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Abstract

In this thesis, we study the theory of parametrized complexity and examine parameterized

complexity of the Hiding Leader problem. We discuss standard tools and techniques

for showing the fixed-parameter tractability of parameterized problems like kernelization

and branching. We review fixed-parameter intractability and show, using parameterized

reductions and W-hierarchy, that some problems are unlikely to be fixed-parameter tractable.

Given a graph G = (V,E), a subset L ⊆ V of leaders, an integer k that denotes the maximum

number of edges that we are allowed to add in G, an integer d that denotes the least number

of followers in F = V \ L whose final centrality should be at least as high as any leader,

the goal is to compute if there exists a subset W ⊆ F × F such that (i) |W | ≤ k, and (ii)

there exists a F ′ ⊆ F with |F ′| ≥ d satisfying c(G′, f) ≥ c(G′, ℓ) for all f ∈ F ′ and ℓ ∈ L

where G′ = (V,E ∪ W ). We study the parameterized complexity of the problem in the

setting of degree centrality for a few sets of parameters and shed light on its fixed-parameter

intractability using tools discussed apriori. We obtain the following results for the Hiding

Leader problem:

1. The Hiding Leader problem is W[1]-hard when parameterized by d+ k. Therefore,

the problem is W[1]-hard when parameterized by only d or k.

2. The Hiding Leader problem admits a kernel of size (d − 1)(∆ + 1) + 1, where ∆

denotes the maximum degree of G.

3. The Hiding Leader problem in the setting of core centrality is W [1]-hard when

parameterized by k + d.

4. Finally, we briefly touch upon the problem and some results in the core-centrality

setting.
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Chapter 1

Introduction

In the theory of algorithm design, given a problem, the goal is to find an algorithm that

efficiently solves the problem. Although algorithms like Euclid’s algorithm or the Egyptian

algorithm to multiply numbers have existed since ancient times, the word ‘algorithm’ is

associated closest to the algorithms that run on machines. When we say efficiently, we mean

optimally of resources we require for “using” the algorithm (or running the algorithm) to

solve a problem. In machines, these resources can be the time taken by the machine to

run (time complexity), the storage required by the machine to run the algorithm (space

complexity), the energy required by the machine (if any), etc.

Mathematically we usually depict the efficiency of an algorithm using space complexity,

time complexity, or both. Moreover, we primarily consider time complexity, expressed as a

function of input size (using asymptotic notation). If this function does not increase very

much relative to the size of the problem (asymptotically the same as a polynomial function or

a slower-growing function), we consider it an efficient algorithm. However, in our search for

efficient algorithms, we encounter classes of problems that seemingly do not admit efficient

algorithms. One such class of problems is the class of NP-Complete problems. Determining

if class P= class NP (P=NP problem) is a long-standing open problem where P is the class

of problems that we can solve in polynomial time, and NP is the class of problems whose

solutions we can verify in polynomial time.

Given that the P=NP problem is a long-standing open problem, we can assume that no

efficient algorithm exists for NP-complete problems (the class of hardest problems in NP).
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The natural question follows: Can we do better than exponential running time in the problem

size for problems in NP-complete class? If a general problem is NP-complete, we know that

an exponential time algorithm will be needed (unless P = NP), but there are a variety of ways

which the time complexity of an algorithm can be “exponential” some of which might be

preferable to others. The above quote from [12] encapsulates the motivation for the question

quite well. In [12], they discuss that it might be preferable to express the time complexity

in terms of the parameters that arise naturally out of the problem rather than an artificially

constructed problem size. In [21], it was first noted that as k is varied Ω(nf(k)) described the

time complexity of problems such as Dominating Set [11]. The database community knew

that an intractable problem could turn into a tractable one after fixing a parameter. All

these instances lead us to the theory of parameterized complexity consisting of definitions

and results in fixed-parameter tractability and intractability.

This thesis will study a few key concepts from the parameterized complexity theory,

formally established in [1, 8, 9, 10]. Chapter 1 discusses a few preliminaries required to

follow the rest of the thesis. Chapter 2 formally introduces the notion of fixed-parameter

tractable algorithms and slice-wise polynomial algorithms. It also introduces the notion

of preprocessing called kernelization. Chapter 3 will discuss key techniques to solve a few

parameterized problems using branching or bounded search trees. In Chapter 4, we look at

some theory developed in [8, 9, 7] to study the intractability of parameterized problems. In

chapter 5, we look at the Hiding Leader problem and derive some results in the parameterized

setting of the problem, concluding the thesis in Chapter 6

1.1 Original Contributions

This thesis is partly a literature review of the book “Parameterized Algorithms” [4] which

introduces key concepts in parameterized complexity. A few of which we use for discussing

the tractability and intractability of the Hiding Leader problem discussed in Chapter 5.

The thesis gives some new examples for key concepts. Chapter 5 of the thesis discusses new

results and new interpretations of existing results for the Hiding Leader problem. We

obtain the following results for the Hiding Leader problem:

1. The Hiding Leader problem is W[1]-hard when parameterized by d+ k. Therefore,
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the problem is W[1]-hard when parameterized by only d or k.

2. The Hiding Leader problem admits a kernel of size (d − 1)(∆ + 1) + 1, where ∆

denotes the maximum degree of G.

3. The Hiding Leader problem in the setting of core centrality is W [1]-hard when

parameterized by k + d.

1.2 Preliminaries

This section contains a list of definitions and notations from graph theory and algorithms to

understand the contents of this thesis.

1.2.1 Graph theory related terminology

For standard notations and definitions in graph theory, we refer to West [23]. We now list

several graph definitions being used throughout the thesis.

Definition 1.2.1. A graph G is defined as an ordered pair (V,E) where V or V (G) denotes

the set of vertices and E or E(G) ⊆ V × V denotes the set of edges between vertices. Let

u, v ∈ V be two vertices, we denote an edge by (u, v). All of the edges may be directed (from

u to v or (u, v)) or undirected (between u and v or (u, v) or (v, u)). A graph with directed

edges is called a directed graph and a graph with undirected edges is called an undirected

graph.

Definition 1.2.2. A path is a sequence of adjacent edges (edges sharing a vertex) with none

of the vertices appearing in more than two edges.

Definition 1.2.3. A directed path is a path where the direction of the directed edges always

points from the previous edge to the next edge.

Definition 1.2.4. A cycle is a path starting and ending at the same vertex.

Definition 1.2.5. A directed cycle is a cycle where the path is directed.

Definition 1.2.6. A connected graph is a special graph where ∀u, v ∈ V there exists at least

one path joining them.
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Definition 1.2.7. A subgraph H = (V ′, E ′) of a graph G = (V,E), written as H ⊆ G is a

graph such that V ′ ⊆ V ∧ E ′ ⊆ E. H is called an vertex-induced subgraph, also written as

G[V ′], if E ′ = (V ′ × V ′) ∩ E.

Definition 1.2.8. A bipartite graph G = (V,E) with bipartition (A,B) is such that V =

A ∪B and E ⊆ (A×B).

Definition 1.2.9. A clique is a set of vertices C ∈ V of a graph G such that G[C] is a

complete graph.

Definition 1.2.10. An open neighbourhood of a vertex v, denoted by NG(v), is the set of

all vertices that form an edge with v in G, that is, NG(v) = {u ∈ V : (u, v) ∈ E}.

Definition 1.2.11. A set of vertices V ′ ⊆ V of a graph G is called a connected component

if the induced subgraph G[V ′] is a connected graph.

Definition 1.2.12. An independent set I ⊆ V in the context of graph theory is a set of

vertices of a given graph G such that the induced graph G[I] has no edges in it.

Definition 1.2.13. The degree of a vertex, denoted by dG(v), is the number of vertices in

its open neighborhood, that is, dG(v) = |NG(v)|.

1.2.2 Algorithm and complexity related terminology

For standard notations and definitions in algorithms, we refer to Cormen et al. [3]. We now

list several definitions being used throughout the thesis.

Definition 1.2.14. An algorithm A is a procedure or a set of instructions that takes an

input and returns an output, solving a computational problem.

Definition 1.2.15. The Big-O notation, written as O(h(x)), is a notation used to describe

the asymptotic behavior of of a function. Let f(x), g(x) be two functions, we say f(x) =

O(g(x)) if and only if there exist constants N,C such that |f(x)| ≤ C|g(x)| for all x > N .

Here is a list of commonly known classes of functions and their names. Here n is a

variable and k is a constant real number.
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Notation Name
O(1) constant
O(log(n)) logarithmic
O(n) linear
O(n2) quadratic
O(nk) polynomial
O(kn) exponential

Definition 1.2.16. An universe Σ∗ is a collection of all possible sequences that can be

formed using the characters from alphabet Σ (usually Σ = {0, 1} or some finite set). A

language L is a subset of the universe, that is, L ⊆ Σ∗.

Definition 1.2.17. Given a language L and a string x ∈ Σ∗, the decision problem is deter-

mining if x ∈ L is true or not.

Definition 1.2.18. A verification algorithm A(x, y) is a two-argument algorithm that takes

in an input string x and an associated certificate y that verifies x such that A(x, y) = 1. If

A verifies all strings of a language L, then we say A verifies L.

Definition 1.2.19. The complexity class NP is the set of all languages L (or problems)

that a verification algorithm A verifies in polynomial-time such that for all x ∈ L there exists

certificate y such that y is polynomial in |x| and A(x, y) = 1.

Definition 1.2.20. We say that there exists a poynomial-time reduction from a language

L1 to language L2 written as L1 ≤P L2 where L1 & L2 ∈ {0, 1}∗ if there exists a computable

function f that maps a string x to f(x) in polynomial-time such that f(x) ∈ L2 if and only

if x ∈ L1.

Definition 1.2.21. A language L is called NP-hard if there exists a polynomial-time reduc-

tion from every language in NP to L. That is, L′ ≤P L for all L′ ∈ NP .

Definition 1.2.22. If a language L belongs to NP and is NP−hard then it is NP-complete.
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Chapter 2

Parameterized problems and

Kernelization

This chapter discusses a few definitions, kernelization reduction rules, and examples. Let us

motivate the need to define a parameterized problem through a plausible real-world example.

Suppose we are part of the marketing team for a product. We are to give at most k free

samples of the product to some people in some communities to promote the product in those

communities. Let us suppose that we know the inner workings of the communities, and

we figure out that if all the friends of a particular person in a community have a product,

then they get that product, too, out of Fear Of Missing Out (FOMO). Given that we know

all the people and their friends in the community, we want to devise a plan to distribute

the free samples to some people so that it makes everyone else in the community buy the

product. We want to figure out for what communities such a marketing plan is achievable.

If achievable, we want to know how to effectively distribute the k free samples. There is

little time to develop a plan as the product launch is soon. We start working on the problem

and soon realize that for each pair of friends, if both of them do not get a free sample, then

neither of them would buy the product. Hence in each pair of friends, at least one friend

has to get a free sample for our marketing plan to succeed. We can represent the people of

a community using vertices and join the vertices representing two people using an edge if

they are friends. We can quickly see that to develop a marketing plan for our requirements;

we need to have at least one vertex from every edge in our set of k vertices getting free
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samples, that is, we essentially need to fetch a k-sized vertex cover of the graph representing

the community. That does not spell profit for the product as this problem is NP-Complete

(refer to Definition 1.2.22). That means, unless P=NP, we do not have a polynomial-time

algorithm to devise a plan. Even for a community as small as 50 people and k = 20 for

finding the solution using a brute-force algorithm, it would take the fastest supercomputer

at least 300 million years.

However, that does not mean we resign from our job. Notice that if an edge (u, v) of

the graph of a community does not get covered in our plan for that community as we are

building it, we can branch the plan into two plans, one where u gets a free sample and one

where v gets a free sample. This gives us a new way to come up with a plan. Pick an edge

where neither u nor v receives a free sample and make two plans, one where u gets a free

sample and one where v gets a free sample. For each of these two plans, choose an edge

not covered by the plan and create two more plans similarly in each case. This gives us a

tree with depth at most k (we cannot give more than k free samples ), each internal vertex

having two children. The path from the root to a leaf uniquely determines a set of k people

getting free samples. There are in total 2k such paths. If there exists a plan that satisfies

our requirements, then it must exist in these 2k paths. Else a plan meeting our requirements

is not feasible. For each path, we see if the set of k vertices obtained is a vertex cover of the

graph. This algorithm takes 2k|E| that is at most 2kn2 where n is the number of people in

the community. This takes at most 2.7× 109 calculations which we can write code for on an

average everyday computer, and the code will finish computing in a matter of seconds.

This gives us the motivation to study NP-hard problems with some intrinsic parameters

to come up with algorithms that may be exponential in the size of the parameter(s), but it

is otherwise polynomial in the size of the problem.

2.1 Some formal definitions

For standard notations and definitions in parameterized algorithms, we refer to Cygan et al.

[4]. We now list several definitions being used throughout the thesis.

Definition 2.1.1. A parameterized problem is a collection of pairs of the form (x, k) where

x is a string from the universe Σ∗ and k is the parameter associated with the instance of
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the problem leaving out the parameter is encoded by x., in other words, it is a language

L ⊆ Σ∗ × N (refer Definition 1.2.16).

For example, an instance of Independent Set parameterized by k, the size of the

independent set (refer Definition 1.2.12) is a pair (G, k) ∈ Σ∗ ×N where G is an undirected

graph (refer Definition 1.2.1) that is written as a string over Σ using an appropriate encoding.

Note here G is used to denote the graph and the string representing the graph. For (G, k)

to belong to Independent Set parameterized language, the graph G (or encoded by G)

must have an independent set of size k.

Given an instance (x, k) of a parameterized problem, its size is given by |x| + k. We now

define a specific complexity class to which a parameterized problem may belong.

Definition 2.1.2. A parameterized problem L ⊆ Σ∗ × N is called fixed-parameter tractable

(FPT) if there exists an algorithm α(called a fixed-parameter algorithm), a computable

function f : N → N and a constant c such for all (x, k) ∈ Σ∗×N, the algorithm α determines

whether (x, k) ∈ L in time bounded by f(k).|(x, k)|c. The complexity class containing all

fixed-parameter tractable problems is called FPT.

Sometimes a problem can be parameterized by multiple parameters, say k, d.... One

can even parameterize the problem by combining two or more parameters (say, k and d).

Formally parameterization by k and d is expressed using the parameter k + d. It is simple

to expand the concept of a parameterized problem and the definition of the FPT class to

include more than one parameter. We define k as a vector of non-negative integers, say, of

size c (c is a constant), and then the functions f and g can depend on the c parameters

encoded by the coordinates of the vector.

2.2 Kernalization

Almost every realistic computer system that seeks to solve an NP-hard problem employs

preprocessing (also known as data reduction or kernelization). Preprocessing subroutines

aim to efficiently tackle the “easy parts” of a problem instance and condense it down to

its ostensibly challenging “core” structure (the kernel of the instance). In other words, this

method aims to convert the provided problem instance into a comparable “lower sized”
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instance in time polynomially bounded by the input size without necessarily solving the

problem. On this smaller instance, one can then apply a slower precise algorithm.

Assume that a suitable preprocessing algorithm substitutes an instance I with an equiva-

lent instance that is at least one bit smaller and runs in polynomial time. It is doubtful that

one can come up with such an algorithm as that would mean P = NP. Let such an algorithm

exist for an NP-hard decision problem (refer Definitions 1.2.17 and 1.2.21). That would

mean that we can run the algorithm, for instance, x of an NP-hard decision problem |x| − 1

number of times to reduce the instance x to a single bit instance hence solving the solution

in polynomial time. This diminishes the necessity for defining a functional preprocessing

approach. However, we can define useful preprocessing in the language of parameterized

complexity by stating that huge instances with a small parameter must be downsized. In

contrast, small instances relative to their parameter need not be processed further. These

form the crux of kernelization.

2.2.1 Formal Definitions

Definition 2.2.1. [4] A reduction rule is a function takes an instance (x, k) of a parameter-

ized problem(P ⊆ Σ∗ ×N) and gives an instance (x′, k′) of the same parameterized problem

such that

1 the instance (x′, k′) is output in polynomial time of the size of (x, k)

2 (x, k) ∈ P ⇐⇒ (x′, k′) ∈ P .

A reduction rule is considered safe if 2 is followed.

Given a pre-processing algorithm for a parameterized problem α, we define the size of

the algorithm in terms of the parameter of a parameterized problem.

sizeα(k) = sup{|x′|+ k′ : α(x, k) = (x′, k′), x ∈ Σ∗}

Definition 2.2.2. [4] We say that a pre-processing algorithm α is a kernelization algorithm

or a kernel for a parameterized problem P if α given instance (x, k) outputs (x′, k′) according

to Definition 2.2.1 and sizeα(k) ≤ g(k) for some computable function g outputting a natural

number.
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For a kernel we also include 1/0 as outputs (say in the form of (1, k′)/(0, k′) for an instance

(x, k)). This is because, many times, it can happen in the process of kernelization that the

instance becomes a trivial yes or no instance.

The primary indicator of a kernelization algorithm’s efficiency is a bound on the size of

its output. However, in computer science, we typically use an algorithm’s running time as

an indicator. Though a kernelization technique’s actual running time is crucial for practical

applications, in theory, a kernelization algorithm simply has to execute in polynomial time.

Clearly, if a problem admits a kernel, given any algorithm that can decide if an instance

belongs to the problem or not, the problem becomes FPT. Surprisingly, the converse also

holds.

2.2.2 Some simple kernels

Example: Vertex Cover

In the example given at the beginning of this chapter, we have already seen that vertex cover

parameterized by solution size k is an FPT problem. So it follows that it must have a kernel

for the problem. To achieve this kernel we define a series of successive reduction rules. An

instance of the problem is (x, k) where x is a graph G(V,E).

Vertex Cover

Given a graph G the problem is to find set |V C| ≤ k such that V −V C is an independent

set. (refer Definition 1.2.12)

RR VC 1: Remove the set of all isolated vertices (vertices of 0 degree) I from V to

define the new instance (G[V − I], k).

This reduction is safe as a vertex from I cannot be part of the vertex cover.

Notice that for a vertex u with degree at least k + 1, for each edge, that it is part of,

either u has to be in the vertex cover or its corresponding neighbor has to be in the vertex

cover. So if u is not in the vertex cover, we cannot have a vertex cover of size at most k.

This gives us a new reduction rule.

11



RR VC 2: If there exists a vertex u such that dG(u) > k, if k−1 = 0 and E(G[V −{u}]) ̸= ϕ

output (0, 0) (trivially no). If E(G[V − {u}]) = ϕ while k − 1 ≥ 0 output (1, k − 1), else

output instance (G[V − {u}], k − 1),

This reduction is safe due to reasons discussed in the previous argument.

After the application of RR VC 2, we can apply RR VC 1 again and repeat this process

until RR VC 2 is no longer applicable or we get a no/yes instance. If RR VC 2 is no longer

applicable, then maximum degree of the graph (∆) of the output instance is k. In case where

RR VC 2 is no longer applicable, a k vertex cover can cover at most k2 edges so the k vertex

cover can have at most k2 neighbors. Therefore for a yes instance of such a kind, we must

have that V (G) ≤ k2 + k and E(G) ≤ k2. This gives us a polynomial kernel of the Vertex

Cover problem where g(k) = 2k2 (refer Definition 2.2.2). Note that all the reductions can

be run in O(V ) or linear time.

Example: Feedback Arc Set in Tournaments

A tournament is a complete graph T such that for every for every pair of vertices either

there is a directed edge from u to v or a directed edge from v to u. A directed edge is called

an arc. A feedback arc set F is a set of edges for a directed graph G such that G(V,E − F )

is a directed acyclic graph, that is, it contains no directed cycle. We note that such an F

must contain at least one edge from every directed cycle.

Feedback Arc Set in Tournament

Given a Tournament T the problem is to find set |FAST | ≤ k such that T (V,E−FAST )

is a directed acyclic graph. Or equivalently reversing the edge directions in FAST results

in an acyclic tournament.

Similar to RR VC 2, we note that any edge that is part of k+ 1 directed triangles (directed

cycle of length 3) must be part of FAST .

RR FAST 1: If there exists (u, v) in E(T ) such that it is part of more than k directed

triangles, then E ′ = E(T ) ∪ {(v, u)} \ {(u, v)}, the new instance is (T = (V,E ′), k − 1).

The equivalent rule of RR VC 1 is that a vertex u not be in any cycle. Let u in a

Tournament such that it is not part of any triangles in T . Consider two sets, v+ = {u :
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(v, u) ∈ E(T )} and v− = {u : (u, v) ∈ E(T )}, V = v+ ∪ v− ∪ {v}. We cannot have a

cycle contained in either v+ ∪ {v} or v− ∪ {v} that also contains v in it. So a cycle in T

containing v must have an edge from v+ to v−, resulting in a triangle containing v, but

since v is not part of any triangles, there exists no such edge. This implies that v is not

part of any cycles. This also implies that cycles in T are either contained in v+ or v−.

FAST (T ) = FAST (T [v+]) ∪ FAST (T [v−]). Hence removal of v from V [T ] is safe.

RR FAST 2: If there exists a vertex v which is not part of any triangle, delete v from

V [T ].

After applying RR FAST 1 and 2 the output graph is still a tournament. Let us ap-

ply them until both of them are no longer applicable. If the resulting instance is a yes-

instance, then we have |FAST | ≤ k. Since the graph is still a tournament, V [FAST ] ∪
NG(V [FAST ]) = V , every vertex is either part of FAST or forms a triangle with some edge

in FAST , but the k arcs each can be part of at most k triangles. Hence |V [T ]| ≤ k(k + 2).

Hence we have a polynomial kernel for Feedback arc set in tournaments with g(k) = 3k2.

2.2.3 Crown Decomposition

One of the broad kernelization methods we can use to find kernels for various problems is

crown decomposition. The method is based on the well-known König and Hall matching

theorems.

A matching M in a graph G is a set of disjoint edges, that is, no two edges from M share

a vertex.

Definition 2.2.3. A partitioning of V (G) into C, H and R is called a crown decomposition

if

1. C ̸= ϕ

2. C is an independent set

3. ((C ×R) ∪ (R× C)) ∩ E(G) = ϕ or H is a separator for C and R

4. Define E ′ = ((C ×H) ∪ (H ×C)) ∩E(G), there exists a matching M ⊆ E ′, such that

|M | = |H|, that saturates H. That is all the vertices of H are matched by M .
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Figure 2.1: Example of a Crown decomposition

It’s as if we have placed a crown C on the head H of a person, with R being the rest of

her body. Figure 2.1 shows such a decomposition.

Theorem 2.2.1. König’s Theorem [18, 4] “In every undirected bipartite graph, the size

of a maximum matching is equal to the size of a minimum vertex cover”

Theorem 2.2.2. Hall’s theorem [14, 4] “Let G be an undirected bipartite graph with

bipartition (V1, V2). The graph G has a matching saturating V1 if and only if for all X ⊆ V1,

we have |N(X)| ≥ |X|” (refer Definition 1.2.8).

Theorem 2.2.3. Hopcroft-Karp A lgorithm [17, 4] ”Let G be an undirected bipartite

graph with bipartition V1 and V2, on n vertices and m edges. Then we can find a maximum

matching and a minimum vertex cover of G in time O(m
√
n). Furthermore, in time O(m

√
n)

either we can find a matching saturating V! or an inclusion-wise minimal set X ⊆ V1 such

that |N(X)| < |X|” (refer Definition 1.2.8).

We will use Theorem 2.2.1, 2.2.2, 2.2.3 to show the following.

Lemma 2.2.4. Let there be a graph G with no vertices of degree 0 such that |V (G)| ≥ 3k+1.

Then there exists an algorithm α running in O(|G|c) where c is a constant such that:

• α produces a matching |M | = k + 1 or

14



• α produces a crown decomposition of G.

Proof. We first use a greedy algorithm to find a matching M in G such that there exists no

matching M ′ of G exists such that M ⊂ M ′. If |M | > k, stop the algorithm. Else size of M

is at most k. Let A be the set such that uv ∈ M =⇒ u, v ∈ A. The size of A is at most 2k.

If G[B = V (G) \A] has an edge, we can include it in M to produce M ′ such that M ⊂ M ′,

but since that is not possible, B is an independent set.

Consider a bipartite graph GB,A, which contains only edges between B and A in G. We

can use 2.2.3 to construct a maximum matching M ′ and a minimum vertex cover V C of

GB,A. As before, if M
′ is of size greater than k, then stop the algorithm. Else M ′ is of size

at most k. We have by 2.2.1 that M ′ and V C are of the same size =⇒ V C is of at most

size k.

Let’s say that V C ∩A = ϕ, this means V C ⊆ B. Notice that there exists no u ∈ B \V C

as if such a u exists, it must have an edge in GB,A (no vertices with 0 degree in G and u has

no edges in G[B]) but since V C is vertex cover of GB,A it must contain one of the endpoints

of that edge. This would imply u ∈ V C as the other endpoint is in A and V C∩A = ϕ which

contradicts u ∈ B \ V C. Hence V C ∩A = ϕ =⇒ |B| = |V C| ≤ k. Then |B|+ |A| ≤ 3k+1

but since |V (G)| ≥ 3k + 1 =⇒ V C ∩ A = ϕ is false.

Therefore V C intersects with the set A. Define a matching M∗ as the matching that

saturates V C ∩ A and A∗ as the set of endpoints of M∗. Each edge of M∗ contains ex-

actly one endpoint in V C ∩ A. H = V C ∩ A = V C ∩ A∗, C = A∗ ∩ B and

R = V (G) \ (C ∪ H) = V (G) \ A∗ is the required crown decomposition. M∗ satu-

rates V C ∩ A∗ = H, since B is independent set C ⊆ B is also independent. Since vertices

from C = B ∩A∗ can only have edges in M∗ and all endpoints of M∗ = vertices of A∗ are

removed from R there can be no edges from R to C. Hence H is a separator of C and R.
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2.2.4 Application to Vertex Cover

We use the previously defined RR VC 1 to remove isolated vertices in a given instance (G, k).

If |V (G)| ≥ 3k + 1, according to Lemma 2.2.4, we have that either a matching of k + 1 size

exists which cannot be covered by a vertex cover of size k, conclude it is a no instance.

Else we have a crown decomposition C∪H∪R where a matching M exists that saturates

H into C. Notice that if we don’t take H into the solution set of the given instance, we need

at least |H| vertices from C to cover the edges of M , and since H also covers all incident

edges from R to C ∪ H the solution size is minimized if we take vertices of H. The new

instance is (G[V −V (H)], k−|H|). We can keep applying this reduction again after applying

RR VC 1 to obtain a H ′ ̸= ϕ and consequently

(G[V \ V (H) ∪ V (H ′)], k − |H| − |H ′|).

We can repeat this as long as |G| ≥ 3k+ 1. Therefore the Vertex Cover problem admits

a kernel with at most 3k vertices.

2.2.5 Kernel for Vertex Cover Problem based on linear program-

ming

We will now see how to arrive at a 2k kernel for Vertex Cover using Linear programming.

Let us encode a Vertex Cover instance as an Integer Linear Programming instance.

For each vertex v ∈ V (G) of a Vertex Cover instance, we introduce a variable xv. If a

vertex v is to be included in the vertex cover, then xv is set to 1. Otherwise, xv is set to

0. Each (u, v) ∈ E(G) has to be covered by at least one vertex. So xv + xu ≥ 1 for every

uv ∈ E(G). We need to minimize
∑

v∈V (G)

xv. That concludes the ILP formulation.

But this problem is at least as hard as k-Vertex Cover problem as if
∑

v∈V (G)

xv ≤ k we

have a vertex cover of size at most k. To make the problem easier, we relax the condition

that all xv are integers, allowing xv to take real values. We call this relaxation LPVC(G).

LPVC(G) does not necessarily encode theVertex Cover problem but its optimum solution

is useful for us. LPVC(G) can be solved in polynomial time since it is an instance of Linear

Programming.
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For an optimal solution of LPVC(G) consider a partition of the variables xv ∈ [0, 1] as

such.

• V0 = {v ∈ V (G) : xv <
1
2
}

• V 1
2

= {v ∈ V (G) : xv =
1
2
}

• V1 = {v ∈ V (G) : xv >
1
2
}

Theorem 2.2.5. (Nemhauser-Trotter theorem)[4] There is a minimum vertex cover S

of G such that V1 ⊆ S ⊆ V1 ∪ V 1
2

Using Theorem 2.2.5 we can define the following reduction.

RR VC 3: Consider an optimum solution to LPVC(G) and partitions V0,V 1
2
and V1 as

defined above. If
∑

v∈V (G)

xv > k conclude G is a no-instance. Else take vertices of V1 into

the vertex cover, decrease k by |V1| and delete all vertices of V1 ∪ V0.

Note that after application of RR VC 3 we are left with V 1
2
such that |V 1

2
| ≤ 2k. This

gives us a 2k kernel for vertex cover.
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Chapter 3

Bounded Search Trees

This chapter discusses the bounded search tree approach, a variation of exhaustive search,

one of the most often employed tools in the design of fixed-parameter algorithms. We use

methods for parameterization of theVertex Cover problem to demonstrate this technique.

One of the simplest and most popular parameterized complexity algorithms, bounded

search trees, or simply branching, is based on the concept of backtracking. By making a series

of decisions on the problem’s structure, such as whether or not to include a particular vertex

in the solution, the algorithm attempts to construct a workable solution. The algorithm

branches into several subproblems that are solved one at a time while considering one of

these steps, looking into many options for the decision. In this way, the execution of a

branching algorithm can be compared to a search tree that the algorithm traverses until it

finds the solution in one of the leaves. We must contend that in the case of a yes instance,

some decisions captured by the algorithm lead to a workable solution to defend the validity

of a branching algorithm. Such a branching algorithm works in FPT time if the total size of

the search tree is constrained by a function of the parameter alone and every step requires

polynomial time. A lot of natural backtracking algorithms share this feature.

Let X represent a specific instance of a minimization issue, like Vertex Cover. When

using FPT algorithms, the measure µ(X) we associate with the instanceX is often a function

of k by itself. We create simpler versions of the same problem from X in a branch phase

(x1, ..., xl) such that the following hold:
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1. Every viable solution hi(S) of X corresponds to every feasible solution S of Xi ∈
{X1, ....., Xl}. Additionally, there is at least one optimum solution for X in the set

{hi(S) : 1 ≤ i ≤ l, and S is a possible solution of Xi}. Informally, a branch step divides

problem X into subproblems X1, ...., Xl, while potentially making certain (formally

justified) avaricious choices.

2. The number l is small; for instance, it is constrained by the function µ(X) alone.

3. In addition, we have that for everyXi, i ∈ {1, ..., l}, µ(Xi) ≤ µ(X)−c for some constant

c > 0. In other words, we greatly simplify the current instance in each branch.

A branching algorithm recursively applies branching steps to instancesX1, X2, ..., Xl until

they become simple or trivial. Thus, we can visualize the algorithm’s execution as a search

tree, with each recursive call corresponding to a node: the calls on instances X1, X2, ..., Xl

are children of the call on instance X. The second and third conditions allow us to limit

the number of nodes in this search tree, assuming that the instances with the non-positive

measure are simple. Indeed, the third condition allows us to limit the depth of the search

tree in terms of the original instance’s measure, whereas the second condition controls the

number of branches beneath each node. Because of these characteristics, search trees of

this type are frequently referred to as bounded search trees. A branching algorithm with a

carefully chosen branching step frequently outperforms a simple exhaustive search.

We present a typical scheme for using bounded search trees to design parameterized

algorithms. In polynomial time, we first identify a small (typically constant or bounded by

a function of the parameter) subset S of elements, at least one of which must be in some or

all feasible solutions to the problem. Then we solve |S| subproblems: for each element e of

S, we create one subproblem that includes e in the solution, and we solve the remaining task

with a lower parameter value. We also say that we branch on the solution-related element of

S. The drop of the parameter in each branch of such search trees is measured. We can bound

the depth of the search tree by a function of the parameter if we ensure that the parameter

(or some measure bounded by a function of the parameter) decreases by at least a constant

value in each branch, resulting in an FPT algorithm.
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Often, it is simpler to think of branching as “guessing” the correct branch. That is,

whenever a branching step is performed, the algorithm attempts all possibilities to guess the

correct part of an (unknown) solution in the graph. We must ensure that a series of guesses

uncovers the entire solution and that the total time spent on incorrect guesses is reasonable.

3.1 Vertex Cover

The strategy is used on Vertex Cover as an example of branching. In Chapter 2, we

presented a kernelization algorithm that constructs a kernel on at most 2k vertices in time

O(
√
mn). To solve Vertex Cover in time of O(n

√
m + 4kkO(1)), kernelization can be easily

combined with a brute-force algorithm. In fact, a 2k-vertex graph has no more than two 22k

= 4k subsets of size at most k. Thus, we can solve the problem in time O(n
√
m+4kkO(1)) by

enumerating all vertex subsets of size at most k in the kernel and checking whether any of

these subsets forms a vertex cover. By branching, we can easily obtain a better algorithm.

This algorithm was introduced in Chapter 2 under the guise of coming up with a marketing

strategy of distributing free samples of a product to communities.

Assume that (G, k) is a Vertex Cover instance. Our algorithm is founded on two simple

observations.

• Any vertex cover for a vertex v must contain either v or all of its neighbors NG(v).

• When the maximum degree of a graph is at most 1, Vertex Cover becomes trivial

(it can be solved optimally in polynomial time)

We will now go over our recursive branching algorithm. Given an instance (G, k), we first

find the maximum degree vertex v ∈ V (G) in G. If all v have degree 1, then each connected

component of G is an isolated vertex or edge, and the instance has a trivial solution. Other-

wise, |N(v)| ≤ 2 and we recursively branch on two cases in the vertex cover by considering

either v or NG(v). We can delete v and reduce the parameter by one in the branch where

v is in the vertex cover. The second branch adds NG(v) to the vertex cover, deletes NG[v]

from the graph, and reduces k by |NG(v)| ≤ 2. The algorithm’s running time is limited by

(the number of nodes in the search tree) × (time taken at each node).
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Clearly, the time spent at each node is constrained by nO(1). Thus, if τ(k) is the number of

nodes in the search tree, the algorithm’s total time is at most τ(k)nO(1).

Every internal node of T has at least two children in every search tree T that corresponds

to a run of a branching algorithm. As a result, if T has l leaves, the number of nodes in the

search tree is at most 2l− 1. As a result, limiting the number of leaves in the corresponding

search tree is sufficient to limit the running time of a branching algorithm.

In our case, the tree T represents the algorithm’s search tree when run with parameter k.

It has two subtrees beneath its root: one for the same algorithm run with parameter k − 1

and one for a recursive call with parameter at most k − 2. The same pattern can be found

deeper in T . This means that if we define a function T (k) using the recursive formula

T (i) =

T (i− 1) + T (i− 2) if i ≥ 2,

1 otherwise,

the number of leaves of T is constrained by T (k).

We show that T (k) is bounded by 1.6181k using induction on k. This is true for k = 0 and

k = 1, so let us move on to k ≥ 2:

T (k) = T (k − 1) + T (k − 2) ≤ 1.6181k−1 + 1.6181k−2 ≤ 1.6181k−2(1.6181 + 1)

≤ 1.6181k−2 ≤ 1.61812 ≤ 1.6181k

This demonstrates that the number of leaves is limited to 1.6181k. Combined with kerneliza-

tion, we obtain an algorithm that solves Vertex Cover in time O(n
√
m+ 1.6181kkO(1)).

The obvious question is how we knew that 1.6181k is a solution to the preceding recurrence.

Assume we want to find an upper bound on the function T (k) of the form T (k) ≤ c · λk,

where c > 0, λ > 1 are some constants. We can set constant c to satisfy the initial conditions

in the definition of T (k). Then we must use induction to demonstrate that this bound holds

for all k. This boils down to proving that

22



c · λk ≥ c · λk−1 ≥ c · λk−2 (3.1)

because then we will have

T (k) = T (k − 1) + T (k − 2) ≤ c · λk ≥ c · λk−1 ≥ c · λk−2.

Because Equation (3.1) is equivalent to λ2 ≥ λ + 1, it makes sense to look for the lowest

possible value of λ for which this inequality is satisfied; this is the one for which equality

holds. By solving equation λ2 = λ + 1 for λ > 1, we find that λ = 1+
√
5

2
< 1.6181, so the

inductive proof works for this value of λ.

The above algorithm’s running time can be easily improved using the following argument:

Proposition 3.1.1. When the maximum degree of a graph is at most 2, Vertex Cover

can be solved optimally in polynomial time.

As a result, we only branch on vertices of at least degree 3, which immediately leads us to

the following upper bound on the number of leaves in a search tree:

T (k) =

T (k1) + T (k3) if k ≥ 3,

1 otherwise.

Again, for the above recursive function, an upper bound of the form c ·λk can be obtained by

finding the largest root of the polynomial equation λ3 = λ2 +1. The root is estimated to be

at most 1.4656 using standard mathematical techniques (and/or symbolic algebra packages).

When combined with kernelization, we get the following theorem.

Theorem 3.1.2. [4] Vertex Cover has a time complexity of O(n
√
m+ 1.4656kkO(1)).

Can we use a similar strategy for graphs with minimum degree four? This becomes more

difficult because Vertex Cover is NP-hard on graph with degree at most three. However,

there are more involved branching strategies and faster branching algorithms than the one

presented in Theorem 3.1.2.
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3.2 How to Handle Recursive Relationships

We must limit the number of nodes in the search tree to obtain an upper bound on the run-

ning time of an algorithm based on the bounded search tree technique. Recurrence relations

are used for this. We have the most common case in parameterized branching algorithms

when we use linear recurrences with constant coefficients. For this case, there is a standard

technique for limiting the number of nodes in the search tree. Suppose the algorithm solves

a problem of size n with parameter k and recursively calls itself on problems with decreased

parameters. In that case, k− d1, k− d2, ..., k− dp, then (d1, d2, ..., dp) is called the branching

vector of this recursion. For example, in the previous section, we used a branching vector

(1, 2) to obtain the first Vertex Cover algorithm and a branching vector (1, 3) to obtain

the second. For a branching vector (d1, d2, ..., dp), the following linear recurrence gives infor-

mation on the upper bound T (k) on the number of leaves in the search tree:

T (k) = T (k − d1) + T (k − d2) + ...+ T (k − dp).

Again, we set the initial condition T (k) = 1 for k < d, where d = maxi=1,2,...,pdi. Assuming

that new subproblems with smaller parameters can be solved in polynomial time in n, the

running time of such a recursive algorithm is T (k) · nO(1).

If we now seek an upper bound of the form T (k) ≤ c · λk, the inductive step is reduced to

proving the following inequality:

λk ≥ λk−d1 + λk−d2 + ...+ λk−dp

The above inequality can be expressed as P (λ) ≥ 0, where

P (λ) = λd − λd−d1 − λd−d2 − ...− λd−dp

is the characteristic polynomial of the recurrence for T (k) (recall that d = d = maxi=1,2,...,pdi).

It is not difficult to demonstrate using standard calculus techniques that if a polynomial P

has the form shown above, then P has a unique positive root λ0 and P (λ) < 0 for 0 < λ < λ0

and P (λ) > 0 for λ > λ0. This means that λ0 is the best possible value for an upper bound

for T (k).
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The branching number corresponding to the branching vector(d1, d2, ..., dp) is frequently re-

ferred to as the root λ0. As a result, the branching algorithm’s running time is limited to

λk
0n

O(1).

Two obvious questions arise:

• How accurate is T (k) estimation using the exponent of the corresponding branching

number?

• How well does T (k) predict the size of the search tree?

The answer to the first question is “it is good”: the estimation is accurate up to a poly-

nomial factor. The second question is much more difficult because the way a branching

procedure explores the search space may be more complex than our recursive formula-based

estimation of its behavior. If, for example, a branching algorithm employs multiple meth-

ods of branching into subproblems (so-called branching rules) that correspond to different

branching vectors and/or is combined with local reduction rules, we do not yet know how

to estimate the running time better than by using the branching number corresponding to

the worst branching vector. However, the delicate interplay of different branching rules and

reduction rules may result in a much smaller tree than our imprecise estimates.
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Chapter 4

Fixed-Parameter Intractability

In this chapter, we examine the related issues surrounding lower bounds, namely how to

demonstrate (provide proof) the improbability of a fixed-parameter tractable algorithm for

a parameterized problem. This chapter establishes a lower-bound theory for parameterized

problems analogous to the polynomial-time computation NP-completeness theory. We as-

sume the practical perspective of the algorithm designer, offering evidence for the absence

of algorithms that meet a given set of requirements for as many situations as possible.

We cannot rule out the idea that issues like Clique and Dominating Set are polynomially

solvable and thus FPT because we do not have proof that P ̸= NP. To prove assertions of

the form “if problem A has a specific type of algorithm, then problem B has a certain type

of algorithm as well,” our lower limit theory must be conditional. If it is agreed upon as a

working hypothesis that problem B lacks such algorithms, then it follows that problem A also

lacks such an algorithm. We need a concept of reduction that transfers (negative evidence

for) fixed-parameter tractability from one problem to another to verify such statements in

the setting of fixed-parameter tractability.

Reductions from Clique offer tangible proof that some parameterized problems are not

in FPT if we take the working hypothesis that Clique itself is not in FPT. Although P ̸=
NP is a strong assumption, we need one that is even stronger (Clique is not FPT) because

we do not yet know how to base fixed-parameter intractability results just on P ̸= NP.
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4.1 Paremeterized Reductions

Recall the concept of polynomial-time reduction (refer to definition 1.2.20). It gave us the

machinery required to prove that a problem A is just as hard as problem B, a polynomial

time reduction from A to B would imply that if there exists a polynomial running time

algorithm for B, then there would exist a polynomial time algorithm for A.We require similar

machinery for parameterized problems that can transfer the membership to the FPT Class

of problems.

Definition 4.1.1. [4] For two parameterized problems L1 and L2 we define an algorithm α

that maps instances of L1 ((x, k)) to equivalent instances of L2 ((x′, k′)). The algorithm α

is said to be a parameterized reduction if:

1. (x, k) ∈ L1 ⇐⇒ (x′, k′) ∈ L2

2. k′ is bounded by a computable function, g(k)

3. α runs in FPT time of (x, k).

Drawing parallels to polynomial-time reductions, we want to show the transference of mem-

bership in FPT . We assume that all computable functions f, g are non-decreasing as given

any f, g, we can construct non-decreasing versions of them.

Theorem 4.1.1. Let α be a parameterized reduction from L to L′. If L′ ∈ FPT =⇒
L ∈ FPT

Proof. For every instance (x, k) of L we have α((x, k)) = (x′, k′) where k′ ≤ g(k) for some

commutable g, since α runs in f(k)|x|c1 it cannot output an instance whose size is larger than

its running time implies |x′| ≤ f(k)|x|c1 . Since L′ is in FPT , ∃ algorithm β which determines

if (x′, k) ∈ L′ in h(k′)|x′|c2 ≤ h(g(k))(f(k)|x|c1)c2 and that also determines if (x, k) ∈ L.

Hence we have an algorithm that runs in h(g(k))(f(k)|x|c1)c2 + f(k)|x|c1) ≤ f ′(k)|x|c1c2

that determines if (x, k) ∈ L for every instance (x, k). Here f ′(k) = f(k) + h(g(k))f(k)c2 .
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4.1.1 Comments on Parameterized Reductions

One of the easiest parameterized reductions is the reduction from the k-Independent Set

problem to the k-clique problem. If ∃ is an independent set in a graph G, then a clique

of the same size in G exists. Hence G → G is the required parameterized reduction. Here

instance (x, k) of the Independent set problem is mapped to an instance (x, k) of the clique

problem in polynomial time. Hence, a parameterized reduction exists from k-Independent

set to k-Clique problem and vice versa. This shows that k-Independent set and k-clique

problem are equally hard.

We notice that not every polynomial-time reduction used in NP -completness proofs

translates into a parameterized reduction as the parameter of the equivalent instance isn’t

required to be bounded by a function of the old parameter in the case of a polynomial-time

reduction. We will see a simple example of this case. However, most NP -completeness

proofs translate into parameterized reductions.

If we have a k-Vertex cover for (V C) an instance (G, k) then for the same graph G[V \V C]

is an independent set of size |V | − k. Therefore an instance (x, k) ∈ Vertex Cover ⇐⇒
(x, |x| − k) ∈ Independent set. This is a polynomial time reduction. This, however, is not

a parameterized reduction as |x| − k is not bounded by any computable g(k). Since an

independent set problem is as hard as the clique problem, and it is our working assumption

that clique is not believed to be in FPT , it is unlikely for a parameterized reduction from

independent set to Vertex cover to exist, as the latter problem is proven to be in FPT .

4.2 Problems at least as hard as Clique

We will see how parameterized reductions behave under composition.

Theorem 4.2.1. [4] If there exists α that is a parameterized reduction from L1 to L2, and

a parameterized reduction β from L2 to L3 then there exists parameterized reduction (β(α))

from L1 to L3.

The above theorem can be proved in a similar fashion to theorem 4.1.1. The pseudo-proof

is as follows; We employ the result that α is FPT time in the instance of L1, and for the
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equivalent instance of L2 produced by α its size is bounded by FPT size of an instance

of L1 where the parameter obtained after applying α is bounded by some non-decreasing

function of the parameter of an instance of L1. This, along with the existence of β, gives us

a reduction β(α) that is a parameterized reduction from L1 to L3.

Theorem 4.2.2. [4] A parameterized reduction α, from Clique to Clique on Regular

Graphs, exists.

Proof. Given an instance (G, k) of clique, we construct a new graph Gr. If ∆ is the maximum

degree of any vertex in G, the construction is as follows:

• Construct ∆ copies of G; G1, G2, ..., G∆ where let vi ∈ V (Gi) correspond to v ∈ V (G)

• For a vertex v place a set of vertices |Vv| = ∆− dG(v). connect all vi to all vertices of

this set.

Observe that G′ is a ∆ regular graph. We claim that G has a clique of size k if and only if

G′ has a clique of size k. In the forward direction, if a clique of size k exists in G , then there

are ∆ copies of it in G′. In the reverse direction, if a clique of size k exists in G′ it cannot

contain vertices from Vv for any v as ∀ u ∈ Vv ∀ v, NG′(u) is independent set. Also, since

ui is not connected to vj ∀u, v, i ̸= j. We have that the clique must be contained entirely in

some Gi which implies that k-clique exists in G. This proves the claim. Furthermore, the

reduction is a polynomial-time reduction.

Theorem 4.2.3. There exists α, a parameterized reduction from Clique to Independent

Set on regular graphs.

This result is a direct consequence of the fact that the complement of a regular graph

is regular, so there exists a parameterized reduction from Clique on regular graphs to

Independent Set on regular graphs. Using theorem 4.2.1, we get the proof for Theorem

4.2.3.
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4.2.1 Other known reductions from Clique

Theorem 4.2.4. [4] There exist parameterized reductions from Clique to the following

problems:

• Partial Vertex Cover

• Multicoloured Clique

• Multicoloured Independent Set

• Dominating Set

• Set Cover

• Dominating Set on Tournament

• Connected Dominating Set

4.3 W-hierarchy

To accurately convey the complexity of various hard parameterized issues, Downey and

Fellows [11] developed the W-hierarchy. In this part, we briefly review the key terms and

findings pertaining to this hierarchy.

Definition 4.3.1. Weighted Circuit Satisfiability (WCS) Problem [4] Given a circuit

C and an integer k, the goal is to find exactly k input nodes which when given input 1 satisfy

the circuit.

Definition 4.3.2. W-hierarchy[4] A parameterized problem P belongs to the class W [t]

if there is a parameterized reduction from P to WCS[Ct,d] for some d ≥ 1.

Here WCS[Ct,d] represents the restriction of WCS on the class of circuits Ct,d where d

denotes the depth of the circuit and t denotes the weft of the circuit. The weft of a circuit is

the maximum number of large nodes encountered in a path from input to output maximized

over different paths. A large node is a node with an in-degree not bounded by any constant.
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Theorem 4.3.1. [4] Independent Set is W [1]-complete.

Consider the circuit expressing an Independent Set with a particular form: one layer of

negation nodes, one layer of small or-nodes with in-degree 2, and a final layer consisting of

a single large and-node. Theorem 4.3.1 shows that this form is in some ways canonical for

weft-1 circuits: the satisfiability problem for (bounded-depth) weft-1 circuits can be reduced

to weft-1 circuits of this form.

Theorem 4.3.2. [4] The Dominating Set, Set Cover, and Hitting Set are all W [2]-

complete.

The W-hierarchy is commonly assumed to be a proper hierarchy: W [t] ̸= W [t+ 1] for every

t ≥ 1. Based on Theorem 4.3.2, we do not expect a reduction in the opposite direction:

this would imply that the Independent Set is both W [1]- and W [2]-complete, and thus

W [1] = W [2].

Theorem 4.3.3. [4] W [1]-complete parameterized problems include:

• Clique

• Multicolored Clique

• Independent Set

• Multicolored Independent Set

• Partial Vertex Cover
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Chapter 5

The Hiding Leader Problem

5.1 Introduction

A covert network is a social network which has one or many harmful users. Social Network

Analysis (SNA) tries to reduce criminal activities (e.g., counter terrorism) via detecting

the influential users in such networks. There are various popular measures to quantify how

influential or central any user or vertex is in a network. As expected, strategic and influential

miscreants in covert networks would try to hide herself and her partners (called leaders) from

being detected via these measures by introducing new edges. Waniek et al. [22] first propose

the Hiding Leader problem which incorporates the viewpoint of the leaders of a criminal

organization. It also explicitly models knowledge of the criminals about SNA tools that are

used to detect them and thus help in dismantling their organization. Intuitively, the input

in the Hiding Leader problem is a network with a subset of vertices marked as leaders.

The goal is to add fewest edges to ensure that various SNA tools do not rank any leader

high based on centrality measures.

5.1.1 Centrality measures

Degree Centrality: One of the centrality measures used in social network analysis is the

degree of a vertex. That is, C(G, y) = dG(y). The Hiding Leader problem seems easy
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at least when the centrality measure is given by the degree of a vertex. However, it has

been shown using a reduction from the NP-complete Clique problem that this problem is

NP-hard [22] (refer Definitions 1.2.22 and 1.2.21). We will later use the same reduction used

in [22] to arrive at a different hardness result. In this project, we mostly consider the degree

centrality measure.

Core Centrality: Let r ≥ 2 be a fixed integer. The r-core of a graph G is the largest

induced subgraph of G in which all vertices have degree at least r.

Ccore(G, v) = max
{
r : v belongs to some r-core of G

}
.

5.1.2 Problem Statement

We now give a formal definition of the Hiding Leader problem.

Definition 5.1.1. Given a graph G = (V,E), a subset L ⊆ V of leaders, an integer k that

denotes the maximum number of edges that we are allowed to add in G, an integer d that

denotes the least number of followers in F = V \L whose final centrality measure should be

at least as high as any leader, the goal is to compute if there exists a subset W ⊆ F × F

such that

1. |W | ≤ k,

2. there exists a F ′ ⊆ F with |F ′| ≥ d satisfying C(G′, f) ≥ C(G′, ℓ) for all f ∈ F ′ and

ℓ ∈ L where G′ = (V,E ∪W ).

In the above definition C(., .) denotes either degree centrality or core centrality. The goal

is to have at least d vertices such that their centrality measure (given by the function C) is

greater than or equal to that of any of the leaders. In social network analysis tools used to

analyze covert networks, one of the tools to determine its most influential nodes is to rank

the nodes using their centrality measures. Here d is the safety margin.

Since we are considering a social network, deleting an edge could mean the loss of an

essential communication line. Hence we avoid removing edges. Since adding edges has the

cost of creating fake edges in the network, we want the cost to be bounded. That is, not
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more than k edges can be added to hide the leader (influential nodes). To avoid making the

leaders more suspicious, we ensure not to increase their degrees (degree is one of the most

commonly used centrality measures). Hence we choose the set of edges W to be added from

possible edges between the followers (F × F )

We consider four parameterizations of the problem

1. d

2. k

3. d+ k

4. ∆ + d

When we say we parameterize the problem by d+k, we consider both d and k as param-

eters to the problem, that is, for an instance (x, d+k) we try to find an FPT algorithm that

runs in O(f(d, k).|(x, d + k)|c) time, where f is a computable function and c is a constant.

Clearly if such an FPT algorithm exist then it is also O(f(d + k).|(x, d + k)|c). Similarly,

when we consider the parameterization ∆ + d we consider both ∆ and d as parameters to

the Hiding Leader problem.

5.2 An approximation algorithm

We present a very simple algorithm for approximating the allowed budget k up to a factor

of two.

Consider an instance (G,L, k, d) of the Hiding Leader problem. Let Cmax be the

highest degree of the leader vertices, that is,

Cmax = max{dG(u) : u ∈ L}.

We rank the vertices of V \ L with their degree and pick the top d vertices. For this set

of d vertices, we satisfy each vertex by adding enough random edges to it and coloring the
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edges to distinguish between old and new edges. It is sufficient to make the degrees of these

vertices equal to Cmax

Let the vertices be S = {u1, u2...ud}. We now count the number of edges added to the graph.

For each ui ∈ S, the number of edges added is at most Cmax − dG(ui). So the total number

of edges added is at most

d∑
i=1

(Cmax − dG(ui)) = d ∗ Cmax −
∑
i

dG(ui).

This gives us an approximation of k up to a factor of 2. Consider degree sum of vertices in

S, that is, dG(S) =
d∑

i=1

dG(ui). The goal is to achieve dG(S) to at least d ∗ Cmax. Each edge

from the budget can contribute in dG(S) at most 2. Therefore we need at least

d ∗ Cmax −
d∑

i=1

dG(ui)

2

edges to hide all the leaders using S. However, dG(S) is the maximum among degree sums of

all d sized subsets of V . Therefore for the instance (G,L, k, d) the minimum budget required

is approximated by d ∗ Cmax −
d∑

i=1

dG(ui) up to a factor of 2.

5.3 W[1]-hardness parameterized by d + k

We now give a parameterized reduction from Clique parameterized by k to the Hiding

Leader problem parameterized by d + k. The Clique problem parameterized by k is

known to beW [1]-hard [4]. This means that it is unlikely that there exists an fixed-parameter

tractable algorithm for the problem parameterized by the solution size k. The parameterized

reduction from Clique parameterized by k to the Hiding Leader problem parameterized

by d+ k implies that it is unlikely for the Hiding Leader problem parameterized by d+ k

to have an fixed-parameter tractable algorithm.
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Clique

Given a graph G and an integer k, the goal is to determine whether the given graph G

has a clique (refer Definition 1.2.9) of size at least k.

Now we prove the following hardness result.

Theorem 5.3.1. The Hiding Leader problem is W[1]-hard when parameterized by d+ k.

Proof. We present a parameterized reduction from the Clique. Let (G, k) be an instance

of Clique problem where G = (V,E). We construct an instance (H,L,C, k, d) where

H = (V ′, E ′) of Hiding Leader problem the following way.

The set V ′ of vertices of H: For every ui ∈ V , we create a single vertex ui and

n− 1− |NG(ui)| new vertices denoted by Xi = {xi,1, . . . , xi,n−1−|NG(ui)|}. We add one addi-

tional vertex b. Let |V | = n. We then add n + k vertices, named L′ = {l1, ..., ln+k}. This

completes the list of vertices in V ′. So V ′ = V ∪
⋃n

i=1Xi ∪ {b} ∪ L′.

The set E ′ of edges of H: We add an edge between two vertices ui and uj of V in

H if and only if (ui, uj) /∈ E(G). Make b adjacent to every vertex of V and make ui adjacent

to every vertex of Xi. Now we add edges (li, lj) for all i, j except for the pair (l1, l2). Lastly

we create two edges (l1, b) and (l2, b). This completes the list of edges in E ′

Figure 5.1: An instance of Clique
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Figure 5.2: Reducing the instance of the Clique problem in Figure 5.1 to an instance of
the Hiding Leader problem.

See Figure 5.4 for an illustration of the reduction. In Figure 5.4 green lines represent the

edges of E ′ whereas dashed black lines represent the edges of E in G. We define

• H = (V ′, E ′) where V ′ and E ′ are as per the construction.

• L = V ′\V

• k′ =
(
k
2

)
, the budget of the problem

• C(H, x) = dH(x) for all x ∈ V ′

• d = k the safety margin.

Now we claim that G has a clique of size at least k if and only if (H,L, k′, d) is a yes-

instance. Assume first that (H,L, k′, d) is a yes-instance. From theHiding Leader problem

definition, we know that the edges to be added to H must be chosen from F × F . Since

in the constructed instance of the Hiding Leader problem, we have F = V ′\L, using the

definition of L we have F = V ′\(V ′\V ) = V . Hence the edges must be added from V × V ,

but given the definition of H, (V ×V )\E are already in H. Therefore the edges to be added

to H must be taken from E. Let E ′′ ⊆ E ′ be the solution set for the Hiding Leader

problem. Notice that for each u ∈ F , dH(u) = n by constructions. Notice how the highest
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degree members of L are, in fact, the members of L′ with their degrees equal to n + k − 1.

Therefore for E ′′ to be a solution, it must increase the degree of some k vertices of F (= V )

to at least n + k − 1. Since all the vertices in V are of degree n, E ′′ must increase the

degree of some k vertices in V by at least k − 1. Since the budget k′ =
(
k
2

)
we can only

increase the degrees of k vertices in V by exactly k−1. Therefore the total degree increase in

k(k− 1) = 2
(
k
2

)
. This implies that each edge added must increase the degree of two vertices.

The only possible solution is if the set E ′′ forms a clique in G since all edges in E ′′ are taken

from G. Since the Hiding Leader instance is a yes instance, such a clique exists in G.

Therefore Hiding Leader is a yes-instance implies there exists a k−clique in G.

Now assume that G contains a k-clique. Consider the set of vertices D of such a k-clique.

Notice that set of all the possible edges between these vertices, say E ′′, is a subset of E.

Hence all the edges in E ′′ are not in H and can be added in the solution. Consider the case

where we add all the edges from E ′′ to H. |S| =
(
k
2

)
. So adding all edges of E ′′ is within

the budget of Hiding Leader instance. All vertices of D are of degree n in H. Since each

vertex of D is adjacent to k − 1 edges in E ′′, adding all edges of E ′′ to H will increase the

degree of every vertex of D to n+k−1. We know that the degree of the highest-degree leader

is n+ k− 1 in Hiding Leader instance. So adding these edges from E ′′ to H increases the

degree of |D| = k vertices to that of the highest-degree leader while staying within budget.

Hence the Hiding Leader instance is a yes instance. So G contains a k-clique implies

(H,L,C, k, d) is a yes instance. Therefore G contains a clique of size at least

This concludes the proof of our claim. Therefore there exists a parameterized reduction

from the Clique problem to the Hiding Leader problem. In this reduction

1. (G, k) is a yes instance of the Clique problem if and only if the constructed instance

(H,L,C, k, d) is a yes instance of the Hiding Leader problem.

2. d+ k′ = k +
(
k
2

)
≤ 2k2

3. The reduction runs in |x|O(1). It is a polynomial-time reduction.

Therefore the reduction is a parameterized reduction (refer to Definition 4.1.1). Hence

the Hiding Leader problem parameterized by d+ k is unlikely to have a fixed-parameter

tractable algorithm (refer to Theorem 4.1.1) as Clique problem is assumed to be not in
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FPT . Since the parameterization d+ k is at least W [1]-hard for the Hiding Leader prob-

lem, it implies that parameterizations by d or k individually is at least W [1]-hard as well.

5.4 The Hiding Leader problem parameterized by ∆+d

We consider the Hiding Leader problem for the bounded degree graphs (maximum degree

is ∆) and the degree centrality. The problem in the setting of bounded degree graphs

becomes FPT when parameterized by ∆ + d. Since the Hiding Leader problem is at

least as hard as the Clique problem, this gives a basis to believe that adding ∆ as one of

the parameters to the Hiding Leader problem might make it fixed-parameter tractable.

Hence we consider the problem parameterized by ∆+ d. As we will see, this does make the

problem fixed-parameter tractable by fetching us a kernel. Let us see a step-wise approach

to motivate and reach the kernel.

5.4.1 Naive solution to the Hiding Leader problem

The aim is to solve the Hiding Leader problem using as few edges as possible. Let S be

the set of d vertices whose degree is to be made greater than or equal to the degree of any

of the leaders by adding at most k edges as the solution set. Notice that given a solution

set S = {u1, u2, ...ud}, we add edges to the vertices of S. It would be ideal if most of them

are internal edges, that is, both the endpoints of the newly added edge (u, v) are in S. This

is because an internal edge increases the degree of two vertices of S, whereas a non-internal

edge only increases the degree of one vertex of S. Thus more internal edges will mean better

use of the k edges available to us to add.

Therefore, a solution to theHiding Leader problem is a set of d vertices that maximizes

a) the ability to add internal edges

b) the degree sum of the set of vertices
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An independent set (IS) maximizes the ability to add internal edges, and a weighted

independent set (WIS) with weights of vertices given by the degree of the vertices maximizes

both (a) and then maximizes (b). So such a weighted independent set can be thought of as

a naive solution to the problem.

This solution is not necessarily the optimal solution, as adding internal edges to the

solution set beyond a point is just as good as adding external edges. For example, consider

a solution set S where we have added k′ edges already, and few of the vertices of S have

a degree greater than or equal to that of the highest degree leader (say of degree ∆). So

adding an internal edge to a vertex with degree ∆ is as good as adding an external edge to

S.

5.4.2 Independent Set parameterized by ∆ + d

We now compute a solution to the Independent Set problem parameterized by ∆ + d.

Independent Set

Given a graph G and a positive integer d, the Independent Set problem is to determine

whether the given graph G has an independent set of size at least d (refer Definition

1.2.12).

Now we prove the following result.

Lemma 5.4.1. The Independent Set problem parameterized by ∆+ d admits a kernel of

size (d− 1)(∆ + 1) + 1.

Proof. Let G be a graph with maximum degree ∆. Let u be an arbitrary vertex in G. Let

S be a set of ∆ + 2 vertices in G such that u ∈ S. Then there exists a vertex v ∈ S that is

non-adjacent to u. Note that u can have at most ∆ neighbours in S. As S is of size ∆ + 2,

there is a vertex v in S that is non-adjacent to u.

Now consider any set of 2(∆+1)+1 vertices. For any vertices from this set, there always

exists a non-adjacent vertex. For any two vertices of this set, there exists a vertex non-

adjacent to both of them. The reason is this. Suppose u and v are two non-adjacent vertices

in the set. Since the maximum degree is ∆, we have |N [u]|+ |N [v]| at most 2(∆+ 1). Since
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the set is of size 2(∆+1)+1, there always exists a vertex w in the set which is non-adjacent

to both u and v.

Extending this logic for any set S of (d− 1)(∆+ 1) + 1 vertices, we have that given any

d − 1 pair-wise non-adjacent vertices, we have one vertex independent of all of them. So if

we have an independent set of size d− 1 in the set, then we have an independent set of size

d in this set of vertices.

Let S be a set of (d − 1)(∆ + 1) + 1 vertices in G. If S has an independent set of size

d − 2 in S, then S has an independent set of size d − 1 and subsequently an independent

set of size d. So if we have an independent set of size 2, then we have an independent set of

size d, but we already showed that we always have an independent set of size 2 in this set of

vertices. Therefore in any set of (d − 1)(∆ + 1) + 1 vertices we have an independent set of

size d.

This means that given a graph G, we only need to look at any (d− 1)(∆+1)+1 vertices

to find an independent set. This essentially reduces the number of vertices we need to search

for an independent set to (d− 1)(∆ + 1) + 1 vertices, and this reduction in number can be

achieved in polynomial time. Therefore Independent Set parameterized by ∆+ d admits

a kernel of size (d− 1)(∆ + 1) + 1.

This completes the kernelization of the Independent Set problem parameterized by

∆ + d. We can now brute force the kernel and achieve an independent set of size d in FPT

time when parameterized by ∆+ d, more precisely in
(
(d−1)(∆+1)+1

d

)
time. However, a better

algorithm exists when we have the existence of a kernel of size (d− 1)(∆ + 1) + 1.

Algorithm for Independent Set

1. Pick a random vertex in the kernel and add it to the solution set I.

2. Remove the chosen vertex and its neighbors from the kernel.

3. If |I| < d, repeat steps 1 and 2.

In this algorithm, at each iteration Step 1 takes O(1) time. In total, there are d iterations

of the first step, so in total, Step 1 takes O(d) time. Each iteration of Step 2 takes O(∆+1)
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time. So in total, Step 2 takes d(∆ + 1). So the algorithm runs in O(d∆) time.

This is a polynomial-time algorithm. Such an algorithm exists due to the following strong

assumptions:

1. dG(v) ≤ ∆ for all v

2. the existence of (d− 1)(∆ + 1) + 1 kernel

In cases where either of the assumptions is not true, the existence of a polynomial time

algorithm would mean P = NP .

5.4.3 Lower Bound for Maximum Independent Set

In a bounded degree graph, we can color the vertices of the graph using at most ∆+1 color

such that no two adjacent vertices are of the same color. This gives us a lower bound on

the size of the maximum independent set (MIS) of the graph. We can observe that vertices

of the same color form an independent set. So by the pigeonhole principle, we have at least

one color which is used for at least |V (G)|
∆+1

vertices. That is, the maximum independent set of

the graph has size at least |V (G)|
∆+1

.

The size of the kernel also gives us a lower bound on the size of the independent set of a

graph with a bounded degree. Let |V (G)| = n. Since for the guarantee of an independent

set of size d, we need a kernel to exist, we have that

(d− 1)(∆ + 1) + 1 ≤ n

d− 1 ≤ n− 1

(∆ + 1)

d ≤ n+∆

(∆ + 1)

dmax =

⌊
n+∆

(∆ + 1)

⌋

Here dmax is the maximum possible d satisfying the inequality. Note that dmax is the size

of an independent set. This is a tighter lower bound than the one obtained earlier using
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the coloring argument. We can construct a graph example where dmax is the size of the

maximum independent set but n
∆+1

is 1, lower than the size of a maximum independent set.

Consider a graph with l disjoint components; l− 1 of the components are ∆+1 size cliques,

and the last component is an isolated vertex. Here |V (G)| = n = (l − 1)(∆ + 1) + 1. We

observe that an independent set of size dmax exists, where

dmax =

⌊
n+∆

(∆ + 1)

⌋
=

⌊
(l − 1)(∆ + 1) + ∆+ 1

(∆ + 1)

⌋
= l.

The bound obtained using the coloring argument is⌊
l − ∆

∆+ 1

⌋
= l − 1.

Since each of the components in the constructed graph is a clique or an isolated vertex, we

can have at most one vertex from each component. Therefore |MIS| ≤ l and |MIS| ≥ l,

this implies |MIS| = l

5.4.4 Weighted Independent Set parameterized by ∆+ d

In the process of coming up with a naive solution for Hiding Leader problem, we try to

obtain a weighted independent set of maximum weight where the weights are given by the

degree of the vertices. Following the result obtained in the case of the Independent Set

problem parameterized by ∆ + d, we will try to obtain something similar in the case of the

Weighted Independent Set problem parameterized by ∆ + d.

Weighted Independent Set

Given a graph G, a weight function w : V → R and a positive integer d, the problem is to

find an independent set I of size d in G that maximizes
∑
u∈I

w(u).

Consider a vertex-weighted graph G where the weights are given by w(x), x ∈ V (G).

We know that in any set of (d − 1)(∆ + 1) + 1 vertices we have an independent set of size

at least d. To maximize the weights, a naive approach is to maximize the weight of these

(d− 1)(∆+1)+ 1 vertices. Let us order the vertices according to their weights and pick the

(d− 1)(∆ + 1) + 1 vertices of higher weights. Let us call this set S.
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Lemma 5.4.2. A maximum weighted independent set of size d always contained in S.

Proof. For the sake of contradiction, suppose that some vertices of a maximum weighted

independent set I ′ of size d obtained by brute force algorithm lie outside of S. Notice that

any vertex u ∈ S satisfies w(u) ≥ w(v) where v /∈ S. Consider the sets Q = I ′ ∩ S and

P = I ′ \ Q. Using Q as a |Q| sized weighted independent set, we construct a weighted

independent set of size d contained in S and call this Q′ an example of such a construction

can be seen in figure 5.3. Note that we have shown previously that this is always possible.

For all vertices u ∈ S and v ∈ P , we have w(u) ≥ w(v). Thus∑
u∈Q′\Q

w(u) ≥
∑
v∈P

w(v).

Note that Q′ = (Q′ \Q) ∪Q and I ′ = P ∪Q. This implies∑
u∈Q′

w(u) ≥
∑
v∈I′

w(v).

Therefore Q′ is a weighted independent set contained in S and it has weight larger than or

equal to the weight of I ′, a contradiction to the assumption that I ′ is a maximum weight

independent set of size d.

Figure 5.3: Example of the construction of Q′ from given I ′ and S
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This shows that it is sufficient to consider the top (d − 1)(∆ + 1) + 1 weighted vertices

to find a maximum weighted independent set of size d in G. The top (d − 1)(∆ + 1) + 1

weighted vertices can be fetched in polynomial time. This is enough to show the Weighted

Independent Set problem parameterized by ∆+d admits a kernel of size (d−1)(∆+1)+1.

This completes the kernelization of the Weighted Independent Set problem when

parameterized by ∆ + d. We can now brute force the kernel and achieve a maximum

weighted independent set in FPT time when parameterized by ∆ + d, more precisely in(
(d−1)(∆+1)+1

d

)
.dO(1) time.

However a better algorithm exists to achieve the same result. Pick a vertex u with the

maximum weight in the kernel. Given a weighted independent set of size d, we can replace

the lowest weight vertex in the weighted independent set with u to obtain an equal weight or

higher weight independent set. This is not possible if and only if the weighted independent

set contains a neighbor of u. This implies that every weighted independent set of size d

either contains u or some vertices from NG(u). This gives us a branching algorithm.

Algorithm to find Weighted Independent Set

1. Pick a vertex u with the highest weight in the kernel. In one branch add u to the

solution set, and in the other branches add one of its neighbors to the solution set.

2. In each of the branches, remove the chosen vertex and its neighbors from the kernel.

3. Repeat steps 1 and 2 in each of the cases.

4. Repeat step 3 until the size of solution set in each branch is d

5. Compare the weights of all the solution sets to obtain a maximum weighted inde-

pendent set of size d.

In the first step of the algorithm, there are at most ∆ + 1 branches. In subsequent

iterations of the first step, each of the ∆ + 1 steps in the previous iteration of the first step

has ∆+1 branches each. So by the second iteration of step 1, we have (∆+1)2 total branches.

So by k iterations of step 1 (or k − 1 iterations of step 3) we have (∆ + 1)k branches. In

each iteration of step 1, the solution size increases by one. So for a d size solution we have

(∆ + 1)d many branches.
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Each iteration of second step takes at most (∆ + 1)O(1) time. In total Step 2 is iterated

over (∆+1)d times. To compute a maximum weighted independent set of size d, we have to

compare (∆+ 1)d solution sets and pick the top-weighted set. Therefore the algorithm runs

in O((∆ + 1)d · (∆ + 1)O(1)) time. This is a better running time than
(
(d−1)(∆+1)+1

d

)
· dO(1).

This algorithm runs in the same time for an unkernelized graph G and is provided for

the sake of completeness.

5.4.5 Kernelization of the Hiding Leader problem

Consider a vertex-weighted graph G with weights given by w(x) = dG(x). By Lemma 5.4.2,

we know a maximum weighted independent set of size d contains vertices from (d− 1)(∆ +

1) + 1 highest weight vertices of F . This is the naive solution. If there exists a solution, we

would only consider it if it’s better than the naive solution. This is the motivation to believe

that a solution better than the naive solution might also be contained within (d−1)(∆+1)+1

followers of the highest weights. In other words, the solution to theHiding Leader problem

might also be contained in the top (d − 1)(∆ + 1) + 1 followers. We will show this exact

result in the next theorem.

Let us order the vertices of F according to decreasing order of their degrees and pick the

first (d− 1)(∆ + 1) + 1 vertices, the vertices of high degrees. Let’s call this set S.

Theorem 5.4.3. The solution to the Hiding Leader problem is contained in S. That is,

the Hiding Leader problem admits a kernel of size (d− 1)(∆ + 1) + 1.

Proof. For the sake of contradiction assume that some vertices of the solution to the Hiding

Leader problem obtained by brute force algorithm lie outside of S. Let the solution set

obtained by brute force be F ′. We assume that there exists u ∈ F ′ such that u /∈ S.

Notice that any vertex u ∈ S satisfies w(u) ≥ w(v) where v /∈ S. Consider the sets Q = F ′∩S
and P = F ′ \ Q. Thus F ′ = Q ∪ P . Using Q as a |Q| sized set, construct a larger set by

adding d−|Q| pair-wise non-adjacent vertices from S which are nonadjacent to every vertex

of Q. We call this set of vertices added to Q Q+; it is of size d − |Q| and it lies in S. We

have previously shown that this is always possible. For all vertices u ∈ S, v ∈ P , we have
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w(u) ≥ w(v). So ∑
u∈Q+

w(u) ≥
∑
v∈P

w(v).

Therefore we have ∑
u∈Q∪Q+

w(u) ≥
∑

v∈Q∪P=F ′

w(v).

This result is similar to the one obtained in Lemma 5.4.2. We will now use a bijection from

P to Q+ to show that if F ′ is a solution to the Hiding Leader problem then Q ∪ Q+ is

also a solution to the Hiding Leader problem.

Let ϕ : P → Q+ be any bijection. For any assignment of edges E ′ that is obtained by brute

force technique, we can construct an assignment of edges E ′′ for Q ∪ Q+. Let (u, v) ∈ E ′,

then

• if u, v /∈ P include (u, v) in E ′′.

• without loss of generality if only u ∈ P include (ϕ(u), v) in E ′′.

• if u, v ∈ P include (ϕ(u), ϕ(v)) in E ′′.

Here E ′′ is an assignment of edges that solves Q+∪Q. Figure 5.4 shows such a construction.

So if E ′ makes the degrees of all vertices of Q in brute force solution greater than or equal

to the degree of any of the leaders, then so does E ′′ in Q ∪ Q+. Notice that for all vertices

u ∈ Q+, v ∈ P , we have w(u) ≥ w(v). As ϕ(u) ∈ Q+, we have that w(ϕ(u)) ≥ w(u) for all

u ∈ P . Also, notice that for any edge (u, v) ∈ E ′, there exists (ϕ(u), v) or (ϕ(u), ϕ(v)) in

E ′′, that is the number of edges incident to a vertex u ∈ P in E ′ is equal to the number of

edges incident to ϕ(u) ∈ Q+ in E ′′. Therefore if E ′ increases the degree of a vertex u ∈ P to

make its degree greater than or equal to the degree of any of the leaders, then so does E ′′

for ϕ(u).

Since E ′ is an assignment of edges obtained by brute force technique that solves the Hiding

Leader problem, E ′′ is an assignment of edges that solves Q∪Q+. Hence Q∪Q+ is also an

equivalent solution. Therefore a solution to the Hiding Leader problem always lies inside

S.

Since we are guaranteed that a solution set to any instance of the problem always lies inside
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Figure 5.4: Example of the construction of Q+ from given F ′ and S. The solid red lines are
part of constructed edge set E ′′ and dashed lines are part of E ′

S, we only need to check vertices of S to obtain a solution. Given an instance of Hid-

ing Leader, we can fetch an appropriate set S in polynomial time. This is sufficient to

show that the Hiding Leader problem parameterized by ∆ + d admits a kernel of size

|S| = (d− 1)(∆ + 1) + 1.

Since the kernel size isO(d∆), a brute force algorithm runs in FPT time. For each d vertex

subset of S, we can compute all possible internal edge configurations (all possible adjacency

of the vertices of d-subset of S) in 2d
2
ways. For each of the internal edge configurations, for a

vertex u in the d-subset that has its degree less than that of the highest degree of the leaders’
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vertices, we can add edges from outside until their degree is equal to the highest degree of the

leaders. This takes d.nO(1) time. In total, there are
(|S|

d

)
≤ (2d∆)d many d-subsets of S. So

the total running time of the brute force algorithm is 2d
2+d(d∆)dd ·nO(1) = 2d(d+1)(d∆)dnO(1)

which is FPT-time. Therefore the hiding leader problem parameterized by ∆ + d is fixed-

parameter tractable.

5.4.6 Assignment of edges solving a d vertex set

We know we can brute force the kernel let us see if we can improve the running time to find

a satisfying assignment of edges E ′ that solves a d vertex set D, using the least number of

edges. That is, our goal is to find E ′ so that the degrees of all the vertices in D are greater

than or equal to any of the leaders in G′ = (V,E ∪ E ′).

Let the highest degree of the leaders be dL. Consider the case where D is an independent

set. Let {v1, v2, ..., vd} be the vertices of D. We need degrees of vi ∈ D to be greater than

or equal to dL. We say that a vertex vi has a residual degree rdi if it requires rdi edges

to be added to it to make its degree dL. That is rdi = dL − dG(vi). Re-index vi’s such

that sequence {rdi} is a non-increasing sequence. We safely assume that all rdis are positive

integers as if a vertex with a degree greater than or equal to dL exists in D, we can simply

remove it from D and reduce d to d− 1 in our instance of the Hiding Leader problem.

Note that if it is possible to find the required edge set E ′ such that all the edges are from

D×D, then we would have constructed a graph with degree sequence {rd1, rd2, ..., rdd} using

the vertices of D. Taking inspiration from this insight, we try to construct a graph with

degree sequence {rd1, rd2, ..., rdd} for a given independent set D. To this end, we use the

Havel-Hakimi algorithm [13, 15] that, given a realizable degree sequence, constructs a graph

with that degree sequence. A realizable degree sequence is a degree sequence for which

at least one simple graph exists with that degree sequence. Not all degree sequences are

realizable. An example of such a sequence is {4, 4, 2, 2, 1}. A simple example of a realizable

degree sequence is {2, 2, 2}, a 3 clique.

In the Havel-Hakimi algorithm, given a realizable degree sequence s, x1, x2, ..., xn it out-

puts a smaller realizable degree sequence x1 − 1, x2 − 1, ..., xs + 1, xs+1, ..., xn and takes that

sequence as an input to the algorithm. Essentially it takes the vertex with the most residual
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degree s and adds s edges from that vertex to the next s vertices when ranked according

to their residual degrees. There is a generalized Havel-Hakimi algorithm [20] where instead

of picking the top residual degree vertex, we pick any vertex with residual degree r and

add r edges between it and the top r residual degree vertices other than itself. The Havel-

Hakimi algorithm and the generalized Havel-Hakimi algorithm work for all realizable degree

sequences.

We borrow the steps from the generalized version of the Havel-Hakimi algorithm and

use them for trying to construct a graph given a residual degree sequence {rd1, rd2, ..., rdd}.
We pick a vi vertex with residual degree rdi and add edges between it and the top rdi

residual degree vertices and remove vi from D and re-index set of vertices of D so that

their residual degrees from a non-increasing sequence. We remove any vertex whose residual

degree becomes 0. We repeat the aforementioned steps. If after repeating these steps, at

most one vertex remains in D we stop. Now for an independent set D, if we can create such

a graph, we have found an appropriate edge set E ′. The Havel-Hakimi algorithm can be

optimized to run in O(n2 log n) time which is O(d2 log d) in our case.

However, the sequence {rdi} need not be a realizable degree sequence. In such cases,

we create a new degree sequence by adding 1s to the end of degree sequence {rdi}. Notice

that when
∑
i

rdi 1s are added to the degree sequence {rdi} it is always realizable. Each 1

represents an edge from vertices of D to vertices outside D. We need to minimize the edges

added hence we need to find the minimum number of 1s which, when added to {rdi}, makes

it a realizable degree sequence. To generate a graph, we start by running the Havel-Hakimi

algorithm for {rdi}. If the algorithm fails, we add a 1 to the end of {rdi} and try to generate

a graph again. If the algorithm fails again, we add another 1 to the degree sequence and

keep doing so until we can create a graph. After such a graph is created, we find appropriate

random vertices from V \D to which we can transfer the edges between vertices of D and

the 1s added to {rdi}. This takes O((ddL)
3 log(ddL)) time.

Let us try to extend this idea to any set D. If we follow the same approach as before,

we will fail because some vertices of D are already connected to some other vertices of D,

meaning in our residual degree sequence {rdi} generated by vertices of D, there are some

restrictions for each vertex of D in terms of the vertices it can be connected to achieve a

graph. We use the theorem proved in [19] by Hyuunju Kim et al. to develop an algorithm to

generate a graph given restrictions on the vertices in terms of the vertices it can be connected
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to.

Let vertex v ∈ V with restriction set X(v) = {i1, i2, ..., im} where ij ∈ V and ij ̸= v ∀j
where G(V,E) is such the E = ϕ and vertices of V are associated with residual degrees

{d1, d2, ...dn} arranged in non decreasing order. Let the residual degree of v be dv. The

theorem by Hyuunju Kim et al. in [19] shows that a simple graph realizing the degree

sequence {d1, d2, ..., dn} given restriction set X(v) for a vertex v exists if and only if the

degree sequence produced by reducing the residual degrees of top dv residual degree vertices

not in X(v) ∪ {v} by 1 and removing dv is realizable.

This gives us an algorithm to generate graphs for the residual degree sequence of any

set D where each vertex, u of D, has a restriction set X(u) = NG[D](u). For all choices

of the first vertex j with residual degree rdj, we produce a new residual degree sequence

by reducing the residual degrees of top rdj residual degree vertices not in X(i) ∪ {i} by 1

and removing j from D. We remove any vertices from D whose residual degrees are 0. For

the new residual degree sequences obtained from the different Ds produced, we repeat the

previous steps until we cannot repeat them anymore. That is, the remaining vertices form

a clique (a single vertex is a 1 clique). We add these vertices to the graphs produced in

the previous steps. We have d! many graphs produced. Pick the graph where the sum of

the residual degrees of its vertices is minimum. Now for all the vertices in this graph, add

edges between the vertices with a non-zero residual degree and random vertices in G of our

Hiding Leader problem until all the residual degrees become 0. We have obtained the

required edge set E ′. When optimised this takes O(d! log d) time.

5.5 Centrality given by core centrality

We will consider instances of the Hiding Leader problem where the centrality measure

of a vertex is defined by the core centrality. Unlike the degree centrality, which just gives

information about the number of edges of a vertex, the core centrality of a vertex contains

information about a vertex and some of its neighbors. A vertex is a component of some

dense, close-knit structure if its core centrality is high within the graph.

Definition 5.5.1. Let r ≥ 2 be a fixed integer. The r-core of a graph G is the largest induced

52



subgraph of G in which all vertices have a degree of at least r.

Ccore(v) = max{r : v belongs to some r-core}

From Definition 5.5.1, we can infer that given a vertex u with core centrality r it has at

least r vertices in NG(u) whose core centrality and degree centrality are greater than or equal

to r. If we consider the vertices of a graph as people belonging to a group and edge (u, v) as

person u having an influence on v and vice versa. Then in such a graph, a high-degree vertex

is one that has an influence on a lot of people. We call them high-influence people. A vertex

with high core-centrality, however, is one that has an influence on a lot of high-influence

people.

The hiding leader problem when core centrality is considered is proven to be NP-hard

using a reduction from the Set Cover problem even when the highest centrality of the

leaders is 3 [5]. It is also proven that the Set Cover problem parameterized by solution

size is W [2] using a parameterized reduction from the Dominating Set problem parame-

terized by solution size[4]. So it would seem as though we have a parameterized reduction

from Dominating Set parameterized by solution size to the Hiding Leader problem

parameterized by k, d or k + d. Use the parameterized reduction to Set Cover problem

from Dominating Set and then the polynomial reduction from the Set Cover problem

to Hiding Leader problem. However, that is not a direct conclusion we can arrive at. This

is because the polynomial reduction used in proving that NP-hardness of Hiding Leader

problem is not a parameter preserving reduction. That is, k, d or k + d are not bounded by

any computable function g(solution size of set cover problem) in the polynomial reduction.

The hiding leader problem in the core-centrality setting is similar to the Edge k-Core

(EkC) problem defined in [2].

Edge k-Core

Given a graph G and three positive integers d, k and b the Edge k-Core problem is to

produce a k-core of size at least d by adding at most b edges to the graph.

Consider an instance of the Hiding Leader problem with core-centrality. If the set of

leaders is disconnected from the set of followers, that is, no edges (u, v) ∈ E such that u ∈ L

and v ∈ F , then this instance is essentially an Edge k-Core instance with k equals highest

centrality of leaders. To avoid confusion, we use parameter k′ for the budget of the hiding
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leader problem, that is, the number of edges that can be added.

A parameterized reduction from the Clique problem to the Edge k-Core problem

parameterized by d+ b is given in [2]. This would imply that the Hiding Leader problem

in the setting of core centrality is W [1]-hard when parameterized by k′ + d.
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Chapter 6

Conclusion

The theory of parametrized complexity is a very useful toolbox to look at different naturally

arising parameters and their influence on problems. More importantly, if a particular param-

eterization of a NP-hard problem is known to be fixed-parameter tractable, then for a small

parameter size, we achieve a dramatic improvement in the running time of an algorithm

solving the problem (orders of magnitude apart). The scope of discussion is not just limited

to the running time of an algorithm solving the problem but also the pre-processing proce-

dures one can apply to the parameterized versions of the problem. The toolbox comes with

its own unique algorithm techniques, like bounded search trees. Since it is a relatively new

field in computer science not much is proved in the intractability of problems but making

a few motivated, strong assumptions give rise to various results in intractability not based

on P̸=NP. The field is full of interesting insightful problems when looked under the lens of

parameterized complexity, an example of which is the Hiding Leader problem belonging

to the class of edge manipulation problems in graphs. The results of the Hiding Leader

problem can have interesting consequences on how one studies covert networks and can be

insightful for the field of Social Network Analysis.
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In this thesis, we got the motivation to look at parameterized complexity of some hard

problems using real-world examples and looked at a few kernels and kernelization techniques.

We looked at the bounded search tree method for solving parameterized problems and ap-

plied it to the specific case of the vertex cover problem. We got an insight into solving

recursions using the branching vectors. We defined the polynomial-time reductions equiva-

lent machinery for studying fixed-parameter intractability and came across a few examples

that are believed to be in W [1]. We went through an overview of the W-hierarchy and

some of its results. We defined the NP-complete problem of the Hiding Leader prob-

lem and studied it at length for the setting of degree centrality, coming up with original

results and interpretation of the previously shown result. We briefly looked at the setting of

core-centrality.

Future Direction

Although some new results have been obtained in the Hiding Leader problem, a lot of

interesting problems remain unsolved. In the setting of degree, centrality graphs of bounded

treewidth are a compelling subsetting to explore as they yield a fixed-parameter tractable

algorithm for the weighted independent set problem, which, as we discussed, can be consid-

ered a precursor to the Hiding Leader problem. Graphs that admit clique separators are

another class of graphs for which the problem might prove to be tractable. In the setting of

core-centrality, no tractability or intractability results are fully known. Since the degree cen-

trality setting becomes tractable in bounded-degree graphs, the core-centrality setting might

also lead to similar results in that setting. Graphs that admit clique-separators might prove

to be interesting for core-central due to the fact that cliques are the most basic examples of

cores of a graph. One can also look at other centrality settings like betweenness centrality

and closeness-centrality, both of which are NP-hard problems.
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