
Homotopy Type Theory and The
Univalent Foundations of

Mathematics

A Thesis

submitted to

Indian Institute of Science Education and Research, Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

Varun Prasad

Registration No. : 20111028

Indian Institute of Science Education and Research, Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

April, 2017

Supervisor: Dr. Amit Hogadi

c© Varun Prasad 2017

All rights reserved

Certificate

This is to certify that this dissertation entitled Homotopy Type Theory and The Univalent

Foundations of Mathematics towards the partial fulfilment of the BS-MS dual degree

programme at the Indian Institute of Science Education and Research, Pune represents

study/work carried out by Varun Prasad at Indian Institute of Science Education and

Research under the supervision of Dr. Amit Hogadi, Associate Professor, Department of

Mathematics , during the academic year 2016-2017.

Dr. Amit Hogadi

Committee:

Dr. Amit Hogadi

Dr. Steven Spallone

This thesis is dedicated to the empty type.

Declaration

I hereby declare that the matter embodied in the report entitled Homotopy Type Theory

and The Univalent Foundations of Mathematics are the results of the work carried out by

me at the Department of Mathematics, Indian Institute of Science Education and

Research, Pune, under the supervision of Dr. Amit Hogadi and the same has not been

submitted elsewhere for any other degree.

Varun Prasad

Acknowledgments

I would like to acknowledge, first of all, my guide and mentor Dr. Amit Hogadi whose

guidance and presence was invaluable for this project. I would also like to thank Dr. Shane

D’Mello with whom I have had many interesting and insightful discussions on the subject.

I would like to express my gratitude towards Dr. Steven Spallone, Dr. Vivek Mallick and

Dr. Manish Mishra, who along with Dr. Amit Hogadi and Dr. Shane D’Mello, were a part

of the seminar series conducted in IISER, Pune on Homotopy Type Theory.

I thank our joint community of fifth year and PhD student(s) at the mathematics de-

partment of IISER, especially, Visakh, Ajith, Chris and Neeraj, who were my constant

companions in exploring the profound dimensions and scope of mathematics and this project.

Lastly, I would also like to take this oportunity to express my gratitude towards Prof.

Vladimir Voevodsky and all the others working in the Univalent Foundations program, with-

out whose insights and efforts, this project would not exist today.

ix

x

Abstract

Homotopy Type Theory is a new interpretation of Martin-Löf’s intentional, constructive

type theory into abstract homotopy theory. Type theories refer to a class of formal languages

which were proposed as foundations of constructive mathematics and which have since been

studied and developed by theoretical computer scientists because of their desirable compu-

tational properties. In homotopy type theory, types are spaces upto homotopy, proposi-

tional equalities are homotopies and type isomorphisms are homotopy equivalences. Logical

constructions in type theory are then homotopy-invariant constructions on spaces. This

interpretation has many desirable properties including a natural axiomatization of higher

categorical thinking.

The Univalent Foundations of mathematics is a comprehensive, computational founda-

tions of mathematics based on homotopy type theory. Vladimir Voevodsky’s univalence

axiom relates propositional equality of types in a universe with homotopy equivalence of

small types. The Univalent Foundations program is currently being implemented in auto-

mated proof assistants like Coq. This thesis is an introduction to this program.

xi

xii

Contents

Abstract xi

1 Introduction 1

1.1 Type Theory . 1

1.2 The Holy Trinity . 2

1.3 Homotopy Type Theory . 2

1.4 The Univalent Foundations and Implementation in Coq 3

2 Formal Type Theory 5

2.1 Contexts . 7

2.2 Structural Rules . 8

2.3 Type Universes . 10

2.4 Dependent Function Types . 12

2.5 Dependent Pair Types . 14

2.6 Coproduct Types . 16

2.7 The Empty Type . 17

2.8 The Unit Type . 18

2.9 The Natural Number Type . 19

xiii

2.10 Identity Types . 20

2.11 Homotopy Type Theory . 22

3 Homotopy Type Theory and the Univalence Axiom 25

3.1 Types as Sets . 26

3.2 Types as Propositions . 27

3.3 The Homotopy Interpretation of Type Theory 29

3.4 Function Extentionality . 35

3.5 Univalence Axiom . 39

4 Sets and Logic 43

4.1 Sets and n-type . 43

4.2 Intuitionistic Logic . 46

xiv

Chapter 1

Introduction

Homotopy Type Theory is a newly emerging field at the interface of mathematics, logic and

theoretical computer science. It is an interpretation of Martin-Löf’s intentional, constructive

type theory using abstract homotopy theory. Vladimir Voevodsky’s Univalent Foundations

is a computational foundation of mathematics based on Homotopy Type Theory which is an

alternative to the current set theoretic foundations (ZFC).

One of the primary motivations for formalizing the informal mathematics we do in this

foundation is the possibility of building viable proof checkers, i.e., softwares which take

mathematical proofs as input and check their validity. This has become a necessity today

considering the lengths of proofs in modern mathematics and the severe limitations of the

peer review process.

1.1 Type Theory

Type Theory was initially proposed by Bertrand Russell to resolve paradoxes in naive set

theory. It has now developed into a branch of mathematical logic and theoretical computer

science with major contributions from Alonzo Church and Per Martin-Löf, among others.

Here, we consider Martin-Löf’s intentional constructive type theory as a foundation of math-

1

ematics based on intuitionistic logic.

The primitive notion in type theory is that of a type which is similar to data types in

programming languages. The study of this system begins with the basic judgment x : A

read as ‘the term x is of type A’. The deductive system of type theory consists of rules of

forming new judgments from pre-existing ones. This is the same as constructing a term of a

type in a given context (i.e. under certain assumptions). These rules therefore specify elab-

orately structured types which are classified into type formers like the dependent function

type, dependent pair type, coproduct type, booleans, natural numbers and the identity type.

1.2 The Holy Trinity

At the most fundamental level, this subject is a study of the deep correspondence that has

been discovered between Type Theory (Programming), Proof Theory (Logic) and Category

Theory (Mathematics). Consider the basic judgment x : A. This is interpreted as ‘the term

x is of type A’ in Type Theory; ‘x is a proof of proposition A’ in Proof Theory and ‘x is an

object of category A’ in Category Theory. The rules of type theory then correspond to rules

of logic in Proof Theory and universal constructions in Category Theory.

Therefore, types, propositions and categories are essentially the same objects expressed

in different theories. In particular, propositions and sets (which are categories with only

identity morphisms), the primitive notions of the current foundations, are types in type the-

ory.

1.3 Homotopy Type Theory

In Homotopy Type Theory, the above correspondence is modified to replace Category The-

ory with abstract Homotopy Theory, i.e, types are interpreted as spaces upto homotopy (or

2

∞-groupoids) instead of categories. The judgment x : A is now interpreted as ‘x is a point in

space A’ and rules of type theory correspond to homotopy invariant constructions on spaces.

This interpretation explains some of the features of type theory like the identity type

much more naturally than the category theoretic interpretation. The connection between

Type Theory and Homotopy theory was recently discovered by Vladimir Voevodsky, Steve

Awodey and Michael Warren independently and is currently the focus of intense investiga-

tion.

1.4 The Univalent Foundations and Implementation in

Coq

Voevodsky arrived at Homotopy Type Theory by showing how to model Type Theory using

Kan simplicial sets [3]. The simplicial model of type theory satisfies an additional property

called Univalence which is not usually assumed in Type Theory. Homotopy Type Theory

along with the Univalence axiom is known as the Univalent Foundation of mathematics. The

Univalence axiom basically allows isomorphic structures to be formally identified which was

not possible till now in the ZFC based foundations. This has many far reaching consequences

which are yet to be fully understood.

Coq is an interactive proof management system. It is designed to develop mathemat-

ical proofs and write formal specifications, programs and verfiy that programs are correct

with respect to their specifications. Coq provides a specification language called GALLINA

which is based on an intentional dependent type theory called the Calculus of Inductive

Constructions (CIC). The Martin-Löf type theory can be seen as a fragment of CIC. Hence,

mathematics formalized in the Univalent Foundations can be written in Coq and libraries

created so far include topics as diverse as K-theory, p-adics, category theory, real numbers

and topology.

3

The primary reference for this thesis is the book “Homotopy type theory: Univalent

foundations of mathematics”[1]. Since all definitions and theorems are from this reference,

in order to avoid citing the same reference repeatedly all along the text, I would like to cite

it right at the beginning.

4

Chapter 2

Formal Type Theory

Instead of first developing mathematics informally in this new foundations, called the Uni-

valent Foundations, and then describing a formal theory of this foundation, we undertake

a more rigorous treatment of the foundation right at the beginning. In this chapter, we

introduce formally the theory of dependent types and then extend it to include additional

axioms of the Univalent Foundations.

When formalizing set theory, we first introduce a deductive logic framework, the first-

order predicate logic, and then introduce ZFC (Zermelo-Frankael axioms with choice) as a

particular theory in this framework. Type theory, in contrast to set theory, is its own de-

ductive system.

In type theory, there is only one basic notion, namely, types. In contrast, in set theory

we have two basic notions : sets and propositions. Thus, set theory is not only about sets,

but about sets and propositions and how they interact with each other. In type theory, sets

and propositions are both types.

The basic notion that is studied in logic is a proposition or a well-formed assertion. If A is

a proposition, then A is true, A is false, A has a proof are judgments about the proposition

A. A deductive system or framework is a set of rules for deriving judgments from other

5

judgments.

In formal type theory, there are three kinds of judgments :

1. Γ ctx

2. Γ ` a : A and

3. Γ ` a ≡ a′ : A

The basic judgment of type theory is that a : A, which is read as ‘the term a is of type

A’. If the type A is interpreted as a set then this judgement is similar to the judgment

‘a ∈ A is true’. If A is a proposition, then a : A corresponds to the judgment ‘a is a proof of

proposition A’.

However, a is a proof of a proposition A is only meaningful under a list of assumptions

or what we call an ambient context. This is denoted by Γ. Thus, Γ ` a : A is read as ‘in the

context Γ, a is a term of type A’.

Γ ` a ≡ a′ : A is read as ‘in the context Γ, the terms a and a′ of type A are definitionally

equal which means that a is equal to a′ by definition. There is another notion of equality

in type theory which we will encounter later called propostional equality. Note that a defi-

nitional equality is not a proposition. It does not make sense, for example, to negate such

a equality and assume that a is not definitionally equal to a′ as a hypothesis to prove any

theorem.

However, both these kinds of judgments are justified only in a valid list of assumptions

or a well-formed context. This is captured in the first kind of jugdment ‘Γ ctx’ which is read

as Γ is a well-formed context.

Judgements are derived from other judgments using inference rules. A typical inference

6

rule is of the form :

J1 . . . Jn
J

NAME

A derivation of a judgment is a tree that is constructed from inference rules, with the

judgment at the root of the tree.

We now look at the various rules of inference which define the various kinds of types in

type theory and describe their behaviour.

2.1 Contexts

A context is an ordered list of judgments of the form x1 : A1, x2 : A2, x3 : A3, . . . , xn : An

where xi’s are distinct variables and each xi is assumed to have the type Ai. It is important

to note that a context is an ordered list since Ai could depend on variables x1, . . . , xi−1. The

list could be empty. Generally, contexts are denoted using letters Γ,∆, etc.

The judgement Γ ctx expresses the fact that Γ is a well-formed context. The formation

of contexts are governed by the following inference rules :

1.

. ctx
ctx-EMP (2.1)

We can always derive the judgment that the empty context is well-formed. This is how

the rule ctx-EMP is read or traslated into English.

2.
x1 : A1, x2 : A2, x3 : A3, . . . , xn−1 : An−1 ` An : Ui

(x1 : A1, x2 : A2, x3 : A3, . . . , xn : An) ctx
ctx-EXT (2.2)

In ctx-EXT, the variable xn must be distinct from the variables x1, . . . xn−1. The hy-

7

pothesis of the rule says that if in the context x1, . . . , xn, An is a type in the universe

Ui, (which essentially means that An is a well-defined type; see section 2.3 for more

details), then the context (x1 : A1, x2 : A2, x3 : A3, . . . , xn : An) is well-formed.

2.2 Structural Rules

These are a class of inference rules which pin down the behaviour of contexts, variables and

terms (substituting terms for variables and introducing redundant variables) and definitional

equality or judgmental equality.

1.
(x1 : A1, x2 : A2, x3 : A3, . . . , xn : An) ctx

x1 : A1, x2 : A2, x3 : A3, . . . , xn : An ` xi : Ai
Vble (2.3)

The rule Vble ensures that the judgments that occur in any well-formed context are,

indeed, assumptions or hypotheses.

The next four inference rules are the rules for substituting variables and introducing

new ones.

2.
Γ ` a : A Γ, x : A,∆ ` b : B

Γ,∆[a/x] ` b[a/x] : B[a/x]
Subst1 (2.4)

Here, the notation t[a/x] is read as the term a is substituted for the variable x in the

expression t. Subst1 then simple states that if a is a term of A then it can be substi-

tuted for x in the judgment Γ, x : A,∆ ` b : B by substituting all free occurances of x

in the expressions ∆, b and B to obtain the judgment Γ,∆[a/x] ` b[a/x] : B[a/x].

8

3.
Γ ` A : Ui Γ,∆ ` b : B

Γ, x : A,∆ ` b : B
Wkg1 (2.5)

Wkg1 tells us how to introduce a assumption x : A to weaken the context of the judg-

ment Γ,∆ ` b : B. Note that x is distinct from all the variables that occur in Γ and

∆.

The substitution and weakening rules corresponding to definitional equality which are

judgments of the kind a ≡ b : A are stated similarily.

4.
Γ ` a : A Γ, x : A,∆ ` b ≡ c : B

Γ,∆[a/x] ` b[a/x] ≡ c[a/x] : B[a/x]
Subst2 (2.6)

5.
Γ ` A : Ui Γ,∆ ` b ≡ c : B

Γ, x : A,∆ ` b ≡ c : B
Wkg2 (2.7)

Next, we need to introduce rules which state that definitional equality is indeed an

equality, i.e., it is reflexive, symmetric and transitive.

6.
Γ ` a : A

Γ ` a ≡ a : A
(2.8)

Given a : A, we can deduce that a is definionally equal to itself as terms of A, i.e.,

definitional equality is reflexive.

9

7.
Γ ` a ≡ b : A

Γ ` b ≡ a : A
(2.9)

If a and b are terms of A and a is definitionally equal to b, then b is definitionally equal

to a, i.e., definitional equality is symmetric.

8.
Γ ` a ≡ b : A Γ ` b ≡ c : A

Γ ` a ≡ c : A
(2.10)

The above rules states that definitional equality is transitive. Additionally, we also

have the following two rules where A ≡ B : Ui can be read as A and B are well-defined

types which are definitionally equal :

9.
Γ ` a : A Γ ` A ≡ B : Ui

Γ ` a : B
(2.11)

10.
Γ ` a ≡ b : A Γ ` A ≡ B : Ui

Γ ` a ≡ b : B
(2.12)

2.3 Type Universes

In type theory, types can be terms of other types. This leads us to the question as to whether

there is a type of all types. Assuming a type of all types will give rise to paradoxes similar to

10

the Russell’s paradox. In order to take care of this, we assume a countably infinite cumulative

hierarchy of type universes :

U0, U1, U2, . . .

that is, a countably infinite hierarchy of type universes where each universe is contained

in the next and every type in Ui is also a type in Ui+1. Every type A in type theory which

is well-defined belongs to some universe sUi.

The following rules pin down the notion of Type universes :

1.
Γ ctx

Γ ` Ui : Ui+1

U-INTRO (2.13)

Each universe is contained in the next, that is, there is a hierarchy of type universes.

2.
Γ ` A : Ui

Γ ` A : Ui+1

U-CUMUL (2.14)

Every type in Ui is also a type in Ui+1, that is, the hierarchy is cumulative.

Notation : A is a type will be denoted as A : U The index i of the type universe is

supressed with the understanding that the hierarchy of universes that we are dealing with

in a particular theory can be consistently indexed. This is also called typical ambiguity.

From this point onwards, we shall follow a general pattern for introducing and charac-

terizing new types. A new type is specified by giving the following rules :

11

1. A formation rule which tells us when and how to form a new type of this kind.

2. Introduction rules which tell us how to construct or introduce terms of this type.

These are also called the type’s constructors.

3. Elimination rules or an induction principle, which tell us what one can do with

terms of this type. These are also called the type’s eliminators. Eliminiators can also

be thought of, in some cases, as describing functions or maps in and out of the type.

4. Computation rules tell us what happens when the eliminators act on the construc-

tors, i.e., what happens when the elimination rules are applied to the terms that are

introduced using the introduction rules.

5. Optional uniqueness principles, which are judgmental equalities which explain how

every element of that type is uniquely determined by applying the elemination rules to

it. In a certain sense, it tells us what happens when the constructors act on eliminators.

2.4 Dependent Function Types

Dependent function types or Π-types are a generalization of the notion of functions in math-

ematics. In set theoretic mathematics, a function f : A→ B has two sets associated with it,

namely, the domain A and the codomain B. Every point in A is mapped uniquely to a point

in B. A dependent fuction can be thought of as a function in which the codomain varies

with the point chosen in the domain. So, for every point in the domain, we first specify a

codomain and then map the point to a point in the appropriate codomain.

Γ ` A : Ui Γ, x : A ` B : Ui
Γ `

∏
(x:A) B : Ui

Π-FORM (2.15)

12

Γ ` A : Ui is read as in the context Γ, A is a type in the universe Ui. The judgment

Γ, x : A ` B : Ui tells us that under the context Γ, x : A, we have B : Ui. Thus, for every x

in A, we have a specific choice of a type B(x) (i.e. B depends on x). This gives us a family

of types, which we’ll call B, that is parametrized by the type A.

The formation rule is then read as : If A is a type and B is a type family parametrized

by A, then we can form the type of dependent functions
∏

(x:A) B.

Γ, x : A ` b : B

Γ ` λ(x : A).b :
∏

(x:A) B
Π-INTRO (2.16)

If for every x : A, we are given a specific choice of term b(x) in the type B(x), then we

can form or construct a term called λ(x : A).b of the type
∏

(x:A) B. This is the only way to

introduce terms of a dependent funtion type. Here, λ(x : A).b is a primitive constant that is

being introduced.

Γ ` f :
∏

(x:A) B Γ ` a : A

Γ ` f(a) : B[a/x]
Π-ELIM (2.17)

The elimination rule tells us what to do with a dependent function, namely, act it on a

point in the domain to obtain a point in the appropriate codomain. It is read formally as

if in the context Γ we have a term f :
∏

(x:A) B and a : A, then in the same context Γ, we

obtain a term f(a) : B. Again, f(a) is a primitive constant that is being introduced here.

13

Γ, x : A ` b : B Γ ` a : A

Γ ` (λ(x : A).b)(a) ≡ b[a/x] : B[a/x]
Π-COMP (2.18)

The computation rule tells us what happens when the terms introduced in the introduc-

tion rule act according to the elimination rule. So, if we have the judgment Γ, x : A ` b : B,

then we have Γ ` λ(x : A).b :
∏

(x:A)B because of Π-INTRO. So, if in Π-ELIM, we replace f

with λ(x : A).b, then we get λ(x : A).b)(a) : B[a/x]. The computation rule says that this is

just b[a/x] as we would expect.

Γ ` f :
∏

(x:A) B

Γ ` f ≡ (λx.f(x)) :
∏

(x:A) B
Π-UNIQ (2.19)

The uniqueness principle tells us that the constructors of
∏

(x:A) B are essentially the

only terms of this type. Or in other words, if we know the value of the dependent function

at every point in the domain, then we have uniquely determined the dependent function.

In the special case, we the type family B is the constant family, i.e., all the terms in

the domain have the same codomain, we denote
∏

(x:A) B by A→ B and call it the type of

non-dependent functions from A to B.

2.5 Dependent Pair Types

Dependent pair types or Σ-types are the generalization of the binary cartesian product in

mathematics. It is denoted by
∑

(x:A) B. Terms of this type are pairs (a, b) where a : A and

b : B(a).

14

Γ ` A : Ui Γ, x : A ` B : Ui
Γ `

∑
(x:A) B : Ui

Σ-FORM (2.20)

The formation rule states that if A is a type and B is a type family parametrized by A,

then we can form the type of dependent pairs
∑

(x:A) B.

Γ, x : A ` B : Ui Γ ` a : A Γ ` b : B[a/x]

Γ ` (a, b) :
∑

(x:A) B
Σ-INTRO (2.21)

If for some a : A, we are given a specific choice of term b in the type B(a), then we can

introduce the term called (a, b) in the type
∑

(x:A) B. Here, (a, b) is a primitive constant that

is being introduced.

Γ, z :
∑

(x:A)
B ` C : Ui Γ, x : A, y : B ` g : C[(x, y)/z]

Γ ` p :
∑

(x:A)
B

Γ ` ind∑
(x:A)B

(z.C, x.y.g, p) : C[p/z]
Σ-ELIM (2.22)

The elimination rule can be thought of as describing functions out of the dependent pair

type. However, since, we are in type theory, we consider the general case of dependent func-

tions instead of just functions. So, if C is a type family parametrized by
∑

(x:A)B and we have

a dependent function such that we know its value for every (x, y), then we have determined

the function on all of
∑

(x:A) B. To elaborate, if for every x : A and y(x) : B(x), we have the

value of the function given by g : C[(x, y)], then we have ind∑
(x:A)B

(z.C, x.y.g, p) : C[p/z],

the value of the function at a arbitrary term p.

15

Γ, z :
∑

(x:A)
B ` C : Ui Γ, x : A, y : B ` g : C[(x, y)/z]

Γ ` a : A Γ ` b : B[a/x]

Γ ` ind∑
(x:A)B

(z.C, x.y.g, (a, b)) ≡ g[a, b/x, y] : C[(a, b)/z]
Σ-COMP (2.23)

The computation rule tells us what the function we defined in the elimination rule is

when applied to pairs (a, b).

These various kinds of types that we are introducing are also referred to as type formers.

2.6 Coproduct Types

Coproducts are a notion in type theory which correspond to the notion of a dijoint union in

set-theoretic mathematics. It is notated as in A + B. The rules of inference follow a trend

similar to the above type formers.

Γ ` A : Ui Γ ` B : Ui
Γ ` A+B : Ui

+-FORM (2.24)

Γ ` A : Ui Γ ` B : Ui Γ ` a : A

Γ ` inl(a) : A+B
+-INTRO1 (2.25)

Γ ` A : Ui Γ ` B : Ui Γ ` b : B

Γ ` inr(b) : A+B
+-INTRO2 (2.26)

16

Γ, z : (A+B) ` C : Ui Γ, x : A ` c : C[inl(x)/z] Γ, y : B ` d : C[inr(y)/z]

Γ ` e : (A+B)

Γ ` indA+B(z.C, x.c, y.d, e) : C[e/z]
+-ELIM

(2.27)

Γ, z : (A+B) ` C : Ui Γ, x : A ` c : C[inl(x)/z] Γ, y : B ` d : C[inr(y)/z]

Γ ` a : A

Γ ` indA+B(z.C, x.c, y.d, inl(a)) ≡ c[a/x] : C[inl(a)/z]
+-COMP1

(2.28)

Γ, z : (A+B) ` C : Ui Γ, x : A ` c : C[inl(x)/z] Γ, y : B ` d : C[inr(y)/z]

Γ ` b : B

Γ ` indA+B(z.C, x.c, y.d, inr(b)) ≡ d[b/y] : C[inr(b)/z]
+-COMP2

(2.29)

2.7 The Empty Type

In all the type formers that we have introduced so for, we have never, postulated the ex-

istence of a type. The first example of this kind is the empty type which exists in every

context as the formation rule indicates. It has no introduction rules as expected.

17

Γ ctx

Γ ` 0 : Ui
0-FORM (2.30)

Γ, x : 0 ` C : Ui Γ ` a : 0

Γ ` ind0(x.C, a) : C[a/x]
0-ELIM (2.31)

The elimination rule says that if in some context, the empty type is inhabited, then ev-

ery type in the universe we are working in is inhabited. Thus, the empty type can also be

interpreted as the proposition ‘False’ and if we have a proof of ‘false’, then we have a proof

every other proposition. For more details, see Section 3.2.

2.8 The Unit Type

The unit type has only one term, a formal object ? and every map out of it is determined if

we know its value on ?. The rules of inference follow a trend similar to the above type formers.

Γ ctx

Γ ` 1 : Ui
1-FORM (2.32)

Γ ctx

Γ ` ? : 1
1-INTRO (2.33)

18

Γ, x : 1 ` C : Ui Γ ` c : C[?/x] Γ ` a : 1

Γ ` ind1(x.C, c, a) : C[a/x]
1-ELIM (2.34)

Γ, x : 1 ` C : Ui Γ ` c : C[?/x]

Γ ` ind1(x.C, c, ?) ≡ c : C[?/x]
1-COMP (2.35)

2.9 The Natural Number Type

We also introduce the type of natural numbers. The terms of this type are of the form

0, succ(0), succ(succ(0)),

Γ ctx

Γ ` N : Ui
N-FORM (2.36)

Γ ctx

Γ ` 0 : N
N-INTRO1 (2.37)

Γ ` n : N
Γ ` succ(n) : N

N-INTRO2 (2.38)

19

Γ, x : N ` C : Ui Γ ` c0 : C[0/x] Γ, x : N, y : C ` cs : C[succ(x)/x]

Γ ` n : N
Γ ` indN(x.C, c0, x.y.cs, n) : C[n/x]

N-ELIM

(2.39)

The elimination rule of natural numbers corresponds to the principle of mathematical

induction. When we interpret proposition as types, later, this is what a proof by induction

will correspond to.

Γ, x : N ` C : Ui Γ ` c0 : C[0/x] Γ, x : N, y : C ` cs : C[succ(x)/x]

Γ ` indN(x.C, c0, x.y.cs, 0) ≡ c0 : C[0/x]
N-COMP1

(2.40)

Γ, x : N ` C : Ui Γ ` c0 : C[0/x] Γ, x : N, y : C ` cs : C[succ(x)/x]

Γ ` n : N

Γ ` indN(x.C, c0, x.y.cs, succ(n))

≡ cs[n, indN(x.C, c0, x.y.cs, n)/x, y] : C[succ(n)/x]

N-COMP2

(2.41)

2.10 Identity Types

An inmportant feature of type theory which does not have any set theoretic analogue is

the Identity types. In the interpretation of proposition as types, if we have a, b : A, then

20

the proposition a is equal to b as terms of type A, is itself a type denoted by a =A b. This

equality is called propostional equality and is distinct from definitional equality that we have

encountered so far.

Γ ` A : Ui Γ ` a : A Γ ` b : A

Γ ` a =A b : Ui
=-FORM (2.42)

Γ ` A : Ui Γ ` a : A

Γ ` refla : a =A a
=-INTRO (2.43)

The introduction rule just introduces a constant refla and says that propostional equality

is always reflexive.

Γ, x : A, y : A, p : x =A y ` C : Ui Γ, z : A ` c : C[z, z, reflz/x, y, p]

Γ ` a : A Γ ` b : A Γ ` p′ : a =A b

Γ ` ind=A
(x.y.p.C, z.c, a, b, p′) : C[a, b, p′/x, y, p]

=-ELIM (2.44)

The elimination rule for identity type is also called path induction and plays a critical

role in homotopy type theory (See Chapter 3).

Γ, x : A, y : A, p : x =A y ` C : Ui Γ, z : A ` c : C[z, z, reflz/x, y, p]

Γ ` a : A

Γ ` ind=A
(x.y.p.C, z.c, a, a, refla) ≡ c[a/z] : C[a, a, refla/x, y, p]

=-COMP (2.45)

21

2.11 Homotopy Type Theory

In homotopy interpretation of type theory (see chapter 3), the following additional axioms

are assumed. We state this here for the sake of completeness and go into a detailed discussion

of these in Chapters 3 and 4.

1. Function Extentionality :

Γ ` f :
∏

(x:A) B Γ ` g :
∏

(x:A) B

Γ ` funext(f, g) : isequiv(happlyf,g)
Π-EXT (2.46)

2. Univalence Axiom :

Γ ` A : Ui Γ ` B : Ui
Γ ` univalence(A,B) : isequiv(idtoeqvA,B)

Ui-UNIV (2.47)

3. The circle :

Γ ctx

Γ ` S1 : Ui
S1-FORM (2.48)

Γ ctx

Γ ` base : S1
S1-INTRO1 (2.49)

22

Γ ctx

Γ ` loop : base =S1 base
S1-INTRO2 (2.50)

Γ, x : S1 ` C : Ui Γ ` b : C[base/x] Γ ` l : b =C
loop Γ ` p : S1

Γ ` indS1(x.C, b, l, p) : C[p/x]
S1-ELIM

(2.51)

Γ, x : S1 ` C : Ui Γ ` b : C[base/x] Γ ` l : b =C
loop

Γ ` indS1(x.C, b, l, base) ≡ b : C[base/x]
S1-COMP1 (2.52)

Γ, x : S1 ` C : Ui Γ ` b : C[base/x] Γ ` l : b =C
loop

Γ ` S1 − loopcomp : apd(λy.indS1 (x.C,b,l,y))(loop) = l
S1-COMP2 (2.53)

The axioms corresponding to Sn for all natural numbers n can be stated similarily and

is assumed.

23

24

Chapter 3

Homotopy Type Theory and the

Univalence Axiom

Consider the basic judgment in type theory x : A. In type theory, this is read as the term x

is of type A. If we interpret types as sets, then this judgment would be interpreted as x ∈ A,

i.e., the element x belongs to the set A. If we interpret types as propositions, then the same

judgment would be interpreted as x is a proof of proposition A.

Thus, x : A is a formal statement in the formal theory of types and each of its interpreta-

tions that we have seen above is the translation of this statement into various languages like

that of sets and propositions. Another way of stating this point is that x ∈ A, for example,

is the interpretation of x : A in the set-theoretic model of types where types are modelled

using sets. Similarly, we have a model of types using propositions.

What do the constructions of all different kinds of types (in Chapter 2) in formal type

theory correspond to in these various interpretations of type theory? This is outlined in brief

in Table 1.

25

Types Logic Sets Homotopy

A proposition set space

a : A proof of proposition element of set point in space

B(x) predicate family of sets fibration

b(x) : B(x) conditional proof family of elements section

0,1 ⊥,> ∅, {∅} ∅, ∗

A+B A ∨B disjoint union coproduct

A×B A ∧B set of pairs product space

A→ B A =⇒ B set of functions function space∑
(x:A) B(x) ∃x : A,B(x) disjoint sum total space∏
(x:A)B(x) ∀x : A,B(x) product space of sections

IdA equality = {(x, x)|x ∈ A} path space AI

Table 1 : Comparing points of view on type-theoretic operations

Notations Used in Table 1 :

⊥ : the formal proposition ‘False’ ; > : the formal proposition ‘True’ ; ∗ : contractible space;

A ∨B : A or B; A ∧B : A and B ; A =⇒ B : A implies B.

3.1 Types as Sets

In the set-theoretic interpretation of types, a type A is a set. x : A means that x ∈ A and

x ≡ y : A is interpreted as x is definitionally equal to y as elements of the set A. The in-

terpretations of various type constructions is clear from Table 1. In fact, this interpretation

is what is used to motivate the various type constructions in Chapter 2. For example, the

dependent function types are a generalization of functions on sets, the dependent product

types are a generalization of cartesian products on sets, the empty type corrsponds to the

empty set and the unit type to the singleton, the type of natural numbers to the set of

natural numbers and so on.

26

3.2 Types as Propositions

In the interpretation of types as propositions, x : A is interpreted as x is a proof of propo-

sition A. Therefore, if a proposition A is true in the context Γ, then in the type theoretic

setting, this means that the type A is inhabited in the context Γ.

Considering propostions as types is a very important step in this foundation as it places

propositions (and theorems in particular) and proofs of propositions in the same footing

as any other mathematical object like natural numbers, sets or functions. Thus, unlike in

current mathematics, where a proof is just a way of talking about (or establishing) proper-

ties of mathematical objects that we study such as groups, topological spaces, etc.; in this

foundation, a proof is itself an abstract mathematical object.

To take an example of a proof-theoretic interpretation of types, consider say the non-

dependent function type, denoted as A→ B. A non-dependent function is our usual notion

of functions. In the type theoretic setting, it is just a term of a dependent function type∏
(x:A) B where B is a constant family over A.

In the proof-theoretic interpretation, where A and B are propositions, A→ B is just the

proposition A =⇒ B (A implies B). The terms of A→ B are just proofs of the proposition

A =⇒ B. Now, consider the introduction rule for non-dependent types which is obtained

from the corresponding rule for dependent types:

Γ, x : A ` b : B

Γ ` λ(x : A).b : A→ B
Π-INTRO (3.1)

This just says that if for every proof x of A, we have a proof b of B, then we have a proof

of A =⇒ B called λ(x : A).b. This is what it means to prove an implication, i.e., whenever

A is true, B must be true.

27

Let’s also look at the elimination rule :

Γ ` f : A→ B Γ ` a : A

Γ ` f(a) : B
Π-ELIM (3.2)

This is read as, if we have a proof f of A =⇒ B and we have a proof a of the proposition

A, then we have a proof of B called f(a). In simpler words, if A =⇒ B is true and A is

true, then B is true. This is the rule of logic called Modus ponens.

In this manner, the various types that we have described earlier and their rules of infer-

ence can be interpreted in the proof-theoretic framework according to Table 1. Notice that

the mathematics this will give rise to is proof-relevant. Proofs in this setting are abstract

mathematical objects and with this comes the notion of an algebra of proofs as we have

encountered in the above discussion.

The set-theoretic model of types is not a satisfactory one as there are a lot of types

and type constructions like the identity type, which do not have any natural or canonical

interpretation in sets. The model of types as propositions is by itself, obviously, insufficient

to describe the informal mathematics that we do.

The recent development that has lead to a flurry of activity in this area is the observation

that the interpretation of types as ∞- groupoids or spaces upto homotopy is a very good

model of types. Moreover, it can capture various aspects of modern mathematics like cate-

gory theory very easily and therefore is a good candidate for a new computational foundation

of mathematics.

28

3.3 The Homotopy Interpretation of Type Theory

In the homotopy interpretation of types (also called Homotopy Type Theory), types are

regarded as spaces upto homotopy. Terms of types are then points in the space. But, why to

model types using homotopy theory? What has homotopy theory to do with the foundations

of mathematics?

Before getting into the details , let us first consider a brief philosophical answer to the

above question. Homotopy type theory is a geometric foundations of mathematics. One way

to look at sets is as the simplest geometric objects, namely a disjoint union of points. In set

theoretic mathematics, we assume sets as primitive undefined and then describe everything

else, including homotopy theory, using it. In homotopy type theory, we assume not just

sets but higher geometric objects such as spheres aslo as primitve undefined notions. This

enables us to capture higher mathematics such as category-level mathematics very easily as

compared to the set-theoretic foundations.

A more direct answer to the initial question comes from the analysis of the identity type

in homotopy type theory. In the homotopy theoretic interpretation, a type A is a space upto

homotopy. a : A is interpreted as a is a point in the space A. Now, given two points a, b : A,

we can form the identity type a =A b. We interpreted this type as the proposition ‘a = b as

terms of type A’. In homotopy type theory, a =A b is the space of all paths between a and

b and a term of this type, p : a =A b is a path from a to b. Thus, the equality of terms of a

type correspond to the existence of a path between the points in the homotopy interpretation.

But, now consider two paths p and q from a to b , i.e., p, q : a =A b. Since, a =A b is

itself a type, we can form the type p =(a=Ab) q. This is then the space of paths between the

paths p and q or in other words, it the the space of homotopies between the paths p and q.

So, terms r : p =(a=Ab) q of this type are homotopies. Now we can continue this (consider

r, s : p =(a=Ab) q) to obtain homotopies between homotopies and so on. Thus, we obtain the

following correspondence :

29

Type Theory Homotopy Theory

A is a type ←→ A is a space upto homotopy

a : A ←→ a is a point of A

p : a =A b ←→ p is a path in A from a to b

r : p =(a=Ab) q ←→ r is a homotopy from path p to path q

...

It is important to note that when we say that types are spaces upto homotopy, we as-

sume no information about the topology of the space and only consider spaces upto homotopy

equivalence. Also, points, paths, homotopies, homotopies between homotopies, etc. are all

primitve undefined notions. So, for example, in this interpretation a path is not a collection

of points, it itself is a primitve notion.

3.3.1 Types as ∞-groupoids

A groupoid is a category where all morphisms are isomorphisms. A 2-category is a cat-

egory which consists of objects, 1-morphisms between objects and 2-morphisms between

1-morphisms sastifying some additional axioms. Category of categories is an example of

a 2-category with objects as categories, 1-morphims as functors between categories and 2-

morphisms as natural transformations between functors.

We can extend this notion to an n − category which would consist of objects, 1- mor-

phisms, . . . , n-morphisms. However, no algebraic definition of an n-category exists because

of the difficulty in stating the additional axioms. It is easy to see how this notion can be

further extended to that of an ∞-category. An ∞-category in which all the morphisms can

be inverted is an ∞-groupoid.

Now, a topological space is an ∞-groupoid with objects as the points of the space, 1-

morphisms as paths between points, 2-morphisms as homotopies between paths, 3-morphisms

30

as homotopies between homotopies and so on. The composition of morphisms is the con-

catenation of paths and since all paths are invertible with respect to concatenation, every

topological space has an ∞-groupoid structure associated to it.

Moreover, an idea or philosophy that can be traced back to Alexander Grothendieck says

that every ∞-groupoid is “essentially” a topological space in the above sense.

Therefore, every type can also be interpreted as an ∞-groupoid as follows :

Type ∞-groupoid

A is a type ←→ A is ∞-groupoid

a : A ←→ a is an object of A

p : a =A b ←→ p is a 1-morphism from a to b

r : p =(a=Ab) q ←→ r is a 2-morphism from p to q

...

We now show a bit more rigourously that types are indeed groupoids with repect to the

axioms and rules of formal type theory stated in Chapter 2.

The first proposition in this direction ascertains that all morphisms are invertible. Note

that we need to prove the invertibility of 1-morphisms only as 2-morphisms of A are 1-

morphisms of the type a =A b and so on.

Proposition 3.3.1. For every type A and every x, y : A, there is a function from (x =

y) → (y = x) written as p 7→ p−1, such that refl−1
x ≡ reflx for every x : A. We call p−1 the

inverse of p.

Since, this is the first proposition or theorem that we are encountering, let us see what

it corresponds to in formal type theory. Recall that every proposition is identified with a

31

type in type theory and proving the proposition corresponds to constructing a term of the

associated type.

Using the correspondence stated in Table 1, it is easy to see that the above proposition

corresponds to the type :

∏
(A:U)

∏
(x,y:A)

(x = y)→ (y = x)

The proof of Proposition 3.3.1 will therefore consist of inhabiting the above type, i.e.,

deriving the judgment f :
∏

(A:U)

∏
(x,y:A)(x = y)→ (y = x) for some f .

We first prove this theorem informally and then convert it into a formal proof.

Proof. Let A be a type, then for every x, y : A and p : x = y, we need to construct a term

p−1 : y = x. By path induction of identity types (which is the elimination rule of identity

types), it suffices to do this in the case when y is x and p is reflx. But, when y is x, then

both (x = y) and (y = x) are (x = x) and if p is reflx, then we can define refl−1
x to be reflx

itself as we need a term of (x = x). We have thus constructed p−1 for the “reflexivity” case

and the general case follows by path induction and refl−1
x ≡ reflx by construction.

A More Formal Proof : The proof is using path induction of identity types which is :

Γ, x : A, y : A, p : x =A y ` C : Ui Γ, z : A ` c : C[z, z, reflz/x, y, p]

Γ ` a : A Γ ` b : A Γ ` p′ : a =A b

Γ ` ind=A
(x.y.p.C, z.c, a, b, p′) : C[a, b, p′/x, y, p]

=-ELIM (3.3)

Let A : U and let C : (
∏

(x,y:A)(x = y) → U) be the type family defined by C[x, y, p] :≡
(y = x). C is a function which assigns to any x, y : A and p : x = y a type, namely (y = x).

Now, given z : A, we have a term of the type C[z, z, reflz] namely, reflz as C[z, z, reflz] is

32

simply (z = z).

Therefore, by path induction, we have the term ind=A
(x.y.p.C, z.reflz, x, y, p) : C[x, y, p]

or simplifying notation we have an element ind=A
(C, reflz, x, y, p) : (y = x) for each p : x = y.

Thus, p−1 ≡ ind=A
(C, reflz, x, y, p).

The computation rule for identity types then gives us that refl−1
x ≡ reflx as required.

Γ, x : A, y : A, p : x =A y ` C : Ui Γ, z : A ` c : C[z, z, reflz/x, y, p]

Γ ` a : A

Γ ` ind=A
(x.y.p.C, z.c, a, a, refla) ≡ c[a/z] : C[a, a, refla/x, y, p]

=-COMP (3.4)

Most informal proofs involving path induction of identity types can be formalized in a

similar manner to that illustrated above. Hence, from now on, we shall write only the infor-

mal proofs keeping in mind that we can formalize the proofs, when required, using the rules

stated in Chapter 2.

The next proposition defines the composition of morphisms in the ∞-groupoid interpre-

tation of types.

Proposition 3.3.2. For every type A and every x, y, z : A, there is a function from (x =

y)→ (y = z)→ (x = z) deonted by p 7→ q 7→ p · q, such that reflx · reflx ≡ reflx for any x : A.

p · q is called the concatenation or composite of p and q.

Here, (x = y) → (y = z) → (x = z) should be read as the type (x = y) → ((y = z) →
(x = z)). A function of this type takes in two arguments p : x = y and q : y = z to give a

term of the type x = z. Thus, (x = y) → (y = z) → (x = z) can also be thought of as the

type ((x = y) × (y = z)) → (x = z). This style of writing a function which takes multiple

33

arguments is called Currying after Haskell Curry.

Proof. We proceed again by using path induction. When x, y and z are all equal, say to x

and p and q are both reflx, then (x = y)→ (y = z)→ (x = z) is just (x = x)→ (x = x)→
(x = x) and reflx 7→ reflx 7→ reflx i.e. reflx · reflx ≡ reflx. The general case, then, follows from

path induction.

The next proposition establishes reflx as the identity morphism of x, verifies that p−1 is

the inverse of p with respect to the identity and checks associativity.

Proposition 3.3.3. Let A : U and x, y, z, w : A and p : x = y, q : y = z and r : z = w, then

:

1. p · (q · r) = (p · q) · r.

2. p · refly = p and reflx · p = p.

3. p · p−1 = reflx and p−1 · p = refly.

4. (p−1)−1 = p.

Proof. 1. By path induction, it is sufficient to assume that x ≡ y ≡ z ≡ w and p, q, r are

reflx. In this case,

p · (q · r) ≡ reflx · (reflx · reflx) ≡ reflx ≡ (reflx · reflx) · reflx ≡ (p · q) · r

Therefore, we have reflreflx inhabiting p · (q · r) = (p · q) · r in the above case.

2. Assume that p ≡ refly, then p · refly = p since we have reflrefly : refly · refly = refly by

path induction. The other case is similar.

3. Assume that p ≡ reflx, then p−1 ≡ refl−1
x ≡ reflx and textreflreflx

: reflx · refl−1
x = reflx.

Therefore, p · p−1 = reflx by path induction. The other case is similar.

34

4. Assume that p ≡ reflx. It is clear that (p−1)−1 ≡ reflx and the result follows from path

induction.

To summarize, the notion of equality (or propositional equality to distinguish it from

definitional equality) is interpreted in the homotopical and ∞-groupoid view of types as

follows :

Equality Homotopy ∞-Groupoid

Reflexivity constant path identity morphism

Symmetry inversion of paths inverse morphism

Transitivity concatenation of paths composition of morphisms

3.4 Function Extentionality

Let us now consider functions between types in homotopy type theory. A function f : A→ B

is interpreted as a continuous map from space A to space B or as an∞-functor from A to B.

We will now establish that functions behave functorially on paths. What does this mean?

We know that if f : A → B and x : A, then we have f(x) : B. Now, if x = y, i.e., we have

p : x = y, then is f(x) = f(y) , i.e. is there some f(p) : f(x) = f(y)?

Proposition 3.4.1. Suppose f : A→ B is a function. Then, for any x, y : A, we have

apf : (x =A y)→ (f(x) =B f(y)

such that for each x : A, we have apf (reflx) ≡ reflf(x).

Proof. By path induction, it suffices to prove it for the case when x ≡ y and p is reflx. We

can then define apf (p) :≡ reflf(x) : f(x) = f(x) and we are done.

Proposition 3.4.2. Given f : A→ B and g : B → C and paths p : x =A y and q : y =A z :

35

1. apf (p · q) = apf (p) · apf (q).

2. apf (p
−1) = apf (p)

−1.

3. apg(apf (p)) = apg◦f (p).

4. apidA(p) = p.

Proof. Similar to above proofs and therefore, left to the reader.

3.4.1 Type families as fibrations and Dependent functions as sec-

tions

A type family P parametrized by a type A is a function P : A → U which assigns to every

point x : A, a type P (x). In the homotopy interpretation, P is a continuous map which

attaches a space to very point of A. P is, therefore, a fibration with base space A.

Suppose P : A → U is a fibration over A, then a dependent function f :
∏

(x:A) P (x) is

a function which assigns to every point a : A, a point in the fiber of a, that is P (a). f is

therefore a continuous section of the fibration. It is a continuous section since all functions

in homotopy type theory correspond to continuous maps.

We think of the type family P : A→ U as a fibration over A, with P (x) being the fiber

over x : A and with
∑

(x:A) P (x) as being the total space of the fibration with first projection

pr1 :
∑

(x:A) P (x)→ A. It is easy to see why
∑

(x:A) P (x) is the total space as every term of∑
(x:A) P (x) is a pair of the form (a, b) where a : A and b : P (a).

The followig proposition then tells us that P respects equality.

36

Proposition 3.4.3. (Transport) Suppose P is a type family over A and p : x =A y, then

there exists function p∗ : P (x)→ P (y).

Proof. Formally, we need to construct a term of the type :∏
(A:U)

∏
(P :A→U)

∏
(x,y:A)

(x = y)→ (P (x) = P (y))

When x ≡ y and p ≡ reflx, then p∗ can be defined as p∗ ≡ idP (x), i.e. p∗(z) :≡ z : P (x).

This defines p∗ in general by path induction.

Notation : p∗ defined above is also denoted as transportP (p,−) : P (x)→ P (y).

Proposition 3.4.4. (Path lifting property). Suppose P : A → U is a type family over A

and suppose we have u : P (x) for some x : A, then for any p : x = y, we have

lift(u, p) : (x, u) = (y, p∗(u))

in the type
∑

(x:A) P (x), such that pr1(lift(u, p)) = p.

Proof. Left to the reader.

Proposition 3.4.5. Suppose f :
∏

(x:A) P (x) and p : x = y, then we have a map p∗ : P (x)→
P (y) as above. In this case, we have

apdf (p) : p∗(f(x)) =P (y) f(y)

More formally we have,

apdf :
∏

(p:x=y)

(p∗(f(x)) =P (y) f(y))

37

Example 3.4.6. Fix a : A and consider the type famlity P : A→ U defined by x 7→ (a =A x).

If q : x =A y, then we have q∗ : (a = x)→ (a = y) such that q∗(p) = q · p.

We now define when two dependent functions or two sections of a type family are homo-

topic.

Definition 3.4.7 (Homotopies between functions). Suppose f, g :
∏

(x:A) P (x). A homotopy

from f to g is a dependent function of the type

(f ∼ g) :≡
∏

(x:A)

(f(x) =P (x) g(x))

Let us unravel this definition. Let P : A→ U be a type family over A such that P (x) is

the identity type f(x) = g(x). A homotopy from f to g is a section of this family P . But,

terms of f(x) = g(x) are paths from f(x) to g(x). It is now easy to see how this corresponds

to the definition of homotopy in homotopy theory.

So, f and g are homotopic if they are propositionally equal pointwise. But, we also have

the equality between the terms f and g themselves as in the identity type (f =(
∏

(x:A) P) g).

How are these two notions related? That is the content of the next proposition :

Proposition 3.4.8. Let f, g :
∏

(x:A) P (x) be two sections of the type family P , then we have

a map :

happly : (f = g)→ (f ∼ g) (3.5)

Proof. (f ∼ g) :≡
∏

(x:A)(f(x) =P (x) g(x)) and so we nned to construct a term happly : (f =

g)→
∏

(x:A)(f(x) =P (x) g(x)). This follows easily form path induction.

Now that we have defined homotopy between two maps, we move on to define the equiv-

alence of two spaces A and B.

Definition 3.4.9. f : A→ B is called an equivalence iff there exists a map g : B → A such

that f ◦ g ∼ idB and g ◦ f ∼ idA.

38

Theorem 3.4.10. f : A → B is an equivalence iff there exist maps g : B → A and

h : B → A such that f ◦ g ∼ idB and h ◦ f ∼ idA.

For reasons that we will not go into at this stage, we choose the latter as the definition

of equivalence when working in homotopy type theory. So, we define the type isequiv(f) as

isequiv(f) :≡ (
∑

(g:B→A)

(f ◦ g ∼ idB))× (
∑

(h:B→A)

(h ◦ f ∼ idA)) (3.6)

Thus, the type isequiv(f) is inhabited precisely when f is an equivalence.

Now, Propostion 3.4.7 tells us that when two functions as equal, then they are equal

pointwise (i.e., they are equivalent). But, we also want that if two functions are equal

pointwise, then they must be equal. Here, all equalities are propositional. This does not

follow from whatever we have stated so far. We, therefore, assume it as an axiom called

function extensionality. This is the first additional axiom that we impose in homotopy type

theory.

Axiom 3.4.11 (Function Extentionality). For any types A,B and maps f, g :
∏

(x:A) P , the

function happly : (f = g)→ (f ∼ g) that we defined in Proposition 3.4.7 is an equivalence.

Formally, it corresponds to the rule of inference :

Γ ` f :
∏

(x:A) B Γ ` g :
∏

(x:A) B

Γ ` funext(f, g) : isequiv(happlyf,g)
Π-EXT

3.5 Univalence Axiom

Given the definition of when a function is an equivalence, when are two types A and B

equivalent? A is equivalent to B when there exists an equivalence f : A→ B. Therefore,

39

(A ' B :≡
∑

(f :A→B)

isequiv(f) (3.7)

Recall that

isequiv(f) :≡ (
∑

(g:B→A)

(f ◦ g ∼ idB))× (
∑

(h:B→A)

(h ◦ f ∼ idA))

Just like in the case of function, given two types A and B, we may consider them as

terms of some universe U and so we have the type A =U B. How is this related to (A ' B)?

Theorem 3.5.1. Given types A,B : U , there is a function,

idtoeqv : (A =U B)→ (A ' B) (3.8)

defined by p 7→ transport(A 7→A)(p,−).

We would like to say that idtoeqv is an equivalence. But, just as in the case of happly

for function types, this is not guarenteed from whatever we have developed so far. We,

therefore, assume it as an axiom : Voevodsky’s Univalence Axiom.

Axiom 3.5.2 (Univalence). Given types A,B : U , the fucntion idtoeqv : (A =U B)→ (A '
B) is an equivalence.

Formally,

Γ ` A : Ui Γ ` B : Ui
Γ ` univalence(A,B) : isequiv(idtoeqvA,B)

Ui-UNIV

Another way to state the univalence axiom is that given A,B : U , there exists a map

ua : (A ' B)→ (A = B)

40

such that :

1. transport(A→A)(ua(f),−) = f and

2. ua(idtoeqv(p))= p.

In particular, univalence means that equivalent types can be identified. This something

that we have been doing in informal mathematics all along, for example, identifying isomor-

phic groups or homeomorphic topological spaces. We can now formally justify this.

41

42

Chapter 4

Sets and Logic

In this chapter, we continue exploring the ∞-groupoid structure of a type. Although, we

have a proposition-as-types interpretation, is the logic of type theory the same as the logic of

set theory that we commonly use in our informal mathematics? Although, we can interpret

types as sets, what precisely is the notion of a set in homotopy type theory? Are all type

sets? These are some of the questions that we will be addressing in this chapter.

4.1 Sets and n-type

Let us first understand the notion of a set in homotopy type theory. Although, in homotopy

type theory, types behave like ∞-groupoids, there are a class of types which behave more

like sets as in the traditional set-theoretic system. Categorically, sets can be thought of

as discrete groupoids where we have a set of objects and only identity morphisms between

them. Topologically, sets are spaces with the discrete topology on them.

Since, whatever we do in homotopy type theory is upto equivalence, sets can be thought

of as a disjoint union of connected components with no higher homotopical information.

This gives us the definition :

Definition 4.1.1. A type A is a set if for all x, y : A, any two paths p, q : x =A y from x to

43

y are homotopic, i.e., we have p = q.

Formally, the proposition isSet(A) is defined as :

isSet(A) :≡
∏

(x,y:A)

∏
(p,q:x=y)

(p = q) (4.1)

Example 4.1.2. 1. The empty type 0 is a set.

2. The unit type 1 is a set.

3. The type N of natural numbers is also a set.

In the definition of a set, all additional structure from 2-morphisms onwards is trivial. In

other words, if we take a type and ignore all structure from 2-morphisms onwards, then we

get a set. However, we can do this not just at the level of 2-morphisms, but after any level.

This gives us the general definition of an n-type.

Definition 4.1.3. 1. A type A is −1-type if for all x, y : A, x = y.

2. A type A is a (n+ 1)-type if for all x, y : A, x = y is an n-type, where n is an integer

such that n ≥ −1.

In the homotopy interpretation of type theory, this translates to the following recursive

definition :

• A type T is a (−2)-type if it is contractible.

• A type T is a (n+ 1)-type if for every t1, t2 : T , the path space in T from t1 to t2 is an

n-type.

44

Let us unravel the above definition for some initial cases :

A type A is (−1)-type if for all x, y : A, x = y. So, there is no structure from the level

of 1-morphisms itself.

Upto homotopy equivalence, there are only two (−1)-types : the empty type and the unit

type because either it has no terms at all in which case the condition is vacuously satisfied

or if there is atleast one term, all the terms are equal. These correspond to the booleans 0

and 1 or truth values true and false. Thus, all propositions in classical first order logic are

equivalent to either true (>) or false (⊥) and just as we defined isSet(A), we can define :

isProp(A) :≡
∏

(x,y:A)

(x = y) (4.2)

Thus, propositional logic is essentially homotopy type theory at level −1.

A type A is 0-type if for all x, y : A, x = y is a (−1)-type, i.e., for all x, y : A and

p, q : x = y, p = q. Therefore, 0-types are precisely sets and what constitutes set-theoretic

mathematics is essentially homotopy type theory at level 0.

A type A is 1-type if for all x, y : A and p, q : x = y and r, s : p = q, we have r = s. Thus,

when interpreted as an infty-groupoid, there are objetcs of A and 1-morphisms between

objects. All higher structure is trivial. Therefore, what constitutes as category-theoretic

mathematics is essentially homotopy type theory at level 1.

Similarily we can define 2-types, 3-types, and so on. Mathematics at level 2 is 2-

categorical mathematics, that at level 3 is 3-categorical, and so. This is how the univalent

foundations captures and formalizes categorical and higher-categorical mathematics.

Lemma 4.1.4. Let A : U be a type, then isProp (isSet (A)) is inhabited.

45

Proposition 4.1.5. Let A : U be a type, then if A is a −1-type, then A is a 0-type.

Proof. We essentially need to construct a map of the type isProp(A) → isSet(A). Sup-

pose f : isProp(A) ≡
∏

(x,y:A)(x = y). Fix an x : A and define g(y) :≡ f(x, y). Here,

g :
∏

(y:A)(x = y).

Now cosider some p : y = z, then we have apdg : p∗(g(y)) = g(z). But, p∗(g(y)) = g(y) ·p
(Example 3.4.6). So, g(y) · p = g(z). Now, if we cosider some q : y = z, then we have

g(y) · q = g(z). But, this implies that p = q. Since, y, z are arbitrary, we are done.

Proposition 4.1.6. Let A : U be a type, then if A is a 0-type, then A is a 1-type.

Proof. Similar to the above proof.

Most generally, we have the following theorem :

Theorem 4.1.7. A is an n-type =⇒ A is a n+ 1-type.

4.2 Intuitionistic Logic

We have so far used the proposition-as-types philosophy to interpret and write down and

prove informal propositions in formal type theory (See Table 1). But, does this notion of

a proposition behave in the same way as whatever we call propositions in classical mathe-

matics? The logic of propositions that arises out of the rules of inference of formal types is

significantly different than the classical logic used in set theoretic mathematics. It is intu-

itionistic.

One of the key features of intuitionistic logic is that we do not have the law of excluded

middle. This has many consequences, one of which is that we do not have the usual proof

by contradiction as a valid proof technique in the logic of type theory.

46

Recall that in the interpretation of propositions as types, a term of the type corresponds

to a proof of the proposition. Therefore, classically, a proposition is true if the type associated

with it is inhabited. We now define the negation of a proposition in this setting :

Definition 4.2.1. Let A : U be a type, then the negation of A is the type :

¬A :≡ (A→ 0) (4.3)

Thus, ¬A is the type A → 0 which corresponds to the proposition A =⇒ ⊥, i.e., A

implies false. Therefore, if ¬A is inhabited, then A cannot be inhabited because if it is, then

the empty type is inhabited which implies that all types are inhabited (or all propositions

are true) leading to triviality.

We now show that proof by contradiction or the law of double negation elimination does

not hold in general. We need the following lemma :

Lemma 4.2.2. 1. If x, y : 1, then (x = y) ' 1.

2. N is a set.

3. Consider the type A+B : U . If a : A and b : B, then (inl(a) = inr(b)) ' 0.

Theorem 4.2.3. It is not the case that for all A : U , we have ¬¬A→ A.

Proof. For all A : U , ¬¬A→ A correponds to the type
∏

(A:U)(¬¬A→ A). We need to show

that the above propostion is false, i.e., we need to construct a map from the above type to

the empty type which is a term of the type :

(
∏

(A:U)

(¬¬A→ A))→ 0

Suppose f :
∏

(A:U)(¬¬A→ A), then we need to produce a term of the empty type.

47

First, observe that for any A : U , ¬A is a proposition type or isProp(¬A) is inhabited.

This is easy to see. If u, v : ¬A ≡ (A → 0), then to show that u = v, it is enough to show

that u(x) = v(x) for all x : A by function extentionality. But, u(x) : 0 is a term of the

empty type. Thus, we can construct a term of any type using u(x), in particular, the type∏
(x:A)(u(x) = v(x)).

Let 2 be the type 2 :≡ 1 + 1 which is like 1q 1 and let 02 : 2 and 12 : 2.

Now, let e : 2 → 2 such that e(02) = 12 and e(12) = 02. Since, e ◦ e ∼ id2, e is an

equivalence.

Note that we have a term of the type
∏

(x:2) ¬(e(x) = x), i.e., for all x : 2, e(x) 6= x.

Since, e is an equivalence, by the univalence axiom, we have ua(e) : 2 = 2. Let us call

ua(e) as p, then we have p∗(f(2)) = f(2). Recall that f(2) : ¬¬2 → 2. So, for every

u : ¬¬2, we have p∗(f(2))(u) = f(2)(u).

But, p∗(f(2))(u) is also equal to e(f(2)(u)). This can be seen from the fact that

transport(A 7→¬¬A→A)(p, (f(2)))(u) = transport(A 7→A)(p, (f(2)(u)).

Therefore, e(f(2)(u)) = f(2)(u). However, we know that
∏

(x:2) ¬(e(x) = x) and

¬(e(x) = x) :≡ (e(x) = x)→ 0. Thus, we have a term of the empty type as required.

Corollary 4.2.4. It is not the case that for all A : U , we have A+ (¬A).

So, the logic of proposition-as-types is not classical. However, if we consider only those

types A for which isProp(A) holds, then we are restricting ourselves to the classical case.

Such types, which are basically, (−1)-types are also called mere propositions. Just to reiterate

:

48

Definition 4.2.5. A type P is a mere proposition if for all x, y : P , we have x = y.

Although, the logic of type theory is not classical, but intuitionistic, to work in classical

logic, we can restrict ourselves to working with mere propositions and add the additional

axioms of the law of excluded middle and the law of double negation.

The formulation of the law of excluded middle in homotopy type theory is :

LEM :≡
∏

(A:U)

(isProp(A)→ (A+ ¬A)). (4.4)

Similarily, the formulation of the law of double negation elimination in homotopy type

theory is :

LEM :≡
∏

(A:U)

(isProp(A)→ (¬¬A→ A)). (4.5)

Therefore, the univalent foundations can be used as a foundations for both constructive

as well as non-constructive mathematics.

To conclude, the univalent foundations of mathematics which is based on homotopy type

theory is a much richer foundation of mathematics than set theory. In this thesis, we have

provided a snapshot view of the current state of development of this new foundation. The

subject is evolving rapidly and the way this theory will look a few years down the line might

be very different from its initial stages of development that is presented here. We hope that

many more people will see the merit in pursuing this project which has the potential to

change the enitre perspective and practise of this beautiful subject called mathematics.

49

50

Bibliography

[1] Voevodsky, Vladimir.“Homotopy type theory: Univalent foundations of mathematics.”
Institute for Advanced Study (Princeton), The Univalent Foundations Program (2013)
Book version: first-edition- 1005-ge9c58d7.

[2] Pelayo, lvaro, and Michael Warren.“Homotopy type theory and Voevodskys univalent
foundations.” Bulletin of the American Mathematical Society 51.4 (2014): 597-648.

[3] Kapulkin, Chris, Peter LeFanu Lumsdaine, and Vladimir Voevodsky. “The simplicial
model of univalent foundations.” arXiv preprint arXiv:1211.2851(2012).

[4] http://homotopytypetheory.org/ : ‘This site collects and disseminates research, re-
sources, and tools for the investigation of homotopy type theory, and hosts a blog
for those involved in its study.

[5] Voevodsky, Vladimir.“Univalent foundations project.” NSF grant application (2010).

51

