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Abstract

This thesis deals with the study of quantum entanglement across spatial boundaries in
conformal-invariant quantum field theories (2d CFT) in two dimensions. In 2d CFT, Rényi
entropy and entanglement entropy has been evaluated successfully using the replica method
for non-compact systems at zero and non-zero temperatures and for compact systems at
zero temperature (Ref.[2],[1]). However, for a compact system at finite temperature, an
exact evaluation of the entropy measure using the replica trick has not been successfully
performed. In order to gain more insights into the problem, calculations have been done by
approximating the system to a compact system at zero temperature and expanding about it
to obtain the leading order correction term to the entropy measure (Ref.[0]). In this thesis we
propose a method to calculate the second correction term and eventually a general approach
for calculating higher order correction terms to Rényi entropy and entanglement entropy at

low temperature expansion for a spatially compactified 1d system.
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Introduction

Symmetries play a crucial role in characterising and hence understanding of the different
natural phenomena. Although a system might not be exactly solvable, studying its under-
lying symmetries may lead to great insights on the problem even without solving for it’s
dynamics. Additionaly, violation of symmetries is in itself of great interest and symmetry
breaking has been used to describe many physical phenomena like ferromagnetism and su-

perconductivity.

Among the symmetries of a physical system, the most widely studied are translational
invariance and rotational invariance. Scale invariance is a symmetry which is not often en-
countered in physical systems. This however becomes extremely important when studying
statistical systems at a critical point. Statistical systems like the Ising model, at criticality
are the best examples of systems have scaling symmetry. When a statistical system is in a
state far from the critical point, the particles of the system interact with each other upto a
characteristic length scale called the correlation length. Correlation length is a characteristic
property of the phase the system is present in. Now, at the critical point, the correlation
length becomes infinite i.e. all particles in the system can interact with all other particles
freely. Thus, the system can no longer be characterized by the correlation length and hence
correlation functions scale as a power law rather than exponential. So, the behaviour of the
system at the critical point is described by a scale invariant theory. It has been proved by
Polchinski (Ref.[1]) that in d = 2 spacetime dimensions, scale invariance implies conformal
invariance. Therefore, these systems have an effective description in terms of Conformal
Field Theory (CFT). Thus, CFT is essential in studying the properties of statistical systems

at criticality.



Quantum entanglement is a phenomenon in which two or more particles interact with
each other irrespective of the separation between them and the quantum state of one particle
cannot be described independently of the others. Entropy is a measure of the number of
microstates of a system which are in thermal equilibrium given its macrostate (macroscopic
thermodynamic properties). Rényi entropy and Entanglement entropy are two widely used
measures of entropy. These can further be used to study the fluctuations in thermal equilib-
rium which implies that thermodynamic quantities at temperatures close to the equilibrium
temperature can be determined by studying the behaviour of those fluctuatuions. Thus,
Rényi entropy and entanglement entropy are imperative to the study of statistical systems,

especially near criticality.

In this project we study the Rényi entropy and entanglement entropy at finite tempera-

ture, and investigate the calculation of correction terms in a low temperature expansion.



Chapter 1

Conformal Field Theory

This chapter contains a brief review of Conformal Field Theory and definitions of many
objects such as correlation functions, primary fields, radial quantization, operator product
expansion and vertex operators, which are crucial for the understanding of all the subsequent

work done in the project.

1.1 Conformal Transformations in d Euclidean Dimen-

sion

A general conformal transformation in d euclidean dimension is an invertible map = — x’

such that the metric tensor is left invariant upto a scale

9y (') = A (2) g () (1.1.1)

A conformal transformation is angle preserving i.e. it does not affect the angle between
two arbitrary curves crossing each other at some point. The set of conformal transformations
form a group. This group has the Poincaré group as a subgroup corresponding to the special

case A (z) = 1. A general conformal transformation includes translation, rotation, dialation
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and special conformal transformation (SCT). Thus, the finite conformal transformations are

given by:
't =zt + at (Translation)
't = Mba? (Rotation)
't = At (Dilation) (1.12)
xt—bta?
't = 1-2b.x+b2x? (SCT)
The corresponding generators of these transformations are given by:
P, = —i0, (Translation)
L,, =i(x,0, —x,0,) (Rotation)
D = —iz"0, (Dilation) (1.1.3)
K, = —i(2z,2"0, — x*0,) (SCT)

The commutation rules obeyed by these generators define the conformal algebra. One

finds that the conformal group in d dimension is isomorphic to SO(d + 1, 1).

The transformation law for a spinless field ¢ (z) under a finite conformal transformation

x — 2’ can be derived by using the above generators. One finds that the field transforms as:

~A/d

il E (1.1.4)

6() > o (@) = | o

where, |02’ /0x| is the Jacobian of the transformation and A is called the scaling dimen-
sion of the field. A field transforming according to the above transformation law is called a

‘quasi-primary’ field.



1.2 Correlation Functions

Henceforth we work in Euclidean CF'T, obtained by continuing the time to imaginary

values.

Let us now examine the consequences of conformal invariance on two-, three- and four-
point correlation functions of quasi-primary fields. Henceforth it will be understood that all
correlation functions involve time-ordered products of fields. Now the two-point correlation

function of fields ¢, and ¢y is given by:

(61 (00) 62 (22)) = [ 1d6] 61 (1) 02 () &9 (12,0

where, Z is the partion function and S[¢] is the action of the theory. Thus, the above equa-

tion represents a functional integral over the set of all independent fields in the theory.

Now translation and rotation invariance implies that (¢ (z1) ¢2 (z2)) is a function of the

distance between the points, i.e.

(01 (71) B2 (22)) = h (|21 — 22) (1.2.2)

Now, from eq.(1.1.4) it is seen that invariance of the two-point function under any trans-
formation = — 2’ is given by:

Ayr/d Ag/d

(9_x’
ox

ox’'

Oz (@1 (1) 62 (25)) (1.2.3)

(¢1 (21) P2 (12)) =

T=x1 T=x2

Thus, from eq.(1.2.3) we see that under scale transformation x — Az, the two-point function

satisfies the following relation:

(61 (1) da (m2)) = A21T22 () (A1) ¢ (Aw2)) (1.2.4)
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Thus, eq.(1.2.2) in addition with eq.(1.2.4) gives:

Crz
(01 (1) P2 (22)) = PR (1.2.5)
where (9 is a constant.
Now, for a special conformal transformation (SCT), from eq.(1.1.2) we have:
| _ ! (1.2.6)
or| (1 —2b. + b2a2)? o
which in turn gives the invariance condition as:
Cia _ Cia (’7172)(A1+A2)/2 (1.2.7)
|z — I2|A1+A2 |z — xQ\A1+A2 71A172A2

where, v; = (1 — 2b.x; + b*x?).

The above condition is satisfied only when A; = A,. Therefore, the two-point function

of two quasi-primary fields is given by:

% lf Al = A2
<¢1 (xl) o)) (Ig)) — J |z
0 if Ay #£ Ay

(1.2.8)

A similar analysis can be done for three-point functions and four-point functions. For a
three-point correlation function, invariance under translation, rotation and dialation leads

to the following form:

(abe)
(91 (1) P2 (22) 3 (w3)) = Cl+ (1.2.9)

a C
L12T23L31



where, x;; = |x; — ;] and a+b+c = A; + Ay + A;. Invariance of eq.(1.2.9) under SCT

implies:

abc abc a/2 b/2 c/2
0523 ) _ C1523 ) (7172) / (7273) / (/7371) / (1 2 10)
x‘l‘2x33x§1 I‘f2$33$§1 ”Y1A1’Y2A2'Y3A3

which leads to the following set of constraints:

a+c:2A1,a+b:2A2,b+c:2A3 (1211)

The above set of equations has a unique solution for a, b, ¢ given by:

CL:A1+A2—A3
b= Ay + Ay — A, (1.2.12)
C:A3+A1—A2

Therefore the three-point function of quasi-primary fields is given by:

C1123

(91 (1) P2 (72) ¢35 (73)) = XA 5A; A AT, A ATA A (1.2.13)
L12 Lo3 31

Thus, the three-point functions of quasi-primary fields are determined upto a constant C'3.

Following a similar analysis for four-point functions lead to their forms being determined

upto a multiplicative factor of a function of the anharmonic ratios i.e.

(91 (1) @2 (22) ¢3 (23) Pa (24)) = h (% %) H xiAj/?’_Al_A? (1.2.14)

)
L1324 X14T23 1<i<j<d

4 . . .
where, A =3%"_ | A;. This can be seen from the fact that the anharmonic ratios T and A

are invariant under translation, rotation, scaling and SCT. Thus, multiplying the RHS of



eq.(1.2.14) with any function of the anharmonic ratios will leave ir invariant under these

transformations.

1.3 CFT in 2d

For systems in 2d, let the co-ordinates on the plane be (z,7,). Now, for a general
transformation ## — w* (z) to be a conformal transformation, the condition g, (w) o

g () is equivalent either to

01p  Ow ow 0Ty

o " on MG T o (13.1)
or to

oty  Ow ow 0ty

o~ o M T o (13.2)

It is observed that eq.(1.3.1) is the Cauchy-Riemann equations for holomorphic functions,
while eq.(1.3.2) is the same for antiholomorphic functions. This motivates the use of complex
coordinates for 2d CF'T. The complex coordinates z, z are defined according to the following

rules:

Z=x 41T Z=x—T

8, = 1 (8, —id,) 0: = 1 (0, +i0,)

2

(1.3.3)

In terms of the complex coordinate z, the complete set of global conformal transforma-
tions (also called projective transformations) is given by the set of invertible maps which

map the entire complex plane to itself. These mappings are given by

az+b

F&)=_"4 (1.3.4)




b
where, a,b,c,d € C with ad — bc = 1 i.e. ¢ q € SL(2,C). The set of global
c

conformal transformations is also called the special conformal group.

1.3.1 Primary Fields

One of the interesting properties of CF'T in two dimension is that the definition of quasi-
primary fields is also applicable to fields with non-zero spin. For a given field with scaling
dimension A and planar spin s, holomorphic conformal dimension A" and antiholomorphic

conformal dimension ’h’ are defined as:

h=1(A+5) h=1(A-5) (1.3.5)

Thus, under the conformal map z — w(z), Z — w (2) , a quasi-primary field transforms

as:

¥ (10,m) = (fl—w) (Z—f)ﬁqs(z,z) (13.6)

Now, a field in two dimension which transforms according to eq.(1.3.6) under any local
transformation i.e. holomorphic transformations which are allowed to be singular at 0 and

infinity, is called a primary field.

1.3.2 Correlation Functions of Primary Fields

From eq.(1.2.3) and eq.(1.3.6), it is seen that under a conformal transformation, the n-
point correlation function of n primary fields with conformal dimensions h; and h; transforms

as:



<¢1<uu,un>---¢n<u%,um>>=:[ 11 (jgj)hi(fif)7”]<¢1g%,zg...¢n<zn,&g>

1<i<n

(1.3.7)

An important point to note in the above equation is that it incorporates the possibility
of a field with non-zero spin in the difference h; — h;. Thus the two-point correlation function

is given by:

T

(D1 (21, 21) d2 (20, 2)) = { (1722) (1==2) hi=hy =h (1.3.8)

0 otherwise
Similarly, the three-point function is given by:
_ _ _ 1
(91 (21, 21) P2 (22, 22) @3 (23, 23)) = Chzs o tha—h T (1.3.9)
12 12
1 1
zg§+h3*h1zgl§+ﬁ3fﬁl X Z§L13+h1*h25§13+ﬁ1*ft2

and the four-point function is given by:

(91 (21, 21) b2 (22, 22) 03 (23, 23) Pa (24, Z4)) = D (Caé) H ZZ-/S?hﬁhj 52/37%7% (1.3.10)

1<i<j<4

where, ( = #2234 = | — 2?21 h; and h = Z?Zl h;.

214232

1.3.3 Radial Quantization

In 2d Eucledean formalism, the space and time axes are on equal footing. Thus it is

possible to choose a special co-ordinate system and perform quantization along those axes.
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One such special quantization is called the radial quantization. In this, the time axis is taken
to be radial while the space axis is taken as concentric circles. As we will see, this turns out
to be very useful in the study of conformal field theories.

One way to relate this spacetime with the usual notion of spacetime is to consider a system
in which the space axis is compactified to length L. The spacetime is then represented by a
cylinder with the time axis along the axis of the cylinder (going from -oo to +o0) and the
space axis along the lateral surface of the cylinder (going from 0 to L) with the points (0, ?)
and (L, t) being identified. This cylinder is also represented by a single complex co-ordinate
¥ =t +ix (or eqivalently ¥ = ¢t — iz). Now the cylinder can be mapped to the rquired
spacetime via the map z = e2™/L which is equivalent to ‘squashing’ the cylinder such that

the points at ¢ = —oo is mapped to the origin and the points at ¢ = +o00 is mapped to a
circle with infinite radius, on the plane (Fig.1.1).

' ' - ‘
'

.
i 1)
' t L ] [
1 1 ! 1
1 . +
.
.
- *
’

B
-.;;:-
=
‘—-e‘q:'—
o

ity

-
-

L

Figure 1.1: Mapping from cylinder to the complex plane

An important point to note is that in the radial quantization picture, the time-ordering

of operators in correlators becomes a radial ordering i.e.

¢1(2) g2 (w) if |z[> |w]

Ro1(2) g2 (w) =
2ol $2 (W) 1 (2)  if Jw|> [2]

(1.3.11)
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1.3.4 Operator Product Expansion (OPE)

Correlation functions have the typical property of having singularities when the position
of two or more fields coincides. This in essence represents the infinite fluctuations of a
quantum field taken at a precise location. This is captured by the operator product expansion
(OPE). The OPE gives the product of two operators at positions z and w respectively, as
a sum of single operators (well defined as z — w) multiplied with a c-number function of

z —w (possibly diverging as z — w).

01 (2) Oz (w) = Y oo (1.3.12)

where A, (w) are non-singular at w = z. As an example, the OPE of the energy-momentum

tensor with a primary field of conformal dimension (h, B) is given by:

T(z) (w,U_J) ~ (z—hw)2 ¢(w’u_}) + z—lw 8w¢ (w’u_))
T(2) ¢ (w,w) ~ (z—ﬁw)2 ¢ (w,w) + -5 Jad (w, W)

(1.3.13)

The symbol ~ in eq.(1.3.13) means that all the regular terms (non-singular as z — w) in
the product of the operators is dropped. This is justified since knowledge of the singular terms

alone is often sufficient to fix the entire behaviour of functions using complex analyticity.

1.3.5 Vertex Operators

The free boson field (¢ (2, 2)) in 2d has a very special characteristic that it has logarithmic

singularities in its correlator (eq.(1.3.14)), which is a sign of infrared divergences.

(¢ (2,2) ¢ (w,w)) ~ —{ln(z—w) + In(z—w)} (1.3.14)

This implies that ¢ in itself is not a conformal field, however exponentials of the free

12



boson field will have power-law correlators due to the logarithmic behaviour of the free
boson correlator. This gives us a way to construct infinitely many good conformal fields in

the theory, namely the vertex operators (eq.(1.3.15)):

Vo (2,2) = : eio¢=2) (1.3.15)

The vertex operators are of great importance because each V, (z,Z) is a primary field

(Ref. [5]) with holomorphic and anti-holomorphic dimension:

Oé2

%:%:7 (1.3.16)
The OPE of 0¢ with V), is evaluated by expanding V, in it’s poynomial form and calcu-
lating the OPE of 0¢ with ¢ thereafter. The common terms are taken out and the resulting

answer is re-written in terms of V,. The result is given by:

V, (w, )

Z—Ww

06 (2) Vo (w,w) ~ —ic (1.3.17)
The OPE of V, with the energy-momentum tensor evaluated in an analogous manner is

given by:

2V, (w, w) n OwVa (W, )

T (2) Vs (w, @) ~ % —" f— (1.3.18)

These OPE’s will be used for calculation of Rényi entropy and entanglement entropy, as

shown in the successive chapters.
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Chapter 2

Rényi Entropy and Entanglement
Entropy

Quantum entanglement is a phenomenon in which two or more particles interact with
each other irrespective of the separation between them and the quantum state of one parti-
cle cannot be described independently of the others. Entanglement entropy is a measure of
entanglement in a many-body quantum state. Eg. consider a quantum mechanical system in
the ground state |¥). Assuming non-degeneracy of the ground state, the density matrix for
the system is given by p;r = |¥) (¥|. The von Neumann entropy of the system is given by
Stot = — tr protlogpier = 0 (since the system is in pure state). Now, if the system is divided
into two subsystems A and B, then the total Hilbert space can be written as Hy; = HaQH5B.
For such a system, the reduced density matrix of the subsystem A is given by pa = trg prot,

where the trace is taken only over the Hilbert space Hp.

The entanglement entropy(S4) of the subsystem A is defined to be the von Neumann

entropy of the reduced density matrix p4 i.e.

SA = — tI“A PA logpA (201)

In addition to the entanglement entropy, there is another measure for entanglement called

15



the Rényi entropy. The Rényi entropy of the subsystem A is given by

1 n
Sy = T log (tr p) (2.0.2)
with Sy = lim,,_1 S,,.
Note that, if the density matrix is diagonal i.e. py; = diag(A1, A, -+, A,) then the von
Neumann entropy is given by
S== X\ log\ (2.0.3)
i=1

For a density matrix, 0 < \; <1 and Y., A; = 1. Therefore, the RHS of eq.(2.0.3) is

always non-negative and hence, the entanglement entropy is always non-negative.

The density matrix for a pure state has one of the \; equal to one and the rest equal
to zero. Now, \; log)\; is zero for \; = 0 or 1. Therefore, a pure state system has zero
entanglement entropy. This is also the minimum value of entanglement entropy. Similarly,
the values of RHS of eq.(2.0.3) are bounded above by logn which is obtained when all \;’s are
equal and equal to 1/n. Thus, a mixed system is maximally entangled when each subsystem

has an equal probability and the maximum entanglement entropy is logn.

2.1 Properties of Entanglement Entropy

For a system at absolute zero temperature, some of the note-worthy properties of entan-

glement entropy are:

(i) For two subsystems A and B of the system, if B is the complement of A, then
S4 = Spg. This implies that entanglement entropy is not an extensive quantity.
However, this equality does not hold at finite temperature. At non-zero temperature

Sa— S = Stherma , Wwhere Stpermar 18 the thermal entropy of the entire system.

16



(ii) If A is further divided into two submanifolds A; and As, then Sy4, + S4, > S4. This
property is called subadditivity.

(iii) For three subsystems A, B and C such that they do not intersect each other, the
following inequality holds

Satprc + S < Sayp + Seic (2.1.1)

This property is called strong subadditivity.

2.2 Entanglement Entropy in 2d CFT

Let a system at zero temperature and in a non-compact space dimension in a 2d CFT
be defined on a complex plane with the imaginary axis corresponding to the Euclidean time
and the real axis corresponding to the spatial dimension. The subsystem A is defined as the
single interval x € [u,v] at 7 = 0 in the flat Euclidean coordinates (z,7) € R?. Then, the
reduced density matrix p4 of the subsystem is evaluated using the Euclidean path-integral

formalism as shown below(Ref. [2],[1]).

First, the ground state wave function W of the system is obtained by path integrating

from 7 = —o0 to 7 = 0 in the Euclidean formalism
¢(T:07x):¢l(x) S
¥ =0 = V@) = [ g e 22
¢(T=—00,z)=0

where, ¢(7,z) denotes the fundamental fields of the 2d CFT. The total density matrix p is
given by the product YW where V¥ is obtained by path integrating from 7 = oo to 7 = 0.
This in turn implies that the density matrix is characterized by the boundary conditions
(fields) i.e. [p]g16 = V(1(x)) ¥ (¢a(x)). Thus the system is defined by taking a functional
integral over all well behaved functions (those which go to zero as 7,z — o0) such that for
7 — 07 the functions approach ¢s(x) and for 7 — 0~ the functions approach ¢;(x). The
reduced density matrix p4 is obtained by integrating ¢; on B assuming ¢(x) = ¢o(x) when
r € B. Thus,

17



AP Zil / - [dple T T 6(6(+0,2) — ¢o(2)) - 6(d(—0,2) — ¢u(x)),  (2:2.2)

T=700 xCEA

where, Z; is the vacuum partition function on R2. The 1/Z; factor ensures that p, is nor-
malized such that traps = 1. (Fig. 2.1 (a))

(a) . (b) e
+oor Q
)
ol I + / O /
. &2 ’ ’
. 5 |
ol 91 @ | /
U v

Figure 2.1: (a) The path integral representation of [pale,s_
(b) The 3-sheeted Riemann surface corresponding to the calculation of try p% Ref.[4]

2.3 Computation of Entanglement Entropy

The computation of entanglement entropy in 2d CFT is done using the replica trick,
which is explained in the next section (Ref.[!]). The procedure includes evaluating try p’,
then differentiating it’s logarithm with respect to n and finally taking the limit n — 1 (where

pa is normalized i.e. trg ps = 1).

18



0
Sy = —%log tra phln=1 (2.3.1)

To evaluate try py, we trace over n copies of p4 successively i.e. we compute

(P Alo165104) 6265 (P Al6sds [P Al6n 160 [P A6 (2.3.2)

where the ¢;’s are integrated over the functional.

2.4 Replica Method

The computation of eq.(2.3.2) is done using the path integral formalism on a branched
surface which is called the replica method. First, consider the system (complex plane) with
a cut along the subsystem A (the interval [u,v] at 7 = 0). Now, take n such planes. Let
the defining CFT on the " plane be given by the field ¢;. The n sheets are then joined
along the interval in the following manner : the 7 — 0~ side of the i** sheet is joined to the
7 — 0% side of the i + 1% sheet (Fig. 2.1 (b)), and the 7 — 0~ side of the n'* sheet is joined
to the 7 — 0T side of the 1% sheet. Thus, the sheets are joined in such a manner that for a
point in the i** sheet, an anti-clockwise rotation by 27 about u will take the point to i 4 1%

sheet and an anti-clockwise rotation by 27 about v will take the point to i — 1" sheet i.c.

i (€77 (w — u)) = i1 (W — u) i (€% (w—v)) = ¢i-1 (w—v) (2.4.1)
Now, trs p’ is given by the path integral on this n sheeted Riemann surface.

1 Z.
traph = —— dgle™5@) = = 242
= e EAT 242

Alternatively, the boundary conditions (eq.(2.4.1)) can be interpreted as insertions of

twist operators o} at u and o; at v, on the i""-sheet. Then,

19



taph = [[(oF (wo; ) (24.3)

It is important to note that in order to compute the two-point function (o (u)o; (v)), the

ultra-violet (UV) divergence needs to be regularized. This is done by introducing a UV

+

cutoff parameter ‘a’ to the theory. To determine (o, (u)o; (v)) , we use the uniformization

map:

= (w - “) " (2.4.4)

w—v

This mapping maps the n sheeted Riemann surface to a complex plane, with each of the
i'" sheet being mapped to the corresponding i'* sector in the plane. Then, we study the
tranformation of the energy-momentum tensor under this map. The tranformation law for

energy-momentum tensor under a coordinate transformation z — w is:

T (w) = (3—;) T (2) + 1—62{2;@0} (2.4.5)

where, ¢ is the central charge of the theory and {z;w} is the Schwarzian derivative given by:

oy (P2/dw®) 3 [ (dz/dw?) 2
fzsw} (dz/dw) 2 ( (dz/dw) ) (24.6)

Since z is a coordinate on a complex plane, (T'(z)) is zero by translational and rotational

invariance. Hence,

(T (w))r, = 2—64 (1 — %) © - u)” (2.4.7)

n*) (w—u)® (w—wv)’

The right hand side (RHS) of eq.(2.4.7) can be interpreted as (T'(w) o (u) o~ (v)) , wehre
T'(w) is the energy-momentum tensor of each of those n sheets seperated, with each sheet

having a twist operator ot at u and o~ at v. On comparing eq.(2.4.7) as lim w — u with
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the OPE of energy-momentum tensor with a primary field (eq.(1.3.13)), we see that the

conformal dimension of o7 is

- c 1
ho-+ - ho-+ - ﬂ (1 - ﬁ) (248)

Similarly, comparing eq.(2.4.7) as lim w — v with the OPE of energy-momentum tensor

with a primary field (eq.(1.3.13)), we get the conformal dimension of o~ as

c 1

ho- = hy- = — (1 - —) (2.4.9)

24 n?2

Thus, contribution of each sheet to try p’ is

ot o) = (*5 )() - ("5 “)_g(l_"lz) (2.4.10)

a a

tra s = (o7 (o (0)" = ( (2.4.11)

From eq.(2.0.2) and eq.(2.4.11) we find the Rényi entropy

c 1 |u — v

Now, the entanglement entropy is given by

a

. _c lu — |
Sa = 713{& S, = 3 log ( > (2.4.13)

Therefore, the Rényi entropy and entanglement entropy in an infinitely long system at

zero temperature are given by
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c 1 l
S, =- (1+=) log— 2.4.14
G ( +n> 08~ ( )

Sa = = log—, (2.4.15)
a

respectively, where, ¢ is the central charge of the CFT and [ is the length of the interval
(Il =|v—ul).

2.4.1 Entropy in an Infinitely long system at Finite Temperature

A similar calculation is performed to obtain the Rényi entropy and entanglement entropy
of an interval [r,s] in an infinitely long system at finite temperature (7' = 87!). Here, the

uniformization map is taken as:

o\

es —ebhb

The original system can be viewed as a sequence of n cylinders of infinite length, with
each cylinder having its axis along the spatial direction, having an interval [r,s] and the
circumference of the cylinder as the compactified time direction of length 3 (= T™'). The
cylinders are joined to each other along the cut such that the 7 — 0~ side of the i*" cylinder
is joined to the 7 — 0% side of the i 4+ 1! cylinder and the 7 — 0~ side of the n** cylinder is
joined to the 7 — 07 side of the 1% cylinder. The mapping 6 — w given by w = €*>7%/# maps
the i cylinder to the i sheet of the n sheeted Riemann surface (R,) with the end points
of the interval at u = ¢*""/8 and v = €*>**/#. Furthermore, the mapping w — z (eq.(2.4.4))
then maps R,, to the complex plane C.

Performing the subsequent steps of calculation, the Rényi entropy and entanglement
entropy of a single interval in an infinitely long system at finite temperature (7' = 371) are

computed to be
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Sp = g (1 + %) log (%sinh (%)) (2.4.17)

and

Sy = g log <%sinh (%l)) (2.4.18)

respectively.

2.4.2 Entropy in a System Compactified on a Circle of circumfer-

ence L at Zero Temperature

To obtain the Rényi entropy and entanglement entropy of an interval [r, s] in a system
compactified on a circle of circumference L at zero temperature, a similar calculation is done
with the mapping # — w given by w = ¢?™/L followed by the mapping w — z (eq.(2.4.4)).

On performing the calculation, the Rényi entropy and entanglement entropy are obtained to

be
c 1 L . ([«
Sy = 6 (1 + E) log (%Sln (f)) (2.4.19)
and
c L . ([~
S = 3 log (Esm (f)) (2.4.20)
respectively.
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Chapter 3

Thermal Corrections to Entanglement

Entropy

As seen in the previous chapter, for a system with hilbert space Hi; = Ha ® Hp, where

B = A, a measure of entanglement, the entangement entropy is given by

Sp = —tra (palogpa) (3.0.1)

where, pa = trgpo is the reduced density matrix for subsystem A. Also the Rényi entropy,

given by:

Sy = — log (tr o) (3.0.2)

1—n

with Sg = lim,,_,1 S,,.

For a compactified system at finite temperature, the above described path integral pre-
scription for entropy calculation is not easily realised as the geometry of the spacetime of
such a system is a torus (genus-1 surface), and hence, joining n such surfaces along the cut
will result in a genus-n surface. Now, the path-integral on a genus-n surface is very hard
to compute. However, for temperatures close to zero, the system can be approximated by a
thin torus which equivalent to a cylinder of infinite length, since the compactification length

along the imaginary time axis 8 becomes infinite, and hence, the entropy can be calculated
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by a Taylor series expansion around zero temperature. Such a calculation has been done in
Ref. [0] for the leading order correction. Here we will follow this method and attempt to

extend it to higher-order corrections.

3.1 Leading Order Thermal Correction

For a system at finite temperature, the density matrix is given by the Boltzmann sum

over the states:

_ -8
=Ty z@: ) (g] e 7P (3.1.1)

Thus, in the low temperature regime, assuming a non-degenerate CFT, the density matrix

can be written as:

0) (0] + |¢) (p] e 2 EeP/L 4 ...
1 + 6_27rE4>ﬁ/L + ..

Ptot = (312)

where, L : length of the spatial compactification (circumference of the cylinder)
g=T7"
|0) : ground state of the CFT
|¢) : first excited state of the CFT with energy eigenvalue E,

Thus, py4 is given by partially tracing p;,; over the Hilbert space of B. Hence, try p’ is given
by:

tra py = tra[(pao+ page EPL 4 (1 4 e 2EAIL 4T (3.1.3)

where, pag= trg [0) (0]
pag = tre |¢) (9|
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—27I'E¢ﬂ/L

Expanding eq.(3.1.3) upto first order in e we get

b4 o~ tra phg |1 4+ A [PA,qanA,o} — 1| pe 2B/ 4 ... (3.1.4)
’ tra Pl
Since,
2 2 ot
1 1 =r——=4+—=———+4--- 3.1.5
og (1+ ) T- + T 1 + ( )
Therefore, the leading order thermal correction to Rényi entropy is given by:
1 tl" n—1
53, —= alpas Piol 1| ne=27FBeb/L (3.1.6)
1—n tra plig

tralpas P40
tra Pﬁ,o
on an n-cylinder (similar to as described in the paragraph after eq.(2.4.16)) with one of the

Now, the proposal is that the term is proportional to the two-point function

cylinders having field ¢ inserted at its end points (points at infinity) and the rest of the n—1
cylinders having the vacuum field (Ref. [6]). Thus

tra [pae PZ})I]
tra Pl

= &1 (¢ (00) ¢ (—00))n (3.1.7)

where, &; is the constant of proportionality. To determine &;, consider the case n = 1.
Eq.(3.1.7) becomes

TALAS _ g (6 (00) ¢ (—00)h (3.1.8)
Ta P40

where, (¢ (00) ¢ (—00)); is the two-point function on 1-cylinder having operator ¢ inserted
at its end points. Now, try pas = 1 (since we took ¢ as a normalized eigen function) and
tra pao = 1, therefore left hand side (LHS) of eq.(3.1.8) is 1. Thus,
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RRRCICSTIES)R (3.19)
Hence, _trAt[;’:vi ;2_01] is given by
i [pag Pho] (¢ (00) ¢ (=00))n
J = 3.1.10
o g (6 (00) & (—o0)): (3.110)

Now, (¢ (00) ¢ (—0)), can be evaluated by first mapping the n-cylinder to the complex

plane using the uniformization map

ei2m0/L _ gi2nta /LN M/
o= (€i27n9/L — ez’27r91/L> (3.1.11)

where, 6 is the coordinate on the n-cylinder, z is the coordinate on the complex plane, L is
the circumference of each cylinder and 6; and 6, mark the end points of the interval A i.e.
|03 — 61| = [. Thus, under this map, an operator at 7 = —oo on the j* cylinder is mapped

= 2702 = 01)/nl + 2mij/n and an operator at T = oo on the j** cylinder

to the location z;_«
is mapped to the location zj., = €>™/". Now, the two-point function is evaluated on the

plane

1

(¢ (2,001 Zjo0) @ (2),—00, Zjy—o0)) = T — (3.1.12)
200 = Zj—oo|  |Zjeo = Zj—oo

where, hg and hg are the holomorphic and anti-holomorphic conformal dimensions of ¢
respectively. This is mapped to (¢ (00) ¢ (—00)), using the transformation law for primary

fields under coordinate transformation

(¢ (00) ¢ (—00))n (3.1.13)

he
. dzj,oo dzj,oo
S\ a9 O(r=—o0) do

he
) (D (2j.005 Zjoo)  (2,—005 Zj,—00))
(r=—o0)

de,*OO dz.]:foo

0(T=00) do A(T=00) do 0
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1.e.

hg hg
< dzj 00 ‘ dzj, — o dZj o dZj, — o
B Jo(r=cc) U 0(7:_00)> < W glr=cc) U é(T:_oo)>
(¢ (00) ¢ (—00))n = 2hy (= ~ 2hg
Zjc0 = Zj—ool ¢ |Zjee = Zj—ool

(3.1.14)

A similar calculation can be done for (¢ (00) ¢ (—00));. Thus, from eq.(3.1.10), eq.(3.1.11)
and eq.(3.1.14) we get

—~

—

i ERPITING 7.9
i [pao Plio ] ($(00) ¢ (=00))m 1 (sin(%)
- — (3.1.15)
tr plh g (¢(00) p(—00))1  nPe \sin (1)
where, Ay = hg + 7L¢ is the conformal dimension of ¢. Therefore, the leading order thermal

correction in Rényi entropy is given by

1 -n n2A¢—1

1 1 (sin(2) )
58, = ( L) — n | e BT (3.1.16)

Also, the leading order thermal correction in Entanglement entropy is given by

I I
6Sp = lim 05, = 24, {1—%cot (%)] e~2mBsB/L (3.1.17)

3.2 Higher Order Thermal Corrections

For computing higher-order correction terms we work with a particular theory, the critical
Ising model. It is a relatively simple CFT since it has only three primary fields namely the
identity field (vacuum), the o field (having conformal dimension h, = h, = 1/16 ) and the
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¢ field (having conformal dimension h. = h. = 1/2 ) and the corresponding secondary fields.

Thus, the total density matrix is given by

Ptot = [ |0) (0| + L_5|0) (0] L+26—4w6/L + o+ o) (o] o272 B/ L (32.1)
+ L_q|o) (o] Ly e 2m (Do DB/ L l€) (] o—2mAB/L

+ L_y |€) (e] Ly, e 2m(AetDB/L
+.. } / [1 4B/l L o AGB/L | m2m(Ae+1)B/L oy o m27AB/L | —2m(Act)B/L }

where, A, = h, + h, = % and A, = h. + h. = 1. Note that the contribution to
the density matrix is higher from the primary fields than the secondaries. Thus, in a low
temperature expansion, the total density matrix can be approximated by considering only

the contributions from the primary fields i.e.

0) (0] + Jo) {o] e 2381k 4 |e) (e] e2mB/E

Prot ™ 1 + e 2m8.B/L 4 e—2rAB/L (3.2.2)
Therefore, the partial density matrix for a subsystem A is given by
pA,O + pA’a—e_27rAd/B/L —|— pA’Ee_ZWAEB/L
par 1 + e 2m8B8/L 4 e—27AB/L (3.2.3)
where pa; = trp|7) (i.
= p ~ (pagtpage AP Lpy e TABILY (] 4 @72 AB/L | o=2mAB/L)—n
(3.2.4)

On expanding eq.(3.2.4) using binomial expansion, one finds an interesting point that
for the critical Ising model, the leading order thermal correction is due to the primary o
field i.e. the term py, as expected. However, the next correction term is given by the term
Pix,o rather than py .. This is so because 2A, < A,, hence the contribution due to pi’g is
greater than the contribution due to p4.. Thus, the contribution from the primary e field
pa. is comparable to the contribution from Pi,a and hence doesn’t come into play till we

consider upto the 7** correction term. Therefore, in order to calculate the leading order
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thermal correction term, working upto order primary o, we have

n

pa~ (1+B)™"

Plho+ B ( Pao Pac Pig ) (3.2.5)

i=1

+ B? ( > Phg Pae Pag | Pae Pag ) +-

1<i<j<n

where B = e 2™2¢8/L_ Therefore the first correction term to the Rényi entropy is given by

55, = ! [ B{ tra (X0, Pag Pac Plig ) _n}]

1_n tra () (3.2.6)
1 1 sin?8e (=
= ( L ) — | e2mAB/L
1—n | n28e—1 \ gin2a- (;;_l)
Also, the first correction term to the Entanglement entropy is given by
l l
IS = 2A, { 1 - % cot (%) } e~ 2mAB/L (3.2.7)

From eq.(3.2.4) and eq.(3.1.5) it is seen that for the critical Ising model, the next correction
term to the Rényi entropy is given by

i— j—1—1 n—j
1 9 tra ( Zl§i<j§n PA,S PAc Pf4,o PAc PA,0J>
0S5, = B
1—n tra Pl
no - n—i n— 2
- try ( D i PA,(} PAc PAo ) n n(n+1) 2 tra [PA,aPA,Ol] 1
tra plho 2 trp’ o
(3.2.8)

—27’1’AOB/L.

where B = e Thus, by cyclicity
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i i1 n—j
B try ( Zl§i<j§n PAﬁ PAc PJA,o PAc PA,0J>
1—n tra plh o (3.2.9)

0S, =

n—1 n—1 2
2 try [pA,apAp } N n(l —n) 2 tra [pA,opA,O }
tra Pl 2 trpl o

tI.A ( Pi;ol PAc PZT0j71 PA,c pZTok)
tra P40
point function on an n-cylinder (similar to as described in the paragraph after eq.(2.4.16))

Now, we propose that the term is proportional to the four-

with two of the cylinders (5" and k™ cylinder) having field o inserted at its end points
(points at infinity) and the rest of the n — 2 cylinders having the vacuum field. Thus

-1 k—j—1 n—k
tra ( Pao PAoc Pag  PAoc Pao )

tra plig

= & (0 (00) 05 (=00) 04 (00) 7% (=00))n  (3:2.10)

where, & is the constant of proportionality. To determine &, consider the case n = 2 (since

the inequality 1 < j < k < n has no integer solutions for j and k for n = 1). Thus,

= & (01 (00) 01 (—00) 09 (00) 03 (—00))2 (3.2.11)

where (o1 (00) 01 (—00) 02 (00) 09 (—00))2 is the four-point function on 2-cylinder with both
the cylinders having field o at its end point. The four-point functions (o; (c0) o, (—00) oy (00) 0% (—00))s,
and (oy (00) 01 (—00) 09 (00) 09 (—00))9 are evaluated using the uniformization map as de-
scribed in the previous section. The explicit expression of the term try pfy ,/tra p%i, has

been evaluated in Ref. [7].

tea oy 0 2 TN 0 (200 Zhow) 0 (2mo0s oo
tra g (o (1) o (202 — m/Tyyn

(3.2.12)

where, 2’s are new coordinates as defined in the previous section. Thus, tra p% ,/tra p4,
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is given by

ta pho _ 270 o (21 0 1) 0 (2100 F1o0) O (221001 Z2.00) O (22,00 Z2,o0)
tra Pl (o (1) o (e~ 00/T))2

(3.2.13)

From eq.(3.1.13), eq.(3.2.11) and eq.(3.2.13), the normalization constant & is given by

—ho
(dzl,—oo dZQ,—oo) ]
B(r=o0) do do 0(7=—o0)

*Bo
9(7’—00)]
(3.2.14)

(o (D)o (2@ —om/myz [\ "ap o

dzl,oo d22,oo dzl,—oo dz?,—oo
b ) )| \ a0 b

¢ 2 0 0e) [(dzl,oo dz%o>
2 p—

or equivalently

2—4(hg+ﬁg)

(o (00) o (—00))F

&= (3.2.15)

where, (0 (00) 0 (—00)); is the two point function on 1-cylinder having field o at its end

points. Thus,

i—1 k—j—1 n— 7
tra ( P{q,o PA pA,OJ PAo pA,0k> 94 (hotho) (0 (00) 0,

tra P {0 (c0)

<
—~

—00) 0% (00) ap (—00))y,

k (
(—oo))i

Q

(3.2.16)

The four-point function for o field of the Ising model is given in Ref.[¢]. Using the formula

presented there in conjunction with the uniformization map

2m0/L b\ L/
m _ (€ e
2 = (a%@/b — 61.91) (3.2.17)
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where, |0, — 01| = 2”1 , gives the four-point function
(o (z](z)o, Z;Zl) o (z](jz_)oo, Z](n_)oo> o (z,gngo, z,(C O)o) o (z,inloo, Z,(anoo>> (3.2.18)

gin2 (W(j;k)) sin2 (W(J’n—k)>
- —14+V2 : —14+v2 — :
cOS (%) — cos <—2“(i;k)> cOS (—92;91> — cos (2”(;*’“))

1/2

sin? (M> sin (”(j >
+ [ | 1+v2 - 1+v2

cos (—92n91) — cos (—2”(?@> cos (9 ) (2”(3 )>

Sln (922n91> SlIl (922 91) 1(92 01— 92+91) S n

e
/ 27/4
<cos (92 01) cos( >> (cos( 1> cos
where, Z](ré)o = ¢ilb2=01)/n + 2mij/n Z](n—)oo = e2mii/n zl(cno)o — oi(02=01)/n + 2mik/n 41 Zl(cnloo _
e?mk/n A further simplification yields the result,
(o <zj(7l)o, 2](2)) o ( ](n)oo, ](n)oo> o <z,(€ngo, 22";) o (z,(gn)oo, Zli )OO>>
(3.2.19)
. 1/2
sin <—7T(]Tjk)) 1
- T . 1/4
St <nL) (2 <COS (272) — oS (M)))
Using the identity
d=™) /dp 1 z(m)
2r/db_ 1z (3.2.20)

d=M /df n zM)
we get,
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{7; (00) 05 (=00) 0, (00) 7k (=00))n

)
(0(00) 7 (—o0))3 7

n n n ho —(n —_(n —(n n ho
_ b 2 Ztoo Zho Zheoo | | Zrek Fioo Zhioo Fhes (3.2.21)
Sl EOR e g [ A
(o (zj(.j;l, 252) o <Z](n_)oo, Ej(f?m) o <z,(§ngo, ZI(ﬁan) o (z,(cn _(n) ))
(o <Z_](10)O? ZJ(lo)o) o (z§1loo, ‘§1ZOO>> (o (z,(gio, 2,220> o (z,(:) o 20 _Oo)
" (U — ¢ilt2=00) — giznl/L gpq zj(l)oo = z,il)oo = 1. The two-point functions

where, z; o = 2z o

are evaluated to be

1 —(1 1 —(1 1 1 —(1 1 —(1
o (42, 82) 7 (320 82 = i = (o () o (2 42
Sin

7,007 ©j,00 j —00? “j,—00
(3.2.22)

From eq.(3.2.19) and eq.(3.2.22), we get

3,007 “j,00

02 ) o (20 7)) (o (A2 ) o ()2 0L)) (3228)

<U<Z]oo7 ]oo ] —00? ] —o0

91/1 (Sin (m-m))l/?

B (COS (%l) — oS <_2”(Zl—k)>>1/4

(o (2020 o () o (42,50 ) o (2 )

Therefore,
<U] (OO) UZ (( OO)) Uég (OO))>Uk (—OO))n _ 21j4 (sin (@>) " ; (3'2'24)
0 (00) 7 (—00))} nt/? (cos (2721) — CO8 (M))l 4

Thus, the second correction term to the Rényi entropy for the critical Ising model is

evaluated using eq.(3.2.9), eq.(3.1.15), eq.(3.2.16) and eq.(3.2.24).
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1—n Z

1<j<k<n

1

91/4 p1/2 (

sin (1)

—

+ n7/4 L
sin (E

)
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Chapter 4

Conclusions

For critical Ising model, it is observed that the calculations required for obtaining the
explicit form of the leading order correction to Rényi entropy are the two-point correlation
function (o (00) o (—00)) and the constant of proportionality &;. Moreover, to calculate &,

the term required to be evaluated is Eh‘ﬂ.
Ta pao

Similarly, the calculations required for obtaining the explicit form of the second correction
term to the Rényi entropy are the four-point correlation function (o; (00) 0 (—00) oy, (00) o, (—00))
(where the o field is inserted at the end points of the j* and k' cylinders) and the con-
tra ph,

stant of proportionality &. Also, to calculate &;, the term required to be evaluated is W
A,0

This can be further generalised to any it correction term (i < 7). The calculations re-
quired for obtaining the explicit form of the i’ correction term to the Rényi entropy are the
2i-point correlation function (o}, (00) 0j, (—00) 0}, (00) 0, (—00) - - - 05, (00) 7, (—00)) (where
each of the j,’s are the indices of the cylinders, at the end points of which the o field is in-
serted) and the constant of proportionality &; (eq.(4.0.1)). All the other quantities involved

1th

are calculated inductively i.e. they are already calculated for the ¢ — 1" correction term and

are hence known.

tra pf&a

64 piag = & (01 (00) 01 (—00) 02 (00) 03 (—00) - - - 03 (00) 73 (—00)); (4.0.1)
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The 2i-point functions (o}, (00) 0, (—00) 7, (00) 05, (—00) - - - 75, (00) 05, (—00)) and
(01 (00) 01 (—00) 09 (00) 03 (—00) - - - 04 (00) 03 (—00)); can be evaluated using the uniformiza-
tion map, given that the 2i-point function of the theory on a plane is known. The calculation

. . tra o
of &; is dependent on the evaluation of the term tf"A Phe

A p%yo

For the 8 correction term, in addition to the o field, there is also a contribution from
the primary field e. Therefore, the correction term will have terms containing two-point,
four-point, six-point ... upto sixteen-point function of ¢ field and also the two-point function
of the € field. Thereafter the correction terms will have contributions from the secondaries
of both o and € fields. The 16"* onward correction terms will have contributions from the

secondaries of all three fields of the theory namely the identity, o and € fields.

The above done calculations and analyses are applicable to any general CF'T provided all
the fields present in the theory are known and the calculations are done accordingly, taking
into account the conformal dimensions of the fields. It is important to note that fields having

lower dimensions will contribute more to the correction of the entropy.
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