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Abstract

This thesis deals with the study of quantum entanglement across spatial boundaries in

conformal-invariant quantum field theories (2d CFT) in two dimensions. In 2d CFT, Rényi

entropy and entanglement entropy has been evaluated successfully using the replica method

for non-compact systems at zero and non-zero temperatures and for compact systems at

zero temperature (Ref.[2],[4]). However, for a compact system at finite temperature, an

exact evaluation of the entropy measure using the replica trick has not been successfully

performed. In order to gain more insights into the problem, calculations have been done by

approximating the system to a compact system at zero temperature and expanding about it

to obtain the leading order correction term to the entropy measure (Ref.[6]). In this thesis we

propose a method to calculate the second correction term and eventually a general approach

for calculating higher order correction terms to Rényi entropy and entanglement entropy at

low temperature expansion for a spatially compactified 1d system.
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Introduction

Symmetries play a crucial role in characterising and hence understanding of the different

natural phenomena. Although a system might not be exactly solvable, studying its under-

lying symmetries may lead to great insights on the problem even without solving for it’s

dynamics. Additionaly, violation of symmetries is in itself of great interest and symmetry

breaking has been used to describe many physical phenomena like ferromagnetism and su-

perconductivity.

Among the symmetries of a physical system, the most widely studied are translational

invariance and rotational invariance. Scale invariance is a symmetry which is not often en-

countered in physical systems. This however becomes extremely important when studying

statistical systems at a critical point. Statistical systems like the Ising model, at criticality

are the best examples of systems have scaling symmetry. When a statistical system is in a

state far from the critical point, the particles of the system interact with each other upto a

characteristic length scale called the correlation length. Correlation length is a characteristic

property of the phase the system is present in. Now, at the critical point, the correlation

length becomes infinite i.e. all particles in the system can interact with all other particles

freely. Thus, the system can no longer be characterized by the correlation length and hence

correlation functions scale as a power law rather than exponential. So, the behaviour of the

system at the critical point is described by a scale invariant theory. It has been proved by

Polchinski (Ref.[1]) that in d = 2 spacetime dimensions, scale invariance implies conformal

invariance. Therefore, these systems have an effective description in terms of Conformal

Field Theory (CFT). Thus, CFT is essential in studying the properties of statistical systems

at criticality.
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Quantum entanglement is a phenomenon in which two or more particles interact with

each other irrespective of the separation between them and the quantum state of one particle

cannot be described independently of the others. Entropy is a measure of the number of

microstates of a system which are in thermal equilibrium given its macrostate (macroscopic

thermodynamic properties). Rényi entropy and Entanglement entropy are two widely used

measures of entropy. These can further be used to study the fluctuations in thermal equilib-

rium which implies that thermodynamic quantities at temperatures close to the equilibrium

temperature can be determined by studying the behaviour of those fluctuatuions. Thus,

Rényi entropy and entanglement entropy are imperative to the study of statistical systems,

especially near criticality.

In this project we study the Rényi entropy and entanglement entropy at finite tempera-

ture, and investigate the calculation of correction terms in a low temperature expansion.
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Chapter 1

Conformal Field Theory

This chapter contains a brief review of Conformal Field Theory and definitions of many

objects such as correlation functions, primary fields, radial quantization, operator product

expansion and vertex operators, which are crucial for the understanding of all the subsequent

work done in the project.

1.1 Conformal Transformations in d Euclidean Dimen-

sion

A general conformal transformation in d euclidean dimension is an invertible map x→ x′

such that the metric tensor is left invariant upto a scale

g′µν (x′) = Λ (x) gµν (x) (1.1.1)

A conformal transformation is angle preserving i.e. it does not affect the angle between

two arbitrary curves crossing each other at some point. The set of conformal transformations

form a group. This group has the Poincaré group as a subgroup corresponding to the special

case Λ (x) ≡ 1. A general conformal transformation includes translation, rotation, dialation
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and special conformal transformation (SCT). Thus, the finite conformal transformations are

given by:

x′µ = xµ + aµ (Translation)

x′µ = Mµ
ν x

ν (Rotation)

x′µ = λxµ (Dilation)

x′µ = xµ−bµx2

1−2b.x+b2x2 (SCT)

(1.1.2)

The corresponding generators of these transformations are given by:

Pµ = −i∂µ (Translation)

Lµν = i(xµ∂ν − xν∂µ) (Rotation)

D = −ixµ∂µ (Dilation)

Kµ = −i(2xµxν∂ν − x2∂µ) (SCT)

(1.1.3)

The commutation rules obeyed by these generators define the conformal algebra. One

finds that the conformal group in d dimension is isomorphic to SO(d+ 1, 1).

The transformation law for a spinless field φ (x) under a finite conformal transformation

x→ x′ can be derived by using the above generators. One finds that the field transforms as:

φ (x)→ φ′ (x′) =

∣∣∣∣∂x′∂x

∣∣∣∣−∆/d

φ (x) (1.1.4)

where, |∂x′/∂x| is the Jacobian of the transformation and ∆ is called the scaling dimen-

sion of the field. A field transforming according to the above transformation law is called a

‘quasi-primary’ field.
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1.2 Correlation Functions

Henceforth we work in Euclidean CFT, obtained by continuing the time to imaginary

values.

Let us now examine the consequences of conformal invariance on two-, three- and four-

point correlation functions of quasi-primary fields. Henceforth it will be understood that all

correlation functions involve time-ordered products of fields. Now the two-point correlation

function of fields φ1 and φ2 is given by:

〈φ1 (x1)φ2 (x2)〉 =
1

Z

∫
[dφ] φ1 (x1) φ2 (x2) e−S[φ] (1.2.1)

where, Z is the partion function and S[φ] is the action of the theory. Thus, the above equa-

tion represents a functional integral over the set of all independent fields in the theory.

Now translation and rotation invariance implies that 〈φ1 (x1)φ2 (x2)〉 is a function of the

distance between the points, i.e.

〈φ1 (x1)φ2 (x2)〉 = h (|x1 − x2|) (1.2.2)

Now, from eq.(1.1.4) it is seen that invariance of the two-point function under any trans-

formation x→ x′ is given by:

〈φ1 (x1)φ2 (x2)〉 =

∣∣∣∣∂x′∂x

∣∣∣∣∆1/d

x=x1

∣∣∣∣∂x′∂x

∣∣∣∣∆2/d

x=x2

〈φ1 (x′1)φ2 (x′2)〉 (1.2.3)

Thus, from eq.(1.2.3) we see that under scale transformation x→ λx, the two-point function

satisfies the following relation:

〈φ1 (x1)φ2 (x2)〉 = λ∆1+∆2 〈φ1 (λx1)φ2 (λx2)〉 (1.2.4)
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Thus, eq.(1.2.2) in addition with eq.(1.2.4) gives:

〈φ1 (x1)φ2 (x2)〉 =
C12

|x1 − x2|∆1+∆2
(1.2.5)

where C12 is a constant.

Now, for a special conformal transformation (SCT), from eq.(1.1.2) we have:

∣∣∣∣∂x′∂x

∣∣∣∣ =
1

(1− 2b.x+ b2x2)d
(1.2.6)

which in turn gives the invariance condition as:

C12

|x1 − x2|∆1+∆2
=

C12

|x1 − x2|∆1+∆2

(γ1γ2)(∆1+∆2)/2

γ∆1
1 γ∆2

2

(1.2.7)

where, γi = (1− 2b.xi + b2x2
i ).

The above condition is satisfied only when ∆1 = ∆2. Therefore, the two-point function

of two quasi-primary fields is given by:

〈φ1 (x1)φ2 (x2)〉 =


C12

|x1−x2|2∆1
if ∆1 = ∆2

0 if ∆1 6= ∆2

(1.2.8)

A similar analysis can be done for three-point functions and four-point functions. For a

three-point correlation function, invariance under translation, rotation and dialation leads

to the following form:

〈φ1 (x1)φ2 (x2)φ3 (x3)〉 =
C

(abc)
123

xa12x
b
23x

c
31

(1.2.9)
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where, xij = |xi − xj| and a + b + c = ∆1 + ∆2 + ∆3. Invariance of eq.(1.2.9) under SCT

implies:

C
(abc)
123

xa12x
b
23x

c
31

=
C

(abc)
123

xa12x
b
23x

c
31

(γ1γ2)a/2 (γ2γ3)b/2 (γ3γ1)c/2

γ∆1
1 γ∆2

2 γ∆3
3

(1.2.10)

which leads to the following set of constraints:

a+ c = 2∆1 , a+ b = 2∆2 , b+ c = 2∆3 (1.2.11)

The above set of equations has a unique solution for a, b, c given by:

a = ∆1 + ∆2 −∆3

b = ∆2 + ∆3 −∆1

c = ∆3 + ∆1 −∆2

(1.2.12)

Therefore the three-point function of quasi-primary fields is given by:

〈φ1 (x1)φ2 (x2)φ3 (x3)〉 =
C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

(1.2.13)

Thus, the three-point functions of quasi-primary fields are determined upto a constant C123.

Following a similar analysis for four-point functions lead to their forms being determined

upto a multiplicative factor of a function of the anharmonic ratios i.e.

〈φ1 (x1)φ2 (x2)φ3 (x3)φ4 (x4)〉 = h

(
x12x34

x13x24

,
x12x34

x14x23

) ∏
1≤i<j≤4

x
∆/3−∆1−∆2

ij (1.2.14)

where, ∆ =
∑4

i=1 ∆i . This can be seen from the fact that the anharmonic ratios x12x34

x13x24
and x12x34

x14x23

are invariant under translation, rotation, scaling and SCT. Thus, multiplying the RHS of
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eq.(1.2.14) with any function of the anharmonic ratios will leave ir invariant under these

transformations.

1.3 CFT in 2d

For systems in 2d, let the co-ordinates on the plane be (x, τx). Now, for a general

transformation xµ → wµ (x) to be a conformal transformation, the condition g′µν (w) ∝
gµν (x) is equivalent either to

∂τw
∂x

=
∂w

∂τx
and

∂w

∂x
= −∂τw

∂τx
(1.3.1)

or to

∂τw
∂x

= − ∂w
∂τx

and
∂w

∂x
=
∂τw
∂τx

(1.3.2)

It is observed that eq.(1.3.1) is the Cauchy-Riemann equations for holomorphic functions,

while eq.(1.3.2) is the same for antiholomorphic functions. This motivates the use of complex

coordinates for 2d CFT. The complex coordinates z, z̄ are defined according to the following

rules:

z = x+ iτ z̄ = x− iτ

∂z = 1
2

(∂x − i∂τ ) ∂z̄ = 1
2

(∂x + i∂τ )
(1.3.3)

In terms of the complex coordinate z, the complete set of global conformal transforma-

tions (also called projective transformations) is given by the set of invertible maps which

map the entire complex plane to itself. These mappings are given by

f (z) =
az + b

cz + d
(1.3.4)
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where, a, b, c, d ∈ C with ad − bc = 1 i.e.

(
a b

c d

)
∈ SL (2,C). The set of global

conformal transformations is also called the special conformal group.

1.3.1 Primary Fields

One of the interesting properties of CFT in two dimension is that the definition of quasi-

primary fields is also applicable to fields with non-zero spin. For a given field with scaling

dimension ∆ and planar spin s, holomorphic conformal dimension ’h’ and antiholomorphic

conformal dimension ’h̄’ are defined as:

h = 1
2

(∆ + s) h̄ = 1
2

(∆− s) (1.3.5)

Thus, under the conformal map z → w (z) , z̄ → w̄ (z̄) , a quasi-primary field transforms

as:

φ′ (w, w̄) =

(
dw

dz

)−h (
dw̄

dz̄

)−h̄
φ (z, z̄) (1.3.6)

Now, a field in two dimension which transforms according to eq.(1.3.6) under any local

transformation i.e. holomorphic transformations which are allowed to be singular at 0 and

infinity, is called a primary field.

1.3.2 Correlation Functions of Primary Fields

From eq.(1.2.3) and eq.(1.3.6), it is seen that under a conformal transformation, the n-

point correlation function of n primary fields with conformal dimensions hi and h̄i transforms

as:
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〈φ1 (w1, w̄1) · · ·φn (wn, w̄n)〉 =

[ ∏
1≤i≤n

(
dwi
dzi

)−hi (dw̄i
dz̄i

)−h̄i]
〈φ1 (z1, z̄1) · · ·φn (zn, z̄n)〉

(1.3.7)

An important point to note in the above equation is that it incorporates the possibility

of a field with non-zero spin in the difference hi− h̄i. Thus the two-point correlation function

is given by:

〈φ1 (z1, z̄1)φ2 (z2, z̄2)〉 =


C12

(z1−z2)2h (z̄1−z̄2)2h̄ if

h1 = h2 = h

h̄1 = h̄2 = h̄

0 otherwise

(1.3.8)

Similarly, the three-point function is given by:

(1.3.9)〈φ1 (z1, z̄1)φ2 (z2, z̄2)φ3 (z3, z̄3)〉 = C123
1

zh1+h2−h3
12 z̄h̄1+h̄2−h̄3

12

× 1

zh2+h3−h1
23 z̄h̄2+h̄3−h̄1

23

× 1

zh3+h1−h2
31 z̄h̄3+h̄1−h̄2

31

and the four-point function is given by:

(1.3.10)〈φ1 (z1, z̄1)φ2 (z2, z̄2)φ3 (z3, z̄3)φ4 (z4, z̄4)〉 = h
(
ζ, ζ̄
) ∏

1≤i<j≤4

z
h/3−hi−hj
ij z̄

h̄/3−h̄i−h̄j
ij

where, ζ = z12z34

z14z32
, h =

∑4
i=1 hi and h̄ =

∑4
i=1 h̄i.

1.3.3 Radial Quantization

In 2d Eucledean formalism, the space and time axes are on equal footing. Thus it is

possible to choose a special co-ordinate system and perform quantization along those axes.
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One such special quantization is called the radial quantization. In this, the time axis is taken

to be radial while the space axis is taken as concentric circles. As we will see, this turns out

to be very useful in the study of conformal field theories.

One way to relate this spacetime with the usual notion of spacetime is to consider a system

in which the space axis is compactified to length L. The spacetime is then represented by a

cylinder with the time axis along the axis of the cylinder (going from -∞ to +∞) and the

space axis along the lateral surface of the cylinder (going from 0 to L) with the points (0, t)

and (L, t) being identified. This cylinder is also represented by a single complex co-ordinate

ϑ = t + ix (or eqivalently ϑ = t − ix). Now the cylinder can be mapped to the rquired

spacetime via the map z = e2πϑ/L, which is equivalent to ‘squashing’ the cylinder such that

the points at t = −∞ is mapped to the origin and the points at t = +∞ is mapped to a

circle with infinite radius, on the plane (Fig.1.1).

Figure 1.1: Mapping from cylinder to the complex plane

An important point to note is that in the radial quantization picture, the time-ordering

of operators in correlators becomes a radial ordering i.e.

Rφ1 (z)φ2 (w) =

φ1 (z)φ2 (w) if |z|> |w|

φ2 (w)φ1 (z) if |w|> |z|
(1.3.11)
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1.3.4 Operator Product Expansion (OPE)

Correlation functions have the typical property of having singularities when the position

of two or more fields coincides. This in essence represents the infinite fluctuations of a

quantum field taken at a precise location. This is captured by the operator product expansion

(OPE). The OPE gives the product of two operators at positions z and w respectively, as

a sum of single operators (well defined as z → w) multiplied with a c-number function of

z − w (possibly diverging as z → w).

O1 (z)O2 (w) =
N∑

n=−∞

An(w)

(z − w)n
(1.3.12)

where An(w) are non-singular at w = z. As an example, the OPE of the energy-momentum

tensor with a primary field of conformal dimension
(
h, h̄
)

is given by:

T (z)φ (w, w̄) ∼ h
(z−w)2 φ (w, w̄) + 1

z−w ∂wφ (w, w̄)

T̄ (z̄)φ (w, w̄) ∼ h̄
(z̄−w̄)2 φ (w, w̄) + 1

z̄−w̄ ∂w̄φ (w, w̄)

(1.3.13)

The symbol ∼ in eq.(1.3.13) means that all the regular terms (non-singular as z → w) in

the product of the operators is dropped. This is justified since knowledge of the singular terms

alone is often sufficient to fix the entire behaviour of functions using complex analyticity.

1.3.5 Vertex Operators

The free boson field (φ (z, z̄)) in 2d has a very special characteristic that it has logarithmic

singularities in its correlator (eq.(1.3.14)), which is a sign of infrared divergences.

〈φ (z, z̄)φ (w, w̄)〉 ∼ − {ln (z − w) + ln (z̄ − w̄)} (1.3.14)

This implies that φ in itself is not a conformal field, however exponentials of the free
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boson field will have power-law correlators due to the logarithmic behaviour of the free

boson correlator. This gives us a way to construct infinitely many good conformal fields in

the theory, namely the vertex operators (eq.(1.3.15)):

Vα (z, z̄) = : eiαφ(z,z̄) : (1.3.15)

The vertex operators are of great importance because each Vα (z, z̄) is a primary field

(Ref. [5]) with holomorphic and anti-holomorphic dimension:

hα = h̄α =
α2

2
(1.3.16)

The OPE of ∂φ with Vα is evaluated by expanding Vα in it’s poynomial form and calcu-

lating the OPE of ∂φ with φ thereafter. The common terms are taken out and the resulting

answer is re-written in terms of Vα. The result is given by:

∂φ (z)Vα (w, w̄) ∼ −iα Vα (w, w̄)

z − w
(1.3.17)

The OPE of Vα with the energy-momentum tensor evaluated in an analogous manner is

given by:

T (z)Vα (w, w̄) ∼ α2

2

Vα (w, w̄)

(z − w)2 +
∂wVα (w, w̄)

z − w
(1.3.18)

These OPE’s will be used for calculation of Rényi entropy and entanglement entropy, as

shown in the successive chapters.
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Chapter 2

Rényi Entropy and Entanglement

Entropy

Quantum entanglement is a phenomenon in which two or more particles interact with

each other irrespective of the separation between them and the quantum state of one parti-

cle cannot be described independently of the others. Entanglement entropy is a measure of

entanglement in a many-body quantum state. Eg. consider a quantum mechanical system in

the ground state |Ψ〉. Assuming non-degeneracy of the ground state, the density matrix for

the system is given by ρtot = |Ψ〉 〈Ψ| . The von Neumann entropy of the system is given by

Stot = − tr ρtotlogρtot = 0 (since the system is in pure state). Now, if the system is divided

into two subsystems A and B, then the total Hilbert space can be written asHtot = HA⊗HB.

For such a system, the reduced density matrix of the subsystem A is given by ρA = trB ρtot,

where the trace is taken only over the Hilbert space HB.

The entanglement entropy(SA) of the subsystem A is defined to be the von Neumann

entropy of the reduced density matrix ρA i.e.

SA = − trA ρA logρA (2.0.1)

In addition to the entanglement entropy, there is another measure for entanglement called

15



the Rényi entropy. The Rényi entropy of the subsystem A is given by

Sn =
1

1− n
log (tr ρnA) (2.0.2)

with SA = limn→1 Sn.

Note that, if the density matrix is diagonal i.e. ρtot = diag(λ1, λ2, · · · , λn) then the von

Neumann entropy is given by

S = −
n∑
i=1

λi logλi (2.0.3)

For a density matrix, 0 ≤ λi ≤ 1 and
∑n

i=1 λi = 1. Therefore, the RHS of eq.(2.0.3) is

always non-negative and hence, the entanglement entropy is always non-negative.

The density matrix for a pure state has one of the λi equal to one and the rest equal

to zero. Now, λi logλi is zero for λi = 0 or 1. Therefore, a pure state system has zero

entanglement entropy. This is also the minimum value of entanglement entropy. Similarly,

the values of RHS of eq.(2.0.3) are bounded above by logn which is obtained when all λi’s are

equal and equal to 1/n. Thus, a mixed system is maximally entangled when each subsystem

has an equal probability and the maximum entanglement entropy is logn.

2.1 Properties of Entanglement Entropy

For a system at absolute zero temperature, some of the note-worthy properties of entan-

glement entropy are:

(i) For two subsystems A and B of the system, if B is the complement of A, then

SA = SB. This implies that entanglement entropy is not an extensive quantity.

However, this equality does not hold at finite temperature. At non-zero temperature

SA − SB = SThermal , where SThermal is the thermal entropy of the entire system.
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(ii) If A is further divided into two submanifolds A1 and A2, then SA1 + SA2 ≥ SA. This

property is called subadditivity.

(iii) For three subsystems A, B and C such that they do not intersect each other, the

following inequality holds

SA+B+C + SB ≤ SA+B + SB+C (2.1.1)

This property is called strong subadditivity.

2.2 Entanglement Entropy in 2d CFT

Let a system at zero temperature and in a non-compact space dimension in a 2d CFT

be defined on a complex plane with the imaginary axis corresponding to the Euclidean time

and the real axis corresponding to the spatial dimension. The subsystem A is defined as the

single interval x ∈ [u, v] at τ = 0 in the flat Euclidean coordinates (x, τ) ∈ R2. Then, the

reduced density matrix ρA of the subsystem is evaluated using the Euclidean path-integral

formalism as shown below(Ref. [2],[4]).

First, the ground state wave function Ψ of the system is obtained by path integrating

from τ = −∞ to τ = 0 in the Euclidean formalism

Ψ(φ1(x), τ = 0) = Ψ(φ1(x)) =

∫ φ(τ=0,x)=φ1(x)

φ(τ=−∞,x)≡0

[dφ] e−S[φ] (2.2.1)

where, φ(τ, x) denotes the fundamental fields of the 2d CFT. The total density matrix ρ is

given by the product ΨΨ̄ where Ψ̄ is obtained by path integrating from τ = ∞ to τ = 0.

This in turn implies that the density matrix is characterized by the boundary conditions

(fields) i.e. [ρ]φ1φ2 = Ψ(φ1(x))Ψ̄(φ2(x)). Thus the system is defined by taking a functional

integral over all well behaved functions (those which go to zero as τ, x → ∞) such that for

τ → 0+ the functions approach φ2(x) and for τ → 0− the functions approach φ1(x). The

reduced density matrix ρA is obtained by integrating φ1 on B assuming φ1(x) = φ2(x) when

x ∈ B. Thus,
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[ρA]φ2φ1 =
1

Z1

∫ τ=∞

τ=−∞
[dφ]e−S[φ]

∏
x∈A

δ(φ(+0, x)− φ2(x)) · δ(φ(−0, x)− φ1(x)), (2.2.2)

where, Z1 is the vacuum partition function on R2. The 1/Z1 factor ensures that ρA is nor-

malized such that trAρA = 1. (Fig. 2.1 (a))

Figure 2.1: (a) The path integral representation of [ρA]φ+φ− ,
(b) The 3-sheeted Riemann surface corresponding to the calculation of trA ρ

3
A Ref.[4]

2.3 Computation of Entanglement Entropy

The computation of entanglement entropy in 2d CFT is done using the replica trick,

which is explained in the next section (Ref.[4]). The procedure includes evaluating trA ρnA,

then differentiating it’s logarithm with respect to n and finally taking the limit n→ 1 (where

ρA is normalized i.e. trA ρA = 1).
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SA = − ∂

∂n
log trA ρ

n
A|n=1 (2.3.1)

To evaluate trA ρ
n
A, we trace over n copies of ρA successively i.e. we compute

[ρA]φ1φ2 [ρA]φ2φ3 [ρA]φ3φ4 · · · [ρA]φn−1φn [ρA]φnφ1 (2.3.2)

where the φi’s are integrated over the functional.

2.4 Replica Method

The computation of eq.(2.3.2) is done using the path integral formalism on a branched

surface which is called the replica method. First, consider the system (complex plane) with

a cut along the subsystem A (the interval [u, v] at τ = 0). Now, take n such planes. Let

the defining CFT on the ith plane be given by the field φi. The n sheets are then joined

along the interval in the following manner : the τ → 0− side of the ith sheet is joined to the

τ → 0+ side of the i+ 1th sheet (Fig. 2.1 (b)), and the τ → 0− side of the nth sheet is joined

to the τ → 0+ side of the 1st sheet. Thus, the sheets are joined in such a manner that for a

point in the ith sheet, an anti-clockwise rotation by 2π about u will take the point to i+ 1th

sheet and an anti-clockwise rotation by 2π about v will take the point to i− 1th sheet i.e.

φi (e
i2π (w − u)) = φi+1 (w − u) φi (e

i2π (w − v)) = φi−1 (w − v) (2.4.1)

Now, trA ρ
n
A is given by the path integral on this n sheeted Riemann surface.

trAρ
n
A =

1

(Z1)n

∫
(τ,x)∈Rn

[dφ]e−S(φ) ≡ Zn
(Z1)n

(2.4.2)

Alternatively, the boundary conditions (eq.(2.4.1)) can be interpreted as insertions of

twist operators σ+
i at u and σ−i at v, on the ith-sheet. Then,
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trAρ
n
A =

n∏
i=1

〈σ+
i (u)σ−i (v)〉 (2.4.3)

It is important to note that in order to compute the two-point function 〈σ+
i (u)σ−i (v)〉, the

ultra-violet (UV) divergence needs to be regularized. This is done by introducing a UV

cutoff parameter ‘a’ to the theory. To determine 〈σ+
i (u)σ−i (v)〉 , we use the uniformization

map:

z =

(
w − u
w − v

)1/n

(2.4.4)

This mapping maps the n sheeted Riemann surface to a complex plane, with each of the

ith sheet being mapped to the corresponding ith sector in the plane. Then, we study the

tranformation of the energy-momentum tensor under this map. The tranformation law for

energy-momentum tensor under a coordinate transformation z → w is:

T ′ (w) =

(
dz

dw

)2

T (z) +
c

12
{z;w} (2.4.5)

where, c is the central charge of the theory and {z;w} is the Schwarzian derivative given by:

{z;w} =
(d3z/dw3)

(dz/dw)
− 3

2

(
(d2z/dw2)

(dz/dw)

)2

(2.4.6)

Since z is a coordinate on a complex plane, 〈T (z)〉 is zero by translational and rotational

invariance. Hence,

〈T (w)〉Rn =
c

24

(
1− 1

n2

)
(v − u)2

(w − u)2 (w − v)2 (2.4.7)

The right hand side (RHS) of eq.(2.4.7) can be interpreted as 〈T (w) σ+(u) σ−(v)〉 , wehre

T (w) is the energy-momentum tensor of each of those n sheets seperated, with each sheet

having a twist operator σ+ at u and σ− at v. On comparing eq.(2.4.7) as lim w → u with
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the OPE of energy-momentum tensor with a primary field (eq.(1.3.13)), we see that the

conformal dimension of σ+ is

hσ+ = h̄σ+ =
c

24

(
1− 1

n2

)
(2.4.8)

Similarly, comparing eq.(2.4.7) as lim w → v with the OPE of energy-momentum tensor

with a primary field (eq.(1.3.13)), we get the conformal dimension of σ− as

hσ− = h̄σ− =
c

24

(
1− 1

n2

)
(2.4.9)

Thus, contribution of each sheet to trA ρ
n
A is

〈σ+
i (u)σ−i (v)〉 =

(
u− v
a

)−(2hσ++2h̄σ+)
=

(
u− v
a

)− c
6(1− 1

n2 )
(2.4.10)

where, a is the UV cutoff. Hence, trA ρ
n
A is given by

trA ρ
n
A = 〈σ+

i (u)σ−i (v)〉n =

(
u− v
a

)− c
6(n− 1

n)
(2.4.11)

From eq.(2.0.2) and eq.(2.4.11) we find the Rényi entropy

Sn ∼
c

6

(
1 +

1

n

)
log

(
|u− v|
a

)
(2.4.12)

Now, the entanglement entropy is given by

SA = lim
n→1

Sn =
c

3
log

(
|u− v|
a

)
(2.4.13)

Therefore, the Rényi entropy and entanglement entropy in an infinitely long system at

zero temperature are given by
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Sn =
c

6

(
1 +

1

n

)
log

l

a
(2.4.14)

SA =
c

3
log

l

a
, (2.4.15)

respectively, where, c is the central charge of the CFT and l is the length of the interval

(l = |v − u|).

2.4.1 Entropy in an Infinitely long system at Finite Temperature

A similar calculation is performed to obtain the Rényi entropy and entanglement entropy

of an interval [r, s] in an infinitely long system at finite temperature (T = β−1). Here, the

uniformization map is taken as:

z =

(
e

2πθ
β − e

2πr
β

e
2πθ
β − e

2πs
β

)1/n

(2.4.16)

The original system can be viewed as a sequence of n cylinders of infinite length, with

each cylinder having its axis along the spatial direction, having an interval [r, s] and the

circumference of the cylinder as the compactified time direction of length β (= T−1). The

cylinders are joined to each other along the cut such that the τ → 0− side of the ith cylinder

is joined to the τ → 0+ side of the i+ 1th cylinder and the τ → 0− side of the nth cylinder is

joined to the τ → 0+ side of the 1st cylinder. The mapping θ → w given by w = e2πθ/β maps

the ith cylinder to the ith sheet of the n sheeted Riemann surface (Rn) with the end points

of the interval at u = e2πr/β and v = e2πs/β. Furthermore, the mapping w → z (eq.(2.4.4))

then maps Rn to the complex plane C.

Performing the subsequent steps of calculation, the Rényi entropy and entanglement

entropy of a single interval in an infinitely long system at finite temperature (T = β−1) are

computed to be
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Sn =
c

6

(
1 +

1

n

)
log

(
β

πa
sinh

(
πl

β

))
(2.4.17)

and

SA =
c

3
log

(
β

πa
sinh

(
πl

β

))
(2.4.18)

respectively.

2.4.2 Entropy in a System Compactified on a Circle of circumfer-

ence L at Zero Temperature

To obtain the Rényi entropy and entanglement entropy of an interval [r, s] in a system

compactified on a circle of circumference L at zero temperature, a similar calculation is done

with the mapping θ → w given by w = ei2πθ/L followed by the mapping w → z (eq.(2.4.4)).

On performing the calculation, the Rényi entropy and entanglement entropy are obtained to

be

Sn =
c

6

(
1 +

1

n

)
log

(
L

πa
sin

(
πl

L

))
(2.4.19)

and

SA =
c

3
log

(
L

πa
sin

(
πl

L

))
(2.4.20)

respectively.
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Chapter 3

Thermal Corrections to Entanglement

Entropy

As seen in the previous chapter, for a system with hilbert space Htot = HA ⊗HB, where

B = Ā, a measure of entanglement, the entangement entropy is given by

SE = −trA (ρAlogρA) (3.0.1)

where, ρA = trBρtot is the reduced density matrix for subsystem A. Also the Rényi entropy,

given by:

Sn =
1

1− n
log (tr ρnA) (3.0.2)

with SE = limn→1 Sn.

For a compactified system at finite temperature, the above described path integral pre-

scription for entropy calculation is not easily realised as the geometry of the spacetime of

such a system is a torus (genus-1 surface), and hence, joining n such surfaces along the cut

will result in a genus-n surface. Now, the path-integral on a genus-n surface is very hard

to compute. However, for temperatures close to zero, the system can be approximated by a

thin torus which equivalent to a cylinder of infinite length, since the compactification length

along the imaginary time axis β becomes infinite, and hence, the entropy can be calculated
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by a Taylor series expansion around zero temperature. Such a calculation has been done in

Ref. [6] for the leading order correction. Here we will follow this method and attempt to

extend it to higher-order corrections.

3.1 Leading Order Thermal Correction

For a system at finite temperature, the density matrix is given by the Boltzmann sum

over the states:

ρtot =
1

tr (e−βH)

∑
|φ〉

|φ〉 〈φ| e−βEφ (3.1.1)

Thus, in the low temperature regime, assuming a non-degenerate CFT, the density matrix

can be written as:

ρtot =
|0〉 〈0| + |φ〉 〈φ| e−2πEφβ/L + · · ·

1 + e−2πEφβ/L + · · ·
(3.1.2)

where, L : length of the spatial compactification (circumference of the cylinder)

β = T−1

|0〉 : ground state of the CFT

|φ〉 : first excited state of the CFT with energy eigenvalue Eφ

Thus, ρA is given by partially tracing ρtot over the Hilbert space of B. Hence, trA ρ
n
A is given

by:

trA ρ
n
A = trA

[
(ρA,0 + ρA,φe

−2πEφβ/L + · · ·)n (1 + e−2πEφβ/L + · · ·)−n
]

(3.1.3)

where, ρA,0 = trB |0〉 〈0|
ρA,φ = trB |φ〉 〈φ|
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Expanding eq.(3.1.3) upto first order in e−2πEφβ/L we get

trA ρ
n
A ∼ trA ρ

n
A,0

[
1 +

(
trA
[
ρA,φ ρ

n−1
A,0

]
trA ρnA,0

− 1

)
ne−2πEφβ/L + · · ·

]
(3.1.4)

Since,

log (1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · (3.1.5)

Therefore, the leading order thermal correction to Rényi entropy is given by:

δSn =
1

1− n

(
trA
[
ρA,φ ρ

n−1
A,0

]
trA ρnA,0

− 1

)
ne−2πEφβ/L (3.1.6)

Now, the proposal is that the term
trA[ρA,φ ρn−1

A,0 ]
trA ρnA,0

is proportional to the two-point function

on an n-cylinder (similar to as described in the paragraph after eq.(2.4.16)) with one of the

cylinders having field φ inserted at its end points (points at infinity) and the rest of the n−1

cylinders having the vacuum field (Ref. [6]). Thus

trA
[
ρA,φ ρ

n−1
A,0

]
trA ρnA,0

= ξ1 〈φ (∞)φ (−∞)〉n (3.1.7)

where, ξ1 is the constant of proportionality. To determine ξ1, consider the case n = 1.

Eq.(3.1.7) becomes

trA ρA,φ
trA ρA,0

= ξ1 〈φ (∞)φ (−∞)〉1 (3.1.8)

where, 〈φ (∞)φ (−∞)〉1 is the two-point function on 1-cylinder having operator φ inserted

at its end points. Now, trA ρA,φ = 1 (since we took φ as a normalized eigen function) and

trA ρA,0 = 1, therefore left hand side (LHS) of eq.(3.1.8) is 1. Thus,
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ξ1 =
1

〈φ (∞)φ (−∞)〉1
(3.1.9)

Hence,
trA[ρA,φ ρn−1

A,0 ]
trA ρnA,0

is given by

tr
[
ρA,φ ρ

n−1
A,0

]
tr ρnA,0

=
〈φ (∞)φ (−∞)〉n
〈φ (∞)φ (−∞)〉1

(3.1.10)

Now, 〈φ (∞)φ (−∞)〉n can be evaluated by first mapping the n-cylinder to the complex

plane using the uniformization map

z =

(
ei2πθ/L − ei2πθ2/L

ei2πθ/L − ei2πθ1/L

)1/n

(3.1.11)

where, θ is the coordinate on the n-cylinder, z is the coordinate on the complex plane, L is

the circumference of each cylinder and θ1 and θ2 mark the end points of the interval A i.e.

|θ2 − θ1| = l. Thus, under this map, an operator at τ = −∞ on the jth cylinder is mapped

to the location zj,−∞ = ei2π(θ2 − θ1)/nL + 2πij/n and an operator at τ =∞ on the jth cylinder

is mapped to the location zj,∞ = e2πij/n. Now, the two-point function is evaluated on the

plane

〈φ (zj,∞, z̄j,∞)φ (zj,−∞, z̄j,−∞)〉 =
1

|zj,∞ − zj,−∞|2hφ |z̄j,∞ − z̄j,−∞|2h̄φ
(3.1.12)

where, hφ and h̄φ are the holomorphic and anti-holomorphic conformal dimensions of φ

respectively. This is mapped to 〈φ (∞)φ (−∞)〉n using the transformation law for primary

fields under coordinate transformation

(3.1.13)〈φ (∞)φ (−∞)〉n

=

(
dzj,∞
dθ

∣∣∣∣
θ(τ=∞)

dzj,−∞
dθ

∣∣∣∣
θ(τ=−∞)

)hφ
(
dz̄j,∞
dθ̄

∣∣∣∣
θ̄(τ=∞)

dz̄j,−∞
dθ̄

∣∣∣∣
θ̄(τ=−∞)

)h̄φ

〈φ (zj,∞, z̄j,∞)φ (zj,−∞, z̄j,−∞)〉
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i.e.

〈φ (∞)φ (−∞)〉n =

(
dzj,∞
dθ

∣∣∣
θ(τ=∞)

dzj,−∞
dθ

∣∣∣
θ(τ=−∞)

)hφ (
dz̄j,∞
dθ̄

∣∣∣
θ̄(τ=∞)

dz̄j,−∞
dθ̄

∣∣∣
θ̄(τ=−∞)

)h̄φ
|zj,∞ − zj,−∞|2hφ |z̄j,∞ − z̄j,−∞|2h̄φ

(3.1.14)

A similar calculation can be done for 〈φ (∞)φ (−∞)〉1. Thus, from eq.(3.1.10), eq.(3.1.11)

and eq.(3.1.14) we get

tr
[
ρA,φ ρ

n−1
A,0

]
tr ρnA,0

=
〈φ (∞)φ (−∞)〉n
〈φ (∞)φ (−∞)〉1

=
1

n2∆φ

(
sin
(
πl
L

)
sin
(
πl
nL

))2∆φ

(3.1.15)

where, ∆φ = hφ + h̄φ is the conformal dimension of φ. Therefore, the leading order thermal

correction in Rényi entropy is given by

δSn =
1

1− n

 1

n2∆φ−1

(
sin
(
πl
L

)
sin
(
πl
nL

))2∆φ

− n

 e−2πEφβ/L (3.1.16)

Also, the leading order thermal correction in Entanglement entropy is given by

δSE = lim
n→1

δSn = 2∆φ

[
1− πl

L
cot

(
πl

L

)]
e−2πEφβ/L (3.1.17)

3.2 Higher Order Thermal Corrections

For computing higher-order correction terms we work with a particular theory, the critical

Ising model. It is a relatively simple CFT since it has only three primary fields namely the

identity field (vacuum), the σ field (having conformal dimension hσ = h̄σ = 1/16 ) and the
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ε field (having conformal dimension hε = h̄ε = 1/2 ) and the corresponding secondary fields.

Thus, the total density matrix is given by

(3.2.1)ρtot =
[
|0〉 〈0|+ L−2 |0〉 〈0|L+2e

−4πβ/L + · · ·+ |σ〉 〈σ| e−2π∆σβ/L

+ L−1 |σ〉 〈σ|L+1 e
−2π(∆σ+1)β/L + · · ·+ |ε〉 〈ε| e−2π∆εβ/L

+ L−1 |ε〉 〈ε|L+1 e
−2π(∆ε+1)β/L

+· · ·
]
/
[
1 + e−4πβ/L + · · · + e−2π∆σβ/L + e−2π(∆σ+1)β/L + · · · + e−2π∆εβ/L + e−2π(∆ε+1)β/L + · · ·

]
where, ∆σ = hσ + h̄σ = 1

8
and ∆ε = hε + h̄ε = 1. Note that the contribution to

the density matrix is higher from the primary fields than the secondaries. Thus, in a low

temperature expansion, the total density matrix can be approximated by considering only

the contributions from the primary fields i.e.

ρtot ∼
|0〉 〈0| + |σ〉 〈σ| e−2π∆σβ/L + |ε〉 〈ε| e−2π∆εβ/L

1 + e−2π∆σβ/L + e−2π∆εβ/L
(3.2.2)

Therefore, the partial density matrix for a subsystem A is given by

ρA ∼
ρA,0 + ρA,σe

−2π∆σβ/L + ρA,εe
−2π∆εβ/L

1 + e−2π∆σβ/L + e−2π∆εβ/L
(3.2.3)

where ρA,i = trB |i〉 〈i|.

⇒ ρnA ∼ (ρA,0+ρA,σe
−2π∆σβ/L+ρA,εe

−2π∆εβ/L)n (1 + e−2π∆σβ/L+e−2π∆εβ/L)−n

(3.2.4)

On expanding eq.(3.2.4) using binomial expansion, one finds an interesting point that

for the critical Ising model, the leading order thermal correction is due to the primary σ

field i.e. the term ρA,σ as expected. However, the next correction term is given by the term

ρ2
A,σ rather than ρA,ε. This is so because 2∆σ < ∆ε, hence the contribution due to ρ2

A,σ is

greater than the contribution due to ρA,ε. Thus, the contribution from the primary ε field

ρA,ε is comparable to the contribution from ρ8
A,σ and hence doesn’t come into play till we

consider upto the 7th correction term. Therefore, in order to calculate the leading order
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thermal correction term, working upto order primary σ, we have

(3.2.5)ρnA ∼ (1 +B)−n
[
ρnA,0 +B

(
n∑
i=1

ρi−1
A,0 ρA,σ ρn−iA,0

)

+B2

( ∑
1≤i<j≤n

ρi−1
A,0 ρA,σ ρ

j−i−1
A,0 ρA,σ ρ

n−j
A,0

)
+ · · ·

]

where B = e−2π∆σβ/L. Therefore the first correction term to the Rényi entropy is given by

(3.2.6)δSn ≡
1

1− n

[
B

{
trA

( ∑n
i=1 ρi−1

A,0 ρA,σ ρ
n−i
A,0

)
trA
(
ρnA,0

) − n

}]

=
1

1− n

[
1

n2∆σ−1

(
sin2∆σ

(
πl
L

)
sin2∆σ

(
πl
nL

)) − n

]
e−2π∆σβ/L

Also, the first correction term to the Entanglement entropy is given by

δSE ≡ 2∆σ

[
1 − πl

L
cot

(
πl

L

) ]
e−2π∆σβ/L (3.2.7)

From eq.(3.2.4) and eq.(3.1.5) it is seen that for the critical Ising model, the next correction

term to the Rényi entropy is given by

δSn ≡
1

1− n

 B2

 trA

( ∑
1≤i<j≤n ρi−1

A,0 ρA,σ ρ
j−i−1
A,0 ρA,σ ρ

n−j
A,0

)
trA ρnA,0

− n
trA

( ∑n
i=1 ρi−1

A,0 ρA,σ ρ
n−i
A,0

)
trA ρnA,0

+
n(n+ 1)

2
− n2

(
trA
[
ρA,σρ

n−1
A,0

]
trρnA,0

− 1

)2



(3.2.8)

where B = e−2π∆σβ/L. Thus, by cyclicity
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(3.2.9)
δSn ≡

1

1− n

 B2

 trA

( ∑
1≤i<j≤n ρi−1

A,0 ρA,σ ρ
j−i−1
A,0 ρA,σ ρ

n−j
A,0

)
trA ρnA,0

+ n2
trA
[
ρA,σρ

n−1
A,0

]
trA ρnA,0

+
n(1− n)

2
− n2

(
trA
[
ρA,σρ

n−1
A,0

]
trρnA,0

)2



Now, we propose that the term
trA ( ρj−1

A,0 ρA,σ ρk−j−1
A,0 ρA,σ ρn−kA,0 )

trA ρnA,0
is proportional to the four-

point function on an n-cylinder (similar to as described in the paragraph after eq.(2.4.16))

with two of the cylinders (jth and kth cylinder) having field σ inserted at its end points

(points at infinity) and the rest of the n− 2 cylinders having the vacuum field. Thus

trA

(
ρj−1
A,0 ρA,σ ρ

k−j−1
A,0 ρA,σ ρ

n−k
A,0

)
trA ρnA,0

= ξ2 〈σj (∞)σj (−∞)σk (∞)σk (−∞)〉n (3.2.10)

where, ξ2 is the constant of proportionality. To determine ξ2, consider the case n = 2 (since

the inequality 1 ≤ j < k ≤ n has no integer solutions for j and k for n = 1). Thus,

trA ρ
2
A,σ

trA ρ2
A,0

= ξ2 〈σ1 (∞)σ1 (−∞)σ2 (∞)σ2 (−∞)〉2 (3.2.11)

where 〈σ1 (∞)σ1 (−∞)σ2 (∞)σ2 (−∞)〉2 is the four-point function on 2-cylinder with both

the cylinders having field σ at its end point. The four-point functions 〈σj (∞)σj (−∞)σk (∞)σk (−∞)〉n
and 〈σ1 (∞)σ1 (−∞)σ2 (∞)σ2 (−∞)〉2 are evaluated using the uniformization map as de-

scribed in the previous section. The explicit expression of the term trA ρnA,σ/trA ρnA,0 has

been evaluated in Ref. [7].

trA ρ
n
A,σ

trA ρnA,0
=
n−2n(hσ+h̄σ)〈

∏n
j=1 σ (zj,∞, z̄j,∞)σ (zj,−∞, z̄j,−∞)〉

〈σ (1)σ (ei2π(θ2 − θ1)/L)〉n
(3.2.12)

where, z’s are new coordinates as defined in the previous section. Thus, trA ρ
2
A,σ/trA ρ

2
A,0
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is given by

trA ρ
2
A,σ

trA ρ2
A,0

=
2−4(hσ+h̄σ)〈σ (z1,∞, z̄1,∞)σ (z1,−∞, z̄1,−∞)σ (z2,∞, z̄2,∞)σ (z2,−∞, z̄2,−∞)〉

〈σ (1)σ (ei2π(θ2 − θ1)/L)〉2
(3.2.13)

From eq.(3.1.13), eq.(3.2.11) and eq.(3.2.13), the normalization constant ξ2 is given by

ξ2 =
2−4(hσ+h̄σ)

〈σ (1)σ (ei2π(θ2 − θ1)/L)〉2

[(
dz1,∞

dθ

dz2,∞

dθ

)∣∣∣∣
θ(τ=∞)

(
dz1,−∞

dθ

dz2,−∞

dθ

)∣∣∣∣
θ(τ=−∞)

]−hσ
[(

dz̄1,∞

dθ̄

dz̄2,∞

dθ̄

)∣∣∣∣
θ̄(τ=∞)

(
dz̄1,−∞

dθ̄

dz̄2,−∞

dθ̄

)∣∣∣∣
θ̄(τ=−∞)

]−h̄σ
(3.2.14)

or equivalently

ξ2 =
2−4(hσ+h̄σ)

〈σ (∞)σ (−∞)〉21
(3.2.15)

where, 〈σ (∞)σ (−∞)〉1 is the two point function on 1-cylinder having field σ at its end

points. Thus,

trA

(
ρj−1
A,0 ρA,σ ρ

k−j−1
A,0 ρA,σ ρ

n−k
A,0

)
trA ρnA,0

=
2−4(hσ+h̄σ) 〈σj (∞)σj (−∞)σk (∞)σk (−∞)〉n

〈σ (∞)σ (−∞)〉21
(3.2.16)

The four-point function for σ field of the Ising model is given in Ref.[8]. Using the formula

presented there in conjunction with the uniformization map

z(n) =

(
ei2πθ/L − eiθ2

ei2πθ/L − eiθ1

)1/n

(3.2.17)
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where, |θ2 − θ1| = 2πl
L

, gives the four-point function

(3.2.18)〈σ
(
z

(n)
j,∞, z̄

(n)
j,∞

)
σ
(
z

(n)
j,−∞, z̄

(n)
j,−∞

)
σ
(
z

(n)
k,∞, z̄

(n)
k,∞

)
σ
(
z

(n)
k,−∞, z̄

(n)
k,−∞

)
〉

=



−1+

√
2

√√√√√ sin2
(
π(j−k)
n

)
cos
(
θ2−θ1
n

)
− cos

(
2π(j−k)

n

)

−1+

√
2

√√√√√ sin2
(
π(j−k)
n

)
cos
(
θ̄2−θ̄1
n

)
− cos

(
2π(j−k)

n

)



1/2

+


1+

√
2

√√√√√ sin2
(
π(j−k)
n

)
cos
(
θ2−θ1
n

)
− cos

(
2π(j−k)

n

)

1+

√
2

√√√√√ sin2
(
π(j−k)
n

)
cos
(
θ̄2−θ̄1
n

)
− cos

(
2π(j−k)

n

)



1/2


/

27/4

 sin2
(
θ̄2−θ̄1

2n

)
sin2

(
θ2−θ1

2n

)
ei(θ2−θ1−θ̄2+θ̄1) sin4

(
π(j−k)
n

)
(

cos
(
θ2−θ1
n

)
− cos

(
2π(j−k)

n

))(
cos
(
θ̄2−θ̄1
n

)
− cos

(
2π(j−k)

n

))
1/8



where, z
(n)
j,∞ = ei(θ2−θ1)/n + 2πij/n , z

(n)
j,−∞ = e2πij/n , z

(n)
k,∞ = ei(θ2−θ1)/n + 2πik/n and z

(n)
k,−∞ =

e2πik/n. A further simplification yields the result,

(3.2.19)
〈σ
(
z

(n)
j,∞, z̄

(n)
j,∞

)
σ
(
z

(n)
j,−∞, z̄

(n)
j,−∞

)
σ
(
z

(n)
k,∞, z̄

(n)
k,∞

)
σ
(
z

(n)
k,−∞, z̄

(n)
k,−∞

)
〉

=

sin
(
π(j−k)
n

)
sin
(
πl
nL

)
1/2

1(
2
(

cos
(

2πl
nL

)
− cos

(
2π(j−k)

n

)))1/4

Using the identity

dz(n)/dθ

dz(1)/dθ
=

1

n

z(n)

z(1)
(3.2.20)

we get,
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(3.2.21)

〈σj (∞)σj (−∞)σk (∞)σk (−∞)〉n
〈σ (∞)σ (−∞)〉21

=
1

n4(hσ+h̄σ)

[
z

(n)
j,∞

z
(1)
j,∞

z
(n)
j,−∞

z
(1)
j,−∞

z
(n)
k,∞

z
(1)
k,∞

z
(n)
k,−∞

z
(1)
k,−∞

]hσ [
z̄

(n)
j,∞

z̄
(1)
j,∞

z̄
(n)
j,−∞

z̄
(1)
j,−∞

z̄
(n)
k,∞

z̄
(1)
k,∞

z̄
(n)
k,−∞

z̄
(1)
k,−∞

]h̄σ
〈σ
(
z

(n)
j,∞, z̄

(n)
j,∞

)
σ
(
z

(n)
j,−∞, z̄

(n)
j,−∞

)
σ
(
z

(n)
k,∞, z̄

(n)
k,∞

)
σ
(
z

(n)
k,−∞, z̄

(n)
k,−∞

)
〉

〈σ
(
z

(1)
j,∞, z̄

(1)
j,∞

)
σ
(
z

(1)
j,−∞, z̄

(1)
j,−∞

)
〉 〈σ

(
z

(1)
k,∞, z̄

(1)
k,∞

)
σ
(
z

(1)
k,−∞, z̄

(1)
k,−∞

)
〉

where, z
(1)
j,∞ = z

(1)
k,∞ = ei(θ2−θ1) = ei2πl/L and z

(1)
j,−∞ = z

(1)
k,−∞ = 1. The two-point functions

are evaluated to be

〈σ
(
z

(1)
j,∞, z̄

(1)
j,∞

)
σ
(
z

(1)
j,−∞, z̄

(1)
j,−∞

)
〉 =

1(
2 sin

(
πl
L

))1/4
= 〈σ

(
z

(1)
k,∞, z̄

(1)
k,∞

)
σ
(
z

(1)
k,−∞, z̄

(1)
k,−∞

)
〉

(3.2.22)

From eq.(3.2.19) and eq.(3.2.22), we get

(3.2.23)

〈σ
(
z

(n)
j,∞, z̄

(n)
j,∞

)
σ
(
z

(n)
j,−∞, z̄

(n)
j,−∞

)
σ
(
z

(n)
k,∞, z̄

(n)
k,∞

)
σ
(
z

(n)
k,−∞, z̄

(n)
k,−∞

)
〉

〈σ
(
z

(1)
j,∞, z̄

(1)
j,∞

)
σ
(
z

(1)
j,−∞, z̄

(1)
j,−∞

)
〉 〈σ

(
z

(1)
k,∞, z̄

(1)
k,∞

)
σ
(
z

(1)
k,−∞, z̄

(1)
k,−∞

)
〉

=
21/4

(
sin
(
π(j−k)
n

))1/2

(
cos
(

2πl
nL

)
− cos

(
2π(j−k)

n

))1/4

Therefore,

(3.2.24)
〈σj (∞)σj (−∞)σk (∞)σk (−∞)〉n

〈σ (∞)σ (−∞)〉21
=

21/4

n1/2

(
sin
(
π(j−k)
n

))1/2

(
cos
(

2πl
nL

)
− cos

(
2π(j−k)

n

))1/4

Thus, the second correction term to the Rényi entropy for the critical Ising model is

evaluated using eq.(3.2.9), eq.(3.1.15), eq.(3.2.16) and eq.(3.2.24).
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(3.2.25)
δSn =

e−πβ/2L

1− n

 ∑
1≤j<k≤n

1

21/4 n1/2

(
sin
(
π(j−k)
n

))1/2

(
cos
(

2πl
nL

)
− cos

(
2π(j−k)

n

))1/4

+ n7/4

(
sin
(
πl
L

)
sin
(
πl
nL

))1/4

+
n (1− n)

2
− n3/2

(
sin
(
πl
L

)
sin
(
πl
nL

))1/2

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Chapter 4

Conclusions

For critical Ising model, it is observed that the calculations required for obtaining the

explicit form of the leading order correction to Rényi entropy are the two-point correlation

function 〈σ (∞)σ (−∞)〉 and the constant of proportionality ξ1. Moreover, to calculate ξ1,

the term required to be evaluated is
trA ρA,σ
trA ρA,0

.

Similarly, the calculations required for obtaining the explicit form of the second correction

term to the Rényi entropy are the four-point correlation function 〈σj (∞)σj (−∞)σk (∞)σk (−∞)〉
(where the σ field is inserted at the end points of the jth and kth cylinders) and the con-

stant of proportionality ξ2. Also, to calculate ξ1, the term required to be evaluated is
trA ρ2

A,σ

trA ρ2
A,0

.

This can be further generalised to any ith correction term (i ≤ 7). The calculations re-

quired for obtaining the explicit form of the ith correction term to the Rényi entropy are the

2i-point correlation function 〈σj1 (∞)σj1 (−∞)σj2 (∞)σj2 (−∞) · · ·σji (∞)σji (−∞)〉 (where

each of the ja’s are the indices of the cylinders, at the end points of which the σ field is in-

serted) and the constant of proportionality ξi (eq.(4.0.1)). All the other quantities involved

are calculated inductively i.e. they are already calculated for the i− 1th correction term and

are hence known.

trA ρ
i
A,σ

trA ρiA,0
= ξi 〈σ1 (∞)σ1 (−∞)σ2 (∞)σ2 (−∞) · · ·σi (∞)σi (−∞)〉i (4.0.1)
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The 2i-point functions 〈σj1 (∞)σj1 (−∞)σj2 (∞)σj2 (−∞) · · ·σji (∞)σji (−∞)〉 and

〈σ1 (∞)σ1 (−∞)σ2 (∞)σ2 (−∞) · · ·σi (∞)σi (−∞)〉i can be evaluated using the uniformiza-

tion map, given that the 2i-point function of the theory on a plane is known. The calculation

of ξi is dependent on the evaluation of the term
trA ρiA,σ
trA ρiA,0

.

For the 8th correction term, in addition to the σ field, there is also a contribution from

the primary field ε. Therefore, the correction term will have terms containing two-point,

four-point, six-point ... upto sixteen-point function of σ field and also the two-point function

of the ε field. Thereafter the correction terms will have contributions from the secondaries

of both σ and ε fields. The 16th onward correction terms will have contributions from the

secondaries of all three fields of the theory namely the identity, σ and ε fields.

The above done calculations and analyses are applicable to any general CFT provided all

the fields present in the theory are known and the calculations are done accordingly, taking

into account the conformal dimensions of the fields. It is important to note that fields having

lower dimensions will contribute more to the correction of the entropy.
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