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Abstract

This thesis presents an exposition of a result of Serre about the asymptotic distribution of

eigenvalues of families of regular graphs. This result is part of a paper published by Serre

in 1997 titled “the equidistribution of eigenvalues of Hecke operators”. Then, we discuss a

specific example of a family of Ramanujan graphs given by Lubotzky, Phillips and Sarnak in

their 1988 paper on Ramanujan graphs, and calculate this limiting distribution measure of

the eigenvalues of that family using Serre’s result. We also give an alternate way of computing

the measure using a result published by B.D.McKay in 1981 about the limiting distribution

measure of the eigenvalues of a family of regular graphs satisying certain properties. We

then discuss a similar result for a family of cycle graphs.
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Chapter 1

Equidistribution Theory

Let x be a real number. Denote by [x] the greatest integer less than or equal to x; let {x}
be the fractional part of x. Consider a sequence w = (xn)n≥1 of real numbers.

Let I be the unit interval [0, 1). For a fixed positive integer N and a subset E ⊂ I. We

define the counting function A(E,N,w) as:

A(E,N,w) = #{1 ≤ n ≤ N : xn ∈ E}

Definition 1.1. (Uniform distribution mod 1). The sequence w = (xn)n≥1 is said to be

uniformly distributed modulo 1 if for all a and b satisfying 0 ≤ a < b < 1, we have

lim
N→∞

A([a, b);N ;w)

N
= b− a. (1.1)

Define the characteristic function of [a, b) as follows:

c[a,b)(x) =

1 for x ∈ [a, b)

0 otherwise.

The above equation can also be written in terms of c[a,b).

lim
N→∞

1

N

N∑
n=1

c[a,b)(xn) =

∫ 1

0

c[a,b)(x)dx. (1.2)
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This equation can further be extended to all real valued continuous functions on I.

Theorem 1.1. The sequence (xn)n≥1, of real numbers is u.d. mod 1 iff for every real valued

continuous function f defined on [0, 1], we have:

lim
N→∞

1

N

N∑
n=1

f({xn}) =

∫ 1

0

f(x)dx. (1.3)

Proof. Form (1.2), the theorem holds true for all step functions on I of the form f(x) =∑k−1
i=0 dic[ai,ai+1)(x) where 0 < a0 < a1 < . . . < ak = 1. Now consider a continuous func-

tion f defined on I. For any ε > 0, we can find two step functions f1 and f2 such that

f1(x) ≤ f(x) ≤ f2(x) for all x ∈ I and
∫ 1

0
(f2(x) − f1(x)) ≤ ε (as f is Riemann integrable).

Now,

∫ 1

0

f(x)dx− ε ≤
∫ 1

0

f(x)− (f2(x)− f1(x))dx ≤
∫ 1

0

f1(x)dx

= lim
N→∞

1

N

N∑
n=1

f1({x}) (as f1 is a step function)

≤ lim
N→∞

1

N

N∑
n=1

f({xn})

≤ lim
N→∞

1

N

N∑
n=1

f({xn})

≤ lim
N→∞

1

N

N∑
n=1

f2({xn})

=

∫ 1

0

f2(x)dx

=

∫ 1

0

(f2(x)− f(x))dx+

∫ 1

0

f(x)dx

≤
∫ 1

0

f(x)dx+ ε

As ε is arbitrary, ∫ 1

0

f(x)dx = lim
N→∞

1

N

N∑
n=1

f({xn})
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For the converse, we need to show that for a sequence (xn), if (1.3) holds for all continuous

functions on I, then (xn) is u.d. mod 1. Consider an interval [a, b) ⊂ I. Given any ε > 0,

there exist two continuous functions g1 and g2 such that g1(x) ≤ c[a,b) ≤ g2(x) < ε for x ∈ I
with the property that

∫ 1

0
(g2(x)− g1(x))dx.

b− a− ε =

∫ 1

0

c[a,b)dx− ε ≤
∫ 1

0

g2(x)dx− ε

≤
∫ 1

0

g1(x)dx = lim
N→∞

1

N

N∑
n=1

g1({xn})

≤ lim
N→∞

A([a, b);N)

N

≤ lim
N→∞

A([a, b);N)

N

≤ lim
N→∞

1

N

N∑
n=1

g2({xn})

=

∫ 1

0

g2(x)dx ≤
∫ 1

0

g1(x)dx+ ε ≤ b− a+ ε

�

Theorem 1.2. The sequence (xn)n≥1 is u.d. mod 1 iff for every complex-valued continuous

function f on R with period 1 we have

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(x)dx. (1.4)

Proof. Suppose the sequence (xn) is u.d. mod 1. Consider a complex valued continuous

function f. Apply Theorem 3.1 on the real and imaginary part of f separately to get,

lim
N→∞

1

N

N∑
n=1

f({xn}) =

∫ 1

0

f(x)dx

But f has a period 1, so f({xn}) = f(xn). So we have

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(x)dx

3



For the converse, assume that (3.4) is true for all complex valued continuous functions with

period 1. In the proof of the converse of Theorem 1.1, while choosing g1 and g2, put an

additional condition that g1(0) = g1(1) and g2(0) = g2(1). Then the definitions of g1 and g2

can be extended periodically to R and so (3.4) is satisfied by g1 and g2. Now use the same

argument as in the proof for the converse of Theorem 2.1. �

Theorem 1.3 (Weyl’s criterion). The sequence (x)n is u.d. mod 1 iff

lim
N→∞

1

N

N∑
n=1

e2πihxn = 0 for all integers h 6= 0. (1.5)

Proof. Suppose a sequence (x)n is u.d. mod 1. Then take f(x) = e2πihx in Theorem 3.2 to

get

lim
N→∞

1

N

N∑
n=1

e2πihxn =

∫ 1

0

e2πihxndx = 0.

For the converse, suppose (xn) satisfies (3.5). Let f be a complex valued continuous function

with period 1. If we can show that Theorem 3.2 holds for f , then we’re done. Let ε

be an arbitrary positive number. By Weierstrass approximation theorem, there exists a

trigonometric polynomial g(x) (i.e. linear combination of function of the form e2πihxn , h ∈ Z)

satisfying

sup
0≤x≤1

|f(x)− g(x)| ≤ ε. (1.6)

|
∫ 1

0

f(x)dx− lim
N→∞

1

N

N∑
n=1

f(xn)| ≤ |
∫ 1

0

(f(x)− g(x))dx|+ |
∫ 1

0

g(x)dx− lim
N→∞

1

N

N∑
n=1

f(xn)|

≤ |
∫ 1

0

(f(x)− g(x))dx|+ |
∫ 1

0

g(x)dx− lim
N→∞

1

N

N∑
n=1

g(xn)|

+ | 1
N

N∑
n=1

(f(xn)− g(xn))|

The first term and third term are less than ε (as sup
0≤x≤1

|f(x)− g(x)| ≤ ε).

Now, limN→∞
1

N

∑N
n=1 e

2πihxn = 0. So if we take N large enough, we will have

4



| 1
N

∑N
n=1 e

2πihxn| ≤ any arbitrarily small number. By choosing this “arbitrarily small num-

ber” suitably, we can show that the second term is less than ε. So, theorem 3.2 holds for f

and (xn) is u.d. mod 1. �

Till now, we have looked at sequences which are uniformly distributed with respect to

the Lebesgue measure. But, it could be uniformly distributed with respect to a more general

measure.

Definition 1.2. We say that a sequence (xn), n = 1, 2, . . . is µ-equidistributed if

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(x)dµ (1.7)

We also refer to µ(x) as the limiting probability density function of (xn).

In this report, we will look at a sequence of families. The below definition is a version of

the equidistribution criterion for a sequence of families.

Definition 1.3. Consider a sequence of families (xλ)λ≥1. Denote by |xλ| the number of

elements in the family xλ. We assume that |xλ| → ∞ as λ→∞. We say that the sequence

(xλ)λ≥1 is µ-equidistributed if

lim
λ→∞

1

|xλ|

|xλ|∑
n=1

f(xn) =

1∫
0

f(x)dµ (1.8)

5
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Chapter 2

Basic Notions in Graph theory

Definition 2.1. A graph G is a pair (V,E), where V is the set of vertices and E ⊆ V × V
along with two functions:

(i) “origin”, o : E → V defined as follows: for y = (a, b) ∈ E, o(y)=a.

(ii) “inverse”, E → E defined as follows:

y 7→ y where, for y = (a, b), y := (b, a)

We define |G| = number of vertices of G.

Definition 2.2. We say that G is a regular graph of degree k if

for every x ∈ V , the set of edges with origin x has k elements.

Definition 2.3. A walk of length r ≥ 1 is an alternating sequence of vertices and edges,

{v1, e1, v2, e2, . . . , er, vr+1}. The origin of a walk is taken to be the first vertex, that is v1. A

walk is said to be closed if v1 = vr+1. A walk is said to be “without back-tracking” if ei+1 6= ei

for 1 ≤ i ≤ r.

Definition 2.4. A trail is a walk in which all edges are distinct. A path is a trail in which

all vertices are distinct (except possibly the start and end vertices). A cycle is a closed path.

An r-cycle is a cycle of length r. The length of the smallest cycle is called the girth of the

graph.

Definition 2.5. A circuit is a closed walk without back-tracking and er 6= e1. An r-circuit

is a circuit of length r. Notice that a cycle is a circuit but not vice-versa.

7



Definition 2.6. An acyclic graph is a graph with no cycles.

Definition 2.7. Let A ⊆ V . The subgraph induced by A ⊂ V is the set of vertices in A

together with the set of edges whose endpoints are both in A.

Definition 2.8. The adjacency matrix of a graph is defined as [aij]|G|×|G|, where aij is the

number of edges between vi and vj. The eigenvalues of this matrix are taken to be the

eigenvalues of the graph.

Definition 2.9. Chebyshev polynomials: Let Ω = [−2, 2]. If x ∈ Ω, we can write x uniquely

in the form

x = 2 cosφ, 0 ≤ φ ≤ π

If r is an integer ≥ 0, we define:

Xr(x) = einφ + ei(n−2)φ + . . .+ e−inφ =
sin(r + 1)φ

sinφ

Xr(x) is called the r-th Chebyshev polynomial. Xns are polynomials in x:

X0(x) = 1, X1(x) = x,X2(x) = x2 − 1, X3(x) = x3 − 2x, . . . . . .

Define Yn,q = Xn − 1
q
Xn−2 (assuming that Xm(x) = 0 if m < 0.)

Remark 1. Xn’s form a basis of the set of all polynomials on Ω.

8



Chapter 3

Outline of the thesis

This chapter contains some of the important theorems which I have studied. The proofs of

these theorems are presented in later sections.

3.1 Eigenvalue distribution of k-regular graphs

In 1981, BD McKay [5] proved the following result about the asymptotic distribution of

eigenvalues of a certain family of k-regular graphs.

Theorem 3.1. Consider a sequence of k-regular graphs Eλ’s such that |Eλ| → ∞ as n→∞.

Let Cr,λ be the number of r-cycles in Eλ.

If lim
n→∞

Cr,n/|Eλ| = 0 ∀ r ≥ 3, then the limiting probability density function (or in other

words, the distribution measure) of the eigenvalues of Eλ is given by:

f(x) =

k
√

4(k − 1)− x2

2π(k2 − x2)
for |x| ≤ 2

√
k − 1

0 otherwise.

(3.1)

3.2 A more general theorem

Serre, in [7] proved a far more general result. He proved the following:

9



Theorem 3.2. Consider a family of k-regular graphs (Eλ) for which |Eλ| → ∞ as λ→∞.

Let cr,λ be the number of r-circuits in Eλ and (xλ) be the family of eigenvalues of Eλ. Let

k = q + 1.

1) The following two properties are equivalent:

(i) There exists a measure µ on Ωq = [−(q1/2 + q−1/2),+(q1/2 + q−1/2)] such that (xλ) are

µ-equidistributed.

(ii) ∀r ≥ 1, cr,λ/|Eλ| has a limit when λ→∞.

2) Suppose (i) and (ii) are satisfied, and let:

γr = lim
λ→∞

cr,λ/|Eλ|, for r = 1, 2, . . . . (3.2)

then we have µ = µq + ν, where µq is a measure on Ω = [−2, 2] defined as

µq :=
(q + 1)

π[(q1/2 + q−1/2)2 − x2]

√
1− x2

4

and ν is a measure on Ωq, characterised by:

∫
Ωq

Yr,1(x)ν(x)dx =

0, if r = 0

γrq
−r/2 if r > 0

where Yr,1 = Xr −Xr−2 and Xr’s are Chebyshev polynomials (see Definition 2.9).

Note. From here on, we will denote Yr,1 by Yr.

The above theorem provides a recipe to compute the distribution measure 1 for any family

of graphs in which the limits lim
λ→∞

cr,λ/|Eλ| exist whereas B.D.McKay looked at sequences

for which lim
λ→∞

Cr,λ/|Eλ| = 0.

We present the proof of this theorem in Section 4.

1By computing the distribution measure, we mean the asymptotic distribution measure of the family of
regular graphs considered.
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3.3 Finding families that satisfy Serre’s condition and

computing their measure

Once we understand Serre’s result, it is natural to look for families of k-regular graphs and

compute the distribution measures for them. We look at a type of Ramanujan graphs defined

by Lubotzky, Phillips and Sarnak in their paper on Ramanujan graphs [4]. They compute

the asymptotic distribution measure for any family of k-regular graphs, Xn,k’s for which the

girth gXn,k also tends to infinity as n → ∞. This is relevant to the family of Ramanujan

graphs which they consider as they show in [4] that the girth of that family tends to infinity

as n→∞.

Consider a sequence of k-regular graphs (Xn,k) for which n → ∞ and the girth of Xn,k,

gXn,k → ∞ as n → ∞. Associate with each graph in the family a measure µXn,k supported

on [−k, k] which puts point masses 1/n at each of its eigenvalues. They prove the following:

Theorem 3.3 (Prop 4.3, [4]).

lim
n→∞

gXn,k→∞
µXn,k = µk

where

dµk(t) =


√
k − 1− t2/4

πk(1− (t/k)2)
dt if |t| ≤ 2

√
k − 1

0 otherwise.

(3.3)

We have proved the above theorem using both Serre’s and B.D.McKay’s result.

We then show that for a family of cycle graphs (Cn) such that |Cn| → ∞ as n→∞, the

limiting distribution measure for the eigenvalues is given by:

µ(t) =


1

π
√

4− t2
dt if |t| ≤ 2

0 otherwise.

Details are presented in section 5.

11
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Chapter 4

Distribution of eigenvalues

4.1 Regular graphs of degree q + 1

In the following, q is a fixed integer ≥ 1.

All the graphs considered are finite regular graphs of degree q + 1. These graphs need

not be simple graphs, that is, they may contain loops and multiple edges. They also need

not be connected.

We quickly review the notions of walks and circuits.

Walks and circuits. r is an integer ≥ 1. A walk of length r is a sequence in E, y =

(y1, y2, . . . , yr) consisting of r edges such that t(yi) = o(yi+1) for 1 ≤ i ≤ r. We define

o(y) = o(y1), t(y) = t(yr).

A walk is closed if it’s origin and tail are the same i.e. o(y) = t(y).

A walk is said to be “without back-tracking” if yi+1 6= yi for 1 ≤ i < r.

a b c
yi

yi

yi+1

We say that a walk y is a circuit if:

(i) it is closed

(ii) without back-tracking” and

13



(iii) if yr 6= y1

((ii) and (iii) can be combined to have just one condition: if yi+1 6= yi ∀i ∈ Z/rZ.)

This is how it would look like if yr = y1 (for some 1 < s < r):

a1 a2 . . . . . . as as+1
y1 y2

yr−1
yr

y · y′ consists of two walks y and y′ such that t(y) = o(y′). It is defined as follows:

Assume that there is an edge y between a and b and an edge y ′ between b and c.

a b c
y y′

Then y · y′ looks like, y · y′ :
a b c

In particular, we can talk about powers zs (s = 1, 2, . . .) of a closed walk z. A circuit y

is said to be primitive if it is not equal to any of the powers zs, with s > 1, where z is a

circuit.

Lemma 4.1. Any circuit can be written uniquely as a power of a primitive circuit.

Proof. Suppose y is not a primitive circuit. Then, it follows from the definition of primitive

circuits that y = zs where z is a closed circuit. Without loss of generality, we can assume

that z is primitive. So, we are done. And if y is a primitive circuit, just take y = z.

Uniqueness: If y is a primitive circuit. Say y = zs where z is a primitive circuit. This

contradicts the fact that y is a primitive circuit. If y is not a primitive circuit, in that case

suppose y = z1
s = z2

l where z1 and z2 are primitive circuits and s, l are positive integers. If

two closed walks are equal, it means that the sequence of vertices and edges in them is the

same. In that case, z1
s = z2

l is possible only when either z1 is a power of z2 or vice-versa.

Without loss of generality, assume z1 = zr2. This contradicts the fact that z1 is a primitive

circuit. So, z1 = z2. �

Number of circuits. Let fr be the number of closed walks without back-tracking of length

r, and cr (resp cr
o) be the number of circuits (resp. primitive circuits) of length r.

Lemma 4.2. cr =
∑

s|r cs
o.

Proof. Every circuit (y) can be written as a power of a primitive circuit i.e. y = zs,

14



where z is a primitive circuit. Let number of edges in y be r, number of edges in z be r′.

=⇒ r = r′ · s. So, counting circuits of a certain length (here, r) is equivalent to counting

the number of primitive circuits of length which is a factor of r. �

Lemma 4.3.

fr − cr =
∑

1≤i<r/2

(q − 1)qi−1cr−2i = (q − 1)cr−2 + (q − 1)qcr−4 + . . . (4.1)

Proof. fr− cr = number of closed walks without back-tracking s.t. yr = y1. This formula is

demonstrated by noting that a closed walk without back-tracking, y = (y1, y2, . . . , yr) which

is not a circuit, is of the form y1 · z · y1, where z = (y2, . . . , yr−1) and a closed walk without

back-tracking of length r − 2.

For a fixed z,

(i) there are q − 1 choices for y1 if z is a circuit.

Explanation:

x1 x2 . . . . . . xs xs+1
y1 y2

yr−1
yr

As x2 is already part of 2 edges, one to x3 and the

other one, edge that comes back to x2 so that z is a circuit).]

(ii) q choices when z is not a circuit. This means, yr−1 = y2.

x2 is just part of one edge in this case. The edge from x2 to x3 is used twice, once while

going towards x3 from x2 and the other time while completing the closed walk z. So, we

have:

fr − cr = (q − 1)cr−2 + q(fr−2 − cr−2)

= (q − 1)cr−2 + q((q − 1)cr−4 + q(fr−4 − cr−4))

= (q − 1)cr−2 + q(q − 1)cr−4 + q2(fr−4 − cr−4)

= (q − 1)cr−2 + q(q − 1)cr−4 + q2(q − 1)cr−6 + q3(fr−6 − cr−6))

...

= (q − 1)[cr−2 + qcr−4 + q2cr−6 + . . .+ q
r−2
2 (f2 − c2)]

= (q − 1)[cr−2 + qcr−4 + q2cr−6 + . . .+ q
r−4
2 c2 + q

r−2
2 [(q − 1)c0 + q(f0 − c0)]

= (q − 1)[cr−2 + qcr−4 + q2cr−6 + . . .+ q
r−4
2 c2 + q

r−2
2 [(q − 1)c0 + q(f0 − c0)]

=
∑

1≤i<r/2

(q − 1)qi−1cr−2i

15
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Remark 2. The above lemma can be proved using induction also.

4.2 The operators T and Θr.

Let G be as above. We note CG to be the group of 0-chains of G i.e. the Z-module of

functions on V (G) with values in Z. If x ∈ V (G), we define:

ex(y) =

1 if y = x

0 otherwise

Easy to see that ex forms a basis for CG. (for f ∈ CG, f =
∑

v∈V (G) f(v) · ev)

The operator T . Let T be an endomorphism of CG defined as:

T (ex) =
∑

y∈E:o(y)=x

et(y) (4.2)

Example: Consider a graph which looks as follows:
x

x1 x2 x3

Then, T (ex) = ex1 + ex2 + ex3 . Seen as a correspondence on V (G), T transforms a vertex to

the sum of neighbours of the vertex.

Correspondence between T and the adjacency matrix of G.

(i, j)th entry of [T ] = coefficient of exj in T (exi)

(1) If there’s an edge between xi and xj:

T (exi) = . . .+ exj + . . .

coefficient of exj in T (exi) = 1

(2) If there’s no edge between xi and xj:

In T (exi), there’s no exj term in that case.
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So, (i, j)th entry of [T ] = 0.

So, the matrix of T w.r.t the basis ex is the adjacency matrix of G.

We are interested in the distribution of its eigenvalues in R.

The operators Θr. The definition of T is generalised in the following way: for all r ≥ 1,

we define Θr ∈ End(CG) as:

Θr(ex) =
∑
y

et(y) (4.3)

or the sum over the walks without backtracking, y = (y1, y2, . . . , yr) with origin x and length

r. It is clear that one has Θ1 = T .

The definition is completed by putting Θ0 = I.

Expression of Θr as a function of T . Θr are written as polynomials in T .

Θ0 = I, Θ1 = T , Θ2 = T 2 − (q + 1)

Let us consider the r = 2 case.

Θ2(ex) = T 2(ex)− (q + 1)ex

= T (T (ex))− (q + 1)ex

= T (
∑
o(y)=x

et(y))− (q + 1)ex

=
∑
o(y)=x

T (et(y))− (q + 1)ex (∵ T is an endomorphism & hence a homormorphism)

=
∑
o(y)=x

∑
o(z)=t(y)

et(z) − (q + 1)ex

The indices x, y, z satisfying o(y) = x and o(z) = t(y) correspond to this picture:

x1 x2 x3
y z

But it also includes walks with back-tracking. That’s why we have the second term.

Θ3 = T 3 − (2q + 1)T

Again, the second term is due to the extra condition of “without back-tracking”. Everything

else is similar to the case that one gets by taking powers of adjacency matrix or powers of
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T.

x1 x2 x3 x4
y1 y2 y3

Θ3(ex) = T (Θ2(ex))− qT (ex)

One of the ways to see it is to demonstrate the formula:

TΘr = Θr+1 +

q + 1 , if r = 1

qΘr−1 , if r > 1
(4.4)

Proof. There’s a correspondence between [T ] and adjacency matrix of G, which gives us

that composing Θr with T is the same as adding an edge to the already existing walk of

length r.

For r = 1 : TΘ1 = Θ2 + (q + 1)

has already been shown as one of the examples.

Assume it is true for r = k(> 1) i.e. TΘk = (Θk+1) + qΘk−1

=⇒ T 2Θk = (TΘk+1) + qT (Θk−1)

=⇒ TΘk+1 = Θk+2 + qΘk.

So, it is true for k+1 also. �

We deduce the generator series:

∞∑
r=0

Θrt
r =

1− t2

1− tT + qt2
(4.5)

Proof. We have from (4.4),

TΘr = Θr+1 +

q + 1 , if r = 1

qΘr , if r > 1

18



=⇒ TΘr−1 = Θr +

q + 1 , if r = 2

qΘr−2 , if r > 2

=⇒ TΘr = Θr−1 −

q + 1 , if r = 2

qΘr−2 , if r > 2

∞∑
r=0

Θrt
r =

∞∑
r=0

Θrt
r = Θ0t

0 + Θ1t+ Θ2t
2 +

∞∑
r=3

Θrt
r

= 1 + Tt+ (TΘ1 − (q + 1)t2) +
∞∑
r=3

qΘr−2t
r

But,
∞∑
r=0

TΘrt
r = T

∞∑
r=0

Θrt
r (∵ T is an endomorphism.)

= 1 + Tt+ T 2t2 − (q + 1)t2 + Tt
∞∑
r=3

Θr−1t
r−1 − qt2

∞∑
r=3

Θr−2t
r−2

= 1 + Tt+ T 2t2 − (q + 1)t2 + Tt
∞∑
r=2

Θrt
r − qt2

∞∑
r=1

Θrt
r

Let
∑∞

r=0 Θrt
r = f . Then,

f = 1 + Tt+ T 2t2 − (q + 1)t2 + Tt(f − Tt− 1)− qt2(f − 1)(here, f =
∞∑
r=0

Θrt
r)

=⇒ f = 1 + Tt+ T 2t2 − (q + 1)t2 + Ttf − T 2t2 − Tt− qt2f + qt2

=⇒ f − Ttf + qt2f = 1− t2

=⇒ f(1− Tt+ qt2) = 1− t2

=⇒ f =
1− t2

1− Tt+ qt2

�

If we set:

T ′ = T/q1/2 and Θr
′ = Θr/q

r/2 (4.6)
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Using the same method as in the above proof, the formula (4.5) can be rewritten as:

∞∑
r=0

Θr
′tr =

1− t2/q
1− T ′t+ t2

(4.7)

Lemma 4.4 (eq. 23, [7]).
∞∑
n=0

Yn,q(x)tn =
1− t2/q

1− xt+ t2
(4.8)

Comparing (4.7) with (4.8), we can deduce that

Θr
′ = Yr,q(T

′) (4.9)

where Yr,q = Xr − q−1Xr−2.

In other words:

Θr = qr/2Yr,q(T/q
r/2) (4.10)

Trace of Θr. If r ≥ 1, it is clear that Tr Θr = fr (fr is the number of closed walks without

back-tracking of length r). Hence, from (4.1):

TrΘr = cr +
∑

1≤i≤r/2

(q − 1)qi−1cr−2i(r ≥ 1) (4.11)

Thus, the knowledge of Tr Θr, for r = 1, 2, . . ., is equivalent to that of cr. (By solving

the equation for one r at a time, starting with r = 1.) From (4.8), it follows that, for any

polynomial P , the trace of P (T ′) can be expressed as a linear combination of cr and |G| = Tr

I. This follows from the below:

Note: Yn,q’s also form a basis for the set of polynomials on Ω, like Xn’s.

We’ll need to look at the special case where P is a polynomial Yr = Xr −Xr−2

Lemma 4.5. If r ≥ 1, we have:

Tr Yr(T
′) = crq

−r/2 −

(q − 1)q−r/2|E| , if r is even

0 , if r is odd
(4.12)
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Proof. From (4.9) & (4.10), we have (for r ≥ 1):

Tr(Θr) = Tr(qr/2Yr,q(T
′))

= cr +
∑

1≤i<r/2

(q − 1)qi−1cr−2i

=⇒ qr/2Tr(Yr,q(T
′)) = cr +

∑
1≤i<r/2

(q − 1)qi−1cr−2i, if r ≥ 1

Note: for r = 0, Tr(Θ0) = Tr(I) = |G|.

So, qr/2 · Tr(Yr,q(T ′)) =


|E| , if r = 0

cr +
∑

1≤i<r/2
(q − 1)qi−1cr−2i , if r ≥ 1

As Yr,q = Xr − 1
q
Xr−2, we can deduce by induction on r:

qr/2TrXr(T
′) =

∑
0≤i<r/2

qicr−2i +

|E| , if r is even

0 , if r is odd
(4.13)

For example, for r = 2 we have from (4.13):

q · Tr(X2,q(T
′)) = q · Tr(X2(T ′))− 1

q
· Tr(X0(T ′)) = (c2 + (q − 1)c0)

=⇒ qTr(X2(T ′)) = (c2 + (q − 1)c0) + Tr(X0(T ′)) = c2 + Tr(I) = c2 + |E|.

Proof.[For 4.13] We’ll use induction on r.

For r = 1:

q1/2Tr(Y1,q(T
′)) = c1 (using (4.10))

=⇒ q1/2Tr(X1(T ′)− 1
q
X−1(T ′)) = c1

=⇒ q1/2Tr(X1(T ′)) = c1

RHS of equality, (4.13),
∑

0≤i<1/2

qicr−2i = q0c1 = c1.

For r = 2:
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q2/2Tr(X2,q(T
′)) = c2

=⇒ q2/2Tr(X2(T ′))− 1
q
TrX0(T ′) = c2

=⇒ q2/2Tr(X2(T ′)) = Tr(X0(T ′)) + c2 = |E|+ c2

RHS of equality =
∑

0≤i<1

qicr−2i + |E| = q0c2 + |E|

Assume the given statement is true for r = k:

qk/2TrXk(T
′) =

∑
0≤i<k/2

qick−2i +

|E| , if k is even

0 , if k is odd

To show: the equality holds for k + 2.

From (4.13),

q(k+2)/2Tr(Xk+2,q(T
′)) = q(k+2)/2Tr(Xk+2(T ′)−1

q
Xk(T

′))+


|E| , if r = 0

cr +
∑

1≤i<k/2+1

qick+2−2i , if r ≥ 1

=⇒ q(k+2)/2Tr(Xk+2(T ′))− qk/2Tr(Xk(T
′)) =


|E| , if k + 2 = 0

ck+2 +
∑

1≤i<k/2+1

qick+2−2i , if k + 2 ≥ 1

(4.14)

=⇒ q(k+2)/2Tr(Xk+2(T ′)) = qk/2Tr(Xk(T
′)) + ck+2 +

∑
1≤i<k/2+1

qick+2−2i

=
∑

1≤i<k/2+1

qick+2−2i +

|E| , if k is even

0 , if k is odd
+ ck+2 +

∑
1≤i<k/2

(q − 1)qi−1ck+2−2i
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=
∑

1≤i<k/2

qi−1ck−2(i−1) + ck+2 +
∑

1≤i<k/2

(q − 1)qi−1ck+2−2i

+

|E| , if k is even

0 , if k is odd

=
∑

1≤i<k/2

qi−1ck+2−2i[1 + (q − 1)] + ck+2 +

|E| , if k is even

0 , if k is odd

=
∑

1≤i<k/2

qick+2−2i + ck+2 +

|E| , if k is even

0 , if k is odd

=
∑

1≤i<k/2

qick+2−2i +

|E| , if k is even

0 , if k is odd

Case 1: k is even

=⇒ q(k+2)/2TrXk+2(T ′) =
∑

1≤i<(k+2)/2

qick+2−2i + |E|

So, the equality holds.

Case 2: k is odd.

=⇒ q(k+2)/2TrXk+2(T ′) =
∑

1≤i<(k+2)/2

qick+2−2i + 0

So we have,

q(k+2)/2Tr(Xk+2(T ′)) =
∑

1≤i≤k/2

qick+2−2i +

|E| , if k+2 is even

0 , if k+2 is odd

=⇒ qr/2TrXr(T
′) =

∑
1≤i<r/2

qicr−2i +

|E| , if r is even

0 , if r is odd
∀r ≥ 1

�
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Coming back to the proof of Lemma 4.5 again,

=⇒ TrXr(T
′) = q−r/2

∑
1≤i<r/2

qicr−2i + q−r/2

|E| , if r is even

0 , if r is odd

=⇒ TrYr(T
′) = TrXr(T

′)− TrXr−2(T ′)

= q−r/2
∑

1≤i<r/2

qicr−2i + q−r/2

|E| , if r is even

0 , if r is odd
−

q−(r−2)/2
∑

1≤i<(r−2)/2

qicr−2i + q−(r−2)/2

|E| , if r is even

0 , if r is odd

=⇒ TrYr(T
′) = q−r/2

∑
−1≤i<r/2−1

qi+1cr−2(i+1) + q−r/2(1− q)

|E| , if r is even

0 , if r is odd

− q−(r−2)/2
∑

−1≤i<r/2−1

qicr−2−2i

= q−r/2 · q ·
∑

−1≤i<r/2−1

qicr−2−2i) − q−r/2+1 ·
∑

0≤i<r/2−1

qicr−2−2i

− q−r/2(q − 1) ·

|E| , if r is even

0 , if r is odd

= q−r/2+1 · q−1 · cr−2+2 − q−r/2(q − 1)

|E| , if r is even

0 , if r is odd

= q−r/2cr − q−r/2(q − 1)

|E| , if r is even

0 , if r is odd

�

4.3 Equidistribution of eigenvalues of T ′

{Eλ} is a family of graphs of the above type (i.e. finite, non-empty & regular graphs of

degree q + 1). Let cr,λ (respectively cr,λ
o) be the number of circuits (respectively primitive
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circuits) in Eλ of length r. For each λ, the adjacency matrix Tλ of Eλ is a symmetric matrix

whose coefficients are ≥ 0 & sum is q + 1 (on each row). This results in the fact that the

eigenvalues of T are real and absolute values ≤ q + 1. To be more specific, this follows from

the below two lemmas:

Lemma 4.6. The eigenvalues of a real symmetric matrix are real.

Lemma 4.7. For a row stochastic matrix, absolute value of eigenvalues is less than equal to

sum of each row.

So from the above lemma, Eigenvalues of Tλ lie in [−(q + 1), (q + 1)]. This is true as the

adjacency matrix of Tλ is a row stochastic matrix with row sum equal to q + 1. As in the

preceding, it is convenient to divide Tλ by q1/2, which gives a matrix whose eigenvalues belong

to the interval: Ωq = [−ωq,+ωq] where ωq = q1/2 + q−1/2 So, eigenvalues of q−1/2. Tλ would

lie in

[
−(q + 1)

q1/2
,
(q + 1)

q1/2

]
= [−ωq,+ωq].) This interval contains the interval Ω = [−2, 2]

used hitherto. (∵ q1/2 + q−1/2 ≥ 2 ∀ q > 1.)

In particular, any measure on Ω is identified with a measure on Ωq whose support is

contained in Ω. Let (xλ) be the family of eigenvalues of T ′λ, viewed as family of points in the

space Ωq.

Theorem 4.8. 1) The following two properties are equivalent:

(i) There exists a measure µ on Ωq such that xλ are µ-equidistributed.

(ii) ∀r ≥ 1, cr,λ/|Eλ| has a limit when λ→∞.

2) Suppose (i) & (ii) are satisfied, and let:

γr = lim
λ→∞

cr,λ/|Eλ|, for r = 1, 2, . . . . (4.15)

then we have µ = µq + ν, where µq is a measure on Ω defined as

µq :=
(q + 1)

π[(q1/2 + q−1/2)2 − x2]

√
1− x2

4

and ν is a measure on Ωq, characterised by:

∫
Ωq

Yr(x)ν(x)dx =

0, if r = 0

γrq
−r/2 if r > 0
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where Yr = Xr −Xr−2 and Xr’s are Chebyshev polynomials (see Chapter 3).

We will need the following lemma to prove Theorem 4.1.

Lemma 4.9 ([1], Chapter 3). Let X be a locally compact space. Denote by C(X;E) the

vector space of continuous functions from X to E. We shall denote by K(X;E) the subspace

of C(X;E) formed by the continuous functions with compact support. Let V be a linear

subspace of K(X;R) having the following property: For every compact subset K of X, there

exists a function f ∈ V such that f ≥ 0 and f(x) > 0 ∀ x ∈ K. Under these conditions,

every positive linear form on V for the ordering induced by that of K(X;R) may be extended

to a positive measure on X (which is unique when V is dense in K(X;R)).

Proof.[Theorem 4.1] Define 〈Yr, ν〉 =
ωq∫
−ωq

Yr(x)ν(x)dx: the integral covers the whole interval

Ωq. Let δxλ be the discrete measure on Ωq defined by the family xλ. According to (4.11),

TrYr(Tλ′) = crq
−r/2 −

(q − 1)q−r/2|E| , if r is even

0 , if r is odd
(4.16)

〈Yr, δxλ〉 =

∫ ωq

−ωq
Yr(x).δxλ(x)

=
1

Eλ

∑
i∈Iλ

Yr(xi,λ)

where, Iλ is an indexing set for Spec(T ′λ).

Claim: TrYr(T
′
λ) =

∑
i∈Iλ Yr(xi,λ)

Fact: Tr(An) =
∑

Spec(A)

λi
n. (here, Spec(A) or the spectrum of A denotes the set of eigenval-

ues of A).
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Let Yr(x) =
∑r

j=0 cjx
j. Then,

Yr(T
′
λ) =

r∑
j=0

cjTr[(Tλ)
j]

=
r∑
j=0

cj
∑

Spec(T ′λ)

xλ
j

=
∑

Spec(T ′λ)

r∑
j=0

cjxλ
j (finite summations, so can be interchanged)

=
∑

Spec(T ′λ)

Yr(xλ)

=
∑
i∈Iλ

Yr(xi,λ) (just writing it in terms of the indexing set)

We have

〈Yr, δxλ〉 =
1

|Eλ|
∑
i∈Iλ

Yr(xi,λ)

=
1

|Eλ|
TrYr(T

′
λ)

But from (4.1), we have

〈Yr, δxλ〉 =
1

|Eλ|
cr,λq

−r/2 − 1

|Eλ|

(q − 1)q−r/2|Eλ| , if r is even

0 , if r is odd
(4.17)

=
cr,λq

−r/2

|Eλ|
−

(q − 1)q−r/2 , if r is even

0 , if r is odd.
(4.18)

If (x)λ are µ-equidistributed i.e. δx,λ → µ, then

lim
λ→∞
〈Yr, δxλ〉 = 〈Yr, µ〉 (4.19)

Thus, lim
λ→∞

cr,λq
−r/2

|Eλ|
−

(q − 1)q−r/2 , if r is even

0 , if r is odd
= 〈Yr, µ〉 (4.20)
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=⇒ lim
λ→∞

cr,λq
−r/2

|Eλ|
−

(q − 1)q−r/2 , if r is even

0 , if r is odd
exists.

=⇒ lim
λ→∞

cr,λ
|Eλ|

exists ∀r > 0.

Proof of the converse: Suppose limλ→∞
cr,λ
|Eλ|

exists for every r ≥ 1.

Then, 〈Yr, δxλ〉 has a limit (from (4.18)).

For r = 0, 〈Yr, δxλ〉 =
1

|Eλ|
∑

i∈Iλ Y0(xi,λ) =
1

|Eλ|
∑
i∈Iλ

1 =
|Eλ|
|Eλ|

= 1.

One can check that, {Yr, r = 0, 1, . . . n} forms a basis of set of all polynomials of degree

≤ n. So by linearity, 〈P, δxλ〉 has a limit ∀ polynomials P on Ω. Let lim
λ→∞
〈P, δxλ〉 = µ(P ).

We have,

µ(1) = lim
λ→∞
〈1, δxλ〉

= lim
λ→∞

1

|Eλ|
∑
i∈Iλ

1 = 1

µ(P ) = lim
λ→∞
〈P, δxλ〉

= lim
λ→∞

1

|Eλ|
∑
i∈Iλ

P (xλ)

=⇒ If P ≥ 0 on Ω, µ(P ) ≥ 0.

Let X = Ω, E = R, K(X;R) = K(Ω;R) = C(Ω;R) and V = set of all real-valued

polynomials on Ω. X is a locally compact space. So from Lemma 4.9, we can extend µ to a

positive measure on Ω. Also, this measure is unique as V is dense in C(Ω;R). This follows

from the Stone-Weierstrass theorem.

Hence, µ(f) = lim
λ→∞
〈f, δxλ〉 exists for all continuous functions f on Ω. This is nothing but

an equivalent condition for (xλ) to be equidistributed.

This ends the proof of statement (1) of the theorem.
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Proof of (2): Let limλ→∞
cr,λ
|Eλ|

= γr.

=⇒ lim
λ→∞

cr,λq
−r/2

|Eλ|
−

(q − 1)q−r/2 , if r is even

0 , if r is odd
= 〈Yr, µ〉 (from (4.19)). (4.21)

According to (90, [7]),

〈Yr, µq〉 =

−(q − 1)q−r/2 , if r is even

0 , if r is odd
(4.22)

=⇒ 〈Yr, µ〉 = γr.q
−r/2 + ar(µq)

= γr.q
−r/2 + 〈Yr, µq〉

=⇒ 〈Yr, µ− µq〉 = γr.q
−r/2

=⇒ 〈Yr, ν〉 = γr.q
−r/2 where ν = µ− µq

So, we’re done. �
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Chapter 5

Ramanujan Graphs

Definition 5.1. Let X = Xn,k be a k-regular graph on n vertices. Let λ(X) be the absolute

value of its largest eigenvalue (distinct from ±k). A graph Xn,k is called a Ramanujan graph

if

λ(X) ≤ 2
√
k − 1.

Lubotzky, Phillips and Sarnak, [4], constructed a particular family of Ramanujan graphs

(discussed in sections 5.1 and 5.2). They compute the distribution measure for families of

regular graphs for which the girth asymptotically tends to infinity. This result is relevant

to the family of graphs constructed by them as the girth for this family also asymptotically

tends to infinity.

In this chapter, we try to apply Serre’s result to compute the distribution measure for

such families. We also compute the measure using a result published by B.D.McKay [5].

5.1 Cayley Graphs

Let G be a finite group and S a k-element subset of G. A set S ⊂ G is said to be a symmetric

set if s ∈ S implies s−1 ∈ S.

We can construct the graph X(G,S) using G and S as follows: Take the vertex set to be

the elements of G. For any vertices x, y in G, (x, y) is an edge if and only if xy−1 ∈ S.
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Claim: X(G,S) is a k-regular graph.

For every vertex x ∈ G, we need to look for y ∈ G such that xy−1 lies in S i.e. xy−1 = s for

some s ∈ S. So, y = s−1x. There are k choices for s−1. So, x is connected to k vertices.

Lemma 5.1. If the symmetric subset S does not generate the entire group G, then the Cayley

Graph X(G,S) is not connected.

Proof. Let us assume that X(G,S) is connected. We are given that S does not generate

G. Let x ∈ G be an element not generated by S. As x is connected, there is a path x and

any other vertex (say y) in G. Choose y to be in S. Let the vertex sequence of the path be

x, x1, x2, . . . xr, y. xr and y share an edge. So, xr = sry for some sr ∈ S. Similarly, we can

show that xr−1 = sr−1sry and so on. This gives x = s1s2 . . . y which means that x lies in S,

contradicting our assumption. �

5.2 Lubotzky-Phillips-Sarnak’s Construction of Ramanu-

jan Graphs

This is a construction of an explicit Ramanujan graph given by Lubotzky, Phillips, Sarnak

([4]):

Let p, q be two unequal primes congruent to 1 mod 4. Let i be an integer satisying i2 ≡ −1

(mod q).

• Consider the equation a0
2 + a1

2 + a2
2 + a3

2 = p. There are 8(p + 1) solutions α =

(a0, a1, a2, a3) to this equation. Out of these, there are (p + 1) solutions with a0 > 0

and odd and aj even for j = 1, 2, 3.

• To each solution associate the matrix α̃ in PGL(2,Z/qZ)

α̃ =

[
a0 + ia1 a2 + ia3

−a2 + ia3 a0 − ia1

]

• Form the Cayley graph of PGL(2,Z/qZ) by taking the set of above p+ 1 solutions as

the symmetric subset.
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• The graph obtained is a (p+ 1) regular graph with n = q(q2 − 1) vertices.

|PGL(2,Z/qZ)| = |GL(2,Z/qZ)|/|Z(GL(2,Z/qZ))|

Z(GL(2,Z/qZ)) =

[
λ 0

0 λ

]
, where λ ∈ (Z/qZ)∗

So, |PGL(2,Z/qZ)| = (q2 − 1)(q2 − q)/(q − 1).

• PSL(2,Z/qZ) is an index two subgroup of PGL(2,Z/qZ). Let ZS & ZG be the cen-

tres of SL(2,Z/qZ) & GL(2,Z/qZ) respectively. PSL(2,Z/qZ) = SL(2,Z/qZ)/ZS

PGL(2,Z/qZ) = GL(2,Z/qZ)/ZG

ZG =

[
λ 0

0 λ

]
, where λ ∈ (Z/qZ)∗

and

ZS =

[
λ 0

0 λ

]
, where λ ∈ (Z/qZ)∗ such that λ2 = 1.

Let g ∈ SL(2,Z/qZ). g.ZS ∈ PSL(2,Z/qZ)& g.ZG ∈ PGL(2,Z/qZ). But, ZS ( ZG.

So, gZS 6= gZG. PSL(2,Z/qZ) is not a subgroup of PGL(2,Z/qZ) in the usual sense.

We define a homomorphism from PSL(2,Z/qZ) to PGL(2,Z/qZ) as follows:

PSL(2,Z/qZ)→ PGL(2,Z/qZ)

gZS ↪→ gZG

• If (
p

q
) = 1, all α̃’s lie inside PSL(2,Z/qZ)).

− Claim: Any matrix in PGL(2,Z/qZ) lies in PSL(2,Z/qZ) if its determinant is a

square mod q.

− Every element in PSL(2,Z/qZ) is of the form g.ZS, which is mapped to g.ZG.

determinant of (representative of) g.ZG = det(g).det(ZG) = 1.λ2 for some λ ∈
Z/qZ.

So, the determinant of every element in PSL(2,Z/qZ) is a square.

− If α ∈ PGL(2,Z/qZ) and det(α) is a square, say x2 for some x ∈ Z/qZ. We
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want to show that α = g.ZG for some g ∈ SL(2,Z/qZ). Take

[
x 0

0 x

]
as the

representative of ZG. It is clear that g = α.

[
x 0

0 x

]−1

works. (g ∈ SL(2,Z/qZ) as

det(g) = det(α).
1

det

[
x 0

0 x

]
− Det(α̃) = p. If (p

q
) = 1, p ≡ x2(modq) for some x ∈ Z/qZ. So, Detα̃ is a square

and hence α̃ lies in PGL(2,Z/qZ).

• It follows from Lemma 5.1 that the graph is disconnected.

• So, they define the graph (Xp,q) to the above Cayley graph as above if (
p

q
) = −1 and

to be the Cayley graph of PSL(2,Z/qZ) if (
p

q
) = 1.

5.3 Asymptotic eigenvalue distribution in a family of

Xn,k’s

Consider a sequence of k-regular graphs Xn,k’s for which n → ∞ and the girth (of Xn,k)

gXn,k → ∞ as n → ∞. Lubotkzy, Phillips and Sarnak (LPS) show in their paper that the

Cayley graphs Xp,q have the property that gXp,q → ∞ as q → ∞. So, the condition on the

girth tending to infinity is relevant to their construction.

Associate with each graph in the family a measure µXn,k supported on [−k, k] which puts

point masses 1/n at each of its eigenvalues. LPS show in [4] the following proposition about

the asymptotic distribution measure of the eigenvalues of this family of graphs:

Theorem 5.2 (Prop 4.3, [4]).

lim
n→∞

gXn,k→∞
µXn,k = µk

where

dµk(t) =


√
k − 1− t2/4

πk(1− (t/k)2)
dt if |t| ≤ 2

√
k − 1

0 otherwise.

(5.1)
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We now present alternate proofs of Theorem 5.2 using a result of B.D.McKay and then

using Serre’s result (Theorem 4.1).

5.4 Alternate proofs of Proposition 4.3

5.4.1 Proof using B.D.McKay’s result

Consider a sequence of k-regular graphs Xn,k’s such that |Xn,k| → ∞ as n → ∞. Let Cr,n

be the number of r-cycles in Xn,k.

B.D.McKay proved the following result in 1981:

Theorem 5.3. If lim
n→∞

Cr,n/|Xn,k| = 0 for every r ≥ 3, then the limiting probability density

function (or the distribution measure) of the eigenvalues of Xn,k is given by:

f(x) =

k
√

4(k − 1)− x2

2π(k2 − x2)
for |x| ≤ 2

√
k − 1

0 otherwise.

In Theorem 5.2, we are looking at Xn,k’s such that gXn,k →∞ as n→∞. If gXn,k →∞
as n → ∞, it is easy to see that lim

n→∞
Cr,n = 0 ∀ r > 0. So, lim

n→∞
Cr,n/|Xn,k| = 0 ∀ r ≥ 3

and hence using B.D.McKay’s result we can obtain the limiting distribution measure for

the eigenvalues of this family of graphs. The measure obtained here is the same as that in

Theorem 5.2.

Remark 3. B.D. McKay’s paper was published in 1981, whereas Lubotzky, Phillips, Sarnak’s

paper on Ramanujan Graphs came out in 1988.

5.4.2 Proof using Serre’s result

Like in the previous subsection, consider sequence of k-regular graphs Xn,k’s such that

|Xn,k| → ∞ as n → ∞. Let (xn,k) be the family of eigenvalues of Xn,k. We also have

that gXn,k →∞ as n→∞. So again, lim
n→∞

Cr,n = 0 ∀ r > 0.

Lemma 5.4. Every closed walk contains a cycle.
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Proof. Consider a closed walk W .

Case I. Let W be of odd length. We’ll use induction on length of W to prove our result.

Base step: length of W = 1 i.e. W is a loop. A loop is a cycle. So, we’re done. Assume

our result is true for all closed walks of length ≤ 2r − 1. Let W be a closed walk of

length 2r + 1. If there are no repeating vertices in W , then W is a cycle in which

case we’re done. If there are repeating vertices, consider the first vertex which repeats

itself, say vi = vj. Now the circuit can be broken down into two closed walks. The first

closed walk starts from the origin of W and goes till vi and comes back to the origin

(there’s a way to come back to the origin as W is a closed walk). The other closed

walk is the walk from vi to vj(= vi). Now, one of the walks has to be odd length. So

by induction, W contains a cycle.

Case II. Let W be of even length. We’ll again use induction on the walk length. Base step is

clear (length 2 closed walks are multiple edges). Assume result is true for all closed

walks of length ≤ 2r. Now consider a closed walk of length 2r. Split W into two closed

walks as above. Either both of them are of odd length or both are of even length. If

both are of odd length, it follows from Case I that both of them contain a cycle. If

both of them are of even length, if follows from induction that both the walks contain

a cycle. So, W contains a cycle.

�

Now, a circuit is also a closed walk. So, every circuit contains a cycle. But we have,

lim
n→∞

Cr,n = 0 ∀ r > 0. Let cr,n be the number of circuits in Xn,k. So, lim
n→∞

cr,n = 0 ∀ r > 0.

Otherwise, there’ll be a circuit of length (say) r as n→∞. And it’ll contain a cycle which

contradicts the fact that lim
n→∞

Cr,n = 0 ∀ r > 0.

So, we have lim
n→∞

cr,n/|Xn,k| = 0 ∀ r > 0. Let k = q+ 1. It follows from Theorem 4.1 that

xn,k’s are equidistributed with respect to the measure µ given by:

µ = µq + ν

and ν is a measure on Ωq, characterised by:∫
Ωq

Yr(x)ν(x)dx = 0 ∀ r.
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It follows that ν(x) = 0.

=⇒ µ = µq

=⇒ µ(x) =
(q + 1)

π[(q1/2 + q−1/2)2 − x2]

√
1− x2

4
dx, for |x| ≤ 2.

Define y = x.
√
q.

=⇒ dy

dx
=
√
q =⇒ dx =

dy
√
q

=⇒ µ(x)dx =
k

π

[(
q + 1
√
q

)2

−
(
y
√
q

)2] ·
√

1− y2

4q

dy
√
q

, for |y| ≤ 2
√
q

=
k

π

q
[(q + 1)2 − (y)2]

·

√
1− y2

4q

dy
√
q

, for |y| ≤ 2
√
q

=
kq

π[k2 − (y)2]
·

√
1− y2

4q

dy
√
q

, for |y| ≤ 2
√
q

=
k
√
q

π[k2 − (y)2]
·

√
1− y2

4q
dy , for |y| ≤ 2

√
k − 1

=

√
q

πk[1− (
y

k
)2]
·

√
1− y2

4q
dy , for |y| ≤ 2

√
k − 1

=

√
q
(
1− y2

4q

)
πk
[
1− (

y

k
)2
]dy , for |y| ≤ 2

√
k − 1

=

√
q − y2

4

πk
[
1− (

y

k
)2
]dy , for |y| ≤ 2

√
k − 1

=

√
k − 1− y2

4

πk
[
1− (

y

k
)2
]dy , for |y| ≤ 2

√
k − 1
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which is what we had in Theorem 5.2.

Remark 4. In general, for any sequence of regular graphs (Xn,k) such that |Cn| → ∞ as

n → ∞ and gCn → ∞ as n → ∞, the limiting distribution measure of the eigenvalues is

given by:

µ(x) = µq(x) =


√

1− t2/4
kπ(1− (t/k)2)

dt if |t| ≤ 2
√
k − 1

0 otherwise.

5.5 Other regular graphs: Cycle graph

Consider a family of cycle graphs Cn (i.e. a cycle on n vertices). We can see that |Cn| → ∞
as n → ∞. Let gCn be the girth of Cn. Clearly, gCn → ∞ as n → ∞. So, the limiting

distribution measure of the eigenvalues of Cn’s is given by (see Remark 3):

µk(t) =


√
k − 1− t2/4

2π(1− (t/k)2)
dt if |t| ≤ 2

√
k − 1

0 otherwise.

As k = 2 here,

µ2(t) =


1

π
√

4− t2
dt if |t| ≤ 2

0 otherwise.
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Chapter 6

Conclusion

We compute the distribution measure for families of regular graphs for which the girth

asymptotically goes to infinity. It would be interesting to determine the error terms for them.

In other words, we would like to investigate the discrepancy between the expected and actual

number of eigenvalues that lie in an interval (say [a, b]), that is, |A([a, b), N, (xn)) − N
∫
I

µ|

(assuming µ is the limiting distribution measure for that family).

In this report, we looked at the limiting distribution of the eigenvalues as the number of

vertices goes to infinity. We would also like to study the case when the degree of the graph,

that is, k also goes to infinity.
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