
GPU-based Multiscale Simulation to Model

Active Matter Hydrodynamics in Fluid

Medium
A Thesis

submitted to

Indian Institute of Science Education and Research Pune in partial fulfillment of the

requirements for the BS-MS Dual Degree Programme

By

T N Suhal Siva Ratan

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road, Pashan, Pune 411008,

INDIA.

April, 2023

Supervisor: Apratim Chatterji

© T N Suhal Siva Ratan 2023

All rights reserved

2

Certificate

This is to certify that this dissertation entitled “GPU-based Multiscale Simulation to Model

Active Matter Hydrodynamics in Fluid Medium” towards the partial fulfillment of the

BS-MS dual degree programme at the Indian Institute of Science Education and Research, Pune

represents study/work carried out by T N Suhal Siva Ratan Indian Institute of Science Education

and Research under the supervision of Apratim Chatterji, Associate Professor, Department of

Physics, during the academic year 2022-2023.

Apratim Chatterji

Committee:

Apratim Chatterji

Vijayakumar Chikkadi

3

4

Declaration

I hereby declare that the matter embodied in the report entitled “GPU-based Multiscale

Simulation to Model Active Matter Hydrodynamics in Fluid Medium” are the results of the

work carried out by me at the Department of Physics, Indian Institute of Science Education and

Research, Pune, under the supervision of Apratim Chatterji and the same has not been submitted

elsewhere for any other degree. The CPU version of the Multiscale simulation which was

parallelized and optimized for the parallel processors as my MS thesis, was developed over the

last 4 years by Nishant Baruah, Adrian Pinto and Tejal Agarwal.

T N Suhal Siva Ratan

5

6

This Thesis is dedicated to my parents

7

8

Acknowledgments

I am deeply grateful to Dr. Apratim Chatterji for supporting me as my supervisor during my

Master's project. His exceptional guidance, unwavering support, and invaluable expertise shaped

my research and academic journey. I am also thankful to Dr. Manish Modani and Hemant Giri

from NVIDIA for their insightful assistance in helping me understand parallel programming

tools, which was crucial in successfully completing my project. I would also like to thank Dr.

Vijayakumar Chikkadi, whose valuable research provided me with an engaging research topic

for my thesis.

I’m extremely grateful to my parents for their love, support, and encouragement throughout my

journey. Their sacrifices and guidance have been indispensable in shaping me as a person. I

would also like to thank my brother Chidhvilas, for being such an amazing brother who always

believed in me and supported me, no matter what.

I would also like to thank IISER Pune and C-DAC for providing invaluable support and

resources. In particular, I am thankful for the opportunity to access the high-performance

PARAM-Brahma cluster, which helped me to complete my project.

I express my sincere gratitude to the Infosys Foundation Scholarship and DDN Scholarships for

providing me with the financial support that has been crucial in financing my studies. Their

generous contributions have made pursuing my academic aspirations possible.

I would also like to thank Shreerang Pande and Adrian Pinto for providing me with a deeper

understanding of the physics underlying the problem. I would like to extend my sincere thanks to

all my lab mates for their support, and encouragement throughout my research journey.

Finally, I express my gratitude to all of my friends for the valuable memories that we have shared

throughout the years.

9

10

Contents

List of Figures--- 16

List of Tables-- 18

Abstract-- 20

Chapter 1---22

Introduction--- 22

1.1 Background-- 22

1.1.1 What is Active Matter?--22

1.1.2 Hydrodynamics of Microswimmers(E.Coli)-- 22

1.1.3 Modelling Microswimmers as Janus Particles--- 24

1.1.4 Passive Particles' Behavior in the Presence of Active Particles----------------------- 25

1.2 Physical System to be Modeled for the Parallel Processors-----------------------------------25

1.3 Parallel Programming-- 25

1.3.1 Introduction--- 26

1.3.2 Graphic Processing Unit-- 26

1.4 Goal of the Project--27

1.5 Thesis Outline--- 27

Chapter 2---29

Methodology---29

2.1 Overview of GPU and Parallel Programming Tools--- 29

2.1.1 Understanding GPU Architecture--29

2.1.2 Programming Construct Vs. Programming Language---------------------------------- 30

2.1.3 Open Accelerator (OpenACC)--- 31

2.1.4 Levels of Parallelism in OpenACC--31

2.2 Molecular Dynamics (MD)--32

2.2.1 MD Algorithm--33

11

(a) Initialization of positions and velocities-- 33

(b) Velocity-Verlet Algorithm-- 34

(c) Interparticle Forces and the Potentials-- 35

(d) Neighbour Lists-- 37

(e) Thermostat-- 37

2.2.2 Implementation of MD using OpenACC--- 38

2.3 Multiparticle Collision Dynamics(MPCD)--39

2.3.1 MPCD Algorithm-- 40

(a) Stochastic Collision step-- 40

(b) Deterministic Streaming Step-- 41

(c) Thermostat in MPCD-- 42

(d) Angular Momentum Conservation-- 42

(e) Periodic Boundary Conditions(PBC)--42

2.3.2 Implementation of MPCD (without MD)--- 43

2.4 Fluid-Particle Interactions--- 43

2.4.1 Boundary conditions for the fluid flow--- 44

2.4.2 Stochastic Boundary Conditions--- 45

2.5 Active Particle Modeling-- 46

2.5.1 Hydrodynamics and momentum transfer during the run phase------------------------ 46

2.6 Algorithm to implement the Multiscale simulation-- 47

2.7 Code Porting to OpenACC-- 48

2.7.1 Parallelization Strategies for Diverse Computational Scenarios-----------------------49

Increment/Update:--49

Vector Operations-- 50

Reduction--51

Atomic Operations:-- 53

2.7.2 Method to port the code to the GPU with OpenACC----------------------------------- 56

12

Chapter 3---57

Results and Verification of parallelized simulation--57

3.1 Benchmarking the Hardware-- 58

3.2 Verification of Molecular Dynamics Simulation--- 58

3.2.1 Simulation Units--- 58

3.2.2 System Parameters--- 59

3.2.3 Energy plots of the MD simulation-- 59

(a) Thermostat absent-- 59

(b) Thermostat present---61

3.2.4 Pair correlation Plots-- 62

3.2.5 Maxwell-Boltzmann Distribution--63

3.2.6 Performance benchmarking of MD simulation-- 65

3.3 Verification of Multi-Particle Collision Dynamics Simulation------------------------------- 66

3.3.1 Parameters of the MPCD system-- 66

3.3.2 Velocity distribution of MPCD particles--66

3.3.3 Performance benchmarking of MPCD simulation---------------------------------------67

3.4 Verification of Fluid-Colloid Interactions--- 68

3.4.1 Simulation Units and Parameters-- 68

3.4.2 Velocity flow Profile in the presence of an Active particle-----------------------------69

3.5 Verifying the Multiscale Simulation--- 71

3.5.1 Correlation plots among colloids-- 71

3.5.2 Performance benchmarking of the Multiscale-simulation------------------------------73

3.6 Correlation plots for different parameter settings-- 74

3.6.1 Pair Correlation plots for 70 x 70 x70 box--- 75

(a) Simulation Units and Parameters--75

(b) Pair Correlation plots for 70 x 70 x70-- 75

(c) Performance Benchmarking for the new parameters---------------------------------- 77

13

3.6.2 Pair Correlation plots for different size ratio--- 78

(a) Simulation Units and Parameters--78

(b) Pair Correlation plots for size ratio =2--- 79

(c) Performance Benchmarking for size ratio = 2--80

3.7 Summary of Performance Benchmarking for Parallelized Applications-------------------- 81

Chapter 4---83

Conclusion and Future Work-- 83

Bibliography---85

14

15

List of Figures

1.1 E.Coli motion as a microswimmer...23

1.2 CPU Vs GPU architecture... 26

2.1 Hierarchy of execution in GPU..29

2.2 Levels of parallelism in OpenACC..31

2.3 Lennard-Jones Potential and Weeks-Chandler-Andersen potential (VWCA).........................37

2.4 Schematic of Active particle motion in a fluid medium.. 45

3.1 Energy plots of Molecular Dynamics system in the absence of thermostat 60

3.2 Kinetic energy of the MD system in the absence of a thermostat.. 60

3.3 Energy plots of Molecular Dynamics system with thermostat ... 61

3.4 Variation of Kinetic and total energies in MD system with thermostat...................................62

3.5 Pair Correlation of the MD system.. 63

3.6 Velocity Distribution of the MD particles..64

3.7 Velocity Distribution of MPCD system... 67

3.8 Velocity flow profile in the presence of an Active particle... 70

3.9 Velocity flow profile of one Active particle and one Passive particle.....................................70

3.10 Pair correlation among active particles (gaa(r)) among 160 active particles.......................... 72

3.11 Pair correlation among passive particles (gpp(r)) among 40 passive particles....................... 73

3.12 Pair Correlation of active-active interactions among 420 active particles............................ 76

3.13 Pair Correlation of passive-passive interactions among 105 passive particles......................77

3.14 Pair Correlation of active-active interactions for size ratio=2...79

3.15 Pair Correlation of passive-passive interactions for size ratio=2.. 80

16

17

List of Tables

2.1 CPU code to increment an array by using a scalar or a vector ... 49

2.2 Using parallel loop directive to increment an array by using a scalar or a vector49

2.3 CPU code for the vector operations(addition)... 50

2.4 Parallelization of vector operations.. 50

2.5 CPU code to find the sum of the elements for a given array... 51

2.6 Implementing reduction operation in OpenACC...52

2.7 Finding the dot product of two vectors using reduction operation.. 53

2.8 Example for using the atomic update directive..54

2.9 Example for using the atomic capture directive.. 55

3.1 Different Parameter settings to implement the multiscale simulation..................................... 57

3.2 Hardware specifications...58

3.3 Parameters used for the MD simulation...59

3.4 CPU Vs GPU run times of the MD Simulation... 65

3.5 Parameters used for the MPCD simulation..66

3.6 CPU Vs GPU run times of the MPCD Simulation.. 67

3.7 Parameters for the verification of the fluid flow profile.. 69

3.8 CPU Vs GPU run times of the Multiscale Simulation...73

3.9 Parameters for the multiscale simulation for 70 x 70 x 70 simulation box............................. 75

3.10 Simulation Parameters for size ratio = 2..78

3.11 Acceleration achieved for multiscale simulation under different parameter settings............ 81

18

19

Abstract

Active matter systems are soft matter systems characterized by many interacting active particles,

such as bacterial suspensions or Janus particles. While dry active matter systems have been

studied extensively, hydrodynamic interactions in active matter systems remain an open area of

investigation. This is particularly challenging because modeling these interactions requires

simulating a large number of fluid particles in addition to the active colloidal particles. In this

thesis, the main focus was placed on parallelizing this simulation suitable for a GPU. We

benchmark and verify the different components of the model and also verify the results displayed

by the complete model. The resulting parallelized simulation created in this project will be used

to investigate the behavior of active matter systems under different conditions and parameter

settings, with a focus on understanding the role of hydrodynamic interactions in emergent

phenomena.

20

21

Chapter 1

Introduction

1.1 Background

1.1.1 What is Active Matter?

Active matter is a unique class of materials or systems consisting of self-propelled components

that utilize stored or ambient energy for directed motion[1,2]. Representative examples of active

matter include bacterial swarms, fish schools, and bird flocks.

In this thesis, the active matter is studied through the framework of statistical physics to

comprehend how many interacting particles' collective behavior leads to emergent

phenomena[3]. Due to this activity, active matter systems display a vast array of intriguing and

often surprising behaviors, such as phase transitions[4], pattern formation, and long-range

correlations.

Understanding active matter systems is essential, as numerous biological systems fall under this

category. Such systems exhibit emergent active behaviors and complex self-assembly structures

that cannot be explained by traditional equilibrium statistical mechanics since they are out of

equilibrium[5]. However, simulating these systems through traditional CPU programming can be

computationally expensive, especially for larger particle systems. Therefore, to overcome this

challenge, we need to perform independent computations concurrently. Thus, developing active

matter systems suitable for parallel processors can facilitate easier computations.

1.1.2 Hydrodynamics of Microswimmers(E.Coli)

22

Microswimmers refer to both natural or artificial systems that can move or swim in a fluid

environment on a small scale. Their motion mechanisms may involve self-propulsion, fluid

convection, or external forces. At such small-length scales, the viscous forces of the surrounding

medium take precedence over the inertial forces. So, the physics governing the motion of

microswimmers operates differently than what we usually observe/experience in our day-to-day

life. Equation 1.1 shows that the Reynolds number for microswimmers will be way too small,

where the viscous forces dominate the motion of the microswimmer.

(1.1)𝑅𝑒 = 𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝐹𝑜𝑟𝑐𝑒𝑠
𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝐹𝑜𝑟𝑐𝑒𝑠 = ρ𝑢𝐿

µ

Where,

= Density of the fluidρ

u = speed of the fluid flow

L = Characteristic Length

μ = kinetic viscosity of the fluid

Figure 1.1: E.Coli acts as a microswimmer by pushing back the fluid with its helical flagella.

Here the force by the E.coli is in black, and the flow field near the E.coli is shown in orange.

This figure is cited from[35]

In our specific problem, we are utilizing the concept of modeling E.Coli as a microswimmer that

propels itself through water using flagella[6]. By rotating these flagella, the E.Coli bacteria

generates a propulsive force that propels it forward. As a result, the motion of the bacteria

induces a flow field around its cell body. This flow field can be mathematically derived using the

23

Navier-Stokes equations, which take into account the physical properties of the fluid and the

motion of the microswimmer[7]. Therefore, by analyzing the flow field generated by the E.Coli

bacteria, we can gain insights into the mechanics of its propulsion and potentially inform the

design of artificial microswimmers.

(1.2)ρ 𝑑𝑢
𝑑𝑡 = − ∇𝑝 + µ ∇2𝑢 + 𝐹

(1.3)∇𝑢 = 0

By solving equations 1.2 and 1.3, we can obtain the flow pattern generated by E.Coli bacteria

and analyze its impact on other microswimmers in the fluid. The hydrodynamic interactions

between these microswimmers can give rise to a range of phenomena, including particle

alignment in a particular direction and the development of intricate structures that surpass the

size of individual organisms(self-assembly), all of which result from these indirect

communications[8].

1.1.3 Modelling Microswimmers as Janus Particles

A Janus particle is a type of particle of micro/nanoscale that has two distinct regions or faces

with different chemical or physical properties. These two regions can have different surface

chemistry, charge, hydrophobicity, or optical properties, among other characteristics. Janus

particles can be considered active matter because they have the ability to self-propel or move in

response to their environment without the need for an external force. This movement is typically

driven by chemical or physical gradients in their surrounding environment[9,10].

This motivated us to use Janus particles to model our microswimmer species, i.e., E.Coli,

because of their self-propelling nature. When as a collective, they show swarming nature, phase

separation, and cluster formation[11,12].

24

1.1.4 Passive Particles' Behavior in the Presence of Active Particles

Passive particles typically undergo Brownian motion as a result of collisions with fluid particles,

as they lack an active force to propel them forward. However, when present in an active bath,

passive particles have demonstrated the ability to aggregate and cluster, as mentioned in the

literature[13,14] and experiments conducted at the Soft Matter and Active Matter Lab in IISER

Pune. This phenomenon provides an alternative perspective for investigating the

motility-induced self-assembly of colloids[15].

1.2 Physical System to be Modeled for the Parallel Processors

Our system was designed as described in Section 1.1, consisting of colloidal particles(both active

and passive) in the fluid medium. Active particles in this system represent bacteria. We model for

the following interactions to simulate the desired system

1. Interactions among the active particles

2. Interactions among the passive particles

3. Active-passive interactions among the colloidal particles

4. Self-propulsion of the active matter

5. Interactions between the fluid particles, which represent the hydrodynamics

6. Fluid-particle interactions through which the momentum transfer occurs.

To compute all these interactions until the system reaches equilibrium would be time-consuming.

So, these computations can be done in parallel to make the simulation time-efficient.

1.3 Parallel Programming

25

1.3.1 Introduction

Parallel programming is the technique of separating a computational problem into smaller tasks

that can be performed simultaneously on multiple cores to reduce the computation time

drastically, involved in successive identical mathematical operations[16]. Parallel programming

aims to utilize the available resources to optimize the application's performance and reduce the

time taken to complete a task. However, parallel programming can also be challenging, as one

needs to assess issues such as load balancing, data distribution, and data synchronization across

the device(s).

To implement parallelization, one can either use multiple cores of CPU or use a Graphic

Processing Unit (GPU) for computations. In this case, we have used GPU programming to

improve the application performance.

1.3.2 Graphic Processing Unit

Figure 1.2: CPU and GPU architecture. Comparing the cores present in the CPU Vs GPU.[17]

26

GPUs are highly parallel processors with a large number of cores operating on a shared memory

that can perform multiple calculations concurrently[17,18]. GPU can accelerate the performance

of an application by reducing the load of some time-consuming tasks that can be run

simultaneously on GPU cores. While the clock speed of each GPU core is slower than that of a

CPU's core clock speed, a large number of cores on the GPU compensates for this and allows for

high overall computational throughput. This makes them an ideal choice for computationally

intensive scientific simulations, such as our Multiscale simulation, which combines both

Molecular Dynamics (MD) and Multiparticle Collision Dynamics (MPCD).

A basic overview of the GPU’s architecture and the procedure to implement the parallelization is

explained in the next chapter.

1.4 Goal of the Project

The goal of this thesis is to parallelize an existing multiscale simulation system that combines

molecular dynamics (MD) and multiparticle collision dynamics (MPCD) simulations for

multiscale modeling of hydrodynamic interactions, utilizing GPU acceleration. The objective is

to optimize the performance and scalability of the system while verifying the hydrodynamic

behavior of complex fluids and their interactions with the active matter particles that are present

in the fluid medium. By implementing the simulation on a GPU, this work seeks to achieve faster

computation times and enable larger simulations, thus providing new insights into the dynamics

of these systems.

1.5 Thesis Outline

The proposed structure of this thesis is as follows: Chapter 2 will focus on describing the

methods and algorithms used for modeling the various interactions in the system, as previously

27

outlined. This will include detailing the parallelization techniques employed for simulating the

entire system. In Chapter 3, we will begin by discussing the benchmarking and verification of the

simulation techniques outlined in Chapter 2. This verification will be performed through

comparison with pre-existing numerical simulations method developed by Soft and Living

Matter Group, IISER-Pune.

28

Chapter 2

Methodology

In this chapter, before explaining the numerical simulation techniques, I will first provide an

overview of GPU architecture and GPU programming tools such as OpenACC programming

construct. Since GPU programming is a relatively new technology compared to traditional

CPU/sequential programming, this introduction will provide readers with a fundamental

understanding of parallelization and assist them in replicating the simulation accurately.

2.1 Overview of GPU and Parallel Programming Tools

2.1.1 Understanding GPU Architecture

Figure 2.1: This figure provides a schematic of the hierarchy of execution and memory that

happens in GPUs[19].

29

A GPU is made of a large number of highly efficient processing cores that work together to

perform complex calculations on large amounts of data. This allows us to perform complex

scientific simulations on GPU and make them time efficient. The following terms describe the

organization of computations on the GPU and how they are mapped to the hardware[18,20,21].

● Threads: A thread is the smallest unit of work on a GPU. The computations are executed

in parallel for threads. So, threads are used to perform independent calculations.

● Warps: A warp is basically a small collection of threads that are executed together in

lockstep.

● Blocks: A block can be defined as a group of threads communicating with one other,

operating with the help of shared memory. So threads in a block can synchronize and

share data if interthread communications are required.

● Grids: A grid is a grand assemblage of blocks that run in parallel. Based on the

complexity/requirements of the computation involved in the program, we can use one,

two, or three-dimensional grids accordingly.

I have not focused on the memory hierarchy of the GPU as we will be using a programming

construct called OpenACC which does not require in-depth knowledge of the GPU.

2.1.2 Programming Construct Vs. Programming Language

A programming language is a set of rules and instructions that define how a programming

application is written and executed. It is a formal language with a standard set of syntax and

semantics that allow programmers to write computer programs that can be executed on the

hardware used.

On the other hand, A programming construct is a characteristic or tool within a programming

language that provides a specific functionality or behavior of the programming application[22].

It is a way of expressing a specific concept or idea within the context of a programming

language. They are basically keywords that are part of a programming language.

30

2.1.3 Open Accelerator (OpenACC)

In this project, we used a parallel programming construct named OpenACC for the Fortran

programming language. With the help of this construct, the user can use a set of directives,

equivalent to pragmas(compiler directives), that can be added to existing code written in C, C++,

and Fortran to specify regions of code that can be offloaded from the CPU to an accelerator, such

as a GPU[23,24]. These directives can be used to determine loops, data regions, and other code

sections that can be parallelized without requiring a complete rewrite of the codebase.

2.1.4 Levels of Parallelism in OpenACC

Figure 2.2: Levels of Parallelism in OpenACC. Each gang will have a cache memory that can be

shared by all the workers and vectors of that particular gang[24].

OpenACC provides three levels of parallelism known as gang, worker, and vector. These levels

of parallelism can be described as follows:

31

● Gangs: A gang is a group of one or more workers that execute the same block of code

concurrently on the device. This level of parallelism is utilized to parallelize the

outermost loop of a nested loop structure.

● Workers: Workers are individual threads that execute the same code block concurrently

within a gang. The worker level of parallelism lies between gangs and vectors.

● Vectors: Vectors are a set of elements in memory that can be processed simultaneously by

a single instruction. In OpenACC, vectors are employed to parallelize the inner loop of a

nested loop structure.

In short, we can say that for a given task, a gang employs the required number of workers, where

each worker performs the job on a particular length which we call a vector. Based on the

complexity of the loop, we can employ the required level of parallelism accordingly. In section

2.7, we have discussed how a CPU/sequential application can be parallelized using OpenACC.

2.2 Molecular Dynamics (MD)

This section outlines the techniques employed in the implementation of Molecular Dynamics

suitable for a parallel processor. Molecular dynamics is a computational method used to simulate

the behavior of particles(atoms and molecules) over time. This numerical method is widely used

in materials science, chemistry, and biochemistry, among other fields, to learn about the systems

that are complex to solve analytically. However, it would be computationally expensive to model

interactions through traditional/sequential programming as updates are computed one particle

after the other. Therefore, employing parallelization techniques can significantly improve the

efficiency of this simulation.

During molecular dynamics simulations, the particles' positions and velocities are regularly

adjusted by computing the forces acting on them using a potential energy function that

characterizes the particles' interactions. As the simulation progresses, these updates are repeated

at each time step to generate particle trajectories, allowing for a comprehensive analysis of

32

system dynamics and thermodynamics. This process involves calculating the positions,

velocities, and forces of all particles with each time step, providing a detailed understanding of

their behavior.

2.2.1 MD Algorithm

(a) Initialization of positions and velocities

In Molecular Dynamics simulations, initialization is one of the crucial moments that need to be

executed carefully. While initializing the positions of the particles, one must not initialize

particles with any overlaps with respect to one another. This can be done by initializing all the

positions of these particles on a lattice or at random, where two particles won’t coincide with one

another.

While initializing velocities, we must keep in mind that the velocities initialized should

correspond to the given fixed temperature. We know that at thermal equilibrium, mean-square

velocity along any component can be written as

(2.1)< 𝑉
𝑖
2 > = 𝑘

𝐵
𝑇/𝑚

where i = x,y,z

For this, we can call velocities randomly from -0.5 to 0.5 from the uniform distribution. Now

Vi∼Uniform(-0.5,0.5) has a variance of 1/12. So, to obey equation 2.1, the obtained velocities are

multiplied with the velocity_scalefactor shown below.

velocity_scalefactor = (2.2)12𝑘
𝐵

𝑇/𝑚

33

As the Centre of Mass(COM) of the system does not move, we need to shift COM motion to

zero. For this, we can calculate the average velocity of each component from the velocities

obtained above and shift velocities such that the mean is zero.

(b) Velocity-Verlet Algorithm

To implement the molecular dynamic simulations to our desired problem, we used the

Velocity-Verlet Algorithm. With the help of the Velocity-Verlet Algorithm, one can compute the

positions and velocities of the particles in the next time step based on their positions and

velocities of the current time step. The following equations are used to update the positions and

velocities of the particles based on the Velocity-Verlet Algorithm:

(2.3)

(2.4)

(or)

(2.5)

(2.6)

Here,

= Position vector of the particles𝑥
→

= Velocity vector of the particles and𝑣
→

= Acceleration vector of the particles𝑎
→

34

https://www.codecogs.com/eqnedit.php?latex=%5Cbar%7Bx%7D(t%2B%5CDelta%20t)%20%3D%20%5Cbar%7Bx%7D(t)%5CDelta%20t%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Cbar%7Ba%7D(t)%20%5CDelta%20t%5E2#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbar%7Bv%7D(t%2B%5CDelta%20t)%20%3D%20%5Cbar%7Bv%7D(t)%20%2B%5Cfrac%7B%5Cbar%7Ba%7D(t)%2B%5Cbar%7Ba%7D(t%2B%5CDelta%20t)%7D%7B2%7D%20%5CDelta%20t#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbar%7Bx%7D(t%2B%5CDelta%20t)%20%3D2%20%20%5Cbar%7Bx%7D(t)%5CDelta%20t%20%2B%20%5Cbar%7Ba%7D(t)%20%5CDelta%20t%5E2%20-%20%5Cbar%7Bx%7D(t-%5CDelta%20t)%20#0
https://www.codecogs.com/eqnedit.php?latex=%202%20%5Cbar%7Bv%7D(t)%20%5CDelta%20t%20%20%3D%20%5Cbar%7Bx%7D(t%2B%5CDelta%20t)%20-%20%5Cbar%7Bx%7D(t-%5CDelta%20t)%20#0

So, if the positions and velocities of all particles are known from the previous time-step, the

potential energy can be calculated based on particle positions, which can then be utilized to

determine the forces acting between particles. There are two options available for updating the

positions and velocities of the particles: equations 2.3 and 2.4 or equations 2.5 and 2.6,

depending on the researcher's preference.

(c) Interparticle Forces and the Potentials

The Lennard-Jones(LJ) potential was utilized to simulate the interactions between particles. By

using this potential, the pairwise potential between all particles in the system can be determined,

ultimately providing the system's total potential energy. To calculate the force acting on a particle

with respect to another particle, one can differentiate the interaction potential between these two

in the system.

Fi j= −∇Uij (2.7)

Then, the total force acting on the particle would be the sum of all the forces between that

particle and all the remaining particles in the system.

Fi = ΣFi j (2.8)

However, this would be computationally more expensive because, for a system of n particles, we

need to perform n x n calculations for a single time step. Though we implement parallelization

for this system, if given a large number of particles, even the hardware won’t be able to help. So,

in order to reduce the computation time, we should neglect potentials/forces that are far away

from the particle (i.e., set the potentials and forces due to the farther particles as zero). Because

of this cutoff distance, we can modify the Lennard-Jones potential as the truncated

Lennard-Jones potential, which can be written as,

(2.9)

35

From the above equation, we can calculate the truncated Lennard-Jones force (FLJT) by

differentiating equation 2.8 as shown in equation 2.7 and get,

(2.10)

Where,

σ = Diameter of the particle

r = Distance between the ith and jth particle

rc = Cutoff-distance beyond which the potentials and forces are neglected.

Still, we must confirm the continuity of force at the mentioned cutoff distance. To correct this,

we can subtract the force at rc from the LJ force calculated for the particles when r ≤ rc. This can

be anointed as the truncated and shifted Lennard-Jones force(FLJTS) and can be written as

(2.11)

Where,

This corresponds to the following form of the potential, called the truncated and shifted

Lennard-Jones Potential(VLJTS) or Weeks-Chandler-Andersen potential (VWCA),

(2.12)

36

https://www.codecogs.com/eqnedit.php?latex=%20F%20%5Ctextsubscript%7BLJTS%7D(r)%20%3D%20%5Cbegin%7Bcases%7D%20F%20%5Ctextsubscript%7BLJ%7D(r)%20-%20F%20%5Ctextsubscript%7BLJ%7D(r%20%5Ctextsubscript%7Bc%7D)%20%26%20r%20%5Cle%20r%20%5Ctextsubscript%7Bc%7D%20%5C%5C%5C%5C%200%20%26%20r%20%3E%20r%20%5Ctextsubscript%7Bc%7D%20%5Cend%7Bcases%7D#0

Figure 2.3: Lennard-Jones Potential Vs. Weeks-Chandler-Andersen potential (VWCA)[25].

(d) Neighbour Lists

Now, the particles that are inside the cutoff distance need to be accessed easily in order to reduce

the computation cost and also to reduce the number of threads considering the particles only

where these calculations of these LJ potentials and forces between the particles lead to a non zero

value thus utilizing the parallel processor effectively under its limitations. To implement this, we

created a list such that for a given particle, we dropped the particles that were slightly greater

than the cutoff distance rc and named the list as the Verlet neighbour lists.

rm − rc ≥ vmax∆t (2.13)

(e) Thermostat

As the system needs to be simulated to mirror the real world, it is crucial to maintain the

temperature of the system to be constant for a given number of particles and the size of the

37

simulation box throughout the simulation time, which describes a canonical ensemble. A

thermostat was introduced to balance the system’s temperature. After a small number of

iterations (let us assume some number g), the velocities of all the particles in the system were

rescaled. This process was repeated for every g iterations. Rescaling of these particles was done

according to the equipartition theorem.

(2.14)⟨ 1
2 𝑚𝑉2⟩ = 3

2 𝑘
𝐵

𝑇

From the above equation 2.13, we can find the temperature of the system from the average

velocity of the particles and estimate the rescaling factor with respect to our desired(fixed)

temperature. The obtained rescaling factor is multiplied by all the particle velocities in the

system.

2.2.2 Implementation of MD using OpenACC

1. The positions of all the particles were initialized such that no two particles overlapped

with each other. This initialization step is carried out in the CPU as this step won’t be

repeated again.

2. The velocities were initialized, as explained in section 2.2.1 (a). This process was also

initialized on the CPU(sequentially).

3. The generated arrays of positions and velocities by the CPU were copied to the GPU

memory, and the other arrays to carry out the MD simulation(force, neighbour lists) were

created in the GPU memory.

4. Based on the positions of the particles, neighbour lists were generated. (In sequential

programming, this process takes NC2 steps for N particles. Now, these NC2 computations

are assigned to NC2 threads where this operation takes place concurrently.)

5. From the obtained neighbour lists, inter-colloidal forces between these particles were

calculated parallelly using OpenACC.

38

6. From the obtained forces, positions and velocities of these particles were updated based

on the Velocity-Verlet Algorithm. As particle updates are independent of one another, N

computations can be run at the same time on a parallel processor, thus reducing the time

significantly by updating all of them parallelly.

7. Step 5 and Step 6 were iterated over and over until we reached the desired number of

iterations.

8. Neighbour lists were updated for every 40 MD iterations

9. The thermostat was implemented for every 100 iterations to rescale the particle velocities

10. To validate the Molecular Dynamics simulation on the parallel processor. Data were

collected for the following quantities

a. Potential Energy, Kinetic Energy, and Total Energy of the system for every 10

iterations.

b. Pair correlation of the system particles for every 100 iterations.

c. Velocities of all particles for every 100 iterations to check whether it follows

Maxwell-Boltzmann distribution.

2.3 Multiparticle Collision Dynamics(MPCD)

Multiparticle Collision Dynamics(MPCD) is a simulation technique that can be used to model

the behavior of a fluid. Fluid can be represented as point-like particles with some mass and

velocity. This particle-based approach can be used to simulate the dynamics of the fluid through

the stochastic collisions that occur among these particles[26]. MPCD is highly beneficial for

examining non-equilibrium systems, as it can manage complex geometries and boundary

conditions. Furthermore, it has been shown to model hydrodynamics accurately with thermal

fluctuations[26,27]. It can be employed in a wide range of research fields, including materials

science, chemical engineering, and biophysics.

Coming to our problem, the bacteria(E.Coli) interact with one another in a fluid medium through

hydrodynamic interactions. Since we have used MD to model our bacteria as active particles, we

39

need to confirm whether MD can be integrated with MPCD. The developers of the MPCD

technique, Malavenets, and Kapral, demonstrated in their research that MPCD has the potential

to function as a mesoscopic-level model for solvent dynamics, providing a comprehensive

depiction of the system[28]. Prior work of the Soft and Living Matter Group, IISER Pune

focused on simulating active matter particles through MD and coupled with fluid dynamics

simulated through MPCD to develop a numerical method for hydrodynamic interactions with

active particles. This work has mainly focused on redesigning this coupling to be appropriate for

parallel processors and to make this simulation time-efficient by reducing the runtime.

2.3.1 MPCD Algorithm

A fluid modeled through MPCD mainly has two steps:

● Stochastic Collision step

● Deterministic Streaming Step

(a) Stochastic Collision step

The collision rule involves splitting the simulation box into small cubic cells called collision

boxes. All fluid particles are assigned to these collision boxes such that the average number of

particles per cell is p. During each collision step, we shift to the center of the mass frame for

each cell and find the average velocity of the cell by

= (2.15)𝑢
𝑝

→

𝑖=1

𝑝

∑
𝑣

𝑖

𝑝

With respect to relative velocity for each fluid particle of that cell were calculated, and were𝑢
𝑝

→

rotated randomly along a random vector with some angle α(to achieve this a rotation tensor is

40

calculated for the cell). This process was repeated for all other cells, and each cell direction was

randomized. Then the velocity of the particles for a given collision box was calculated as

(2.16)𝑣
→

 = 𝑢
𝑝

→
 + 𝑟𝑜𝑡 * (𝑣

→
 − 𝑢

𝑝

→
)

Where

= velocity vector of the fluid particle𝑣
→

= velocity of the collision box𝑢
𝑝

→

rot = rotation tensor calculated for the given collision box

It was shown by Ihle and Kroll that the Galilean invariance is lost because of partitioning the

system into the collision cells[29] during the collision step. To correct this, the grid is randomly

shifted before performing the collision step.

After this, we move to the next step, i.e., the ‘Deterministic Streaming Step’.

(b) Deterministic Streaming Step

In this step, particles can move freely inside the simulation box. The positions of the fluid

particles are updated from time t to ∆t by following

(2.17)𝑟
𝑖

→
(𝑡 + ℎ) = 𝑟

𝑖

→
(𝑡) + ∆𝑡 𝑣

𝑖

→
 (𝑡)

Where,

= position of the ith fluid particle𝑟
𝑖

→

= velocity of the ith fluid particle𝑣
𝑖

→

41

(c) Thermostat in MPCD

In MPCD, a comparable thermostat to MD was employed, which is a global thermostat that

rescales velocity at the level of collisional cells. During each collision step, the velocities of all

fluid particles were rescaled based on the average cell velocity() that had already been𝑢
𝑝

→

rescaled.

(d) Angular Momentum Conservation

The MPCD simulation implementation does not ensure the conservation of angular momentum,

unlike energy and linear momentum conservation. This lack of conservation could result in

unrealistic behavior in systems with rotating fluid velocity fields. To rectify this issue, an extra

step can be introduced to conserve angular momentum in MPCD. However, this correction is not

expected to cause any significant deviation from the results obtained using the non-angular

momentum conserving version, known as MPC-SRD-a (in contrast to the angular momentum

conserving version, MPC-SRD+a), which was used in previous work. As they had successfully

obtained accurate results using the MPC-SRD-a version, the same technique was employed even

in the parallelization of this simulation.

(e) Periodic Boundary Conditions(PBC)

Periodic boundary conditions (PBCs) are the most common technique used in the simulations,

which helps us to mimic the behavior of an infinite system. In PBC, the simulation box is copied

infinitely in all the dimensions provided by the user/researcher. So, when the particle leaves the

simulation box on one side when positions are updated, it will re-enter from the other side of the

box. In this work, PBC was implemented in both MC and MPCD simulations.

By implementing periodic boundary conditions, we can,

42

● Mimic bulk behavior: As the simulation box is infinitely repeated throughout the space, it

allows us to study properties of materials, thermodynamic properties, and phase

behaviour depending on the bulk behaviour of the system.

● Increase simulation efficiency: Through PBC, we can simulate a bulk/infinite system

with a small number of particles. Thus, reducing the computations required in our

simulation.

● Reduces boundary effects: In a simulation box, particles experience different forces when

compared to the particles that are in the center of the box. This might lead to artificial

results that won’t explain the system we desire. Implementing PBC will neglect the

boundary effects of the simulation.

2.3.2 Implementation of MPCD (without MD)

1. Positions and velocities of fluid particles were initialized in the simulation box (only the

initialization procedure was run sequentially on the CPU).

2. After initialization, the particles were allowed to move based on the streaming step, as

explained above.

3. A grid of collision boxes was created, and particles were classified into these collision

boxes based on their position.

4. Then, the collision step was performed on the system.

5. Thermostat was implemented for every collision step.

6. Then again, the same process is repeated from the step 2.

2.4 Fluid-Particle Interactions

In this section, we discuss the interactions that occur between the colloidal particles and the fluid

particles when MD and MPCD are coupled together. This can be described by explaining the

43

boundary conditions between the different types of particles(active, passive, and fluid) that were

implemented in this system.

2.4.1 Boundary conditions for the fluid flow

The fluid flow is affected by the presence of various interfaces. When a solid object obstructs the

fluid's path, the fluid's velocity perpendicular to the solid surface is zero, while the velocity

parallel to the surface depends on the type of interaction occurring at the solid-fluid interface.

This difference in velocity between the fluid and solid surface is known as slip, which is

governed by the Navier-Maxwell linear boundary condition,

= [+ ()T]. (1-) (2.18)𝑢
||

→
λ 𝑛

→
∇ 𝑢

→
∇ 𝑢

→
𝑛
→

 𝑛
→

Where,

= velocity vector of the fluid particle at the point of contact𝑢
→

= Normal vector of the surface at the point of contact𝑛
→

λ = Approx. distance where goes to zero𝑢
||

→

So, based on the Navier-Maxwell equation 2.18, the following boundary conditions are defined,

1. Stick (or no-slip) boundary condition: Here, the fluid's tangential velocity at the surface is

zero relative to that of the boundary, resulting in the two surfaces sticking together.

2. Partial slip boundary conditions: In this case, the relative tangential velocity is reduced,

but not to zero, at the fluid-solid interface.

3. Slip(or perfect slip) boundary conditions, on the other hand, dictate that the tangential

velocity is not affected by the interface between the fluid and the surface.

In this system, stick boundary conditions were implemented between the colloid and the fluid.

44

2.4.2 Stochastic Boundary Conditions

Padding et al.[30] introduced a method for simulating stick boundaries called Stochastic

Boundary conditions, which we have incorporated into our simulations.

(2.19)𝑃(ϑ
𝑛
) ∝ ϑ

𝑛
 𝑒𝑥𝑝(− βϑ

𝑛
2)

(2.20)𝑃(ϑ
𝑡
) ∝ 𝑒𝑥𝑝(− βϑ

𝑡
2)

Implementation

● If there are any overlaps of MPC particles with the boundary, the point of contact was

found by going back the half-time step.

● Tangential velocity of the particles (vt) was chosen randomly from the distribution shown

in equation 2.19

● Normal velocity of the velocities (vn) was chosen randomly from the distribution shown

in equation 2.20

● The obtained new velocities are updated for different fluid particles that are in contact

with the colloidal particles and a sum of momentum all these particles was reversed and

delivered to the colloid(see figure 2.4).

Figure 2.4: The fluid particles represented by the small spheres are all pushed back by the

same momentum the active particle(large sphere) is being propelled forward. This

mimics the pusher motion of E.Coli to move forward in the fluid medium.[36]

45

2.5 Active Particle Modeling

We know active particles move in a fluid due to their own activity. In order to simulate the

bacteria as an active matter, first, we know how the bacteria acts as a microswimmer. The E. coli

bacterium exhibits a run-and-tumble motion[4,31], which is a result of the rotation of motor

proteins situated in the cell membrane. The flagella bundle up and move the bacterium forward

when the motors rotate in the same direction, causing a run. However, these runs are

stochastically interrupted by brief tumble events, where the motor rotation reverses, leading to

flagella disassociation and rotation in the body(In our model, rotation happens with respect to the

momentum transfer through fluid-colloid collisons). Following this, the motor rotation resumes

in the earlier direction, causing the flagella to bundle up again and propel the bacterium forward

once more.

2.5.1 Hydrodynamics and momentum transfer during the run phase

In this part, we explain the momentum transfer between the active particle and fluid and describe

the active nature of the active particles. To understand the flow fields created by the different

microswimmers(active matter)[32], we need to solve the Navier-Stokes equation for the

time-independent flow,

- = 0 (2.21)η ∇ 𝑢
→

∇ 𝑝 + 𝑓
→

Solution for the above equation can be written as,

= (). (1-3(y/r)2) (). +............ (2.22)𝑢
→

−
𝐴

𝑠𝑡

𝑟 𝐼
→

+ 𝑟 𝑟 𝑦 −
𝐴

𝑠𝑡𝑟

𝑟2 𝑟 −
𝐴

𝑠𝑑

𝑟3 𝐼
3

→
− 𝑟 𝑟 𝑦

⬇ ⬇ ⬇

I II III

46

I. Stokeslet: It is a point force that describes flow generated by a small particle(in this case

bacteria) in the fluid.

II. Stresslet: It is generated by a force dipole produced by the microswimmer in the fluid.

III. Source Dipole: In this case, the trajectory of the fluid flow field is in the closed loop.

The Stresslet fluid profile is prevalent among swimming micro-organisms such as E.coli

bacteria. While the multipolar approach overlooks the flow field's nuances near the flagella, it

has a distinct benefit in that higher-order multipoles diminish more rapidly as the bacteria moves

away.

To mimic the stresslet fluid profile(i.e., to create force dipoles) in the system, forward

momentum was given to the active particles, and fluid particles behind the active particle (a shell

around a unit thickness) were given the same momentum in the opposite direction to that of the

active particle. This activity facilitates the action particle to move forward and collide with other

particles in front, and momentum is transferred to them.

2.6 Algorithm to implement the Multiscale simulation

The Multiscale(MD+MPCD) simulation was implemented such that for each MPCD step, 10

MD cycles take place. The procedure is explained as follows:

1. Positions and velocities of colloids(both active and passive) were initialized in the

simulation box

2. Positions and velocities of fluid particles were initialized as point-size particles in

simulation box

3. Fluid particles were classified into the newly created collision boxes based on their

positions.

4. Neighbour lists were created for the colloids, and force calculations were made for these

particles.

47

5. Initial direction of active particles in the system was evaluated.

6. MPCD step was initialized (in each MPCD step, the collision step happens once)

7. The inner loop for MD steps was initialized. This loop contains the streaming step of the

fluid particles. As said above, 10 MD steps occur in one MPCD step. So, 10 MPCD

streaming steps happen in one MPCD collision step.

8. In this inner loop MD procedure that was explained in subsection 2.2.1(updates of

positions & velocities, neighbour lists, and force calculations) was executed along with

the MPCD streaming step.

9. Fluid colloid collisions and momentum transfer due to collisions that happen with respect

to the stochastic boundary conditions were also executed in this inner loop.

10. As active particles’ orientation changes after the collision, updating the activity direction

for each active particle was also implemented here.

11. Neighbour lists for MPCD was implemented for every 20 MD steps

12. Neighbour lists for MD were implemented for every 40 MD steps.

13. After exiting the inner loop after 10 MD/streaming steps, the run step was initialized,

where active particles gain momentum in the active direction, and the fluid particles

behind it gain opposite momentum.

14. Thermostat was implemented for every collision step

15. The loops are repeated until the system reaches equilibrium.

2.7 Code Porting to OpenACC

Code porting is the process of making changes to the original code in order to make it

compatible new platform/environment. In this case, we are porting the CPU code to OpenACC,

to make the code suitable for running on parallel processors. To parallelize our simulation, first,

we need to see what are the intensive mathematical operations that are being performed on arrays

and how they can be run concurrently. In this section, we discuss the various operations on large

arrays which can be parallelized and provide a basic methodology for porting applications on

parallel processors using OpenACC.

48

2.7.1 Parallelization Strategies for Diverse Computational Scenarios

The following operations were extensively in parallelizing the multiscale simulation.

Increment/Update:

Consider an array that needs to be incremented by a scalar s or a vector v, as shown in code

snippets below

do i = 1, n

a(i) = a(i) + s

end do

do i= 1, n

a(i)=a(i)+v(i)

end do

Table 2.1: Code snippet of a CPU code where array elements are incremented by using a scalar

(on the left) and by using a vector (on the right).

In these two cases, we can observe that a(i) is independent of the other elements of a(i.e.;

incrementing one array element will not affect the other elements of the array). So each element

of the array can be passed to a different thread of the GPU, and this kind of operation can be

performed simultaneously. To parallelize this, we use the parallel construct of OpenACC as

follows

!$acc parallel loop

do i = 1, n

a(i) = a(i) + s

end do

!$acc parallel loop

do i= 1, n

a(i)=a(i)+v(i)

end do

Table 2.2: Using parallel loop directive to the CPU code from Table 2.1 where array elements are
incremented by using a scalar (on the left) and by using a vector (on the right).

49

Using the parallel loop directive, the compiler is informed that the desired loop is safe to

parallelize. However, it is important for the programmer to ensure that the loop can indeed be

parallelized safely and effectively. This requires a thorough understanding of the loop's

dependencies, memory usage, and potential conflicts.

Note: Above, I have explained the incrementing of a given array using the addition operator. The

same explanation is valid for other arithmetic(-, *, /) and logical operations(and, or etc…)

Vector Operations

Instead of incrementing a given array mentioned in the above case. Here the values are written

based on the arithmetic operations employed between two vectors. For our convenience, I am

using the addition operator to explain the same.

do i= 1, n

a(i) = b(i) + c(i)

end do

Table 2.3: Code snippet of a CPU code representing the addition of vectors

In the above code snippet, a is the sum of two vectors, b, and c. In this case, too, we don’t see the

interdependence between the array of elements of one variable while updating the values. So this

can be written as in Table 2.4.

!$acc parallel loop

do i= 1, n

a(i) = b(i) + c(i)

end do

Table 2.4: Implementing parallelization for vector addition

50

A combination of Vector Operations and Update methods are widely used in parallelization as in

most of the computations, array elements get updated without affecting the other elements.

We have extensively employed these computations in various parts of the code. But, these

methods can be better observed in the position and velocity updates of the particles. Looking at

equations 2.5, 2.6, and 2.17, we can notice that there is no interdependence between the array of

elements for these computations.

However, just by implementing a parallel loop, we can’t perform operations such as dot product,

matrix multiplication, etc. This is because this requires the elements of the array need to be

reduced to some value. Implementing only a parallel loop won’t provide us with the correct

results in these situations. Hence we employ reduction operation as explained below.

Reduction

Now, consider the case where we must perform the sum of elements of the given array. To

perform this on a CPU, we write as,

sum=0

do i= 1, n

sum = sum + a(i)

end do

Table 2.5: Code snippet of a CPU code to find the sum of the elements for a given array

If we pass the above loop directly to a parallel processor, we won’t get the actual sum of the

array, as computations that occur in a thread are independent of other threads. But in this case,

the variable sum depends on all array elements.

51

To perform this, we employ the reduction clause of OpenACC. Reduction clause is used to

reduce all the private copies of the variable to one final result of the desired parallel region. In

this case, it reduces all the copies of the variable sum present in the different threads and adds

them up to give the sum of the elements of the array. This can be implemented as follows

sum=0

!$acc parallel loop reduction(+: sum)

do i= 1, n

sum = sum + a(i)

end do

Table 2.6: Implementing reduction method in OpenACC to find the sum of the elements of an

array

However, the reduction clause can be applied only to scalar variables and for common

operations, such as +, *, min, max, and logical operators. The general syntax to execute a

reduction operation can be written as

Syntax: reduction(operator: variable) (2.23)

Using reduction operation on a parallelized loop, we can perform dot product, matrix

multiplication, summing elements in a row or a column for 2D matrix, and other operations

where the computations need to reduce the array elements into one single result. For a better

understanding of the reduction operation implementation of dot product on OpenACC is shown

in Table 2.7.

We define dot product between two vectors as,

(2.24)𝑑𝑜𝑡(𝑎, 𝑏) =
𝑖=1

𝑛

∑ 𝑎
𝑖
 * 𝑏

𝑖

52

Here, the values of should be reduced(summed up) over all the array elements to give 𝑎
𝑖
 * 𝑏

𝑖

to the dot product as the final result.

dot=0

!$acc parallel loop reduction(+: dot)

do i= 1, n

dot= dot+ a(i)*b(i)

end do

Table 2.7: Implementing reduction method to find the dot product of two vectors

Atomic Operations:

The reduction method that was explained earlier does not guarantee the order in which loop

iterations will occur. In the case of the summation example provided above, the order in which

we add elements of the array does not matter; as long as all elements are considered, the final

result will be the same. However, in cases where one loop iteration modifies the value of a

variable, and another iteration attempts to read from the same variable in parallel, different

outcomes may occur depending on which iteration occurs first.

For more complex situations that cannot be resolved using the reduction operation, the use of

atomics is helpful as they ensure that no two threads try to perform the same computation at the

same time.

We have used mostly the update and capture clauses of the atomic directive in our parallelized

simulation

53

i) Atomic Update: This operation ensures that no two threads will read and write simultaneously

for the given parallel region. The above explanation of summation can be written using atomic

directive as shown below

!$acc parallel loop

do i= 1, n

!$acc atomic update

sum=sum+a(i)

!$acc end atomic

end do

Table 2.8: Performing sum of the elements of an array using atomic update directive

Note: The sum of array elements obtained using reduction or atomic operation will give you the

correct result. However, using the atomic directive makes sure that computation doesn’t happen

for two different threads at the same time, and this can also be used on vectors which is not the

case for reduction

Either the reduction method or atomic update directive was used to compute particle interactions

that are mentioned in the previous sections of this chapter. For instance, consider that we have to

estimate the total force for a given particle in the MD system. To calculate the total force acting

on a given particle, all forces acting upon that particle from all other particles in the system are

summed up.

Similarly, using reduction operation or atomic update directive to estimate other particle

interactions mentioned in section 1.2 give us the right results.

ii) Atomic Capture: Sometimes, in certain scenarios, such as creating lists of neighboring

particles within a simulation box, it's necessary to first update the count of neighbors for a

particular particle before storing the positional index of the neighboring particle. To accomplish

54

this type of a task, it's important to store the calculated value in a thread so that it can be utilized

in subsequent code following the update.

!$acc parallel loop

do i=1,no_of_fluid

box_no = 1+int(pos_fl(3*i-2))+lx*int(pos_fl(3*i-1))+lxly*int(pos_fl(3*i))

!$acc atomic capture

fluid_no(box_no) = fluid_no(box_no) + 1

j = fluid_no(box_no)

!$acc end atomic

box_part(j,box_no) = i

end do

Table 2.9: Passing fluid particle to their respective collision boxes using atomic capture

operation

The above code is used to arrange the fluid particles based on their positions. Initially, the box

number is evaluated based on the position of the fluid particle and stored in the box_no variable.

Later count of the fluid particle for a given box is evaluated sequentially in the atomic region.

The capture operation ensures the variable j is different for each thread and allows it to be used

in the next part of the program.

Similarly, the atomic capture directive is employed in generating the neighbour lists of MD and

MPCD particles.

In section 2.7.1, I have mentioned the most frequently used operations, which programmers

might have misconceptions about in parallelizing an application. For more details that are

concerned with the OpenACC programming, please refer to these citations[20,21,23].

55

2.7.2 Method to port the code to the GPU with OpenACC

1. Run the existing sequential code on the CPU to establish a baseline for parallelization.

2. Identify the computationally expensive parts of the code by identifying loops containing

large-sized arrays where similar operations are performed for one array element at a time.

Different kinds of operations that are used to parallelize the simulation are explained in

section 2.7.1

3. Pass one such heavy computation region to run on the GPU using OpenACC.

4. Verify the results after parallelizing the desired region and compare the execution time

with the baseline.

5. Repeat steps 2 to 4 for such heavy computation regions in the code.

6. After parallelizing all required regions, optimize the code by minimizing the data

transfers between the host(CPU) and the device(GPU).

Following these steps will help you to effectively parallelize the code using OpenACC and

achieve improved performance.

56

Chapter 3

Results and Verification of parallelized simulation

In this chapter, we go through the benchmarking simulation methods that were discussed in the

previous chapter and also verify the system’s behaviour to ensure the compatibility of the

simulation for the parallel processors. In complicated simulations, it is important for us to verify

every step, as the simulations use approximations to mimic a physical system. It becomes

complicated when parallel computing is used because one needs to ensure that the data mapping

on the hardware is happening correctly. So, the simulation was verified for every step of the

system.

The multiscale simulation was performed for three different sets of parameter values shown in

Table 3.1

Case Simulation Box Size No. of Fluid
particles

Size ratio
(Passive/Active)

1 50 x 50 x 50 1.25 x 106 1

2 70 x 70 x 70 3.43 x 106 1

3 68 x 68 x 68 3.14 x 106 2

Table 3.1: Parameter settings used to implement the multiscale simulation for different cases

Initially the multiscale simulation was implemented for Case 1 in Table 3.1. After the successful

verification of the simulation on Case 1, the other cases mentioned in Table 3.1 were performed

for this simulation. It is shown to be robust for the other cases as well.

57

3.1 Benchmarking the Hardware

All these simulations were implemented on the PARAM Brahma Supercomputing facility at

IISERPune. Hardware specifications of PARAM Brahma of CPU and GPU have mentioned

below[33]

OS: Linux – CentOS 7.6

Specifications CPU GPU

Name
Cores
Base Clock Speed
Memory

Intel Xeon Platinum 8268
48
2.9 GHz
192 GB

Nvidia Tesla V100
5120
1245 MHz[34]
16 GB

Table 3.2: Hardware specifications of PARAM Brahma

Note: All the following simulations were run only on one CPU and one GPU. Performance

benchmarks of these simulations are shown in their respective sections.

3.2 Verification of Molecular Dynamics Simulation

Molecular Dynamics simulation was verified by plotting

● Energy conservation of the system

● Pair Correlation of the system

● Velocity Distribution of the MD particles

3.2.1 Simulation Units

58

The simulations performed were not written in the real-world units. Employing simulation units

in place of real-world units can improve the efficiency and standardization of the simulation.

For this simulation, the following terms are scaled,

kBT = 1, m = 1, σ = 1, τ = 0.05

Where,

kBT = Energy unit of the system

m = Mass of the particle

σ = Diameter of the particle

τ = Simulation time step

3.2.2 System Parameters

The following table has the list of the parameters used to verify the MD simulation

Parameter Value

Number of particles

Size of the simulation box

Number of the iterations

Critical distance(rc)

3 x 103

20x20x20

4 x 104

3.0

Table 3.3: Parameters used for the MD simulation

3.2.3 Energy plots of the MD simulation

(a) Thermostat absent

59

From figure 3.1, we can observe that the total energy of the system looks like a perfectly straight

line, by which one can say that the total energy is conserved when the thermostat is not

implemented.

Figure 3.1 Kinetic, Potential, and Total energies per particle over 4 x 104 iterations with a

simulation time step of 0.005 on GPU when the thermostat was not implemented in the system.

Energies are in the units of kBT, and time is in the units of the simulation time step(τ).

Simulation units are shown in subsection 3.2.1

Figure 3.2: Zoomed-in plot of the kinetic energy per particle when no thermostat was used. We

can observe the increasing trends of the kinetic energy per particle with iterations, and it has

deviated from 1.5kBT. Simulation units are shown in subsection 3.2.1

60

However, if we take a closer look at the kinetic energy, which was shown in Figure 3.2, we can

see the rise in the value of kinetic energy per particle from 1.5kBT. Based on equation 2.1, an

increase in the average velocity of these particles leads to an increase in the average temperature

of the system.

(b) Thermostat present

To correct this thermostat was implemented. In this case, the total energy per particle is not a

straight line like in the previous case. This happens because the thermostat rescales the velocities

of the particles to maintain the temperature T. In Figure 3.4(a), we can see the total energy has a

brief equilibration period where it looks like a straight line and a sudden step change in its value

occurs when the thermostat is called. However, if we look at the kinetic energy per particle

plot(from figure 3.4(b)), though there were large fluctuations in the first, the system was

equilibrated after some time, and these values fluctuate over 1.5kBT, which implies that our

thermostat is working correctly.

Figure 3.3: Kinetic, Potential, and Total energies per particle over 4 x 104 iterations with a
simulation time step of 0.005 when the thermostat was implemented in the system. Energies are
in the units of kBT, and time is in the units of the simulation time step(τ). Simulation units are

shown in subsection 3.2.1

61

(a) (b)

Figure 3.4: (a) Zoomed-in plot of the total energy per particle with time: step changes in the

values of total energy occur when the thermostat step is executed in the system. (b) Kinetic

Energy per particle is observed to fluctuate around 1.5kBT throughout the time.

3.2.4 Pair correlation Plots

Pair Correlation function, also known as the Radial Distribution function, helps us to understand

the variation in the density of particles along the distance from the center of the given particle.

This quantity helps us in studying particle clustering in research. It can be defined as the

probability of finding a particle at a radial distance r away from the chosen particle.

From figure 3.5, we observe that g(r),

● r<1: In this case, g(r) is zero because we modeled hard spheres using WCA potential. As

there will be no particle center present inside a hard spherical particle, g(r) will be zero in

this region.

● r=1: Peak is observed at this point because this is the minimum distance where two

particles can be nearest to each other without any overlapping.

● r=1.5: A local minimum is observed at this point. This is because if a particle is at r=1.5,

then there shouldn’t be any particle at r=1, or they would overlap with each other.

62

● r>>1: In this region, the chosen particle won’t affect these particles as they are much

farther from it. So, the g(r) value here is normalized to 1 as the density is independent of

the particles at longer distances.

Figure 3.5: Pair Correlation(g(r)) of 3000 MD particles in a 30x30x30 box. The calculation of

g(r) was performed every 100 iterations for a total of 4 x 104 iterations. r is in the units of σ.

3.2.5 Maxwell-Boltzmann Distribution

As the system is in thermal equilibrium, the velocities of MD particles follow the

Maxwell-Boltzmann distribution, which is of the form

(3.1)𝑑𝑁 = 𝑁 4π 𝑚
2π𝑘

𝐵
𝑇()3/2

 𝑣2 𝑒
− 𝑚𝑣2

2𝑘
𝐵

𝑇
 𝑑𝑣

Here,

m = mass of the particle =1

63

dv = width of the velocity bin = 0.05

N= Total number of particles = 3 x 000

dN= Number of particles in the range v to v+dv

For the velocity distribution that follows the Maxwell Boltzmann distribution the most probable

velocity would be,

(3.2)𝑉
𝑚𝑝

=
2𝑘

𝐵
𝑇

𝑚

Substituting the values of m=1 and kBT =1 we get,

=𝑉
𝑚𝑝

2

Figure 3.6: The above plot shows the probability distribution of velocities of the MD particles for

the parameters shown in Table 3.3. This distribution is plotted from MD simulation, and it was

fitted against the Maxwell-Boltzmann Distribution.

64

From Figure 3.6, it is evident that the straight line, which represents the most probable velocity,

cuts the velocity distribution curve at its peak. So, we can conclude that our MD system𝑉
𝑚𝑝

works on parallel processors perfectly.

3.2.6 Performance benchmarking of MD simulation

Sl. No. CPU run time (seconds) GPU run time(seconds)

1 5.641 x 102 3.117 x 10

2 5.639 x 102 3.157 x 10

3 5.647 x 102 3.360 x 10

4 5.636 x 102 2. 966 x 10

5 5.654 x 102 3.078 x 10

Average run time 5.643 x 102 3.136 x 10

Table 3.4: CPU Vs GPU run times of the MD Simulation over 104 simulation time steps

As all the tests verify the parallelized MD simulation we need to know how much faster this

parallelized application works. For that purpose, using the parameters in Table 3.3, five

independent runs over 103 iterations were given for the MD simulation on both CPU and GPU,

and run time was noted for each run and tabulated in Table 3.4. The average run times of the

program on both CPU and GPU performance can be used to estimate the speed up of an

application as,

(3.3) 𝑠𝑝𝑒𝑒𝑑 𝑢𝑝 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑢𝑛 𝑡𝑖𝑚𝑒 𝑖𝑛 𝐶𝑃𝑈
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑢𝑛 𝑡𝑖𝑚𝑒 𝑖𝑛 𝐺𝑃𝑈

Substituting the values we get,

 𝑠𝑝𝑒𝑒𝑑 𝑢𝑝 = 5.643 𝑋 102

3.136 𝑋 10

65

= 17. 99≈ 18

The parallelized MD simulation is 18 times faster than the MD simulation executed on a CPU.

3.3 Verification of Multi-Particle Collision Dynamics Simulation

3.3.1 Parameters of the MPCD system

Parameter Value

Dimensions of the simulation box

Number of the fluid particles

Dimensions of the collision box

Number of iterations

50x50x50

lx*ly*lz*10= 1.25 x 106

1x1x1

5 x 105

Table 3.5: Parameters used for the MPCD simulation

Simulation parameters for the MPCD system are the same as the MD system mentioned in

subsection 3.1.1

3.3.2 Velocity distribution of MPCD particles

As explained in the previous section, 3.1.5, from equation 3.2, the Most probable velocity, in this

case, will be

= (as m=1 and kBT =1)𝑉
𝑚𝑝

2

From Figure 3.7, the velocity distribution of the MPCD system is verified as the Most probable

velocity curve cuts through the peak of the velocity distribution curve.

66

Figure 3.7 The above plot shows the probability distribution of velocities of the fluid particles for

the parameters shown in Table 3.5. The data for the plot above is obtained through MPCD

simulation, and it was fitted against the Maxwell-Boltzmann Distribution.

3.3.3 Performance benchmarking of MPCD simulation

To determine the speed up of the parallelized MPCD simulation, it was run on CPU five

times(five independent runs were given), and the same process was done on GPU for parallelized

MPCD simulation. The simulation was run for 5 x 104 iterations each time, and the results are

shown in Table 3.6.

Sl. No. CPU run time (seconds) GPU run time(seconds)

1 3.607 x 104 8.212 x 102

2 3.613 x 104 8.154 x 102

3 3.602 x 104 8.155 x 102

4 3.636 x 104 8.321 x 102

5 3.624 x 104 8.113 x 102

Average run time 3.617 x 104 8.191 x 102

Table 3.6: CPU Vs GPU run times of the MPCD Simulation over 5 x 104 iterations

67

Substituting the average run time values in equation 3.3 we get,

 𝑠𝑝𝑒𝑒𝑑 𝑢𝑝 = 3.617 𝑋 104

8.191 𝑋 102

= 44. 15≈ 44

The parallelized MPCD simulation is 44 times faster than the MPCD simulation executed on a

CPU. We can see a significant difference in the speed up when compared to the sequential

execution of this application. This is because if we look at the parameters from Table 3.5, there

are 1.25 x 105 fluid particles, and these are updated one by one in the CPU. Using GPU to

parallelize this simulation greatly benefited us as it significantly reduced the time involved in

computing these large arrays.

3.4 Verification of Fluid-Colloid Interactions

Now, by coupling both MD and MPCD methods, Fluid-Colloid Interactions are simulated, and

the verification tests performed are discussed in this section.

3.4.1 Simulation Units and Parameters

Simulation units are used as follows.

● For energy, kBT = 1

● MD time-step = t

● Collision step for MPCD, τ = 10*t

68

Parameter Value

Dimensions of the simulation box

Dimensions of the collision box

Average density of fluid particle(ρ)

Number of the fluid particles

Diameter of the colloid for colloid-colloid collisions(σcolloid)

Mass of the Colloid, mcolloid

Cutoff distance for LJ interactions, (rcutoff)

Cutoff distance for neighbour lists

Iterations

50x50x50

1x1x1

10

50x50x50xρ

5

654.1

2 x 21/6 x σcolloid
3 x σcolloid
5 x 105

Table 3.7 Parameters for the verification of the fluid flow profile

3.4.2 Velocity flow Profile in the presence of an Active particle

Flow profile created in the presence of moving particles makes it very difficult to analyze the

particle interaction with the fluid particles because we need to average over a large number of

infinitesimal time-steps. Because of moving particles, random noise will also be a part of the

flow profile, so we have to keep the particles stationary in order to study the flow profile. This

can be done by allowing the active particle to interact with the other particles and allowing the

momentum transfers between them, but the position of the active particle is not updated.

To observe the velocity profile more clearly, we have placed one active particle in the fluid. We

obtained the plot shown in Figure 3.8 by simulating the flow profile under these conditions. The

observed flow profile matches our expectations based on the discussions of the simulated active

forces. The active particle's forward motion is driven by pushing away the fluid particles behind

it. Meanwhile, the fluid particles from the top and bottom move in to fill the space vacated by the

ones pushed away from the front and back of the active particle. This mechanism produces the

observed flow profile, which is depicted here.

69

Figure 3.8: Velocity profile of the system in the presence of an active particle(blue). The box

dimensions are 50x50x50. However, the plot limits from 0 to 30 in both the x and y directions to

observe the flow profile better. The active particle is placed at (10,10,10).

Figure 3.9: Velocity profile of the system in the presence of one active particle(blue) and one

passive particle(black). The box dimensions are 50x50x50. However, the plot limits from 0 to 30

in both the x and y directions to observe the flow profile better. The active particle is placed at

(20,10,10), and the passive particle is placed at (10,10,10).

70

Based on these observations, we can say that the modeled fluid-colloid interactions are verified.

3.5 Verifying the Multiscale Simulation

Simulation Parameters and units of this system are the same as the parameters described in

subsection 3.3.1. But instead of one colloid, we have placed 200 colloidal particles in this

simulation box, where 40 of them are passive particles, and the remaining 160 particles are

active colloids.

3.5.1 Correlation plots among colloids

To verify this system, it was run for 1 million iterations, and the pair correlations among different

colloidal particles(passive-passive, active-active, and passive-active) were plotted and compared

with the results of the previous work.

Note: Sizes and masses of both passive and active particles are the same.

Remember our discussion on the pair correlation function from section 3.1.4, Figure 3.10 gives

us an idea of how the density of pairs of active particles changes as a function of the distance.

gaa(r) plot(Figure 3.10) is comparable to that of the MD system. As the diameter of the

colloid(σcolloid) was chosen to be 5(see Table 3.7), we can see the first peak at 5 and the second

peak at 10, and so on. So, we can say active particles can form clustering through hydrodynamic

interactions.

71

Figure 3.10: Pair Correlation of A-A interactions for 160 active particles in a 50x50x50

simulation box. The size ratio between the passive and active particles is 1. The calculation of

g(r) was performed every 5 x 104 iterations for a total of 1 Million iterations. Here A-A

interactions denote Active-Active interactions.

In Figure 3.11, the pair correlation of passive particles in an active bath is displayed. As

previously discussed in 1.1.4, passive particles in an active bath tend to cluster together, which is

evident in Figure 3.11. The peaks at integral values of sigma (r=5, 10, 15) demonstrate that

clustering also occurs among passive particles in the presence of active particles.

These obtained results verified the parallelized simulation successfully.

72

Figure 3.11: Pair Correlation of P-P interactions for 40 passive particles in a 50x50x50

simulation box. The size ratio between the passive and active particles is 1. The calculation of

g(r) was performed every 5 x 104 iterations for a total of 1 Million iterations. Here P-P

interactions denote Passive-Passive interactions.

3.5.2 Performance benchmarking of the Multiscale-simulation

Sl. No. CPU run time (seconds) GPU run time(seconds)

1 1.972 x 105 1.647 x 104

2 1.979 x 105 1.625 x 104

3 1.973 x 105 1.659 x 104

4 1.979 x 105 1.615 x 104

5 1.979 x 105 1.641 x 104

Average run time 1.976 x 105 1.638 x 104

Table 3.8: CPU Vs GPU run times of the Multiscale Simulation over 2 x 105 iterations

Performance speed up of the multiscale simulation can be obtained by substituting average run

times from Table 3.8 in equation 3.3,

73

 𝑠𝑝𝑒𝑒𝑑 𝑢𝑝 =
1.976 𝑋 105

1.638 𝑋 104

= 12. 06≈ 12

Parallelized Multiscale simulation is 12 times faster than that of CPU code for the given

parameters discussed in section 3.4. However, if we compare it with the accelerated performance

of MD and MPCD simulations, MPCD speed up is not as fast as the others. So, one might be

wondering why this is happening. It is because after coupling both MD and MPCD simulations,

various kinds of interactions take place among all kinds of particles(active, passive, and fluid),

which were briefly mentioned in section 1.2. As these interactions are not independent of one

another and more complex to compute, some parts of the code were executed serially on the

GPU. As the GPU has a lower clock speed than the CPU, these serial operations would consume

more time. Still achieving a 12 times speed up is significantly great because the run time for this

system was reduced from 2.5 days(approx) to 4.5 hours. This allows us to carry out further

research to investigate the hydrodynamics of active matter systems in the fluid medium under

different conditions and parameters.

3.6 Correlation plots for different parameter settings

As the accelerated model for the multiscale simulation has been verified by performing various

tests described in previous sections of this chapter, we now implemented this model for the

different simulation parameters. By plotting the correlation between particles under various

parameter settings, one can confirm the stability of the parallelized simulation by examining

whether the model remains stable even when the parameters are modified.

74

3.6.1 Pair Correlation plots for 70 x 70 x70 box

(a) Simulation Units and Parameters

Simulation units are used as follows.

● For energy, kBT = 1

● MD time-step = t

● Collision step for MPCD, τ = 10*t

Parameter Value

Dimensions of the simulation box

Dimensions of the collision box

Number of the fluid particles (ρ) per collision box

Number of the fluid particles

Diameter of the colloid for colloid-colloid collisions(σcolloid)

Mass of the Colloid, mcolloid

Number of Active Particles

Number of Passive Particles

Size ratio = Passive particle size/ Active particle size

Cutoff distance for LJ interactions, (rcutoff)

Cutoff distance for neighbour lists

Iterations

70x70x70

1x1x1

10

3.43 x 104

5

654.1

420

105

1

21/6 x σcolloid
3 x σcolloid

1 million (106)

Table 3.9: Parameters for the multiscale simulation for 70x70x70 box and for size ratio 1

(b) Pair Correlation plots for 70 x 70 x70

75

gaa(r) plot(Figure 3.12) shows how the density of the active particles varies with the radial

distance. As the diameter of the colloid(σcolloid) was chosen to be 5(see Table 3.9), we can see the

first peak at 5 and some smaller subsequent peaks. Based on this, we can say that the active

particles can form clustering through hydrodynamic interactions for the parameters mentioned in

Table 3.9.

Figure 3.12: Pair Correlation of A-A interactions among 420 active particles in the 70x70x70

simulation box. The size ratio between the passive and active particles is 1. The calculation of

g(r) was performed every 5 x 104 iterations for a total of 1 Million iterations. Here A-A

interactions denote Active-Active interactions.

76

Figure 3.13: Pair Correlation of P-P interactions among 105 passive particles. The size ratio

between the passive and active particles is 1. The calculation of g(r) was performed every 5 x 104

iterations for a total of 1 Million iterations. Here P-P interactions denote Passive-Passive

interactions.

Similarly, from Figure 3.13, we can see that the clustering also happens in the passive particles

even if the size of the simulation box is changed.

(c) Performance Benchmarking for the new parameters

With the accelerated model, it took 1.384 x 105 seconds(1.5 days approx.)to complete 1 million

iterations. To compare it with the CPU time, the non-accelerated version of this simulation was

run on the CPU for 100 iterations.

On the CPU for the given parameters from Table 3.9, it took 349.5 seconds for 100 iterations. So,

for 1 million iterations, it takes approximately 3.495 x 106 seconds(40.5 days). By comparing

the rescaled times of both CPU and GPU, the speed up was found to be 26.9(27 approximately)

times faster in GPU.

77

3.6.2 Pair Correlation plots for size ratio =2

(a) Simulation Units and Parameters

Parameter Value

Dimensions of the simulation box

Dimensions of the collision box

Average density of fluid particle(ρ) per collision box

Number of the fluid particles

Diameter of the passive colloid(σpassive)

Diameter of the active colloid (σactive)

Mass of the Active Colloid, mactive

Mass of the Passive Colloid, mpassive

Number of Active Particles

Number of Passive Particles

Cutoff distance for LJ interactions between active-active

Cutoff distance for LJ interaction between passive-passive

Cutoff distance for LJ interaction between active-passive

Cutoff distance for neighbour lists

Iterations

68x68x68

1x1x1

10

3.14 x 106 (approx.)

10

5

654.1

5236

160

40

21/6 x σactive
21/6 x σpassive

21/6 (0.5σactive + 0.5σpassive)

3 x σpassive
1 million

Table 3.10: Simulation Parameters for size ratio= 2 between the passive and active colloids in a
68x68x68 simulation box.

Simulation units for the system are used as follows.

● For energy, kBT = 1

● MD time-step = t

● Collision step for MPCD, τ = 10*t

78

(b) Pair Correlation plots for size ratio =2

In all previous simulations, the size ratio between the active and passive colloids was maintained

as 1. In this case, the size of the passive particles is set to be twice that of the active particles.

However, the density is the same for both active and passive particles and was set to 10. Then the

mass of these particles was evaluated by,

Mass = Density x Volume (3.4)

Figure 3.14: Pair Correlation of A-A interactions for size ratio = 2 between the passive and

active particles. This simulation was performed in the 68x68x68 simulation box. The calculation

of g(r) was performed every 105 iterations for a total of 1 Million iterations. Here A-A

interactions denote Active-Active interactions.

By examining the Pair Correlation plots in Figures 3.14 and 3.15, it is apparent that:

79

● For σactive = 5, the first peak in the pair correlation plot is observed at r = 5 in Figure 3.14,

indicating the potential for clustering among active particles under the system parameters

outlined in Table 3.10.

● Likewise, for σpassive = 10, the first peak in the pair correlation plot is seen at r = 10 in

Figure 3.14, suggesting that clustering may occur among passive particles in the presence

of an active bath.

Figure 3.15: Pair Correlation of P-P interactions for size ratio=2 between the passive and active
particles. This simulation was performed for the 68x68x68 simulation box. The calculation of
g(r) was performed every 105 iterations for a total of 1 Million iterations. Here P-P interactions

denote Passive-Passive interactions.

(c) Performance Benchmarking for size ratio = 2

With the accelerated model, it took 46 hours(nearly 2 days) to complete 1 million iterations.

From Adrian’s work, it was estimated that to run 1.2 x 105 iterations, it takes approximately 4

days(96 hours) to complete on a CPU, so 1 million iterations will be completed after

80

approximately 33.33 days. If we scale the performance based on this information, we can say

that the accelerated model is 17 times faster than the CPU code.

3.7 Summary of Performance Benchmarking for Parallelized

Applications

In sections 3.5.2, 3.6.1(c), and 3.6.2(c), we have estimated the speed-up factors of the

parallelized model compared with the sequential execution of the multiscale simulation under

different cases. If one wants to compare the performance of parallelized simulation over

parameter settings, we can determine the time taken to perform a particular number of

computations. In this case, we estimated the time taken to perform 102 iterations, and the results

are tabulated in Table 3.11.

Case Simulation
Box Size
(lx *ly *lz)

No. of Fluid
particles

Size
ratio

Speed-Up
Factor
(CPU Vs
GPU)

Time per 100
iterations on GPU

(seconds)

1 50 x 50 x 50 1.25 x 106 1 12 8

2 70 x 70 x 70 3.43 x 106 1 27 13

3 68 x 68 x 68 3.14 x 106 2 17 17

Table 3.11: Acceleration achieved for multiscale simulation under different parameter settings

But for this accelerated model this can’t be done because I have not optimized the kernel

performance in this simulation. So, the OpenACC compiler assigns gangs and workers to the

loop automatically based on the complexity of the loop. If there are unused vectors, the

OpenACC compiler assigns them zero values and performs computations on them as if they were

active. This can be avoided by specifying more information, such as the number of gangs,

workers, and vectors required for a loop[21].

81

I have not optimized the loop performance because mapping these numbers varies with the

accelerator used. The current accelerated model has more flexibility allowing the users to

execute the simulation on the desired hardware.

Note: For a particular set of hardware, after performing data optimization, kernel optimization,

and other required operations, parallel programmers try to run the accelerated application for

different parameters to find out the optimum parameter size that yields the best speed-up factor.

This is done by observing the trends in the speed-up factor with respect to the parameter size. In

most cases, we may find that the speed-up initially increases as the parameter size increases, but

after a while, it levels off and decreases after a point due to hardware limitations. So, after

changing the parameters, compare the speed-up factor from previous data and modify the

parallelization techniques by optimizing the kernel's performance, implementing different

parallel algorithms, or using a different set of hardware.

82

Chapter 4

Conclusion and Future Work

We have parallelized the Multiscale simulation successfully, coupling the Molecular

Dynamics(MD) system and the Multiparticle Collision Dynamics(MPCD) simulation. By

placing both active and passive particles in the fluid medium, we have observed clustering for

both active and passive particles in the presence of hydrodynamics. This parallelized model has

been verified successfully against the simulation done previously. Based on the successful

verification of the parallelized multiscale simulation, the simulation was run under various

parameter settings. The results obtained from these simulations demonstrate the effectiveness

and reliability of the parallelized multiscale simulation in producing accurate and efficient results

In conclusion, our simulation has demonstrated its usefulness as a tool for further research. Its

ability to parallelize the complex system involving hydrodynamics allows the research to be at an

accelerated pace. In the future, this model will be used by the soft matter research groups of

IISER Pune, IISER Bhopal, and IIT Bombay to investigate the role of hydrodynamic

interactions in emergent phenomena.

83

84

Bibliography

[1] Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M and Simha R A

2013 Hydrodynamics of soft active matter Rev. Mod. Phys. 85 1143–89

[2] Vicsek T and Zafeiris A 2012 Collective motion Phys. Rep. 517 71–140

[3] Ramaswamy S 2010 The Mechanics and Statistics of Active Matter Annu. Rev. Condens.

Matter Phys. 1 323–45

[4] Schwarz-Linek J, Valeriani C, Cacciuto A, Cates M E, Marenduzzo D, Morozov A N and

Poon W C K 2012 Phase separation and rotor self-assembly in active particle suspensions

Proc. Natl. Acad. Sci. 109 4052–7

[5] Das M, Schmidt C F and Murrell M 2020 Introduction to Active Matter Soft Matter 16

7185–90

[6] Kumar M S and Philominathan P 2009 The physics of flagellar motion of E. coli during

chemotaxis Biophys. Rev. 2 13–20

[7] Purcell E M 1977 Life at low Reynolds number Am. J. Phys. 45 3–11

[8] Aditi Simha R and Ramaswamy S 2002 Hydrodynamic Fluctuations and Instabilities in

Ordered Suspensions of Self-Propelled Particles Phys. Rev. Lett. 89 058101

[9] Howse J R, Jones R A L, Ryan A J, Gough T, Vafabakhsh R and Golestanian R 2007

Self-motile colloidal particles: from directed propulsion to random walk Phys. Rev. Lett. 99

048102

[10] Jiang H-R, Yoshinaga N and Sano M 2010 Active Motion of a Janus Particle by

Self-Thermophoresis in a Defocused Laser Beam Phys. Rev. Lett. 105 268302

[11] Thutupalli S, Seemann R and Herminghaus S 2011 Swarming behavior of simple model

squirmers New J. Phys. 13 073021

[12] Zöttl A and Stark H 2014 Hydrodynamics Determines Collective Motion and Phase

Behavior of Active Colloids in Quasi-Two-Dimensional Confinement Phys. Rev. Lett. 112

118101

[13] Valeriani C, Li M, Novosel J, Arlt J and Marenduzzo D 2011 Colloids in a bacterial bath:

simulations and experiments Soft Matter 7 5228–38

[14] Pushkin D O and Yeomans J M 2014 Stirring by swimmers in confined microenvironments

85

J. Stat. Mech. Theory Exp. 2014 P04030

[15] Gonnella G, Marenduzzo D, Suma A and Tiribocchi A 2015 Motility-induced phase

separation and coarsening in active matter Comptes Rendus Phys. 16 316–31

[16] Kirk D and Hwu WW 2013 Programming massively parallel processors: a hands-on

approach (Amsterdam: Elsevier, Morgan Kaufmann)

[17] Fig. 1. Difference Between GPU and CPU Architecture GPU architecture... ResearchGate

[18] Suryowinoto A 2016 Cuda by Example An Introduction To General Purpose GPU

Programming

[19] Warp — alpaka 0.5.0 documentation

[20] Ruetsch G and Fatica M 2014 CUDA Fortran for scientists and engineers: best practices

for efficient CUDA Fortran programming (Amsterdam : Boston: Morgan Kaufmann, an

imprint of Elsevier)

[21] Storti D and Yurtoglu M 2016 CUDA for engineers: an introduction to high-performance

parallel computing (New York: Addison-Wesley)

[22] 2018 Programming Constructs for Beginners DEV Community

[23] Larkin J 2017 Chapter 19 - Parallel programming with OpenACC Programming Massively

Parallel Processors (Third Edition) ed D B Kirk and W W Hwu (Morgan Kaufmann) pp

413–41

[24] OpenACC Programming and Best Practices Guide

[25] Anon Fig. 1. The Lennard-Jones (LJ, thick curve) and the WCA (dashed curve)...

ResearchGate

[26] Kapral R 2008 Multiparticle collision dynamics: Simulation of complex systems on

mesoscales Adv. Chem. Phys. 140 89

[27] Ihle T 2009 Chapman–Enskog expansion for multi-particle collision models Phys. Chem.

Chem. Phys. 11 9667–76

[28] Malevanets A and Kapral R 1999 Mesoscopic model for solvent dynamics J. Chem. Phys.

110 8605–13

[29] Ihle T and Kroll D M 2001 Stochastic rotation dynamics: A Galilean-invariant mesoscopic

model for fluid flow Phys. Rev. E 63 020201

[30] Padding J T, Wysocki A, Löwen H and Louis A A 2005 Stick boundary conditions and

rotational velocity auto-correlation functions for colloidal particles in a coarse-grained

86

https://www.researchgate.net/figure/Difference-Between-GPU-and-CPU-Architecture-GPU-architecture-belongs-to-the-family-of_fig1_308730753
https://alpaka.readthedocs.io/en/0.5.0/usage/abstraction/warp.html
https://dev.to/lucpattyn/programming-constructs-for-beginners--jae
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0_0.pdf
https://www.researchgate.net/figure/The-Lennard-Jones-LJ-thick-curve-and-the-WCA-dashed-curve-potentials-functions_fig6_257218769
https://www.researchgate.net/figure/The-Lennard-Jones-LJ-thick-curve-and-the-WCA-dashed-curve-potentials-functions_fig6_257218769

representation of the solvent J. Phys. Condens. Matter 17 S3393

[31] Berg H C 2004 Cell Populations E. coli in Motion Biological and Medical Physics,

Biomedical Engineering (New York, NY: Springer) pp 19–30

[32] Kos Ž and Ravnik M 2018 Elementary Flow Field Profiles of Micro-Swimmers in Weakly

Anisotropic Nematic Fluids: Stokeslet, Stresslet, Rotlet and Source Flows Fluids 3 15

[33] Anon PARAM Brahma User’s Manual

[34] Anon NVIDIA Tesla V100 16GB GPU

[35] Chen Xuanyi, ”Starting from Birds and Bacteria: Disorder, Order, Fluctuation, Stability and

Instability”, Physics Bimonthly Taiwan, (2020-06-02)

[36] “ Non-equilibrium self-assembly of colloidal particles in active liquids”, Nishant Barua(MS

thesis), IISER-Pune

87

https://paramutkarsh.cdacb.in/faq/PARAM_Brahma_Users_Manual_Ver_1.0.pdf
https://www.itcreations.com/nvidia-gpu/nvidia-tesla-v100-16gb-gpu

