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Abstract

This thesis is divided in two parts. The first part talks about Hopf-Galois

structures on groups of the form Zn⋊ϕZ2. LetK/F be a finite Galois extension

of fields with Gal(K/F ) = Γ. We enumerate the Hopf-Galois structures with

Galois group Γ of type G, where Γ, G are groups of the form Zn ⋊ϕ Z2 when

n is odd with radical of n being a Burnside number. These findings have

applications in the study of solutions to the Yang-Baxter equations and also

give application in the field of Galois module theory.

The second part entails unit groups of some finite semisimple group algebra.

This is further divided into two subsections. Firstly we provide the structure

of the unit group of Fpk(SL(3, 2)), where p ≥ 11 is a prime and SL(3, 2) denotes

the 3×3 invertible matrices over F2. Secondly we give the structure of the unit

group of FpkSn, where p > n is a prime and Sn denotes the symmetric group

on n letters. This provide the complete characterization of the unit group of

the group algebra FpkA6 for p ≥ 7, where A6 is the alternating group on 6

letters.



Chapter 1

INTRODUCTION

1.1 Hopf-Galois structures

The theory of Hopf-Galois structures for separable field extensions has been

studied by number theorists under the field of Galois-Module theory. This is

closely related to the theory of skew braces.

Definition 1.1.1. A left skew brace is a triple (Γ,+,×) ,where (Γ,+), (Γ,×)

are groups and satisfy

a× (b+ c) = (a× b) + a−1 + (a× c),

for all a, b, c ∈ Γ.

Skew braces give non-degenerate set theoretic solutions of the Yang-Baxter

equation. It initially appeared in the PhD thesis of D. Bachiller and has

been studied in [8], [13] et cetera. Skew braces provide group theoretic and

ring theoretic methods to understand solutions of the Yang Baxter equations.

Solutions to Yang-Baxter equations are studied as part of statistical mechanics

and knot theory.

We are interested in enumerating the Hopf-Galois structures when both the

Galois group of a given field extension and type of the Hopf-Galois structure

15
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is isomorphic to groups of the form Zn ⋊ϕ Z2 when n is odd with radical of

n being a Burnside number. Before we state our main results we give the

definition of a Hopf-Galois strucutre and some known results which will help

us in our enumaration.

Let R be a commutative ring with unity. Then H will be called an R-Hopf

algebra if there is anR-module homomoprhism λ : H → H (the antipode map),

which is both an R-algebra and an R-coalgebra antihomomophism such that:

λ(h⊗ h′) = λ(h)⊗ λ(h′),

∆λ(h) = (λ⊗ λ)τ∆,

µ(1⊗ λ)∆ = iϵ = µ(λ⊗ 1)∆,

where ∆ is the comultiplication map, τ is the switch map τ(h1⊗h2) = h2⊗h1,
i : R ↪→ H is the unit map and ϵ : H → R is the counit map.

Now assume that H is commutative. An R-Hopf algebra H is called a

finite algebra if it is finitely generated and a projective R-module. Now if S is

an R-algebra which is an H-module, then S is called an H-module algebra if

h(st) =
∑

h(1)(s)h(2)(t) and h(1) = ϵ(h)1

for all h ∈ H, s, t ∈ S, where ∆(h) =
∑
(h)

h(1) ⊗ h(2) ∈ H ⊗ H according to

Sweedler’s ([16]) notation and ϵ : H → R is the co-unit map.

Then S, a finite commutative R-algebra is called an H-Galois extension

over R if S is a left H-module algebra and the R-module homomorphism

j : S ⊗R H → EndR(S),

given by j(s⊗ h)(s′) = sh(s′) for s, s′ ∈ S, h ∈ H, is an isomorphism. Now we

define a Hopf-Galois structure on a Galois field extension. Assume K/F is a

finite Galois field extension. An F -Hopf algebra H, with an action on K such

that K is an (H)-module algebra and the action makes K into an H-Galois
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extension, will be called a Hopf-Galois structure on K/F .

1.1.1 Greither-Pareigis theory [14] and Byott’s transla-

tion [5]

Given a group G we define the holomorph of G as a semidirect product G⋊ψ

Aut(G), where ψ is the identity map. The holomorph of a group G (denoted

by Hol(G)) sits inside Perm(G) (set of permutations on G) as follows

Hol(G) = {η ∈ Perm(G) : η normalizes λ(G)},

where λ is the left regular representation. We also recall that a subgroup

Λ ⊆ Perm(Ω) is called regular if |Λ| = |Ω| and Λ acts freely on Ω.

Now we state some results which will help us count the number of Hopf-

Galois structures on a given field extension. The following result is due to

[14].

Proposition 1.1.2. [10, Theorem 6.8] Let K/F be a Galois extension of fields

and Γ = Gal(K/F ). Then there is a bijection between Hopf-Galois structures

on K/F and regular subgroups G of Perm(Γ) normalized by λ(Γ), where λ is

the left regular representation.

In the proof of the above proposition, given a regular subgroup G ≤
Perm(Γ) normalized by λ(Γ), the Hopf-Galois structure onK/F corresponding

to G is K[G]Γ. Here Γ acts on G by conjugation inside Perm(Γ) and it acts

on K by field automorphism, which induces an action of Γ on K[G]. This G

is called the type of the Hopf-Galois extension.

Although Greither-Pareigis theory simplifies the problem of counting the

number of Hopf-Galois structure for a given Galois extension, the size of

Perm(Γ) is large (|Γ|!) in general. The next theorem (also known as Byott’s

translation) further simplifies the problem by considering regular embeddings

in Hol(G), which is comparatively smaller in size. From the proof of [5, Propo-

sition 1] we have the following:
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Let Γ be a finite group and G be group of order |Γ|. Then there is a

bijection between the following sets:

1. {α : G→ Perm(Γ) a monomorphism, α(G) is regular}

2. {β : Γ → Perm(G) a monomorphism }

Let e(Γ, G) be the number of regular subgroups in Perm(Γ) isomorphic to G

which is normalized by λ(Γ), i.e. the number of Hopf-Galois structures on

K/F of type G. Let e′(Γ, G) denote the number of subgroups Γ∗ of Hol(G)

isomorphic to Γ, such that the stabilizer in Γ∗ of eG is trivial. Then we have

the following result.

Theorem 1.1.3. [5, See Proposition 1] With the notations as above we have,

e(Γ, G) =
|Aut(Γ)|
|Aut(G)|

e′(Γ, G).

Note that Γ∗ is a regular subgroup of Hol(G) implies Γ∗ has the same

cardinality as G. A typical element of Hol(G) is of the form (g, ζ) where

g ∈ G, ζ ∈ Aut(G). Hence to say Γ∗ is a regular subgroup of Hol(G) it

suffices to check that there is exactly one element (eG, ζ) ∈ Γ∗ with ζ = I,

the identity automorphism. Indeed, if Γ∗ is not regular, it is neither transitive

nor fixed-point free. Therefore, the stabilizer of eG in Γ∗ is non-trivial by the

orbit-stabilizer theorem, since orbit of eG has cardinality strictly less than |G|.
Since |G| = |Γ∗|, this forces the stabilizer of eG in Γ∗ to be a proper subgroup

and hence there exists an element (eG, ζ) ∈ Γ∗ with ζ ̸= I. We will use this

condition to check regular embeddings of the groups of the form Zn ⋊ Z2.

In [5] the author has proved that if K/F is a finite Galois extension of field

of degree T , then this extension admits a unique Hopf-Galois structure if and

only if T is a Burnside number. Since in our case n > 1 is odd and hence

2n is not Burnside, the extension has at least 2 Hopf-Galois structures. The

number of Hopf-Galois structure for various groups have been studied by E.

Campedel et al. [12], T. Kohl [15], Carnahan S. et al [11] et cetera. For an
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extensive literature review one may look at the PhD thesis of K. N. Zenouz

[18]. In [15], T. Kohl has computed e(G,G) when G is a dihedral group. Let

Cl be a cyclic group of order l and D2k be a dihedral group of order 2k. For

n odd we look at groups of order 2n of the form Ml,k := Cl × D2k where

kl = n, (k, l) = 1, whenever the radical of n is a Burnside number. Our main

result is the following.

Theorem 1.1.4. [1, Theorem 1.3] Let K/F be a Galois extension of fields

with Gal(K/F ) ∼= Γ and n ∈ N be odd. If Γ = Ml1,k1 and G = Ml2,k2 where

k1l1 = k2l2 = n and R(n) is a Burnside number, then the number of Hopf-

Galois structure on K/F of type G is given by

e(Γ, G) =
l1l2

(l1, l2)R(l1)
· 2|π(k2)|.

1.2 Unit groups of group algebras

Let q = pk for some prime p and k ∈ N. Let Fq denote the finite field of

cardinality q. For any group G, let FqG denotes the group algebra of G over

Fq. For basic notations and results on the subject of study, we refer the read-

ers to the classic by Milies and Sehgal [33]. The group of units of FqG has

many applications. As an application of the unit groups of matrix rings, Hur-

ley has proposed the constructions of convolutional codes (See [24],[25],[26]).

The structure of unit group can also be used to deal with some problems in

combinatorial number theory as well (See [22]). This has encouraged a lot of

researchers to find out the explicit structure of the group of units of FqG.
A substantial amount of work has been done to find the structure of the

algebra FqG, and also of the group of units of these algebras. For example in

[34], the author has described units of FqG, where G is a p-group. In a recent

paper [9] the authors have discussed the groups of units for the group algebras

over abelian groups of order 17 to 20. Howerver the complexity of the problem

increases with increase in the size of the group and the number of conjugacy

classes it has. For more, one can check [35],[36] et cetera.
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Very little is known for FqG, when G is a non-Abelian simple group. For

the case G = A5, this has been discussed in [31]. The next group in the family

of non-Abelian simple groups is the group SL(3, 2).

The second part of this thesis is further divided into two sub-scetions.

In the first subsection we we give a complete description of the unit group

of FqSL(3, 2) for p ≥ 11. In the second we start by investigation of FqSn
where p > n. This is mainly a consequence of the representation theory of

Sn over C and the connection between the Brauer characters of the group

when p > n and the ordinary characters over C. The group of units of the

semisimple algebras FqA5 and FqSL(3, 2) have been characterized in [31] and

in the previous subsection respectively. In this subsection, we look at the next

non-Abelian simple group A6, the alternating group on six letters. We give a

complete characterization of FqA6 for the case p ≥ 7. Our main result can be

summarised in the following two theorems.

Theorem 1.2.1. [2, Theorem 4.4] Let Fq be a field of characteristic p and p

≥ 11. Let G be the group SL(3, 2). Then the unit group U(FqG) is as listed in

the following table:

p mod 7 k U(FqSL(3, 2))
±1,±2,±3 6l F×

q ⊕GL(6,Fq)⊕GL(7,Fq)⊕GL(8,Fq)⊕GL(3,Fq)2

1, 2,−3 6l + 1 F×
q ⊕GL(6,Fq)⊕GL(7,Fq)⊕GL(8,Fq)⊕GL(3,Fq)2

−1,−2, 3 6l + 1 F×
q ⊕GL(6,Fq)⊕GL(7,Fq)⊕GL(8,Fq)⊕GL(3,Fq2)

±1,±2,±3 6l + 2 F×
q ⊕GL(6,Fq)⊕GL(7,Fq)⊕GL(8,Fq)⊕GL(3,Fq)2

1, 2,−3 6l + 3 F×
q ⊕GL(6,Fq)⊕GL(7,Fq)⊕GL(8,Fq)⊕GL(3,Fq)2

−1,−2, 3 6l + 3 F×
q ⊕GL(6,Fq)⊕GL(7,Fq)⊕GL(8,Fq)⊕GL(3,Fq2)

±1,±2,±3 6l + 4 F×
q ⊕GL(6,Fq)⊕GL(7,Fq)⊕GL(8,Fq)⊕GL(3,Fq)2

1, 2,−3 6l + 5 F×
q ⊕GL(6,Fq)⊕GL(7,Fq)⊕GL(8,Fq)⊕GL(3,Fq)2

−1,−2, 3 6l + 5 F×
q ⊕GL(6,Fq)⊕GL(7,Fq)⊕GL(8,Fq)⊕GL(3,Fq2)

.

Theorem 1.2.2. [3, Theorem 4.8] Let Fpk be a field of characteristic p ≥ 7

and A6 denotes the alternating group on six letters. Then the unit group of the
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algebra, U(FpkA6) is

F×
q ⊕GL(5,Fq)⊕GL(5,Fq)⊕GL(9,Fq)⊕GL(10,Fq)⊕GL(8,Fq2), (1.2.1)

when p ≡ ±2 mod 5, k ≡ 1 mod 2 and

F×
q ⊕GL(5,Fq)⊕GL(5,Fq)⊕GL(8,Fq)⊕GL(8,Fq)⊕GL(9,Fq)⊕GL(10,Fq),

(1.2.2)

otherwise.

1.3 Notations

For a, b ∈ Z we will use (a, b) to denote the g.c.d. of a and b. For a number n,

we take π(n) = {p : p divides n, p prime}. The notation vp(n), the exponent

of the highest power of the prime number p that divides n, denotes the p-

valuation of n. For n ∈ N, the radical of n is defined to be product of the

distinct primes in π(n), which will be denoted as R(n). The symbol φ(n)

denotes the Euler’s totient function at n ∈ N. A number n ∈ N is called a

Burnside number if (n, φ(n)) = 1.
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Chapter 2

HOPF-GALOIS STRUCTURES

2.1 Preliminaries

In this section we give complete description of groups of the form Zn⋊Z2 and

state some basic number theoretic results which will be used in Section 3 to

enumerate the regular embeddings.

2.1.1 Groups of the form Zn ⋊ϕ Z2, n odd

Note that if n =
m∏
t=1

pαt
t , where pi’s are all distinct primes, then

Zn ∼=
m⊕
t=1

Zpαt
t
,

and Aut(Zn) ∼= Z∗
n
∼=

m∏
t=1

Z∗
p
αt
t

∼=
m⊕
t=1

Z
p
αt−1
t (pt−1)

.

For x ∈ Zn we have x = (x1, x2, · · · , xm) where xu ∈ Zpαu
u
. We define pu(x) =

xu for pu ∈ π(n).

If ϕ : Z2 = {±1} → Aut(Zn) is a group homomorphism with pu(ϕ(−1)(x)) =

23
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−pu(x) for all pu ∈ π(n), then Zn ⋊ϕ Z2 is the dihedral group of order 2n

and we will denote this group by D. When pu(ϕ(−1)(x)) = pu(x) for all

pu ∈ π(n), then Zn ⋊ϕ Z2 is the cyclic group of order 2n and we will denote

this group by C. Now suppose pu(ϕ(−1)(x)) = pu(x) for some pu ∈ π(n) and

pu′(ϕ(−1)(x)) = −pu′(x) for some pu′ ∈ π(n), then the group is isomorphic to

D2k × Cl for some k, l ∈ N with kl = n. We denote this group by Ml,k. We

have to consider the regular embeddings for the following cases:

1. Ml1,k1 ↪→ Hol(Ml2,k2) where k1l1 = k2l2 = n and (k1, l1) = (k2, l2) = 1,

2. D ↪→ Hol(Ml,k) with k, l > 1,

3. C ↪→ Hol(Ml,k) with k, l > 1,

4. D ↪→ Hol(C)

5. C ↪→ Hol(D)

6. Ml,k ↪→ Hol(C) with k, l > 1,

7. Ml,k ↪→ Hol(D) with k, l > 1,

8. D ↪→ Hol(D)

9. C ↪→ Hol(C)

While counting the regular embeddings we consider the first case and all other

cases are special cases of it. We must mention here that the last two cases have

been previously discussed in [15] and [7] respectively and our answers match

with the results therein.
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2.2 Basic results

Lemma 2.2.1. Let p > 2 be a prime and γ ≡ 1 mod p. Define fγ(0) = 0 and

for each δ ∈ Z>0 define

fγ(δ) =
δ−1∑
i=0

γi.

Then

fγ(δ1) ≡ fγ(δ2) mod pn iff δ1 ≡ δ2 mod pn.

Proof. See the proof of Lemma 2.17 in [12].

Corollary 2.2.2. Let p be a prime and b ∈ Z such that bp
m ≡ 1 mod pn.

Then

pm|fb(pm)and pm+1 ∤ fb(pm).

Proof. This follows from the observation that b ≡ 1 mod p.
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2.3 Regular embeddings and Hopf-Galois struc-

ture

We start with a presentation of the group Ml,k = Cl ×D2k. It is given by

Ml,k =
〈
r, s, t : rk, s2, tl, srsr, sts−1t−1, rtr−1t−1

〉
.

For the rest of the section we assume that lk = n, (l, k) = 1 and R(n) is a

Burnside number. Now observe that Hol(Cl) = Hol(Zl) is isomorphic to the

matrix group {(
b a

0 1

)
: b ∈ Z∗

l , a ∈ Zl

}
.

From the above representation we conclude that

Aut(D2k) ∼=

{(
d c

0 1

)
: d ∈ Z∗

k, c ∈ Zk

}

where

(
d c

0 1

)
· r = rd,

(
d c

0 1

)
· s = rcs,

since Aut(D2k) ∼= Hol(Zk).

Next note that

Hol(Ml,k) ∼= Hol(Cl)× Hol(D2k) since (k, l) = 1.

Hence from the above discussion, we have

Hol(Ml,k) ∼=

{((
b a

0 1

)
, risj,

(
d c

0 1

))
: b∈Z

∗
l ,a∈Zl,d∈Z∗

k,c∈Zk,
0≤i≤k−1,j=0,1

}
,

where (risj, a) corresponds to the element of Ml,k.
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Now we want to look at the embeddings Φ : Ml1,k1 → Hol(Ml2,k2).We take

Ml1,k1 =
〈
r1, s1, t1 : r

k1
1 , s

2
1, t

l1
1 , s1r1s1r1, s1t1s

−1
1 t−1

1 , r1t1r
−1
1 t−1

1

〉
,

Ml2,k2 =
〈
r2, s2, t2 : r

k2
2 , s

2
2, t

l2
2 , s2r2s2r2, s2t2s

−1
2 t−1

2 , r2t2r
−1
2 t−1

2

〉
.

Let us assume that

Φ(r1) =

((
b a

0 1

)
, ri2s

j
2,

(
d c

0 1

))
,

Φ(s1) =

((
b′ a′

0 1

)
, ri

′

2 s
j′

2 ,

(
d′ c′

0 1

))
,

Φ(t1) =

((
b′′ a′′

0 1

)
, ri

′′

2 s
j′′

2 ,

(
d′′ c′′

0 1

))
.

We define the set V = {a, b, i, j, c, d, a′, b′, i′, j′, c′, d′, a′′, b′′, i′′, j′′, c′′, d′′} and

refer to the elements of the set as variables. Note that we can consider the

element a ∈ Zl2 (resp. b ∈ Z∗
l2
) to be an element of Zn (resp. Z∗

n) by set-

ting pu(a) = 0 (resp. pu(b) = 1) for all pu ∈ π(n) \ π(l2). The same treat-

ment will be applicable to all variables in V accordingly. We observe that

N = (k1, l2)(l1, l2)(k1, k2)(l1, k2) and the four entities in the right are mutually

coprime. Thus it is enough to count the total number of possibilities of the

variables in each of Zβ, where β ∈ {(k1, l2), (l1, l2), (k1, k2), (l1, k2)}. Now we

look at the embeddings of the groups inside the holomorph. We will encounter

several equations in this context. Since Φ is a homomorphism, we have the
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following relations:

Φ(r1)
k1 = e0

Φ(s1)
2 = e0

Φ(t1)
l1 = e0

Φ(s1)Φ(r1)Φ(s1)Φ(r1) = e0

Φ(r1)Φ(t1) = Φ(t1)Φ(r1)

Φ(s1)Φ(t1) = Φ(t1)Φ(s1),

where

e0 =

((
1 0

0 1

)
, r02s

0
2,

(
1 0

0 1

))
is the identity element of Hol(Ml2,k2). First we observe that if j = 1, then

Φ(r1) has even order. Indeed

Φ(r1)
2 =

((
b2 a(1 + b)

0 1

)
, r
i(1−d)−c
2 ,

(
d2 c(1 + d)

0 1

))

=⇒ Φ(r1)
2m+1 =

((
b2m+1 a(1 + b+ · · ·+ b2m)

0 1

)
, rī2s,

(
d2m+1 c(1 + d+ · · ·+ d2m)

0 1

))
.

Since k1 is odd, this possibility does not arise. Thus j = 0. Similarly we can

conclude that j′′ = 0, since l1 is odd. Using Φ(r1)
k1 = e0 we have((

bk1 a(1 + b+ · · ·+ bk1−1)

0 1

)
, r
i(1+d+···+dk1−1)
2 s,

(
dk1 c(1 + d+ · · ·+ dk1−1)

0 1

))

=

((
1 0

0 1

)
, r02s

0
2,

(
1 0

0 1

))
,

which implies that
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bk1 = 1 mod l2 (2.3.1)

a(1 + b+ · · ·+ bk1−1) = 0 mod l2 (2.3.2)

i(1 + d+ · · ·+ dk1−1) = 0 mod k2 (2.3.3)

dk1 = 1 mod k2 (2.3.4)

c(1 + d+ · · ·+ dk1−1) = 0 mod k2. (2.3.5)

Using Φ(t1)
l1 = e0 we get that

(b′′)l1 = 1 mod l2 (2.3.6)

a′′(1 + b′′ + · · ·+ (b′′)l1−1) = 0 mod l2 (2.3.7)

i′′(1 + d′′ + · · ·+ (d′′)l1−1) = 0 mod k2 (2.3.8)

(d′′)l1 = 1 mod k2 (2.3.9)

c′′(1 + d′′ + · · ·+ (d′′)l1−1) = 0 mod k2. (2.3.10)

Using Φ(r1)Φ(t1) = Φ(t1)Φ(r1) we get that

a(1− b′′) = 0 mod l2 (2.3.11)

i(1− d′′) = 0 mod k2 (2.3.12)

c(1− d′′) = 0 mod k2. (2.3.13)

Now we divide the set of equations in two parts considering j′ = 0 and j′ = 1.
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2.3.1 Case 1: j′ = 0.

Using Φ(s1)
2 = e0 we have

(b′)2 = 1 mod l2 (2.3.14)

a′(1 + b′) = 0 mod l2 (2.3.15)

(d′)2 = 1 mod k2 (2.3.16)

c′(1 + d′) = 0 mod k2 (2.3.17)

i′(1 + d′) = 0 mod k2. (2.3.18)

Using Φ(s1)Φ(r1)Φ(s1)Φ(r1) = e0 we have

b2 = 1 mod l2 (2.3.19)

a(b+ b′) + a′(1 + bb′) = 0 mod l2 (2.3.20)

(i+ i′)(1 + d′) = 0 mod k2 (2.3.21)

d2 = 1 mod k2 (2.3.22)

c(d+ d′) + c′(1 + dd′) = 0 mod k2 (2.3.23)

Note that b = 1 by equations 2.3.1 and 2.3.19, d = 1 by equations 2.3.4 and

2.3.22, since (2, k1) = 1.

Using Φ(s1)Φ(t1) = Φ(t1)Φ(s1) we have

a′′(1− b′) = a′(1− b′′) mod l2 (2.3.24)

i′′(1− d′) = i′(1− d′′) mod k2 (2.3.25)

c′′(1− d′) = c′(1− d′′) mod k2. (2.3.26)
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2.3.2 Case 2: j′ = 1.

Using Φ(s1)
2 = e0 we have

(b′)2 = 1 mod l2 (2.3.27)

a′(1 + b′) = 0 mod l2 (2.3.28)

(d′)2 = 1 mod k2 (2.3.29)

c′(1 + d′) = 0 mod k2 (2.3.30)

i′(1− d′) = c′ mod k2. (2.3.31)

Using Φ(s1)Φ(r1)Φ(s1)Φ(r1) = e0 we have

b2 = 1 mod l2 (2.3.32)

a(b+ b′) + a′(1 + bb′) = 0 mod l2 (2.3.33)

(i+ i′)(1− d′) = d′c+ c′ mod k2 (2.3.34)

d2 = 1 mod l2 (2.3.35)

c(d+ d′) + c′(1 + dd′) = 0 mod l2 (2.3.36)

Note that b = 1, d = 1 by similar reasons as before.

Using Φ(s1)Φ(t1) = Φ(t1)Φ(s1) we have

a′′(1− b′) = a′(1− b′′) mod l2 (2.3.37)

i′ − i′′d′ = i′′ + i′d′′ + c′′ mod k2 (2.3.38)

c′′(1− d′) = c′(1− d′′) mod k2. (2.3.39)

2.4 Embeddings

We already have that pu(b) = 1 and pu(d) = 1 for all pu ∈ π(n). Since |r1| = k1

we get that pu(a) is a unit whenever pu ∈ π((k1, l2)) and 0 for other primes

(this is equivalent to saying |a| = (k1, l2)). Similarly
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1. pu(i) is a unit for pu ∈ π((k1, k2)) and 0 otherwise,

2. pu(c) = 0 whenever pu ∈ π(n) \ π((k1, k2)),

3. pu(i
′′) is a unit for pu ∈ π((l1, k2)) and 0 otherwise,

4. pu(a
′′) is a unit for pu ∈ π((l1, l2)) and 0 otherwise.

Point (3) and (4) follows from corollary 2.2.2. From equations 2.3.1 and 2.3.19

we have that pu(b) = 1 for all pu ∈ π(n). In each of these following cases we

only determine the coefficients of the variables for the primes relevant to that

case.

Case I: Inside Z(k1,l2). Using equations 2.3.15, 2.3.20 and b = 1, we have

that a(1 + b′) = 0 thus pu(b
′) = −1 for pu ∈ π((k1, l2)). Referring to equation

2.3.11 and pu(a) is a unit for pu ∈ π((k1, l2)) we have that pu(b
′′) = 1 for

pu ∈ π(k1, l2). Using equation 2.3.37 we have pu(a
′′) = 0 for all pu ∈ π((k1, l2))

(since (2, pu) = 1). All other variables have one possibility since k2 is coprime

to (k1, l2). Hence

1. a has φ(k1, l2) possibilities,

2. a′ has (k1, l2) possibilities.

Case II: Inside Z(l1,l2). Here pu(a) = 0 for all pu ∈ π((l1, l2)). Using

equation 2.3.14 (equiv. 2.3.27) we have pu(b
′) = ±1 for all pu ∈ π((l1, l2)).

Considering equation 2.3.24 (equiv. 2.3.37) and that 1−pu(b′′) is a zero divisor

for pu ∈ π((l1, l2)), using equation 2.3.15 (equiv. 2.3.28) we get pu(b
′) = 1

which implies that pu(a
′) = 0 in this case. Since R(n) is a Burnside number,

from equation 2.3.6 we have that

pu(b
′′)p

αu−1
u = 1 for all pu. (2.4.1)

Hence

1. (a′, b′) has 1 possibility,
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2. a′′ has φ(l1, l2) possibilities,

3. b′′ has
(l1, l2)

R((l1, l2))
possibilities.

Remark 2.4.1. Note that the above two cases do not depend on j′.

Case III: Inside Z(k1,k2) (j′ = 0). We have pu((i)) is a unit for all pu ∈
π((k1, k2)). Combining equations 2.3.18 and 2.3.21 we have pu(d

′) = −1 for all

pu ∈ π((k1, k2)). Since (k1, k2) is coprime to l1 and R(n) is a Burnside number,

using equation 2.3.9 we conclude that pu(d
′′) = 1 for all pu ∈ π((k1, k2)). This

implies that pu(i
′′) = pu(c

′′) = 0 for all pu ∈ π((k1, k2)), since (l1, (k1, k2)) = 1.

Hence

1. i has φ((k1, k2)) possibilities,

2. each of c, i′, c′ has (k1, k2) possibilities.

Case IV: Inside Z(l1,k2) (j′ = 0). We have pu(i) = pu(c) = 0 for all

pu ∈ π((l1, k2)). Note that pu(d
′) = ±1 for all pu ∈ π((l1, k2)). Using equation

2.3.25 we have

pu(i
′′)(1− pu(d

′)) = pu(i
′)(1− pu(d

′′)) mod pαu
u for all pu ∈ π((l1, k2)).

Then pu(d
′) = −1 for some pu ∈ π((l1, k2)) implies that

2pu(i
′′) = pu(i

′)(1− pu(d
′′)) mod pαu

u for all pu ∈ π((l1, k2)).

Since 2pu(i
′′) is a unit and 1 − pu(d

′′) (̸= 0) is a zero divisor, this case does

not arise. Hence we get that pu(d
′) = 1 for all pu ∈ π((l1, k2)). This implies

that pu(i
′) = pu(c

′) = 0 for all pu ∈ π((l1, k2)). Similar to equation 2.4.1

pu(d
′′)p

αu−1
u = 1 for all pu ∈ π((l1, k2)), since R(n) is Burnside. Hence

1. i′′ has φ((l1, k2)) possibilities,

2. c′′ has (l1, k2) possibilities,
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3. d′′ has
(l1, k2)

R((l1, k2))
possibilities.

Case V: Inside Z(k1,k2) (j
′ = 1). We have pu(d

′′) = 1, pu(c
′′) = pu(i

′′) = 0

for all pu ∈ π((k1, k2)) (as in Case III). Note that pu(d
′) = ±1 for all pu ∈

π((k1, k2)). First let us assume that pu(d
′) = 1 for some pu. Then pu(c

′) = 0

and hence i′′ ∈ Zpαu
u
. Using equation 2.3.36 we conclude that pu(c) = 0.

Next, if pu(d
′) = −1 for some pu, using equation 2.3.34

pu(c
′) = 2pu(i

′) mod pαu
u .

Also combining equations 2.3.31, 2.3.34 we get that 2pu(i) = −pu(c). Hence

1. i has φ((k1, k2)) possibilities,

2. (d′, i′) has 2|π((k1,k2))|(k1, k2) possibilities.

Case VI: Inside Z(l1,k2) (j′ = 1). We have pu(i) = pu(c) = 0 for all

pu ∈ π((l1, k2)). Let us assume that pu(d
′) = 1 for some pu ∈ π((l1, k2)). Then

pu(c
′) = 0. Then using equation 2.3.38 we have

pu(i
′)(1− pu(d

′′)) = 2pu(i
′′) + pu(c

′′) mod pαu
u .

On the other hand if pu(d
′) = −1 for some pu ∈ π((l1, k2)) we get that pu(c

′) =

2pu(i
′) and using equation 2.3.38 we get

pu(i
′)(1− pu(d

′′)) = pu(c
′′) mod pαu

u .

Hence in either of the cases pu(c
′), pu(c

′′) get fixed by pu(d
′), pu(i

′). Hence

1. (d′, i′) has 2|π((l1,k2))|(l1, k2) possibilities,

2. i′′ has φ((l1, k2)) possibilities (as in Case IV),

3. d′′ has
(l1, k2)

R((l1, k2))
possibilities (as in Case IV).
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2.5 Regularity

Now we check for the regularity of these groups. Note that any element σ in

the image of Φ is of the form((
b̃ ã

0 1

)
, rĩ2s

j̃
2,

(
d̃ c̃

0 1

))
.

Since Φ is a homomorphism, this element corresponds to some Φ(r1)
λΦ(s1)

λ′Φ(t1)
λ′′ ,

where 0 ≤ λ ≤ l1 − 1, 0 ≤ λ′ ≤ 1, 0 ≤ λ′′ ≤ k1 − 1. First we consider the case

when j′ = 0. Note that in this case

Φ(r1)
λΦ(s1)

=

((
1 λa

0 1

)
, rλi2 ,

(
1 λc

0 1

))((
b′ a′

0 1

)
, ri

′

2 ,

(
d′ c′

0 1

))

=

((
b′ λa+ a′

0 1

)
, rλi+i

′

2 ,

(
d′ λc+ c′

0 1

))
.

By the Chinese Remainder theorem, there exists 0 < λ < k1, such that λa +

a′ = 0 mod (k1, l2) and λi+ i′ = 0 mod (k1, k2). Also we have

pu(b
′) =

−1 for all pu ∈ π((k1, l2))

1 for all pu ∈ π((l1, l2))
,

pu(d
′) =

−1 for all pu ∈ π((k1, k2))

1 for all pu ∈ π((l1, k2))
,

since for any such 0 < λ < k1 the element Φ(r1)
λΦ(s1) is non-trivial. Hence

the group generated in this case is not regular. Thus j′ = 0 is not possible.

In case j′ = 1, any term of the form Φ(r1)
λΦ(s1)Φ(t1)

λ′′ is an element of

a regular subgroup. Hence to check regularity we need to consider the terms
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Φ(r1)
λΦ(t1)

λ′′ with ã = 0, ĩ = 0. We have,

a′′(1 + b′′ + · · ·+ (b′′)λ
′′−1) = −λa mod l2

i′′(1 + d′′ + · · ·+ (d′′)λ
′′−1) = −λi mod k2.

Since pu(i
′′) = 0 and pu(i) is a unit for all pu ∈ π((k1, k2)), we get that

pu(λ) = 0 therein. One can also check that pu(λ) = 0 for all pu ∈ π((k1, l2)).

Hence λ = 0. Similar as before, using corollary 2.2.2, we have λ′′ = 0.

Proposition 2.5.1. If Γ = Ml1,k1 and G = Ml2,k2, where k1l1 = k2l2 = n is

an odd number and R(n) is a Burnside number then

e′(Ml1,k1 ,Ml2,k2) =
l1n

k1(l1, l2)R(l1)
· 2|π(k2)|.

Proof. From the above discussion it is evident that j′ = 1. Thus to determine

the total number of regular embeddings we have to multiply the number of

possibilities obtained in Cases I,II,V,VI and divide it by Aut(Γ). Indeed, if

Φ1(Γ) = Φ2(Γ) for two different embeddings Φ1,Φ2 then Φ−1
1 Φ2 is an automor-

phism of Γ. Also if ξ is an automorphism of Φ(Γ), then ξΦ is also a regular

embedding of Γ. Hence

e′(Ml1,k1 ,Ml2,k2)

=
φ((k1, l2))(k1, l2)φ((l1, l2))(l1, l2)φ(k1, k2)2

|π((k1,k2))|(k1, k2)2
|π((l1,k2))|(l1, k2)

2φ(l1, k2)

R((l1, l2))|Aut(Ml1,k1)|R((l1, k2))

=
φ(n)(l1, k2)n2

|π(k2)|

R(l1)|Aut(Ml1,k1)|

=
φ(n)(l1, k2)n2

|π(k2)|

R(l1)φ(n)k1

=
l1(l1, k2)2

|π(k2)|

R(l1)

=
l1n

k1(l1, l2)R(l1)
· 2|π(k2)|.
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The last equality is obvious and this finishes the proof.

Proof of Theorem 1.1.4. Using Lemma 1.1.3, we have that

e(Ml1,k1 ,Ml2,k2)

=
Aut(Ml1,k1)

Ml2,k2

e′(Ml1,k1 ,Ml2,k2)

=
l1l2

(l1, l2)R(l1)
· 2|π(k2)|.

Remark 2.5.2. If l1 = 1 i.e. when Ml1,k1
∼= D2n, the assumption that R(n)

is a Burnside number is not necessary.
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2.6 Further results

2.6.1 Non-classical Dihedral Hopf-Galois structures

Corollary 2.6.1. Let L/K be a finite Galois extension with Galois group

isomorphic to D2n where n is odd. Then the number of Hopf-Galois structures

on L/K is at least

n∑
m=0

2mχ(n−m),

where χ(w) is the coefficient of xw in the polynomial
∏

pu∈π(n)
(x+ pαu

u ).

Proof. Firstly assume that n = pα1
1 p

α2
2 . . . pαt

t . Next consider all the groups of

the form Ml,k where lk = n, (l, k) = 1. Then by theorem 1.1.4

e(D2n, Cl ×D2k) = l2|π(k)|.

Hence the number of Hopf-Galois structure on L/K with Galois group D2n,

e(D2n) ≥
∑

(l,k)=1,lk=n

e(D2n,Ml,k)

=
∑

(l,k)=1,lk=n

l2|π(k)|

= 2t + 2t−1

(
t∑
i=1

pαi
i

)
+ 2t−1

(∑
i ̸=j

pαi
i p

αj

j

)
+ . . .+ n

=
n∑

m=0

2mχ(n−m),

where χ(w) is the coefficient of xw in the polynomial
∏

pu∈π(n)
(x+ pαu

u ).

Now consider the group Cl × D2k, where kl = n, (k, l) ̸= 1. We show that

D2n ̸↪→ Hol(Cl ×D2k), where n is odd. We will need the following lemma.
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Lemma 2.6.2. [6, Theorem 3.2] Let G = H × K, where H and K have no

common direct factor. Then

Aut(G) =

{(
A B

C D

)∣∣∣∣∣ A ∈ Aut(H), B ∈ Hom(K,Z(H)),

C ∈ Hom(H,Z(K)), D ∈ Aut(K),

}
.

Corollary 2.6.3. If kl = n is odd and (k, l) ̸= 1, then the group Hol(Cl×D2k)

does not have any element of order pvp(n) for p|(k, l).

Proof. Setting H = Cl, K = D2k, we observe that

1. Hom(K,Z(H)) = 1. Indeed Z(H) = Cl is a group of odd order, it has

no element of order 2,

2. Hom(H,Z(K)) = 1 since Z(K) is trivial.

This along with Lemma 2.6.2 implies that Aut(Cl×D2k) = Aut(Cl)×Aut(D2k).

Hence

Hol(Cl ×D2k) = Cl ×D2k ⋊id Aut(Cl ×D2k)

∼= Hol(D2k)× Hol(Cl).

Since none of Hol(D2k),Hol(Cl) has elements of order pvp(n), the result follows.

Corollary 2.6.4. If n is odd, then e(D2n, Cl ×D2k) = 0, whenever (k, l) ̸= 1.

Corollary 2.6.5. If (Γ,+) ∼= Ml1,k1 and (Γ,×) ∼= Ml2,k2, where k1l1 = k2l2 =

n is an odd number and R(n) is a Burnside number then the number of skew

braces of the form (Γ,+,×) is given by

l1n

k1(l1, l2)R(l1)
· 2|π(k2)|.

Proof. Follows from Proposition 2.5.1.
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2.7 Future plan

2.7.1 Realizability problem

What is the realizability problem ?

It says given any two finite groups G,N of the same order, does there exist

a Hopf-Galois structure with Galois group isomorphic to G and the type of

the Hopf-Galois structure isomorphic to N . If it exists then we say the pair

(G,N) is Hopf-Galois realizable. In the language of skew braces a pair (G,N)

is called (skew brace) realizable if there exits a skew brace with additive group

isomorphic to N and the multiplicative group isomorphic to G. Since a pair

(G,N) being Hopf-Galois is makes the pair Skew brace realizable, from now

on we will just say a pair is realizable.

In this chapter we enumerated the Hopf-Galois structures when both G

and N are groups isomorphic to Zn ⋊ϕ Z2 whenever radical of n is a burnside

number. In [4] the authors have solved the realizability problem in this case.

In future we are interested in checking for realizability of pairs of groups (G,N)

whenever N is isomorphic to the following:

• GL(n, q)

• a non-abelian finite simple group

• a quasi-simple group.



Chapter 3

UNIT GROUPS OF GROUP

ALGEBRAS

3.1 Preliminaries

We start by fixing some notations. Already mentioned notations from section

1 are adopted. For a field extension E/Fq, Gal(E/Fq) will denote the Galois

group of the extension. For m ∈ N, the notation M(m,R) denotes the ring

of m ×m matrices over R and GL(m,R) will denote the set of all invertible

matrices in M(m,R). For a ring R, the set of units of R will be denoted by R×.

Let Z(R) and J(R) denote the center and the Jacobson radical respectively.

If G is a group and x ∈ G, then [x] will denote the conjugacy class of x in G.

For the group ring FqG, the group of units will be denoted as U(FqG). For the
notations on projective spaces, we follow [23].

We say an element g ∈ G is a p′-element if the order of g is not divisible

by p. Let e be the exponent of the group G and η be a primitive rth root of

unity, where e = pfr and p ∤ r. Let

IFq =
{
l (mod e) : there exists σ ∈ Gal(Fq(η)/Fq) satisfying σ(η) = ηl

}
.

Definition 3.1.1. For a p′-element g ∈ G, the cyclotomic Fq-class of g, de-

41
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noted by SFq(γg), is defined as
{
γgl : l ∈ IFq

}
, where γgl ∈ FqG is the sum of

all conjugates of gl in G.

Then we have the following results, which are crucial in determining the

Artin-Wedderburn decomposition of FqG.

Lemma 3.1.2. [20, Proposition 1.2] The number of simple components of

FqG/J(FqG) is equal to the number of cyclotomic Fq-classes in G.

Definition 3.1.3. Let π be a representation of a group G over a field F . π

is said to be absolutely irreducible if πE is irreducible for every field F ⊆ E,

where πE is the representation π ⊗ E over E.

Definition 3.1.4. A field F is a splitting field for G if every irreducible rep-

resentation of G over F is absolutely irreducible.

Lemma 3.1.5. [20, Theorem 1.3] Let n be the number of cyclotomic Fq-classes
in G. If L1, L2, · · · , Ln are the simple components of Z(FqG/J(FqG)) and

S1, S2, · · · , Sn are the cyclotomic Fq-classes of G, then with a suitable reorder-

ing of the indices,

|Si| = [Li : Fq].

Lemma 3.1.6. [30, Lemma 2.5] Let K be a field of characteristic p and let

A1, A2 be two finite dimensional K-algebras. Assume A1 to be semisimple. If

g : A2 −→ A1 is a surjective homomorphism of K-algebras, then there exists

a semisimple K-algebra l such that A2/J(A2) = l ⊕ A1.
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3.2 Unit group of FqSL(3, 2)

We will be using various descriptions of SL(3, 2) in the sequel, which are well

known. From [38], it is known that

SL(3, 2) = GL(3, 2) ∼= PGL(2, 7) ∼= PSL(2, 7).

We have an embedding of SL(3, 2) inside S8 as follows:

SL(3, 2) ∼= ⟨(3, 7, 5)(4, 8, 6), (1, 2, 6)(3, 4, 8)⟩.

This group has 7 conjugacy classes and using [21], we have the following table:

Class Representative Order No. of elements

C1 α1 = (1) 1 1

C2 α2 = (1, 2)(3, 4)(5, 8)(6, 7) 2 21

C3 α3 = (3, 5, 7)(4, 6, 8) 3 56

C4 α4 = (1, 2, 3, 5)(4, 8, 7, 6) 4 42

C5 α5 = (2, 3, 5, 4, 7, 8, 6) 7 24

C6 α6 = (2, 4, 6, 5, 8, 3, 7) 7 24

.

We note down the following relations

[α5] = [α2
5] = [α4

5]. (3.2.1)

and

[α6] = [α3
5] = [α5

5] = [α6
5] = [α6]. (3.2.2)

3.2.1 On some simple components of FqSL(3, 2)

The next few lemmas are crucial for determining the different ni’s occurring

in the Artin-Wedderburn decomposition of FqSL(3, 2).
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Lemma 3.2.1. Let G be a group of order n and F be a field of characteristic

p > 0. Let G acts on a finite set X = {1, 2, · · · , k} doubly transitively. Set

Gi = {g ∈ G : g · i = i} and Gi,j = {g ∈ G : g · i = i, g · j = j}. Then the FG
module

W =

{
x ∈ Fk :

k∑
i=1

xi = 0, i ∈ X

}

is an irreducible FG module if p ∤ k, p ∤ |G1,2|.

Proof. Let U ⊆ W be a non-zero invariant space under the action of G.

Since the action is doubly transitive, it is enough to show that we have

(1,−1, 0, . . . , 0︸ ︷︷ ︸
(k−2) times

) ∈ U .

Let x = (x1, x2, . . . , xn) ∈ U be nonzero. Then we can assume that x1 ̸= 0,

since G acts transitively on X. Considering the element y =
∑
g∈G1

gx ∈ U , we

see that

y1 = |G1|x1
y2 = y3 = · · · = yn

= |G1,2|
n∑
i=2

xi,

since G permutes X. Note that yi ̸= 0 for all 1 ≤ i ≤ k. Next taking a g ∈ G,

which permutes 1, 2 (this exists since the action is doubly transitive) we see

that (y1 − y2)(1,−1, 0, . . . , 0) ∈ U , which finishes the proof.

Corollary 3.2.2. The representation induced by the action of GL(3, 2) =

PGL(3, 2) on P2(F2) has an irreducible component of degree 6 over Fpk , for
p ≥ 11.

Proof. We know that the action of GL(3, 2) on P2(F2) is doubly transitive

(see [23, pp. 124]). Since G1,2 is a subgroup of GL(3, 2) and p ∤ |G|, the result

follows from Lemma 3.2.1.
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Corollary 3.2.3. The representation induced by the action of GL(3, 2) ∼=
PSL(2, 7) on P1(F7) has an irreducible component of degree 7 over Fpk , for

p ≥ 11.

Proof. The action of the group PGL(2, 7) on Perm1(F7), is transitive, as well

as doubly transitive (see [23, pp. 157]). We see that p ∤ |G1,2|, as G1,2 is a

subgroup of PGL(3, 2) and p ∤ 168.

Remark 3.2.4. Using Lemma 3.2.1, it can be seen that the regular represen-

tation of the symmetric group Sn, decomposes into the trivial representation

and an irreducible representation of degree n− 1 over the field Fpk , whenever
p > n.

Lemma 3.2.5. Let Ai, 1 ≤ i ≤ n be a family of unital algebra with unit 1i

and Di be the set of representatives of simple Ai-modules. Then any simple
n⊕
i=1

Ai-module is of the form
n⊕
i=1

Mi, where not all Mi’s are zero and Mi ∈ Di.

Proof. Since 1 n⊕
i=1

Ai

=
n∑
i=1

1Ai
and hence for any

n⊕
i=1

Ai-module M , we have

M =M · 1 n⊕
i=1

Ai

n⊕
i=1

Ai

=
n⊕
i=1

MAi.

Lemma 3.2.6. [37, Example 3.3] For any division algebra (in particular field)

D, the only simple M(n,D)-module is Dn upto isomorphism.

Corollary 3.2.7. Let G be a finite group, k be a finite field of characteristic

p > 0, p ∤ |G|. Then if there exists an irreducible representations of degree n

over k, then one of the component of kG is of the form M(n, k).
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Proof. Since p ∤ |G|, by Maschke’s theorem kG is semisimple. Hence by

Artin–Wedderburn theorem we have that

kG =
n⊕
i=1

M(ni, ki),

where ki’s are finite extensions of k (hence a field). It follows from Lemma

3.2.5 and Lemma 3.2.6 that for some i, we have ni = n, ki = k. Hence the

result follows.

Corollary 3.2.8. Two of the components of the group algebra FqSL(3, 2) are
M(6,Fq),M(7,Fq).

Proof. This follows immediately from Corollaries 3.2.2, 3.2.3 and 3.2.7.
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3.3 Units in FqSL(3, 2)

Proposition 3.3.1. Let Fq be a field of characteristic p and p ≥ 11, q = pk.

Let G be the group SL(3, 2). Then the Artin-Wedderburn decomposition of FqG
is one of the following:

Fq ⊕
5⊕
i=1

M(ni,Fq),

Fq ⊕
3⊕
i=1

M(ni,Fq)⊕M(n4,Fq2).

Proof. Since p ∤ |G|, by Maschke’s theorem we have FqG is semisimple and

hence J(FqG) is zero. By its Wedderburn decomposition we have FqG is iso-

morphic to
n⊕
i=1

M(ni, Ki), where ni > 0 and Ki is a finite extension of Fq, for

all 1 ≤ i ≤ n.

Firstly from Lemma 3.1.6, we have

FqG ∼= Fq
n−1⊕
i=1

M(ni, Ki), (3.3.1)

taking h to be the augmentation map. Now to compute these ni’s and Ki’s we

calculate the cyclotomic Fq classes of G. We do this in 6 cases, for k = 6l + i

, 0 ≤ i ≤ 5. Note that p can have the following possibilities, being a prime

p ∈ {±1} mod 4,

p ∈ {±1} mod 3,

p ∈ {±1,±2,±3} mod 7.

1. The case (k = 6l): In this case pk ≡ 1 mod 7, pk ≡ 1 mod 4 and pk ≡ 1

mod 3, hence pk ≡ 1 mod 84 (using Chinese Remainder theorem). Thus

IFq = {1} and SFq(γg) = {γg} for all g ∈ G. Thus by Lemma 3.1.2,
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Lemma 3.1.5 and Equation (3.3.1)

FqG ∼= Fq ⊕
5⊕
i=1

M(ni,Fq).

When such a decomposition arises, we say that (p, k) is of type 1.

2. The case (k = 6l + 1): In this case if p ≡ ±1 mod 3, p ≡ ±1 mod 4 and

p ≡ 1, 2,−3 mod 7, SFq(γg) = {γg} for all g ∈ G, because we have

[α2] = [α−1
2 ], [α3] = [α−1

3 ], [α4] = [α−1
4 ].

Once again by Lemma 3.1.2 and Lemma 3.1.5 and Equation (3.3.1)

FqG ∼= Fq ⊕
5⊕
i=1

M(ni,Fq).

i.e (p, k) is of type 1. Now if p ≡ −1,−2, 3 mod 7, then we get that

SFq(γg) = {γg} for g ∈ {α1, α2, α3, α4} and SFq(γg) = (γg, γg−1) when

g ∈ {α5, α6} since [α5] ̸= [α−1
5 ]. Hence in this case we have

FqG ∼= Fq ⊕
3⊕
i=1

M(ni,Fq)⊕M(n4,Fq2).

When such a decomposition arises, we say that (p, k) is of type 2.

It can be further shown using Equation 3.2.1 and Equation 3.2.2 that (p, k) is

either of type 1 or 2. The possibilities are listed in the table below.
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p mod 7 k Type of (p, k)

±1,±2,±3 6l 1

1, 2,−3 6l + 1 1

−1,−2, 3 6l + 1 2

±1,±2,±3 6l + 2 1

1, 2,−3 6l + 3 1

−1,−2, 3 6l + 3 2

±1,±2,±3 6l + 4 1

1, 2,−3 6l + 5 1

−1,−2, 3 6l + 5 2

Proposition 3.3.2. We have (n1, n2, n3, n4, n5, n6) = (1, 6, 7, 8, 3, 3) up to

some permutation.

Proof. By Corollary 3.2.8, we have that for some ni = 6, nj = 7 for some

i, j ∈ {1, 2, . . . , 6}. Let us assume n2 = 6, n3 = 7. Since n1 = 1, we are left

with the equation n2
4+n

2
5+n

2
6 = 82, with all ni > 0. Since the only possibility

is 82 + 32 + 32, we are done.

Proposition 3.3.3. Let Fq be a field of characteristic p and p ≥ 11, q = pk.

Let G be the group SL(3, 2). Then the Wedderburn decomposition of FqG is as

follows :

Fq ⊕M(6,Fq)⊕M(7,Fq)⊕M(8,Fq)⊕M(3,Fq)2 if (p, k) is of type 1,

Fq ⊕M(6,Fq)⊕M(7,Fq)⊕M(8,Fq)⊕M(3,Fq2) if (p, k) is of type 2.

Proof. Follows immediately from Proposition 3.3.1 and Proposition 3.3.2.

Theorem 3.3.4. Let Fq be a field of characteristic p and p ≥ 11. Let G be the

group SL(3, 2). Then the unit group U(FqG) is as listed in the following table:
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p mod 7 k U(FqSL(3, 2))
±1,±2,±3 6l F×

q ⊕GL(6,Fq)⊕GL(7,Fq)⊕GL(8,Fq)⊕GL(3,Fq)2

1, 2,−3 6l + 1 F×
q ⊕GL(6,Fq)⊕GL(7,Fq)⊕GL(8,Fq)⊕GL(3,Fq)2

−1,−2, 3 6l + 1 F×
q ⊕GL(6,Fq)⊕GL(7,Fq)⊕GL(8,Fq)⊕GL(3,Fq2)

±1,±2,±3 6l + 2 F×
q ⊕GL(6,Fq)⊕GL(7,Fq)⊕GL(8,Fq)⊕GL(3,Fq)2

1, 2,−3 6l + 3 F×
q ⊕GL(6,Fq)⊕GL(7,Fq)⊕GL(8,Fq)⊕GL(3,Fq)2

−1,−2, 3 6l + 3 F×
q ⊕GL(6,Fq)⊕GL(7,Fq)⊕GL(8,Fq)⊕GL(3,Fq2)

±1,±2,±3 6l + 4 F×
q ⊕GL(6,Fq)⊕GL(7,Fq)⊕GL(8,Fq)⊕GL(3,Fq)2

1, 2,−3 6l + 5 F×
q ⊕GL(6,Fq)⊕GL(7,Fq)⊕GL(8,Fq)⊕GL(3,Fq)2

−1,−2, 3 6l + 5 F×
q ⊕GL(6,Fq)⊕GL(7,Fq)⊕GL(8,Fq)⊕GL(3,Fq2)

.

Proof. This follows immediately from Proposition 3.5.7 and the fact that given

two rings R1, R2, we have (R1 ×R2)
× = R×

1 ×R×
2 .

Remark 3.3.5. Theorem 3.3.4 holds for p = 5 as well.

3.4 Units of FpkSn for p ∤ n

Let Sn denote the symmetric group on n letters. We start the section by talking

about representations of Sn over a finite field. We define the Brauer character

and state some important results about representations over an arbitrary field.

See [27] for further details.

Let E be a field of characteristic p. We choose a ring of algebraic integers A

in C such that E = A/M , whereM is a maximal ideal of A containing pA. Take

f to be the natural map A −→ E. Take W = {z ∈ C|zm = 1 for some m ∈
Z with p ∤ m} (note that W ⊆ A). Now let π be a representation of a finite

group G over E. Let S be the set of p′ elements of G. For α ∈ S, let

ϵ1, ϵ2, . . . , ϵl ∈ E× be the eigenvalues of π(α) with multiplicities. Then for

every i, there exists a unique ui ∈ W such that f(ui) = ϵi. Define ϕ : S −→ C
as ϕ(α) = Σui. Then ϕ is called the Brauer character of G afforded by π.
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Remark 3.4.1. The description of Brauer character comes along with a choice

of a maximal ideal M of A.

Suppose π1, π2, . . . , πk are all the non-isomorphic irreducible representa-

tions of G over E upto isomorphism. Let ϕi be the Brauer character afforded

by πi. Then ϕ′
is are called irreducible Brauer characters and we denote by

IBr(G) the set {ϕi}. We denote by Irr(G) the set of irreducible characters of

G over C. We have the following results.

Lemma 3.4.2. [27, Theorem 15.13] For a finite group G, IBr(G) = Irr(G)

whenever p ̸ ||G|.

For the rest of this section, take G = Sn, the symmetric group on n letters.

We say a partition λ = (λ1, λ2, · · · , λl) of n is p-singular if for some j we have

λj+1 = λj+2 = . . . = λj+p. If a partition is not p-singular, it is called p-regular.

Then we have the following.

Lemma 3.4.3. [28, Theorem 11.5] If F is a field of characteristic p, then

as λ varies over the p-regular partitions, Dλ varies over the complete set of

inequivalent irreducible FSn-modules, where Dλ =
Sλ

Sλ ∩ (Sλ)⊥
and Sλ denotes

the Specht-module corresponding to the partition λ. Moreover, every field is a

splitting field for Sn.

Proof. The proof follows immediately from the fact that every partition of n

is a p-regular partition.

Lemma 3.4.4. The dimensions of non-isomorphic irreducible representations

of Sn over E coincides with the dimensions of non-isomorphic irreducible rep-

resentations of Sn over C when characteristic of the field E is greater than

n.

Proof. Since the dimension of a representation is as same as the value of the

corresponding character χ at the identity element of the group, the result

follows from Lemma 3.4.2.
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Proposition 3.4.5. Let Fpk be a finite field where p > n. Then

FpkSn ∼=
⊕

χ∈Irr(G)

M(χ(1),Fpk).

Proof. Since being a semisimple algebra CSn ∼=
⊕

χ∈Irr(G)

M(χ(1),C), the result

follows from corollary 3.2.7, and lemmas 3.4.2 and 3.4.4.

Theorem 3.4.6. Let Fpk be a finite field where p > n. Then

U(FpkSn) ∼=
⊕

χ∈Irr(G)

GL(χ(1),Fpk).

Proof. This follows immediately from Proposition 3.4.5 and the fact that given

two rings R1, R2, we have (R1 ×R2)
× = R×

1 ×R×
2 .

Remark 3.4.7. Theorem 3.4.6 improves the result of [29] and proves that

when p > 5, unit group of FpkS5 is U(FpkS5) given by

F×
pk

⊕ F×
pk

⊕GL(4,Fpk)⊕GL(4,Fpk)⊕GL(5,Fpk)⊕GL(5,Fpk)⊕GL(6,Fpk).

Remark 3.4.8. For an irreducible representation χ of Sn over a field of char-

acteristic p > n, this is characterized by a partition λ of n. The value χ(1)

can be calculated as the number of standard Young tableaux of shape λ.

3.5 Units of FpkA6 for p ≥ 7

We start with the description of the conjugacy classes in A6. Using [21]

the group has 7 conjugacy classes, of which the representatives are given by

(1), a = (1, 2)(3, 4), b = (1, 2, 3), c = (1, 2, 3)(4, 5, 6), d = (1, 2, 3, 4)(5, 6), e =
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(1, 2, 3, 4, 5) and f = (1, 2, 3, 4, 6). We have the following relations:

for all g ̸∈ [e] ∪ [f ], [g] = [g−1], (3.5.1)

and [e] = [e4], [e2] = [e3] = [f ]. (3.5.2)

Proposition 3.5.1. Let Fq be a field of characteristic p ≥ 7 and G = A6.

Then the Artin-Wedderburn decomposition of FqG is one of the following:

Fq ⊕
6⊕
i=1

M(ni,Fq),

Fq ⊕
4⊕
i=1

M(ni,Fq)⊕M(n5,Fq2)

Proof. Since p ≥ 7, we have p ∤ |A6|, by Maschke’s theorem we have J(FqG) =

0. Hence Wedderburn decomposition of FqG is isomorphic to
n⊕
i=1

M(ni, Ki),

where for all 1 ≤ i ≤ n, we have ni > 0 and Ki is a finite extension of Fq.
Firstly, from Lemma 3.1.6, we have

FqG ∼= Fq
n−1⊕
i=1

M(ni, Ki), (3.5.3)

taking g to be the map g(
∑
x∈A6

αxx) =
∑
x∈A6

αx. Now to compute these ni’s

and Ki’s we calculate the cyclotomic Fq classes of G. Note that pk ≡ ±1

mod 4, pk ≡ ±1 mod 3 for any prime p. Hence SFq(γg) = {γg} whenever

g ̸∈ [e]∪ [f ] (by Equation 4.1). Hence we have to consider SFq(γg) in the other

cases.

When p ≡ ±1 mod 5, SFq(γe) = {γe} and SFq(γf ) = {γf}, by Equation

4.2 and the fact that pk ≡ ±1 mod 5. Thus by Lemma 3.1.2 and 3.1.5, there

are seven cyclotomic Fq-classes and [Ki : Fq] = 1 for all 1 ≤ i ≤ 6. This gives

that in this case the Artin-Wedderburn decomposition is

Fq ⊕
6⊕
i=1

M(ni,Fq).
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When p ≡ ±2 mod 5 and k is even, then pk ≡ −1 mod 5. Similarly in

this case the Artin-Wedderburn decomposition is

Fq ⊕
6⊕
i=1

M(ni,Fq).

Lastly, when p ≡ ±2 mod 5 and k is odd, then pk ≡ ±2 mod 5 and

SFq(γe) = {γe, γf} by Equation 4.2. Thus by Lemma 3.1.2 and 3.1.5, there are

six cyclotomic Fq-classes and [Ki : Fq] = 1 for all 1 ≤ i ≤ 4, [K5 : Fq] = 2 . In

this case, the Artin-Wedderburn decomposition is

Fq ⊕
4⊕
i=1

M(ni,Fq)⊕M(n5,Fq2).

Since dimFqA6 = |A6| = 360, Proposition 3.5.1 gives that the ni’s should

satisfy n2
1 + n2

2 + n2
3 + n2

4 + n2
5 + n2

6 = 359 or n2
1 + n2

2 + n2
3 + n2

4 + 2n2
5 = 359.

Since these equations do not have a unique solution, we find some of the ni’s

using representations of A6 over Fq and invoke Lemma 3.2.1 to reach a unique

solution for the mentioned equations. We have the following results.

Lemma 3.5.2. The group S6 has four inequivalent irreducible representations

of degree 5, which on restriction on A6 give two inequivalent irreducible repre-

sentations of A6 over Fpk for p ≥ 7. Moreover, these irreducible representations

are obtained from two non-isomorphic doubly transitive actions on a set of 6

points.

Proof. Note that S6 acts on T = {1, 2, 3, 4, 5, 6} doubly transitively. Hence

by Lemma 3.2.1, we get an irreducible representation of degree 5. Since ten-

soring with sign representation gives irreducible representations, we get two

inequivalent irreducible representations of degree 5 of S6, say π1 and π2.

For the other two irreducible representations of dimension 5, we consider
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the outer automorphism of S6, say φ, given on generators as follows:

φ((1, 2)) = (1, 2)(3, 4)(5, 6)

φ((2, 3)) = (1, 3)(2, 5)(4, 6)

φ((3, 4)) = (1, 5)(2, 6)(3, 4)

φ((4, 5)) = (1, 3)(2, 4)(5, 6)

φ((5, 6)) = (1, 6)(2, 5)(3, 4).

This gives another doubly transitive action on T , which is not isomorphic to the

previous action. Thus we get another 5 dimensional irreducible representation,

say π3. Tensoring π3 with the sign representations, we get π4 which is a 5

dimensional irreducible representation of S6 different from π3. By considering

the characters of the corresponding representations, we see that π1, π2, π3 and

π4 are all distinct.

Since A6 acts doubly transitively on T via the restrictions of these two ac-

tions, we obtain two non-isomorphic 5-dimensional irreducible representations

of A6.

Corollary 3.5.3. The algebra FqA6 has two components which are both iso-

morphic to M(5,Fq), for p ≥ 7.

Proof. Immediately follows from Lemma 3.5.2 and Lemma 3.2.1.

Corollary 3.5.4. There does not exist any 4 dimensional irreducible repre-

sentations of A6 over Fpk for p ≥ 7.

Proof. From Lemma 3.4.3, we know that any field Fpk , p ≥ 7 is a splitting field

of S6. Hence by Proposition 3.4.5, we have degrees of irreducible representa-

tions of S6 are {1, 5, 9, 10, 16}.
Recall that by Frobenius reciprocity we have the following bijection

HomFqS6(IndV,W ) ∼= HomFqA6(V,ResW ),
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where Ind, Res denote the induction functor, restriction functor, respectively.

Here V is an irreducible representation of A6 andW is an irreducible represen-

tation of S6. Suppose A6 has an irreducible representation V with dimV = 4.

Since [S6 : A6] = 2, we have that dim IndV = 8. Since S6 does not have any

irreducible representation of dimension 8, the induced representation splits.

Being dim IndV = 8, Ind(V ) does not have any component of dimensions 9, 10

and 16. Now, let us assume that dimW = 5. Then by Lemma 3.5.2, ResW

is an irreducible representation. Hence HomFqA6(V,ResW ) = 0, which implies

that IndV does not have any irreducible component of dimension 5. Similarly,

IndV does not have any irreducible component of dimension 1. This completes

the proof.

Corollary 3.5.5. The algebra FqA6 has one component to be M(9,Fq) for

p ≥ 7.

Proof. The group A6 being isomorphic to PSL(2,F9) acts doubly transitively

on a set with 10 points (See [23]). Hence the conclusion.

Corollary 3.5.6. We have (n1, n2, n3, n4, n5, n6) = (5, 5, 9, 8, 8, 10) or

(n1, n2, n3, n4, n5) = (5, 5, 9, 10, 8) upto permutation.

Proof. SinceA6 has one 1-dimensional, two 5-dimensional and one 9-dimensional

irreducible representations, we can assume that n1 = 5, n2 = 5, n3 = 9. Hence

we are left with the equation

n2
4 + n2

5 + n2
6 = 228 or n2

4 + 2n2
5 = 228.

Then (n4, n5, n6) ∈ {(4, 4, 14), (8, 8, 10)}, (n4, n5) ∈ {(14, 4), (10, 8)}. Hence,

the result is obvious from Corollary 3.5.4.

Proposition 3.5.7. Let Fpk be a field of characteristic p ≥ 7 and A6 denotes

the alternating group on six letters. Then the Artin-Wedderburn decomposition

of FpkA6 is

Fq ⊕M(5,Fq)⊕M(5,Fq)⊕M(9,Fq)⊕M(10,Fq)⊕M(8,Fq2),
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when p ≡ ±2 mod 5, k ≡ 1 mod 2 and the decomposition is

Fq ⊕M(5,Fq)⊕M(5,Fq)⊕M(8,Fq)⊕M(8,Fq)⊕M(9,Fq)⊕M(10,Fq),

in other cases.

Proof. Follows from Proposition 3.5.1 and Corollary 3.5.6.

Theorem 3.5.8. Let Fpk be a field of characteristic p ≥ 7 and A6 denotes the

alternating group on six letters. Then the unit group of the algebra, U(FpkA6)

is

F×
q ⊕GL(5,Fq)⊕GL(5,Fq)⊕GL(9,Fq)⊕GL(10,Fq)⊕GL(8,Fq2), (3.5.4)

when p ≡ ±2 mod 5, k ≡ 1 mod 2 and the decomposition is

F×
q ⊕GL(5,Fq)⊕GL(5,Fq)⊕GL(8,Fq)⊕GL(8,Fq)⊕GL(9,Fq)⊕GL(10,Fq),

(3.5.5)

in other cases.

Proof. This follows immediately from Proposition 3.5.7 and the fact that given

two rings R1, R2, we have (R1 ×R2)
× = R×

1 ×R×
2 .
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