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Abstract

Minimal surfaces are zero mean curvature surfaces that appear in nature as idealized soap

films. The minimal surface theory is filled with lots of beautiful geometric results, bridging

various mathematical branches such as complex analysis, functional analysis, PDE theory,

and so on.

This thesis is a combination of mainly two completed research works and one ongoing

research work about zero mean curvature surfaces. The Björling problem and its solution

is a well-known result for minimal surfaces in Euclidean three-space. The minimal surface

equation is similar to the Born-Infeld equation, which is naturally studied in physics. For the

first research work, we ask the question of the Björling problem for Born-Infeld solitons. This

begins with the case of locally Born-Infeld soliton surfaces and later moves on to graph-like

surfaces. We also present some results about their representation formulae.

The singular Björling problem and its solution for timelike minimal surfaces is another

famous result in minimal surface theory. In the second research work, we give different proofs

of this theorem using split-harmonic maps. This is motivated by a similar solution of the

singular Björling problem for maximal surfaces using harmonic maps. As an application,

we study the problem of interpolating a given split-Fourier curve to a point by a timelike

minimal surface. This is inspired by an analogous result for maximal surfaces. We also solve

the problem of interpolating a given split-Fourier curve to another specified split-Fourier

curve by a timelike minimal surface.

The third and ongoing research work is about understanding the geometry behind the

interpolation problems of minimal surfaces. Jesse Douglas earlier gave some existence results

for interpolation problems of minimal surfaces, based on area. We try to make these results

more concrete by studying the relationship between the existence of minimal surfaces inter-

polating two curves with the distance between them and giving the explicit parametrization

of such minimal surfaces.
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Introduction

0.1 Original contribution

In this section, We first list the preprints which were put up on arXiv as a part of this thesis.

0.1.1 List of preprints coming from this thesis

1. Manikoth, Sreedev. On the Bjorling problem for Born-Infeld solitons, 2022.

https://arxiv.org/abs/2210.08752.

2. Manikoth, Sreedev. Split-harmonic maps and the interpolation problem for timelike

minimal surfaces, 2022. https://arxiv.org/abs/2210.17137.

0.1.2 Ongoing research work

1. Dey. Rukmini, Manikoth. Sreedev, Relative geometry of curves and the interpolation

problems of minimal surfaces. (In progress)

The above list contains all the original contributions coming from this thesis. These

preprints and ongoing works are described in Chapters 4, 5 and 6. We start the thesis by

giving a flavor of minimal surface theory in both Euclidean-three space and the Lorentz-

Minkowksi space. The first three chapters are expository, serving this purpose.

The Swedish mathematician Emmanuel Björling asked the following problem for minimal

surfaces: Given a real analytic curve α and a real analytic normal vector field n along the
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curve, can we find a minimal surface X which contains α and its tangent planes along α are

specified by n. Björling himself solves this problem in [4] and the solution was later again

investigated by Herman Schwarz.

In the fourth chapter, we ask the same Björling problem for a different kind of surfaces

called Born-Infeld solitons. We present our solution to the Björling problem of locally Born-

Infeld soliton surfaces and also a graph of a function kind of Born-Infeld solitons. We also

present a few results about their representation formula given by Barbishov and Chernikov

and also a few results using E A Paxton’s results about timelike minimal surfaces over

compact sets. This is a semi-expository chapter and this led to my first preprint on arXiv,

which can be found at [21].

For a specified Jordan curve c in the Euclidean space, the Platue problem asks one to find

a minimal surface X with ∂X = c(here ∂X denotes the boundary of the surface X). This

problem was solved independently in the 1930s by Jesse Douglas(in [13]) and Tibor Rado (In

[25])). Douglas in the same period also solved this problem for two given contours(In [14]).

From there on various mathematicians were interested in studying different variations of

this problem using techniques involving a diverse set of mathematics branches. For instance,

we note that in [26], Illia Vekua used the implicit function theorem for Banach spaces to

study this problem for curves that are sufficiently close to a plane curve. Similarly, Rukmini

Dey, Rahul Kumar Singh, and Pradip Kumar study this problem using the Inverse function

theorem for Banach spaces in [9], [10] and using harmonic functions and Fourier analysis in

[7]. Mathematicians were also interested in studying this problem for specific examples(in

Lorentz-Minkowski space, using maximal surfaces) which can be seen at [16].

In the fifth chapter, we introduce split-harmonic maps, and split-Fourier curves, and

using them we solve the singular Björling problem and the interpolation problem for timelike

minimal surfaces. We interpolate a split-Fourier curve to a point and another arbitrary split-

Fourier curve and give certain algebraic conditions on the split-Fourier coefficients, which

if satisfied ensures that the curves can be interpolated. This work was inspired by [7] and

searches for similar techniques in split complex numbers. This is a completely original work,

which leads to my second preprint which can be seen at [22].

In the sixth chapter, we give a slight introduction to our current and ongoing research

work. This is a work in progress, which is titled as in [11].
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We also note that all pictures in this thesis are created using Desmos and Geogebra.
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Chapter 1

Preliminaries

1.1 Introduction

In this chapter, we list some basic definitions and formulas which will be used throughout

this thesis. Since we are mostly dealing with Euclidean-three space or Lorentz-Minkoswski

space, the definitions might look much simpler and shorter than the ones introduced in a

typical Riemannian geometry course.

1.2 Basic definitions and formulae

Definition 1.2.1 (Surfaces). By a Cn surface, we mean a function X : Ω ⊆ R2 → R3 which

is Cn.

From now on, unless specified otherwise we will always assume our surfaces are at least

C2.

Definition 1.2.2 (Regular points). point w ∈ Ω of a surface X is said to be a regular point

if its jacobian DX(w) has rank 2. If the rank of the jacobian is ≤ 1 we say, the point w is

a singular point.

Definition 1.2.3 (Tangent space). We define tangent space of a surface X : Ω → R3 at a

regular point w ∈ Ω, to be the plane, span{Xu(w), Xv(w)} in R3.
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Definition 1.2.4 (Surface normal). At a regular point w ∈ Ω we define, surface normal

N(w) of the surface to be,

N(w) =
Xu(w)×Xv(w)

|Xu(w)×Xv(w)|

Definition 1.2.5 (The Gauss and mean curvature formulae). we fix a regular point w. To

simplify the formula, we use the notation N for N(w) and Xu for Xu(w). Then the mean

curvature H(w) which will denote by H is given by,

H =
⟨Xv, Xv⟩⟨N,Xuu⟩+ ⟨N,Xvv⟩⟨Xu, Xu⟩ − 2⟨Xu, Xv⟩⟨N,Xuv⟩

2(⟨Xu, Xu⟩⟨Xv, Xv⟩ − ⟨Xu, Xv⟩2)

The Gauss curvature K(w) which we will denote by K is given by,

K =
⟨N,Xuu⟩⟨N,Xvv⟩ − ⟨N,Xuv⟩2

⟨Xu, Xu⟩⟨Xv, Xv⟩ − ⟨Xu, Xv⟩2

We refer to [12] for the details of these definitions and formulae. Roughly speaking,

replacing the Euclidean inner product in the above equations with the Lorentz-Minkowski

bilinear form leads to the formulae for mean curvature and Gauss curvature in the Lorentz-

Minkowski space. For similar definitions in Lorentz-Minkowski space, we refer to [20].

Other basic theorems from differential geometry such as Weingarten equations and so

on, will be referred from [12] whenever required.
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Chapter 2

Minimal surfaces in the

three-dimensional Euclidean space

2.1 Introduction

In this chapter, we introduce the theory of minimal surfaces in Euclidean-three space. This

is an expository chapter that is mostly based on [12]. We start by showing that for regular

surfaces of class C2, the property local area minimizing is equivalent to having zero mean

curvature everywhere. Soon we would see that over simply connected domains this is equiv-

alent to saying the surface is the real part of certain holomorphic curves called isotropic

curves. Using this correspondence between complex analysis and geometry, we deduce the

Weirstrass-Enneper representation and the Björling representation formula of minimal sur-

faces.

2.2 Locally area minimizing property and mean curva-

ture

Let

X : Ω ⊂ R2 → R3
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be a class C2, regular surface. We introduce a few terms.

Definition 2.2.1 (Variation of a surface). Fix an ϵ0 > 0. A variation of X is a family of

surfaces,

Z : Ω× (−ϵ0, ϵ0) → R3

which is of class C2 with satisfying,

Z(w, 0) = X(w)

for all w ∈ Ω.

For a fixed ϵ ∈ (−ϵ0, ϵ0), we can consider the surface U : Ω → R3 defined by, U(w) =

Z(w, ϵ). We denote this surface by Z(., ϵ). We denote it’s area by AΩ(Z(., ϵ)).

Definition 2.2.2 (First variation of a surface). The vector field,

Y (w) =
∂

∂ϵ
Z(w, ϵ)|ϵ=0

is defined to be the first variation of Z

Definition 2.2.3 (First variation of area of a surface). We define the first variation of the

area at X, in direction of the vector field Y to be,

δΩA(X, Y ) =
d

dϵ
AΩ(Z(., ϵ))|ϵ=0

Now we state the main result which relates mean curvature with local area minimizing

property.

Theorem 2.2.1. The first variation of the area in the direction of Y vanishes for all com-

pactly supported vector fields Y on Ω ⇐⇒ mean curvature of X, H is identically zero.

Proof. We first prove in the forward direction. Since Z is of class C2, by Taylor expansion(

around 0 for ϵ) we can write,

Z(w, ϵ) = Z(w, 0) + ϵY (w) + ϵ2R(w, ϵ)

Where R is a reminder term satisfying limϵ→0R(w, ϵ) = O(1).
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Let N be the surface normal of X. Now using Gauss and Weingarten equations one can

calculate the area of Z(w, ϵ) and find the first variation of area, in terms of mean curvature.

We refer to [12] pages 54-56, for more details. We can show,

δΩA(X, Y ) = −2

∫
⟨Y,N⟩HdA

for all compactly supported vector fields Y . Since ⟨Y,N⟩ can be any arbitrary compactly

supported function(for different choices of the compactly supported vector fields Y ), by the

fundamental theorem of the calculus of variations we conclude that H must be identically

zero.

Proof of the backward direction follows from the fact thatH being identically zero implies,

δΩA(X, Y ) = −2

∫
⟨Y,N⟩HdA

is zero for every vector field Y .

Thus for regular surfaces of class C2, the local area minimizing property is equivalent to

having zero mean curvature. This motivates the following definition.

Definition 2.2.4 (Minimal surfaces). We say that a regular surface of class C2, X : Ω → R3

is a minimal surface if its mean curvature is identically zero.

Example 1. The Catenoid,

(x(u, v), y(u, v), z(u, v)) = (α coshu cos v,−α coshu sin v, αu)

For a fixed α ̸= 0 and −∞ < u < ∞, 0 ≤ v < 2π is an example of a regular surface with

zero mean curvature.
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Now given a surface X(x, y) = (x, y, ψ(x, y)), which is graph of a function ψ, we calculate

its mean curvature and get,

H =
(1 + ψ2

y)ψxx − 2ψxψyψxy + (1 + ψ2
x)ψyy

2(1 + ψ2
x + ψ2

y)
3
2

This gives us the following result.

Theorem 2.2.2 (minimal surface equation). A surface X : Ω ⊂ R2, X(x, y) = (x, y, ψ(x, y))

which is graph of a function ψ, is a minimal surface if and only if ψ satisfies the equation,

(1 + ψ2
y)ψxx − 2ψxψyψxy + (1 + ψ2

x)ψyy = 0.

This equation is called the minimal surface equation.

Now we state Bernstein’s Theorem. It shows that when Ω = R2, the only solutions to

minimal surface equations are affine linear maps.

Theorem 2.2.3 (Bernstein’s Theorem). If ψ : R2 → R3 is a solution to the minimal surface

equation, then ψ is of the form,

ψ(x, y) = ax+ by + c

for some real numbers a, b and c.

We refer to [12], pages 65-67 for the proof.
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2.3 Relationship with complex analysis; representation

formulas

We define conformal parameters.

Definition 2.3.1 (conformal parameters). a C2 surface X : Ω → R2 is said to be represented

by conformal parameters, if it satisfies the relations,

⟨Xu, Xu⟩ = ⟨Xv, Xv⟩

⟨Xu, Xv⟩ = 0

In fact, given any regular surface, there exists a parameterization where it is represented

by conformal parameters. Also, it turns out that in such a parameterization minimal surfaces

satisfy

∆X = 0

We refer to [12], pages 74-76 for details.

Using this property, we would generalize the definition of minimal surfaces, to include

singularities.

Definition 2.3.2 (Minimal surface definition in general). A C2 surface X : Ω → R3, is said

to be a minimal surface if it satisfies,

⟨Xu, Xu⟩ = ⟨Xv, Xv⟩

⟨Xu, Xv⟩ = 0

∆X = Xuu +Xvv = 0

Example 2. The Enneper surface,

(x(u, v), y(u, v), z(u, v)) =

(
u− 1

3
u3 + uv2,−u− u2v +

1

3
v3, u2 − v2

)
with u,v in R is an example of a minimal surface with singularies.
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Now given any minimal surface X on a simply connected domain, we can always find a

different minimal surface X∗ called the adjoint surface which satisfies,

Xu = −X∗
v

Xv = X∗
u

We refer to [12] pages 61-64 and page 74 for the details of the proof.

Example 3. The adjoint surface of the Catenoid(in Example 1) is the Helicoid which is

given by,

(x(u, v), y(u, v), z(u, v)) = (α sinhu sin v, α sinhu cos v, αv)

With −∞ < u <∞ and 0 ≤ v < 2π.

We define the isotropic curves in C3
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Definition 2.3.3 (isotropic curves). A holomorphic curve f : Ω ⊂ C → C3 is said to be an

isotropic curve if its velocity f
′
= (ϕ1, ϕ2, ϕ3) satisfy,

ϕ2
1 + ϕ2

2 + ϕ2
3 = 0

We from now on will denote the quantity

ϕ2
1 + ϕ2

2 + ϕ2
3

by

⟨f ′
, f

′⟩e.

Now we prove the following important theorem

Theorem 2.3.1 (Minimal surfaces and isotropic curves). A surface X : Ω → R3 on a

simply connected domain Ω, is a minimal surface if and only if there exists an isotropic

curve f : Ω → C3 with

X = Ref.

Proof. We would show the proof in the forward direction, we know that if X is a minimal

surface on a simply connected domain, its adjoint surface X∗ exists. Then

f = X + iX∗

is a holomorphic curve as, X∗ satisfy Cauchy Riemann equations with X.After doing calcu-

lations we get,

⟨f ′
, f

′⟩e = ⟨Xu, Xu⟩ − ⟨Xv, Xv⟩+ i⟨Xu, Xv⟩

Now as X is represented by conformal parameters,

⟨f ′
, f

′⟩e = 0

Thus f is an isotropic curve with X = Ref. The proof of the backward direction is similar.

Now we characterize all the isotropic curves in a simply connected domain Ω, using pairs
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of meromorphic and holomorphic functions.

Theorem 2.3.2. Let µ be a holomorphic and ν be a meromorphic function on Ω with µν2

being holomorphic. Also, we assume µ is not identically zero on Ω. Then all the holomorphic

curves f with f
′
defined by,

f
′
= (ϕ1, ϕ2, ϕ3) = (

µ(1− ν2)

2
,
iµ(1 + ν2)

2
, µν)

are isotropic curves. Conversely given any non-constant isotropic curve f on Ω, one can

find a pair of meromorphic and holomorphic functions ν, µ with the above properties and f
′

represented in the above form.

Proof. We first prove in the following direction. As f
′
is holomorphic, so is f . Also through

computations, we can show that,

⟨f ′
, f

′⟩e = 0.

Thus any f defined this way is an isotropic curve.

To prove in the backward direction suppose f is an isotropic curve on Ω. Then f
′
=

(ϕ1, ϕ2, ϕ3) satisfy,

ϕ2
1 + ϕ2

2 + ϕ2
3 = 0

(ϕ1 + iϕ2)(ϕ1 − iϕ2) + ϕ2
3 = 0

If ϕ1 − iϕ2 = 0 is identically, so will be ϕ3 by the above equation. Then f
′
will identically

zero, implying f is a constant which we assumed to be not the case. Thus ϕ
′
1 − iϕ2 is not

identically zero. So we take

ν =
ϕ3

ϕ1 − iϕ2

and µ = ϕ1 − iϕ2 be the pair of meromorphic and holomorphic functions. Now using

calculations we can show,

(ϕ1, ϕ2, ϕ3) = (
µ(1− ν2)

2
,
iµ(1 + ν2)

2
, µν).

these results lead us to the Weirstrass Enneper representation of minimal surfaces.
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Theorem 2.3.3 (Weirstrass-Enneper representation formula). For every minimal surface

X(w) = (x(w), y(w), z(w)) defined on a simply connected domain Ω, which is not of the

form X(w) = au + bv + c for a, b, c ∈ R there is a pair of holomorphic and meromorphic

functions, µ v on Ω with the properties µ, v ̸≡ 0 and such that µv2 is holomorphic on Ω, with

x(w) = x(w0) +Re

∫ w

w0

1

2
µ(1− v2)dη

y(w) = y(w0) +Re

∫ w

w0

i

2
µ(1 + v2)dη

z(w) = z(w0) +Re

∫ w

w0

µvdη

holds for w,w0 in Ω.

Conversely given a µ, v on a simply connected domain Ω with the above properties, X

defines a minimal surface on Ω.

Proof. The proof follows by combining the last two results by noting that minimal surfaces

X on a simply connected domain are given by,

X = Ref

for isotropic curves, f , and isotropic curves have a general form in terms of a pair of mero-

morphic and holomorphic functions, by theorem 2.3.2.

Example 4. For the Enneper surface in Example 1, we have µ(z) = 1, ν(z) = z.

Now we introduce the Björling problem for minimal surfaces. Given a real analytic curve

c and a real analytic unit normal vector field along the curve n, the Bjölring problem asks to

find a minimal surface X containing the curve and surface normal along the curve agreeing

with the given normal vector field. The following result was given by Herman Schwarz. Here

for a surface X, NX denotes its surface normal.

Theorem 2.3.4 (Solution to the Björling problem). Given any real analytic curve c : I → R3

with c
′
(t) ̸= 0 for any t and a real analytic unit normal vector field n : I → R3, there exist a

minimal surface X with,

X(u, 0) = c(u)

15



NX(u, 0) = n(u)

This minimal surface X : Ω → R3 is unique with this property. I,e, if we have another

minimal surface Y : Ω
′ → R3 with Y (u, 0) = c(u) and NY (u, 0) = n(u), then X = Y on

Ω ∩ Ω
′
. for a given c, n it is given by the parametrization,

X(u, v) = Re

(
c(z)− i

∫ z

u0

n(w)× dc(w)

)
Where Ω is a domain containing I as {(u, 0)|u ∈ I} with analytic extensions of both c and n

existing there. In the above parametrization of X, the notations c, and n denote the analytic

extensions of the given real analytic curve and normal. Also here z = u+ iv ∈ Ω

Proof. To show existence, we can show using calculations thatX(u, v) = Re
(
c(z)− i

∫ z

u0
n(w)× dc(w)

)
is a minimal surface satisfying

X(u, 0) = c(u)

NX(u, 0) = n(u).

. The proof of the uniqueness follows from the identity theorem in complex analysis. To

show this, suppose we have a minimal surface Y satisfying,

Y (u, 0) = c(u)

NY (u, 0) = n(u)

Then from here we note that, Yu(u, 0) = c
′
(u) and Yv(u, 0) = NY (u, 0)×c

′
(u, 0) = n(u)×c′(u).

Let f, g be the isotropic curves with X = Ref and Y = Reg. Then these curves satisfy,

g
′
(u, 0) = Yu(u, 0)− iYv(u, 0) = c

′
(u)− in× c

′
(u) = f

′

Now from here, since g
′
and f

′
are holomorphic functions and they agree on a set with a

limit point( The part of x-axis containing I), by identity theorem we have

g
′
= f

′

on the intersection of their domains. Thus g and f can differ only a constant. Now using the

fact that Y (u, 0) = X(u, 0) and NX(u, 0) = NY (u, 0) we conclude that this constant must

16



be zero implying, X = Y .

Example 5. For the curve,

c(t) =

(
cosh 2t− 1, 0, sinh t+

1

3
sinh(3t)

)
(This parametrizes the Neil’s parabola. The following is a picture of it) and n(t) being it’s

principal normal, We get the Henneberg surface as the solution to the Björling problem.

Solutions to Björling problem leads to several interesting geometric results about minimal

surfaces. We state three such results. We refer to [12] pages 123-135 for many more such

results and their proofs.

Theorem 2.3.5. Any straight line contained in a minimal surface is the axis of symmetry

of that surface. Any plane which intersects a minimal surface perpendicularly is a plane of

symmetry of that surface.
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Theorem 2.3.6. A curve c in a Minimal surface is a geodesic line of curvature of that

surface if and only if it is a plane curve.

Theorem 2.3.7. Given any regular real analytic curve c, There exists a minimal surface

containing it as a geodesic.
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Chapter 3

Zero mean curvature surfaces in the

Lorentz-Minkowski space

This chapter is also expository. Here we will introduce the theory of zero mean curvature

surfaces in Lorentz-Minkowki space. In the first section, we define Lorentz-Minkowski space

and introduce maximal surfaces. Like minimal surfaces, we will see that the geometry of

maximal surfaces can also be studied using the tools of complex analysis.

Then in the second section, in a similar spirit, we define split-complex numbers and show

how it is related to the geometry of timelike minimal surfaces.

3.1 Zero mean curvature property in the Lorentz Minkowski

space

In this section we will be mainly referring to [20], [19], and [2], We start with defining the

Lorentz-Minkoskwi space.

Definition 3.1.1. The Lorentz-Minkowski space, L3 is defined to be, the vector space R3

with the indefinite bilinear form ,

⟨u, v⟩ = u1v1 + u2v2 − u3v3.
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Each vector v ∈ L3 has a casual character.

Definition 3.1.2. A vector v ∈ L3 is called ,

• spacelike if it is the zero vector or if it is nonzero and ⟨v, v⟩ > 0

• timelike if ⟨v, v⟩ < 0

• lightlike if it is a nonzero vector and ⟨v, v⟩ = 0.

Using the above definition, we define the causal characters of curves.

Definition 3.1.3. A curve in L3 is said to be,

• spacelike if all the tangent vectors are spacelike

• lightlike if all the tangent vectors are lightlike

• timelike if all the tangent vectors are timelike

Similarly, we define casual characters of the planes and surfaces in L3.

Definition 3.1.4. A plane in L3 is said to be,

• spacelike if its normal vector is timelike

• lightlike if its normal vector is lightlike

• timelike if its normal vector is spacelike

Definition 3.1.5. A C2 regular surface X : Ω ⊂ R2 → L3 is said to be,

• spacelike if all its tangent planes are spacelike.

• lightlike if all its tangent planes are lightlike.

• timelike if all its tangent planes are timelike.
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Now we can study the geometry of zero mean curvature surfaces in Lorentz-Minkowski

space. We define the two most widely studied zero mean curvature surfaces in the Lorentz-

Minkoswski space.

Definition 3.1.6. A C2 regular surface X : Ω → L3 is said to be a maximal surface if it is

spacelike and has zero mean curvature.

Definition 3.1.7. A C2 regular surface X : Ω → L3 is said to be a timelike minimal surface

if it is timelike and has zero mean curvature.

Example 6. The x− y plane,

X(u, v) = (u.v.0)

for u, v ∈ R, is an example of a regular spacelike surface with zero mean curvature. Similarly

the x− z plane,

Y (u, v) = (u, 0, v)

for u, v ∈ R, is an example of a regular timelike surface with zero mean curvature

Using similar techniques as we used to show that minimal surfaces in Euclidean-three

space are locally area minimizing, one can show that maximal surfaces are locally area

maximizing. Surprisingly timelike minimal surfaces are neither locally area minimizing nor

locally area maximizing.

Similar to minimal surfaces in Euclidean-three space, the geometry of maximal surfaces

can also be studied using complex analysis. We introduce the most general definition of

maximal surfaces, with respect to conformal parameters. Note that here we are using,

⟨u, v⟩ = u1v1 + u2v2 − u3v3.

Definition 3.1.8. A C2 surface X : Ω → L3, from a simply connected domain Ω is said to

be a maximal surface if it satisfies,

∆X = Xuu +Xvv = 0

⟨Xu, Xv⟩ = 0

⟨Xu, Xu⟩ = ⟨Xv, Xv⟩
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Example 7. The Enneper surface of first kind,

X(u, v) = (u− u2v +
1

3
u3,−v + u2v − 1

3
v3, v2 − u2)

with (u, v) in R2−{(u, v)|u2+v2 = 1} is an example of a maximal surface with singularities.

We refer to [18] page 1085 for more details. Now similar to minimal surfaces in Euclidean-

three space, this definition leads to an equivalence of maximal surfaces with real parts of

certain holomorphic curves in the complex three-space. This gives rise to the Weirstrass

Ennepper representation formula and the solution to the Björling problem for maximal

surfaces. Proofs are similar to the case of minimal surfaces in the Euclidean-three space and

We refer to [19] and [2] for the details.

Theorem 3.1.1. For every maximal surface X(w) = (x(w), y(w), z(w)) defined on a simply

connected domain Ω, which is not of the form X(w) = au + bv + c for a, b, c ∈ R there is a

pair of holomorphic and meromorphic functions, µ v on Ω with the properties µ, v ̸≡ 0 and

such that µv2 is holomorphic on Ω, with

x(w) = x(w0) +Re

∫ w

w0

1

2
µ(1 + v2)dη

y(w) = y(w0) +Re

∫ w

w0

i

2
µ(1− v2)dη

z(w) = z(w0) +Re

∫ w

w0

−µvdη

holds for w,w0 in Ω.
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Conversely given a µ, v on a simply connected domain Ω with the above properties, X

defines a maximal surface on Ω.

Example 8. For the Enneper surface of the first kind in example-6, we have to take µ = 2

and ν = z.

Theorem 3.1.2. Given any real analytic spacelike curve c : I → L3 with c
′
(t) ̸= 0 for any

t and a real analytic timelike unit normal vector field n : I → L3, there exist a maximmal

surface X with,

X(u, 0) = c(u)

NX(u, 0) = n(u)

This maximal surface X : Ω → R3 is unique with this property. I,e, if we have another

maximal surface Y : Ω
′ → L3 with Y (u, 0) = c(u) and NY (u, 0) = n(u), then X = Y on

Ω ∩ Ω
′
. for a given c, n it is given by the parametrization,

X(u, v) = Re

(
c(z) + i

∫ z

u0

n(w)× dc(w)

)
Where Ω is a domain containing I as {(u, 0)|u ∈ I} with analytic extensions of both c and n

existing there. In the above parametrization of X, the notations c, and n denote the analytic

extensions of the given real analytic curve and normal. Also here z = u+ iv ∈ Ω

Example 9. Fix a real number k > 0. For the curve being x− axis,

c(t) = (t, 0, 0)

with t > 1
k
and the normal being,

n(t) =
−1√

k2t2 − 1
(0, 1, kt)

We get The helicoid of the first kind as the solution to the Björling problem. It is given by,

X(u, v) =
1

k
(coshu cos v, coshu sin v, v)
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which is defined on all the points of the u− v plane except at the points with u = 0.

Similar to the minimal surfaces in the Euclidean-three space case, the solution to the

Björling problem leads to so many interesting geometric results. We state one of them and

We refer to [2] for the details.

Theorem 3.1.3. Consider the following families of maximal surfaces.

• spacelike planes

• Helicoids of the first kind

• Helicoids of the second kind

• Cayley’s ruled surfaces

Given any ruled maximal surface, it is congruent to a piece of a member of the above family.

3.2 Split-complex numbers and the geometry of time-

like minimal surfaces

In this section, we will be mainly referring to [5] and [18]. When we generalize the definition

for timelike minimal surfaces to include singularities, we get the following.
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Definition 3.2.1. A C2 surface X : Ω → L3 from a simply connected domain Ω is said to

be a timelike minimal surface if it satisfies,

Xuu −Xvv = 0

⟨Xu, Xv⟩ = 0

⟨Xu, Xu⟩ = ⟨Xv, Xv⟩

Example 10. The Lorenzian helicoid of the third kind,

X(u, v) = (sinhu cosh v, sinhu sinh v, v)

with u and v ∈ R is an example of a timelike minimal surface with singularities.

Unlike the previous situations, here we have the wave equation instead of the Laplace

equation. Thus the coordinate functions of timelike minimal surfaces, in conformal param-

eters are not harmonic. So they are studied using a new kind of number system instead of

complex numbers, which are split complex numbers.

Definition 3.2.2. The ring of split complex numbers is the ring

C′
=

R[x]
(x2 − 1)

We denote the image of x in this ring as, k
′
. Thus we write,

C′
= {x+ k

′
y|x, y ∈ R}
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In this ring, one can define analogs of holomorphic maps, which are called split-holomorphic

maps.

Definition 3.2.3. A map f : C′ → C′
is said to be split-holomorphic if f(x+ k

′
y) = u+ k

′
v

satisfy,

ux = vy

uy = vx

Example 11. The map f : C′ → C′
given as f(x+k

′
y) = x2+y2+2xyk

′
is split-holomorphic.

We note that the above equations are similar to the Cauchy-Riemann equations. With

this number system, one can show that the timelike minimal surfaces are related to certain

split-holomorphic curves in the split-complex three-space. Using this, we get the solution to

the Björling problem for timelike minimal surfaces.

Theorem 3.2.1. Given any real analytic spacelike or timelike curve c : I → L3 with c
′
(t) ̸= 0

for any t and a real analytic timelike or spacelike unit normal vector field n : I → L3, there

exist a timelike minimal surface X with,

X(u, 0) = c(u)

NX(u, 0) = n(u)

This timelike minimal surface X : Ω → L3 is unique with this property. I,e, if we have

another minimal surface Y : Ω
′ → L3 with Y (u, 0) = c(u) and NY (u, 0) = n(u), then X = Y

on Ω ∩ Ω
′
. for a given c, n it is given by the parametrization,

X(u, v) = Re

(
c(z) + k

′
∫ z

u0

n(w)× dc(w)

)
Where Ω is a domain containing I as {(u, 0)|u ∈ I} with analytic extensions of both c and

n existing there. In the above parametrization of X, the notations c, and n denote the split-

holomorphic extensions of the given real analytic curve and normal. Also here z = u+k
′
v ∈ Ω

Note that here all the integrals and real parts are happening over the split-complex

numbers. We refer to [5] for the proof.
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Example 12. Fix a real number c > 0. For the curve being,

c(t) =
1

c
(sinh t, 0, 0)

and normal being,

n(t) =
1

cosh t
(0,− sinh t, 1)

One get’s the Lorentzian helicoid of the third kind as in example 10 as the solution to the

Björling problem.

Like the maximal surface case, the solution to Björling problem for timelike minimal

surfaces as well, leads to several interesting geometric results about them. We state one of

such results and refer to [5] for more details.

Theorem 3.2.2. Consider the following families of timelike minimal surfaces.

• Lorenzian elliptic catenoids

• Lorenzian hyperbolic catenoids

• Lorenzian surfaces with spacelike profile curves

• Lorenzian parabolic catenoids

Given any analytic timelike minimal surface in L3 which is a surface of revolution, it is

congruent to a piece of one of the surfaces in the above families.

3.3 Born-Infeld solitons

In this section we will be mainly referring to [27], [6], and [21]. We note that,

(1− ψ2
y)ψxx + 2ψxψyψxy − (1 + ψ2

x)ψyy = 0

is called the Born-Infeld equation. Now we define Born-Infeld soliton functions.

Definition 3.3.1. (Born-Infeld soliton function) A function ψ : Ω → R2 is said to be a

Born-Infeld soliton function if it solves the Born-Infeld equation.
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Example 13. For any C2 function ϕ we note that,

ψ(x, y) = ϕ(x+ y)

is a Born-Infeld soliton function. For instance,

ψ(x, y) = sin(x+ y)

is an example of a Born-Infeld soliton function.

In [27] page 617-619, the author presents a way to solve the Born-Infeld equation by

hodograph transformations and shows that for suitable functions F and G(which is made

precise in [6])

x− t = F (r)−
∫
s2G

′
(s)ds

x+ t = G(s)−
∫
r2F

′
(r)dr

ψ(x, t) =

∫
rF

′
(r)dr +

∫
sG

′
ds

is a solution to the Born-Infeld equation. In [6], We also note that in [6], Arka Das shows

that Born-Infeld solitons are examples of zero mean curvature surfaces. We will see more

about them in the next chapter.
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Chapter 4

Solution to the Björling problem of

Born-Infeld solitons

4.1 Introduction

In this chapter, we present the solution to the Björling problem for Born-Infeld solitons.

This is a completely original work that we put on arXiv as a semi-expository paper, which

can be seen at [21]. We give a detailed introduction in the next few paragraphs below.

We note that any non-parametric minimal surface (x, y, ψ(x, y)) satisfies the minimal

surface equation,

(1 + ψ2
y)ψxx − 2ψxψyψxy + (1 + ψ2

x)ψyy = 0

.

This equation is similar to the Born-Infeld equation,

(1− ψ2
y)ψxx + 2ψxψyψxy − (1 + ψ2

x)ψyy = 0

This motivates us to ask similar questions about the Born-Infeld solitons. In particular
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one can ask, can we find an analog of Weierstrass-Ennepper representation formulae for

the Born-Infeld solitons? This was answered by Barbishov and Chernikov, which we would

shortly see in this article. We can also ask for an analog of the Björling problem. In this

chapter, we answer that question. We start with the definition of Born-Infeld soliton general

surfaces.

Definition 4.1.1 (Born-Infeld soliton general surfaces). A surface is said to be a Born-Infeld

soliton general surface if it is locally of the form (ψ(y, z), y, z), (x, ψ(x, z), z) or (x, y, ψ(x, y))

where ψ solves the Born-Infeld equation.

Example 14. Later in this chapter, we will show that any timelike minimal surface without

singularities is an example of a Born-Infeld soliton general surface.

in [8], R. Dey and R.K. Singh showed that timelike minimal graphs over y− z plane have

Born-Infeld solitons as height functions. We show that the same result holds for timelike

minimal graphs over the x − z plane. We also prove that any timelike minimal surface

without singularities is locally a graph over x− z or y− z plane. Thus we conclude timelike

minimal surfaces without singularities are Born-Infeld soliton general surfaces.

We use the above result to solve Björling problem for Born-Infeld soliton general surfaces.

Björling problem for timelike minimal surfaces has already been solved in [5] and [18]. For

regular space or timelike curves, one gets a timelike minimal surface without singularities as

the solution to the Björling problem. This implies that for regular space or timelike curves,

Björling problem for Born-Infeld soliton general surfaces can be solved.

In [24] E. A Paxton showed that any compact subset of a global properly immersed

timelike minimal surface is a timelike minimal graph over some timelike plane. We generalize

the result in [8] to show timelike minimal graphs over any timelike plane that has the Born-

Infeld soliton as a height function. Moreover, we see that for regular real analytic curve c and

vector field n which have entire split-holomorphic functions as an analytic extension we get a

global properly immersed timelike surface as the solution to the Björling problem. So solving

timelike Björling problem for such real analytic strips and looking at their compact subsets

is a way to find Born-Infeld solitons. In particular, we note that for real analytic strips of

regular real-analytic curves and unit vector fields (c, n) with components as polynomials in

t, one can use the above result to find Born-Infeld solitons.

Graph-like Born-Infeld solitons are of special interest to physicists and we try to ask
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a similar question to them. From [8] we note that spacelike minimal graphs and timelike

minimal graphs over y − z plane are Born-Infeld soliton graphs. We use this idea and ask

for what kind of real analytic strips (c, n), do we get a spacelike minimal graph or timelike

minimal graph as a solution to the Björling problem. We characterize such curves and

normals for which graphical solutions can or cannot be found.

Lastly, we go through the representation formulae given by Barbishov and Chernikov.

We show that the Barbishov and Chernikov representation formula, like the Weierstrass-

Enneper representation, fails at zero Gauss curvature points. In [23] L. McNertney showed

that any surface in L3 which can be expressed as the sum of two lightlike curves with

linearly independent velocities is timelike minimal. We see that the Barshiov and Chernikov

representation formula also expresses the surface as a sum of two lightlike curves with linearly

independent velocities, implying these Born-Infeld solitons are timelike minimal in L3. Also,

normal vector fields of these surfaces parametrized by r − s coordinates are the same.

We note that A. Das also in [6] independently solved the Björling problem for Born-Infeld

solitons, X(ω(t)) = c(t),N(ω(t)) = n(t) where ω(t) is a curve in r− s plane determined by c

and n. They also shows that Björling problem for Born-Infeld solitons may not have unique

solutions.

Our results here are dependent on plenty of earlier work done by several mathematicians.

We would have a look at those as we go through them. .

As a summary, we aim to describe three results. We would first prove that any timelike

minimal surface without singularities is locally the graph of a Born-Infeld soliton over y− z

or x − z plane. This answers the Björling problem for surfaces that are locally Born-Infeld

solitons, in the special case when the curve is assumed to be regular. The third section is

about some corollaries of E.A Paxton’s results ([24]). In the fourth section, we deal with the

Björling problem of surfaces that are globally Born-Infeld solitons and present some results.

In the last few sections, we study a special class of Born-Infeld solitons, given by Barbishov

and Chernikov and we would prove some theorems about them.

Throughout this chapter we will be using the following definition for the Lorentz-Minkowski

space, L3.

Definition 4.1.2. L3 is R3 with the metric ds2 = dx2 + dy2 − dz2
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4.2 Regular timelike minimal surfaces and Born-Infeld

solitons

We will start with defining Born-Infeld solitons.

Definition 4.2.1 (Born-Infeld soliton). Let Ω ⊂ R2 be an open subset. Let (u, v) ∈ Ω. Now

we will denote this subset by Ω(u,v). A map ϕ: Ω(u,v) → R is said to be a Born-Infeld soliton

if it solves the Born-Infeld equation in the variables u, v.

First, we will show a lemma about timelike minimal graphs over x− y plane.

Lemma 4.2.1. Any timelike minimal graph X(x, y) = (x, y, ϕ(x, y)) without singularities is

locally a graph of the form (x, ψ(x, z), z) or (ψ(y, z), y, z) for some Born-Infeld soliton ψ.

Proof. Here the Jacobian of the surface X at a point p looks like this,

 1 0

0 1

ϕx(p) ϕy(p)


Thus note that (

1 0

ϕx(p) ϕy(p)

)
or (

0 1

ϕx(p) ϕy(p)

)
has rank 2 only if their determinants ϕx(p) or ϕy(p) is nonzero . In other words, our surface

is always locally a graph over x− z or y − z plane if ϕx(p) or ϕy(p) is nonzero for any point

p. This is always true for a timelike minimal graphs without singularities over x − y plane

as they satisfy

ϕ2
x(p) + ϕ2

y(p) > 1

at all points as the normal of X,

N =
(−ϕx,−ϕy,−1)√
|ϕ2

x + ϕ2
y − 1|
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is spacelike. To show the height function of local x−z or y−z graph is a Born-Infeld soliton,

one can compute mean curvature and equate it to zero. This part is similar to R. Dey and

R.K. Singh’s proof of height functions of timelike minimal graphs without singularities over

y − z planes are Born-Infeld solitons(in [8] pages 528 to 530)

Now we will use this lemma to prove that timelike minimal surfaces without singularities

are Born-Infeld soliton general surfaces.

Theorem 4.2.2. Any timelike minimal surface without singularities is locally a graph of a

function over the x-z or y-z plane with their height function being a Born-Infeld soliton.

Proof. Any regular timelike minimal surface is locally a graph and it is of the form (x, y, ψ(x, y)),

or (x, ψ(x, z), z) or (ψ(y, z), y, z). By lemma 2.1, we note that the timelike x−y graph with-

out singularities is also locally a y−z or x−z graph. Using the zero-mean curvature condition

one can conclude that the height function must be a Born-Infeld soliton.

We note that alternatively in [20] proposition 3.3(page 75), R. Lopez proved that any

timelike minimal surface is locally a graph over x−z or y−z plane by noting that components

of the normal are Jacobian of the map from y − z,x − z and x − y plane into the image of

the surface.

In theorem 3.3 of [18](Page 1091), Y.W Kim, S.E Koh, and S-E Yang proved that if

c is a regular spacelike or timelike curve, then there is a timelike minimal surface without

singularities solving the Björling problem. This gives us the following result.

Corollary 4.2.3. If c is a regular real analytic spacelike or timelike curve and n is a real

analytic spacelike unit normal vector field, then there exists a Born-Infeld soliton general

surface which solves the Björling problem.

Another corollary of theorem 2.1 is the following.

Corollary 4.2.4. Let c : I → L3 be a regular timelike curve in L3 such that c
′′
(t) is

spacelike for all t ∈ I. Then there exists a Born-Infeld soliton general surface containing

c as geodesic(by a geodesic here, we mean a curve such that principal normal agrees with

surface normal in L3).
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Proof. Here since our curve is regular we can give it arc length parametrization which has

a constant speed. Now we refer to corollary 3.2, page 489 of [5]. We also note that for a

regular curve, we get a timelike minimal surface without singularities as solutions to the

Björling problem which is also a Born-Infeld soliton general surface.

4.3 On compact subsets of timelike minimal surfaces

In this section, we get some corollaries of theorem 1.1 in [24]. We would first prove a lemma.

Lemma 4.3.1. Let X : Ω → R3 be a timelike minimal surface which is a smooth graph over

a timelike plane P . Choose a orthonormal basis {b2, b3} with respect to ⟨, ⟩L3 for the plane P ,

with b2 a spacelike vector ,b3 a timelike vector . Also, let b1 = N be the unit spacelike surface

normal of the timelike plane P .Then {b1, b2, b3} forms a orthonormal basis of L3. For any

x2b2 + x3b3 in P, we can consider

ψ(x2, x3) = ⟨X,N⟩L3 .

Then such a ψ satisfies the Born-Infeld equation in variables x2, x3 and thus is a Born-infield

soliton.

Proof. Since X is a smooth graph over plane P we know that the projection map,

π : X(Ω) → R2

with π(p) being the projection of the point X(p) onto the plane P=span{b2, b3} is a diffeo-

morphism. Let Σ ⊂ P be the image of this map. Using

ϕ = π−1 : Σ → X(Ω)

we get a graph X(x2, x3) = ψ(x2, x3)N +x2b2+x3b3 with ψ(x2, x3) = ⟨X(x2, x3), N⟩L. Here
X(x2, x3) : P → R3 is X ◦ ϕ. To show that such a map ψ(x2, x3) satisfies the Born-infield

equation, one can compute the mean curvature in this new parametrization and equate it to

zero.

Now we state the main result of this section.
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Theorem 4.3.2. If (c, n) is a smooth real analytic strip with the properties that,

• c, a regular curve

• c and n have entire split-holomorphic functions as an analytic extension

then any compact subset of the timelike minimal surface solving this Björling problem is a

timelike minimal graph over some timelike plane with height function a Born-Infeld soliton.

Proof. We first note that since c and n have analytic extensions which are entire functions,

Ω can be taken to be R2. Since c is regular, the solution to Björling problem is a regular

surface(we refer to theorem 3.3 of [18]). Thus we have a smooth X: R2 → R3 which is a

properly immersed surface, solving this Björling problem. Now by theorem 1.1 (page 3036)

of [24] any compact subset of this surface is a timelike graph over some timelike plane. Using

lemma 3.1, we conclude that the height function is a Born-Infeld soliton.

In fact for any M > 0, when restricted to a diamond DM={(u, v)||u| + |v| ≤ M} We

would still get a timelike graph over some timelike plane. This was used in the proof of

theorem 1.1 (page 3036) of [24].

Now we state a special case of Theorem 3.2.

Corollary 4.3.3. If (c, n) is a smooth real analytic strip with the properties that,

• c, a regular curve

• c(t) and n(t) have components as polynomials in t with real coefficients.

for anyM > 0, the solution to the time like Björling problem when restricted to a diamond

DM={(u, v)||u|+ |v| ≤M} is a smooth graph over some timelike plane with height function

being a Born-Infeld soliton.

35



4.4 Björling problem for graph-like Born-Infeld soli-

tons

We first define graphical Born-Infeld solitons.

Definition 4.4.1 (Born-Infeld soliton surface). A surface X is said to be a Born-Infeld

soliton surface if it is of the form X(y, z) = (ψ(y, z), y, z) for some Born-Infeld soliton.

Example 15. The surface X : [0, 2π)× [0, 2π) → R3 given by,

X(y, z) = (tan(y + z), y, z)

Is a Born-Infeld soliton surface.

Let us recall the definition of the positive quasi-definite matrix from [17].

Definition 4.4.2. A matrix J is said to be positive quasidefinite if

A =
J + JT

2

is positive definite.

We asked for what kind of real-analytic strips (c, n) the Björling problem gives a graphical

solution. We characterized a set of real-analytic strips (c, n) for which one gets a time-like

minimal graph as a solution to the Bjorling problem. Note that in the following result, we

are using split-complex analysis instead of complex analysis. Here z = x+ k
′
y with k

′2
= 1.

We refer to [5] for more about split-complex analysis.

Theorem 4.4.1. Given a real analytic curve c(t) = (c1(t), c2(t), c3(t)) which is timelike or

spacelike in L3 and a real analytic spacelike unit normal n = (n1(t), n2(t), n3(t)) let,

J(c,n)(t) =

∣∣∣∣∣ c2u (t)2
c2v (t)

2
+ (n(t)× c

′
(t))2

c3u (t)
2

c3v (t)
2

+ (n(t)× c
′
(t))3

∣∣∣∣∣
be a real-valued function defined on I.
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Fix a real analytic strip (c, n) and let Ω(c,n) be a domain where analytic extension of both

c and n exists.

1) t→ J(c,n)(t) has a zero in I =⇒ there does not exist a solution for Björling problem

of time like Born-Infeld soliton surfaces without singularities.

2) If Ω(c,n) is convex, and if

J(c,n)(z) =

(
c2u
2

+ (Im(n(z)× c
′
(z))2

c2v
2

+ (Re(n(z)× c
′
(z))2

c3u
2

+ (Im(n(z)× c
′
(z))3

c3v
2

+ (Re(n(z)× c
′
(z))3)

)

has a non-vanishing determinant and is positive quasi definite for all z in Ω(c,n), then there is

a timelike Born-Infeld soliton surface without singularities in L3 as a solution to the björling

problem and it is given by

X(z) = Re{c(z) + k′
∫ z

t0

n(w)× c
′
(w) dw}

if c is timelike and,

X(w) = Re{c(w) + k′
∫ w

t0

n(ζ)× c
′
(ζ) dζ}

When c is spacelike(Here w = k
′
z).

Proof. We present the proof for the case when c is timelike. When c is spacelike, the proof

is similar.

The main idea of the proof is to use the implicit function theorem to understand when

the timelike minimal surface solution to the Björling problem becomes a graph over the y-z

plane.

For Björling problem for timelike minimal surfaces, we know the solution is

X(z) = Re{c(z) + k′
∫ z

t0

n(w)× c
′
(w) dw}

(We refer to [5], page 485, theorem 3.1).
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Let

F (z) = c(z) + k′
∫ z

t0

n(w)× c
′
(w) dw

.

Then

X(z) =
F (z) + F (z)

2

∂X

∂z
=

1

2

∂F

∂z
=

1

2
(
∂c

∂z
+ k′(n(z)× c

′
(z))).

We note that for split complex numbers,

∂X

∂z
=

1

2

(
∂X

∂u
+ k′

∂X

∂v

)
.

Thus
∂X

∂u
= Re(2

∂X

∂z
) =

1

2

∂c

∂u
+ Im(n(z)× c

′
(z))

∂X

∂v
= Im(2

∂X

∂z
) =

1

2

∂c

∂v
+Re(n(z)× c

′
(z))

(
Xu Xv

)
=
(

cu
2
+ Im(n(z)× c

′
(z) cv

2
+Re(n(z)× c

′
(z)
)
.

Which implies,xu xv

yu yv

zu zv

 =


c1u
2

+ (Im(n(z)× c
′
(z))1

c1v
2

+ (Re(n(z)× c
′
(z))1

c2u
2

+ (Im(n(z)× c
′
(z))2

c2v
2

+ (Re(n(z)× c
′
(z))2

c3u
2

+ (Im(n(z)× c
′
(z))3

c3v
2

+ (Re(n(z)× c
′
(z))3)

 .

Thus (
yu yv

zu zv

)
=

(
c2u
2

+ (Im(n(z)× c
′
(z))2

c2v
2

+ (Re(n(z)× c
′
(z))2

c3u
2

+ (Im(n(z)× c
′
(z))3

c3v
2

+ (Re(n(z)× c
′
(z))3)

)
.
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Let

J(c,n)(z) =

∣∣∣∣∣ c2u2 + (Im(n(z)× c
′
(z))2

c2v
2

+ (Re(n(z)× c
′
(z))2

c3u
2

+ (Im(n(z)× c
′
(z))3

c3v
2

+ (Re(n(z)× c
′
(z))3)

∣∣∣∣∣ .
Thus whenever J(c,n)(z) is nonvanishing, by implicit function theorem one can represent

the surface as locally a graph over y − z plane. The real-valued function t → J(c,n)(t)

mentioned in theorem

J(c,n)(t) =

∣∣∣∣∣ c2u (t)2
c2v (t)

2
+ (n(t)× c

′
(t))2

c3u (t)
2

c3v (t)
2

+ (n(t)× c
′
(t))3

∣∣∣∣∣
is the restriction of this map z → J(c,n)(z) to I. Using continuity arguments one can

conclude that J(c,n)(z) non-vanishing in a some allowed domain Ω(c,n) is equivalent to J(c,n)(t)

non-vanishing on I. This completes the proof of the first part of the theorem.

Now if ψ : (u, v) → (y(u, v), z(u, v)) is injective as well, it would become a diffeomorphism.

In [17] theorem 6 (Page 88) D. Gale and H.Nikaido shows that if Ω is a convex domain and

if ψ : Ω → R2 has a positive quasi definite Jacobian at all points, then ψ is injective. The

second condition ensures this.

Now we would just state when can we get a spacelike minimal graph or a spacelike Born-

Infeld soliton surface without singularities as the solution to the Bjorling problem. The proof

is similar, except one has to use complex numbers and complex analysis.

Theorem 4.4.2. Given a real analytic curve c(t) = (c1(t), c2(t), c3(t)) in L3 and a real

analytic timelike unit normal n = (n1(t), n2(t), n3(t)) let,

J(c,n)(t) =

∣∣∣∣∣ c2u (t)2
c2v (t)

2
− (n(t)× c

′
(t))2

c3u (t)
2

c3v (t)
2

− (n(t)× c
′
(t))3

∣∣∣∣∣
be a real-valued function defined on I.

Fix a real analytic strip (c, n) and let Ω(c,n) be a domain where analytic extension of both

c and n exists.

1) t→ J(c,n)(t) has a zero in I =⇒ there does not exist a solution for Björling problem
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of space like Born-Infeld soliton surfaces without singularities.

2) If Ω(c,n) is convex, and if

J(c,n)(z) =

(
c2u
2

+ (Im(n(z)× c
′
(z))2

c2v
2

− (Re(n(z)× c
′
(z))2

c3u
2

+ (Im(n(z)× c
′
(z))3

c3v
2

− (Re(n(z)× c
′
(z))3)

)

has a non-vanishing determinant and is positive quasi definite for all z in Ω(c,n) then there

is a spacelike Born-Infeld general surface, without singularities in L3 as a solution to the

Björling problem and it is given by

X(z) = Re{c(z) + i

∫ z

t0

n(w)× c
′
(w) dw}

We note that A. Das in [6] show that the above positive-quasi definite condition can be

replaced with J(c,n)(t) being a P-matrix.

Example 16. For the curve

c(t) = (sin(2t), t, t)

and the normal vectorfield

n(t) =
1√

1 + 2 sin2(2t)
(1,− sin 2t. sin 2t)

We can find a solution to the Björling problem of Born-Infeld soliton surfaces. It is given

by,

X(y, z) = (sin(y + z), y, z)

Where c : [0, 2π) → R3, n : [0, 2π) → R3 and X : [0, 2π)× [0, 2π) → R3.

4.5 On solutions given by Barbishov and Chernikov

We refer to pages 617 to 619 of [27] for the representation formula of Born-Infeld soliton

surfaces given by Barbishov and Chernikov. We show that it holds at any non-zero Gauss

curvature point.

Theorem 4.5.1. For any timelike Born Infeld soliton surface (ψ(y, z), y, z) without singu-
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larities, for any non-zero Gauss curvature point, there is an open neighborhood with two C2

functions F and G such that the surface can be represented there as,

y − z = F (r)−
∫
s2G

′
(s)ds

y + z = G(s)−
∫
r2F

′
(r)dr

ψ(y, z) =

∫
rF

′
(r)dr +

∫
sG

′
(s)ds.

Conversely, any graph-like surface (ψ(y, z), y, z) represented this way is a Born-Infeld soliton

surface.

Proof. We refer to [27], pages 617-619(Section 17.15) for the proof of the above representation

formulae. Note the proof starts with the assumption

ψ2
y − ψ2

z + 1 > 0.

This implies the surface is timelike. Also Note that in the proof to go from step 17.89 to

17.90, there was an interchange of the roles of dependent and independent variables. For

this, we want the map

ψ : (ξ, η) → (u, v)

to be a diffeomorphism. So we need the Jacobian of this map ψ to be nonzero. This implies,

at such points p

(ψyyψzz − ψ2
yz)(p) ̸= 0

.

The above condition is equivalent to ψ being a local-diffeomorphism. Note that Gauss

curvature of (ψ(y, z), y, z) is given by,

K(p) =
ψyyψzz − ψ2

yz

(ψ2
y − ψ2

z + 1)2
.

Thus if there are no singularities,

(ψyyψzz − ψ2
yz)(p) ̸= 0
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is equivalent to saying that Gauss curvature K(p) is nonzero.

Now we state a result about their surface normal.

Theorem 4.5.2. The surface normal N(r, s) (in L3) of all Born-Infeld soliton surfaces

described by the representation formula of Barbishov and Chernikov are the same.

Proof. The proof follows by computation.

Xr =

(
rF

′
(r),

F
′
(r)(1− r2)

2
,

−F ′
(r)(1 + r2)

2

)
.

Xs =

(
sG

′
(s),

G
′
(s)(1− s2)

2
,
G

′
(s)(1 + s2)

2

)
.

N(r, s) =
Xr ×Xs

|Xr ×Xs|
=

(
r + s

1 + rs
,

r − s

1 + rs
,
rs− 1

1 + rs

)
.

Thus N(r, s) is independent of F and G.

Now we give a geometric interpretation of the above formula.

Theorem 4.5.3. Graphical surfaces (ψ(y, z), y, z) with ψ(y, z),y,z as described by the rep-

resentation formula of Barbishov and Chernikov can be written as,

X(r, s) =
ψ(r) + ϕ(s)

2

with

ψ(r) =

(
2

∫
rF

′
(r)dr, F (r)−

∫
r2F

′
(r)dr, −F (r)−

∫
r2F

′
(r)dr

)
,

ϕ(s) =

(
2

∫
sG

′
(s)ds, G(s)−

∫
s2G

′
(s)ds, G(s) +

∫
s2G

′
(s)ds

)
,
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such that ψ, ϕ lightlike curves in L3 with ψ
′
(r) and ϕ

′
(s) are linearly independent for all

values of r and s. This implies these surfaces are timelike minimal.

Proof. It follows from computation that

X(r, s) =
ψ(r) + ϕ(s)

2

and ψ, ϕ are lightlike curves. To show ψ
′
(r) and ϕ

′
(s) are linearly independent for all values

of r and s, note that ψ
′
(r) = 2Xr and ϕ

′
(s) = 2Xs.

Xr =

(
rF

′
(r),

F
′
(r)(1− r2)

2
,

−F ′
(r)(1 + r2)

2

)
.

Xs =

(
sG

′
(s),

G
′
(s)(1− s2)

2
,
G

′
(s)(1 + s2)

2

)
.

Since X(r, s) is a given to be the graph of a function, which is a regular surface, Xr and

Xs are linearly independent for all values of r and s.

Fact 2.2 in [1](Page 541) confirms these surfaces are timelike minimal.
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Chapter 5

Solution to the interpolation problem

of timelike minimal surfaces using

split-harmonic maps

5.1 Introduction

1 In this chapter we present a different solution to the singular Björling problem of timelike

minimal surfaces, using split-harmonic maps. We also solve the interpolation problem of

timelike minimal surfaces for a class of curves called split-Fourier curves. This is a completely

original work, which we put up on arXiv, which can be seen at [22]. We give a detailed

introduction in the next few paragraphs.

Singular Björling problem for timelike minimal surfaces asks: given a lightlike curve

γ : (a, b) → L3 and a lightlike vector field L : (a, b) → L3 can we find a timelike minimal

surface X such that X(u, 0) = γ(u) and Xv(u, 0) = L(u). In [18], Y.W Kim, S.E Koh,

and S-E Yang solve this using results involving the wave equation. We also note that in

[7], R.Dey, P.Kumar, and R.K.Singh solves singular Björling problem for maximal surfaces

when γ : S1 → L3, L : S1 → L3 are lightlike using a representation formula of maximal

surfaces involving harmonic maps. This motivates us to solve the singular Björling problem

1Mathematics Subject Classification. Primary 53A10, Keywords and phrases. timelike minimal surfaces,
split-holomorphic maps.
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for timelike minimal surfaces using a representation formula involving split-harmonic maps.

We define split-harmonic maps as follows,

Definition 5.1.1. A map f : Ω ⊂ C′ → R is said to be split-harmonic if,

fxx − fyy = 0.

A map F : Ω ⊂ C′ → C′
is said to be split-harmonic if each of its component functions

is split-harmonic.

Example 17. The map f : C′ → R given by,

f(x+ k
′
y) = x2 + y2

is a split-harmonic map.

Throughout this chapter, we will be using the following definition for L3.

Definition 5.1.2. L3 is R3 with the metric ds2 = −dx2 + dy2 + dz2.

We define split-Fourier curves.

We note that for split-exponential map, ek
′θ = cosh θ+ k

′
sinh θ. We refer to [3], page 11

for more details.

In this chapter, we solve singular Björling problem for timelike minimal surfaces when

γ : H1 → L3, L : H1 → L3 are lightlike. Here H1 denotes the set {x + k
′
y ∈ C′ |x >

0, x2 − y2 = 1}. H1 is the right branch of the unit hyperbola x2 − y2 = 1.

Definition 5.1.3. A curve γ : H1 → L3 is said to be a split-Fourier curve if it has a

finite series expansion(I.e, only finitely many terms in the infinite series being nonzero) of

the form, γ(θ) = (γ1 + k
′
γ2, γ3) = (Σ∞

−∞cne
k
′
nθ,Σ∞

−∞dne
k
′
nθ) with cn, dn being split-complex

numbers and γ3(θ) = Σ∞
−∞dne

k
′
nθ being a real-valued function.

Example 18. The curve γ : [0, 1] → R3 given by,

γ(θ) = (cosh θ, sinh θ, sinh θ) = (ek
′
θ,
ek

′
θ − e−k

′
θ

2k′ )

is a split-Fourier curve.
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We first develop a representation formula for timelike minimal surfaces involving split-

harmonic maps. Then we use this to solve the singular Björling problem. In pursuit of this,

we show some results in split-complex analysis which are analogs of corresponding ones in

complex analysis. As an application, we study the problem of interpolating a given spacelike

or timelike split-Fourier curve to a point p by a timelike minimal surface. This is analogous

to a result in [7].

Next, we take two arbitrary split-Fourier curves and find conditions such that there is a

timelike minimal surface interpolating them.

5.2 A representation formula for timelike minimal sur-

faces

We recall the definition of generalized timelike minimal surfaces. Let z = x+ k
′
y ∈ Ω ⊆ C′

.

Here k
′2
= 1 and |z|2 = y2 − x2. We refer to [5] for more about split-complex numbers. We

recall the definitions of ∂F
∂z

and ∂F
∂z

from [5].

∂F

∂z
=

1

2
(
∂F

∂x
+ k

′ ∂F

∂y
)

and

∂F

∂z
=

1

2
(
∂F

∂x
− k

′ ∂F

∂y
).

The following definition is motivated by results in [5]

Definition 5.2.1. A smooth map F = (u, v, ω) : Ω → L3 is said to be a generalized timelike

minimal surface if it satisfies,

Fxx − Fyy = 0,

⟨Fx, Fx⟩+ ⟨Fy, Fy⟩ = 0,

⟨Fx, Fy⟩ = 0
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and

−
∣∣∣∣∂u∂z

∣∣∣∣2 + ∣∣∣∣∂v∂z
∣∣∣∣2 + ∣∣∣∣∂ω∂z

∣∣∣∣2 ̸≡ 0 on Ω.

We identify L3 with C′ × R. Let,

h = u+ k
′
v.

Also, we define

ϕ1 =
∂u

∂z
, ϕ2 =

∂v

∂z
and ϕ3 =

∂ω

∂z
.

Now we present the main result of this section.

Theorem 5.2.1. A smooth map F = (h,w) : Ω → L3 is a generalized timelike minimal

surface if and only if it is split-harmonic with ω2
z = hzhz and |hz| not identically same as

|hz|.

Proof. We prove in the forward direction.

Since

Fxx − Fyy = 0,

F is split-harmonic. By computations we get,

4(−ϕ2
1 + ϕ2

2 + ϕ2
3) = ⟨Fx, Fx⟩+ ⟨Fy, Fy⟩+ 2k

′⟨Fx, Fy⟩,

hz = ϕ1 + k
′
ϕ2

and

hz = ϕ1 − k
′
ϕ2.

This implies,

4(ω2
z − hzhz) = ⟨Fx, Fx⟩+ ⟨Fy, Fy⟩+ 2k

′⟨Fx, Fy⟩.
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Since F is represented by conformal parameters,

ω2
z = hzhz.

Using this, one can show by calculating that

−
∣∣∣∣∂u∂z

∣∣∣∣2 + ∣∣∣∣∂v∂z
∣∣∣∣2 + ∣∣∣∣∂ω∂z

∣∣∣∣2 = −(|hz| − |hz|)2

2
.

From here we get |hz| not identically same as |hz|. Proof of the other direction is

similar.

In particular above representation formula shows that for time-like minimal graphs over

x− y plane, h is injective.

5.3 On split-harmonic maps

In this section, we state some results about split-harmonic maps. We start with the definition

of split-holomorphic and split-analytic maps. We refer to [5] for more details.

Definition 5.3.1 (split-holomorphic). A map f = u + iv : Ω → C′
is said to be split-

holomorphic if for any z = x+ k
′
y ∈ Ω, u and v satisfies,

ux = vy

uy = vx.

We call the above equations as Cauchy-Riemann equations in split-complex analysis.

Definition 5.3.2 (split-analytic). A map f = u+ iv : Ω → C′
is said to be split-analytic, if

for any η = s+ k
′
t ∈ Ω there is an open ball,

BR(η) = {x+ k
′
y ∈ Ω|

√
(s− x)2 + (t− y)2 < R}

In usual subspace topology of Ω in R2 with f(z) = Σ∞
0 cn(z − η)n, for every z ∈ BR(η).
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Unlike holomorphic maps, not all split-holomorphic maps are analytic. One can look at

[3] page 18 for a counterexample. So, we have to impose this extra condition while stating

the identity theorem.

Lemma 5.3.1 (Principle of isolated zeros for split-analytic maps). Suppose f is a split-

holomorphic map that is represented by a power series around a zero η in the open ball

BR(η). Also, assume f is not identically zero on BR(η). Then there is a 0 < r ≤ R such that

f(z) ̸= 0 whenever z is in Br(η)− {η}.

Proof. There exist coefficients ck such that f(z) = Σ∞
0 ck(z − η)k in BR(η). Let n ∈ N

be the smallest number such that cn ̸= 0. Since η is a zero of f , n ≥ 1. Then we have

f(z) = (z − η)nΣ∞
n+1ck(z − η)k = (z − η)ng(z). Here g(η) ̸= 0. Now using continuity of g

we note that there is a 0 < r ≤ R such that g(z) ̸= 0 whenever z is in Br(η) − {η}. Since

f(z) = (z − η)ng(z), this concludes the proof.

Using this we prove the identity theorem. In the following theorem, we are using the

definition of accumulation points following the usual topology of R2.

Theorem 5.3.2 (Identity theorem for split-analytic maps). Let Ω ⊆ C′
be a open and

connected domain. Also, let f and g be two split-holomorphic maps that are analytic on Ω.

If the set E = {z ∈ Ω|f(z) = g(z)} contains an accumulation point then f = g on Ω.

Proof. Consider h = f − g. Let η ∈ E be an accumulation point. This implies that for any

r > 0, Br(η) contains a point z ̸= η with h(z) = 0. Then by lemma 3.1, there is an open ball

BR(η) ⊆ Ω where h is identically zero. Suppose a ∈ Ω \ BR(η). Since Ω is path connected,

there is a path γ with γ(0) = η,γ(1) = a. Let t0 = sup{t ∈ [0, 1]|h(γ(s)) = 0∀s ∈ [0, t]}.
Note that such a t0 exists, as this set is non-empty and bounded. Due to continuity of h, we

have h(γ(t0)) = 0. This imply γ(t0) is a non-isolated zero of h. By lemma 3.1, this implies

h must be identically zero in a neighborhood of γ(t0). So unless t0 = 1, we can always find

a δ > 0 such that h(γ(t0 + s)) = 0 for any 0 < s ≤ δ. This contradicts the definition of t0.

Thus t0 must be 1, implying h(a) = 0.

Now we define the hyperbolic annulus.

Definition 5.3.3. A hyperbolic annulus is a region of the form D = {x + k
′
y|x > 0, a <

x2 − y2 < b} in the split-complex plane where a and b are two real numbers.
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We note that, unlike circular annulus, the hyperbolic annulus is simply connected. Now

we define split-harmonic conjugate maps.

Definition 5.3.4. For a split-harmonic map u : Ω ⊆ C′ → R, a map v : Ω ⊆ C′ → R is

said to be a split-harmonic conjugate of u if v satisfies,

ux = vy

uy = vx.

We prove that on a simply connected domain, any split-harmonic map has a split-

harmonic conjugate.

Theorem 5.3.3. Any split-harmonic map u on a simply connected domain Ω has a split-

harmonic conjugate v.

Proof. Let v(z) =
∫ z

z0
uydx + uxdy. We note that by Green’s theorem, on any closed curve

C in the domain, ∫
C

uydx+ uxdy =

∫
D

(uxx − uyy)dxdy = 0

Where D is the region bounded by C. Thus the map v is well defined and it satisfies

ux = vy

uy = vx.

Thus v is a split-harmonic conjugate of u up to a constant.

We now state the general form of a split-harmonic map on a simply connected domain.

Theorem 5.3.4 (Representation formula for split-harmonic functions). Let Ω be a simply-

connected domain and F : Ω ⊂ C′ → C′
be a split-harmonic map. Then F can be written

as

F = h+ g

with h,g being split-holomorphic maps. This representation formula is unique up to an

additive constant.
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Proof. F being split-harmonic implies,

∂F

∂z∂z
= 0.

In particular Fz is split-holomorphic. We fix a point z0 in Ω. Let h(z) =
∫ z

z0
Fzdz. is a well-

defined map which is split-holomorphic.We refer to [7] page 16 for proof of well-definiteness

of h. Let g = F − h. We note that

gz =
∂(F − h)

∂z
= Fz − hz = 0

in Ω.

Thus g is also split-holomorphic. We also have F = h + g. To show uniqueness up to

additive constant, suppose

F = h1 + g1 = h2 + g2

then u = h1−h2 = g1 − g2 is both split-holomorphic and anti split-holomorphic(I.e, conjugate

of a split-holomorphic map). Using Cauchy-Riemann equations in split-complex analysis, one

can show that a map that is both split-holomorphic and anti-split-holomorphic must be a

constant.

The above proof is inspired by a similar result for harmonic maps in [15], page 7.

5.4 The singular Björling problem

In this section, we give a new proof of the singular Björling problem for timelike minimal

surfaces.

Let H1 denotes the set {x+ k
′
y ∈ C′|x > 0, x2 − y2 = 1}.

We recall that for split-exponential map, ek
′θ = cosh θ+k

′
sinh θ. Thus any split-complex

number x+k
′
y with x > 0 and −x < y < x, can be written as z = ρek

′θ for some real numbers

θ and ρ. Also any point in H1 can be written as ek
′
θ for some real number θ. We refer to

[3], page 11 for more details.
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We start with a definition.

Definition 5.4.1. A map α : H1 → C′
is said to be analytic if for any point η in H1, there

is a neighborhood of it following the usual topology of R2, where it can be represented by a

power series, α(z) = Σ∞
0 cn(z − η)n.

A curve γ : H1 → L3 is said to be analytic if each of its components is analytic.

Given analytic γ : H1 → L3 and L : H1 → L3, we define maps g1 and g2 on H1 as follows.

Let

g1(e
k
′
θ) =

(
(L1 + k

′
L2) + k

′
(γ1 + k

′
γ2)
)
ek

′
θ

and

g2(e
k
′
θ) =

(
(L1 − k

′
L2) + k

′
(γ1 − k

′
γ2)
)
ek

′
θ.

Now we state the main result of this section.

Theorem 5.4.1. Suppose an analytic lightlike curve γ : H1 → L3, and an analytic lightlike

vector field L : H1 → L3 are given with the properties that,

• ⟨γ′
, L⟩ = 0

• analytic extension g1(z) of g1(e
k
′
θ) and g2(z) of g2(e

k
′
θ) satisfy |g1(z)| ̸≡ |g2(z)|.

Then there is a generalized timelike minimal surface F = (h, ω) defined on some hyperbolic

annulus A(r, R) = {x+ k
′
y ∈ C′ |x > 0, 0 < r < x2 − y2 < R} , r < 1 < R with singular set

atleast H1 such that,

F (ek
′
θ) = γ(ek

′
θ),

∂F

∂ρ
|
ek

′
θ = L(ek

′
θ)

Proof. Since γ and L are analytic on H1, there is a hyperbolic annulus A(r, R) containing

H1, where analytic extensions of both γ and L exists. We construct a harmonic map h on

A(r, R) with,

hθ = γ1 + k
′
γ2,

hρ = L1 + k
′
L2.
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Using,

hz =
1

2
(hρ + k

′
hθ)e

k
′
θ

and

hz =
1

2
(hρ − k

′
hθ)e

−k
′
θ,

We get

hz =
1

2
(L1 + k

′
L2 + k

′
(γ1 + k

′
γ2))e

k
′
θ,

hz =
1

2
(L1 + k

′
L2 − k

′
(γ1 + k

′
γ2))e

−k
′
θ.

Using dh = hzdz + hzdz from [3], We fix a point z0 ∈ H1 and define,

h(z) =

∫ z

z0

dh =

∫ z

z0

hzdz + hzdz.

I.e,

h(z)

∫ z

z0

(
1

2
(L1 + k

′
L2 + k

′
(γ1 + k

′
γ2))e

k
′
θ)dz + (

1

2
(L1 + k

′
L2 − k

′
(γ1 + k

′
γ2))e

−k
′
θ)dz.

Where this integral is taken along any path in A(r, R) joining z0 to z. We refer to [3], page

14 for similar results. By Stoke’s theorem, this map is well defined and satisfies

hθ = γ1 + k
′
γ2,

hρ = L1 + k
′
L2.

Since hz =
1
2
(L1+k

′
L2+k

′
(γ1+k

′
γ2))e

k
′
θ is split-analytic, hzz = 0 and h is split-harmonic.

Proof of existence of ω with ωθ = γ
′
3 and ωρ = L3 is similar.

Now to show this (h, ω) satisfies hzhz − ω2
z we note by computations that,

hzhz(e
k
′
θ) =

L2
3 + γ

′2
3 + 2k

′
L3γ

′
3e

2k
′
θ

4
= ω2

z(e
k
′
θ).

Thus we note that the split-holomorphic map hzhz −ω2
z is zero on H1. By using theorem
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3.2(Identity theorem) we conclude that it is zero on the entire hyperbolic annulus A(r, R).

To show |hz| not identically same as |hz|, we note that the maps g1(e
k
′
θ), g2(e

k
′
θ) agree

with the maps hz ,hz on H1. One can show this by calculations. Now by theorem 3.2(identity

theorem), thus the maps g1(z), g2(z) are same as hz ,hz. Now the assumption |g1(z)| is not
identically the same as |g2(z)| ensures the desired result.

To show singular set contains at least H1, one can compute and prove (|hz|−|hz|)2(ek
′
θ) =

0. Here |hz|2 + |hz|2(ek
′
θ) = 1

2
(γ

′
2
3 − L2

3) = 2|hz||hz|(ek
′
θ) = 2|ωz|2(ek

′
θ).

5.5 Interpolating a given split-Fourier curve to a point

In this section, we study the problem of interpolating a given spacelike or timelike split-

Fourier curve to a point p by a timelike minimal surface. This is similar to a result in [7].

We start with an example, where a curve is interpolated to a point by a timelike minimal

surface.

Example 19. The curve c : [0, 2π] → L3 given by,

c(t) = (cos t, sin t.0)

is interpolated to the origin, (0,0,0) by the timelike minimal surface, the x− y plane.I.e, by

the surface X : R2 → L3 given by,

X(u, v) = (u, v, 0)

In this section, we look for similar instances where a curve gets interpolated to a point.

We start by proving that for any analytic split-Fourier curve, split-Fourier coefficients are

unique.

Theorem 5.5.1. For any analytic split-fourier curve γ(θ) = (γ1+k
′
γ2, γ3) = (Σ∞

−∞cne
k
′
nθ,Σ∞

−∞dne
k
′
nθ)

, the coefficients cn and dn are unique.
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Proof. Using induction, we can prove that

ek
′
nθ = coshnθ + k

′
sinhnθ.

Thus to show the series Σ∞
−∞cne

k
′
nθ has unique coefficients, it is enough to show its

split-real and split-imaginary parts Σ∞
0 an coshnθ and Σ∞

0 bn sinhnθ with an and bn ∈ R have

unique coefficients. We show that for any function f with a converging series expansion

f(θ) = Σ∞
0 an coshnθ, the coefficients an are unique.Proof for Σ∞

0 bn sinhnθ is similar.

f is real analytic and it has an analytic extension f(z) = Σ∞
0 an coshnz within a radius

of convergence R. Let i denote the complex number with i2 = −1. The point ib is inside

this disc for any b with 0 ≤ b < R and we have f(ib) = Σ∞
0 an coshnib = Σ∞

0 an cosnb. Let

g(b) = f(ib) = Σ∞
0 an cosnb. Then this is a Fourier expansion of g in (−R,R). By multiplying

g with a constant if necessary, we assume that R > π. Thus the coefficients an are Fourier

coefficients of g in [−π, π] and thus they are unique.

We solve the problem of interpolating a given spacelike or timelike analytic split-Fourier

curve to the point p = (0, 0, 0) using a timelike minimal surface. This is in parallel to a

similar result in [7].

Theorem 5.5.2. A given spacelike or timelike analytic split-Fourier curve

γ(θ) = (Σ∞
−∞cne

k
′
nθ,Σ∞

−∞dne
k
′
nθ)

can be interpolated as X(rek
′
θ) to the point p = (0, 0, 0) with X(ek

′
θ) = p using a timelike

minimal surface X, if there is an r > 0 such that cn and dn satisfies,

Σ∞
n=−∞4n(n−m)

cncn−mr
2n−m

(rn − 1)(rn−m − 1)
− Σ{(i,j)|i+j=m} 4ij

didjr
k

(ri − 1)(rj − 1)

whenever m ̸= 0, n ∈ Z and

Σ∞
n=−∞4n2

(
cncnr

2n

(rn − 1)2
+

dnd−n

(rn − 1)(r−n − 1)

)
= 0
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Proof. Since γ is analytic, there is a hyperbolic annulus A(r, R) containing H1 where its

analytic extension exists. We construct a timelike minimal surface X with X(ek
′
θ) = p and

X(rek
′
θ) = γ(θ) on this hyperbolic annulus, A(r, R).

We consider split-harmonic maps of the form

h(z) = Σ∞
−∞anz

n + bn
1

zn
.

Using h(ek
′
θ) = (0, 0) we get an = −bn. similary using h(rek

′
θ) = Σ∞

0 cne
k
′
nθ, one can

compute an. From here we get, an = cnrn

(r2n−1)
. We note that only finitely many an are

nonzero, as only finitely many cn are nonzero(as we assumed split-Fourier curves are only

allowed to have finite series expansions, in definition 5.1.3).

Assuming

ω(z) = Σ∞
−∞fnz

n + gn
1

zn

and doing similar computations, we conclude that fn = −gn and fn = dnrn

(r2n−1)
.

Thus the surface X(z) = (h(z), ω(z)) passes through both p and the given curve γ. To

show this is timelike minimal, we compute and get

hzhz − ω2
z(e

k
′
θ) =

1

4

(
Σ∞

−∞2nane
k
′
nθΣ∞

−∞2nane
−k

′
nθ −

(
Σ∞

−∞2nfne
k
′
nθ
)2)

.

From here, comparing coefficients of ek
′
(n−m)θ when n ̸= m and when n = m, one gets

the conditions given in the theorem. Thus the above quantity vanishing is equivalent to the

conditions given in the result. This being zero implies hzhz−ω2
z = 0 on the entire hyperbolic

annulus by identity theorem of split-analytic maps. Also |hz| is not identically same as |hz| as
X(rek

′
θ) is a spacelike or timelike curve. Thus X is a timelike minimal surface interpolating

both γ and p.

s
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5.6 Interpolating a split-Fourier curve to another split-

Fourier curve

We solve the problem of interpolating a given analytic spacelike or timelike split-Fourier

curve to another specified analytic split-Fourier curve.

Theorem 5.6.1. Given a spacelike or timelike analytic split-Fourier curve

γ(θ) = (Σ∞
−∞cne

k
′
nθ,Σ∞

−∞dne
k
′
nθ)

and a analytic split-Fourier curve

α(θ) = (Σ∞
−∞lne

k
′
nθ,Σ∞

−∞mne
k
′
nθ)

, for r > 0 let

an(r) =
rncn − ln
r2n − 1

and

fn(r) =
rndn −mn

r2n − 1
.

γ can be interpolated as X(rek
′
θ) to α as X(ek

′
θ) by a timelike minimal surface X if there

is an r > 0 such that an(r) and fn(r) satisfies,

Σ∞
n=−∞4n(n−m)an(r)(an−m(r)− ln−m)− Σ{(i,j)|i+j=m} 4ijfi(r)fj(r) = 0,

for any m ̸= 0 and,

Σ∞
n=−∞4n2

(
an(r)(an(r)− ln) + fn(r)f−n(r)

)
= 0.

Proof. The proof is similar to that of theorem 5.2. We consider split-harmonic maps of the

form,

h(z) = Σ∞
−∞anz

n + bn
1

zn

and

ω(z) = Σ∞
−∞fnz

n + gn
1

zn
.
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X(ek
θ
) = α imply bn = ln − an and gn = mn − fn. Similarly X(rek

′
θ) = γ implies

an =
rncn − ln
r2n − 1

and

fn =
rndn −mn

r2n − 1

. Here we note that only finitely many an,bn are nonzero, as only finitely many cn,dn,ln,mn are

nonzero(as we assumed split-Fourier curves are only allowed to have finite series expansions,

in definition 5.1.3).

Thus with these choices of an, bn, fn, gn the surface X passes through both α and γ. To

show this is timelike minimal we compute and get,

hzhz − ω2
z(e

k
′
θ) =

1

4

(
Σ∞

−∞(2nane
k
′
nθ)Σ∞

−∞(2n(an − ln)e
−k

′
nθ −

(
Σ∞

−∞2nfne
k
′
nθ
)2)

.

From here, comparing coefficients of ek
′
(n−m)θ when n ̸= m and when n = m, one gets the

conditions given in the theorem. The above quantity vanishing is equivalent to the conditions

given in the result. This being zero implies hzhz−ω2
z = 0 on the entire hyperbolic annulus by

identity theorem of split-analytic maps. Also |hz| is not identically same as |hz| as X(rek
′
θ)

is a spacelike or timelike curve. Thus X is a timelike minimal surface interpolating both γ

and α.

Example 20. The timlike minimal surface X : C′ → C′ × R given by,

X(z) = (
z4

4
− 1

z
, 2Rez)

Interpolates the split-Fourier curve c1 : R → R3 to c2 : R → R3 which are given by,

c1(θ) =

(
cosh 4θ

4
− cosh θ,

sinh 4θ

4
− sinh θ, 2 cosh θ

)

c2(θ) =

(
4 cosh 4θ − 1

2
cosh θ, 4 sinh 4θ − 1

2
sinh θ, 4 cosh θ

)
.
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Chapter 6

Conclusion and the ongoing research

work

So far in this thesis, we dealt with the Björling problem for Born-Infeld solitons and the

interpolation problem for timelike minimal surfaces. We recall that from the last chapter,

we got some algebraic conditions about split-Fourier coefficients which ensure interpolation

of two given split-Fourier curves by a timelike minimal surface. Right now, given this, we

are now exploring,

1. What is the geometric meaning of the algebraic conditions we got?

2. How general is our approach, and what conditions should we impose to interpolate two

arbitrary curves?

3. How do geometric parameters associated with given curves such as distance and so on

dictate the shape?

4. Given two arbitrary curves on space, how close(to give an explicit number bound) do

they have to be for an interpolating minimal or maximal surface to existing and what

is the shape(parametrization) of such a surface?

In fact for the interpolation problem of two arbitrary Jordan curves, for minimal surfaces,

Jesse Douglas has already given existence results in [14]. We also note that in [9] and in [10],
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for maximal surfaces, Rukmini Dey, Pradip Kumar, and Rahul Kumar Singh also approach

this problem and gave an existence result using the inverse function theorem in Banach

manifolds.

But, we, however, are interested in quantifying and coming up with explicit parametriza-

tions and distance bounds for the interpolation of minimal and maximal surfaces. We believe

that this can be done using tools of complex analysis and this is a work in progress.
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