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Abstract

The dynamics of the mammalian brain is captured using nonlinear dynamics

in the framework of complex networks. We study the dynamics of Hindmarsh-

Rose neurons with time-scale mismatch in detail, for both simplistic and realistic

network models and develop various schemes for characterizing the collective

dynamics of the neurons. For a simple system with two mutually coupled neurons

with differing time-scales, we observe that the difference in timescales leads to

synchronized states of frequency suppression. In a ring of HR neurons, with

time-scales decreasing sequentially, we find the neurons go into Synchronized

Frequency Suppressed Clusters.

We extend our model to more realisitic models of neuronal networks like

modular networks. Modular networks of HR neurons show various interesting

dynamical states like de-synchronized states, phase synchronization and activity

death states. Further characterization of frequency suppressed states in such

networks can lead to better understanding of coding of information in neuronal

networks.
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Chapter 1

Introduction

The Brain is the most complex and efficient computational device created and perfected

by nature. This system just like any other computer is capable of detecting and processing

various stimuli from the external and internal environment and producing a unique response

for the different stimuli received. It also stores information as memory and retrieves it for

later uses. Along with these, it is also capable of generating complex emergent behavioural

aspects of cognition, emotions, self-awareness and imagination. This versatility of Brain

intrigued biologists, physicist, mathematicians, computer scientists and engineers alike to

find a mechanism for how it does what it does and can we recreate it artificially.

The nervous system achieves the remarkable ability to do computations due to intricate

networks of cells called neurons. Ramon y Cajal first observed neurons in 1888. Neurons

are excitable systems which tend to show a change in their intrinsic dynamics based on the

inputs from the external environment. They generate what is called as an action potential

or spikes in response to the external stimulus. At a cellular level, this behaviour is the result

of the activity of various voltage-gated ion channels present on the surface of the membrane

of the neuron which causes depolarization and re-polarization of the membrane potential

occurring in the time scale order of milliseconds. This looks like a delta function or a spike

in the membrane potential of the neuron which is termed as an action potential. [1]

A schematic diagram of a typical neuron with its associated parts is shown in fig 1.1. In a

typical case, the action potential starts from the tip of the axon and propagates throughout

the axon and finally terminates in the synapse releasing neurotransmitters. These neuro-
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transmitters reach the respective receptors at the dendrites of other neurons triggering action

potentials in them. Single neurons can exhibit a variety of behaviour depending on the ex-

ternal input, their morphological structure and diversity and distribution of ion channels

present on their surface.

Figure 1.1: Schematic diagram of a typical neuron

1.1 Hodgkin-Huxley model of Neurons

The study of neuroscience was restricted to scientists studying medicine or physiology, un-

til the early 1900s when neurons were represented as electrical circuits, and mathematical

models for neuronal activity were developed. There were several mathematical models for

neurons in several contexts depending on the type of system being modelled. But the most

accurate and detailed prescription of neurons till date is the Hodgkin and Huxley model of

neurons.

Alan L. Hodgkin and Alfred F. Huxley gave their mathematical model for the neuronal

activity in 1952. This model describes the activity of the Giant Squid Axon using a set of

nonlinear differential equations. It essentially is a conductance-based model which accounts

for all the voltage-gated ion channels and passive channels present on the neuronal membrane.

Hodgkin-Huxley model assumed the neuron to be equivalent to an RC circuit where the

membrane of the neuron acts as capacitor as it stores charges across its surface and the

ion channels represent variable conductors. They also developed a novel mechanism for the

functioning of the ion channel by introducing the gating variables. These gating variables
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represent the probability of the gates to be open or closed at a given time. The HH model

for the giant squid axon is given by the following equations. [2]

CmV̇ = ḡKn
4(VK − V ) + ḡNam

3h(VNa − V ) + ḡl(Vl − V ) + Ie (1.1.1)

ṅ = αn(1− n)− βnn (1.1.2)

ṁ = αm(1−m)− βmm (1.1.3)

ḣ = αh(1− h)− βhh (1.1.4)

Now in these equations variables V, n,m and h represent the memebrane potential of the

neuron and the gating variables for Pottasium and Sodium resepectively. Parameter Cm is

capacitance across the membrane. Other parameters like ḡX represent the conductance of

the channel, Ie is the external input current and VX is the threshold potential or reversal

potential of the ion channel. α and β are the rates of opening and closing of the gates and

are functions of membrane potential and time given as:

αn = 0.01

(
10− V

exp(10−V
10

)− 1

)
βn = 0.125 exp

(
−V
80

)
(1.1.5)

αm = 0.1

(
25− V

exp(25−V
10

)− 1

)
βm = 4 exp

(
−V
18

)
(1.1.6)

αh = 0.07 exp

(
−V
20

)
βn =

(
1

exp(30−V
10

) + 1

)
(1.1.7)

This model is a very detailed way of describing the dynamics of the neurons. It accounts

for the functioning of each ion channel and incorporating it into the dynamical behaviour of

the neurons. In cases where there are other ion channels and currents present like the voltage

gated Calcium channels or the hyperpolarising currents we can add more gating variables

and if the gate structure and properties are known we can write the differetial equations for

them [3]. Also this model is experimentally verifiable as the parameters VX , Cm and the

rates α, β can always be tallied with experiments.

Hodgkin-Huxley model essenatially made neuroscience a subject for physicists and math-

ematicians to ponder upon, as these cells are now seen as oscillators and their dynamics could

be reduced to differential equations. HH model has been used in several systems and varia-
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tions of this has been widely used to study dynamics of neurons and neuronal networks.

1.2 FitzHugh-Nagumo Neuron Model

HH model is a complicated model for a single neuron with 4 or more coupled nonlinear

differential equations, more than 6 functions and more than 7 parameters. This was the

motivation for finding simpler models of neurons which showed the spiking behaviour.

One of the models is the FitzHugh-Nagumo model presented by Richard FitzHugh in 1961

[4], and the equivalent circuit for the model was given by Nagumo in 1962 [5]. FitzHugh

Nagumo model is given as:

v̇ = v − v3

3
− w + Ie (1.2.1)

ẇ = ε(v + α− γw) (1.2.2)

The variable v corresponds to the membrane potential i.e. the fast variable and variable w is

the slow gating variable (sodium channel in neurons). The parameter Ie is external current

given to the neuron and other parameters are α, ε and γ where 0 < α < 1 and ε << 1

(accounting for the slow kinetics of the sodium channel).

FitzHugh-Nagumo model (FHN) is one of the simpler models of excitable oscillators like

neurons but it is not able to provide a realistic description of the action potentials. Also

the FitzHugh Nagumo model was not able to give a realtionship between the frequency

and applied current. Hence there were several attempts to give better models for neurons.

This led to a 2-dimensional model proposed by J.L. Hindmarsh and R.M. Rose in 1982 [6] ,

which modifies the FHN model to produce spiking behaviour. Hindmarsh and Rose further

modified their own model by introducing a third variable which evolves slowly, to produce

bursting behaviour in the neurons [7]. Following section presents a detailed account of the

dynamics of 3 variable HR neurons using analytical and numerical techniques.
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Figure 1.2: Phase portrait of FitzHugh-Nagumo neuron showing the different dynmical
states.

1.3 Hindmarsh-Rose Neuron model

Hindmarsh and Rose proposed a new model in 1984, for explaining the bursting dynamics of a

neuron present in the brain of Lymanaea, a type of pond snail. This model is computationally

simple and is also capable of replicating the behaviour of biological neurons. As demonstarted

in their paper in 1984, it is fairly successful in replicating the bursting activity in molluscan

neurons. The eqautions of motion of HR neuron is given by:

ẋ = y − ax3 + bx2 − z + Ie (1.3.1)

ẏ = c− dx2 − y (1.3.2)

ż = ε(s(x− xr)− z) (1.3.3)

In these equations, the variable x represents the membrane potential, y represent the

recovery variable similar to the variables v and w in FHN neuron model. However y nullcline

is a nonlinear function. The variable z is a slow adapting variable, representing the slow

hyperpolarizng current. The fast and slow subsystems interact to give the bursting behaviour

of x. The parameters c, d, s, xr are constants where c = 1, d = 5, s = 4 and xr = −8
5

. We have

an internal delay parameter given by ε which is usually taken to be << 1. Parameters a, b,

internal delay ε and the external input current I are the control parameters of the system.

Hindmarsh-Rose (HR) neurons show rich dynamical behaviour which makes them an
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Figure 1.3: Ie = 1.5, Spiking dynamics

ideal system for studying dynamics of neuronal networks. There has been a lot of work

following this, which showed the possible behaviours observed in the HR neurons. A very

broad classification of these dynamical states are as follows [8] [9] [10] -

• Quiescence : Stationary state of the neuron below the threshold input.

• Tonic Spiking : Continuos spiking with a constant inter-spike interval.

• Regular Bursts : Short series of high frequency spikes which occur together in time at

regular intervals.

• Chaotic Spiking : Continuos spiking with irregular inter-spike intervals.

• Chaotic Bursting : Bursting at irregular intervals or with varying number of spikes in

between each burst.

Figures 1.3 - 1.7 show the different spiking and bursting dynamics of the neurons for the

parameters, b = 3 and ε = 0.006. But the most unique property of this neuron is bursting

behaviour. Some of these bursting behaviours are demonstrated in figures 1.4 - 1.7. We also

show the broad classification of the bursting states in the parameter space plot in figure 1.8.
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Figure 1.4: Ie = 2.5, Regular square bursts
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Figure 1.5: Ie = 3.0, Chaotic bursts
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region of continuos high frequency bursts.

1.4 Coupling in Neurons

Neuronal cells may individually show a variety of different behaviours as shown in the pre-

vious section, but they cannot still produce the complex behaviour of the brain or nervous

system. This complicated behaviour is achieved only through the collective dynamics of the

neuronal ensembles consisting of similar or different types of neurons connected via synapses.

Synapses are like small gaps between the axon of one neuron called presynaptic neuron and

the dendrites of the next one called the postsynaptic neuron.

Neurons talk to each other through these synapses and their language of communication
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Figure 1.9: Schematic diagram of a synaptic transmission

is the neurotransmitters. When an action potential reaches the axon terminal of the presy-

naptic neuron they activate the Ca2+ ion channels which in turn release neurotransmitters

into the synaptic cleft between the two neurons. These neurotransmitters bind to the re-

ceptors present in the dendrites of the postsynaptic neurons which causes action potentials.

Schematic diagram of the synaptic transmission is shown in figure 1.9.

There are two different types of coupling in neurons given as:

• Electrical Coupling - linear coupling, which usually occurs in neuromuscular junctions.

Electrical coupling is given as,

Γ(xi, xj) = xj − xi (1.4.1)

• Synaptic Coupling - nonlinear coupling, which is present in brain and spinal cord.

In our models we mostly focus on the nonlinear syanptic coupling, as it is more widely

present in the biological neuronal networks [11] . However we do talk about the effect of

linear coupling in the neurons for certain cases. There are several ways to model the synaptic

coupling, some examples being - pulse-coupling using the Θ-function, sine or cosine coupling

or sigmoidal coupling. We use a sigmoidal coupling function as it is an apt model for synaptic

transmission given as -

Γ(xi, xj) =
V − xi

1 + e−λ(xj−K)
(1.4.2)
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Here the parameter V represents the reversal potential, that decides whether the synapse

is excitatory or inhibhitory, λ is the slope of the sigmoidal curve and K is the threshold of

spiking of the sigmoid. The typical values of the coupling parameters used in our simulation

are given as V = 2, λ = 1 and K = −0.25. Biologically this means that when the membrane

potential of the pre-synaptic neuron is higher than −0.25 units then there is neurotransmitter

release which gives an input Γ(xpost−synaptic, xpre−synaptic) in the post-synaptic neuron. The

figure 1.10 shows the form of the function Γ at these paramters.
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Figure 1.10: Synaptic coupling function Γ plotted for different values of x1 and x2.

Coupling can result in synchronization of neuronal oscillators. In the case of HR neurons

irrespective of the individual dynamics, stronger coupling strength leads to synchronization.

In case of linear electrical coupling we see complete synchronisation of the neuronal oscillators

whereas in case of synaptically coupled neurons, there is no complete sysnchronization but

bursting phases of the neurons are synchronized.

Also we observe that at a certain threshold value of the coupling strength i.e. gth v 2 the

neurons go to a stable limit cycle of very low amplitude oscillations. If gs > gth, it results in

complete oscillation death or amplitude death. This is shown in figure 1.12.
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(a) Synaptic coupling. gs = 0.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 1000  1200  1400  1600  1800  2000

x
i

t

x1
x2

(b) Electrical coupling. gs = 0.5

Figure 1.11: Synchronization in two mutually coupled chaotically bursting HR neurons. We
see that at same value of gs the electically coupled neurons are completely synchronized
whereas the synaptically coupled neurons are in phase synchronization.
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(a) Low amplitude oscillations before the onset of
amplitude death at gs = 2 for synaptically cou-
pled chaotic burstic HR neurons
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(b) Electrical coupling. gs = 0.5

Figure 1.12: Amplitude death at gs > 2 for synaptically coupled chaotic bursting HR neu-
rons.
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1.5 Outline of Study

We presented in this chapter a few dynamical models for neurons like - HH, FHN and

HR. There are also discrete dynamical models like Rulkov model [12], that can model the

action potential sequences in neurons and hence widely used for neuronal dynamics. Our

subsequent studies are mostly with HR neuron model. In this chapter studies on single HR

neuron showing a multitude of dynamical states are illustrated in figures 1.3 - 1.7. We also

look at various effects of elctrical and synaptic coupling in neurons (figures 1.11 and 1.12).

We would be exploring the effect of multiple time-scales in coupled neurons. There has

been quite a lot of work done in interacting oscillators of slow and fast systems [13] and it

is observed that these systems can go to a state of no oscillations called the amplitude death

due to timescale mismatch. In case of neurons this is an interesting point to explore as the

neuronal dynamics already has two internal time-scales ( ε for example in HR neurons), and

it plays a very important role in the dynamics of individual and coupled systems.[14] [15].

In this context we note that there has been a lot of work on the effect of internal delay and

how it interacts with coupling delay [16].

We intially explore this concept of coupling neurons with differing time-scales in chap-

ters 2 and 3. We consider cases of mutually coupled neurons and simple networks like a

chain of neurons and quantify their dynamical behaviour. We then extend the study to

the dynamics of neurons on complex networks. There are evidences of network structure

like modular structure in the brain architechture [17] [18] [19]. Such neuronal networks can

show very interesting dynamical behaviour like - Synchronization, Phase-synchronization,

Chimera states etc. [20] [21] [22] [23] [24] [25] [26]. Our study presented in chapter 4, is

on various dynamical states possible for neurons on a modular network with excitatory and

inhibhitory couplings. We summarize our main results and conclusions, and future prospects

of study in the final chapter.
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Chapter 2

Mutually Coupled Slow and Fast

Neurons

In the real case of neuronal networks we rarely have neuronal networks or ensemble of exactly

identical neurons rather the neurons generally have different dynamical time-scales of firing

or bursting and in some cases different dynamics all together. It is these diversity in the

neuronal dynamics from cell to cell and from the region to region that give rise to some

of the most remarkable features observed in the brain dynamics [27]. Often in a group of

identical neurons we have certain neurons which are abnormal or diseased which results in a

different time-scale in their responses. In this chapter we report our study on the dynamics

of mutually coupled neurons with differing time-scales.

2.1 Coupled Neurons with differing Time-scales

The intrinsic activity of a single neuron anyway involves the interplay of time-scales, for eg.

in the case of HR neurons we have z as the slow adapting variable dependent on the the

internal delay parameter ε. In our approach towards introducing time-scale differences, we

make the full dynamics of a neuron evolve slowly in time compared to the other neuron. We

use the equations of HR neurons in the parameter regime exhibiting chaotic square bursts

i.e. Ie = 3.0, b = 3.0 and ε = 0.006 and tonic spikes at Ie = 1.5 and then study the dynamics
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of the coupled systems in the presence of the time-scale mismatch. Our model is given as:

ẋi = ηi(yi − xi3 + 3xi
2 − zi + Ie + gsΓ(xi, xj)) (2.1.1)

ẏi = ηi(1− 5xi
2 − yi) (2.1.2)

żi = ηi(0.006(4(xi + 1.6)− zi)) (2.1.3)

Figure 2.1: Mutually coupled neurons

Now in this model we essentialy retain all the parameters in equation from the HR neuron

model given in equation 1.3.1-1.3.3 and introduce a parameter ηi which gives the dynamical

time-scale of the neurons. Here the parameter gs is the coupling strength of the coupled

neurons. For the case of two mutually coupled neurons we take η1 = 1 and η2 = η so that

η represents the mismatch in time-scale between the neurons. Thus we introduce time-scale

mismatch in the identically coupled neurons so that one becomes slower with respect to the

other one with η ∈ (0, 1). The equations of motion are then:

ẋ1 = y1 − x1
3 + 3x1

2 − z1 + Ie + gsΓ(x1, x2) (2.1.4)

ẏ2 = 1− 5x1
2 − y1) (2.1.5)

ż3 = 0.006(4(x1 + 1.6)− z1) (2.1.6)

ẋ2 = η(y2 − x2
3 + 3x2

2 − z2 + Ie + gsΓ(x2, x1)) (2.1.7)

ẏ2 = η(1− 5x2
2 − y2) (2.1.8)

ż2 = η(0.006(4(x2 + 1.6)− z2)) (2.1.9)
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We analyse the dynamics of this equation in the subsequent section.

2.2 Calculation of Burst Frequency

Calculating the frequency of the neurons is the major challenge encounterd as the system

at hand has several internal and external time-scales involved. Differing time-scales in this

system leads to low freqeuncy bursting dynamics and a high frequency spiking dynamics.

Further adding to this is the fact that the dynamics of the neurons is mostly chaotic or

irregular. So we focus the attention to only bursting dynamics of the neurons and calculate

the average frequency of the bursts.

To calculate the burst freqeuncy, we first integrate the whole system using 4th order

Runge-Kutta algorithm for around v 4× 105 times, at an integration step of ∆t = 0.01 and

remove the transients. We save the remaining time series of the membrane potential xi for

both the neurons. Then we count the number of the times the membrane potential i.e. the

variable xi hits a global minima of a cycle of burst, occuring at all xi < −1.25. The time at

each point of the minima is recorded as τ k. The Inter-burst interval (IBI) is then calculated

for each burst as the time interval ∆τ k = τ k+1 − τ k.

The average burst frequency of the ith neuron is given by:

ωi =
2π

Ki

Ki∑
k=1

1

τik+1 − τik
(2.2.1)

where Ki is the number of bursts in the total time used in calculation and the phase of the

ith neuron is given as:

φi(t) = 2π

(
k +

t− τik

τik+1 − τik

)
(2.2.2)

However there are certain errors possible in counting of the burst in case of irregular

spiking or bursting. Hence we take a possible window T , such that the neuron activity

is considered as a burst only if ∆τ > T . The value of T is decided after examining the

time-series at various parameters of gs and η. For the typical case of regular square bursting

neurons, we take T w 100 timesteps.
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(a) gs = 0 and η = 0.5
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(b) g = 0.5 and η = 0.5
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(c) g = 1.0 and η = 0.5
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(d) g = 1.5 and η = 0.5

Figure 2.2: Time-series of xi. Increasing the coupling strength from (a-d) for a constant η
we find the systems tending towards a frequency sysnchronized state. But there is no state
of complete synchronization for them.

2.3 Dynamics of Coupled Slow and Fast Neurons

Involving two different time-scales for HR neurons obviously prevents them from synchro-

nizing. Looking at the time series of the neurons at different values of η and gs, we find

that the two neurons end up with similar bursting behaviours at higher coupling even if the

two systems are not in synchrony. This is shown in the time series of xi of the neurons in

figure 2.2. We also look at the phases of the two neurons, and find that the phase of the

two are also not synchronized in most cases. This leads to looking at the bursting frequency

of the neurons. Now in the case of neurons this is a very relevant way of quantifying their

behaviour as information in neuronal signals is mostly coded in the form of the rate of firing

of the action potentials.

The emergent dynamics of the two coupled neurons with the time-scale mismatch is

captured on an η − gs parameter plane. We broadly classify the possible dynamical states

of the system as:
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• Frequency Desynchonized (FD) Region (Red)

• Frequency Synchronized (FS) Region (Green)

• Amplitude Death (Blue)

These regions are shown in the figure 2.3 and 2.4 with the colour code given above.
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Figure 2.3: Regions of frequency synchronization for spiking neuron at Ie = 1.5. Red region
corresponds to FD, Green region corresponds to FS and Blue region corresponds to AD.
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Figure 2.4: Regions of frequency synchronization for chaotic bursting neuron at Ie = 3. Red
region corresponds to FD, Green region corresponds to FS and Blue region corresponds
to AD. We observe a broader region of FD as the intrinsic dynamics is chaotic to begin with.

Now we see a basic trend in the plots 2.3 and 2.4 that as the coupling strength increases

the synchornized green region increases. However as the time-scale mismatch is higher i.e.
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η decreases, this region disappears. This basically points out the fact that the parameter η

breaks the symmetry between the two otherwise identical systems.

An interesting result that we observe is that as discussed in Section 1.5, in the case of

generic oscillatory systems, interaction of slow and fast systems may lead to amplitude death.

But in the case of neurons, we observe that there is no amplitude death due to time-scale

mismatch. Rather it is observed that both the neurons still go to a state of amplitude death

when gs > 2 for chaotic bursting neurons and gs > 3.25 for tonic spiking neurons, irrespective

of the difference of time-scale betweeen them.

We note that amplitude death at high coupling strength is a consequnce of the nonlinear

nature of the coupling in neurons. We verify this by looking at a similar η − gs parameter

plane for electrically coupled neurons in figure 2.5. Here there is no amplitude death even at

very high coupling strengths. We propose that this is because in case of synaptic coupling

beyond a certain value of gs, the value of Γ is too high for the post-synaptic neuron to

recover. Hence the limit cycle behaviour is reduced to a stable fixed point.
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Figure 2.5: Regions of frequency synchronization for chaotic bursting neurons at Ie = 3
coupled electrically. We observe an absence of AD in this case. This shows that nonlinear
coupling causes AD in neurons, not timescale mismatch.

Now we concentrate on the FS region, and study possible frequency patterns we can get

for the different values of η and gs. For this we plot the average frequency of the two slow

and fast systems in the FS region. The figures 2.6 and 2.7 show the different frequencies

present in the system with the colour code as indicated. We find that there is a suppression

of the natural frequency of the neurons. Interacting slow and fast neurons make the system
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Figure 2.6: Frequency suppression in regularly spiking neurons, Ie = 1.5

to settle to an emergent frequency which is much less than the average intrinsic frequencies

of the neurons. The pattern of suppresion of the emergent frequency is similar for spiking

and chaotic bursting neurons.
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Figure 2.7: Frequency suppression in chaotic bursting neurons, Ie = 3

In this context we note that, frequency suppression is also reported in case of other

non-excitable oscillators [13]. From the point of view of neurons this is a very interesting

result since the frequency of the emergent state can be controlled by varying the values of

the nonlinear coupling strength and time-scale mismatch. It is possible that interaction of

a network of neurons with differing time-scales may lead to an emergent dynamical state

with suppressed frequency. We therefore extend this model to certain simple networks like

a directed chain of synaptically coupled neurons with each one having a different time-scale.

The following chapter reports our study on the dynamics of such systems.
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Chapter 3

Dynamics of HR Neurons on Regular

Networks

In the previous chapter, we report the dynamics of mutually coupled slow and fast neurons.

We observe that in such a system of neurons with different time-scales instead of achieving

complete synchronization, the system becomes frequency synchronized with emergent fre-

quency much less than the average intrinsic frequencies of the HR neurons. Now we extend

this to a system, where the neurons are coupled in regular networks.

3.1 Ring of HR neurons

We begin with the simplest of such networks of HR neurons - a linear chain with a periodic

boundary conditions shown in figure 3.1. We introduce time-scale mismatch by making each

neuron slower than the previous one by some ∆η. Our model is given as:

ẋi = ηi(yi − xi3 + 3xi
2 − zi + Ie + gs(2− xi)

N∑
i=1

aijΓ(xj)) (3.1.1)

ẏi = ηi(1− 5xi
2 − yi) (3.1.2)

żi = ηi(0.006(4(xi + 1.6)− zi)) (3.1.3)
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Figure 3.1: Ring of neurons with differing time-scales

Here i = 1, 2, 3, ...N index refers the number of neurons in the ring. We restrict the

intrinsic dynamics in this model to only the chaotically bursting neurons, hence Ie = 3 in all

cases.

The parameter aij represents the ijth element of the adjacency matrix A that uniquely

represents the network configuration where:

aij =

1 , if node i and j are connected

0 , if they are disconnected

in the case of unweighted networks. The diagonal elements of the adjacency matrix are 0 as

there are no self couplings. The matrix A is symmetric when the connections are unidirected

i.e. if i and j nodes are coupled then the vice-cersa is also true. For a directed network the

matrix is asymmetric.

In our model with neurons we make the network directed as the interaction at a synapse of

a neuron is unidirectional, from presynaptic neuron to the postsynaptic one. In this network

every neuron essentially receives input from only one neuron and passes on its input to the

next one. So essentially this system would reduce to the previous one if we have N = 2. The
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adjacency matrix for such a ring of neurons shown in figure 3.1 is given by -

A =



0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0



(3.1.4)

The coupling function Γ is the synaptic coupling function of the form Γ(xj) = (1 + e−(xj+0.25))
−1

.

Typical size of the rings considered are N = 30 and N = 40.

3.2 Dynamics of Neurons on a Ring

The slowness parameter η varies for successive neurons in the ring as:

ηi+1 = ηi −∆η (3.2.1)

We take ∆η = 0.02 and η1 = 1 for all cases such that η30 = 0.4 and η40 = 0.2, which is

significantly lower than η1. We look at the spatial plot of the neuron burst frequency to

capture the difference in the time-scales between the neurons and find that the frequency of

the neurons is linearly related in absence of coupling as shown in figure 3.2.

We consider two different values of the total number of neurons N = 30 and 40 and

we find qualitatively similar dynamics in both these cases. For weak coupling strength, we

observe that the neurons enter into frequency synchronized clusters with frequencies lower

than the average of the intrinsic value. This is clear from the colour coded patches of different

frequencies shown in fig 3.3.

The number of these clusters reduces as we gradually increase the coupling strength.
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Figure 3.2: Frequency of each isolated neuron when gs = 0 and ∆η = 0.02.

Finally at a certain coupling strength gs = 0.75, they tend to collapse into a single cluster

of Synchronized Frequency Supressed State (SFSS), with a frequency less than half of the

intrinsic frequency of the HR neurons.

We repeat the above study for N = 100 neurons with ∆η = 0.005 and the results are

shown in figure 3.4. In this case, we see that the burst frequency instead of forming distinct

coloured bands of frequency clusters, gradually decreases on the ring as the neurons become

slower and slower. We therefore conclude that the formation of frequency clusters at lower

gs depends on the step size of mismatch in time-scale, ∆η.

3.3 Summary

Based on the results of the study presented in this chapter and previous one, we can sum-

marize the main conclusions as:

1. Unlike the case of general coupled oscillators, where time-scale mismatch can lead to

an amplitude death (AD) state, coupled neuronal systems with differing time-scales do

not go into an AD. Amplitude death occurs only in the case of synaptically coupled

neurons at very high values of coupling strength. This phenomenon is interesting in

a way as it shows the fundamental difference in the way neurons or other excitable

systems behave compared to other oscillating systems like Rossler, Lorenz or Duffing
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Figure 3.3: Frequency suppressed clusters for a ring of neurons with increasing coupling
strength. In both these cases, there are clusters of frequency synchronized neurons which
finally collapse into a single cluster of SFSS as the coupling strength increases.

oscillators. This may be one of the major factors which make them efficient information

processing units in our brain.

2. Multiple time-scales along with synaptic coupling in neurons on a ring, makes the

system go into a state of Frequency Synchronized Clusters. The emergent bursting

frequencies are much lower than the average intrinsic frequency of the neurons. At

stronger coupling the neurons settle into a single cluster of Synchronized Frequency

Supressed State. This is highly relevant in case of the neurons as neurons encode

information in the form of their bursting or spiking frequencies.

The system of neurons on a ring is essentially a mathematical abstraction of real network

of neurons. However we note that Medial Entorhinal Cortex (MEC) located in the temporal

lobe of the mammalian brain does have similarly connected chain of bursting neurons with

varying time-scales [28] [29]. This is the region which is responsible for spatial navigation and

memory formation. Therefore the present study can be a prospective model to understand

the topology and dynamics of these neurons.

These interesting results encourage us to persue the study on more realistic networks

of neurons. We extend our model to a more realistic model of neuronal networks like a

Modular Networks rather than a simple random network. In the following chapter we look

at the dynamics of neurons on modular networks. We also introduce two different types of
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Figure 3.4: Frequency suppressed state for a ring of 100 neurons with ∆η = 0.005. There
are no distinct clusters present, the system has a continuos transition in frequency

couplings - excitatory and inhibhitory, and study the dynamics of such neuronal networks.
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Chapter 4

Modular Networks of HR Neurons

As given in the section 1.5, the framework of complex networks provides us with a very

powerful tool for modelling the brain dynamics. In the previous chapter, we report the

dynamics of regular networks of neurons. However in the real case, the neuronal networks in

the nervous system of even the most simple multicellular organisms form very complicated

networks. This motivates us to study the dynamics of complex networks of neurons [30] [21].

Modular network (MN) is perhaps one of the possible ways of modelling the neuronal

networks in the brain and spinal cord. They form one of the possible networks which give rise

to a community like structure in networks. Such community structured networks are very

common in the mammalian brain and in the nervous systems of animals [17] [31]. There have

been some recent studies on the dynamics of neuronal networks with a modular structure

and interesting results like chimera-like states and patterns of synchronizations etc reported

[19] [32] [18] [33]. We also consider inhibitory coupling which is very crucial in neuronal

dynamics in the brain [32] [34] [35].

In this chapter, we report our study on specific models on neuronal networks with modular

structure including an inter-play between excitatory and inhibitory coupling.
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4.1 Generating Modular Networks

One of the simple ways of generating a network with community structure is the Stochastic

Block Model [36]. We start with a random network with N nodes. We group these nodes

into M different communities or modules. The nodes inside a community have a different

average degree than the inter-community degree. So we define a Stochastic Block Matrix

(SBM) Ω of dimensions M ×M whose element ωlk denotes the probability of forming an

edge between the two nodes in module l and k (l, k = 1, 2, 3...M).

For generating the adjacency matrix of a network, we simply go to each node i and j

and then draw a random number from a uniform distribution between 0 and 1, r. Now we

identify the module in which i and j belong to respectively. Suppose i ∈ l and j ∈ k, we

then compare the random number obtained for each pair of node to their respective element

of Ω. Now if r ≤ ωlk then the respective aij = 1 i.e. a connection is present between the two

nodes, otherwise not.

So the distribution of edges is independent but non identical to each other. This depends

on the module in which the two nodes belong, making them conditionally independent.

Based on how we group the nodes and the matrix Ω we can create networks of various

topology. For example:

• if ωij = ω for all i, j, we get an Erdos-Renyi network.

• if ωij < ωii for i 6= j, we get an assortative network. Here the edges between similar

nodes have a higher degree, hence we can see the communities densely connected among

each other and sparse connections between communities.

• if ωij > ωii for i 6= j, we get disassortative networks i.e. the similar type of nodes have

a lower degree of connections.

In our study, we will consider the two different cases - assortative and disassortative

neuronal networks. The brain usually consists of several clusters of identical (structurally or

functionally) neurons, which essentially represents a module. Such clusters of structurally

and functionally identical neurons in the Central Nervous System are called nucleus. Now we

can form different such networks with several modules forming assortative and disassortative

networks based on the SBM.

32



4.2 Modular Neuronal Networks

We consider a network of N = 100 neurons, divided into M = 4 modules. Therefore each

module has exactly 25 neurons. The equations of motion of HR neurons in this context are

given as:

ẋi = ηi

(
yi − xi3 + 3xi

2 − zi + Ie + gs(2− xi)
N∑
i=1

aij

( 1

e−10(xj+0.25)

))
(4.2.1)

ẏi = ηi(1− 5xi
2 − yi) (4.2.2)

żi = ηi(0.006(4(xi + 1.6)− zi)) (4.2.3)

We take Ie = 3.0 such that the neurons are always in chaotic bursting state. gs is

represented as:

gs =

α , for intra-module coupling strength

β , for inter-module coupling strength
(4.2.4)

For all cases of study we have α > 0 and β < 0 making intra-module coupling excitatory

and inter-module coupling inhibitory. Here we take ηi = 1 for all the neurons such that they

are in the same time-scale of dynamics.

The adjacency matrix element A is generated with the help of the Stochastic Block Matrix

using the algorithm mentioned in the preceeding section. We make the network directed as

the coupling between the neurons are directed from pre-synaptic to post-synaptic neurons.

The two different cases consider are:

• Dense excitatory connections inside the module and sparse inhibitory connections be-

tween modules.

Ω1 =


0.4 0.05 0.05 0.05

0.05 0.4 0.05 0.05

0.05 0.05 0.4 0.05

0.05 0.05 0.05 0.4

 (4.2.5)

This gives us a network with community structure. We term this as the Assortative
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Excitatory Network (AEN) as there are more number of excitatory connections in the

network (fig 4.1).
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Figure 4.1: Adjacency matrix of a Associative Excitatory Network. Neurons in a module
have higher number of synapses from whithin the module, than from outside. Hence the
network has denser excitatory connections than inhibitory ones.

• Sparse excitatory connections inside a module whereas all neurons of one module are

coupled to all the other neurons of other modules.

Ω2 =


0.05 1 1 1

1 0.05 1 1

1 1 0.05 1

1 1 1 0.05

 (4.2.6)

We term this as the Disassortative Inhibitory Network (DIN) as the inhibitory connec-

tions dominate over the excitatory ones (fig 4.2).

The system is integrated using vector RK4 at step ∆t = 0.01 for 500000 integrations. We

remove the transients and observe the spatio-temporal plots to understand the dynamics of

the system. We then develop schemes to quantify the dynamics by looking at synchronization

between the various elements of the system. We also calculate the burst frequency and

average burst frequency of each module, using the frequency calculation scheme presented

in the previous chapters. In the following sections, we present a detailed description of the

possible dynamical states in modular networks.
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Figure 4.2: Adjacency matrix of Disassociative Inhibitory Network. All to all inhibitory
connections between the modules with sparse excitatory connections.

4.3 Dynamical States in Modular Neuronal Networks

In both cases of the modular networks that we study, we observe a multitude of dynamical

behaviours. This is a challenging problem in itself as there are many parameters and variables

in the system. So at first we fix most of the parameters mentioned above and keep only α

and β as the varying parameters of the system.

The neurons in the modules are identical, but are connected randomly. Similarly in be-

tween the modules the connections are either random as in case 1 or are all-to-all in case

2. Synapses inside the module are always excitatory whereas inter-modular synapses are in-

hibitory. The excitatory synaptic coupling makes the neurons phase synchronize as discussed

in the chapters 1 and 2 whereas the inhibitory connections make the neurons desynchronize.

So the values of the excitatory and inhibitory coupling strength α and β respectively can

be tuned to give very interesting dynamical patterns of phase synchronization between the

modules.

We calculate the phase of each neuron according to the equation:

φi(t) = 2π

(
k +

t− τik

τik+1 − τik

)
(4.3.1)

where τi
k gives the time of onset of the kth burst in the ith neuron.
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We check for phase synchronization in the neurons in a module using the Kuramoto

order parameter. If the phases of all the N neurons are given as φi, then we can define the

Kuramoto order parameter of a module as Rm such that ( i = 1, 2, 3, .., N and m = 1, 2, ..M)

[21] [37]-

ζm = Rme
iΦm =

M

N

N/M∑
j=1

eiφj (4.3.2)

For complete phase synchronization Rm = 1. If Rm > 0.9 then we take the modules to be

in phase synchrony. Now if all the neurons in the module are all phase synchornized we

can take the ensemble phase average 〈φi〉m and consider that each module itself is bursting.

The system of N = 100 neurons can then be reduced essentially to a system of M = 4

neuronal ensembles. Now we can quantify the relative dynamics of the module based on the

differences in the ensemble phase average 〈φi〉m of the neurons.

We find that we can broadly classify the dynamical states into 3 possible cases - De-

Synchronized, Phase Synchronized and Activity Death. These can be again dived into 5

substates. These 15 possible states can be listed as :

• De-synchronized States : Neurons burst in a desynchronized manner inside the

module.

1. State 1 - DS-4: Where all neurons are desynchronized

2. State 2 - DS-3: One of the modules has all neurons in burst phase synchroniza-

tion, but the rest of the modules are desynchronized

3. State 3 - DS-2: Two of the modules have neurons in phase synchrony, rest are

desynchronized.

4. State 4 - DS-2,P-2: Two of the modules have neurons in phase synchony and

the phase of two modules also synchronize, whereas the rest are desynchronized.

5. State 5 - DS-1: One of the module has chaotic bursting neurons, other are in

burst phase synchrony

• Phase Synchronized States : All the neurons in a module exhibit phase synchro-

nized bursting, which appears like the whole module is bursting.
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1. State 6 - TB: All neurons are synchronized in phase inside each module, but

the modules are all out of phase with each other. This essentially resembles a

travelling burst in the networks where each module succesively burst after one

another.

2. State 7 - PS-2: We have two modules in phase and two modules not in phase

with each other.

3. State 8 - PS-2,2: We have two sets of modules in phase with other and off phase

with the other.

4. State 9 - PS-3: Three modules in phase and one out of phase.

5. State 10 - PS-4: All neurons are in phase synchronization. This is when the

whole network bursts together.

• Activity Death States : The neurons do not exhibit spiking or bursting dynamics,

but either exhibit very low amplitude oscillations or are at a stable equilibrium point.

1. State 11 - AD-1: One module stops firing.

2. State 12 - AD-2: Two of the modules stop firing.

3. State 13 - AD-3: Three of the modules stop firing.

4. State 14 - AD-4: All the neurons stop firing and reach oscillation death.

5. State 15 - AD: Neurons stop firing randomly.

We present the spatio-temporal plots for each of these states corresponding to different

values of α and β. The parameter plane α− β with all the possible dynamical states of the

system is also presented below.

4.4 Case 1 : Assortative Excitatory Networks

So the first case involves the network configuration based on the Stochastic Block Matrix

given in equation 4.2.5. We look at the average number of synapse in this case which is

basically the degree of connectivity of a certain node in the network. The average degree of

connections in the modules is -

kllav = ωll

(
N

M

)
= 10 (4.4.1)
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whereas in between the modules the average degree is -

klkav = ωlk

(
N

M

)
(M − 1) = 3.75 (4.4.2)

So every neuron can on an average have 10 excitatory synapses and 3.75 inhibitory synapses.

Some of the general trends in the dynamics that we observe are :

1. For very low values of α and high values of β, the system desynchronizes. This happens

because of the random inhbitory connections between the modules that break the phase

synchronization inside the modules. So we can essentially desynchronize a module by

increasing the number of inhbitory synapses in the module.

2. For intermediate values of α and β, the neurons in each module phase synchronize. We

therefore can see various synchronized states between the modules. The most common

of these states is when two of the modules synchronize with each other and the other

two are in off phase with them i.e. PS-2 and PS-2,2. We also see instances of PS-3

and TB at some values of α and β.

3. The system goes into an activity death at a much lower value of α, as the number

of synapses for each neuron is higher. For β = 0, the critical value αth v 0.35. But

inhibitory coupling can recover the system from amplitude death. Hence if | β |> 0,

then αth > 0.35.

4. However for most of the values of the parameters α and β we get desynchronized

dynamical states. This is mostly due to the network topology which has neurons

randomly connected to each other with inhibitory and excitatory coupling.

We present spatio-temporal plots depicting the above dynamics of the network in the

figures 4.3, 4.4 and 4.5. We also plot the parameter plane α − β where each coloured band

is a state numbered according to the previous section.

38



(a) State : DS-4, α = 0.05 , β = 0.4 (b) State : DS-4, α = 0.1 , β = 1

Figure 4.3: Desynchronized neurons in AEN: At very high values β the system is usually
desynchronized. This is because inhibitory coupling breaks the phase synchrony between the
modules

(a) State : PS-2,2, α = 0.2, β = 0.2 (b) State : PS-2, α = 0.3 , β = 0.6

Figure 4.4: Synchronized States in AEN: At certain values of α and β we get states like these
where two modules are synchronized in phase and the others are in off phase. (a) Module 1
and 2 are PS and 2 and 4 are in PS. (b) Module 1 and 3 are PS
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(a) State : AD-4, α = 0.4, β = 0.2 (b) State : DS-4, α = 0.4, β = 2

Figure 4.5: Change in β can revive the network from AD to Desynchronized State. We
increase the value of β for a constant α to force the system to burst. So essentially the
inhibitory coupling can revive a system from activity death state.

4.5 Case 2 : Disassortative inhibitory Networks

This case as mentioned above is an inhibitory neuronal network. The Stochastic Block

Matrix used for this case is given in equation 4.2.6. So each neuron has around 75 inhbhitory

synapses with other neurons whereas the average number of exciatory synapses is around

1.25.

So we summarize the general dynamical behaviour of the system as :

1. Most important dynamics in such inhbhitory networks found is the travelling burst like

patterns in the network. In each of the module phases of all neurons are completely

synchronized, but all the modules remain in off phase with each other. This type of

off phase synchronization has been observed earlier in other inhibitory networks of

neurons [32]. By carefully adjusting α and β we can make the dynamics such that each

module fires successively without any phase lag. This basically results in sequential

bursting of each module in the system generating a travelling burst wave.

2. Tuning the parameters α and β we can alter the width of each burst. This happens

solely due to the excitatory coupling in the modules. More number of excitatory

connections can alter the bursting width of that module. This in the case the travelling

burst, looks like it has a lag at each of the modules.
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Figure 4.6: α−β parameter plane for Ω1. Red shades correspond to Desynchronised States,
Blue shades corresponds to Phase Synchronized States, Green shades corresponds to Activity
death states. The numbers given in the vertical band represent the dynamical states: 1-DS-
4, 2-DS-3, 3-DS-2, 4-DS-2,P-2, 5-DS-1, 6-TB, 7-PS-2, 8-PS-2,2, 9-PS-3, 10-PS-4,
11-AD-1, 12-AD-2, 13-AD-3, 14-AD-4, 15-AD

3. We also observe mixed-mode oscillations (MMOs) specifically in the case of inhbhitory

bursting neurons (figure 4.7). MMOs are basically oscillations which consist of small

amplitude and large amplitude parts. In this cases we observe regular amplitude bursts

with series of small amplitude burst between them. The small ampitude burst of one

module of neurons coincide with the large amplitude burst of neurons from other

modules. MMOs have been reported earlier in coupled neurons due to multiple time-

scales [38] [39]. But we propose that in the present study the inhbhitory coupling

causes MMOs in HR neurons.

4. Another state that we observe is activity death. Now as the average degree in this case

very high, the system is very prone to go into activity death even for β v 0.15. We

therfore observe several activity death states (AD-1, AD-2, AD-3, AD-4, AD) in these

networks. The sparse excitatory coupling in the module prevents this from happening

provided the α is very high.

The spatio-temporal dynamics of this network in shown in figures 4.7 and 4.8, the α− β
parameter plane is depicted in figure 4.9.
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Figure 4.7: Mixed-mode oscillations observed in DIN. The figure has been plotted for α = 0.3
and β = 0.1 and consists of the time series of 4 neurons belonging to different modules. We
find that each individual neuron exhibits small and large amplitude bursts.

(a) State : TB, α = 0 , β = 0.1 (b) State : TB, α = 0.6 , β = 0.1

Figure 4.8: Travelling bursts in the modular network. (a) For α = 0 the spikes inside
each burst are completely synchronized. (b)For α > 0 the spikes inside the burst become
irregular. Bursting of neurons in each module is phase synchronized, but each module bursts
successively after the other appearing dynamically as travelling bursts.
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(a) State : DS-4, α = 1.5, β = 0.01 (b) State : AD-3, α = 2, β = 0.1

Figure 4.9: (a) Desynchronized State, (b) Activity Death State. High value of α desynchro-
nizes the network.
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Figure 4.10: α − β parameter plane for Ω2. Red shades correspond to Desynchronised
States, Blue shades corresponds to Phase Synchronized States, Green shades corresponds
to Activity death states. The numbers given in the vertical band represent the dynamical
states: 1-DS-4, 2-DS-3, 3-DS-2, 4-DS-2,P-2, 5-DS-1, 6-TB, 7-PS-2, 8-PS-2,2, 9-PS-3,
10-PS-4, 11-AD-1, 12-AD-2, 13-AD-3, 14-AD-4, 15-AD

43



44



Chapter 5

Conclusions

In the study presented in this thesis, we essentially consider three different models of networks

consisting of Hindamarsh-Rose Neurons with the model: mutually coupled neurons with

differing time-scales, ring of coupled neurons with spatially varying time-scales, and modular

network consisting of excitatory and inhibitory synapses.

We summarize our main results in each of these models below :

• Mutually Coupled Slow and Fast Neurons:

1. Unlike the general system of nonlinear oscillators mentioned in [13], mutually

coupled slow and fast neurons do not go into a state of amplitude death. We

observe that the system goes into an amplitude death only because of a nonlinear

synaptic coupling function for very high coupling strength. This is in accordance

with reported results on amplitude death for nonlinear coupling [40]. We however

observe a very sharp transition to a new state marked by very low amplitude

oscillation termed as Activity Death State.

2. Differing time-scales between the two neurons results in a Frequency Synchronized

State where the emergent frequency is lower than the average value of the intrinsic

frequencies of the coupled neurons. This phenomenon is termed as Frequency

Suppression. Suppression of the frequencies happens irrespective of the intrinsic

dynamics of the individual systems. This phenomenon has relevance in the case of

neurons as neuronal systems encode information based on the frequency of firing
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or bursting of the individual neurons.

• Ring of Neurons with differing time-scales:

1. In the case of a linear chain of neurons with periodic boundary conditions, with the

neurons having a linearly decreasing time-scale in space, we find for low values of

coupling frequency synchronized clusters occur in the whole network. Now these

clusters are dependent on the difference in time-scale η between two adjacent

systems and also on the number of systems present. The synchronized clusters

are lost when the difference in time-scales of adjacent systems is very small.

2. As the nonlinear coupling strength increases the discrete synchronized clusters

in the whole ring collapse into a single Synchronized Frequency Suppressed State.

This happens at a constant value of gs for all values of N and ∆η. So essentially

the whole network is bursting at a single frequency even if all the individual

neurons are in different time-scales. This frequency is very less compared to the

intrinsic frequencies.

• Modular networks with excitatory and inhibitory coupling

1. We consider two different networks in this particular case - Associative Excitatory

Network (AEN) and Disassociative inhibitory Network (DIN). In both the cases

we study the dynamics of the chaotic bursting HR neurons with excitatory intra-

modular coupling α and inhibitory inter-modular coupling β. We classify the

dynamics of the system into 3 major states - Desynchronized, Phase Synchronized

and Activity Death. Each state can be classified into 5 sub-states based on the

relative dynamics of each module. We plot the spatio-temporal dynamics and the

parameter plane α− β to quantify the possible dynamical states in both cases.

2. In the case of AEN, since the whole network has randomly placed synapses, we

find that the general dynamics of the system is a desynchronized state. This

essentially means that the neurons present in each module are desynchronized in

phase. However carefully tuning the coupling parameters we can obtain phase

sychronized states, where some modules are in same phase and the others are in

off phase, or desynchronized. This type of modular phase synchronization is an

interesting emergent phenomenon in neuronal networks.

3. In case of DIN, we observe an interesting emergent phenomenon called travel-

ling bursts. The neurons in each module tend to synchronize in phase and they
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burst successively one after the other. In real-time the bursts appear as if they

are travelling throughout the network. Moreover these inhibitory neurons show

mixed-mode oscillations consisting of low and high amplitude bursts. We pro-

pose this type of behaviour is emergent from the inhibitory coupling between the

systems unlike the presence of multiple timescales in individual system reported

earlier [38].

4. In both types of modular networks, the common phenomenon observed is acitvity

death, that occurs if the coupling strength (excitatory α or inhibitory β ) is high

enough. Interestingly if the system reaches AD due to inhibitory/ excitatory cou-

pling, the other type of coupling can revive the system back to a de-synchronized

state. In this way, the threshold required by the system is higher in the presence

of hybrid coupling considered here.

5.1 Future Prospects

Our work with HR neurons in modular networks have given us several insights into the

various dynamical states possible in neuronal networks. We have classified the dynamics of

the network into 15 different states comprising of desynchronized, synchronized and activity

death states. However there are several aspects of this model which can be explored further.

• In this study we consider networks of size N = 100. Now studying the dynamics

of such a high dimensional system gives us a good look at the qualitative picture

of the dynamics as we can easily average over the ensembles without losing a lot of

information on the details of the individual dynamics of the neurons. But working

on such a high dimensional system is computationally intensive. Also most modular

networks of neurons found in the natural systems usually consists of 15-20 neurons in

a cluster making the network sizes upto 60. So we can reduce this system to networks

with less neurons and more efficiently explore the dynamics of the network.

• We classify the dynamical states in our model based on the number of phase synchro-

nized, desynchronized or AD modules in the network. We take the number of modules

to be M = 4 giving us 15 possible state. So changing the number of modules, we

can use this scheme to deduce the dynamics of actual neuronal networks in the brain.
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We can even look at aspects of coding information for various inputs in these modular

networks.

• We can explore the effect of having multiple time-scales in the modules. We have done

some preliminary studies on this by assigning a value of ηm to each module in the case

of assortative excitatory networks, taking:

η =
[
1, η, 1, 1

]
(5.1.1)

Thus for η = 0.5, one of the modules is slower than the other three. So the system

essentially has a forced assymetry which can lead to interesting spatio-temporal pat-

terns and dynamical behaviour. With time-scale mismatch we can generate patterns

of different frequency synchronized state emerging in the network of randomly coupled

neurons.

The present study with further extensions will certainly enhance our understanding of the

basic dynamics underlying the complexity of the brain and point towards ways of unravelling

its mysteries.
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Trǐsović. Interplay between internal delays and coherent oscillations in delayed coupled
noisy excitable systems. International Journal of Non-Linear Mechanics, 73:121–127,
2015.

[17] Carlo Nicolini and Angelo Bifone. Modular structure of brain functional networks:
breaking the resolution limit by Surprise. Scientific Reports, 6(January):19250, 2016.

[18] M. S. Santos, J. D. Szezech, F. S. Borges, K. C. Iarosz, I. L. Caldas, A. M. Batista,
R. L. Viana, and J. Kurths. Chimera in a neuronal network model of the cat brain.
pages 1–5, 2016.

[19] Johanne Hizanidis, Nikos E. Kouvaris, Zamora-López Gorka, Albert Dı́az-Guilera, and
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