003).

Vision is considered the most dominant sense in humans, and it also appears to be the

primary mode for perception of numerosity. Performance related to visual perception of

numerosity has significant implications for mathematics-related performance (Piazza et al.,

2010; Anobile et al., 2013) . Understanding about visual perception of numerosity can help

us address many interesting problems from cognitive science. In the following section, we

will explore various methods to investigate visual perception of numerosity and discuss key

results from experimental studies, providing a context for our computational model.

1.1 Behavioral Studies

One of the oldest methods of studying visual number perception is through behavioral

studies, specifically psychophysics, which is defined as ”the scientific study of the relation-

ship between stimulus and sensation.” (Gescheider, 1997). Psychophysics studies involve

experiment-based studies of animals and humans by presenting the subjects with some stim-

uli and recording their response. For example, a simple psychophysical experiment on hu-

mans involving enumeration of a random number of dots on a computer screen can help

us understand how our accuracy and reaction time (the time duration between stimuli and

response) vary with numerosity.

Many studies categorize numbers into different regimes based on the differences in behav-

ioral observations such as enumeration accuracy, confidence, and response time. The range

of numbers from 1 to 4 (sometimes 3 or 5) is called the “subitizing range”(Kaufman et al.,

1949). Humans can rapidly enumerate a set of objects falling into this range with almost no

error. Larger numbers (usually five onwards )are referred to as the estimation range. Large

numbers can either be counted, which is a slow process with high accuracy, or estimated,

which is a relatively quick process but comes with error (Whalen et al., 1999; Kaufman

et al., 1949). The error increases proportionately to the number of items to be estimated,
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consistent with Weber’s law. The Weber fraction, defined as the just noticeable difference

or precision threshold divided by the mean, is almost constant(0.15) over an extensive range

of base numerosities.

It is a matter of debate whether enumerating numbers in the subitizing range and es-

timation range invokes different processes. in the The tendency of subitizing to withstand

disruption has led to the belief that subitizing is pre-attentive, or at the very least uses pre-

attentive information. (Trick and Pylyshyn, 1994). However, several recent studies indicate

that subitizing is indeed susceptible to attentional load.(Egeth et al., 2008; Burr et al., 2010;

Xu and Liu, 2008). In support of distinct mechanisms for large and small numbers, some

studies have suggested a link between subitizing and object individuation; a visuospatial

mechanism that allows us to locate and track a limited set of objects (Piazza, 2011; Piazza

et al., 2011).

Several behavioural studies have also called into question the existence of two distinct

processes. accorind to Balakrishnan and Ashby (1991) there is no sharp discontinuity in

reaction times between the estimation and subitizing ranges. Weber fractions for adult

participants were reported by citeross2003visual to be approximately 0.25 over an extended

range of values (8–60). The Weber Fraction of 0.25 means that the just noticeable difference

for the numbers in the subitizing range is less than 1, which is the least count while talking

about whole numbers. Hence, the errorless nature of subitizing may be merely a result of the

combined effect of the resolution of estimation mechanisms and the descrete separation at

low numbers. Dehaene and Changeux (1993) and Gallistel and Gelman (1992) have advanced

similar ideas. On the other hand, a recent study Portley and Durgin (2019) presents the

presence of a new elbow in the estimation range, further dividing large numbers into two

ranges: below and above 20. In this thesis, we show that these behaviourally distinct

ranges of numbers do not necessarily have distinct neural mechanisms, as the same neural

network can work for both small and large numbers by adapting its internal parameters

(here, inhibition strength).

1.2 Neuroscience and Brain Imaging Studies

As the field of neuroscience has advanced, it has found a crucial place in number perception

research. Neuroscience studies focus on the neural basis of number perception. Experiments
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involving visual stimuli associated with numbers and measurement of neuronal response

through electrodes are helpful in understanding the number-neurons(neurons tuned to par-

ticular numbers). Studying the correlation between damage or lesion of a particular brain

region with behavioral observations helps us to understand the role of different brain areas

in the context of number perception.

Nieder et al. (2002) have shown the existence of ”number-neurons” in the lateral pre-

frontal cortex (IPFC) and intraparietal sulcus (IPS) by training monkeys to discriminate the

numerosity of a sample stimulus using the Delayed Match-to-Sample(DMS) paradigm Nieder

et al. (2006, 2002). The number-neurons produced a clear tuning function for numerosity

by generating the highest firing rate for their preferred numerosity, which falls off with the

numerical distance.

Roitman et al. (2007) examined the activity of individual LIP neurons in monkeys as

they viewed arrays of dots on a computer screen and discovered that neurons responds pro-

portionately to the number of elements in the display for an extended range of numerosities.

The monotonic increase in neuronal activity with numerosity supports the presence of the

integration stage, as suggested in some computational models. This result is consistent with

our computational model, as instead of simulating the number-neurons tuned to individual

numbers, we show that numerosity is encoded as the monotonic increase of the network

activation.

Due to recent advancements in brain imaging techniques, it has also found its place in

the study of number perception. Functional MRI (fMRI) measures changes in blood flow in

the brain, allowing researchers to observe specific regions and structures of the brain that

are active during a task. A simple brain imaging experiment can involve an MRI scan of

subjects performing tasks related to numbers. By designing the experiment in such a way

that interactions with other mental processes can be accounted for, these studies try to find

the regions of the brain where neural activation correlates with number cognition.

Harvey et al. (2013) used high-field 7T fMRI to study the human parietal cortex neural

populations tuned to numbers.The selectivity was obviously correlated with the number of

items, not any of the other variables, according to this study, which systematically alter all

other potential confounding factors, such as size, contrast, contour, and length. Similar to

how V1 has a columnar organisation for tuning of attributes like orientation, the human

intraparietal sulcus has a columnar organisation for number. They demonstrate that whereas
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the highest numerosity elicits the strongest responses from V1, number-selective neurons only

fire when the preferred stimulus provided instead of following a proportional responce to the

numerosity. This research demonstrates that the number selective response present in the

parietal cortex is not driven by the early visual cortex (V1), proving that number is not

derived from low-level visual features.

The studies involving Electroencephalography(EEG) are also very useful because of the

temporal resolution they offer. EEG provides information about neural activities in the

brain by measuring the potential difference across the electrodes attached to the scalp.

Though EEG allows real-time recording of high-speed brain activities, it lacks precision for

pinpointing which brain structures are active.

Fornaciai and Park (2017) captured EEG data as human volunteers looked at arrays with

systematically varying non-numerical stimuli with either very few (1-4) or extremely many

(100-400) dots. Regardless of the numerical range provided, a linear model that examined

the effects of numerical and non-numerical cues on the visual-evoked potentials (VEPs)

demonstrated considerable neuronal sensitivity to numerosity approximately 160–180 ms

over right occipito-parietal locations. On the other hand, earlier neural responses (100 ms)

displayed distinctly diverse patterns throughout the several tested number ranges. These

findings suggest that variations in the early stages of visual analysis may be the cause of

behavioural response patterns that differ in numerosity estimation across different numerical

ranges. Similar to this, Fornaciai and Park (2018) showed that numerosity perception goes

through at least two stages: the first stage involves the extraction of raw sensory information

from a dot-array stimulus early (100 msec) in the visual stream (V2/V3), which is insufficient

to serve as a basis for numerosity perception; and the second involves the segmentation of

the stimulus into perceptual units, later (150 msec) in the visual stream(V3).These findings

emphasize the active and constructive nature of perception, which involves the early visual

cortex’s multiple stages of processing numerical data before converting it into a format that

is appropriate for numerosity perception. These findings strengthen the case for a brain

system dedicated to numerosity processing, however they also suggest that Multiple early

visual cortical mechanisms converge later in the visual stream to that numerosity processing

stage.
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1.3 Theories of Number Perception

The Theory of Number Sense states that humans and many other animals have a biologically

inherent ability to perceive and manipulate non-symbolic numbers. It has been argued that

the sense of numbers in humans consists of two distinct systems, namely the Approximate

Number System(ANS) and the Parallel Individuation System. ANS refers to the cognitive

system behind approximate estimation of large numerosities, without relying on symbols and

language. ??. The rapid cognition of the numerosity of objects and comparison between

two sets of objects are facilitated by ANS. The ANS is usually represented as a number line

where each number is placed as a gaussian distribution. The width of the distribution is

seen as an indicator of ANS acuity- the degree of precision of the internal representation of

numerosity, and the overlap between distributions signifies the confusion in the differentiation

of numerosities. Piazza et al. (2004); Pica et al. (2004)

While ANS is associated with a noisy internal representation of numerosities greater than

5, the accurate and quick enumeration of smaller numbers is believed to be facilitated by

the Parallel Individuation System, also called the Object Tracking System - a visuo-spatial

mechanism that allows us to track and locate a limited set of objects Piazza et al. (2011);

Piazza (2011); Cantlon et al. (2009); Feigenson et al. (2004). It has been suggested that

the ANS and the parallel individuation system set the basis for a symbolic representation

of numbers in the human brain. Experiments in children have shown that ANS acuity has

an influence on mathematical abilities and can be a building block for numbers in general

.Halberda et al. (2008); Butterworth (2005); Dehaene (2009) ,

While ANS is seen as working independently of sensory cues like size, density, and convex

hull of the set of objects in the visual field, other opposing theories call for a process which

extracts information of numerosity from these continuous attributes. The theory of the

Sensory Integration System suggests that different sensory cues are used to generate an

estimation of numerosity. Gebuis et al. (2016); Dakin et al. (2011); Morgan et al. (2014).

1.3.1 Evolutionary Perspective

The development of the ability to perceive numerosity could result from the adaptive ad-

vantages it provides to animals. The ability to perceive the number of predators or prey in
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a visual field can be vital for pre-estimating chances of success or failure, which can hugely

impact survivability. Did our brain evolve to completely filter out the information of nu-

merosity from the visual field so that we could have an accurate representation of the number

of objects in a scene, or did it evolve to optimize for some other representations which were

not just numerical but also involved an active contribution of other continous cues such as

size and density. Consider a hypothetical situation where an animal has to choose between

two sets of apples, the first with a smaller number of big apples and the second with a larger

number of small apples. We can see that in such situations, both size and number can be

essential variables for a good decision. Even if the animal has an inherent ability to detect

numerosity independently of other factors, it can’t make a good decision based on the infor-

mation of numerosity alone. In this case, the brain would need to combine the knowledge of

numerosity with size, which will require further processing before the final decision. What if

the animal has a cognitive process which does not completely isolate the numerosity from the

other useful variable and reaches the decision based on a quantity which is not an accurate

representation of numerosity? Neuroimaging studies reveal that some brain activities reflect

the association between numbers and space. For instance, regions of the parietal cortex

show shared activation for both spatial and numerical processing.Dehaene (1992) We can

ask which of the two mechanisms is more adaptive: the presence of an independent sense of

number, or a mental representation of quantity which already takes account of other useful

variables?

1.4 Computational Models

The neural mechanisms of visual perception are not yet well understood. The complexity

of a single neuron is still unfolding, and we are far from a comprehensive understanding of

how billions of neurons interact to create the complexities observed through experiments and

subjective experiences. To better understand any complex system, it can be helpful to start

with simpler models. Using computational models to understand visual perception allows

us to work with a few variables and use mathematical tools to analyze the results. In this

section, we’ll talk about some of the pertinent network models for number perception, in-

cluding those that use Hebbian learning, backpropagation-based supervised learning Verguts

and Fias (2004), and unsupervised learning Stoianov and Zorzi (2012). Some network models

do not involve learning as they generate interesting dynamics based on predefined network
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parameters.Sengupta et al. (2014) Inputs for these neural networks usually represent infor-

mation from various stages of visual pathways. During network simulation, the activation of

the neurons changes based on equations with biologically relevant parameters . Depending

on the model type, the parameters mimic plasticity, learning rate, noise, decay constant,

inhibition, or excitation strength between neurons. Activation patterns of some neurons are

taken as the output. It is a common practice to compare the outputs from these networks

to the patterns observed in Psychophysics and neuroscience experiments.

Not all computational models use network-based simulations to understand number per-

ception; some use purely mathematical models. For example, the model of the mental

number line by Dehaene et al. (1998) where numbers are represented as overlapping Gaus-

sian distributions. In this model, a larger overlapping between the gaussian distributions

signifies more confusion and less accuracy in number comparison tasks.

Dehaene and Changeux (1993) presented one of the earliest models of numerosity that

makes use of a reinforcement-based supervised learning methodology. There are two main

computational building blocks in this four-stage connectionist model: The normalization

stage, which is the first block, ignores the items’ irrelevant spatial characteristics; the classi-

fication stage, which is the second block, assigns a numerical label to the normalized activity.

The normalisation stage is carried out by first buffering the visual input, then using a series

of object detectors that are tuned for the size and position of the object. The second stage

consists of nodes with reciprocal inhibition, which generates “winner take all” dynamics;

when an input activates two detectors, they compete by inhibiting each other, and eventu-

ally only the closest match wins. Dehaene and Changeaux propose a possible solution to the

problem of normalization across stimulus features. The model accounts for the behavioral

findings from human experimental data, namely, size and distance effects, but has a limited

range of enumeration of up to five items.

Verguts and Fias (2004) developed a numerosity detector model based on error back-

propagation based learning. The three-layer neural network used in this model learns how

to map input patterns to numerical categories. During the training phase, the excitation and

inhibition strengths are adjusted, which makes the neurons in the hidden layer mimic ‘inte-

grating units’. The neurons at the output layer behave as number-selective neurons, which

is compared to the activation patterns observed in biological number-neurons. Through this

model, the authors hypothesize that the same network modules that support the nonsym-
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bolic numerosities also aid in the construction of symbolic representations of numerosities

during the developmental stage.

Stoianov and Zorzi (2012) trained a ‘deep’ networks to use pixel-by-pixel information

from images through unsupervised learning. The network was only trained to efficiently

code sensory data, but numerosity selectivity emerged as a statistical characteristic of the

model’s final layer. Their model was able to satisfactorily explain adult human and monkey

numerosity comparison task data in the higher number (estimation, not subitizing) range.

The ”number neurons” described by Nieder et al. (2002) and Roitman et al. (2007) are com-

parable to these numerosity detectors. Similar to humans, the simulations created using this

model also followed Weber’s law with a weber fraction of 0.15. Both of the aforementioned

models have intricate structures that enable the development of numerosity detectors.

Dakin et al. (2011) use spatial filtering to create summary statistics of the stimulus in

an effort to simulate both numerosity and texture discrimination. It normalizes the amount

of high spatial frequency content with the low frequency content in a stimulus, which are

estimates obtained via filtering with a small and larger Laplacian of Gaussians, respectively.

With a suitable choice of filter size, the high frequency response grows proportionally with

set size(the number of elements). The low frequency estimator, on the other hand, exhibits

hybrid behavior and grows only moderately with set size and area. It essentially implements a

very fundamental principle that, with fixed element size, the number of items will correlate

with the amount of borders: number judgments are made simply by looking at the high

frequency content. They don’t address the sensitivity specifically, but since the model’s main

noise limitation appears to be stimulus-based, one would anticipate square-root behavior

rather than Weber-law behavior.

Many of the recently introduced models for number perception use backpropagation-

based artificial neural networks, a network architecture gaining popularity in recent times

due to its efficacy in various tasks like classification, decision-making, and learning (Nasr

et al., 2019; Zanetti et al., 2019) These networks learn by modifying the weights between

neurons to minimize the errors calculated using a cost function. Back propagation based

artificial neural networks are usually criticized by the scientific community because these

models frequently fall short of offering additional information about biological mechanisms.

To acheive a better understanding of number perception, more computational models are

needed that are biologically relevant and simulate the essential behavioural findings about
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visual number perception.
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Chapter 2

Procedure

2.1 Network Architecture

Our model consists of an on-center off-surround recurrent network of 64 neurons, where every

neuron has an excitatory connection with itself and inhibitory connections with all other

neurons. The network is symmetric in nature and parameterized by three variables: self-

excitation strength (α), mutual-inhibition strength (β), and a decay constant (λ). Network

dynamics is governed by equation 1.

dxi

dt
= −λxi + αF (xi)− β

N∑
j=1,j ̸=i

F (xj) + Ii + Noise (2.1)

xi(t) (written as xi) stands for activation of the ith node at time t, xi(t) (in short xi) is

externally injected input current, which has value 1 when the ith node is being presented

with an input for a short initial presentation time, and zero for the rest of the simulation.

The activation function follows the formula:

F (x) =

 0 for x ⩽ 0

x
1+x

for x > 0
(2.2)
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α

β
β

β
+ -

Figure 2.1: Network Diagram
Squares in the diagram represent neurons in the network. Our network consists of a single layer
of 64 neurons. Each neuron has an excitatory connection (blue arrow) with itself and inhibitory
connections (red arrows) with all other neurons in the network, where α denotes excitation strength
and β denotes Inhibition strength.

Table 2.1: Parameters for Network Dynamics Simulations
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The noise is sampled from a normal distribution with a mean of 0 and a standard deviation

of 0.03. Since changing the excitation parameter does not affect the overall nature of the

data (Sengupta et al., 2014), self-excitation strength is fixed at the value of 2.2. We have

kept an inventory of inhibition strengths to pick from, ranging from 0.01-0.15. The number

of neurons receiving an input current during the initial presentation time is referred to as

the ”set size”. The set size represents the numerosity of a stimulus. To simulate the neural

dynamics, we have used Euler’s method in Matlab software. During the presentation time,

which is kept much smaller than the overall duration for the simulation (timesteps = 100

in comparison to 5000 for the full simulation), the nodes mapped to the setsize are injected

with an input current (Ii) valued at 1.

When we simulate the network dynamics of the RNN network using equation(2.1), we

obtain a pattern of activation across its 64 neurons as the network reaches a steady state.

This steady state activation pattern of the network nodes depends both on the setsize (as an

input corresponding to a numerosity) and the inhibition strength (as a network parameter).

Using equation(2.3), we calculate the network’s mean activation (MA) from the steady state

activations and use it as the main output from of the RNN.

MA =
1

N

N∑
i=1

xi (2.3)

After taking the average of mean activations from 30 simulations for each combination

of setsize and inhibition strength, we plot the mean activation against setsize for different

inhibition strengths (figure 2.2).

2.2 Finding Minimal Number of Inhibition Strengths

When mean activation (output) varies monotonically with set size (input), it can be used as

a basis for the internal representation of numerosity. We simulated ten inhibition strengths

from 0.01 to 0.15, five of which are depicted in figure 2.2. out of ten inhibition strengths,

We aimed to find the fewest number of inhibition strengths required such that most of the

number between 1 to 50 belongs to at least one of the monotonic regions.first we include

the inhibition strength of 0.01 in the list as it is the only candidate which covers numbers
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Figure 2.2: Input Numerosity Vs Mean Activation of Network
A plot between SetSize (Input Numerosity) and corresponding Mean Activation for five of the
ten inhibition strengths. The darker spots denote the data points where Mean Activation increases
monotonically with Setsize (input numerosity). The black dashed lines are the linear fit between the
two variables, taking data only from the monotonic regions. We can observe that at strong inhibition
(β = 0.15, green) mean activation increases monotonically with small numerosities while for weak
inhibition (β = 0.01, red) mean activation increases monotonically with larger numerosities. There
is very slight difference between curves for β = 0.10 and β = 0.15 and all other inhibition strengths
between those value follow a similar pattern (not plotted here).
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between 28 to 50. At extremely high inhibition (β = 0.15 to β = 0.10) there is little to no

difference between mean activation patterns (green and yellow lines in figure 2.2), and they

all have overlapping monotonic regions, starting at 1 and ending at numbers between 4 to

7. As there is no significant difference between these curve we keep all of them in hold for

reconsideration. Now to cover the remaining middel regions from 5 to 20, we had three

choices of inhibition strengths (0.02, 0.03 and 0.04), out of which β = 0.04 covers numbers

from 5 to 18. as has the least overlap with the already selected regions and also have the

least uncovered numbers (19 and 20) we chose it as the second selection for the list. Finally

from the set of strong inhibitions, we chose the heighest value of β = 0.15 as it has least

overlap with the regions from the already selected medium inhibition of β = 0.04.

2.3 Decoding the Mean Activation into Number Esti-

mates

Sengupta et al. (2014) successfully demonstrate that the mean activation encodes informa-

tion about the numerosity. By directly comparing the mean activation generated by various

inputs, they simulate behaviorally significant outcomes like the size and distance effect.

With this technique, two inputs can be compared without converting the corresponding

mean activation into numerical estimates. In this section, we propose a method to decode

mean activation to corresponding numerical estimates, which not only allows us to compare

the magnitudes of two numerosities but also obtain number estimates for individual inputs.

First, we run network dynamics simulations using all the combinations of set size (1-64) and

inhibition strengths(0.01-0.15) 30 times and calculate an average of the resultant mean acti-

vation. (As for figure 2.2 ) For each inhibition strength, we take data points mapping setsize

to mean activation solely from monotonic regions and fit a line between them. This gives

us 15 functional relations (LinearFunctionsβ) corresponding to each of the 15 inhibition

strengths(β) used for simulations. By taking inverse of these linear equations we get linear

quations (InverseLinearFunctionsβ) mapping each mean activation to number estimates

depending on the inhibition strength used for simulation. (Algorithm 1)

As we want an estimation of setsize from a given mean activation, we use the inverse of

these linear functions (F−1
β ) to map mean activation to corresponding number estimation.
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Number Estimate = InverseLinearFunctionsβ(MA)

Estimation Error = Number Estimate− Setsize

For instance, if we acquire a mean activation of 0.53 by using a set size of 5 as input for

a network with an inhibition strength of 0.1, To get the numerical estimate from the mean

activation, we use the already obtained inverse function corresponding to inhibition strength

(β) of 0.15.

4.82 = InverseLinearFunctions0.15(0.53)

Estimation Error = 4.82− 5 = −0.18

Similarly, we obtain ten different number estimates for the same input set size of 5 by

employing ten different inhibition strengths. To demonstrate the results of this method, we

plotted number estimations against setsize for three different inhibition strengths(0.01, 0.04,

and 0.15). (figure 3.2)

To understand the general pattern of inhibition strength leading to the lowest amount

of errors, we plotted inhibition strengths leading to three of the smallest estimation errors

against input numerosity. (figure 3.1)
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Algorithm 1 Decoding The Mean Activation For Numerosity Estimates
Input :

k (Setsize) : corresponding to numerosity from 1 to 50.
β (Inhibition Strength) : Set of 15 inhibition strengths from 0.01 to 0.15.

Output :
InverseLinearFunctions : Set of 15 linear functions corresponding to 15 inhibition strengths; mapping
mean activation to numerosity.

1. Xk,β ← SimulateNeuralDynamicsβ(k) ▷ Simulates network dynamics based on equation(2.1) using
Euler’s method X : steady state activations of the 64 neurons

2.
MAk,β ← 1

N

∑N
i=1 Xk,β(i) ▷ average activation of all neurons

3.
[kmin

β : kmax
β ]← LargestMonotonicRegion(MAk,β) ▷ Function to find longest regions where MA

increases monotonically with Setsize

4.
[MAmin

β : MAmax
β ]← S([kmin

β : kmax
β ]) ▷ Calculate mean activations corresponding to monotonic regions

5.
LinearFunctionsβ ← LinearF it([kmin

β : kmax
β ], [MAmin

β : MAmax
β ]) ▷ Fit lines to data from monotonic

regions only. LinearFunctions map numerosity to mean activation depending on inhibition strength used
for network dynamics

6.
InverseLinearFunctionsβ ← Inverse(LinearFunctionsβ) ▷ By finding inverse of the linear
functions we get one equation for each of the inhibition strengths, these equations map mean activations
to number estimates.
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Algorithm 2 Finding The Most Suitable Inhibition Strength For A Given Input
Input :

k (setsize): input current to the network.

Output :
βbest : The most suitable inhibition strength for the given input k(Setsize).

1.
MAβ ← Sβ(k) ▷ Find a set of mean activation values using every inhibition strength(β)

2.
MA−

β ←MAβ −∆MA

MA+
β ←MAβ +∆MA ▷ Add and substract small amounts to the mean activation

3.
Estimate−β ← InverseLinearFunctionβ(MA−

β )

Estimate+β ← InverseLinearFunctionβ(MA+
β ) ▷ Find number estimates from mean activation (see

Algorithm(1))

4.
∆Estimateβ ← Estimate+β − Estimate−β ▷ change in magnitude of estimates as a reult of small change
in input

5.
i← IndexForMaximum(∆Estimateβ) ▷ Find index of β which gives maximum ∆Estimate

6.
βbest ← β(i) ▷ Inhibition Strength which results in maximum change in number estimation with a
variation in mean activation
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Chapter 3

Result and Discussion

3.1 Emergence of Different Ranges of Numbers

By simulating the network dynamics using fifteen different levels of inhibition with all the

inputs from Setsize 1 to 50, we get datapoints mapping Setsize to Mean Activation corre-

sponding to each of the inhibition strengths. We took the average of 30 simulations for each

datapoint and plotted the relationship between Setsize and the Mean Activation for five

inhibition strengths (Figure 2.2). In the figure, we can see that the input numerosity and

mean activation follow different relationships depending on the inhibition strength used for

simulation. For a very strong inhibition (β = 0.10 to β = 0.15), the relationship is quite simi-

lar, where mean activation increases with Setsize until numbers 4 to 7, then slowly decreases

with an almost flat curve for larger numerosities. Whereas for medium to low inhibition

strengths (β = 0.01, β = 0.02, β = 0.04 in the plot), first mean activation decreases with an

increase in Setsize then it increases monotonically for a range of numerosities (denoted by

darker dots in the plot) followed by a flatter region for even larger numerosities. We observe

that the monotonic regions cover larger numbers in cases of smaller inhibition strengths

and vice versa. By minimizing the number of different inhibition strengths required so that

their combined monotonic regions cover the full stretch of numerosity, we ended up with

three inhibition strengths (/beta = 0.01, β = 0.04, β = 0.15) and three ranges of numbers

(1:4, 5:17, and 21:50) corresponding to them. Behavioral studies demonstrate the presence

of separate intervals of numbers based on the differences in their psychophysical properties
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(or numerical cognition effects), such as accuracy and reaction time Kaufman et al. (1949);

Whalen et al. (1999). The differences between the subitizing range (from 1 to 4) and the

estimation range (greater than 5) are among the most studied observations in number per-

ception research. In a recent study, Portley and Durgin (2019) suggested the presence of

another number-estimation elbow, further dividing the estimation range into two intervals,

below and above number 20. Our model simulates the emergence of these number intervals

with surprisingly similar boundaries as a result of the minimal coverage of the monotonic

relation between network input (set size) and output (mean activation).

3.2 Estimation of Numerosity

When we examine the error patterns for all combinations of set size and inhibition strength

(figure 3.2), we find that no inhibition strength produces a prediction that is accurate across

the entire range of numerosity. Higher inhibition strengths make fewer errors in the case of

small numbers, and lower inhibitions work best for larger numbers: For example, as seen in

(figure 3.2), a high inhibition (0.15) network accurately estimates small numbers (1-5) and

underestimates larger numbers (6-60). The low inhibition (0.04) network overestimates the

small numbers (1-5) and gives accurate estimates for larger numbers (6-20). In figure 3.1,

we observe that for larger numerosity, the inhibition strength leading to the least amount of

error(big blue dots) is consistently equal to 0.01. While the inhibition strengths correspond-

ing to the second and third lowest errors are progressively stronger ones (0.02 and 0.03).

For the smaller numbers in the range of one to ten, the inhibition strengths responsible for

the lowest errors are not very consistent. However, we see that for smaller numerosity, on

average, a larger inhibition strength produces smaller errors.

In psychophysics studies, it is a common practice to check whether a stimulus is get-

ting perceived more (Overestimation), or less (underestimation) than its real magnitude. In

figure 3.2, we see that while using a high inhibition strength(0.15), our model underesti-

mates larger numerosities(geater than 5). Whereas using a low inhibition strength(0.01),

It overestimates smaller numbers(1-20). But when we look at the curve in the curve for

(β=0.01) in a small numerosity range, we see an inverse relation between numerosity and

estimation, i.e. with every increment in numerosity it produces smaller and smaller estima-

tions. Such internal representations are not meaningful and can be easily discarded. When
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Figure 3.1: Numerosity Vs Inhibition Strengths Producing Lowest Error
Using fifteen network inhibition levels, we get fifteen different number estimates for an input. For
each input numerosity (x-axis), we plot the three inhibition strengths that result in the three lowest
errors (y-axis). We fitted an exponentially decreasing curve to show the pattern between input
numerosity and the mean activations leading to the least amount of error. For smaller numbers,
high inhibition strength results in a minor error in estimation, and vice versa. We can see that
for input numerosity 1, an inhibition strength of 0.13 results in the lowest error, while for input
numerosity 50, an inhibition strength of 0.01 results in the lowest error.
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Figure 3.2: Input Numerosity Vs Number Estimations
For three inhibition strengths, SetSize(Input Numerosity) is plotted against the corresponding
number estimates. Network with high inhibition(0.15) estimates small numbers (1-4) accurately
but underestimates larger numbers. None of the inhibition strengths are effective across the entire
range of numerosities. We get a curve (black) that can provide reasonable estimation for the entire
range of numerosity by varying the inhibition strength depending on the input (Algorithm 2)

we ignore all the regions where input numerosity and number estimation have a negative

correlation(negative slope), we see that for any inhibition strength, every numerosity either

gets estimated correctly or underestimated. This result has some important implications for

adaptation effects, analysed in depth in a subsequent section.

3.3 Regulation of Network Inhibition

In the previous section, we offered a technique for extracting numerosity information from

the network’s mean activation. We demonstrated that, depending on the input’s numerosity,

using some levels of network inhibition results in better number estimation than others. In
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this section, we will investigate an algorithm to control network inhibition, allowing the same

network to generate the best possible estimates across the entire range of numbers.

It is unlikely to get a good number estimation if a combination of numerosity and in-

hibition strength does not produce a monotonic relationship between numerosity and mean

activation. We got a set of three inhibition strengths by minimizing the number of different

inhibition strengths required to ensure the monotonicity of mean activation for all possible

inputs. When we categorize numbers based on which of the three inhibition strengths they

match, we end up with three ranges of numbers.

Through (figure 2.2) and (figure 3.1), we can see the importance of monotonicity for

estimation accuracy. In (figure 2.2), high inhibition strength (0.15) produces monotonicity

for numerosities ranging from 1 to 4. Similarly, in (figure 3.1), we see that high inhibition

strengths (0.15, 0.14, and 0.13) result in the lowest errors for those numerosities. When we

assign the network inhibition strength based on the interval in which the input numerosity

falls, we get a favourable estimate. For example, if we have the current input with numerosity

of 2, we can use the inhibition strengths of 0.13 to 0.15, as with these inhibition strengths, the

output of the network increases monotonically with input. Using these inhibition strengths

gives us an estimation with the most minor error, as we see in figure 3.1; for numerosity 2,

high inhibition strength produces the smallest errors. Although this illustration of selecting

inhibition strength aids our understanding of the model, there is a fundamental reason why

it cannot serve as a stand-alone model for network regulation. Here we have used a specific

inhibition strength Based on the input’s numerosity. However, because number estimation

is the last step, the system does not know the current input’s numerosity when choosing

the inhibition level. We have implemented a sensitivity-based algorithm to choose a suitable

inhibition strength rather than choosing the inhibition based on the input’s numerosity.

To illustrate the concept, we use the set of three inhibition strengths obtained in the

previous step, which guarantees that we have at least one inhibition strength where the

condition of monotonicity is satisfied for every potential input to the network. Using the

algorithm in appendix 2, we determine the sensitivity of the output (number estimate) to

the change in input for a given input. We get three values for the sensitivities based on the

three levels of inhibition in the network. The algorithm then selects the level of inhibition for

which the sensitivity is the highest. For instance, for the input of setsize 2, the output from

the network with an inhibition strength of 0.15 turns out to be the most sensitive compared
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to the other inhibition strengths. As a result, the algorithm uses an inhibition strength of

0.15 for this specific input. Finally, we obtain the estimate of 1.9 using the network inhibition

strength of 0.15, which is more precise than the estimates we would have otherwise obtained

using the other inhibition strengths.

We plot setsize against number estimations using the corresponding choices of inhibition

strength for all possible inputs (Figure ?? The data points obtained using the selected

inhibition strengths are shown in the figure as black circles. As anticipated, we discover that

for the entire range of inputs, the estimations using the chosen inhibition strength produce

the most precise number-estimations compared to other inhibition strengths.

To show that the mean activation of the network encodes the numerosity of the input, we

have decoded the mean activation to a continuous scale of numbers. We used linear fitting

to establish the connection between mean activation and numerosity. Using a curve fitting

method to map mean activation to numerosity brings a limitation to our model. Since we

only use data from monotonous regions, the quality of the fit varies with the length of the

monotonous regions. As a result, the mapping of mean activation to a number estimate is

less reliable because the subitizing range has a relatively shorter monotonous region. Due

to this shortcoming, the final output does not reflect the observed difference between small

and large numbers in terms of accuracy.

3.4 Role of Continuous Attributes

Number perception is also influenced by other visual attributes of the objects in a scene, such

as density, size, and convex hull. Gebuis and Reynvoet (2012); ? As discussed previously, The

Sensory Integration Theory argues that the brain derives numerosity from these continuous

cues (Gebuis et al., 2016; Dakin et al., 2011). Some studies have opposed the idea by

arguing that sensory cues are insufficient in themselves to produce an accurate estimation

of numerosity. Even if the sensory cues can’t generate an accurate estimation of numerosity,

it is possible to develop a preliminary idea about how small or big the numerosity could be.

We suggest a possibility that The information from the continuous visual attributes such

as density and size can be used to extract an initial guess about the possible number range

the input belongs to. This low-accuracy information about the magnitude of numerosity can
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be used for regulation of inhibition strength, thereby obtaining a more accurate estimation

of the numerosity. For instance, while taking an input As our network model takes input

from a filtered out information in visual stream, and does not care about topography, size

and shape of individual spots, we need to add some further structure preceding the RNN

network in the visual stream to computationally demonstrate this assumption.

3.5 Adaptation

Psychophysics experiments have shown that perception of numerosity are subject to adapta-

tion (Fornaciai et al., 2016; Burr et al., 2011). when humans are exposed to multiple stimulus

with certain numerosity (”adaptor”) for an extended period, the apparent numerosity of a

subsequent (”test”) stimulus gets distorted. Adaptation is commonly thougth to be an hall-

mark of ”primary” perceptual attributes of vision such as color, orientation, size, or density.

Also like many of these primary perceptual attributes, perception of numerosity follows We-

ber’s law, which led many researchers to consider it as a ”primary visual feature”(Burr and

Ross, 2008). In this study, we attempted to model high-level visual processing of numeros-

ity that accepts input devoid of primary visual attributes. The variability of the network

inhibition strength plays a vital role in our model because it allows for accurate internal

representation of the whole range of numerosity. This section will discuss how the need for

dynamic network parameters (here, inhibition strength) can relate to adaptation effects.

As discussed in previous sections, our model needs to employ different inhibition strengths

for the network depending on the numerosity range. Our model is very simplistic in nature

and is far from the complexity of biological networks with multiple degrees of freedom. We

can assume that regulation of a particular or a combination of parameters across the network,

such as inhibition strengths, can affect how accurately the numerosity gets internally repre-

sented in the brain. These processes might be reflected in behavioral observations because

of the time and error associated with them. Assuming, with each instance of processing

a certain range of numerosity, the network gets closer to the most appropriate inhibition

strength; it would also increase the accuracy with each iteration. This way, we can draw a

parallel between the adaptation of network parameters and the adaptation to numerosity.

It takes us relatively longer(increase in reaction time) to enumerate or compare a number

when we switch from an adapted numerosity range. Additionally, the accuracy decreases
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immediately after the switch and then improves again with repeated exposure to the same

range. The additional time required to select an appropriate network parameter might have

a connection to the ”switch cost” in the form of a delay in response. Using a network

parameter suitable for the previously adapted numerosity might have a relationship with the

observed drop in accuracy immediately after the switch. Exploring the possibility of such

adaptation mechanisms in the higher levels of the number processing pathway can help us

go beyond the conceptualization of numerosity as a primary visual feature.

In (figure 3.2) we see that the inhibition strength of 0.04 is suitable for numerosity be-

tween 6 and 20. Suppose the network is set to an inhibition of 0.04; let’s call it as ‘adapted’

to numbers in the range of 6 to 17. When we suddenly provide an input corresponding to

a larger numerosity (say 30), ideally, the network should shift to a lower inhibition strength

(0.01) to give an accurate result. But if it uses the same inhibition strength of 0.04, it would

underestimate the numerosity to be around 20 (on the green curve). Similarly, whenever

we use an inhibition strength adapted to smaller numerosity on inputs with larger numeros-

ity, we get an error in the form of underestimation. But when we use inhibition strength

adapted to larger numerosity for smaller numerosity, we get an overestimation of numerosity.

The plot fails to demonstrate the underestimation observed in behavioral experiments while

switching from larger to smaller numerosities. But the regions in the plot which correspond

to overestimation (numerosity from 1 to 10 on the red curve), the estimation of numerosity

decreases with increase in input numerosity. As this does not follow the primary condition

of monotonic increasing relationship we discard this region.

Castaldi et al. (2016) classified the brain activity recorded during numerosity percep-

tion before and after psychophysical adaptation to numerosity using multivariate pattern

recognition. Using a support vector machine, they used BOLD responses from the IPS to

classify numerosity successfully. Based on the observation that training the model with pre-

adaptation responses did not classify numerosity while testing on post-adaptation data and

vice-versa, they suggest that adaptation changes the neuronal representation of numerosity

in the brain. Similarly, our model shows that neuronal representation of numerosity changes

with inhibition strength. As shown in figure (), we get different curves mapping numerosi-

ties to mean activations for each inhibition strength. As we have suggested that adaptation

is essentially achieved by changing network inhibition, our model also supports the claim

by Castaldi et al. (2016) that adaptation changes the neural representation of numerosity.

They showed that the degree of adaptation increases the discriminability of the IPS’s BOLD
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response. In our model, the mean activation of the network is used as the basis for the

magnitude of numerosity. When using the most appropriate inhibition strength, the mean

network activation is most sensitive (has the highest slope) to the change in numerosity. We

once again draw a comparison between adaptation and the control of network inhibition and

by observing that the greater slope of the mean activation leads to greater discriminability.

Previously, we have discussed some of the possible ways to choose the inhibition of the

network to suit individual inputs. We suggested that a method that can generate an approx-

imate prediction of the range of numerosity can be used to choose inhibition strength for the

network, which in turn gives a more accurate internal representation of numerosity. One of

those ideas involved generating an approximation of numerosity by using continuous visual

cues like size, density, and texture. In such a case, these continuous attributes indirectly

control the internal representation of the numerosity. It is important to distinguish between

this kind of influence and the suggestion made by the sensory integration theory, which

holds that the knowledge of numerosity is entirely derived from the sensory cues. Here, only

the level of network inhibition is preconditioned by the sensory cues so that it is prepared

to work with a normalized and segmented input. Durgin (1995) claimed that adaptation

to texture density affects the perception of numerosity. They have argued that our brain

does not adapt to numerosity but to the texture density of a stimulus. Other studies have

also shown that adaptation to other visual cues like size also affect numerosity perception

(Zimmermann and Fink, 2016). But how does adaptation to density affect the perception of

numerosity? Does it imply that our brain perceives numerosity using a sensory integration

system? We argue that the influence on numerosity perception by adaptation to density

need not imply the presence of a sensory integration system for number perception. If our

assumption is true that sensory cues like texture and density are used to prepare the network

to process numerosity, then it also explains why adaptation to texture influences numerosity

related tasks.

3.6 Analog Output and Magnitude Perception

Computational models for number perception can roughly be divided into two groups based

on how the numerosity is encoded. In the first group, the final layer of a network contains

a set of neurons, where each neuron is assigned a specific number (Verguts and Fias, 2004)
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(Stoianov and Zorzi, 2012). Selective activation of a neuron indicates the detection of a

number assigned to it. These neurons are often compared with the number-neurons observed

in the brain. Most of these models work for only a small range of numbers. The models

in the other category often use a single output to simulate the encoding of numerosity

(Dehaene and Changeux, 1993) (Sengupta et al., 2014). Here, an increase in the output’s

magnitude signifies an increase in the numerosity. These models are usually more flexible

in terms of their working range with numbers. A common scale allows a simple explanation

of numerosity comparison tasks, As the magnitude can be directly compared to choose a

winner. Our model belongs to the second group, consisting an analog internal representation

of numerosity. According to the A Theory of Magnitude (ATOM) model, space, time, and

numbers all interact with one another (Walsh, 2003). The model proposes that a single

analog magnitude system processes time, numbers, and space. Our model’s ability to encode

numerosity in an continuous quantity makes it useful for the creation of general models for

magnitude perception.

.

34



Chapter 4

Conclusion

.

We have used a Recurrent Neural Network (RNN) with on-centre off-surround neural

connections to computationally model various aspects of visual perception of numbers. The

input for the RNN is inspired by the Normalized Object Location Map (OLM) (Dehaene and

Changeux, 1993), and the mean of the steady-state activation of the network nodes is taken as

the output from the network. The model successfully emulates some of the significant findings

from the behavioral studies regarding Weber fraction, number comparison, and reaction time

(Sengupta et al., 2014). In this study we have extended the model, first by introducing a

method for decoding the mean activation into number estimate, then for regulating the

network inhibition to achieve workability with an extended range of numerosity.

Behavioral studies have demonstrated that our capacity to perceive numerosity varies

depending on which range of numerosity a stimulus belongs to. While we can quickly and

accurately enumerate or discriminate numbers in the subitizing range (1 to 4), the numbers

in the estimation range (greater than 5) require a longer time, and their discrimination

follows Weber’s law (Kaufman et al., 1949; Whalen et al., 1999). Recent findings suggest

the presence of an additional elbow at number 20, giving us three ranges of numbers with a

sudden change in number cognition Portley and Durgin (2019). We lack an understanding of

the underlying mechanisms leading to these behavioral discontinuities. In our computational

model, we use the mean steady-state activation of all the neurons in the network as the

output from the network. We assume that, for the mean activation of the network to code
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for numerosity, it should follow a monotonic relationship with input numerosity. We observe

that to keep the output from the network monotonous with the input numerosity, we need

to employ multiple inhibition strengths (figure 2.2). By minimizing the total number of

inhibition strengths required to maximally cover the entire range of numerosity, we arrive

at three inhibition strengths (β = 0.01, β = 0.04, β = 0.15) and three corresponding ranges

of numbers (1:4, 5:17, and 21:50), closely matching those observed in behavioral studies.

The emergence of different ranges of numbers as a consequence of optimizing a network with

limited capacity gives us a new perspective on possible mechanisms behind the elbows (or

breaks) observed in numerosity perception. It shows that the discontinuity in our number

cognition abilities does not necessitate the presence of dedicated neural networks for each

range of numbers.

In the latter part of our study, we have suggested two potential methods to control the

network inhibition so that the network can produce the best possible estimation for a broader

range of inputs. In the first method, for a given input, we choose the level of inhibition for

which the network output is most sensitive to a slight change in the input. We get reasonable

number estimates for the entire range of numerosities by using the inhibition strengths chosen

by this criteria, making our network one of the few computational models to work on an

extended domain (1 to 50) of numerosities (figure 3.2). Numerous studies have demonstrated

the possibility of deriving information on numerosity from continuous attributes in early

visual pathways Gebuis et al. (2016); Dakin et al. (2011); Morgan et al. (2014). In the

second method, we have argued that an inaccurate but faster estimation of numerosity from

early visual pathways can help choose an inhibition strength appropriate to the current

input. Further, this chosen inhibition strength can prepare the network to generate an

accurate representation of numerosity from a normalized input: devoid of primary visual

attributes. This way, we argue for a hybrid system that employs ideas from the Sensory

Integration Theory (SIT) to get an initial guess of numerosity and Approximate Number

System (ANS) theory to reach the final numerosity estimate using normalized information

from deeper stages of the visual pathway.

Our model gives a computational account for some aspects of the adaptation effects

observed in psychophysics studies. We suggest that adaptation to a specific range of nu-

merosity can result from imperfect and delayed regulation of network inhibition. The extra

time needed to find a suitable network parameter might be related to the switch-cost in the

form of an increase in reaction time, and the drop in accuracy immediately after a switch
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might result from the use of a network parameter that is no longer suitable for the input.

If our assumption is true that sensory cues like texture and density are used to prepare the

network to reach a more accurate estimate, then it also explains why adaptation to texture

influences numerosity-related tasks (Durgin, 1995).

Our model of number perception has a lot of room for growth; as the model represents

numerosity in a continuous manner, further work is needed to explore compatible processes

leading to the symbolic grounding of numbers. Based on the current findings, we have

made some predictions about the roles of primary visual cues in this study. However, in

order to computationally prove the predictions, a specific algorithm must be developed. We

acknowledge that biological neural networks are not as simple as our model, and do not

assert that the addressed behavioral observations are result of the dynamics of such simple

networks. However, our model provides novel insights into the possible computations behind

many fascinating aspects of the visual perception of numerosity, which can aid in developing

a more biologically relevant model for visual number perception, and number cognition in

general.
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