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Abstract 
 

Our eyes are constantly moving. Every second, we make three large saccadic 

movements, and in between these saccades, small fixational eye movements 

continuously occur. These eye movements are not random and serve crucial 

computational roles by focussing on relevant parts of the environment and allowing 

information to be integrated between eye movements. This active sampling of 

information is a hallmark of human visual processing but is currently difficult to 

model. Indeed, Deep Neural Networks (DNNs), the current state of the art for 

modelling the visual system, commonly lack eye movements and process static 

images in a single feedforward sweep. Understanding how to model eye movements 

and how to integrate this information over time is an important avenue of research. 

The following thesis focuses on modelling the small fixational eye movements that 

continuously occur between saccades. It has been shown that these fixational eye 

movements allow the visual system to reach superresolution to detect features of 

higher spatial frequency than what would be possible under static fixation. To model 

this process, we used a recurrent DNN combining supervised learning and deep 

reinforcement learning that can learn where to look in images. Reproducing the 

experiments conducted on humans, we trained the network to classify down-

sampled high spatial frequency psychophysical stimuli that cannot be discriminated 

from the static image. We show that the network is able to learn useful fixational eye 

movements to achieve human-like superresolution on these stimuli and test to what 

extent this model can explain experimental data about human fixational eye 

movements. Finally, we show that this method can be applied to reach 

superresolution on naturalistic images. 
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Introduction 

 

One of the fundamental aspects of our everyday experience is our natural and the 

effortless ability to see the world around us. But the perceptual phenomena seem 

incredibly complex when demanded with a scientific explanation, considering the fact 

that the rich perceptual experience arises from a two-dimensional pattern of light 

stimulating the photoreceptors and other neurons at the back of our eyes. Kurt 

Koffka, a prominent German psychologist, succinctly captured the essence of this 

problem by asking the fundamental question, "Why do things look as they do?". 

Building upon Koffka's question, this thesis aims to provide a narrow inquiry into how 

the visual system processes and interprets visual information, with a particular focus 

on the role of specific types of eye movements during visual perception. 

Where we choose to look is a selective process that is influenced by both bottom-up 

and top-down factors. The salience of visual stimuli, such as their contrast and 

motion, can capture our attention involuntarily through bottom-up processes, while 

top-down processes, such as our goals or the relevance of the task, can guide our 

attention to focus on relevant aspects of a scene (Katsuki and Constantinidis, 2014). 

These factors play an important role in perception by guiding our attention toward 

important or relevant parts of the scene because the visual system has anatomical 

constraints that limit our ability to see the entire scene at once. Instead, we 

selectively attend to parts of the scene where we fixate our gaze. In many primates, 

including humans, a small region of the retina called the fovea is specialized for high-

acuity vision. This region provides the highest visual resolution and is critical for 

reading, recognizing faces, and other tasks that require detailed visual information. 

The non-uniform acuity can be attributed to the unequal distribution of the 

photoreceptor cells in the human retina. The Foveola, a small region of about 0.3mm 

in diameter at the centre of the fovea has the highest acuity, consisting exclusively of 

colour-sensitive cone photoreceptors. The receptor density and hence the spatial as 

well as the chromatic resolution drops rapidly towards the visual periphery, away 

from the foveal region, where the image appears progressively blurry (Figure 1). 

Thus, the brain constantly sends commands to the eye muscles to make rapid eye 
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movements called saccades that help us orient the gaze towards the areas of 

interest such that it falls sequentially on the fovea.  

Figure 1. Visual acuity as a function of degrees of retinal eccentricity, the degree to 
which an object is located away from the centre of the visual field/ fovea. (Lambertus 
et al., 2017) 

 

Humans make several saccades per second. However, it is only during the periods 

of fixation in which we gain information about the scene in front of us. The main 

purpose of saccades is to bring the relevant visual information present in the 

periphery within the fovea. Despite what the name suggests, our eyes are never 

completely at rest during fixation; Tiny involuntary eye movements such as 

microsaccades (a much smaller saccade in terms of amplitude that keeps the 

attended scene within the foveola), drifts (slow continuous motion of the eye during 

the intersaccadic interval), and tremors (tiny high-frequency motion) still occur, 

together referred to as the Fixational Eye Movements (FEMs) (Ratliff and Riggs, 

1950; Otero-Millan et al., 2014; Rucci and Victor, 2015). Humans and other species 
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constantly make these sequences of saccades and FEMs (Martinez-Conde and 

Macknik, 2008) in order to scan the visual scenes present in front of them. Out of the 

three, microsaccades have received more research attention, primarily because they 

are relatively larger and faster in magnitude, making them more detectable and 

distinguishable using non-invasive video trackers.  

After the proper characterization and establishment of FEMs in the 1950s, a number 

of researchers utilized optical techniques, such as retinal stabilization, which 

counteracts any motion in the retinal image caused by eye movements, to effectively 

eliminate FEMs (especially microsaccades) and gain insight into their functional role 

in visual perception. One of the important results from these studies was that lack of 

FEMs causes the vision to fade away within a matter of seconds in a laboratory 

setting (Ratliff and Riggs, 1950; Ditchburn and Ginsborg, 1952) and when the 

subjects were allowed to move their eyes without the retinal stabilization condition, 

vision returned back to normal. These studies showed that FEMs counteract neural 

adaptation, a phenomenon where the neuronal activity decays in response to 

repeated to prolonged stimulation, by constantly shifting the luminance information of 

the visual input on the retina, thus preventing visual fading.  

After a brief period of quiescence during the 1950-80s (Kowler and Steinman, 1979), 

the investigation of FEMs has recently gained renewed momentum and widespread 

recognition in the field of vision research. This resurgence is partly due to 

advancements in highly precise non-invasive, and user-friendly eye-tracking 

technology, combined with the use of mathematical and computational modelling 

techniques has provided researchers with a powerful tool for generating new 

hypotheses, as well as re-evaluating older ones. Recent work on microsaccades and 

drifts has also shown its impact on several perceptual and cognitive functions, 

including its role in visual acuity (Rucci et al., 2007), exploration of small spatial 

areas (Rolfs, 2009), engagement in attentional and cognitive processes (Martinez-

Conde and Macknik, 2007; Otero-Millan et al., 2008; Martinez-Conde et al., 2013) 

and resolving perceptually ambiguous stimuli (Troncoso et al., 2008; Rolfs, 2009; 

Otero-Millan et al., 2012). Thus, further in-depth investigation into microsaccades 

(and other FEMs) could lead us to a better understanding of the fundamental 

mechanisms that govern visual perception, both in normal and pathological vision 
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(Martinez-Conde, 2006). In addition to these functions, FEMs also play a vital role in 

reducing redundancy and extracting features (Kuang et al., 2012), which altogether 

establishes the fact that FEMs are not merely refreshing the input to retinal receptors 

but instead are an essential stage of information processing. 

In this thesis, we focus on modelling two proposed functions of FEMs, namely, their 

ability to enhance the perception of fine spatial details (Rucci et al., 2007) and 

encode information spatiotemporally (Rucci and Victor, 2015) to improve spatial 

resolution. Humans have the remarkable ability to distinguish between objects that 

are separated by just a few seconds of an arc, even though the resolution of our 

retinal neurons is typically limited to about 1' (one arc minute) due to the receptor 

density and shape of our retina (Carney and Klein, 1997). This ability to perceive 

details beyond the limit of the resolution set by the retina is known as hyperacuity 

(Geisler, 1984), which allows us to achieve superresolution and perceive visual 

stimuli at a higher resolution than what would be possible under static fixation in the 

fovea. 

Various studies have proposed a potential role for FEMs in explaining this 

phenomenon of superresolution (Hennig and Wörgötter, 2003; Rucci et al., 2007). 

These studies suggest that the visual system may leverage the continuously 

changing temporal input generated by FEMs, even when observing a static image, to 

encode spatial information in a spatiotemporal manner (Kuang et al., 2012; Rucci 

and Victor, 2015). This is a departure from conventional theories of neuroscience, 

which propose that information is encoded only in a spatial format. 

(Rucci et al., 2007)’s research was instrumental in revealing how FEMs contribute to 

enhancing spatial detail. Classical experiments designed to investigate the role of 

fixational eye movements in enhancing spatial detail using stabilization techniques 

faced technological constraints. The inability to selectively stabilize FEMs in their 

natural context necessitated experiments conducted in suboptimal conditions that 

resulted in the subjects being required to maintain fixation for extended periods 

during the stabilized condition, leading to induced visual fading.  
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Figure 2. Consequences of selective retinal stabilization (Rucci et al., 2007). (a) 
shows the examples of stimuli used in the experiments, gratings with either high 
(experiment 1) or low (experiment 2) spatial frequency masked with noise fields with 
frequency opposite to the spatial frequency of the gratings. (b) Plot shows the 
performance of subjects in a forced choice task where they have to report the 
orientation of the gratings in a free viewing condition vs. retinal stabilization condition 
where the FEMs were selectively impaired using a technique that processes eye-
movement signals in real-time. Orientation prediction performance on high-frequency 
stimuli is highly impaired in the case of retinal stabilization, while it stays the same 
for low-frequency stimuli. 

 

In a seminal study showing the role of FEMs for superresolution, Rucci et al. 

investigated the impact of FEMs on a classification task where the participants had 

to report the orientation of the visual stimuli that consisted of tilted gratings in ±45 

degrees from the vertical axis and their orientation prediction performance was 

measured in two conditions: with and without retinal stabilization. They were able to 

employ a modern retinal stabilization method which effectively selectively eliminates 

the fixational eye movements performed by the subject by moving the stimulus real-

time, thus allowing them to study the influence of FEMs in a free viewing condition 

(Figure 2). Two kinds of stimuli were presented, one with high and the other with low 

spatial frequency gratings. Both of them were masked with noises inversely 

proportional to the grating frequencies in order to simulate the power spectrum of 

natural images. Unlike the inconclusive results of the classical experiments, this 

study shows that the presence of FEMs helps participants perform significantly better  
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Figure 3. Consequences of partial retinal stabilization (Rucci et al., 2007). (a) shows 
the retinal stabilization confined to a single axis that is either orthogonal or parallel to 
the stimulus (b) shows the changes in luminance information experienced by a 
retinal receptor (depicted by a circle) along the stimuli when it's confined to an axis 
parallel to the orientation of the grating (top panel), revealing little information 
regarding the stimuli, and to an axis orthogonal to the orientation of the grating 
(bottom panel), which in contrast, has a comparatively high signal to noise ratio. (c) 
The mean accuracies of correct orientation classification for the high spatial 
frequency stimuli are impaired significantly when FEMs are restricted to the parallel 
axis and remain unaffected when they are restricted to the orthogonal axis. 

 

in the orientation prediction task for the high spatial frequency gratings in the normal 

fixation condition than when the retinal image motion is selectively eliminated 

through retinal stabilization since the prediction accuracy almost drops to chance 

level in the latter condition. In contrast, the performance accuracies in both the 

unstabilized and stabilized conditions remained similar in the case of low spatial 

frequency gratings. The finding of this study implies that FEMs are integral to our 
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visual perception of high spatial frequency stimuli. It also indicates that the lack of 

FEMs, such as when the retinal image motion is selectively eliminated through 

retinal stabilization, can significantly impair our ability to perceive these stimuli. On 

the other hand, the presence or absence of FEMs has minimal effect on our 

perception of low spatial frequency stimuli. 

In another experiment, the FEMs were selectively eliminated via retinal stabilization 

along a particular direction, either orthogonal or parallel, relative to the orientation of 

the stimuli in order to establish more concrete evidence for the effect of FEMs on 

classification performance. Eliminating fixational modulations of luminance in a 

direction orthogonal to the gratings significantly reduced the mean classification 

performance for high-frequency gratings, while the orientation prediction accuracy of 

the gratings remained almost the same when the motion of the FEMs was restricted 

in a direction orthogonal to the gratings, which reveals the most information about 

the stimuli.  

Based on the results of these two experiments, it can be clearly inferred that the 

absence of fixational modulation facilitated by FEMs impairs the ability to accurately 

classify high spatial frequency stimuli. Additionally, it also revealed that the temporal 

modulations induced by FEMs improved the signal-to-noise ratio for high-frequency 

gratings in comparison to low-frequency gratings. Overall, this study illustrates an 

additional function enabled by the tiny oculomotor movements apart from preventing 

visual fading, which is that we are able to take advantage of the luminance 

modulations produced by the FEMs to enhance fine spatial details and how FEMs 

act as a mechanism for achieving superresolution by using temporal modulations to 

encode spatial resolution, otherwise known as spatiotemporal encoding (Rucci et al., 

2007). 

In recent years, Artificial Neural Networks (ANN) (Figure 4) have been influential as 

a framework for developing neuroscientific models of the biological vision and the 

brain in general since they capture aspects of how it processes information, its 

neural activity, and its behavioural outputs (Khaligh-Razavi and Kriegeskorte, 2014; 

Yamins et al., 2014). One of the biggest advantages of using ANNs as computational 

models is to formulate novel hypotheses about information processing in the brain 

and then testing competing hypotheses under rigorous conditions using different 
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types of learning rules (both supervised and unsupervised learning regimes), 

architectures, input data, and objective functions that define the ANN (Doerig et al., 

2022). 

 

Figure 4. Basic architectures of Artificial Neural Networks (ANN) (Kriegeskorte, 
2015). (a) A single unit takes a linear combination of its inputs xi and bias b and 
applies a set of weights wi to calculate an output value z. This is passed through an 
activation function to generate an output y (image on the right) which adds non-
linearity to z. Feedforward neural networks process information in a single direction, 
from input to output (b,c), while recurrent neural networks have loops in their 
connections, allowing information to flow in a cyclical manner and enabling the 
network to maintain a type of memory (d). Feedforward networks that have at most 
one hidden layer are shallow (b), and more than one hidden layers are deep (c). 
Non-linearity functions in between hidden layers of ANNs enable the network to 
capture complex relationships between the inputs and the outputs, allowing it to 
learn and model highly nonlinear and continuous functions. 
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However, despite significant progress in the field, there are still many aspects of 

biology that remain largely unexplored. Developing biologically plausible models of 

the perceptual system not only facilitates our understanding of the underlying 

mechanisms of vision but can also help improve the robustness, efficiency, and 

accuracy of existing computer vision models. For example, current state-of-the-art 

models rely heavily on large datasets and extensive training to perform basic object 

recognition tasks, whereas humans can effortlessly perform these tasks with minimal 

world knowledge. 

One key aspect that distinguishes biological vision from current deep neural network 

(DNN) models is our ability to actively explore our surroundings using eye 

movements, integrating visual information across fixations to form a comprehensive 

representation of the world. This characteristic is not present in most DNN models, 

which process the entire image input at once, making them incapable of handling 

dynamic and continuous visual inputs. Incorporating this biological feature into DNNs 

has the potential to significantly enhance their efficiency by reducing the required 

pixel count and task complexity by disregarding irrelevant visual features in the input 

image. By incorporating models of fixational eye movements in particular, computer 

vision models can gain additionally proposed computational benefits, such as the 

ability to reveal information at superresolution that would not be discernible with 

static inputs (Rucci et al., 2007). Such models can not only bridge the gap between 

the static image-based deep learning models and the continuous and dynamic visual 

processing in the human brain, but this biological detail allows us to test and further 

investigate the crucial computational role of FEMs in the early stages of neural 

information processing. 

Recurrent Neural Networks (RNN) are a class of neural networks that can effectively 

integrate information from temporal sequences of data. Unlike feedforward networks, 

RNNs can handle sequential data by passing information from one time step to the 

next through hidden states. This makes RNNs essential for modelling the 

spatiotemporal encoding aspect of the human perceptual system, which involves 

high recurrent information flow in which lateral and recurrent connections are widely 

present (Kriegeskorte, 2015; Schrimpf et al., 2018; Kietzmann et al., 2019; Spoerer 

et al., 2020). The task of learning where to look effectively in the input images using 

the neural network model given the portion of the image that the network is focused 
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on (since the FEM model can only look at parts of the image similar to human 

percept) is framed as the 'control problem.' The control problem in the context of our 

model refers to the challenge of directing attention to relevant parts of the image. 

This can be framed as a decision-making process where the agent (in this case, the 

RNN model of FEM) must select actions (i.e., eye movements/ fixations) to maximize 

some objective (i.e., information gain or task performance). Reinforcement learning 

(RL) can be used to solve this control problem by training an agent to learn the 

optimal action policy through trial-and-error interactions with the environment. 

Specifically, RL algorithms aim to maximize a cumulative reward signal obtained 

from the environment in order to learn an optimal policy that maps states to actions. 

In the context of our model, RL can be used to learn an optimal eye movement policy 

that maximizes information gain and improves task performance. Therefore, we 

model FEMs using a biologically plausible deep RNN combining supervised learning 

and deep Reinforcement Learning (RL) that can learn where to look in images. Our 

work shares similarities with other attempts that use deep learning to incorporate 

attentional processing and saccadic eye movements (Mnih et al., 2014; Choi et al., 

2022). However, very few models with FEMs exist. 

The remainder of this thesis is organized in the following sections. In the methods 

section, we first describe the datasets used to train the model and then outline 

different in-silico psychophysics experiment setups. These experiments test whether 

the neural network model of FEM can learn human-like FEM and reproduce 

psychophysical data. The results section provides an analysis of the performance of 

the model on these experiments and interprets the results. Finally, the discussion 

section summarizes the main findings of the thesis and provides an outlook on the 

results. It discusses the similarities between the model and human vision and also 

highlights the future directions of this project, including potential areas for 

improvement and further research. 
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Methods 

 

Dataset Preparation: 

We create a dataset to reproduce Rucci et al. (2007) 's experiments with Gabor 

stimuli. However, it is necessary to deteriorate the spatial information on these 

images before they get processed by the deep neural network model of fixational 

eye movements in order to accurately represent the lower resolution of the image on 

the fovea before any fixations compared to the actual perceived resolution of the 

image by the brain. Therefore, to assess if the model can achieve superresolution, 

we apply average pooling as a technique to down-sample an image by dividing it into 

small sub-regions and computing the average value of each sub-region. This 

technique serves as a front end to the network, allowing us to test if the model can 

learn the appropriate sequence of fixational eye movements and spatiotemporally 

integrate information across these eye movements similar to humans to recover the 

necessary information from the pooled image in order to classify them correctly. 

The model was trained and tested on images of Gabor patches similar to the visual 

input designed and used by Rucci et al. (2007). The training set consists of 7200 

images of both high and low spatial frequency gratings, respectively. The high spatial 

frequency gratings and the low spatial frequency gratings had a frequency of 6.7 

cycles and 2.5 cycles, respectively. The gratings placed at the centre of the image 

were tilted ±45° from the vertical axis and occupied precisely half the size of the 

64x64 pixels image with a grey background. A Gaussian filter and a random high-

frequency noise were added to the stimuli with low spatial frequency and vice versa 

to simulate the power spectrum of natural images whose power of the noise is 

inversely proportional to the square of the spatial frequency. The 7200 images in the 

training set covered all possible phase values between 0 and 180, with ten images 

for each phase value split equally between the two possible orientations (-45 and 

+45) and spatial frequencies (high and low). The test set contained 2000 images of 

only high or only low-spatial frequency stimuli with random phases and orientation 

(Figure 5). All of these images are grayscale, and they were generated using Python. 
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All the images along with the prediction labels and the respective image sizes were 

stored in a HDF5 file.  

 

Figure 5. Examples of high spatial frequency gratings (first three images) and low 
spatial frequency grating data (last three images) with added noise and Gaussian 
filter included in the training set. 

 

Network: 

The network that we used to model fixational eye movements is adapted from the 

Recurrent Attention Model (RAM) (Mnih et al., 2014), written in RLlib (a software 

library to manage reinforcement learning algorithms), TensorFlow, and Python, was 

provided by Dr. Adrien Doerig. RAM leverages deep reinforcement learning and 

recurrent neural network to create a hybrid network model that learns to control eye 

movements while aiming to accurately classify the input images (Figure 6). Thus, 

instead of attending all the pixels of the input image at once, the RAM sequentially 

attends to different regions within the image at each time step then dynamically 

learns and updates its appropriate representation of the environment using the 

information gathered from the previously attended locations and uses this history 

along with the task demands to choose where to attend in the future. We decide to 

call it FEMNet (FEM-Network) 

At each timestep, the agent receives an input image from the training set which is 

pre-processed by the RLlib framework. This input is a cropped version of the image 

with dimensions 51x51 pixels, whereas the original size of the image is 64x64 pixels. 

Therefore, the agent does not get to observe the complete environment but only a 

portion of them. However, the image label, in addition to the image, is input to the 

model, so it can use the label information to do the category supervised learning. 

This label is passed as input concatenated to the image information. Before any 
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further computations, the cropped image is down-sampled via average pooling, as 

mentioned in the previous section. The amount of down-sampling (output size of the  

 

Figure 6. Figure and description adapted from (Mnih et al., 2014). The environment 
class in the RLlib provides a flattened cropped image (However, an actual image is 
shown here for illustration purposes) and the location information to the network. 
Additionally, it also provides the classification label for the image since the network is 
trained in a supervised setting. The cropped image and its location are then mapped 
into a hidden space using independent linear layers and ReLU activation functions, 
producing a single vector containing information from both components. The neural 
network model for fixational eye movements consists of three main components: a 
core network, an attention head (lt), and a category head (ct). The core network 
takes the current gaze position gt as input, along with the internal state of the model 
at the previous time step ((ht-1), to produce the new internal state of the model (ht). 
The location network and action network use the internal state (ht) to produce the 
next location to attend to ((lt) and the action or classification (ct), respectively. This 
iterative process of the basic RNN model is repeated for a variable number of steps. 
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image after passing it through the pooling filter) is determined by the size and the 

stride value of the filter. The size denotes the pixel dimensions of the patch whose 

average value represents the output for that patch, whereas the stride represents the 

filter displacement. The pooled input, along with the current fixation location, is then 

passed through a series of dense layers whose final output is a single vector 𝑔𝑡 that 

contains information from both the image as well as the fixation location, where 𝑔𝑡 =

𝑅𝑒𝑐𝑡 (𝐿𝑖𝑛𝑒𝑎𝑟(ℎ𝑔) + 𝐿𝑖𝑛𝑒𝑎𝑟(ℎ𝑙)), where 𝑅𝑒𝑐𝑡(𝑥) = max(𝑥, 0) and 𝐿𝑖𝑛𝑒𝑎𝑟(𝑥) = 𝑊𝑥 +

𝑏 𝑓𝑜𝑟 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑊 𝑎𝑛𝑑 𝑏𝑖𝑎𝑠 𝑏. ℎ(𝑙) = 𝑅𝑒𝑐𝑡(𝐿𝑖𝑛𝑒𝑎𝑟(𝑙) and ℎ(𝑔) = 𝑅𝑒𝑐𝑡(𝐿𝑖𝑛𝑒𝑎𝑟(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 

_𝑝𝑜𝑜𝑙𝑒𝑑_𝑖𝑛𝑝𝑢𝑡)) respectively. ℎ𝑔 and ℎ𝑙 contain 128 (weights denoted by 𝜃𝑔
0 and 𝜃𝑔

1) 

neurons, while g contains 256 neurons (weights denoted by 𝜃𝑔
2).  

𝑔𝑡 is then fed into the core network, which consists of a recurrent neural network that 

has an internal state which builds a representation of the environment based on the 

history of fixations. ℎ𝑡 denotes the internal state of the RNN represented by its 

hidden layers, which are recurrently updated over time through ℎ𝑡  =  𝑓ℎ(ℎ𝑡−1)  =

 𝑅𝑒𝑐𝑡(𝐿𝑖𝑛𝑒𝑎𝑟(ℎ𝑡 − 1) +  𝐿𝑖𝑛𝑒𝑎𝑟(𝑔𝑡). The hidden layer acts as an input to two other 

networks (category head and attention head) whose actions affect the state of the 

environment. At each timestep, the action network outputs the classification 

prediction using a dense layer followed by a softmax activation function (a function 

that converts the scores determined by the action network for each class into 

probability distributions). The next fixation location is determined by the location 

network, which also contains a single dense layer similar to the action network. The 

final location is stochastically drawn from a normal distribution with location output as 

the mean and a small fixed variance. This is done in order to tame the exploration of 

the policy. This discrete fixation jumps from one fixation to the other, making the 

model non-differentiable; however, we use a reinforcement learning algorithm to 

address this problem. The action network is trained using supervised cross-entropy 

loss, while the location net is trained using APPO (Petrenko et al., 2020) 

(Asynchronous Proximal Policy Optimization) with a binary reward (0 if the model 

predicts the wrong label from the input image after six timesteps and one otherwise) 

so that the agent learns to maximize the total reward it can attain when interacting 

with the environment. Both losses are backpropagated through the whole network so 
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that the early shared layers learn features useful for both classification and fixation 

location. 

Overall, the current model differs from the original RAM in the following ways: (1) the 

cropped images in the network were average pooled before any linear 

transformations were applied to them, (2) the location network is trained with 

Asynchronous Proximal Policy Optimization (APPO) algorithm instead of the 

traditionally used REINFORCE algorithm (Williams, 1992) since the former algorithm 

is faster in terms of convergence and better in terms of sample efficiency and 

exploration purposes. 

Experiments: 

 

Figure 7. A feedforward neural network is designed to measure the appropriate 
amount of average pooling (filter size/ stride value) necessary to eliminate the 
orientation information from high spatial frequency gratings. Similar to FEMNet, an 
average pooling layer is present in the front end of the network. The pooled image is 
flattened and passed through a series of dense layers (4 layers with 128, 256, 128, 
and 2 units, respectively) that incorporate non-linearities using rectified linear units 
(ReLU), and the final classification output is generated using a softmax classifier. 
The model is trained for 10 epochs with the aim of accurately classifying images by 
using a cross-entropy loss function with the Adam optimizer and a learning rate of 
0.001. 

 

The following experiments primarily test the functional validity of the fixational eye 

movements model, that is, if they are able to reproduce the functions of FEMs 

established in humans, specifically based on the ones proposed by Rucci et al. 
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(Rucci and Victor, 2015). In addition, we also test if the fixational patterns learned by 

the model can help it attain superresolution on naturalistic. 

Experiment 1: Baseline model 

In order to make sure that the FEMNet effectively employs spatiotemporal encoding 

to classify the Gabor dataset, it is crucial to determine the appropriate level of 

downscaling required for the images, especially for the high spatial frequency 

gratings. This is essential to prevent the FEMNet from relying on classifying the 

images just because the network is able to see the orientation information in the 

input stimuli. Therefore, a feedforward model with the same number of units as the 

FEMNet network is constructed without the recurrent component (Figure 7).  

This feedforward network was trained on the Gabor dataset, which contains both 

high as well as low-frequency gratings with different filter sizes as well as stride 

lengths (in the pooling layer – 2/2, 2/3, 3/1, 3/2, 3/3), and we tested the performance 

of the network on the Gabor test data which either contains only high frequency or 

only low-frequency stimuli. The underlying idea of the experiment is that the 

feedforward model would be unable to categorize the high-frequency test data 

because it is incapable of integrating information from these images temporally, as 

hypothesized. 

 

Figure 8. Examples of average pooled images of both low (top panel) and high 
(bottom panel) spatial frequency gratings for different kernel sizes and stride lengths. 
1/1 (1st column) shows the original image (64x64 pixels), while the subsequent 
columns display the images with different versions of pooling. All the images were 
resized to the same dimensions for illustration purposes 
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Consequently, the baseline model would fail to learn the relevant features necessary 

for the classification task on the high-frequency gratings, unlike the low-frequency 

gratings, where the orientation information would still be visible even after pooling. 

 

Experiment 2: Consequences of selective retinal 

stabilization 

Once the appropriate set of pooling parameters are obtained from the baseline 

model, we then sought to reproduce Rucci et al. (2007) 's first experiment, where the 

FEMNet's performance is measured in two cases, with and without stabilization of 

fixations to see (1) If the network can learn superresolution and (2) If yes, are the 

eye movements crucial for this feat. In order to implement this, we trained the 

FEMNet on the dataset consisting of both high and low-frequency gratings. 

Subsequently, the orientation classification performance of this trained FEMNet is 

them measured in two kinds of test data, consisting only of high or low-frequency 

gratings under two conditions, one where the FEMNet is free to make fixations 

(unstabilized condition) and the other where all the fixations are fixed at the centre of 

the gratings (which is also the centre of the image), thus replicating the retinal 

stabilization condition. Testing the model with only low spatial frequency stimuli 

checks if it is capable of classification when the information on the stimulus is not 

entirely destroyed. On the other hand, testing it on only high spatial frequency stimuli 

checks whether the network can make use of the recurrence as well as the fixational 

modulations to achieve superresolution and recover the orientation information even 

though it is removed from the static image by pooling (Figure 8).  

Next, we test if the FEMs learned by the network are crucial for classification 

performance by testing the accuracy of FEMNet when the model is forced to fixate at 

the center of the gratings throughout all time steps instead of being allowed to make 

eye movements (stabilized condition).  

All the experiments involving FEMNet also contain two control models. The first 

control is a FEMNet that is untrained. The second control is a trained FEMNet, but 

when testing, the model is forced to make totally random eye movements within the 
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image. This control model helps to determine if the fixation pattern learned by the 

trained FEMNet is significantly more effective than spatiotemporally integrating 

information using any random sequence of eye movements. 

When retraining deep neural network architectures with different random initial 

states, significant variations in performance and learning internal representations by 

the network can occur (Mehrer et al., 2020). Thus, we train six instances of FEMNet 

(in comparison to six human subjects in Rucci et al. (2007) 's study) and repeat the 

experiments on every instance of the model. Training multiple instances of the same 

network and comparing their performances on the classification task as well as their 

fixation patterns, helps to test the robustness of the FEMs displayed by the FEMNet. 

Experiment 3: Consequences of partial retinal 

stabilization 

 

Figure 9. Experimental setup for partial retinal stabilization experiment. First fixations 
are always at the centre of the Gabors (yellow dot). Successive fixations made by 
the FEMNet are restricted to fixate either along the axis parallel or orthogonal to the 
high spatial frequency test images.  

 

In the next experiment, we investigate how the FEMNet makes use of FEM 

orientation by constraining the FEMs to a single axis that is either orthogonal or 

parallel to the gratings. This experiment uses the same model that was used in the 

previous experiment, except we now test this FEMNet on the dataset containing only 

high-frequency images under two conditions. At test time, the model is forced to 

make fixations along an axis parallel/ orthogonal to the orientation of the grating. We 

hypothesize that the model that is constrained to make orthogonal fixations will 
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perform better in the classification task since the orthogonal motion along the grating 

provides maximum information about the stimulus orientation. On the other hand, 

any sequence of fixational eye movements that are constrained to be parallel to the 

stimulus only reveal changes in noise patterns rather than providing information 

about luminance. This experiment provides additional support for the cause-and-

effect relationship between fixational eye movements and the performance of the 

FEMNet on the orientation classification task. 

Experiment 4: Applications of FEMs on naturalistic 

images 

 

Figure 10. Example of average pooled images of one of the 43 classes in the 
GTSRB training dataset for different kernel sizes and stride lengths. 1/1 (1st column) 
shows the original image (20x20 pixels). All the images were resized to the same 
dimensions for illustration purposes. 

 

Finally, we move on from the simplistic Gabor stimuli and test the effectiveness of 

the FEMNet model in a naturalistic setting. Therefore, we use a new dataset 

consisting of street signpost images called the GTSRB dataset (German Traffic Sign 

Recognition Benchmark)(Stallkamp et al., 2011). This dataset consists of 39,209 

images in the training set and 12,630 images in the test set with up to 43 classes of 

signpost images with dimensions 20x20 pixels. A baseline model similar to the one 

before is made to test if a feedforward model can classify the images properly after 

sufficiently pooling the dataset. Additionally, we created a simple Recurrent Neural 

Network Baseline model by attaching a recurrent unit with six timesteps in the 

penultimate layer of the feedforward model. This recurrent baseline model tests the 

importance of FEMs for the FEMNet, independent of the recurrent integration of 

information. However, a selective retinal stabilization experiment similar to 

experiment 1b is also performed with the FEMNet trained on the GTSRB dataset 
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with stabilized and unstabilised fixations, and similar control models are used. As in 

the previous experiments, six instances of the FEMNet are trained on the street sign 

dataset and the robustness of their responses is compared similarly to the previous 

experiment. 
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Results  

 

Experiment 1: Baseline model 

 

Figure 11. Plot on the left shows the performance of the baseline model (trained on 
both high and low-frequency gratings) on a test set that only consists of high spatial 
frequency gratings for different parameters of average pooling (kernel size and stride 
length denoted by ker/str) whereas the plot on the right shows the performance of 
the baseline model on a test set that only consists of low spatial frequency gratings. 

 

The baseline model acts as a sanity check. It can be observed that the training, as 

well as the test accuracy, declines and remains relatively similar for the feedforward 

model after the average pooling parameters (kernel size and stride value, denoted 

as ker/str in Figure 11) 2/4, for test data consisting of only high spatial frequency 

gratings. This suggests that pooling destroys information in the high freq gratings, 

preventing the ff control net from categorizing them. Hence, the FEM-net would need 

to learn useful eye movements to classify high-frequency pooled gratings. In 

contrast, the baseline model is able to achieve high training as well as test 

accuracies on the low-frequency gratings (>80% test and training accuracy on all the 

versions of pooling), which shows that the when orientation information in the 

gratings is not completely destroyed by after pooling, the baseline model is able to 

perform the classification task. Therefore, for the upcoming experiments, it is justified 

                                                             



32 
 

to consider any pooling size in the set of [2/4, 3/1, 3/2, 3/3] in the front end of the 

FEMNet to accurately represent the images perceived by the lower resolution of the 

fovea. In the following, a 2/4 pooling was used. 

Experiment 2: Consequences of selective retinal 

stabilization 

 

Figure 12. Plot illustrates the performance of FEMNets under two different viewing 
conditions. On the left-hand side, the FEMNet model's accuracy is measured under 
free-viewing conditions, whereas on the right-hand side, its accuracy is measured 
under the retinal stabilization conditions. In this latter condition, the model is forced 
to make only central fixations in all six timesteps. High spatial frequency vision is 
impaired in the stabilization condition, whereas the performance of the FEMNet 
remains relatively unchanged for low spatial frequency stimulus. The inset shows the 
performance of humans in a similar psychophysical study that investigates the 
function of enhancement of fine spatial detail by FEMs (Figure 2b), conducted by 
(Rucci et al., 2007). Error bars denote the standard deviation of the six instances of 
FEMNets. 
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The FEMNet is capable of performing the task of classifying high spatial frequency 

gratings when fixational eye movements (FEMs) are allowed. This is demonstrated 

by the high accuracy achieved by the model in the unstabilised condition, as shown 

in Figure 12. However, when the retinal stabilization condition is replicated in the 

FEMNet by forcing the model to fixate at the centre of the image for all timesteps, the 

model's performance drops significantly in the central fixation case for high spatial 

frequency stimuli. This result supports the hypothesis that FEMs are crucial for 

enhancing high spatial frequency vision. 

To further reinforce this hypothesis, a random fixation control experiment is 

performed where the FEMNet is allowed to make random fixations during testing 

without any spatial constraints. This experiment shows that the model's performance 

is significantly worse than the unstabilised condition (this control model achieves 

58% on the high-frequency test set and 76% on the low-frequency test set), 

indicating that simply having any form of fixational eye movements is not sufficient 

for performing the task. 

In contrast, for low spatial frequency stimuli, the FEMNet achieves almost 100% 

accuracy in both unstabilised and stabilised conditions, suggesting that FEMs may 

not be necessary for this task. These findings are consistent with Rucci et al.'s study 

and provide initial evidence that the FEMNet behaves similarly to human FEMs by 

enhancing high spatial frequency vision. 

Additionally, the effectiveness of the learned sequence of fixations was tested with a 

control for this experiment that included an untrained network (that performs an 

arbitrary sequence of fixations) whose test accuracy was ~50% for both high and low 

spatial frequency test stimuli, which is close to chance level accuracy. 

Similar to human FEMs, the nature of fixations displayed by FEMNet also changes 

with respect to the type of stimulus. This can be observed in Figures 12 and 13, 

where the fixation patterns executed by the FEMNet are visibly different depending 

on the orientations of the gratings. In the case of low spatial frequency stimulus, the 

angles between fixations are not very different. This might be explained by the fact 

that FEMNet is not necessarily required to execute fixations in a strategized manner, 

as shown in experiment 2. The model performs fixations that are relatively 

orthogonal to the gratings for high spatial frequency stimuli oriented at 45°, which  
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Figure 13. The top half panel of the figure displays the fixation sequence of one of 
the FEMNet instances in unstabilized condition for both high and low spatial 
frequency stimuli. The yellow dot indicates the initial fixation, while the red dot shows 
the final (sixth) fixation. In the bottom half of the panel, the FEMNet's fixations are 
shown under stabilized conditions for high and low frequency gratings, where it is 
constrained to fixate at the centre of the stimulus at all time steps. The labels at the 
top of each stimulus are FEMNet's prediction for that image after it makes the 
sequence of fixations shown in the figure. 
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provides the maximum information about the orientation of the stimuli. However, for 

the stimuli oriented at -45°, the FEMNet stops moving towards 45° (or) in a direction 

parallel to the gratings and shifts to other angles, as shown in Figure 14. The peak of 

peak frequency of the angles between successive fixations shifts significantly for 

different orientations of the gratings. This shows that the network changes its 

behaviour depending on the stimulus, adapting its visual sampling strategy to the 

current input. 

 

Figure 14. Histogram of angles between successive fixations made by a FEMNet 
instance collected for 100 images in each class (left/ right oriented images) on both 
high and low frequency test datasets. 

 

FEMNets with different pooling versions were not able to reproduce the same effect 

observed in humans. FEMNets could not learn to distinguish the orientations of the 

high spatial frequency gratings better than chance level using FEMs for average 

pooling versions 3/1, 3/2, and 3/3. In these cases, the pooling was too high to be 

overcome with FEMs. 

Experiment 3: Consequences of partial retinal 

stabilization 

The difference in the performance between the FEMNet constrained to execute 

FEMs along a certain axis that is parallel or perpendicular to the direction of the 

grating orientation is not very high, as hypothesized (Figure 15). Although, the 



36 
 

FEMNet, which performed orthogonal fixations, achieved a higher orientation 

classification accuracy as expected (roughly 7%). Both of these models were able to 

outperform the FEMNet forced to fixate randomly across the image. This suggests 

that the learned fixation patterns of the FEMNet are crucial for achieving a high 

classification accuracy, and the direction of the fixation movement relative to the 

stimulus plays an essential role. 

 

Figure 15. Plot illustrates the performance of the FEMNets whose movement on the 
stimulus is restricted to an axis orthogonal or parallel to the grating. The performance 
of a trained FEMNet forced to perform random fixation is included as a control. Error 
bars denote the standard deviation of the six instances of FEMNets. 

 

While it is true that fixational movements that are orthogonal to the stimuli provide 

the most information about the orientation of the grating, the performance of the 

FEMNets forced to carry out such movements does not always reflect this idea. One 

of the factors that might contribute to this discrepancy is the FEMNet's ability to learn 

the most effective fixations during training. This is clear from the fixation sequences 

made by one of the FEMNet instances (Figure 14). Ideally, the model should learn to 

make orthogonal fixations to optimize information gain from the high spatial 
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frequency gratings. However, it can be observed that the model has learned to make 

fixations that are not the most optimal for the classification task. This could be due to 

the fact that the training set/ the Gabor classification task is not as complex. Thus, 

the models that were trained on this task also had no obligation to learn the most 

optimal way to fixate so as to achieve a high classification accuracy during training. 

This is backed up by the fact that the mean reward received by the FEMNet during 

training quickly converges to 1.  

Experiment 4: Applications of FEMs on naturalistic 

images 

 

Figure 16. Classification accuracy of the baseline model with Recurrence, FEMNets, 
and FEMNets with stabilized FEMs, respectively (from left to right) on the GTSRB 
test dataset. Error bars denote the standard deviation of the six instances of 
FEMNets. 

 

Since the stimuli in this experiment are different from the Gabors used in the 

previous experiments, the pooling parameters were chosen again to ensure that a 
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control network without eye movement cannot classify the pooled images. The 

pooling parameter for this dataset was chosen to be 3/3 (kernel size/ stride value) 

after making sure that the baseline model, as well as the baseline model with 

recurrence, could not classify the images in the GTSRB test dataset, the recurrent 

baseline model, which lacked FEMs, was not able to perform the classification task 

effectively, achieving only 33% mean accuracy. This result highlights the importance 

of FEMs in visual processing. On the other hand, the FEMNet model, which 

incorporated FEMs, achieved significantly higher accuracy in the unstabilized 

condition with a mean test accuracy of 86.24%. Furthermore, the stabilized FEMNet 

was not able to perform the classification task effectively, in line with the hypothesis 

that FEMs are necessary for effective visual processing. 
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Discussion  

 

The Fixational Eye Movement Network (FEMNet) proposed in this thesis 

demonstrates human-like behaviour through its ability to selectively perform 

fixational eye movements and achieve superresolution. We replicated and extended 

the finding that FEMs help enable the enhancement of high spatial frequency vision 

using psychophysical stimuli (Gabor patches) that have helped shed light on the 

functions and mechanisms regarding the the role of FEMs in humans. One of the 

important aspects of computational modelling of biological phenomena is to 

understand the relevant features or components of the model which are necessary to 

reproduce the human like-behavior. In FEMNet, this could be attributed to its 

recurrent connectivity and its ability to perform attention-guided eye movements. The 

inability of the feedforward models with no adaptive eye movements to reproduce the 

experimental findings in humans further supports this claim. 

The FEMNet learned to make tiny movements akin to FEMs without any explicit 

constraint. Not only do they enhance high spatial frequency vision, but they also 

adapt their fixation modulations according to the type of stimuli (in the case of Gabor 

stimuli, this was orientation), similar to the effect observed in humans(Intoy and 

Rucci, 2020). It is worth noting that the ability of FEMNet to mimic human-like visual 

processing mechanisms is dependent on certain pooling parameters. In fact, the 

FEMNet was unable to achieve superresolution in high spatial frequency images that 

were over-pooled. This suggests that the information contained in these images was 

simply insufficient to learn any useful representations relevant to the classification 

task, even though the model attempted to encode information in a spatiotemporal 

manner. 

Moreover, the third experiment conducted on FEMNet highlights the importance of 

the direction of the FEM sequence. Interestingly, the difference in performance for 

FEMNet fixating only orthogonally versus only parallelly to the gratings is not as 

pronounced as in humans. It is also surprising that the FEMNet constrained to make 

fixations along the direction of the grating could learn to perform better than chance 

level test accuracy. One potential explanation given for this is the complexity of the 
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training set used. This could be improved in many ways. Currently, the noise field, 

spatial frequency, and the phase of the Gabor patches are the only variable 

parameters in the training data. To improve the training data, the center of the Gabor 

patches could be randomly placed anywhere within the radius of an arbitrary pixel 

from the centre of the whole image, in addition to variations in the noise field, spatial 

frequency, and phase of the patches. This would add an extra parameter to the 

training set and increase the complexity of the input data during training, since the 

FEMNet fixates in and around the Gabor patch. This additional complexity could help 

the model avoid converging too quickly, as was observed in some FEMNet 

instances, and learn a fixation sequence that optimizes the amount of information 

gained from the stimuli. There were other minor details in the training data that could 

be improved. For example, the relative power of the noise to the gratings was not 

equal, and the spatial frequency of the stimuli was not exactly the same as the one 

used in Rucci et al. (2007) 's experiment (the differences between the frequencies 

were ±1). By addressing these issues and incorporating more varied and complex 

training data, the model's performance in the parallel versus orthogonal learning 

experiment could be improved. 

Finally, FEMNets have shown that they have potential real-world applications 

(Experiment 4). Although the percentage accuracy of the FEMNet on the GTSRB 

dataset isn't flattering, it is important to note that the training procedures were not 

optimized for maximum accuracy in image classification tasks. Instead, the main 

focus of the study was to model FEMs in a biologically plausible manner. Future 

work could involve scaling up the model to make it more biologically plausible by 

including two separate streams (such as dorsal and ventral) to carry out the where 

vs what pathways. Additionally, a more accurate version of foveal sampling and 

peripheral vision could be incorporated into the model. Furthermore, the study could 

be extended to explore the importance of other features, such as efference copies 

and other parameters that affect the model's performance. Previous work in 

computer vision has demonstrated the significance of deep neural network models 

that incorporate ideas from biological vision. For instance, models that simulate 

retinal foveation and sample parts of the image similar to eye movements have been 

shown to outperform traditional models against adversarial examples (Gant et al., 

2021; Choi et al., 2022). Additionally, these models have been found to act as 
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biological proxies for data augmentation, leading to improved performance in self-

supervised learning (Wang et al.). These findings suggest that incorporating 

biological principles into computer vision models can yield valuable insights and 

improvements in performance. Such applications could also be tested with the 

current or a scaled-up version of the FEMNet. 

In conclusion, our study sheds light on the remarkable computational advantages 

that Foveated Eye Movements (FEMs) offer to the human visual system. By using 

fewer neurons, FEMs enable efficient processing of fine spatial details, which is 

especially crucial given the limited resolution of the retina. Our findings have shown 

that recurrent systems that learn targeted eye movements can achieve better 

classification performance via superresolution, replicating essential experimental 

findings on human FEMs, but also demonstrated substantial improvements in 

computer vision performance using naturalistic stimuli. 

Importantly, our modelling work underscores the view that FEMs are not haphazard 

but rather a well-orchestrated strategy of the brain to exploit its recurrent connectivity 

for computational advantages as it naturally emerges in our simple network. Hence, 

our results suggest an explanation for the emergence of FEMs in human vision, 

which is to facilitate the efficient processing of detailed visual input despite the 

limited retinal resolution. 

Therefore, our work adds to the growing body of evidence that integrating insights 

from biology can yield valuable advancements in machine learning and computer 

vision research and vice versa. 
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