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Abstract

In the recent decades, computers have opened up novel ways of doing mathematics. The
speed and raw power of computers has been used to perform searches over previously un-
tractable spaces of objects and proofs, and complementarily, the ability of computers be
systematic and methodical has been utilised to formalise and automatically verify compli-
cated proofs.

Although writing programs and constructing proofs seem like different activities, in type-
theoretic foundations of mathematics these can both be seen as instances of constructing a
term of a type. Proof assistants based on dependent type theory leverage this correspon-
dence to serve both as theorem provers as well as functional programming languages. As
programming and proving can be done within the same framework of dependent type theory,
computers searches can in principle be augmented with proofs to give "proved algorithms"
that have been proved to be correct and returns results together with formal proofs when
run.

Geometric group theory is a relatively new area that is at the intersection of algebra and
topology, and connected to several others. Over the last few years, there have been some
significant results in the area achieved with the help of computer searches.

This thesis is centered on the theme of “Proved Algorithms in Geometric Group Theory”,
using the Lean4 theorem prover and programming language to formally prove results in
geometric group theory involving a mix of proofs and computations.

xi



xii



Contents

Abstract xi

0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Interactive theorem provers and the formalisation of mathematics 3

1.1 Interactive theorem provers . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Benefits of formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Challenges of formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 The Lean4 theorem prover and programming language . . . . . . . . . . . . 13

1.5 Other uses of interactive theorem provers for mathematics . . . . . . . . . . 16

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Formalising Giles Gardam’s disproof of Kaplansky’s unit conjecture 23

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Mathematical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Extra measures for verification . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 The ends of a graph : a formalisation 45

xiii



3.1 The ends of a graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 The definition of ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 The functoriality of ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 A formalisation blueprint for Stallings’ topological proof of Grushko’s the-
orem 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Stallings’ topological proof of Grushko’s theorem . . . . . . . . . . . . . . . . 59

4.3 A formal blueprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Solving equations in Abelian groups 71

5.1 A general equality problem for Abelian groups . . . . . . . . . . . . . . . . . 71

5.2 A solution to the general equality problem for Abelian groups . . . . . . . . 72

5.3 Implementing the solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xiv



0.1 Introduction

This thesis is spread across five chapters, each covering different aspects of the broad themes
of geometric group theory, formalisation of mathematics and proved computations. The
common thread connecting these chapters is the Lean4 theorem prover and programming
language, which we use for formalisation, programming and meta-programming. The chap-
ters are all independent of each other and can be read in any order.

The first chapter 1 is an introduction to interactive theorem provers and the formalisation
of mathematics, with the exposition focused on possible future uses of this technology.

The second chapter 2 describes an original formalisation in Lean4 of Giles Gardam’s
disproof of Kaplansky’s unit conjecture [Gar21], a recent result settling a long-standing
conjecture about group rings. The chapter covers the relevant mathematical background,
the details of our formalisation, and some of the measures we take to test that the definitions
and theorems in our formalisation capture their intended meaning.

The third chapter 3 describes a formalisation of the notion of the ends of a graph done
jointly with Rémi Bottinelli. The first part of the chapter covers the relevant mathematics,
and the second part covers aspects of our formalisation.

The fourth chapter 4 describes Stallings’ topological proof of Grushko’s theorem – an
elegant topological proof of an algebraic result – together with an outline of a possible
approach to formalise this result in Lean.

The fifth chapter 5 describes an approach to automatically solve equations in Abelian
groups along with an implementation of the idea in Lean4.

0.1.1 Original contribution

The first chapter 1 is primarily expository; however, the section 1.5.5 briefly describes some
original work (done jointly with several others) on the automatic formalisation of natural
language statements to Lean code using large language models.

The formalisation work described in the second chapter 2 is an original contribution (done
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jointly with Dr. Siddhartha Gadgil), describing a real-time formalisation of an important
result using a combination of formal proofs and proved algorithms. This work has been
submitted to the ITP-2023 conference.

The formalisation of the notion of the ends of a graph and related properties described
in the third chapter 3 is original work (done jointly with Rémi Bottinelli). Parts of this code
have been merged with the Lean mathematics library mathlib.

The idea and the implementation in the fifth chapter 5 are original work.
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Chapter 1

Interactive theorem provers and the
formalisation of mathematics

Computers have found use in mathematical research for analysing numerical data, performing
combinatorial and symbolic manipulation, simulations and interactive visualisation. Pro-
grams known as interactive theorem provers now make it possible to perform and verify
mathematical reasoning involving definitions and theorems encoded in a mathematical foun-
dation. This chapter gives an overview of interactive theorem provers 1.1, the benefits they
offer1.2 and some of the challenges of formalising mathematics 1.3. The last few sections
of this chapter 1.5 2.5 focus on how interactive theorem provers may be integrated with
other mathematical software, such as computer algebra systems, visualisation tools, to cre-
ate unified platforms for experimenting, visualising, creating and verifying mathematics. The
examples in this chapter primarily involve the Lean theorem prover and programming lan-
guage [MU21] 1.4, which is also the software used for the work described in the subsequent
chapters of this thesis.

1.1 Interactive theorem provers

The notion of a formal logical system – a language and a set of rules for mathematical de-
duction – can be traced back to Hilbert’s Program in the early twentieth century [Zac03],
and even earlier to ideas of Leibniz. Various such foundational systems have been pro-
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posed since then, most notably Zermelo–Fraenkel set theory with the axiom of choice (ZFC)
[Jec03]. Though all known mathematics can be encoded in such a system in principle 1, it is
exceedingly tedious to do so in practice and is seldom done directly.

A proof assistant or interactive theorem prover is a computer implementation of a foun-
dational system along with additional layers for translating a high-level description of a
mathematical statement or proof given by the user down to the formal details [Hal14].
The resulting formal proof can be mechanically checked for correctness at the axiomatic
level, giving a high degree of confidence in its correctness (there is also the question of the
trust-worthiness of the program for checking the proof, which is addressed in 1.1.1). Sev-
eral proof assistants have emerged over the past few decades, based on various different
foundations and design principles. Some of the major proof assistants in current use are Is-
abelle [NWP02], PVS [ORS92], Lean [Mou+15], Coq [Ber08], Agda [Nor09], Mizar [NK09a],
Metamath [MW19] and HOL Light [Har09b].

/-

# International Mathematical Olympiad 1964, Problem 1b

Prove that there is no positive integer n for which 2n + 1 is divisible by 7.

-/

theorem imo_1964_q1b : ∀ (n : N), (2 ^ n + 1) % 7 ̸= 0

| 0 | 1 | 2 => by decide

| n + 3 => by

rw [pow_add, Nat.add_mod, Nat.mul_mod, show 2 ^ 3 % 7 = 1 from by rfl]

simp [imo_1964_q1b n]

Listing 1.1.1: An example of a formal proof in Lean

variable {R : Type _} [CommSemiring R] {ι : Type _} (s : Finset ι)

theorem degree_prod_le (f : ι → R[X]) :

(Π i in s, f i).degree ≤ Σ i in s, (f i).degree := by admit

Listing 1.1.2: An illustration of the rich syntactic support in modern proof assistants

Polynomial.degree_prod_le.{u, w} {R : Type u} {ι : Type w} (s : Finset.{w} ι)

[inst : CommSemiring.{u} R]

1Gödel’s first incompleteness theorem implies the existence of statements such as the Continuum hypoth-
esis that are independent of the axioms of ZFC [NN88]. However, this does not prevent known mathematical
results with informal proofs from being formalised.
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(f : ι → @Polynomial.{u} R (@CommSemiring.toSemiring.{u} R inst)) :

@LE.le.{0} (WithBot.{0} Nat)

(@Preorder.toLE.{0} (WithBot.{0} Nat)

(@WithBot.preorder.{0} Nat

(@PartialOrder.toPreorder.{0} Nat

(@StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))))

(@Polynomial.degree.{u} R (@CommSemiring.toSemiring.{u} R inst)

(@Finset.prod.{u, w} (@Polynomial.{u} R (@CommSemiring.toSemiring.{u} R

inst)) ι

(@CommSemiring.toCommMonoid.{u} (@Polynomial.{u} R

(@CommSemiring.toSemiring.{u} R inst))

(@Polynomial.commSemiring.{u} R inst))

s fun (i : ι) => f i))

(@Finset.sum.{0, w} (WithBot.{0} Nat) ι (@WithBot.addCommMonoid.{0} Nat

Nat.addCommMonoid) s fun (i : ι) =>

@Polynomial.degree.{u} R (@CommSemiring.toSemiring.{u} R inst) (f i))

Listing 1.1.3: The theorem statement in 1.1.2 translated down to the foundations

With expressive syntax and the facility to build up proofs interactively at a high level,
modern proof assistants are beginning to make the large-scale formalisation of mathematics
practical [Geu09]. There has been a tremendous amount of recent progress on formalising
important mathematical results, leading to the development of large libraries of formal math-
ematics such Lean’s mathlib [Com20a], Isabelle’s Archive of Formal Proofs [MFV21],
Coq’s Mathematical Components libraries [MT17], the Mizar Mathematical Library [NK09b]
and the Agda-UniMath library [RBP+].

Notable formalisations include those of the four-colour problem [Gon+08], the Jordan
curve theorem [Hal07], the prime number theorem [Har09a], the Kepler conjecture [Hal+17],
the odd order theorem [Gon+13], the central theorem of condensed mathematics [Sch22] and
sphere eversion [MDN22]. Large-scale formalisation efforts of this kind can have numerous
long-term benefits, some of which are discussed in 1.2. Despite several successes in formali-
sation and improvements in proof assistants, the endevour remains challenging and tedious;
some of these challenges are described in 1.3.
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1.1.1 Trusting proof assistants

The most direct benefit of formalising mathematics on a computer is the strong guarantee of
correctness that it offers. However, like any large piece of software, a proof assistant is likely
to contain bugs in its code. How can one then trust a proof assistant to verify mathematics
correctly?

The small trusted kernel

The solution employed in N.G. de Bruijn’s AUTOMATH [De 94], which has also been incorpo-
rated into the design of several modern theorem provers, is to confine proof checking to a
small part of the code known as the kernel. With this design, a formal proof is guaranteed
to be correct if the kernel certifying it is error-free. The kernel is typically a few hundred
lines of carefully-written and documented code, open-sourced and reviewed independently
by several humans and machines to minimise the chances of errors. The rest of the proof
assistant built around the kernel may contain errors that prevent users from proving true
statements, but since the proof checking is performed solely by the kernel, these bugs cannot
result in an incorrect proof of a statement being accepted. With all the trust concentrated
into the small kernel, several layers of untrusted programs can be used in constructing formal
proofs without compromising on correctness.

Some proof assistants also support the ability to export proofs in a format that can be
independently processed and verified by external tools.

Verifying formalised mathematics

Once a mathematical result has been formalised in a proof assistant, how does one convince
a sceptic of its truth? As explained in 1.1.1, it suffices for the sceptic to check the kernel
of the proof assistant to be assured of the correctness of proofs formalised in the system.
However, to be fully convinced that the result is true, the sceptic must also judge whether
the formal statement of the theorem, as encoded in the proof assistant, corresponds to the
mathematical result being proved. This involves checking the formal statements of the key
theorems and their associated definitions, which is significantly easier than verifying the full
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proofs themselves. It is a common practice to build library of theorems around each definition
– consisting of expected facts and characterising properties – both for future use in proofs
involving that definition and for further assurance that the definition captures the intended
mathematical meaning. The above measures should give a sceptic strong reasons for believing
the correctness of a mathematical result, without ever having to go through its proof. Having
a proof format that is human-readable is also useful, since the sceptic can read through the
proof and understand the high-level ideas, knowing that the intermediate low-level details
have been computer-verified. One may take additional measures to insulate against low-
level hardware or software issues, but the increase in certainty that these bring may not
be necessary; the fact that the result must have been carefully analysed and understood
by a human mathematician in the process of formalising it, combined with the small kernel
architecture, already provides certainty which is orders of magnitude higher than traditional
peer-review.

1.2 Benefits of formalisation

As formal methods in mathematics and computer science are rapidly growing areas, it is
perhaps apt to classify the benefits of formalisation into immediate benefits that formali-
sation already has to offer, and potential future benefits that could eventually arise from
formalisation. This section primarily deals with the former, and the latter is the focus of
1.5.

1.2.1 Verification of mathematics

Though mathematics maintains a high standard of rigour, flaws and inconsistencies in math-
ematical arguments are known to crop up from time to time. Formal verification of mathe-
matics using proof assistants offers a way of guaranteeing correctness beyond any reasonable
doubt. As noted by Massot [Mas21], formalisation also ensures consistency at both small
and large scales. At small scales, formalisation ensures that no minor details or corner cases
have been overlooked in the proof. At large scales, it ensures the inter-compatibility of the
various definitions and theorems in the library, allowing major refactoring of code to be done
easily.
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Formalisation is particularly useful for checking the correctness of deeply technical results
that are used as blackboxes. The recent Liquid Tensor Experiment [Sch22] – which originated
from Peter Scholze’s request to the formalisation communities to help verify some of the
technical parts of his work in condensed mathematics – is a notable example of such a
formalisation. Formalising the result with a proof assistant helped keep track of the details
of the argument, allowed for some drastic simplifications in parts of the proof, and helped
Scholze to better understand his result.

Formalisation is also useful for verifying proofs involving a large number of computer
calculations which are difficult for humans to comprehend directly. Thomas Hales’ Flyspeck
project [Hal+17] for verifying his proof of the Kepler conjecture and Gonthier’s formalisation
of the Appel-Haken proof of the four-colour theorem [Gon+08] are notable example of this
kind.

1.2.2 Verification of software and hardware

Proof assistants are also used to formally verify the correctness of hardware and software.
Hardware errors, such as the Pentium FDIV bug in the Intel Pentium processors [CKZ96],
can be hard to detect and expensive to fix; formal verification is now routinely done in the
semi-conductor industry to ensure the robustness of hardware. Programs responsible for
running safety-critical systems, such as medical devices or railway interlocking systems, are
also typically verified using interactive theorem provers; a successful example of this kind of
formalisation is the formal verification of the French railway interlocking system by Alstom
[PFB19].

1.2.3 Organising mathematical knowledge

Mathematical knowledge is currently spread across several books, papers and articles. More-
over, these sources usually have different notation, conventions and assumptions. In building
large libraries of formal mathematics, this knowledge is being systematically organised and
preserved in a consistent and compatible way that can be processed by a computer. The
careful reflection requires for formalising mathematics not only clarifies existing proofs, but
can lead to new and more conceptual proofs of existing results.
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Large formal mathematics libraries open up possibilities to build new tools for mathemat-
ics research, as discussed in 1.5. Creating such libraries requires large-scale collaboration,
and modern software engineering tools such as version control and continuous integration
make it possible to collaborate on formalisation without having to read and trust proofs
written by others as they are verified by the proof assistant.

1.2.4 Learning and creating mathematics

Proof assistants are also useful tools for learning new mathematics. Unlike traditional math-
ematical texts, in which the level of exposition is fixed by the author, a formal proof can be
understood at any level of detail – from just the high-level details of the main statements
to the full formal proof with all the logical details specified. Reading proofs with the details
spelt out in precise terms and all implementation details visible lends great clarity. Modern
editors make it extremely convenient to jump to previously defined concepts and to view the
documentation of a definition by hovering. Patrick Massot and collaborators are currently
working on tools that translate formal proofs to informal natural language and allow users
to dynamically expand and collapse sections of the proof.

Formalising a mathematical result is a good way to understand it deeply. It first requires
reformulating the proof into a form where all definitions and concepts are consistent with
each other and with the library of mathematics one is building on. Further, it requires choos-
ing suitable ways of representing the mathematical objects under consideration, identifying
useful lemmas in the proof, and expanding on the details in a proof.

The process of formalisation can also result in new mathematics, either in the form of
major simplifications of existing proofs or novel ideas and abstractions for known results. In
the Liquid Tensor Experiment, one of the main theorems involved a complicated construc-
tion known as the Breene-Deligne resolution; by carefully isolating its required properties
while formalising the theorem, Johan Commelin was able to replace it with a much simpler
construction, now known as the Commelin complex. Bourbaki’s theory of filters is an ex-
ample of an abstraction that arose as a rigorous framework for unifying the various kinds
of limits in analysis (left limits, limits to infinity, limits of functions at a point, limits of
sequences, etc.); this theory is now a standard part of most formal mathematics libraries.
Mathematics formalised in a proof assistant can also be further streamlined using linters,

9



which are programs configured to detect details like unused assumptions or identify when
results can be stated in greater generality.

1.3 Challenges of formalisation

Despite its numerous benefits 1.2, formalisation of mathematics has not yet seen widespread
adoption in the mathematics community. This is primarily because explaining mathematics
to a computer currently involves significantly more effort than explaining mathematics to
another human, and parts of the formalisation process remain extremely tedious. This
section investigates some of the main challenges in formalising mathematics, while also briefly
touching upon some possible solutions.

1.3.1 The large gap between informal and formal mathematics

Mathematicians are able to communicate ideas efficiently by conveying details in an incom-
plete and imprecise way that brings out the high-level ideas and intuitions. Any missing
details or minor errors can usually be rectified by other mathematicians understanding the
work.

One of the challenges in formalising mathematics, and also designing proof assistants, is
to bridge the gap between the high-level ideas and the formal details. The following example
from Andrej Bauer’s IPAM talk Formalising Invisible Mathematics wonderfully illustrates
this gap.

If f is linear, then f(2 · x+ y) = 2 · f(x) + f(y).

This statement omits a number of details – that f is a map between vector spaces over
a given field, that addition happens in the respective vector spaces, and that 2 refers to
the field element and not the natural numbers – most of which can be readily inferred by a
reader.

With all the details supplied, the statement looks like
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If K is a field, U and V are vector spaces over K, and f : |U | → |V | is a
linear transformation then for all x, y ∈ |U |, f(2K · x+U y) = 2K · f(x) +V f(y).

Fortunately, modern proof assistants are able to automatically fill in most of these details
through a combination of mechanisms known as coercion, typeclass inference and notational
scope.

However, in other cases, the gap between formal and informal mathematics persists.
Consider the standard elementary proof of the irrationality of the square root of 2, which
proceeds by assuming that there is a rational number whose square is 2, representing it
as the ratio of two integers, and finally using the well-foundedness of the natural numbers
to conclude that the square root of 2 is an irrational real number. Though this implicit
interaction between the four number systems R, Q, Z and N can be minimised to some
extent by coercions, it is difficult to eliminate entirely.

While the above proof can still be formalised with a few slight changes to the argument,
proofs that rely heavily on visual, spatial and numerical intuition are extremely difficult
to cast into a sequence of logical deductions [AA11]. Consider the mutilated chessboard
problem, which asks whether an 8×8 square board with two opposite corners removed can be
tiled by 2×1 dominoes. The standard proof is to colour the board with alternating colours like
a chessboard and observe that a 2×1 domino must cover tiles of opposite colours, after which
it becomes immediate that the mutilated chessboard cannot be covered by 2 × 1 dominoes
as that would require it to have an equal number of tiles of each colour. Similar difficulties
arise in calculating approximate, back-of-the-envelope estimates of quantities using strong
numerical intuitions about the nature of various functions, like “x4 + 7x + 2 grows faster
than x2 + 7”, or “ sin(x)

x
vanishes at infinity”. Such difficulties can perhaps be addressed by

developing foundations or abstractions that operate closer to our intuition, combined with
powerful automation.

Indeed, there are some successful instances of abstractions and automation bringing for-
mal mathematics closer to mathematical practice. The ring tactic in Lean automates trivial
calculations like (a + b)2 − (a − b)2 = 4ab, which would otherwise need a series of repeated
invocations of properties like the commutativity of addition and the associativity of multi-
plication to justify from the ring axioms. Bourbarki’s theory of filters provides an elegant
abstraction that unified the various kinds of limits that arise in analysis, bypassing the need
to adapt theorems about limits to each kind of limit.
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1.3.2 The choice of description of mathematical objects

Mathematical objects can be studied from several viewpoints, each offering a different per-
spective. Moreover, each description has its strengths and weaknesses – for example, some
may have good structural properties and be well-suited for proofs, and others may have good
computational properties and be better suited for algorithms. The Dedekind construction
of the reals may be useful in establishing order-theoretic properties, while the construction
via Cauchy sequences may be useful for metric properties. Similarly, natural numbers have
unary, binary and decimal representations, each convenient for different purposes.

One of the subtle challenges of formalisation is choosing representations of mathematical
objects that are well-suited for the proof and interact well with each other and with the defi-
nitions in the library. Indeed, one of the most difficult parts of formalisation, which happens
before writing any code, involves expanding the proofs, choosing suitable representations
for mathematical objects, disambiguating the notation and reformulating the definitions to
bring the result in a form that can be readily verified. It can take several iterations of code
before the definitions blend together in a suitable way.

Of course, it is always possible to equivalent definitions of the same mathematical object
and use them for different purposes, but this comes with the additional cost of formally
proving that these structures are isomorphic. There is also the challenge of showing that
results proved for one object hold for an object isomorphic to it, but this problem has an
elegant solution due to Voevodsky [Uni13].

As noted by Thurston [Thu94], there is a lot to learn from formalising mathematics as
the endeavour can help simplify and clarify mathematics.

1.3.3 Tedious proofs for obvious theorems

Facts which appear completely obvious to a mathematician sometimes need long and detailed
justifications, which is another major challenge in formalisation. Mathematical texts often
contain a number of minor implicit claims and details that are necessary to state and prove
to produce a complete proof. For these reasons, formal proofs are substantially longer than
their formal counterparts. The de Bruijn factor [Wie00] of a theorem is the ratio of the
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length of a formal proof to its informal version, and is usually between 4 and 10. Better
automation can help bring down this factor and make formalisation more feasible.

1.3.4 Issues at the foundational level

In the process of formalising mathematics, one is encoding definitions and theorems into a
logical foundation. Modern foundations are sufficiently expressive that this process usually
goes through smoothly, but there are instances where it is substantially more difficult to
encode a statement in a theorem prover than it is to write it down on paper. For example,
if v ∈ Rn+m and w ∈ Rm+n, the sum v + w is defined since the vectors belong to the same
vector space. However, the vector spaces Rn+m and Rm+n are apriori different to a proof
assistant, and additional work is needed to use the fact that n + m = m + n to make the
vectors compatible for addition. Preventing such issues may require work at the foundational
level, but would have the consequence of making proof assistants easier to use and reduce
the learning curve for mathematicians by bringing foundations closer to practice.

1.4 The Lean4 theorem prover and programming lan-

guage

Lean [MU21] is an interactive theorem prover primarily developed at Microsoft Research by
Leonardo de Moura and Sebastian Ullrich. Lean4 is the latest iteration of the Lean theorem
prover [Mou+15], re-implemented in Lean itself as an extensible theorem prover and an
efficient general-purpose programming language. It features a wide range of programming
and meta-programming facilities that can be modified and extended by users, including a
parser, elaborator, tactic framework, macro system and code generator. Moreover, one of
the largest libraries of formal mathematics – mathlib [Com20b] – is written in Lean3 and
is steadily being ported to Lean4 (the effort is slightly over half-way through at the time of
writing).

Lean4 implements a variant of the mathematical foundations of dependent type theory
[MS84] known as the Calculus of Inductive Constructions [CH86] [Pau15]. Type-theoretic
foundations replace the notion of a set with the notion of a type, which can be regarded either
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Figure 1.1: An example of an interactive proof using Lean4

as a collection of related objects (similar to a set) or as a kind of systematic label attached to
an object (similar to a data-type in a programming language). By a deep observation known
as the Curry-Howard correspondence [SU98], an implementation of dependent type theory
can be used to encode proofs as well as programs. A particularly illuminating instance
of this correspondence is in interpreting the expression h : P → Q in type theory, which
can be variously understood as a proof that P implies Q, a function from the type P to
the type Q, or a program which takes as input a term of type P and returns a term of
type Q. The Lean4 theorem prover and programming language takes full advantage of this
correspondence by supporting general-purpose programming capabilities such as reading and
writing files, executing shell commands and processing strings, in addition to its theorem-
proving capabilities. Lean4 can therefore be used to mix proofs and programs in powerful
ways, such as writing programs to generate proofs, or writing algorithms that are proved to
be correct.

Lean4 is also a highly extensible language, allowing users to define custom notation
and implement algorithms for proof automation (as “tactics”). For example 1.4.1 shows
an example of Lean’s do notation, which is a system of macros written in Lean itself to
support arbitrary Python-style imperative code. Lean’s vast mathematics library mathlib

also contains several examples of custom syntax, such as in 1.4.2.

Most importantly, Lean4 code is very efficient and performant. As an efficient and
extensible general-purpose programming language that is also a theorem prover, Lean4 opens
up a wide range of possibilities for mixing programs, meta-programs and proofs within the
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same framework.

/-- The sum of the squares of the first ‘n‘ natural numbers. -/

def sumOfSquares (n : N) : N := Id.run do

let mut sum := 0

for i in [0:n] do

sum := sum + i^2

return sum

#eval sumOfSquares 5 -- 30

#eval 0^2 + 1^2 + 2^2 + 3^2 + 4^2 -- 30

Listing 1.4.1: An example of Python-style imperative code in Lean using the custom do

notation

elab (name := generalizeProofs) "generalize_proofs"

hs:(ppSpace (colGt binderIdent))* loc:(ppSpace location)? : tactic => do

let ou := if loc.isSome then

match expandLocation loc.get with| .wildcard => #[]| .targets t _ => telse

#[]let fvs ← getFVarIds oulet goal ← getMainGoallet ty ← instantiateMVars (←

goal.getType)let (_, 〈_, out〉) ← GeneralizeProofs.visit ty |>.run.run nextIdx

:= hs.toList let (_, fvarIds, goal) ← goal.generalizeHyp out fvsfor h in hs,

fvar in fvarIds dogoal.withContext <| (Expr.fvar

fvar).addLocalVarInfoForBinderIdent hreplaceMainGoal [goal]

Listing 1.4.2: An example of a tactic written in Lean

@[inherit_doc]postfix:1024 "×" => Units

@[inherit_doc] infix:50 " | " => Dvd.dvd

theorem Monoid.dvd_mul_right [Monoid α] {a b : α} {u : α×} : a | b * u ↔ a | b :=

sorry

Listing 1.4.3: An example of Lean’s flexible and extensible notation
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1.5 Other uses of interactive theorem provers for math-

ematics

This section discusses some of the uses of interactive theorem provers and related technology
for purposes other than the formalisation of mathematics. In particular, the focus is on how
interactive theorem provers are situated in the broader context of mathematical software.
Most of the projects described in this section are still in their preliminary stages and the
content here is largely speculatory.

1.5.1 Exposition

Though formal proofs can be difficult to read directly, informal explanations generated out
of formal proofs can offer exciting new ways of communicating mathematics. Tools capable
of doing this are under development, and a fascinating demonstration of one such tool can be
seen in Patrick Massot’s recent IPAM talk or at the following web-page https://www.imo.

universite-paris-saclay.fr/~patrick.massot/Examples/ContinuousFrom.html. The
outputs generated by such a tool include fully hyperlinked proofs that can be expanded
and collapsed to any depth, including the foundational details. The notation and reasoning
is guaranteed to be unambiguous and correct, as the proof has been verified by the proof
assistant. The development of informalisation tools may even influence the way formal
proofs are written and give us a better understanding of the relation between formal and
informal mathematics. In the future, one can hope for fully-formal mathematics textbooks
and research articles that are simultaneously accessible to beginners and experts.

Another direction in using proof assistants for exposition is creating games, such as
Kevin Buzzard’s Natural Number Game. These are an excellent and engaging way to learn
mathematics by proving it on a computer, with the unsolved theorems forming the “levels”
of the game.
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1.5.2 Visualisation

Automatically-generated visualisations accompanying formal proofs are another way in which
proof assistants can help in communicating mathematics. There are several freely-available
standalone visualisation tools, such as Desmos for plots, Geogebra for 3D visualisation,
GraphViz for abstract graphs and networks, and Penrose for generating diagrams from text.

The Lean4 theorem prover features a widget framework that enables the creation of cus-
tom user interfaces. As widgets support arbitrary HTML and JavaScript code, it is possible
in principle to link with the above-mentioned tools to automatically generate diagrams and
visualisations accompanying formal proofs. Visualisation tools in interactive theorem provers
may also find use for programming-related tasks such as generating plots, running interactive
simulations and visualising the execution of algorithms on specific inputs.

Widgets need not be restricted to only visualising generated images and animations; they
may also be used to take as input drawings of commutative diagrams, graphs or knots, and
automatically convert them to their formal representation. More generally, widgets could
allow users to interact with the mathematics – the SciLean project houses some interesting
examples of scientific visualisation with Lean4, some of which allow for user interaction.

Figure 1.2: An interactive rendering of a Rubik’s cube using Lean4 widgets

1.5.3 Verified computation

Computer-algebra systems like SageMath, Maple and Mathematica are valuable tools for
mathematical research. However, they have been known to contain bugs and generate incor-
rect results.
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Figure 1.3: Automatic rendering of a commutative diagram from the goal state using Lean4
widgets

Interactive theorem provers equipped with programming capabilities can in principle be
used to create algorithms with proofs for performing symbolic computations, combining the
usefulness of computer-algebra systems with the reliability of proof assistants. A fascinating
proof-of-concept is Kaliszyk and Wiedijk’s computer algebra system built on top of the HOL
Light proof assistant [KW07]. More generally, algorithms can be formalised with proofs of
correctness to create libraries of verified computations. An example of such an initiative is
[Nip+21].

Formalising symbolic algebra algorithms can have its challenges – the algorithms may
involve optimisations that are difficult to verify or make use of complex heuristics. It is
also challenging to find representations of mathematical objects that are suitable for both
proofs and computations. In such cases, it is still possible to verify the outputs of symbolic
algebra systems for specific problems after they have been generated – this allows leveraging
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Figure 1.4: An interactive visualisation of Bézier curves in SciLean

untrusted external tools to perform verified calculations. A similar principle has been used
for performing verified reductions for optimisation problems in the Lean4 theorem prover
[BMA23].

1.5.4 Automation

Having good proof automation is perhaps the most important requirement for making the
formalisation of proofs more practical. There have been a number of experiments in creating
programs that link proof assistants with external tools equipped with a large number of
heuristics and decision procedures for automating various fragments of mathematics. Some
of the most successful examples of automation of this kind are the Sledgehammer tactic of
Isabelle [BBN11], and the related Magnushammer tool [Mik+23].

The aesop automation tool for Lean4 [LF23] takes a different approach, placing emphasis
on being a whitebox automation tool which is transparent, predictable, and highly config-
urable. By choosing suitable theorems from the library and specifying how they are to be
applied, Lean4 users can use aesop to automate a wide range of obvious proofs.

As automation tools become better, formal proofs may start looking like proof sketches
where the high-level details of the proof are supplied by the user and the low-level details
are taken care by automation.
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1.5.5 Integration with artificial intelligence tools

Recent advances in artificial intelligence, especially the development of large language models
[Vas+17], has tremendous potential for formal mathematics. Large language models like
ChatGPT are neural networks with several billion parameters trained on a vast amount of
text (often significant fractions of the internet) in an unsupervised way. Language models
show a number of emergent properties, including the ability to translate text in natural
language into computer code. Large language models can be specialised to perform various
tasks by finetuning on relevant data.

AI chatbots for formal mathematics

A model fine-tuned on data from arXiv, mathlib (the Lean mathematics library) and Lean
community chat, for example, could function as an AI chatbot specific to formalisation of
mathematics in Lean, helping users find relevant concepts in mathlib, simplifying proofs
and fixing errors.

Autoformalisation of mathematical text

The ability of large language models to automatically translate short mathematical state-
ments into formal code was first observed in the work [Wu+22]. This is done by supplying
a few examples of natural language statements with their formal counterparts, followed by
just the statement to be translated – this sets the context of the problem, and the model
usually continues the text by translating the last statement into formal code. The set of
example statements constitutes the prompt to the model, and the translation can depend
significantly on the prompt used.

In joint work with computer scientists from Microsoft Research, we (the supervisor and
the author of this thesis) developed a tool LeanAIde to automatically translate short theorem
statements to Lean code. It uses a language model internally, but relies on optimisations to
the input and output to achieve its success rate. In particular, we customise the input prompt
according to the statement to be translated by automatically retrieving pairs of theorems and
their docstrings from mathlib; once the outputs are generated, they are checked for errors
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Figure 1.5: A screenshot of LeanAide in action, see also https://youtu.be/IZe3fBZLBR0

using Lean’s efficient internals, automatically processed to rectify minor errors, and only the
error-free translations are retained. The tool is available via a convenient interface that is
integrated into the user’s workflow – on typing the statement of the theorem to be translated
as a comment, a lightbulb icon pops up offering to translate the statement to code; once the
translation has finished, the translated statement appears below the comment, allowing the
user to begin proving the theorem immediately. The work is described further in a note at the
2nd Math-AI Workshop at NeurIPS’22: https://mathai2022.github.io/papers/17.pdf.

Another work in a similar direction, but using fixed prompts, is Lean Chat.

Autoformalisation tools capable of formalising larger chunks of text could have a wide
impact on the formalisation of mathematics.

Semantic search for mathematics

The mathematics literature is vast, and it would be useful to have tools that are capable of
processing this data to help mathematicians and students search for results in the literature.
Traditional web-search engines are not well-suited for this task since they are not designed
to process mathematical information. Large libraries of formal mathematics are the ideal
starting point for such a tool, as they contain mathematical theorems encoded in a way that
can be processed and logically manipulated by a computer. Artificial intelligence techniques
applied to a corpus of formal mathematics could produce tools capable of finding results that
are already in the literature, or even deducing them by combining and specialising known
results. Such a tool would be a valuable aid in learning and in mathematical research.
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1.6 Conclusion

Interactive theorem provers are powerful tools that hold great promise in changing the way
we do mathematics. By integrating with other kinds of mathematical software as described
in 1.5, interactive theorem provers may become indispensable tools for mathematicians to
experiment, discover, create, automate, verify, communicate and understand mathematics.

The next major steps towards this vision will likely involve a strong mathematical compo-
nent – advancing foundations to bring formalism closer to mathematical practice, developing
strong automation and decision procedures, and reformulating and organising mathematical
theories in a way that aligns with both intuition and formalism. Advances in computer
science and artificial intelligence will no doubt play a big role too, with collaboration tools,
programming language design and automatic program synthesis heavily influencing the de-
sign and use of interactive theorem provers. Overall, interactive theorem provers point
towards a future of fruitful mathematical collaborations between humans and computers.
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Chapter 2

Formalising Giles Gardam’s disproof of
Kaplansky’s unit conjecture

2.1 Overview

The unit conjecture is a fundamental and well-known question about group rings (described
in 2.3.1) going back to Graham Higman [Hig40] and Irving Kaplansky [Kap70] in the mid-
twentieth century. It is a part of a cluster of important conjectures posed by Kaplansky,
collectively known as Kaplansky’s conjectures.

In 2021, Giles Gardam finally settled the unit conjecture in the negative[Gar21]. Gar-
dam’s proof was in the form of an explicit counter-example involving a certain well-studied
group P (the Promislow or Hantzsche–Wendt group) and a unit with its inverse in a group
ring over P .

This chapter describes our formalisation of Giles Gardam’s result in the Lean4 theorem
prover1. Gardam’s result can be viewed as having two components – a proof that a certain
group P is torsion-free, and a computation to verify that the specified elements are units in
a group ring over P . Our approach uses a blend of formal proofs and proved computations
to verify the result. Our formalisation concluded slightly over a year after Giles Gardam

1The documentation for the code can be viewed at http://math.iisc.ac.in/~gadgil/unit_
conjecture/UnitConjecture.html.
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announced his result, making it an instance of a real-time formalisation.2

The relevant mathematical background, including group rings, Kaplansky’s conjectures
and the structure of the group P , is described in 2.2. The section 2.3 covers the details of
our formalisation, with a particular emphasis on our use of Lean4 as both a proof assistant
as well as a programming language to integrate the conceptual and computational aspects of
the formalisation. We take some extra measures to ensure that our formal definitions satisfy
some of their expected mathematical properties (described in 2.4), since incorrect definitions
in the statement of the final result are essentially the only source of error in a formalisation.
The chapter concludes with some remarks on our formalisation 2.5.

2.2 Mathematical background

2.2.1 Group rings

A group ring is an algebraic object associated to a given group and a given ring which occurs
naturally in several contexts in mathematics, such as representation theory and algebraic
topology. The elements of a group ring can be understood as finite formal linear combinations
of elements of the group with coefficients in the ring, similar to polynomials, or better still,
Laurent polynomials.

More formally, given a group G and a ring R, the group ring R[G] is the free R-module
with basis G, with a multiplication naturally extending that of that of R and G, giving R[G]

the structure of a ring and hence an R-algebra. In terms of formal sums, the addition and
multiplication can be understood concretely as:

 X

i

aigi

!
·
 X

j

bjhj

!
=
X

i

X

j

(aibj)(gihj)

The group ring R[G] can also be viewed as the set of R-valued functions on G with finite
support. Addition of two functions f and g is done point-wise as x 7→ f(x) + g(x), and

2This work has been independently formalised in Lean3: https://github.com/todbeibrot/
counter-example-to-the-unit-conjecture-for-group-rings
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multiplication is given by convolution:

x 7→
X

uv=x

f(u)g(v)

which has finite support since f and g have finite support.

The group ring construction R[−] : Grp → R−Alg is left-adjoint to the group of units
construction (−)× : R-Alg → Grp which takes an R-algebra to its group of units. The group
ring R[G] can also be characterised as the initial object in the category whose objects are
R-algebras equipped with a compatible action of G and whose morphisms are G-equivariant
R-algebra homomorphisms.

2.2.2 Kaplansky’s conjectures

To motivate Kaplansky’s conjectures, consider two Laurent polynomials p and q over a field
K. The following statements can be easily deduced by considering degrees:

• If p · q = 0, then either p = 0 or q = 0.

• If p · q = 1, then both p and q are of the form c · xd, for some c ∈ K× and d ∈ Z.

Let K[G] be a group ring over a field K. If an element g ∈ G has torsion (i.e., is a
non-identity element of G of finite order n + 1), then it is possible to find zero divisors in
K[G]:

(1− g) · (1 + g + g2 + . . .+ gn) = 1− gn+1 = 0

Moreover, these zero-divisors are non-trivial, in the sense that they are not of the form
a · g for some a ∈ K× and g ∈ G (in other words, they have a non-trivial support).

This shows that torsion in group introduces non-trivial zero divisors in the group ring.
However, when the group is torsion-free, i.e., the only element of finite order is the iden-
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tity element, Kaplansky conjectured that the behaviour is identical to the case of Laurent
polynomials [Pas76]:

Conjecture 2.2.1 (Kaplansky’s zero divisor conjecture). Let G be a torsion-free group and
let K be a field. Then the group ring K[G] contains no non-trivial zero divisors.

Similarly, we know that elements of the form a · g, where a ∈ K× and g ∈ G, are units
of the group ring – these are the trivial units. It is also known that all but finitely many
groups with torsion contain non-trivial units in the group ring over K [Hig40]. Kaplansky’s
unit conjecture states that when the group G is torsion-free, the trivial units are the only
units:

Conjecture 2.2.2 (Kaplansky’s unit conjecture). Let G be a torsion-free group and let K
be a field. Then the group ring K[G] contains no non-trivial units.

These conjectures, attractive for their simplicity and generality, have remained open for
several years. In 2021, Giles Gardam proved the unit conjecture false. The zero divisor
conjecture remains open.

2.2.3 Giles Gardam’s theorem

Giles Gardam disproved Kaplansky’s unit conjecture by explicitly producing a non-trivial
unit and its inverse in a certain group ring over the finite field with two elements F2. The
group used in Gardam’s counter-example is known in the literature [Pro88][Car14] as the
Promislow group, Hantzsche-Wendt group or the Fibonacci group F (2, 6), and is commonly
denoted by the letter P . It has the following presentation in terms of generators and relations:

⟨a, b|b−1a2b = a−2, a−1b2a = b−2⟩

and the elements a2, b2 and (ab)2 are commonly denoted by the letters x, y and z

respectively. More details about the group P are in the section 2.2.4.

Giles Gardam proved the following theorem [Gar21]:
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Theorem 2.2.3 (G. Gardam). Let P be the group ⟨a, b|b−1a2b = a−2, a−1b2a = b−2⟩ and set
x = a2, y = b2 and z = (ab)2. Set

p = (1 + x)(1 + y)(1 + z−1)

q = x−1y−1 + x+ y−1z + z

r = 1 + x+ y−1z + xyz

s = 1 + (x+ x−1 + y + y−1)z−1

Then p+ qa+ rb+ sab is a non-trivial unit in the group ring F2[P ].

Giles Gardam discovered the units with the aid of a computer search using SAT solvers
– programs designed to solve instances of the Boolean satisfiability problem, which is the
problem of determining whether there is an assignment of variables satisfying a Boolean
formula built out of Boolean variables and logical operations such as ∨, ∧ and ¬.

This result was subsequently generalised by Murray to produce non-trivial units in Fd[P ],
where d is an arbitrary prime number [Mur21].

2.2.4 The group P

The Promislow group P was first identified by Promislow in [Pro88] as an example of a
torsion-free group that does not satisfy a certain group-theoretic property known to imply
the unit conjecture for group rings over that group. The group can be described in terms of
generators and relations as follows

⟨a, b|b−1a2b = a−2, a−1b2a = b−2⟩

Following Gardam [Gar21], we introduce two new variables x = a2 and y = b2 into the
presentation
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⟨a, b, x, y|b−1xb = x−1, a−1ya = y−1, x = a2, y = b2⟩

to express the group as the amalgam of two Klein bottle groups ⟨x, b|b−1xb = x−1⟩ and
⟨y, a|a−1ya = y−1⟩, along the isomorphic subgroups ⟨x, b2⟩ ∼= ⟨a2, y⟩. The subgroups are in
fact isomorphic to Z2, the free Abelian group on two generators. Being an index-2 subgroup
of each copy of the Klein bottle group, it is a normal subgroup of both groups and hence a
normal subgroup in the amalgam. The corresponding quotient is isomorphic to Z/2 ∗ Z/2,
which is the infinite dihedral group D∞. The commutator of the infinite dihedral group is
an infinite cyclic group [D∞, D∞] generated by the image of abab ∈ P in D∞, making the
corresponding quotient isomorphic to the Klein Four group Z/2×Z/2. Labelling the element
abab as z, we see that

z−1xz = (abab)−1a2(abab) = (ab)−1(b−1a2b)(ab)

= (ab)−1(a−2)(ab) = x

Similarly,

z−1yz = (abab)−1(b2)(abab) = (ab)−1(b−1(a−1b2a)b)(ab)

= (ab)−1b−2(ab) = b−1(a−1b−2a)b = y

This shows that z commutes with x and y. The map π : P → Z/2 × Z/2 obtained
by composing the intermediate maps through D∞ has as kernel ⟨x, y, z⟩ – which is in fact
isomorphic to Z3 – thus making P the centre of a short exact sequence of groups

1 → Z3 → P → Z/2× Z/2 → 1

The group P is therefore a metabelian group – a group containing an abelian normal
subgroup such that the quotient is also abelian. The kernel and quotient of the above short
exact sequence are well-understood abelian groups – one is a finitely-generated free abelian
group and the other is a finite abelian group. It would be useful to find a description of P
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completely in terms of these two well-understood groups and some additional data. More
generally, given abelian groups A and B, we would like to describe an arbitary metabelian
group corresponding to A and B in terms of some explicit data.

Group extensions and factor systems

A group G is defined to be an extension of Q by K if there is a short exact sequence of
groups

1 → K → G → Q → 1

The group extension problem is to classify all extensions G for a given Q and K. We
are interested in the special case of the group extension problem when Q and K are both
abelian.

Consider an arbitrary extension G of Q by K, where Q and K are abelian. As a set, G
can always be identified with K ×Q by choosing a section, i.e., a function σ : Q → G such
that ∀q ∈ Q, π(σ(q)) = q, where π : G → Q is the map occurring in the exact sequence.
Every element of G can be uniquely written in the form k · σ(q), where k ∈ K and q ∈ Q.

The product of two elements k · σ(q) and k′ · σ(q′) works out to be

(k · σ(q)) · (k′ · σ(q′)) = (k · σ(q)) · k′ · (σ(q)−1 · σ(q) · σ(q′))

= (k · (q • k′)) · (σ(q) · σ(q′))

where q • k′ = σ(q) · k′ · σ(q)−1 denotes the conjugation action of Q on K. The well-
definedness of the action uses the fact that K is abelian and hence the action of Q on K

does not depend on the section σ chosen.

Since σ is an arbitary map and not necessarily a homomorphism, it is not guaranteed
that σ(q) · σ(q′) is equal to σ(q+ q′). The extent of this deviation is captured by the cocycle
c : Q×Q → G, defined as c(q, q′) = σ(q)·σ(q′)·σ(q ·q′)−1. It turns out that the cocycle always
takes values in the kernel K, since π(c(q, q′)) = π(σ(q) ·σ(q′) ·σ(q ·q′)−1) = q ·q′ ·(q ·q′)−1 = 1,
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using the fact that σ is a section of the homomorphism π. Thus we have

(k · σ(q)) · (k′ · σ(q′)) = (k · (q • k′) · c(q, q′)) · σ(q + q′)

On the set K ×Q, the above formula translates to

(k, q) · (k′, q′) = (k + q • k′ + c(q, q′), q + q′)

using additive notation for the abelian groups K and Q. This shows that a group ex-
tension of Q by K determines an action of Q on K, and a section σ : Q → G determines a
cocycle c : Q×Q → K. These together give a product structure on the set K×Q. When the
section is a homomorphism, the cocycle c : Q → Q → K is uniformly the identity, reducing
this to the familiar semi-direct product. The associativity of the multiplication on G implies
the following condition on c, known as the cocycle condition:

∀qq′q′′ ∈ Q, c(q, q′) + c(q + q′, q′′) = q • c(q′, q′′) + c(q, q′ + q′′)

Functions c : Q × Q → K satisfying this condition are known as cocycles. In the other
direction, given abelian groups Q and K, an action of Q on K by automorphisms and a
function c : Q×Q → K satisfying the above condition, we can define a group structure on
K ×Q with the following multiplication

(k, q) · (k′, q′) = (k + q • k′ + c(q, q′), q + q′)

In fact, all metabelian groups are of this form. Given a section σ : Q → G and a function
ϕ : Q → K, the function σ′ : Q → G defined as q 7→ ϕ(q) · σ(q) is also a section, and
the cocycle c′ computed from σ′ differs from the cocycle c computed from σ by a so-called
co-boundary. Thus any metabelian group can be completely described by abelian groups Q

and K, together with an action of Q on K by automorphisms and a cocycle c : Q×Q → K

up to a coboundary.

Returning to the original group P , we can choose the section σ : Z/2 × Z/2 → P
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taking the values {1, a, b, ab}. In the rest of this chapter, Q and K are used to denote the
subgroups Z/2×Z/2 and Z3 of P . We can use the explicit group action of Z/2×Z/2 on Z3

by automorphisms and the cocycle c : (Z/2×Z/2)× (Z/2×Z/2) → Z3 determined by σ to
construct P as a group extension with the underlying set Z3×(Z/2×Z/2) and multiplication
determined by the action and cocycle. This is the approach we take in the formalisation
2.3.4, as this description of P has the desired structural and computational properties.

The torsion-freeness of P

The following is a sketch of the proof that the group P is torsion-free.

Suppose g ∈ P and n ∈ N are such that g is a torsion element with exponent n+ 1, i.e.,
such that gn+1 = 1 (we choose n+1 rather than n in the exponent since g0 = 1 is true for all
group elements). Observe that (g2)n+1 = g2(n+1) = (gn+1)2 = 12 = 1, i.e., g2 is also a torsion
element with the same exponent n + 1. Using the explicit description of the group P , we
can deduce that g2 ∈ Z3. Since Z3 is torsion-free, it follows that g2 must be 1. Using the
explicit description of P again, we conclude that g = 1, i.e., the group P is torsion-free. ■

2.3 Formalisation

The full proof of Giles Gardam’s result comprises two components – a proof that the group
P is torsion-free, and a computation in the group ring F2[P ] to confirm that the elements
identified by Gardam are (non-trivial) units. We use the nature of Lean4 as both a proof as-
sistant and programming language to seamlessly integrate the conceptual and computational
aspects in our formalisation.

We also make use of automation in two distinct forms - typeclasses and tactics.

• Typeclasses Typeclasses in Lean [SUM20] are a framework for recording, specify-
ing, synthesising and composing facts about data automatically through a mechanism
known as typeclass inference. The Decidable typeclass of Lean acts as a bridge between
proofs and computations. A proposition P is decidable if it can be algorithmically set-
tled in the positive or negative. Familiar examples of decidable problems include the
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Figure 2.1: A (forward) dependency graph for the formalisation

equality of natural numbers or graph connectivity; equality of functions of the type
N → Bool is not decidable as it involves checking infinitely many values. For a propo-
sition codeP, an instance of Decidable P can be specified by providing an algorithm to
mechanically settle it in finite time. Given a concrete decidable proposition P, typeclass
inference attempts to automatically synthesise a decision procedure by specialising and
combining existing decision procedures. Typeclasses thus provide a powerful form of
automation.

• Tactics Lean proofs are generally written interactively by supplying a sequence of
tactics, which are short snippets of text that modify the goal. Being a customisable
language, Lean allows users to modify existing tactics or write their own from scratch.
A notable general-purpose automation tactic heavily used in this formalisation is aesop,
which has been briefly described in 1.5.4.

2.3.1 Group rings

We define group rings in Lean keeping in mind the following goals:

• It should be possible to algorithmically decide when two elements of the group ring
R[G] are equal (assuming it is already possible to do so in the group and the ring).
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• It should be possible to define R-module homomorphisms from the group ring R[G] by
extending functions on G.

The first is a computational goal, and the second is a conceptual one. To achieve both
these goals, we first define free modules3 as quotients of formal sums 2.3.1; the equivalence
relation on formal sums can be described in two equivalent ways, each suited for a different
goal. Group rings are finally defined in terms of free modules.

Formal sums and coordinates

Fix a ring R and a set X. An expression of the form
Pn

i=0 aixi, where ai ∈ R and xi ∈ X,
describes an element of the free module R[X]. Such an expression can be represented as a
list of ordered pairs (ai, xi), or equivalently as a term of type List (R × X). An element of
the free module R[X] can be described by more than one such expression – for example, if
a, b ∈ R and x, y ∈ X, ax+ by and by+ax define the same element of the free module R[X].
The free module can be defined as a quotient of the set of formal sums List (R × X) by a
suitable equivalence relation.

Given a formal sum s =
Pn

i=0 aixi, we can associate to it a coordinate function χs : X →
R, with the coordinate of an element x of X being the sum of the coefficients ai corresponding
to indices i with xi = x. Observe that only finitely many coordinates are non-zero, and that
computing the coordinate of an element requires decidability of equality in X.

We can now define the free module R[X] as the quotient of formal sums by the equivalence
relation given by equality of coordinate functions.

Supports and decidable equality

When the basis X is infinite, it is impossible to decide the equality of the coordinate functions
χs1 and χs2 of two formal sums s1 and s2 by enumerating on the basis. However, it is possible
to decide equality using the support of a formal sum s =

Pn
i=0 aixi, which is defined to be the

set of elements xi occurring in the sum. This is a coarse notion of support, and contains the

3http://math.iisc.ac.in/~gadgil/unit_conjecture/UnitConjecture/FreeModule.html
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actual support – the set of elements on which the coordinate function is non-zero (formally
stated in Listing 2.3.1).

theorem nonzero_coord_in_support

(s : FormalSum R X) : ∀ x : X, 0 ̸= s.coords x → x ∈ s.support := . . .

Listing 2.3.1: Non-zero coordinates in support

It follows that the coordinates of a formal sum s =
Pn

i=0 aixi are zero everywhere outside
the support, supp(s) and thus to compare the coordinates of two formal sums s1 and s2,
it suffices to compare their values on the union of the two supports supp(s1) and supp(s2).
Since supports of formal sums are always finite, this is a check on a finite set and can be done
algorithmically even if the basis X itself is infinite. This shows the decidability of equality
in R[X], through the notion of supports of formal sums.

Elementary moves and universal properties

It is useful to be able to define R-module homomorphisms from R[X] by extending functions
on X, for example to construct the multiplication function in the group ring. It is straight-
forward to define an extension on formal sums by specifying f(

Pn
i=0 aixi) =

Pn
i=0 aif(xi),

but a different description of the equivalence relation is more convenient to show that this is
well defined in the quotient R[X]. We define a relation on formal sums given by the following
elementary moves :

• if the first term has zero coefficient, it is deleted.

• if the first two terms are of the form (a, x) and (b, x) for some x : X, they are
replaced by a single term (a + b, x).

• the first two terms are exchanged.

• a term is prepended to two formal sums related by an elementary move.

This is not an equivalence relation, but the quotient in Lean is defined for the equivalence
relation generated by it.
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It is straightforward to show that coordinates are unchanged by elementary moves. The
key result, which takes some work, is to show that two formal sums with the same coordinate
function are related by a sequence of elementary moves, i.e., have equal images in the quotient
by elementary moves.

This in turn depends on the technical result that if a formal sum s has a0 := χs(x0) ̸= 0

for some x0 ∈ X, then s is related by a sequence of elementary moves to a formal sum
of the form a0x0 + t, with the number of terms in t less than the number in s (stated in
Listing 2.3.2), which is proved by well-founded recursion.

theorem nonzero_coeff_has_complement (x0 : X)(s : FormalSum R X) :

0 ̸= s.coords x0 →
(∃ ys : FormalSum R X,

(((s.coords x0, x0) :: ys) ≃ s) ∧ (List.length ys < s.length)) := . . .

Listing 2.3.2: Complements in formal sums

This is used to show that coordinate functions and elementary moves both define the
same equivalence relation on formal sums, and the two descriptions of the free module R[X]

are used in proving both the computational and conceptual properties needed.

Group rings

Group rings are defined from formal sums 4 by constructing a multiplication function on
formal sums, first by right multiplication by a monomial a · g, and then recursively for
arbitrary formal sums. Various properties are proved by (iterated) induction. These allow
us to define the product on R[G] by showing invariance under elementary moves.

2.3.2 Enumeration and decision procedures

The construction of P as a metabelian group from an action and a cocycle requires supplying
the relevant functions together with proofs that they satisfy the required properties. These
verifications are examples of details that are typically omitted in mathematical practice but

4http://math.iisc.ac.in/~gadgil/unit_conjecture/UnitConjecture/GroupRing.html
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are nevertheless required for a fully formal proof. This section describes our approach to
automating these verifications using decision procedures and enumeration. 5

Enumeration

If a property P can be automatically checked (or decided) for any given element of a set
X, and the set X itself is finite, then the property ∀x ∈ X,P (x) can also be checked
algorithmically by enumeration on X. This idea, when applied iteratively in conjunction
with Lean’s typeclass inference mechanism, allows us to expand the collection of statements
that can be automatically decided.

The property of a type being "exhaustively checkable" in the sense described above is
captured by the DecideForall typeclass (see listing 2.3.3).

/-- A typeclass for "exhaustively verifiable types", i.e.,

types for which it is possible to decide whether a given (decidable) predicate

holds for all its elements. -/

class DecideForall (α : Type _) where

decideForall (p : α → Prop) [DecidablePred p]:

Decidable (∀ x : α, p x)

Listing 2.3.3: The DecideForall typeclass

We prove some useful facts about DecideForall and exhibit various ways to construct
such types (through products, direct sums and functions), which are registered as typeclass
instances. These can then be used to automate some routine verifications, such as in List-
ing 2.3.4, which proves associativity of addition in Z/3Z.

theorem Zmod3.assoc :

∀ x y z : Fin 3, (x + y) + z = x + (y + z) := by decide

Listing 2.3.4: Associativity by enumeration

The same underlying ideas are used to verify the cocycle condition in the construction of
P .

5http://math.iisc.ac.in/~gadgil/unit_conjecture/UnitConjecture/EnumDecide.html
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Remark 2.3.1. Somewhat paradoxically, there are also examples of infinite sets that can
be exhaustively checked. Moreover, these are characterised as those that are topologically
compact (under the so-called intrinsic topology). These are described further in Martín
Escardó’s paper [Esc08].

Enumeration of basis of free Abelian groups

Verifying whether a map from a group to the set of endomorphisms of another group is a
group action by automorphisms requires checking equality of homomorphisms. When the
target group is infinite (which is the case in the construction of P , where the target group
is Z3), an automatic check by enumeration is no longer possible.

However, since Z3 is a finitely generated free Abelian group, any homomorphism from
it is determined entirely by the values at the three basis elements (1, 0, 0), (0, 1, 0), (0, 0, 1).
As this is a finite set, it is still possible in this case to check equality of homomorphisms by
enumerating the basis.

To this end, we define free Abelian groups equipped with a basis as a typeclass AddFreeGroup,
and prove basic proprties including that Z is a free Abelian group on the singleton type and
that the product of free groups is free on the direct sum of the bases. We also show that
when the basis of the free Abelian group has an instance of DecideForall, equality of ho-
momorphisms is determined by equality on the basis. This is the crucial result that allows
us to automatically verify that the function P.action in the construction of P is in fact an
action of Q on K by automorphisms.

2.3.3 Construction of metabelian groups

We perform the general construction of metabelian groups in Lean 6 as group extensions
following the description in 2.2.4.

We begin by defining cocycles and group actions by automomorphisms using typeclasses,
which is the standard way of encoding algebraic structures in mathlib. As a convention, we
take cocycles to be normalised, i.e., when both inputs of the cocycle are the identity element,

6http://math.iisc.ac.in/~gadgil/unit_conjecture/UnitConjecture/MetabelianGroup.html

37



the value of the cocycle is the identity element of the target group. For convenience, we also
make a few standard deductions from the cocycle condition and annotate these lemmas with
the aesop attribute.

class Cocycle {Q K : Type _} [AddGroup Q] [AddGroup K] (c : Q → Q → K) where

/-- An action of the quotient on the kernel by automorphisms. -/

α : Q → (K →+ K)

/-- A typeclass instance for the action by automorphisms. -/

autAct : AutAction α

/-- The value of the cocycle is zero when its inputs are zero, as a convention.

-/

cocycle_zero : c 0 0 = (0 : K)

/-- The *cocycle condition*. -/

cocycle_condition : ∀ q q’ q’’ : Q, c q q’ + c (q + q’) q’’ = q +v c q’ q’’ + c

q (q’ + q’’)

Listing 2.3.5: The Cocycle typeclass

As outlined in 2.2.4, any metabelian extension of an Abelian group K by another Abelian
group Q determined by an action α and cocycle c can be constructed on the underlying set
K ×Q, with the multiplication given by the formula in Listing2.3.6.

def mul : (K × Q) → (K × Q) → (K × Q)

| (k, q), (k’, q’) => (k + (q +v k’) + c q q’, q + q’)

Listing 2.3.6: The formula for multiplication in a Metabelian group

The identity and inverse operations of the group can likewise be described by explicit for-
mulae. The various properties required for proving the group structure, such as cancellation
of inverses and associativity of multiplication, are proved (and to a large extent automated)
in Lean’s tactic proof mode using the aesop tactic.

As incorrect definitions can be a failure point in formalisation, we also verify that the
resulting group lies in an exact sequence flanked by K on the left and Q on the right, though
this fact is not used anywhere in the code.
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2.3.4 The construction of the group P

The group P can be constructed as a metabelian group with kernel K := Z × Z × Z and
quotient Q := Z/2 × Z/2 7 using the explicit action and cocycle given in Giles Gardam’s
paper [Gar21]. These are given in Listings 2.3.7 and 2.3.8. The three generators of the free
group K are given the labels x, y, z , and the names e, a, b, c refer to the four elements of
Q.

/-- A temporary notation for easily describing products of additive monoid

homomorphisms. -/

local infixr:100 " × " => AddMonoidHom.prodMap

/-- The action of ‘Q‘ on ‘K‘ by automorphisms.

The action can be given a component-wise description in terms of ‘id‘ and ‘neg‘,

the identity and negation homomorphisms. -/

def action : Q → (K →+ K)

| .e => .id Z × .id Z × .id Z
| .a => .id Z × neg Z × neg Z
| .b => neg Z × .id Z × neg Z
| .c => neg Z × neg Z × .id Z

Listing 2.3.7: The action of Q on K by automorphisms

/-- The cocycle in the construction of ‘P‘. -/

def cocycle : Q → Q → K

| a , a => x

| a , c => x

| b , b => y

| c , b => -y

| c , c => z

| b , c => -x + -z

| c , a => -y + z

| b , a => -x + y + -z

| _ , _ => 0

Listing 2.3.8: The cocycle

7http://math.iisc.ac.in/~gadgil/unit_conjecture/UnitConjecture/GardamGroup.html
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Performing the construction also requires proofs that these functions indeed determine
an action and a cocycle respectively. The two groups involved in the construction have
descriptions which are particularly amenable to computation – the group K is the free abelian
group on three generators, and the group Q is a finite, non-cyclic group with four elements.
Using the decision procedures developed in 2.3.2, these verifications can be automated.

The group P is finally constructed as a metabelian group using the general construction
of 2.3.3 by supplying the specific action and cocycle.

def P := K × Q

instance (priority := high) PGrp : Group P := MetabelianGroup.metabelianGroup

cocycle

instance : DecidableEq P := inferInstanceAs <| DecidableEq (K × Q)

Listing 2.3.9: The group P

A consequence of having the group structure defined on the set Z3 × (Z/2×Z/2) is that
each group element can be written uniquely as a product and equality of group elements
is decidable since equality of each of the components is decidable. This is a computational
advantage of the metabelian description of the group P .

Remark 2.3.2. The set P := K×Q also admits a product group structure, in addition to the
specified metabelian group structure. To resolve this ambiguity, we set the priority for the
metabelian group instance higher. For general code hygiene, we mark instances involving
the type K × Q as scoped, so that these are confined to the namespace in which they are
defined.

2.3.5 The torsion-freeness of P

The proof of torsion-freeness of the group P follows the mathematical sketch in 2.2.4. The
property of torsion-freeness is once again implemented as a typeclass in our code. 8

As a first step, we need to prove that the square of any element of P lies in the subgroup
K. This is done in two steps – by first constructing a map sq : P → K and then proving

8http://math.iisc.ac.in/~gadgil/unit_conjecture/UnitConjecture/TorsionFree.html
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that it (more precisely, its inclusion) agrees with the function taking an element of P to
its square. This proof is a direct consequence of unfolding the definitions, and can be done
automatically using aesop.

The torsion-freeness of the kernel K is deduced by typeclass-inference from general the
general facts that the group of integers Z is torsion-free and that the product of torsion-free
groups is torsion-free.

The third step in the proof is to show that the group P does not contain any elements of
order 2. The structure of the group P makes it convenient to prove this fact by taking cases
on the second component of a given group element and simplifying with aesop.

Together with the general fact that if gn = 1 for some g ∈ P and n ∈ N then (g2)n = 1,
the proof of torsion-freeness of P follows: For suppose gn = 1, where g ∈ P and n > 1.
Then the identity (g2)n = 1 can be deduced from general properties of exponentiation. But
g2 ∈ K, which is a torsion-free group. Hence g2 = 1. But the group P has no elements
of order 2, which forces g = 1. Thus the only element of P with non-trivial torsion is the
identity element. ■

2.3.6 Gardam’s theorem

We finally come to the formal verification of Giles Gardam’s counter-example. 9 The unit
conjecture is stated as follows in our code:

/-- The statement of Kaplansky’s Unit Conjecture:

The only units in a group ring, when the group is torsion-free and the ring is a

field, are the trivial units. -/

def UnitConjecture : Prop :=

∀ {F : Type _} [Field F] [DecidableEq F]

{G : Type _} [Group G] [DecidableEq G] [TorsionFree G],

∀ u : (F[G])×, trivialNonZeroElem (u : F[G])

This relies on trivialNonZeroElem, which is defined as the property of a free module
element having a unique non-zero coordinate.

9http://math.iisc.ac.in/~gadgil/unit_conjecture/UnitConjecture/GardamTheorem.html
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The occurrences of DecidableEq in our definition reflect our decision to work construc-
tively. If one were to work classically, where every proposition is decidable, then the hy-
potheses of decidable equality could be omitted.

Giles Gardam’s unit α is assembled from four pieces p, q, r and s. Likewise, its inverse
α′ is assembled from four pieces p′, q′, r′ and s′.

To prove that α is non-trivial, we exhibit two distinct coordinates on which it takes
non-zero values.

To verify that α is a unit, we prove the proposition α · α′ = 1 using the native_decide

tactic. The way in which the group ring machinery was set up in our code makes this
proposition decidable.

The final proof of Giles Gardam’s theorem, that the Unit conjecture is false, follows as a
simple consequence.

/-- A proof of the existence of a non-trivial unit in ‘F2[P ]‘. -/

def Counterexample : {u : (F2[P ])× // ¬(trivialNonZeroElem u.val)} :=

⟨⟨α, α’, by native_decide, by native_decide⟩, α_nonTrivial⟩

/-- Giles Gardam’s result - Kaplansky’s Unit Conjecture is false. -/

theorem GardamTheorem : ¬ UnitConjecture :=

fun conjecture => Counterexample.prop <|

conjecture (F := F2) (G := P) Counterexample.val

2.4 Extra measures for verification

Essentially the only way in which a formally proved result can be wrong is if the main
statement or some definition involved in it is wrong. One can greatly reduce the chance of
this happening by proving extra results about the definitions to confirm various properties
that are expected to hold. The approach of proving such test theorems was also taken in the
Liquid Tensor Experiment [Sch22]. Definitions from mathlib have effectively been very well
tested by use in many results.
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To test the correctness of our definitions of group rings and free modules – which are
relatively complex constructions – we proved a few results that are not needed in the main
theorem (some of these were on the suggestion of Giles Gardam).

• The group ring of a group is a ring, in particular the product is associative.

• The inclusion map G → R[G] given by g 7→ g · 1 is a monoid homomorphism. Further,
if R is a field, then the map g 7→ g · 1 is injective.

• The inclusion map R → R[G] given by r 7→ r · 1 is a ring homomorphism and is
injective.

An additional check on the definition of free modules is that the two definitions of quo-
tients on formal sums were proved to be equivalent. Further, we proved a universal property
for free modules.

Another test (which we first accidentally carried out) is to slightly vary the formulas for
Gardam’s units, and check that these are not units.

Our statement involved the definition of non-trivial units; while this is a relatively simple
definition, it involved our construction of the group ring and not just its structure. To avoid
errors arising from this, we proved that our definition was equivalent to the standard one.

Observe that the correctness of our formalisation of a disproof Kaplansky’s unit conjecture
does not need our group P to coincide with the group which Gardam considered, since it only
requires the existence of a counter-example. However, we are confident that the counter-
example in our code coincides with the one specified by Gardam, since the alternative of
finding a different counter-example to the unit conjecture by chance is exceedingly unlikely.

We also show that our construction of metabelian groups satisfies the defining short exact
sequence.

2.5 Conclusion

Our formalisation illustrates how softwares such as Lean4 can be used to combine formal
proofs with efficient proved algorithms to verify results of the nature of Giles Gardam’s theo-
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rem in real time. It is one among only a handful of other instances of real-time formalisation,
such as the formalization of the Cap set conjecture by Dahmen, Hölzl and Lewis [DHL19],
that of the Erdös-Graham density theorem (proved by Thomas Bloom) [Blo21] by Thomas
Bloom and Bhavik Mehta and the Liquid Tensor Experiment [Sch22]. We hope that as
the size of mathlib and the power of automation tools like aesop continue to increase, such
formalisations will become more commonplace.

A crucial aspect of the formalisation was the choice of the description of the group P

as a metabelian group, which was suitable for both the proof of torsion-freeness and the
computation in the group ring. Our heavy use of automation in the form of typeclasses and
tactics was another component that made this formalisation fairly quick with a low de Bruijn
factor 1.3.3. We hope that a blend of proofs and proved algorithms will be useful for many
results.
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Chapter 3

The ends of a graph : a formalisation

This chapter describes the concept of the ends of a graph, together with a formalisation of
the definition and related concepts in the Lean proof assistant. All work in this chapter
is joint with Rémi Bottinelli. Some parts of our code have been integrated with the Lean
mathematics library mathlib, and some other parts are under review. The main files of the
code, including some unfinished portions, have been gathered in the following repository:
https://github.com/0art0/Freudenthal-Hopf.

The section 3.1 describes the relevant mathematics, including the intuitive idea, a rigorous
definition and the notion of functoriality of ends. The next section 3.2 describes parts of our
formalisation, with an emphasis on some of our choices of definitions and the insights we
had while formalising these concepts.

3.1 The ends of a graph

3.1.1 The idea of ends

The ends of a graph (or more generally, a topological space) intuitively represent the distinct
directions in which the graph approaches infinity.

Thus, the graph of natural numbers, shown in 3.1.1, has one end which extends to the
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right. Similarly, the graph of integers, shown in 3.1.1, has two ends – one extending in each
direction.

Figure 3.1: The graph of natural numbers with one end

Figure 3.2: The graph of integers with two ends

A more complicated graph such as the one shown in 3.1.1 has infinitely many ends.

A finite graph has no ends, as it does not extend infinitely in any direction.

3.1.2 A rigorous definition of ends

Several definitions have been put forth to make the above intuitive idea of ends precise. We
describe one here:

Definition 3.1.1 (Ends). Let G be a graph on a vertex set V . An end of G is defined as
a function assigning to each finite subset of V a connected component in its complement,
subject to a consistency condition that the component assigned to any subset of a finite set
K must contain the component assigned to K.

An end therefore indicates a general "direction" of travel outside a chosen finite subset
of the graph, with the consistency condition ensuring that this direction is preserved on
shrinking or expanding this finite set.

Remark 3.1.2. If K and L are two subsets of the vertex set of a graph with K ⊆ L, any
non-empty connected component in the complement of L determines a unique connected
component in the complement of K that contains it. This follows from the fact that any
non-empty connected set of a graph is contained in a unique connected component.
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Figure 3.3: A graph with infinitely many ends

Other definitions of ends include the one in terms of rays by Halin [Hal77] and the
description as a pursuit-evasion game on a graph (which is similar to the above definition)
due to Robertson, Seymour and Thomas [RST91]. These have been proved to be equivalent
in [DK03].

The definition 3.1.1 can also be formulated more conceptually in the language of category
theory. We recall some relevant category-theoretic notions below.

Definition 3.1.3. A directed set is a set I equipped with a reflexive and transitive binary
relation ≤ such that for every a, b ∈ I, there is a c ∈ I such that a ≤ c and b ≤ c.

Remark 3.1.4. A directed set can be regarded as a category whose hom-sets are sub-singletons,
equipped with "weak" coproducts.

Definition 3.1.5. Let J be a directed set, regarded as a category in the above sense. Given
a category C and a functor F : Jop → C (known as an inverse system), the inverse limit of
the inverse system is an object X in C equipped with morphisms πj : X → F (j) for each
j ∈ J , such that for any f : j → j ′ in J , πj = F (f) ◦ πj′ . Moreover, the inverse limit is
universal among all such pairs (Y,ϕj), in the sense that there must exist a unique morphism
u : Y → X such that ϕj = πj ◦ u, for each j ∈ J .

Remark 3.1.6. In the category of sets, and many other concrete categories, the inverse limit
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of a system always exists.

Definition 3.1.7. Given a functor F : C → Set, a section of F is a consistent choice of
elements σ(x) ∈ F (x) for each x ∈ C, such that for any f : x → x′ in C, F (f)(σ(x)) = σ(x′).

Remark 3.1.8. Each element in the inverse limit of a system F : J op → Set determines a
section of F by mapping the chosen element along the projections. Conversely, every section
of F determines a unique element of the inverse limit of the system F using the universal
property. A section σ can be regarded as a collection of functions ϕj : {⋆} → F (j) from the
single-object set; the universal property gives a unique map u : {⋆} → limF whose image is
the required object.

With the above concepts, the definition of ends can be restated as:

Definition 3.1.9 (Ends). Let G be a graph with vertex set V . The set of finite subsets of
V form a directed set Fin(V ) under inclusion.

Consider the function C : Fin(V ) → Set taking a finite set K ⊆ V to the set C(K)

of connected components of the graph G\K. From 3.1.2, it follows that if K ⊆ L are
finite subsets of V , there is a map from C(L) to C(K). Together, this determines a functor
E : Fin(V )op → Set.

The ends are defined to be the sections of the functor E (or equivalently, elements of the
inverse limit of E).

Remark 3.1.10. Restricting to the infinite connected components outside a given finite set
gives the same set of ends.

3.1.3 Functoriality of ends

Sufficiently nice maps between graphs induce maps between the corresponding sets of ends.
More concretely, there is a category QGrph whose objects are graphs and a functor End :

QGrph → Set taking a graph to its set of ends. The following heuristic describes the
behaviour of the morphisms under the functor:

Let ϕ : G → G′ be a “sufficiently nice” map between graphs, and let e be an end
of G. To define an end on G′ corresponding to e, we first pick an arbitrary finite
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subset L of G′. Now suppose that we are somehow able to produce a finite subset
K of G from L; let C denote the connected component in the complement of K
determined by the end e. Assuming that ϕ maps C into a connected component in
the complement of L, we can construct an end on G′ by assigning this component
to the chosen set L.

To make this heuristic precise, we require a function assigning to each finite subset L

of G′ a finite subset K of G, together with the property that the map ϕ sends connected
components outside K to connected components outside L. These two conditions abstractly
describe maps between graphs which induce maps between the corresponding ends; the next
section describes some concrete classes of maps satisfying these properties.

Remark 3.1.11. For a map ϕ between graphs to induce a map of connected components, it
is both necessary and sufficient for it to preserve connectivity, i.e., if a, b are vertices in the
domain which are connected by a path, their images ϕ(a),ϕ(b) in the codomain should also
be connected by a path.

The induced map between ends is described below in more precise terms. Let G and
G′ be graphs, and let ϕ : G → G′ be a map. Suppose β is a function which takes finite
subsets of G′ to finite subsets of G, and moreover ensures that for any finite subset L of G,
β(L) contains ϕ−1(L). Then for any such L, it is possible to restrict ϕ to a map ϕL from
G\β(L) to G′\L. Suppose that for any L, ϕL preserves connectivity, i.e., sends connected
components to connected components. Then ϕ induces a map of ends as follows: Let e

be an end of G, and let L be a finite subset of G′. The set β(L) is a finite subset of G,
and the end e determines a connected component C in the complement of β(L). Since the
map ϕL preserves connectivity, mapping along it produces a connected component CL in the
complement of the set L. This determines an end e′ on G′. The consistency condition that
e′(L′) ⊆ e(L) whenever L ⊆ L′ can be verified by considering the image of the connected
component e(β(L) ∪ β(L′)).

3.1.4 Ends of groups

Using the notion of the ends of a graph, it is possible to define the notion of the ends of a
group. It is possible to pass from groups to graphs via the notion of the Cayley graph of a
group [Löh17]:
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Definition 3.1.12 (Cayley graph). The Cayley graph of a group G with generating set S

is the graph whose vertices are the elements of G in which all edges are of the form (g, gs)

or (gs, g), where g ∈ G and s ∈ S.

A group can have many generating sets, and thus the definition of a Cayley graph of a
group depends on the choice of the generating set. However, it turns out that the Cayley
graphs defined by any two generating sets S and S ′ of a group G are quasi-isometric.

Quasi-isometric embeddings and quasi-isometries are “coarse” analogues of isometric em-
beddings and isometries.

Definition 3.1.13 (Quasi-isometric embedding). Let G and G′ be graphs (or more generally,
pseudo-metric spaces). A map ϕ : G → G′ is a quasi-isometric embedding if there exist
constants K ≥ 1 and C ≥ 0 such that

∀x, y ∈ G,
1

K
dG(x, y)− C ≤ dG′(ϕ(x),ϕ(y)) ≤ KdG(x, y) + C

Definition 3.1.14 (Quasi-isometry). A quasi-isometry is a map ϕ : G → G′ between graphs
which is both a quasi-isometric embedding and “coarsely surjective”, i.e., every point of G′

is within a fixed distance D of ϕ(G).

It is also possible to formulate this more conceptually in terms of coarse bi-Lipschitz
maps. [La 00]

Definition 3.1.15 (Coarse-Lipschitz maps). A map ϕ : G → G′ between graphs is coarse
Lipschitz with constants K ≥ 1 and C ≥ 0 if

∀x, y ∈ G, dG′(ϕ(x),ϕ(y)) ≤ KdG(x, y) + C

Definition 3.1.16 (Coarsely close maps). Two maps ϕ,ψ : G → G′ between graphs are
considered to be coarsely close if

supx∈G dG′(ϕ(x),ψ(x)) < ∞
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It turns out that a quasi-isometry of graphs G and G′ can be described more conceptually
as a pair of maps ϕ : G → G′ and ψ : G′ → G such that ϕ ◦ ψ and ψ ◦ ϕ are coarsely close
to the identity maps on their respective graphs.

Theorem 3.1.17. Two maps ϕ,ψ : G → G′ between graphs induce the same map between
the ends if and only if they are coarsely close (this assumes that the two maps are sufficiently
nice to induce maps of ends in the first place).

Theorem 3.1.18. The Cayley graphs of a group G defined by two generating set S and S ′

are quasi-isometric.

Theorem 3.1.19. Quasi-isometries satisfy the conditions required for inducing functoriality
of ends. In particular, the ends of quasi-isometric graphs are in bijection with each other.

With these notions, it is possible to define the ends of a group:

Definition 3.1.20. The ends of a group G are defined to be the ends of the Cayley graph for
a choice of generating set of G. By the above results, the set of ends of a group is invariant
up to bijection under the choice of generating set.

3.2 Formalisation

This section describes the formalisation of ends and related properties in mathlib by Rémi
Bottinelli and the author. We formalise ends in the generality of graphs rather than metric
spaces or topological spaces, since it is both more concrete to work with and is sufficient
for applications to geometric group theory. Portions of the code forming a part of the
background theory are omitted for clarity.

3.3 The definition of ends

While the definition 3.1.1 was initially chosen for concreteness, it turned out to be difficult
to use in practice – the fact that an infinite graph has at least one end was in particular
quite tedious to prove using this definition. On the suggestion of Kyle Miller, we adopted
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the more abstract formulation of ends 3.1.9 in terms of sections of a functor. Because of
its category-theoretic nature, it allowed us to prove some properties of ends by specialising
general results in mathlib’s vast category theory library.

We begin by defining the notion of the connected components in the complement of a
given set 3.3.1, and proceed to prove various useful properties about this definition.

variables {V : Type u} (G : simple_graph V) (K : set V)

/-- The components outside a given set of vertices ‘K‘ -/

@[reducible] def component_compl := (G.induce Kc).connected_component

Listing 3.3.1: The connected components in the complement of a set of vertices.

This definition was chosen after several iterations, taking into account usability for defin-
ing ends and compatibility with the foundations of Lean and the conventions of mathlib.
The cluster of properties surrounding a definition determine the ease with which it can be
used in another part of the code. We take care to prove various theorems about disjointness
and adjacency of components and vertices that are relevant for our formalisation.

When K ⊆ L are two sets of vertices, any component in the complement of L gives unique
component in the complement of K containing it. The listing 3.3.2 contains our definition
of this map between components.

/--

If ‘K ⊆ L‘, the components outside of ‘L‘ are all contained in a single component

outside of ‘K‘.

-/

@[reducible] def hom (h : K ⊆ L) (C : G.component_compl L) : G.component_compl K

:=

C.map (induce_hom hom.id (set.compl_subset_compl.2 h))

Listing 3.3.2: The map between connected components in the complement

Finally, we define the functor sending finite sets of vertices to the set of connected com-
ponents in their complement (as described in 3.1.9) and define the ends of a graph as the
sections of this functor 3.3.3.

/--
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The functor assigning, to a finite set in ‘V‘, the set of connected components in

its complement.

-/

@[simps] def component_compl_functor : (finset V)op => Type u :=

{ obj := λ K, G.component_compl K.unop,

map := λ _ _ f, component_compl.hom (le_of_op_hom f),

map_id’ := λ K, funext (λ C, C.hom_refl),

map_comp’ := λ K L M h h’, funext (λ C, C.hom_trans (le_of_op_hom h)

(le_of_op_hom h’)) }

/-- The end of a graph, defined as the sections of the functor

‘component_compl_functor‘ . -/

@[protected]

def «»end := (component_compl_functor G).sections

Listing 3.3.3: The definition of the ends of a graph

With this definition of ends, we can prove that an infinite locally-finite graph has at least
one end by specialising an abstract result from category theory which states that the inverse
limit of an inverse system of non-empty, finite sets is non-empty.

/--

A locally finite preconnected infinite graph has at least one end.

-/

lemma nonempty_ends_of_infinite [Glf : locally_finite G] [fact $ preconnected G]

[Vi : infinite V] :

G.end.nonempty :=

by classical; apply nonempty_sections_of_finite_inverse_system

G.component_compl_functor

Listing 3.3.4: An infinite locally-finite graph has at least one end

3.4 The functoriality of ends

We define functoriality of ends with two goals in mind:
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• Abstractly describing the maps between graphs which induce maps between the corre-
sponding ends in the greatest possible generality.

• Proving that a concrete class of maps – namely the quasi-isometric embeddings (or
coarse Lipschitz maps with coarse Lipschitz inverses) – induce functoriality of ends.

We recall the abstract characterisation of maps that induce functoriality of ends, as
described in 3.1.3. A map ϕ : G → G′ between graphs induces functoriality of ends if

• There is a function β is a function which takes finite subsets of G′ to finite subsets of
G, such that for any finite subset L of G′, β(L) contains ϕ−1(L).

• The restriction of the map ϕ to the domain G\β(L) and range G′\L preserves conti-
nuity, in the sense that it sends connected sets to connected sets.

While formalising this in Lean, we realised that the second condition on preserving con-
tinuity can be expressed more succinctly by defining the notion of an ∞-Lipschitz map (i.e.,
a coarse Lipschitz map where the scaling constant takes the value ∞). This rests on the
observation that two points of a graph are connected by a path if and only if their distance is
strictly less than infinity. We modify the definition of a coarse Lipschitz map to an equivalent
one that accommodates the case where the scaling constant K takes the value ∞.

Definition 3.4.1 (Coarse Lipschitz map). A map ϕ : G → G′ between graphs is coarse
Lipschitz with constants K ≥ 1 and C ≥ 0 if

∀x, y ∈ G, ∀a, dG(x, y) < a =⇒ dG′(ϕ(x),ϕ(y)) < K · a+ C

In code, this is formulated as

def coarse_lipschitz_with (K : N∞) (C : N) (f : V → V’) :=

∀ {|x y : V|}, ∀ {|a|}, G.edist x y < a → G’.edist (f x) (f y) < K * a + C

Listing 3.4.1: The definition of a coarse Lipschitz map

Equipped with this definition, we define a structure capturing the properties required for
a function to induce a map between ends.
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/-- The kind of map between graphs which induces a map on the ends. -/

structure coarse_map {V V’ : Type u} (G : simple_graph V) (G’ : simple_graph V’)

(f : V → V’) :=

(K : N∞) (C : N)
(finset_mapping : finset V’ → finset V)

(finset_inv_sub : ∀ L : finset V’, f −1’ (L : set V’) ⊆ (finset_mapping L : set

V))

(induced_coarse_lipschitz : ∀ L : finset V’,

coarse_lipschitz_with (G.induce (finset_mapping L)c) (G’.induce Lc)

K C (induce_out f (finset_inv_sub L)))

Finally we use this definition to prove the functoriality of ends.

def coarse_map.end_map [decidable_eq V] {f : V → V’} (fcoarse : coarse_map G G’

f) : G.end → G’.end := by

{ . . . }

Listing 3.4.2: A proof that coarse maps induce maps of ends

3.5 Conclusion

This chapter describes work (done in collaboration with Rémi Bottinelli) towards formalising
the concept of the ends of a graph in Lean’s mathematics library mathlib. The formulation
of the definitions and concepts required several iterations to ensure compatibility with the
relevant library definitions while also maintaining their usability. By stating some defini-
tions in more generality, we were able to specialise existing library results to obtain short
and conceptual proofs of otherwise tedious theorems. The formalisation also led to some
new insights, albeit small, such as the notion of ∞-Lipschitz maps. Future work in this
direction could include formalising well-known theorems about the ends of graphs, such as
the Freudenthal-Hopf theorem or Stallings’ theorem about ends, to test the usability of this
definition of ends.
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Chapter 4

A formalisation blueprint for Stallings’
topological proof of Grushko’s theorem

4.1 Introduction

Grushko’s theorem [Gru40] is a group-theoretic result concerning the ranks of finitely-
generated groups. For finitely-generated groups A and B, Grushko’s theorem states that

rank(A ⋆B) = rank(A) + rank(B)

where A ⋆ B denotes the free product of A and B and the rank of a group refers to the
smallest cardinality of a generating set of that group. In other words, Grushko’s theorem
states that the rank of a free product of finitely-generated groups is equal to the sum of
the ranks of the individual groups. The bound rank(A ⋆ B) ≤ rank(A) + rank(B) follows
from the structure of the free product, since any generating sets X of A and Y of B give a
generating set X ∪ Y of A ⋆ B; Grushko’s theorem shows that this inequality is in fact an
equality.

Grushko’s theorem can be easily deduced from a more general lemma about free groups
and free products:

Lemma 4.1.1 (Grushko). Consider a finitely-generated free group F and two finitely-generated
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groups A and B, and let ϕ : F → A ⋆B be a surjective homomorphism. Then ϕ splits, i.e.,
there are subgroups F1 and F2 of F such that F = F1 ⋆ F2 and ϕ(F1) = A and ϕ(F2) = B.

Grushko’s theorem follows from 4.1.1 by viewing a finitely-generated group as one marked
by a surjective homomorphism from a finitely-generated free group and using the fact that
any sub-group of a free group is free (a well-known result known as the Nielsen-Schreier
theorem [Nie21] [Sch27]).

This result has been studied and generalised in various contexts. The lemma 4.1.1 can be
extended to involve the free product of arbitrarily many groups. The lemma 4.1.1 has also
been studied and substantially generalised by Higgins using groupoid techniques [Hig66].
Notably, the purely-group theoretic result 4.1.1 has been given an elegant topological proof
by Stallings [Sta65]; this proof is a remarkable instance of topological methods being used
in group theory [SW79], and is the focus of this chapter.

Stallings’ topological proof is presented in detail in the next section 4.2, adapted primarily
from [SW79], but with elements of Stallings’ original proof [Sta65]. The bridge between the
worlds of topology and group theory in Stallings’ proof comes from the fundamental group.
Though the result can be stated and presented for general topological spaces, it is better
understood using a combinatorial model of space in the form of CW complexes. It suffices to
consider finite two-dimensional CW complexes – which consist of disks bounding loops on an
underlying graph – as every finitely-presented group is the fundamental group of some finite
two complex and the fundamental group of a CW complex depends only on its two-skeleton.
Thus, paths become edge paths, generators and group elements become edge loops at a fixed
base-point on the two-complex, and relations become disks on the two-complex. Stallings’
proof crucially relies on the idea of a binding tie (defined in 4.2), which makes it possible
to iteratively reduce the number of connected components in a certain sub-complex until
there is only one component. When there are finitely many groups involved, Stallings’ proof
is algorithmic and constructive, and can be used to explicitly identify the subgroups in the
splitting of the free group in 4.1.1.

Stallings’ topological proof of Grushko’s theorem is an interesting target for formalisation
for various reasons. Grushko’s theorem is an important mathematical result that has not
been formalised in any proof assistant so far (to the best of our knowledge). Stallings’
proof involves a delicate interplay of algebra, topology, visual intuition, and algorithms.
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Formalising the result and structuring the definitions and ideas in a way that captures
both the topological and algorithmic aspects is a challenging and worthwhile endeavour. A
constructive formalisation of the result will not only certify that the result is correct, but also
give a way to compute the generators of the two subgroups of the free group in 4.1.1. Thus it
may be regarded as an algorithm with proof for computing the splitting in 4.1.1. Moreover,
such a formalisation can be combined with graph rendering tools to produce visualisations
accompanying the execution of the binding tie algorithm, which may aid in understanding the
proof. A formalisation that combines mathematical proofs with algorithms and visualisation
may serve as inspiration for other formalisations of a broadly similar nature.

This chapter presents Stallings’ proof of Grushko’s theorem in 4.2. The rest of the
chapter is devoted to describing a possible formalisation blueprint – a detailed description of
the proof and the definitions involved in a way that is suitable for formalisation. Care is taken
to ensure that the definitions can be used for computation, and also that the computations
are reasonably efficient. The binding tie algorithm is described keeping in mind the eventual
goal of exporting the graph structure of the complex to an external tool for visualisation.
Formalisation of this proof in the Lean4 proof assistant is not yet complete at the time of
writing.

4.2 Stallings’ topological proof of Grushko’s theorem

This section describes a sketch of the proof of 4.1.1 due to Stallings, which uses topological
ideas to establish this group-theoretic result. Finitely-presented groups are viewed as the
fundamental groups of finite two-complexes, which opens up the problem to topological
methods. The proof in this section follows the standard notation and terminology of the
algebraic topology and graph theory literature.

To prove the result, consider two pointed CW complexes (C, c) and (D, d) with funda-
mental groups isomorphic to A and B respectively. The wedge product of C and D with
their respective base-points produces a pointed CW complex (C ∨ D, v) with fundamental
group isomorphic to the free product A ⋆ B. Consider a pointed CW complex (X, x) whose
fundamental group is the free group F , together with a surjective base-point preserving con-
tinuous map f : (X, x) → (C ∨ D, v) such that π1(f) = ϕ. This is the basic topological
set-up corresponding to the group-theoretic statement.
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It is convenient to initially choose X to be a graph (i.e., a two-complex without disks),
such as a bouquet of circles. Further, it may be assumed that X contains no loops with
null-homotopic images under f (also called null loops). A null loop in a graph implies the
existence of a generator of F (the fundamental group of (X, x)) which maps to the identity
element of A⋆B under ϕ; such generators can be temporarily excluded from a given generating
set and included back in either component of the splitting of the resulting subgroup.

Let Y be the subgraph of X corresponding to the pre-image of the base-point v of C ∨D

(i.e., the unique point in C∩D). By the arguments of the preceding paragraph, the complex
X can always be chosen so that this subgraph is a forest. The subgraph Y is the intersection
of the subgraphs f−1(C) and f−1(D) – the pre-images of the two components of the wedge
product.

In the special case where this forest is in fact a tree, the result admits an easy proof.
The complex X can be written as the union of f−1(C) and f−1(D), which intersect in a
tree – a simply-connected space. By Van Kampen’s theorem, π1(X, x) = π1(f

−1(C), x) ⋆

π1(f
−1(D), x). Since π1(X, x) = F , π1(f

−1(C), x) and π1(f
−1(D), x) are the two subgroups

required for the splitting. By construction, ϕ(π1(f
−1(C), x)) ⊆ A and ϕ(π1(f

−1(D), x)) ⊆ B;
the surjectivity of ϕ and with properties of the free product of groups ensure that these
containments are in fact equalities. The rest of the proof involves reducing the general case
to the one where the forest is a tree.

The general proof rests on the notion of a binding tie, which is a special kind of path p

in X satisfying the following properties:

1. Monochromatic: f(p) ⊆ C or f(p) ⊆ D.

2. Tie: The endpoints of p lie in different components of the forest Y .

3. Null: The loop f(p) is homotopic to the null loop at v, the base-point of (C ∨D, v).

Given a binding tie, it is possible to transform X to a different complex X ′ with the
same fundamental group but strictly fewer connected components in its forest, such that the
set-up of the problem is preserved.

This transformation can be thought of as a Whitehead move, which was defined by White-
head in the context of simple homotopy theory [Whi50]. Given a path p in X between points
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a and b, the modification consists of adding an extra edge e connecting a and b, together
with a disk bounding the loop p · e−1. Since the modified space deformation retracts to the
original space X, it has the same fundamental group F . When this path p is a binding
tie, it is further possible to extend the map f to the modified space such that the set-up is
preserved. The image of a binding tie under the map f is a loop based at v that is homotopic
to the null loop at v. By choosing the image of the edge e to be the null loop at v and the
image of the disk bounding p · e−1 to be the null-homotopy of f(p), it is possible to extend
f in a way that preserves the original map of fundamental groups ϕ. Since a binding tie
connects different components of the forest Y , this construction also ensures that the forest
in the modified complex has strictly fewer connected components.

As long as the existence of binding ties is guaranteed, it is possible to carry out the above
construction iteratively until the problem is reduced to the base case where the forest in the
pre-image is in fact a tree. We now show the existence of binding ties when the forest Y

contains more than one component.

Since the original complex X is connected, it is possible to find a path p in X connecting
two points from distinct components of the sub-complex Y ; for convenience, we choose
one of these points to be the basepoint x of the complex X. The path p connects distinct
components in Y , but is neither monochromatic nor is its image null-homotopic; the strategy
will be to gradually make modifications until a path satisfying all three conditions for being
a binding tie is found. Since both endpoints of p are in Y , its image in under f is a loop at
v, i.e, an element in the fundamental group π1(C ∨ D, v) = A ⋆ B. Since ϕ is a surjective
homomorphism of groups, it is possible to find a loop q in X based at x which such that
its image f(q) lies in the same homotopy class as f(p). Now the modified path q−1 · p is
also a path connecting distinct components of Y (in fact, the same components that p was
connecting earlier) whose image under f is null-homotopic by construction. Thus two of
the three conditions are now satisfied; it only remains to find a monochromatic path with
these two properties. The path q−1 · p can be divided into a finite number of maximal
monochromatic segments l1 · l2 . . . ln, such that any two adjacent segments are of opposite
colours. In particular, this implies that the end-points of each segment li lie in Y . Mapping
these under f , we obtain a collection of loops based at v whose product in the correct
sequence is homotopic to the null loop at v. In the fundamental group A ⋆B, this translates
to a finite set of elements {a1, a2, . . . , an} whose product is the identity element. By a general
theorem about free products, it turns out that if a1 · a2 · . . . · an = 1, then ai = 1 for some
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1 ≤ i ≤ n. This implies that one of the monochromatic segment li is in fact null-homotopic.
If the end-points of li lie in different components of Y , the construction is complete and
li is a binding tie. Otherwise, we can replace li with a path between its endpoints that is
completely contained inside Y and repeat the process by including the new path with li−1

and li+1. Since the number of monochromatic segments in the modified path is strictly fewer,
the process eventually terminates to produce a binding tie.

4.3 A formal blueprint

This blueprint presents Grushko’s theorem taking into account inter-operability of defini-
tions, compatibility of algebraic, topological and algorithmic notions in the proof, and suit-
ability for computation and visualisation.

4.3.1 Graph algorithms with proof

Stallings’ proof is effective, which makes it possible to implement the binding tie proof in a
way that can be run on inputs by selecting suitable data structures for efficient computation.

Most of the proof involves manipulating the underlying 1-complex of the space X, making
it necessary to have good descriptions and data-structures for 1-complexes or graphs that
can be used in both proofs and algorithms.

Graphs

Graphs (more precisely, symmetric multigraphs) can be conveniently described in the foun-
dations of Lean by adapting a definition originally due to Serre.

A graph consists of a set of vertices V , a set of arrows Hom(v, w) for every pair of
vertices v, w ∈ V and a family of maps invv,w : Hom(v, w) → Hom(w, v) satisfying the
following conditions:

• ∀e ∈ Hom(v, w), invw,v(invv,w(e)) = e
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• ∀e ∈ Hom(v, v), invv,v(e) ̸= e

Thus, a symmetric graph is represented as a directed graph with twice the number of
edges – one representing the edge and the other representing its inverse.

The paths on a graph can be defined inductively: there is a null path nilv from any vertex
to itself, and given e ∈ Hom(u, v) and a path p from v to w, we have a path cons(e, p) from
u to v. The concatenation of paths can also be defined inductively.

We would like to impose the following conditions on paths to allow edge cancellation:

• ∀e ∈ Hom(v, w), e · invv,w(e) = nilv

• ∀e ∈ Hom(v, w), invv,w(e) · e = nilw

Quotienting by these relations gives paths up to edge cancellation, which are elements of
the fundamental groupoid of the graph; focusing on loops based at a chosen vertex gives the
fundamental group.

4.3.2 Listable types

Finiteness is a recurring theme in Stallings’ proof. The spaces under consideration are all
finite, the groups are finitely-presented and the binding tie algorithm crucially uses the
finiteness of the size of the forest to ensure termination.

The definition of a graph presented above is a general one, which works even for graphs
with infinite vertices.

To effectively handle finiteness, we can define a type to be Listable if there is a list which
contains all its elements without having any duplicates (lists are data structures defined in
Lean, and are always finite by construction). Thus a finite graph will be one with a Listable

vertex set and Listable Hom-sets. A Listable type also has an implicit order – the order
in which the elements occur in the list – and this allows Listable types to be enumerated
for programming-related applications. To make the Listable types usable in practice, it is
necessary to also prove several theorems that capture our basic intuitions about finiteness.
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4.3.3 Depth-first search

Several steps of the proof require concrete computations with graphs to test various properties
such as connectedness and to find spanning trees of graphs. The depth first search algorithm,
which is a standard graph algorithm, is the ideal choice for carrying out these various tasks.

The basic idea behind the depth-first search algorithm is intuitive and can be described
concisely: We start with a finite graph G and a chosen vertex v. We also maintain a list
of visited vertices, which is initially set to the empty list. Adding v to the list of visited
vertices, we look at its list of neighbours in the graph. For each neighbour in the graph that
has not already been visited, we recursively execute the depth-first search algorithm at that
vertex using the updated list of visited vertices.

The output of a depth-first search contains useful information such as the set of vertices
reachable from the initial vertex v and a tree that spans this set of vertices.

A proved implementation of the depth-first search algorithm can be used for various
tasks, including:

• Checking whether two vertices in a graph are connected by a path

• Finding the connected components of a graph

• Finding a spanning tree for a graph

All three occur at various points in the proof, and capturing them with a single algorithm
is useful. Finding a spanning tree efficiently is especially relevant in order to compute a set
of generators for the fundamental group of a graph.

The depth-first search algorithm described above is a classic example of an imperative
program, in the style of languages such as Python and C++; however, Lean is a functional
programming language, in the tradition of Haskell and OCaml. A notable formalisation of
a graph search algorithm due to Natarajan Shankar in [Sha10] circumvents this difficulty by
formulating a general search algorithm in the language of fixed points and lattices. However,
it is unclear whether this idea can be adapted to the case of depth-first search since the set
of sub-trees of a given graph do not form a complete lattice.
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4.3.4 Graph-marked groups

It is customary to extend the previously defined notion of the fundamental group of a graph
to the setting of two-complexes. However, despite its conceptual convenience, this approach
is difficult to work with computationally.

Just as the definition of a graph requires edges to be present in pairs, the definition of a
two-complex requires several copies of a two-cell, one for each point on the boundary. The
resulting symmetry conditions can be difficult to verify while constructing two-complexes in
practice.

A more serious drawback is that the fundamental group of a two-complex is not described
abstractly, but rather in terms of generators and relations. A basic requirement for working
with a group computationally is to have a way of deciding when two elements of the group
are equal. With a description in terms of generators and relations, this requires solving
the word problem for the given group. This requires leveraging properties of the specific
group, because it is known to be impossible to find a solution to the uniform word problem;
moreover, even if the word problem can be solved, it is not guaranteed to be efficient.

We therefore deviate from the standard approach and define the notion of a graph-marked
group to introduce non-trivial homotopies of paths.

A graph-marked group consists of a pointed graph (Γ, v) and a group G together with a
surjective homomorphism from π1(Γ, v) to G.

This surjection is also required to be effective, meaning that it should be possible to
produce an explicit loop in the pre-image of each element of G.

Two loops p, q based at v are considered homotopic if ϕ([p]) = ϕ([q]). The fundamental
group of a graph-marked group is defined to be the group G. This is the same result that
we would get by quotienting the loops of the graph by the equivalence relation introduced
by homotopies.

This allows the group to be an explicit part of the data, rather than something to be
computed from the combinatorial representation of the topological space. In particular, this
cleanly avoids the several layers of isomorphisms of groups that would otherwise arise while
executing the binding tie algorithm. The notion of a graph-marked group allows one to speak
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about homotopy of loops without recourse to two-complexes and generators and relations.
While this replaces the elegant topological picture of two-complexes, it introduces a structure
connecting the topological and algebraic pictures in a way that is suited for the proof.

Homotopy of paths in a graph-marked group

Note that the notion of homotopy of paths can be extended to arbitrary pairs of paths with
the same endpoints. Suppose x, y ∈ V and p, q are paths from x to y. Since the graph is
connected we can find paths r, s from the basepoint v to x and y respectively and check
whether the loops r · p · s−1 and r · p · s−1 are homotopic in the sense of having the same
image under the homomorphism ϕ. This is well-defined, since if r ′ and s′ are a different set
of paths from v to x and y respectively, then

ϕ(r′ · p · s′−1) = ϕ(r′ · r−1 · r · p · s−1 · s · s′−1)

= ϕ(r−1 · r) · ϕ(r · p · s−1) · ϕ(s · s−1)

= ϕ(r−1 · r) · ϕ(r · q · s−1) · ϕ(s · s−1)

= ϕ(r′ · r−1 · r · q · s−1 · s · s′−1)

= ϕ(r′ · q · s−1)

using the fact that ϕ – being a group homomorphism – distributes over path homotopy
classes of loops.

Whitehead moves on a graph-marked group

A key part of Stallings’ proof involves modifying the two-complex by a Whitehead move in a
way that preserves the fundamental group. This construction can be adapted to the setting
of graph-marked groups.

Let ((Γ, v), G,ϕ : π1(Γ, v) → G) be a graph-marked group, and consider a path p on Γ

from x to y. We first modify the graph Γ by adding an extra edge e from x to y. For every
path in the new graph, we can obtain a corresponding path in the original graph by replacing
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all occurrences of the edge e with the path p. The homomorphism ϕ can thus be extending
to the new graph by first transforming a given path homotopy class to one in the original
graph and then mapping along ϕ. The fundamental group of the new graph-marked group
is the same as the original one.

Morphisms of graph-marked groups

Given two graph-marked groups ((Γ, v), G,ϕ) and ((Γ′, v′), G′,ϕ′), a morphism between them
consists of a pair of maps – a base-point preserving graph homomorphism ψ : (Γ, v) → (Γ′, v′),
and a group homomorphism ρ : G → G′, such that ρ ◦ ϕ = ϕ′ ◦ ψ.

4.3.5 The proof

Ground work

The first step in proving Grushko’s theorem is to lift the algebraic set-up into the topological
world. As input, we are given finitely-presented groups A and B, together with an effective
surjection (i.e., a surjection together with a means of computing an element in the pre-image
of each point in the co-domain) from a finitely-generated free group F to the free product
A⋆B. As described already, it can be assumed without loss of generality that the free group
has no generators mapping to the identity element of the free product.

To construct the topological picture, we first create two graphs-marked groups C and D

for A and B respectively, each containing a single point and one loop for each generators (i.e.,
a bouquet of circles). We then take the wedge product of the graphs using their respective
base-points to obtain a graph-marked group for the free product A ⋆ B.

To construct a graph-marked group X for the free group F , we do not represent each
generator by just a single edge in a bouquet of circles, but instead segment each such loop
into multiple segments such that the number of segments corresponds to the length of the
path representing the image of the generator. This naturally gives a graph homomorphism
f that represents the original group homomorphism ϕ. By construction, all graphs involved
are connected, and the pre-image of the base-point of (C ∨D, v) is a disjoint set of points –
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therefore a forest.

4.3.6 The binding tie algorithm

Before running the binding tie algorithm, we first modify the complex (C ∨ D, v) with a
Whitehead construction applied to the trivial path nilv. This turns out to be necessary to
extend the homomorphism f at each stage of the construction; the new edge added to X

gets mapped to the edge added by the above Whitehead construction.

Given a binding tie on X, we can first modify X with a Whitehead construction on the
binding tie and then extend the map f by sending the extra edge to the loop created at the
trivial path nilv by the Whitehead construction.

This creates a new set-up of graph-marked groups which is equivalent to the previous
one.

The number of connected components in the pre-image of the base-point decreases, which
ensures that the process eventually terminates. This can be proved by showing that the
connectivity relation on the new graph strictly contains the connectivity relation on the
previous graph since an extra connection is made.

The existence of binding ties

We can pick a path between two distinct components of the forest (the pre-image of the
basepoint of the co-domain) by first computing the connected component of the basepoint
of (X, x) and then picking a point of the forest in its complement, if one exists (otherwise,
we proceed to the base case). Since the space X is connected, it is possible to find a path
p between the base-point and the chosen point. By computing the image of p and using
effective surjectivity, it is possible to recover a path q based at x with the same image. We
set r := q−1p, which is a null-homotopic path connecting different components of the forest.

The proof of existence of binding ties requires a way of decomposing the path r into
maximal monochromatic segments. This can be done algorithmically starting from the left
of the path and working towards the end, storing the alternating path in a custom data-

68



structure.

We map the segments along f to obtain a list of loops whose product is the identity
element of A ⋆ B. The Lean mathematics library mathlib contains the result needed to
conclude that one of these elements must be the identity. Following the argument from
earlier, we can identify a monochromatic segment in the source which is null-homotopic. If
it does not connect distinct components of the forest, we can replace it with a path in the
forest and proceed recursively until a binding tie is found.

The base case

We finally come to the case where the forest is in fact a tree. The complex X has been
modified at each stage of the algorithm by adding edges through the Whitehead construction.
It however turns out that all these edges lie in the tree, since binding ties are always null-
homotopic and the extra edges map to the intersection of the complexes C and D in the
co-domain.

Finishing the result appears to require a combinatorial version of the general Van-Kampen
theorem for graph-marked groups, though it may be possible to perform an elementary
construction that avoids this (one such attempt was made by the author).

On deducing that π1(X, x) = π1(f
−1(C), x) ⋆ π1(f

−1(D), x), the result follows. Labelling
π1(f

−1(C), x) = F1 and π1(f
−1(D), x) = F2, we see that ϕ(F1⋆F2) = A⋆B. By construction,

ϕ(F1) ⊆ A and ϕ(F2)) ⊆ B. That these containments are in fact equalities can be deduced
from the surjectivity of ϕ and properties of the free product of groups.

4.4 Visualisation

Stallings’ proof, especially the binding tie algorithm, naturally lends itself to visualisation.
The binding tie algorithm can be regarded as a sequence of modifications taking place in
the source space representing the free group. By capturing a combinatorial description of
this space at each step of the process and exporting to an external tool, it may be possible
to visualise the execution of the binding tie algorithm on specific inputs. Moreover, such a
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visualisation can be played directly in the Lean editor by means of a feature known as user
widgets.

The view-point of graph-marked groups has two advantages over the usual approach using
two-complexes when it comes to visualisation:

• Graph-marked groups are more minimal than two-complexes, in the sense that they
involve only vertices and edges, rather than vertices, edges and two-cells. With fewer
details to plot, visualisation using graph-marked groups may be less cluttered.

• While there are many softwares for visualising graphs, there are not as many for visu-
alising two-complexes. This makes it practically easier to create visualisations of the
binding tie algorithm using only graphs.

Since the edges of a graph formally occur in pairs, care will have to be taken while
exporting to avoid duplication.

4.5 Conclusion

This chapter presents Stallings’ topological proof of Grushko’s theorem together with a
blueprint outlining a possible route for formalisation. The blueprint attempts to connect the
various parts of the proof to describe not just a sketch of a formal proof but also a means of
computing the generators and visualising the binding-tie algorithm.

The viewpoint of graph-marked groups seems to be well-suited for the proof and clears
some of the obstacles in the path of formalising the result. Some aspects of the blueprint may
need further modifications or refinements; these details may be clearer after some portions
of the proof have been formalised. One potential challenge that remains is dealing with
finiteness in the various forms in which it occurs in the proof. It is hoped that this blueprint
can serve as a potential starting point for formalising Stallings’ topological proof of Grushko’s
theorem.
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Chapter 5

Solving equations in Abelian groups

This chapter describes a method of deciding whether a given equation (involving only ad-
dition, subtraction and negation operations) holds in all Abelian groups. The idea and the
implementation described here are original. Given its elementary nature, it is possible that
this idea could have occurred to others before.

5.1 A general equality problem for Abelian groups

Consider the problem of deciding whether of deciding whether an equation, such as

(x+ y) + z +−(x+ z) = y

is true in all Abelian groups. This means that for any Abelian group A, and for any
chosen values x, y and z in A, the equation should be true.

Humans can solve an arbitrary instance of this problem with ease by "expanding", "can-
celling", "rearranging" and "grouping" the terms involved.

However, this task is not trivial to carry out on a computer if one requires a full and
rigorous proof in the end. The problem of deciding whether an equation holds in all Abelian
groups is the same as deciding whether the equation can be deduced from the axioms for
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Abelian groups, and it is in the latter form that the task is usually presented to the computer.

The computer sees the equation not as a single line that can be read from left to right,
but rather as an equality of two complicated nested expression trees involving addition,
subtraction or negation operators at the nodes and variables at the leaves. This means that
the computer cannot ignore the parentheses and tinker easily with the order of the variables
the way humans do. A fully-bracketed version of the above looks like

(((x) + (y)) + (z)) + (−((x) + (z))) = (y)

Any proof from the axioms becomes a complicated ordeal of shuffling parentheses and
swapping the order of adjacent variables, and even cancelling adjacent terms in an expression
is a challenge when they are not immediately neighbours in the expression tree. Moreover,
even if one is able to produce an algorithm that proves these equalities directly from the
axioms, it is unlikely that the algorithm will have a good running time (in terms of the
number of variables in the expression, including duplicates).

5.2 A solution to the general equality problem for Abelian

groups

It turns out that to prove that a formula involving n variables is true in all Abelian groups,
it suffices to show it for a specific set of n elements in a specific Abelian group, namely the
basis of the free Abelian group on n elements (Zn).

The crucial property relevant here is that Zn is a free Abelian group, which by definition
means that any map from the basis {(0, . . . , 0, i, 0, . . . , 0) | 1 ≤ i ≤ n} to an Abelian group
A extends uniquely to an Abelian group homomorphism from Zn to A.
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5.2.1 A worked example

The general solution is perhaps best illustrated by working out a specific example such as
the one above:

Plugging in (1, 0, 0), (0, 1, 0), (0, 0, 1) for x, y, z in the above example yields the equation

((1, 0, 0) + (0, 1, 0)) + (0, 0, 1)− ((1, 0, 0) + (0, 0, 1)) = (0, 1, 0)

which is true since both sides compute to (0, 1, 0).

Now consider an arbitrary Abelian group A, and elements a, b, c in A. The function taking
the basis element (1, 0, 0) to a, (0, 1, 0) to b, (0, 0, 1) to c extends to a unique homomorphism
ϕ : Zn → A, and evaluating ϕ on the two sides of the previous equation gives

ϕ (((1, 0, 0) + (0, 1, 0)) + (0, 0, 1)− ((1, 0, 0) + (0, 0, 1))) = ϕ ((0, 1, 0))

Distributing the homomorphism across addition, subtraction and negation turns the ex-
pression into

(ϕ((1, 0, 0)) + ϕ((0, 1, 0))) + ϕ((0, 0, 1))− (ϕ((1, 0, 0)) + ϕ((0, 0, 1))) = ϕ((0, 1, 0))

which is precisely the required equation

(a+ b) + c− (a+ c) = b

5.2.2 The general solution

The solution in the worked example can be directly generalised to work for any equation.
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For an equation involving n variables, consider the free Abelian group on n generators.
Verifying the equation for the n generators is a matter of direct computation. This is enough
to prove it for all Abelian groups, since for any Abelian group A and n elements a1, a2, . . . , an

in A, there is a homomorphism sending the generators of the free group to these elements, and
any equation involving only the Abelian group operations (addition, negation, subtraction)
is preserved under homomorphisms.

Remark 5.2.1. In a way, proving an equality by passing to the free group makes precise the
intuitive operations of rearranging and grouping mentioned earlier. The order on the basis
elements of the free group fixes an implicit order on the variables in the equation, and the
normal form imposed by the tuples of integers handles grouping and cancellation of variables.

5.3 Implementing the solution

This section describes our attempt at implementing the above idea as a Lean4 meta-program.

We first define a type AddTree α which captures the syntax of expressions involving
addition, negation and subtraction operations performed on variables of type α 5.3.1. This
process of passing from an expression in the language to a concrete term that represents it
is usually known as reflection or internalisation. The original expression can be recovered
from the AddTree term representing it using the function fold defined in 5.3.2.

inductive AddTree (α : Type _) where

| leaf : α → AddTree α -- variables

| negLeaf : AddTree α → AddTree α -- unary negation

| node : AddTree α → AddTree α → AddTree α -- binary addition

| subNode: AddTree α → AddTree α → AddTree α -- binary subtraction

Listing 5.3.1: The AddTree inductive type which captures the syntax of expressions involving
Abelian group operations

def AddTree.fold {α : Type u} [AddCommGroup α] : AddTree α → α

| AddTree.leaf a => a

| AddTree.negLeaf t => -(fold t)

| AddTree.node l r => (fold l) + (fold r)

| AddTree.subNode l r => (fold l) - (fold r)

Listing 5.3.2: Interpreting an AddTree term back as an expression in the Abelian group
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Given a function f : α → β between types, there is an induced map between the corre-
sponding AddTrees 5.3.3. This is later used in mapping from the free Abelian group back to
any chosen group.

def AddTree.map {α β : Type _} (f : α → β) : AddTree α → AddTree β

| AddTree.leaf a => AddTree.leaf (f a)

| AddTree.negLeaf a => AddTree.negLeaf (map f a)

| AddTree.node l r => AddTree.node (map f l) (map f r)

| AddTree.subNode l r => AddTree.subNode (map f l) (map f r)

Listing 5.3.3: The induced map on AddTrees

def AddTree.reduce {α : Type _} : AddTree (AddTree α) → AddTree α

| AddTree.leaf adt => adt

| AddTree.negLeaf adt => AddTree.negLeaf (reduce adt)

| AddTree.node lt rt => AddTree.node (reduce lt) (reduce rt)

| AddTree.subNode lt rt => AddTree.subNode (reduce lt) (reduce rt)

Listing 5.3.4: A natural map to reduce a double application of AddTree to a single application

Remark 5.3.1. In technical terms, this makes AddTree a functor from the category of types
to itself. In fact, it also turns out to be a monad using 5.3.4 [FP20].

Actually recovering an AddTree representation of a concrete expression in Lean requires
meta-programming; the snippet 5.3.5 contains a portion of the code together with an example
at the end.

partial def treeM (e : Expr) : MetaM Expr :=

hOp ‘‘HAdd.hAdd e >>= (λ (a, b) => return ← mkAppM ‘‘AddTree.node #[← treeM

a, ← treeM b]) <|>

hOp ‘‘HSub.hSub e >>= (λ (a, b) => return ← mkAppM ‘‘AddTree.subNode #[←
treeM a, ← treeM b]) <|>

invOp ‘‘Neg.neg e >>= (λ a => return ← mkAppM ‘‘AddTree.negLeaf #[← treeM

a]) <|>

mkAppM ‘‘AddTree.leaf #[e]

elab "treeElab" s:term : term => do

let e ← Term.elabTerm s none

treeM e
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/- An example -/

eval treeElab -((2 + -3) - 1)

-- AddTree.negLeaf (AddTree.subNode (AddTree.node (AddTree.leaf 2)

(AddTree.negLeaf (AddTree.leaf 3))) (AddTree.leaf 1))

Listing 5.3.5: A portion of the code used to process an expression in Abelian groups to
produce an AddTree representing its syntax

For reasons of simplicity, we tackle the problem of normalisation of expressions in Abelian
groups (i.e., converting a given expression such as a+b−c−a+b into a normal form expression
such as 0 · a + 2 · b + (−1) · c in which every variable appears exactly once), which rests on
the same ideas and is similar in spirit to the problem of solving equations in Abelian groups.

To convert an expression to its normal form, we must map it through the corresponding
expression in a free Abelian group. We achieve this by defining the intermediate notion of an
IndexAddTree, which just stands for AddTree Nat and encodes the positions of the individual
variables in the expression; the corresponding AddTree in the free Abelian group can be
produced from the IndexAddTree by substitution.

Once we have an expression in a free Abelian group Zn, we normalise it to its canonical
form of an ordered tuple of integers by computational reduction. We finally round-trip back
to the original Abelian group by mapping along the inducedFreeMap 5.3.6 from the Abelian
group. The final step of showing that the original expression has the specified normal form
requires some case-specific work that we have been unsuccessful in automating.

/-- The unique map ‘Z^n → A‘ taking the basis elements to the given list of

values ‘l‘. -/

def inducedFreeMap {A : Type _} [AddCommGroup A] {n : N} (l : List A) (h :

l.length = n) : Z^n → A := . . .

Listing 5.3.6: The unique map from a free Abelian group to a given list of elements in an
Abelian group
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5.4 Conclusion

The reduction of the general problem of proving an equation in all Abelian groups to the
special case of the basis of the free Abelian group was certainly not specific to just Abelian
groups, and it is likely that this kind of a reduction admits a more general formulation in
the language of Category theory.

The correct analogue of a free Abelian group seems to be a free object in a category – the
free objects in the category of groups are the free groups, the free objects in the category of
rings are the polynomial rings, and so on.

Understanding this phenomenon in greater generality will likely reveal simpler ways to
implement it in Lean4.
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