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Abstract

In this thesis, we take a closer look at the Erdős-Hajnal Conjecture. A Graph H is said
to have the Erdős-Hajnal (EH) property, if for some constant γ(H), every sufficiently large
H-free graph G has a homogeneous set of size at least |G|γ(H). The Erdős-Hajnal Conjec-
ture claims that every finite graph has the EH-property. It is known that the substitution
operation preserves the EH-property, so it suffices to focus our attention only on substitution-
prime graphs. We begin by studying the techniques used to prove the EH-property for the
few known cases, namely P4, C5 and the Bull.

We extend some of these techniques, to show that in order to prove the EH-property
for the smallest open case P5, it suffices to look for large homogeneous sets in dense P5-free
graphs. We then ask whether these large homogeneous sets can be found in a dense P5-free
graph G on making it P4-free, by removing at most c|G| number of vertices. We answer this
question in the negative using a construction involving the substitution operation.

Finally, we note the role of ‘Self-complementarity’ in most of the known proofs of the
EH-property and ask whether it is possible to further reduce the conjecture to proving the
EH-property for a class of substitution prime self-complementary graphs. We show that
this is possible by proving the following results about the self-complementary Paley graphs:
Every graph is an induced subgraph of some primitive Paley graph, and all Paley graphs are
substitution prime. Thus, we further reduce the Erdős-Hajnal Conjecture, by showing that
it suffices to prove the EH-property for primitive Paley graphs. We also prove some simple
upper bounds on γ(H) for substitution prime graphs H.
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Introduction

Given a graph G, a clique (an independent set) in G is a subset of vertices which are all
pairwise adjacent (non-adjacent) to each other. Cliques and independent sets in graphs
constitute the most homogeneous and extreme form of subgraphs of a graph. Roughly,
they denote the subset of nodes of a network with either the highest or lowest degrees of
connectivity and thus, are valued subgraphs of a graph. In 1930, F. Ramsey [30] showed that
all sufficiently large graphs, with at least R(r, r) vertices, contained a homogeneous set on r
vertices, for all r ∈ N. It is natural to ask that given any graph G, what is the largest-sized
homogeneous subgraph to be guaranteed in the graph G.

Erdős and Szekeres [17] gave a lower bound by proving that the Ramsey number R(r, r) ≤
22r−3. In other words, every graph has a homogeneous set of size O(log |G|). On the other
hand, Erdös [15] showed the existence of certain random graphs which have no homogenous
sets of size larger than O(log |G|). Thus, over the class of all finite graphs, only the existence
of homogeneous sets of size O(log |G|) can be guaranteed; however, several graphs have
homogeneous sets of size much larger than O(log |G|) and hence, in order to search for a
better bound, one must restrict oneself to a proper subfamily of all finite graphs.

In 1989, Erdős and Hajnal conjectured that it is possible to increase these logarithmic
bounds dramatically, by restricting to the particular subclass of H-free graphs (see [16]). A
graph G is said to be H-free if G does not contain H as an induced subgraph. Then, a graph
H is said to have the EH-property if there exists a constant c(H) > 0 such that every H-free
graph G has a homogeneous set of size at least |G|c(H). The Erdős-Hajnal conjecture claims
that all graphs have the EH-property.

The primary form of attacking this conjecture is to consider each graph H separately,
and ask whether a non-zero constant c(H) exists or not. The key idea is that an induced
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subgraph specifies the positions of both edges and non-edges in the parent graph G. Hence,
forbidding H as an induced subgraph adds restrictions on the structure of G, and can induce
some nice properties on the class of H-free graphs. Thus, in some sense, the Erdős-Hajnal
Conjecture is really a statement on the relation between local and global properties of a
graph. This induced structure on G is, roughly, more restrictive for smaller graphs H, as
they occur more frequently in graphs of a given size. Consequently, the problem becomes
progressively difficult for graphs of larger sizes.

Indeed, it is extremely difficult to consider each graph one at a time, and hence a graph
operation that preserves the EH-property is highly desired. In [16], Erdős and Hajnal show
that the join and union of graphs are two such graph operations. Later, Alon et al [1] showed
that the substitution operation (also called the graph replacement operation) also preserves
the EH-property. Consequently, we focus our attention on substitution prime graphs, those
which cannot be obtained from smaller graphs by a sequence of substitution operations. P4,
C5, Bull, P5 and P5 are the smallest prime graphs on at most five vertices. To give an idea
of the progress of the conjecture, note that presently the EH-property is known only for
K1, K2, I2, P4, C5, the bull, and all those graphs which can be obtained through a sequence
of substitution operations from these graphs.

A desirable property, which was crucially used in the proofs of the EH-property for P4,
C5 and the Bull, is the self-complementarity of H. Note that the conjecture inherently
behaves symmetrically with the complement operation, for a clique and an independent set
switch roles on taking complements, and both hom(G) and perfectness are invariant under
the complement operation. Thus, the freedom in switching from G to its complement for
an H-free graph G, given a self-complementary graph H, is often helpful, as it can be used
to add more properties to the graph G. We later prove some results which incorporate
self-complementarity with the Erdős-Hajnal conjecture.

Organisation of the thesis

The aim of this thesis is twofold. First, we compile some of the known results of the con-
jecture, in an attempt to study common features in each of the individual cases under a
uniform framework; and second, we try to obtain some further results and reductions on the
conjecture as a whole, or on the EH-property for some graph.
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Chapter 1 covers some basic graph theoretic concepts and notation which shall be used
throughout the thesis.

Chapter 2 introduces the conjecture and looks at its known relations with the substi-
tution operation. In this chapter, we tried to formalise the statement of the conjecture by
introducing the notion of γ(H) and Γ(H). This helped in proving various properties with
ease and precision. We see how the substitution operation preserves the EH-property, and
examine some properties of substitution prime graphs. We end the chapter with a side note
on the relation between the asymptotic and non-asymptotic versions of the conjecture. We
show that this relation becomes useful in getting some trivial upper bounds on γ(H) for all
prime graphs H.

Chapter 3 talks about a useful result by Rödl [31], which emphasises how forbidding
a graph H as an induced subgraph affects the distribution of edges, thereby giving rise to
sufficiently large induced subgraphs with extremal edge densities. This theorem proves to
be useful in multiple instances [9, 4], specifically when paired with a class of graphs closed
under complements and induced subgraphs.

Chapter 4 presents the proofs of the EH-property known for three prime graphs, P4, C5

[9], and the bull [8]. The proof for P4 is a classical result in graph theory, while the proof
for C5 is used later to get some results on the EH-property for P5. Finally, the case of the
bull becomes interesting as its proof incorporates almost all the major ideas related to the
conjecture, namely restrictions due to forbidding the bull, self-complementarity, perfectness,
and the substitution operation.

Chapter 5 presents some original progress towards the EH-property for P5, the smallest
prime graph for which the EH-property is not known to be true. We show that in order to
prove the EH-property for P5, it suffices to look for a large homogeneous set in dense P5-free
graphs. We then consider whether a dense P5-graph has a small subset S ⊂ V (G) such that
G[V (G)\S] is P4-free, for then, we can hope to find large homogeneous sets as required.
However, we show that this is not possible.

Finally, in Chapter 6, we focus on the issue of self-complementarity and examine the self-
complementary class of Paley graphs. We develop some required background in quadratic
residues, finite fields, and prove some properties of Paley graphs. We then show that all
graphs are induced subgraphs of some primitive Paley graph, and all Paley graphs are
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substitution primes. As a result, we reduce the Erdős-Hajnal Conjecture by showing that it
suffices to prove the EH-property for the self-complementary, substitution prime family of
primitive Paley graphs.

Original Contributions

The Sections 2.4, 5.1, 5.2, and 6.2 of the thesis comprise entirely original work. These include
the results on relations between asymptotic and non-asymptotic versions of the conjecture,
the progress on the EH-property for P5 and the reduction of the conjecture to Paley graphs.
Section 6.1 provides an exposition of results on quadratic residues which have been extended
from integers to finite fields of any order.

Further, in Section 2.3, we derive some properties of substitution prime graphs and use
them to generate all possible primes on up to seven vertices. Figure 2.4 lists all prime graphs
on six vertices, as generated by us. To the best of our knowledge, such a roster has not been
published before.

Finally, we also introduce the notions of γ(H), Γ(H), and δG to aid the discussion on
the conjecture and allow for proving various properties with ease and precision. All the
remaining sections present known results with an occasional modification or rewriting of
some proofs.
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Chapter 1

Preliminaries

We define some basic concepts and notations used in the thesis. We refer to [13] for any
further properties or definitions.

Basic Graph Theoretic Terminology

Definition 1.1 (Graph). A graph G(V,E) is characterised by a pair of sets V , E; where
E ⊂ [V ]2, the set of 2-element subsets of V .

Graphs can be used to diagrammatically represent symmetric relations on a set of objects
V (G). The elements of V (G) are called the vertices (or nodes) of the graph G, and any pair
x, y of vertices are joined by an edge (x, y) iff {x, y} ∈ E(G). All our graphs are assumed to be
finite (with |V (G)| <∞) and, by definition, simple (without any self-loops or multi-edges).

By a slight abuse of notation, we use (x, y) ∈ E(G) to mean {x, y} ∈ E(G). Then, two
vertices x, y ∈ V (G) are said to be adjacent if (x, y) ∈ E(G), and non-adjacent otherwise.
The vertices x, y are called the ends of the edge (x, y), and conversely, the edge (x, y) is said
to be incident to both vertices x and y.

Notation 1.1. The set of all finite, simple graphs is denoted by G. For any graph G ∈ G,
the size of the graph, defined as the number of vertices |V (G)| in G, is denoted by |G|.
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For A,B ⊂ V (G), E[A,B] denotes the set of edges in E(G) with one end in A and the
other end in B. Similarly, E[A] represents the set of edges with both ends in A ⊂ V (G).

Definition 1.2 (Neighbours). Given a vertex v ∈ V (G), the vertices adjacent to x are called
the neighbours of v. The set of neighbours of v, also called the open neighbourhood of v, is
denoted by N(v). The closed neighbourhood of v is defined as N [v] := N(v) ∪ {v}. The set
of non-neighbours of v is given by the set V (G)\N [v].

Extending this notion to S ⊂ V (G), We define N(S) as the union of neighbours of v ∈ S,
and similarly, the closed neighbourhood N [S] := N(S) ∪ S.

Definition 1.3 (Degree of a Vertex). The degree of a vertex v ∈ V (G) is defined as d(v) :=
|N(v)|. Vertices with degree zero are said to be isolated vertices, and vertices with degree
one are called leaf nodes.

Definition 1.4 (Max/Min Degree of a Graph). Given a graph G ∈ G, the maximum degree
∆(G) and the minimum degree δ(G) of the graph are defined as:

∆(G) = max
v∈V (G)

d(v), δ(G) = min
v∈V (G)

d(v)

Some basic examples of graphs are as follows: The complete graph Kn is a graph on n

vertices such that every pair of vertices are adjacent. Similarly, the null graph In is a graph
on n vertices where every pair of vertices are non-adjacent. We denote by Ck and Pk, the
cycle graph and the path graph on k vertices, respectively. Note that:

|E(Kn)| =

(
n

2

)
, |E(In)| = 0, |E(Cn)| = n, and |E(Pn)| = n− 1

Definition 1.5 (Paths in a Graph). A path P in a graph G is a sequence v1e1v2e2 . . . ek−1vk

of non-repeating vertices and edges, such that ei = (vi, vi+1). We say that P is a path joining
x1 to xk, of size k and length k − 1.

Definition 1.6 (Connected Graph). A graph G is said to be connected, if for every pair of
vertices x, y ∈ V (G), there is a path joining x to y. Otherwise, G is said to be disconnected.

Definition 1.7 (Complete/Anti-complete). Given two disjoint subsets A,B ⊂ V (G) of
vertices of a graph G, we say A is complete (anti-complete) to B if every a ∈ A is adjacent
(non-adjacent) to every b ∈ B.
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Graph Isomorphisms

Given two graphs G,H, a function f : V (G) → V (H) is said to preserve adjacencies if, for
all pair of vertices x, y ∈ V (G), we have (f(x), f(y)) ∈ E(H) ⇐⇒ (x, y) ∈ E(G).

Definition 1.8 (Isomorphism, Automorphism). A function F : V (G) → V (H) is an iso-
morphism from G to H if it is bijective and preserves adjacencies. An isomorphism from a
graph G to itself is called an automorphism on G.

Two graphs G, H are defined to be isomorphic, denoted by G ≃ H, if there exists an
isomorphism from G to H. Note that isomorphic graphs have essentially the same structure
and differ only in terms of vertex labelling. Thus, we predominantly look at graphs up to
isomorphism, by considering all isomorphic graphs to be indistinguishable, and thus equal.
Conceptually, a set of isomorphic graphs gets replaced by a representative graph, called the
abstract graph - which preserves the adjacency structure present in the isomorphic graphs.

Subgraphs and Induced Subgraphs

Definition 1.9 (Subgraphs). Given a graph G(V,E), we say that the graph H(V ′, E ′) is a
subgraph of G if V ′ ⊂ V and E ′ ⊂ E. The subgraph relation is denoted by H ⊂ G.

Definition 1.10 (Induced Subgraphs). Given a graph G(V,E), we say that the graph
H(V ′, E ′) is an induced subgraph of G if V ′ ⊂ V and E ′ = E[V ′]. Thus, an induced
subgraph can be uniquely determined by the choice of V ′ ⊂ V .

We say that V ′ induces the subgraph H in G, and we denote it as H = G[V ′]. The
induced subgraph relation is usually denoted by H ≤ G.

Note that the induced subgraph relation is transitive: If H1 ≤ H2 and H2 ≤ H3, then
H1 ≤ H3. Some special induced subgraphs include the following: An independent set (or
stable Set) S ⊂ V (G) is a set of vertices which induces the null graph I|S| in G. Similarly,
A clique (or complete set) S ⊂ V (G) is a set of vertices which induces the complete graph
K|S| in G. Finally, a maximal connected induced subgraph of G is called a component (or
connected component) of G. A connected graph has only one component: the graph itself;
while disconnected graphs have no less than two connected components.
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Definition 1.11 (H-free Graphs). Given a graph H ∈ G, a graph G is said to be H-free if
it does not contain any induced copies of H. Formally, ∀S ⊂ V (G), we have H ̸≃ G[S]. If
H ⊂ G is a set of graphs, then a graph G is said to be H-free if G is H-free for all H ∈ H.

Note that by the definition above and by transitivity of induced subgraphs, The class
of H-free graphs is closed under induced subgraphs. Conversely too, any subset of graphs
A ⊂ G has a forbidden induced subgraph characterisation if A is closed under induced
subgraphs. The latter follows from a simple constructive proof, similar to the proof of the
existence of a basis for vector spaces. In essence, the forbidden graphs H1, H2, . . . are picked
from G\A, such that Hi ̸≤ Hj, ∀i ̸= j, until exhaustion.

Further, If H1 ≤ H2, then the transitivity of induced subgraphs implies that H1 ≤ G if
H2 ≤ G. By contraposition, G being H1-free implies that G is H2-free whenever H1 ≤ H2.

Graph Invariants

Any function with domain G is said to be a graph invariant if isomorphic graphs are mapped
to equal elements in the co-domain. For example, |G|, |E(G)|, δ(G), and ∆(G) are all graph
invariants, while a map ordering the vertices of a graph is not invariant. The value of a graph
invariant can be obtained from the abstract graph and does not depend on the labelling of
vertices. The following are some commonly used graph invariants, for a graph G:

• α(G) (Independence Number): The size of the largest independent set in G.

• ω(G) (Clique Number): The size of the largest clique in G.

• hom(G) := max{α(G), ω(G)}: The size of the largest homogeneous set in G.

• χ(G) (Chromatic Number): The minimum number of colours required to colour ele-
ments of V (G), such that no vertices of the same colour are adjacent.

Note that, If G is given a vertex colouring as above, then vertices of the same colour form
an independent set in G. Thus, we have: χ(G)α(G) ≥ |G|. It is also known that χ(G) ≤
∆(G) + 1. Combining both these relations, we get the following useful bound on α(G):

α(G) ≥ |G|
1 + ∆(G)
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Graph Operations

A graph operation acts on finitely many graphs to return a new graph. It is interesting to
study how graph invariants behave with graph operations. The following are some examples:

Definition 1.12 (Vertex Deletion Operation). Given a graph G and a subset S ⊂ V (G),
the vertex deletion operation returns the graph G\S := G[V (G)\S]. If v ∈ V (G), we denote
by G\v, the graph G\{v}.

Definition 1.13 (Union Operation). The union (or disjoint union) of two graphs G1(V1, E1)

and G2(V2, E2) with V1 ∩ V2 = ϕ, returns the graph G(V,E) with V = V1 ∪ V2 and
E = E1 ∪ E2. The union operation is denoted by G = G1 ⊔G2.

Definition 1.14 (Join Operation). The join of two graphs G1(V1, E1) and G2(V2, E2) with
V1 ∩ V2 = ϕ, returns the graph G(V,E) with V = V1 ∪ V2 and E = E1 ∪ E2 ∪ (V1×V2).
The join operation is denoted by G = G1 +G2.

Stated otherwise, the union operation returns disjoint copies of the input graphs. On the
other hand, The join of two graphs G1, G2 is formed by taking G1 ⊔ G2 and joining every
vertex of V1 to every vertex of V2 via an edge. For example, I2 ⊔ I2 = I4 and I2 + I2 = C4.
The following properties hold true:

α(G1 +G2) = max{α(G1), α(G2)}, α(G1 ⊔G2) = α(G1) + α(G2)

ω(G1 ⊔G2) = max{ω(G1), ω(G2)}, ω(G1 +G2) = ω(G1) + ω(G2)

Notation 1.2. Given a graph G, the graph nG denotes G ⊔ G ⊔ . . . ⊔ G, taken n

times. These operations can sometimes be useful to describe graphs. For example, the graph
represented by a triangle with a leaf node can be described concisely as G = P3 ⊔K1

Complement of a Graph

Given a graph G, the complement of G, denoted by G, is the graph with V (G) = V (G) and
E(G) = [V (G)]2\E(G). In other words, (x, y) is an edge in G if and only if (x, y) is not an
edge in G. The following are some easily observable properties of complements:
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Lemma 1.1. Given a graph G and its complement G, the following properties hold:

• (Self-inverse operation)
(
G
)
= G.

• (Relation with cliques and independent sets) A clique in G is an independent set in
G, and vice-versa. Thus, α(G) = ω(G) and ω(G) = α(G).

• (Invariance under hom(G)) By the above relations, hom(G) = hom(G).

• (Relation with joins and unions) G1 +G2 = G1 ⊔G2 and G1 ⊔G2 = G1 +G2.

• (Relation with H-freeness) G is H-free iff G is H-free.

• (Relation with connectedness) The complement of a disconnected graph is connected.

Definition 1.15 (Self-Complementary Graphs). A graph G is said to be self-complementary
if G ≃ G. For instance, K1, P4, and C5 are examples of self-complementary graphs.

Note that for a self-complementary graph G, the isomorphism from G to G acts as an
automorphism on G. Further, if |G| = n, then |E(G)| = 1

2

(
n
2

)
, and so, |G| ≡ 0 or 1

mod 4. Finally, the class of H-free graphs is closed under complements if and only if H is
self-complementary.

Perfect Graphs and their Properties

A graph G is said to be perfect if, for every induced subgraph H ≤ G, we have χ(H) = ω(H).
Note that perfect graphs are closed under induced subgraphs and hence have a forbidden
induced subgraph characterisation. Perfect graphs enjoy the following properties:

• (The Weak Perfect Graph Theorem [28]) A graph G is perfect iff G is perfect.

• (The Strong Perfect Graph Theorem [7]) A graph G is perfect if and only if it contains
no odd holes or odd anti-holes with more than five vertices. An induced copy of Ck (Ck)

for k ≥ 4 is called a hole (anti-hole) in G.

• (Relation with Clique and Independent Sets) If G is a perfect graph, then α(G)ω(G) =
α(G)χ(G) ≥ |G|, and thus G has either a clique or an independent set of size

√
|G|.

10



Chapter 2

The Erdős-Hajnal Conjecture

In this chapter, we introduce the Erdős-Hajnal conjecture, which claims the existence of
polynomial-sized homogeneous sets in the class of H-free graphs. We look at some simple
examples and relate the conjecture to the substitution operation. Finally, we study the
properties of substitution prime graphs, and establish a relation between the asymptotic
and non-asymptotic versions of the conjecture for such graphs.

2.1 The Erdős-Hajnal Conjecture

In 1989, Paul Erdős and András Hajnal showed that restricting to the class of H-free graphs,
for any graph H could help improve lower bounds on the size of homogeneous sets. Partic-
ularly, in their paper "Ramsey-type Theorems" [16], they proved the following theorem:

Theorem 2.1.1. For constants d and c < 1
2d

, there exists a natural number N = N(c, d)

such that for every graph G with n > N vertices and for k ≤ ec
√

log(n), either G has a
homogeneous set of size k or contains all graphs on d vertices as induced subgraphs.

Stated otherwise, the above theorem proves that for every graph H, there is a constant
c(H) such that all large H-free graphs have a homogeneous set of size at least ec(H)

√
log(|G|).

While this was an improvement to the O(log(|G|) bound, Erdős and Hajnal postulated a
further surprising improvement in the same 1989 paper. They conjectured the existence of
polynomial-sized homogeneous sets over the class of H-free graphs as follows:
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Conjecture 2.1.2. For every graph H, there exist constants c(H) > 0 and N(H) ∈ N such
that every H-free graph G with no less than N vertices has a homogeneous set of size |G|c(H)

This is commonly called The Erdős-Hajnal Conjecture. In order to prove the conjecture,
it suffices to consider each graph H separately, and find the constants as required in the
statement above. For ease of discussion, we define γ(H) to be the supremum of all constants
c(H), which satisfy the definition above. More precisely:

Definition 2.1.1. Given a graph H, define the set ΓH ⊂ [0, 1] as:

ΓH := {c ∈ [0, 1] | ∃n0 ∈ N s.t. hom(G) ≥ |G|c for all H-free graphs G with |G| ≥ n0}

Let γ(H) := supΓH be the largest constant in ΓH .

Note that 0 ∈ ΓH for every graph H as any vertex in a graph is a homogeneous set
of size 1. It follows that γ(H) exists for all graphs H, as the set ΓH is non-empty and
bounded above by 1. We wish to remark that it is not very clear whether γ(H) ∈ ΓH as well.
However, if γ(H) > 0, we can use it interchangeably with γ(H) − ε for some small enough
ε > 0. Further, if H is a substitution prime graph (see Section 2.3), then it can be shown
that γ(H) ∈ ΓH , as we shall do in Section 2.4.

We shall say that a graph H has the Erdős-Hajnal property (EH-property) if γ(H) > 0.
Consequently, we have an equivalent version of the Conjecture:

Conjecture 2.1.3. Every graph has the Erdős-Hajnal Property

We begin by making the following observation:

Lemma 2.1.4. Suppose the graph H has the EH-property, then

• The complement graph H has the EH-property with γ(H) = γ(H).

• All induced subgraphs H ′ ≤ H have the EH-Property with γ(H ′) ≥ γ(H).

The first observation follows directly by noting that hom(G) = hom(G) and that any
graph G is H-free if and only if G is H-free. For the latter, note that if H ′ ≤ H is an

12



induced subgraph of H, then any H ′-free graph is H-free as well. Hence, ΓH ⊂ ΓH′ , and
thus γ(H) ≤ γ(H ′). It follows that H ′ has the EH-property too.

Let us consider some simple examples:

Example 1: Graphs with at most two vertices

Let us begin with some trivial cases. There are three graphs with at most two vertices,
namely K1 (a vertex), K2 (an edge), and I2 (two independent vertices). K1 has the EH-
property vacuously with γ(K1) = 1, as no graph is K1-free. All K2-free graphs have no edges
and thus are independent sets themselves. Thus, γ(K2) = 1. Likewise, I2-free graphs are
complete graphs, and so γ(I2) = 1 too. Thus all graphs on at most two vertices have the
EH-property.

Example 2: Complete and Null Graphs

Theorem 2.1.5. Every large Kr-free graph G has an independent set of size at least |G|1/(r−1).

Proof. We prove this by induction. For the base case, note that every K2-free graph has
α(G) = |G|. Now, fix some r > 2, and suppose the theorem is true for Kr−1-free graphs.
Let G be a Kr-free graph. If G has a vertex v of degree d(v) ≥ |G|(r−2)/(r−1), then the
neighbours N(v) form a Kr−1-free graph. By the induction hypothesis, N(v), and hence G,
has an independent set of size at least |N(v)|1/(r−2) ≥ |G|1/(r−1), as required. If no such vertex
exists, then G has maximum degree ∆(G) < |G|(r−2)/(r−1). Let |G| be large enough so that
|G|(r−2)/(r−1) ≈ 1 + |G|(r−2)/(r−1), then, the theorem follows by the following independence
number bound for G:

α(G) ≥ |G|
∆(G) + 1

≥ |G|
|G|(r−2)/(r−1) + 1

≈ |G|
|G|(r−2)/(r−1)

= |G|1/(r−1)

Thus, by the above theorem and Lemma 2.1.4, all complete graphs and null graphs have

the EH-property with γ(Kr) = γ(Ir) ≥
1

r − 1
.
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Example 3: Graphs with three vertices

There are precisely four graphs on three vertices up to isomorphism, namely K3 (The tri-
angle), I3 (Independent set on three vertices), P3 (The Path on three vertices), and its
complement P3. Consider first, the case of P3. Recall that a cluster graph is defined as a
disjoint union of cliques. The class of cluster graphs admits a forbidden induced subgraph
characterisation as follows:

Theorem 2.1.6. A graph G is a cluster graph if and only if it is P3-free.

Proof. It is easy to see that cluster graphs contain no induced P3 as any two vertices are
adjacent in a clique and P3 is connected. For the reverse direction, let G be a P3-free graph,
and C be any component of G with at least three vertices (G is a cluster graph if such a C
does not exist). If C has two non-adjacent vertices, x, y, then by the connectedness of C,
there exists a path P = (x = x0), x1, x2, . . . xk, y in C connecting x and y. As (x0, y) /∈ E(G)

and (xk, y) ∈ E(G), there exists an i ≤ k, for which (xi−1, y) /∈ E(G) and (xi, y) ∈ E(G).
Then, S = {xi−1, xi, y} induces a P3 in G. By contradiction, each connected component C
is a complete graph, and so G is a cluster graph.

If G is a cluster graph, then each component has size at most ω(G). Further, G has
exactly α(G) many components as any independent set of G contains at most one vertex
from each clique. Thus, we have that |G| ≤ α(G)ω(G), and so G has a homogeneous set of
size at least

√
|G|. It follows that P3 has the EH-property with γ(P3) ≥ 1/2. To see the

tightness of this bound, note that every graph G from the set S = {nKn : n ∈ N} has
hom(G) = n and |G| = n2 for some n ∈ N. Hence, hom(G) =

√
|G| for all graphs in the

infinite family S, thereby showing that γ(P3) = 1/2.

The EH-property for K3 follows from Theorem 2.1.5, with γ(K3) ≥ 1/2. In 1995, J.H.
Kim [23] proved that for every large enough n ∈ N, there exists a K3-free graph with
α(G) = hom(G) ≤ 9

√
|G| log |G|. From some real analysis, we see that for every d > 1/2,

there exists N ∈ N such that 81 log(N) = N2d−1 and 9
√
nlog(n) ≤ nd, ∀n ≥ N . Hence, by

the existence of the graphs by Kim, we have γ(K3) ≤ 1/2, thereby establishing the tightness
of the bound.

By Lemma 2.1.4, it follows that both I3 and P3 also have the EH-property with γ(I3) =
γ(P3) = 1/2. Hence, every graph on three vertices has the EH-property.
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2.2 The Substitution Operation

We saw that all graphs with at most three vertices, complete graphs, and null graphs are
some examples of graphs which have the EH-property. However, verifying the truthfulness of
the property for each graph H can indeed be a daunting task. In such a situation, it would
be helpful to find an operation that preserves the EH-property, for it helps in reducing the
family of graphs for which the property must be verified. We shall explore such operations
in this section.

Note that an operation on a set of graphs is said to preserve a graph property if the
satisfaction of the property on the input graphs implies that the output graphs satisfy the
property too. For instance, Lemma 2.1.4 shows that the operations of taking graph comple-
ments and induced subgraphs preserve the EH-property.

In their 1989 paper [16], Erdős and Hajnal showed that the join and union operations
preserve the EH-property. More precisely, the EH-property for graphs H1 and H2 implies
that the graphs H1+H2 and H1⊔H2 have the EH-property too. The substitution operation,
also known as the graph replacement operation, generalises this notion of joins and unions.

Definition 2.2.1. Given two graphs H1, H2 and a vertex v ∈ V (H1), the substitution
operation returns a graph H, denoted by S(H1, v,H2), which satisfies the following properties:

1. V (H) = V (H2) ∪ V (H1) \{v}.

2. H[V (H2)] ≃ H2

3. H[V (H1)\{v}] ≃ H1\v

4. For all vertices w ∈ V (H2) ⊂ V (H) and u ∈ V (H1)\{v}, the graph H has (u,w) as
an edge if and only if u ∈ NH1(v).

Roughly speaking, the substitution operation embeds a graph into some vertex v of
another graph, while preserving the adjacencies of v. See Figure 2.1 for an example. Further,
properties 3 and 4 in the definition above imply that the induced subgraph H[V (H1) ∪
{w}\{v}] is isomorphic to the graph H1 for any vertex w ∈ V (H2) ⊂ V (H). As a result, at
least |H2| copies of the graph H1 are induced in H = S(H1, v,H2). However, note that the
statement H[V (H1) ∪ {w}\{v}] ≃ H1 ∀w ∈ (H2) ⊂ V (H2) is not equivalent to properties 3.
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Figure 2.1: An example of the substitution operation

and 4. above, and hence cannot be replaced in the definition of the substitution operation.
For instance, the graph H = P5 satisfies the former statement with H1 = K1 +P3, H2 = K2

and v being the leaf node in H1; but H fails to satisfy property 4 in the definition above
(Note that H is substitution a prime graph too!).

Moreover, both the join and union operations can be performed via a sequence of two
substitutions. For instance, the join of two graphs is equivalent to substituting both these
graphs on the endpoints of an edge. More precisely, if K2 is the complete graph on two
vertices, with vertex set {x, y}, and graphs H1, H2 are given, then their join can be obtained
by: 1. S1 := S(K2, x,H1) and 2. H1+H2 = S(S1, y,H2). Similarly, the union graph H1∪H2

can be obtained by using I2 instead of K2 above. Thus, the union and join operations
are indeed generalised by the notion of substitutions. However, the converse is not true.
Consider, for example, the graph H in Figure 2.1. If H can be obtained by a sequence of
union and join operations, then, it would contain a subset S of vertices, such that S is either
complete or anti-complete to S. One can check that no such subset exists in the graph H.

In 2001, Noga Alon, Jànos Pach, and József Solymosi [1] extended the results of Erdős
and Hajnal, by proving that the substitution operation preserves the EH-property. Their
proof, similar to the 1989 paper [16], makes use of counting arguments to provide a lower
bound for γ(S(H1, v,H2)) in terms of γ(H1) and γ(H2). We present their proof here:
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Theorem 2.2.1. [1] Let H1 and H2 be two graphs having the EH-property, and let v ∈ V (H1)

be any vertex of H1, then the graph H = S(H1, v,H2) has the EH-property with

γ(H) ≥ γ(H1) γ(H2)

γ(H1) + |H1|γ(H2)

Proof. Suppose graphs H1, H2, and H = S(H1, v,H2) are given as above. Let H0 be the
graph isomorphic to H\{v} and let µ be the right-hand side of the inequality above. Fix
a large enough natural N0, such that Nµ/γ(H1)

0 > |H1| and let G be any H-free graph on
n ≥ N0 vertices. We shall show that G has a homogeneous set of size at least |G|µ.

Suppose, for contradiction, that hom(G) < nµ. Let m = ⌈nµ/γ(H1)⌉ (m > |H1|) and let
U be a subset of vertices of G of size m. Then, G[U ] contains an induced copy of H1: Else,
G[U ] would be H1-free and, by the EH-property for H1, would contain a homogeneous set
of size at least |U |γ(H1) ≥ nµ, which is not possible. Thus every induced subgraph of G of
size m induces a copy of H1. Further, every such induced copy of H1 lies in exactly

(
n−|H1|
m−|H1|

)
induced subgraphs of G of size m. Thus, G induces at least

(
n
m

)
/
(
n−|H1|
m−|H1|

)
copies of H1.

By using a simple counting argument, one can show that G has at most n(n− 1) . . . (n−
|H1|+2) induced copies of H0. Further, every induced copy of H1 also induces a copy of H0

in G. By the pigeon-hole principle, there is some copy of H0 in G, which is contained in at
least M copies of H1, where for large enough graph G,

M =

(
n
m

)
/
(
n−|H1|
m−|H1|

)
n(n− 1) . . . (n− |H1|+ 2)

=
n− |H1|+ 1

m(m− 1) . . . (m− |H1|+ 1)
≥ n

m|H1|

Here, the last inequality follows by replacing each term of the denominator with m, and
by assuming n to be large enough so that n − |H1| + 1 ≈ n. The above result states that
G has a subset X ⊂ V (G) of size |H1| − 1 and a set Y ⊂ V (G) of size at least M , such
that G[X] ≃ H0 and G[X ∪ {w}] ≃ H1, ∀w ∈ Y . Note that G[Y ] must be H2-free, for
otherwise, G will contain an induced copy of H. Thus, by the EH-property for H2, we have
hom(G[Y ]) ≥ |Y |γ(H2) ≥ Mγ(H2). As hom(G) ≥ hom(G[Y ]) and hom(G) < nµ, we obtain
the following:

nµ > Mγ(H2) ≥
( n

m|H1|

)γ(H2)

≥ n
γ(H2)−µ|H1| γ(H2)

γ(H1)
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Comparing the exponents of n, we have:

µ > γ(H2)− µ|H1|
γ(H2)

γ(H1)
⇐⇒ µ >

γ(H1) γ(H2)

γ(H1) + |H1|γ(H2)
= µ

Thereby, leading to a contradiction. Thus, every large enough H-free graph G has a homo-
geneous set of size at least |G|µ, and so µ ∈ ΓH . The theorem now follows by noting that
γ(H) = supΓH .

2.3 Substitution Prime Graphs

From the previous section, it is evident that in order to prove the Erdős-Hajnal Conjecture,
it suffices to prove the property for just those graphs which can’t be obtained from smaller
graphs via the substitution operation. Such graphs are termed substitution prime graphs.
More formally,

Definition 2.3.1. A graph H with |H| ≥ 3 is said to be substitution prime, if H ̸≃
S(H1, v,H2) for any pair of graphs H1, H2 with 2 ≤ |H1|, |H2| < |H|.

We shall occasionally drop the term ‘substitution’ while describing substitution prime
graphs if it calls for no confusion. The restriction |H| ≥ 3 has been added to set aside
the few degenerate cases in favour of attaining uniformly applicable properties for prime
graphs. The structure of a prime graph can be better understood by the well-known concept
of modules of a graph:

Definition 2.3.2. Given a graph G, a subset S ⊂ V (G) is called a Module of G, if V (G)\S
can be partitioned into two sets K,N such that S is complete to K and anti-complete to N .

A module S is said to be trivial if |S| ≤ 1 or |S| = |G|.

It is easy to see that all singleton sets {v} ∈ V (G) are modules with K = N(v) and
N = N [v]c. Further, both ϕ and V (G) are modules trivially. As stated above, all these
sets are trivial modules for any graph G. On the other hand, twin pairs in a graph H are
precisely the non-trivial modules of H of size two. Recall that two vertices x, y ∈ V (H) are
said to be twin primes if N(x)\{y} = N(y)\{x}. Then, S = {x, y} is a module of H with
K = N(x)\{y} and N = N [x]c\{y}.
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Further examples of non-trivial modules can be found in non-prime graphs. Consider any
non-prime graph H = S(H1, v,H2), where H1, H2 are chosen such that 2 ≤ |H1|, |H2| < |H|,
by the virtue of Definition 2.3.1. Then, V (H2) is a non-trivial module of the graph H with
K = NH1(v) and N = NH1 [v], where the non-triviality follows from the bounds on |H1|
and |H2|. Conversely, any graph H with a non-trivial module S can be obtained by the
substitution operation H = S(H1, v,H2) from strictly smaller graphs H1 = H[(V (H)\S) ∪
{v}] and H2 = H[S], for some v ∈ S ⊂ V (H). Clearly, H is not a prime graph. Based on
the discussion above, we get the following relation between prime graphs and modules:

Theorem 2.3.1. A graph H is substitution prime if and only if all modules of H are trivial.

Theorem 2.3.1 allows us to express the idea of primes graphs in terms of a more workable
notion of modules. We shall indeed see that modules become very useful while proving
properties of prime graphs, especially for proofs by contradiction. Let us look at a simple
class of prime graphs.

Theorem 2.3.2. All paths Pk, k ≥ 4 and cycles Ck, k ≥ 5 are substitution prime.

Proof. Let H be a connected graph with maximum degree ∆(H) = 2. Suppose that H
is not prime. Then, H has a non-trivial module S ⊂ V (H), with sets K,N as defined in
Definition 2.3.2. If K = ϕ, then based on whether N is empty or not, either |S| = |H| or H
is disconnected, both of which are not possible by the non-triviality of S and connectedness
of H. Thus, K ̸= ϕ, and hence S ⊂ N(K) implies that |S| ≤ ∆(H) = 2. By non-triviality
of S, we conclude that |S| = 2, say {x, y}.

Note that, any vertex of K has all its ∆(H) = 2 neighbours in S, and thus N = ϕ,
for otherwise H would be disconnected. Further, as K ⊂ N(x), we have |K| ≤ 2. This is
sufficient to describe the structure of H. If |K| = 1, then H is either P3 or C3 based on
whether x, y are adjacent or not. Likewise, H = C4 if |K| = 2. Thus, if H is a connected
non-prime graph with maximum degree two, then H is one of P3, C3, or C4. The theorem
follows by setting H = Pk for k ≥ 4 or H = Ck for k ≥ 5.

Note that all graphs on three vertices are not substitution primes as they are precisely the
graphs attained via substitution from any pair of graphs from {K2, I2} taken with repetition.
Thus, P4, the path on four vertices is the smallest prime graph. Unfortunately, not much is
known about larger prime graphs.
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Figure 2.2: (a) Example for the complement operation distributes over the substitution
operation. (b) A self-complementary non-prime graph on eight vertices

Let us note some simple properties of prime graphs:

1. If H is a prime graph, then H is connected. For otherwise, H is a disjoint union of
two smaller graphs and hence can be obtained via the substitution operation, as seen
in the previous section.

2. The class of substitution prime graphs is closed under complements. This follows
directly by observing that any module S of a graph H also forms a module of its
complement H by switching the roles of K and N .

3. Every prime graph contains P4 as an induced subgraph. As we shall see in a later
chapter, any P4-free graph can be obtained from K1 via a series of join and union
operations, and thus are not substitution prime.

4. A prime graph H has no twin pairs, for twin pairs are non-trivial modules of size two.

Adding to point 2 above, we see that the class of non-prime graphs is closed under
complements too. It further can be proved that the complement operation distributes over
the substitution operation to give a nice relation between the structure of a non-prime graph
H and its complement. More precisely, S(H1, v,H2) = S(H1, v,H2). See Figure 2.2 (a) for
an example.

Combining the properties above, we obtain the following theorem summarising some
necessary properties of prime graphs:
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Theorem 2.3.3. If H is a prime graph, then the following hold:

• Both H and H are connected.
• H has an induced P4.
• H has no twin pairs of vertices.

P4 is the only prime graph on four vertices; and the bull, C5, P5, and P5 are the four prime
graphs on five vertices (see Figure 2.3). However, the number of prime graphs on n vertices
increases rapidly with n. We used the above necessary conditions as a sieve to narrow down
our search for prime graphs, and then searched for non-trivial modules by brute force, to
find larger prime graphs. We were able to find all the 26 prime graphs on six vertices and all
260 prime graphs on seven vertices (See Figure 2.4 for all primes on six vertices). Presently,
the enumeration of prime graphs on n vertices upto isomorphism is only known till n = 11

[29], and the sequence is seen to rise very rapidly:

0, 0, 0, 1, 4, 26, 260, 4670, 145870, 8110356, 804203096

Returning to the Erdős-Hajnal Conjecture, we saw that it is sufficient to prove the EH-
property for prime graphs. Among prime graphs, the EH-property is presently known to be
true only for P4, the bull, and C5. Thus all graphs on at most five vertices, other than P5

and its complement, are known to have the EH-property. We shall look at the proofs of the
EH-property for the known graphs and make some progress on P5 in the upcoming chapters.
We end this section by noting that even though P4, C5, and the bull are primes, it is not
true that each self-complementary graph is prime as well. See Figure 2.2 (b) for an example
of a non-prime self-complementary graph. However, we shall return to an important class of
substitution prime self-complementary graphs in a later chapter.

2.4 Upper Bounds and the Non-Asymptotic Version

We take a brief detour to investigate the non-asymptotic version of Conjecture 2.1.2 and
use it to find some trivial upper bounds on γ(H) for some graphs H. Note that Conjecture
2.1.2 asked for polynomial-sized homogeneous sets in large enough H-free graphs, where the
number of vertices exceeded a certain threshold. We can forego the latter requirement by
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Figure 2.4: The 26 substitution prime graphs on six vertices (paired with complements)
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considering all H-free graphs instead. This non-asymptotic version of the conjecture can be
stated as follows:

Conjecture 2.4.1. For every graph H, there exists a constant c(H) > 0, such that every
H-free graph G has a homogeneous set of size |G|c(H)

Similar to our approach in Section 2, we can define the constant γ∗(H) for the non-
asymptotic version as follows:

Definition 2.4.1. Given a graph H, Define the set Γ∗
H ⊂ [0, 1] as:

Γ∗
H := {c ∈ [0, 1] | hom(G) ≥ |G|c for all H-free graphs G}

Let γ∗(H) := supΓ∗
H be the largest constant in Γ∗

H .

Using some analysis, it can be shown that the constant γ∗(H) ∈ Γ∗(H). Let us try to
understand both constants γ(H) and γ∗(H) by looking at them from a slightly different
perspective, as we shall explain now. For any graph G, we define the constant δG as the
logarithm of hom(G) taken with the base |G|. More precisely,

δG :=
log(hom(G))

log |G|
, ∀G ∈ G, |G| ≥ 2

Note that the maximum-sized homogeneous set in any graph G has size |G|δG . Keeping
this in mind, we can extend the definition of δG to the single vertex graph K1, by defin-
ing δK1 = 1. It can be observed that δG is non-zero for every graph G, as all graphs on
at least two vertices have hom(G) ≥ 2, and δK1 = 1. Further, If G is an H-free graph,
then every homogeneous set must have a size no more than |G|δG , and thus, γ∗(H) ≤ δG

for every H-free graph. More specifically, γ∗(H) is related to δG by the following formulation:

Lemma 2.4.2. For every graph H, we have that γ∗(H) = inf {δG : G is H-free}.

Proof. Let H be a given graph. Define DH := {δG : G is H-free} and let λH := infDH .
That γ∗(H) ≤ λH follows from the fact that for every H-free graph G, γ∗(H) ≤ δG, as
explained above. For the reverse inequality, assume for contradiction that γ∗(H) < λH . The
definition of γ∗(H) = supΓ∗

H implies that λH /∈ Γ∗
H , and hence, there exists an H-free graph
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G, for which hom(G) < |G|λH . Consequently, δG < λH , leading to a contradiction. Thus,
γ∗(H) ≥ δG, thereby completing the proof.

To obtain some trivial upper bounds on γ∗(H), we can take inspiration from the theorem
above, and define a sequence ∆ = {δm}, where δm := inf |G|=m δG for every natural number
m ∈ N. One can observe that the sequence reduces monotonically between two diagonal
Ramsey numbers, and might increase at each m = R(k, k). This happens because if m
satisfies R(k, k) ≤ m ≤ R(k+1, k+1)−1, then every graph on m vertices has a homogeneous
set of size k, but there are graphs on m vertices with neither Kk+1 nor Ik+1. For instance,
The first few values of ∆ are approximately given by 1, 1, 0.63, 0.5, 0.43, 0.613, . . .. Here,
an increase can be observed at δ6 = 0.613 which then reduces monotonically till δ17 = 0.38,
where R(3, 3) = 6 and R(4, 4) = 18. Note that Erdős’ lower bound on R(k, k) implies that
∆ → 0 as m→ ∞.

For any given graph H, all graphs with less than |H| vertices are H-free. Thus, by
Lemma 2.4.2, the inequality γ∗(H) ≤ δm ∀m < |H| gives a simple upper-bound on the
value of γ∗(H). Further, graphs on |H| vertices, other than H, can also be used to provide
an additional upper bound. However, as opposed to γ(H), upper bounds on γ∗(H) need
not necessarily be representative of the behaviour of homogeneous sets in H-free graphs ad
infinitum. For instance, if γ∗(H) ≤ x, then it is possible that there are only finitely many
graphs with δG = x, and thus the upper bound would provide no information for all large
H-free graphs above a certain threshold number of vertices.

In essence, finding upper bounds on γ(H) is more desirable, but often more difficult, than
finding upper bounds on γ∗(H). In such a scenario, it would be useful to find conditions
when the implication γ∗(H) ≤ x ⇒ γ(H) ≤ x holds true. We shall prove such a condition
in the remainder of this section. Let’s begin by making some observations on the relation
between γ(H) and γ∗(H). Let H be any given graph along with constants γ(H) and γ∗(H).
By definition, there is a threshold n0, such that hom(G) ≥ |G|γ(H) whenever G is H-free
with at least n0 vertices. Then, by Lemma 2.4.2 and its analogue for γ(H), we have:

γ∗(H) = min

{
min
|G|<n0

δG , γ(H)

}

It follows from the above relation that:
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1. The constant γ∗(H) > 0 if and only if γ(H) > 0. This follows by observing that there
are finitely many graphs with at most n0 vertices, and as δG > 0 ∀G ∈ G, the first
term on the right-hand side above is always non-zero. Equivalently, a graph H has the
EH-property if and only if it has the non-asymptotic EH-property too.

2. For all graphs H ∈ G, we have γ∗(H) ≤ γ(H). This also follows from the fact that the
usual EH-property considers only a subset of the graphs covered by the non-asymptotic
version, and if S ⊂ T , then inf

x∈S
f(x) ≥ inf

x∈T
f(x).

3. It is not true that γ(H) = γ∗(H) for every graph H. A simple counter-example comes
from H = K3. We saw that γ(K3) = 1/2. However, C5 is a triangle-free graph with
hom(C5) = 2 and δC5 = 0.43, and hence, γ∗(K3) ≤ 0.43 does not equal γ(K3).

Thus, the implication γ∗(H) ≤ x =⇒ γ(H) ≤ x, ∀x > 0 holds only for those graphs
for which γ(H) = γ∗(H). We showed that if H is a connected graph with girth > 4 and
is such that no leaves share a common neighbour, then γ(H) = γ∗(H). However, taking a
hint from [20], we were able to extend the proof to show that γ∗(H) = γ(H) for every prime
graph H. Before proving this result, we require the following construction:

Definition 2.4.2. For any graph G, define the sequence of graphs SG = {Gk}k recursively
as follows: Set G0 = G. The graph Gk+1 is obtained by substituting a copy of Gk at every
vertex of the graph G.

For example, The sequence SKr = {Krn}n and it can be shown that SG = SG, where
the latter denotes the sequence of complements of graphs in SG. Note that the graph Gk+1

is obtained by substituting Gk at each vertex of V (G). Hence, for simplicity, we shall refer
to elements of V (G) as bags in Gk+1 containing a copy of V (Gk). Further, note that by
the definition of substitution operation, picking exactly one vertex from each bag induces
the graph G in Gk+1. We look at some properties of SG, beginning with invariance under
H-freeness, for prime graphs H.

Lemma 2.4.3. If H is a substitution prime graph and G is H-free, then all graphs in SG

are H-free as well.

Proof. LetH be a prime graph, G beH-free and consider the sequence of graphs SG = {Gk}k.
We prove by induction that Gk is H-free for all k ≥ 0. The base case holds true as G0 = G
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is given to be H-free. Assume that Gk is H-free.
If Gk+1 contains a subset of vertices X ⊂ V (Gk+1) which induces a copy of H, then each

vertex of X cannot be in separate bags of Gk+1, for otherwise, it will induce a copy of H
in the original graph G. Thus, there exists a bag uG ∈ V (G) which contains at least two
vertices of X. Let Xu be the set of these vertices. Note that X ̸= Xu, for otherwise the graph
Gk embedded in uG induces the graph H, contradicting the induction hypothesis. Further,
By definition of Gk+1, any vertex v ∈ V (Gk+1) outside the bag uG is either complete or anti-
complete to Xu. Hence Xu is a non-trivial module in X, making the graph Gk+1[X] ≃ H a
non-prime graph. Thus, by contradiction, the graph Gk+1 is H-free.

We can compare some graph invariants of G with those of Gk ∈ SG. For instance, as
Gk is formed by substituting copies of Gk−1 in every vertex of G, the number of vertices in
Gk satisfy the relation: |Gk| = |G| · |Gk−1|. By solving the recurrence, we obtain, |Gk| =
|G|k+1 ∀k ≥ 0. Next, consider the invariant α(Gk), and let X ⊂ V (Gk) be the maximum
independent set in Gk. Then, the bags containing X must form an independent set in G,
and the vertices of X in each bag must form an independent set in Gk−1. Thus, we have
that α(Gk) ≤ α(G)α(Gk−1), where equality can be attained by selecting X as follows: Pick
bags in V (G) corresponding to the maximum independent set in G; and from each bag, pick
a maximum independent set for Gk−1, to form an independent set of size α(G)α(Gk−1) =

α(Gk). Once again, solving this recurrence relation, we obtain that α(Gk) = α(G)k+1.
Repeating a similar analysis for maximum cliques, we get ω(Gk) = ω(G)k+1, and therefore,
hom(Gk) = hom(G)k+1. We now have the following lemma:

Lemma 2.4.4. Let G be a graph and SG = {Gk}k, Then δGk
= δG for every k ≥ 0.

Proof. For every k ≥ 0, we have:

δGk
=

log(hom(Gk))

log(|Gk|)
=

log(hom(G)k+1)

log(|G|k+1)
=

(k + 1) log(hom(G))

(k + 1) log(|G|)
= δG

Now that we have developed the required machinery, we turn to the main theorem. Note
that the following theorem also implies that γ(H) ∈ ΓH for substitution prime graphs H.
We now present the theorem as follows:
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Theorem 2.4.5. If H is substitution prime, then γ∗(H) = γ(H)

Proof. Let H be substitution prime. It suffices to show that γ(H) ≤ γ∗(H). Suppose not!
Then, γ(H) > γ∗(H) and there exists a constant γ∗(H) < c < γ(H). Note that c /∈ Γ∗

H

as γ∗(H) = supΓ∗
H , and hence there exists a graph G for which hom(G) < |G|c. We know

that hom(G) = |G|δG , and so δG < c. Further, as c ∈ ΓH , by definition of ΓH , there exists a
threshold N0 ∈ N such that every H-free graph with at least N0 vertices has hom(G) ≥ |G|c.
Choose k ∈ N, such that Gk ∈ SG has |G|k ≥ N0 vertices. Then, by Lemma 2.4.3, Gk

is an H-free graph with at least N0 vertices, and hence hom(Gk) ≥ |GK |c. It follows that
δGk

≥ c > δG, thereby contradicting Lemma 2.4.4. By Contradiction, γ(H) ≤ γ∗(H), and
hence, they are equal.

Thus, we can now use upper bounds given by δm values to asymptotically upper bound
the value of γ(H) for prime graphs H. For Instance, if H = P5, then γ(P5) = γ∗(P5) ≤
min{δ1, δ2, δ3, δ4} = 1/2. Further, as the graph C5 is P5-free, we see that γ∗(P5) ≤ δC5 = 0.43,
and hence, γ(P5) ≤ 0.43.

We also note that the methods used in this section show that working with the non-
asymptotic version of the conjecture is equivalent to the asymptotic version, and thus, it is
possible to switch between the version of the problem for ease of proof. For instance, the
EH-property for Kr requires the asymptotic version as we assume |G| to be large enough for
∆(G) ≈ ∆(G) + 1. On the other hand, we shall see that the proof of EH-property for C5

is by contradiction, and considers a minimal counter-example, making the non-asymptotic
version crucial. In either case, it is possible to switch between constants from both versions
in a manner similar to the methods used in this section.
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Chapter 3

Rödl’s Theorem and Related Results

The typical properties of graphs can be studied using the notion of random graphs. A
random graph on n vertices can be generated via the Erdős-Rényi model, where an edge is
added between a pair of vertices with probability p, independent of the addition of other
edges. Smaller values of p generate sparser graphs with higher probability and p = 0.5

ensures that all graphs are generated with equal probability. We say that almost all graphs
have a property P if the probability of a random graph on n vertices having the property P
tends to one as n→ ∞. In the p = 0.5 case, this probability is simply the fraction of graphs
having the property on n vertices.

If H is a fixed graph, it can be shown using probabilistic methods that almost all graphs
contain H as an induced subgraph (See Chapter 11 [13] for a proof). As there are finitely
many graphs on k vertices for any fixed integer k, the previous theorem extends to show
that almost all graphs are k-universal. Here, a graph is said to be k-universal if it induces
all subgraphs on k vertices.

Another typical property of graphs can be expressed in terms of their edge distribution
and edge densities. The edge density of an induced subgraph graph G[S] ⊂ G is defined as
the fraction of edges |E(S)|/

(|S|
2

)
contained in the induced subgraph G[S]. It is expected

that a random graph has a uniform distribution of edges throughout the graph with a higher
probability. Indeed, it can be shown that for almost every graph G, all induced subgraphs
of size at least µ|G| have edge densities closer to 0.5 for some µ > 0.
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Both these properties display the generic behaviour of graphs. As almost all graphs
contain H as an induced subgraph, it is possible that enforcing H-freeness on a graph
adds enough structure to skew the edge distributions from typical, thereby linking the two
properties above. This idea was concretised and proven by Vojtěch RÖDL [31]. We present
his theorem and few other related results in this chapter, for they are relevant to the class
of H-free graphs and shall be useful in some of the upcoming chapters. We begin by looking
at Szemerédi’s well-known regularity lemma.

3.1 Szemerédi’s Regularity Lemma

Given two disjoint set of vertices A,B ⊂ V (G) of a graph G, the edge density µ(A,B) is
defined as:

µ(A,B) :=
|E(A,B)|
|A||B|

where |E(A,B)| equals the number of edges from A to B in the graph G. We shall abuse
notation slightly by using µ(a,B) to denote µ({a}, B). Roughly speaking, the edges between
A and B can be said to be evenly distributed if the set of edge densities between various
large subparts of A and B do not exhibit much variation. This notion of equidistribution is
captured by the following definition of a regular pair.

Definition 3.1.1. Let ϵ > 0. Two disjoint subsets A,B ⊂ V (G) are said to be an ϵ-regular
pair if for all A′ ⊂ A, B′ ⊂ B with |A′| ≥ ϵ|A|, |B′| ≥ ϵ|B|, the following holds:

|µ(A,B) − µ(A′, B′)| ≤ ϵ

Note that if (A,B) are an ϵ-regular pair, then they are also ϵ′-regular for ϵ′ ≥ ϵ. A useful
and direct consequence of the ϵ-regularity of a pair is described in the following lemma.

Lemma 3.1.1. Let (A,B) be an ϵ-regular pair of density µ. Then,

# {a ∈ A : (µ− ϵ)|B| ≤ |E(a,B)| ≤ (µ+ ϵ)|B| } ≥ (1− 2ϵ)|A|

Proof. Let X ⊂ A be the set of vertices with |E(a,B)| < (µ − ϵ)|B|, and suppose for
contradiction that |X| ≥ ϵ|A|. Then, |E(X,B)| < |X| · (µ− ϵ)|B|, or equivalently µ(X,B) <
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µ(A,B) − ϵ, contradicting the ϵ-regularity of (A,B). Thus, |X| < ϵ|A|. Similarly, if Y =

{a ∈ A||E(a,B)| > (µ + ϵ)|B| }, then |Y | < ϵ|A|. The lemma follows by noting that the
required set A\(X ∪ Y ) has cardinality at least (1− 2ϵ)|A|.

Observe that if a pair (A,B) has density µ, then any vertex in A has an expected number
of µ|B| neighbours in B. Hence, the above lemma roughly states that for ϵ-regular pair, most
vertices of A have nearly the expected number of neighbours in B, thereby corroborating
the regularity of the pair. The previous lemma extends to the following corollary:

Corollary 3.1.2. Let A,B1, B2, . . . , Bk ⊂ V (G) be pairwise disjoint vertices of a graph G,
such that (A,Bi) is an ϵ-regular pair for all i ≤ k. Then,

# {a ∈ A : (µ(A,Bi)− ϵ) ≤ µ(a,Bi) ≤ (µ(A,Bi) + ϵ) ∀i ≤ k} ≥ (1− 2kϵ)|A|

The proof follows by noting that if we define the sets Xi, Yi, as in the proof of the previous
lemma, for each (A,Bi) pair; then the unwanted set of vertices in the corollary above is the
union of all Xi and Yi with size at most 2kϵ|A|. Both these results are useful in finding
subgraphs in large graphs. Stated otherwise, every bipartite graph H is a subgraph of all
sufficiently large ϵ-regular pair (A,B) for some ϵ > 0, where the subgraph H can be found
by repeated applications of Lemma 3.1.1. The following lemma by Rödl [31] extends this
idea to find induced subgraphs in large graphs with a pairwise ϵ-regular partition. He first
defines the following notion:

Definition 3.1.2. A graph G is said to have the [k, l, ϵ, β] property, if V (G) can be partitioned
into k pairwise disjoint parts B1, B2, . . . Bk, such that each part has size l, and every pair of
parts is ϵ-regular with density µ(Bi, Bj) ∈ (β, 1− β) for β < 1/2.

Recall that a graph G is k-universal if G induces all possible subgraphs on k vertices. It
must be noted that if G is k-universal, then G is k′-universal for k′ ≤ k. Now, the lemma:

Lemma 3.1.3. [31] Given 0 < β < 1/2 and k ∈ N, there exist constants ϵk = ϵ(k, β) and
lk = l(k, β), such that every graph with the [k, l, ϵk, β] property for l ≥ lk is k-universal

Proof. We prove the lemma by induction on k. Let k ∈ N and β < 1/2 be given. The lemma
is trivially true for k = 1, as the base case. Suppose the lemma is true for some integer k
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and β < 1/2, and let ϵk = ϵ(k, β/2) and lk = l(k, β/2). We prove the theorem for k + 1.
Define the following:

ϵk+1 = ϵ(k + 1, β) := min

{
1

2(k + 1)
,
βϵk
2

}

lk+1 = l(k + 1, β) := max

{
2

β
lk, k + 1

}
Suppose the graph G has the [k + 1, l, ϵk+1, β] property with l ≥ lk+1. Let B1, B2, . . . Bk+1

be the partition of V (G), as given by Definition 3.1.2. We need to show that G is (k + 1)-
universal. Let H be any graph on (k+1) vertices with V (H) = {v1, . . . , vk+1}. Pick a vertex
bk+1 ∈ Bk+1, such that the following holds for all j ≤ k:

µ(Bk+1, Bj)− ϵk+1 ≤ µ(bk+1, Bj) ≤ µ(Bk+1, Bj) + ϵk+1

The existence of such a vertex bk+1 is guaranteed by Corollary 3.1.2, and the following
inequality, based on the choice of ϵk+1 and lk+1:

(1− 2kϵk+1)lk+1 ≥
(
1− 2k

2(k + 1)

)
(k + 1) ≥ 1

Now, for each j ≤ k, we choose a subset B′
j ⊂ Bj, such that bk+1 is complete to B′

j if
(xj, xk+1) ∈ E(H), and anti-complete otherwise. We investigate the cardinality of these sets
B′

j. If (xj, xk+1) ∈ E(H), then, there are µ(bk+1, Bj)|Bj| neighbours of bk+1 in Bj, and by
the choice of bk+1, we have:

|B′
J | ≥ (µ(Bj, Bk+1)− ϵk+1)|Bj| ≥ (β − ϵk+1)|Bj| ≥ (β − β

2
ϵk)|Bj| ≥ β

2
|Bj|

Similarly, one can show that if (xj, xk+1) /∈ E(H), then |B′
j| ≥ β|Bj|/2. In either case,

we have that |B′
j| ≥ β|Bj|/2 ≥ βlk+1/2 ≥ lk for all j ≤ k. Now, fix any two such

sets B′
i and B′

j. We wish to show that their density lies in the interval (β/2, 1 − β/2) and
are ϵk-regular pairs. For the former, note that, by a calculation similar to the one above,

|B′
j| ≥

β

2
|Bj| ≥ βϵk

2
|Bj| ≥ ϵk+1|Bj|. Thus, by ϵk+1-regularity of (Bi, Bj), we have:

|µ(B′
i, B

′
j)− µ(Bi, Bj)| ≤ ϵk+1 ≤

β

2
ϵk ≤ β

2

Now, the former claim follows by noting that µ(Bi, Bj) ∈ (β, 1 − β). For the ϵk-regularity,
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Let Xi ⊂ B′
i and Xj ⊂ B′

j be such that |Xi| ≥ ϵk|B′
i| and |Xj| ≥ ϵk|B′

j|. Then, |Xi| ≥

ϵk|B′
i| ≥ ϵk

β

2
|Bi| ≥ ϵk+1|Bi|. Similarly, |Xj| ≥ ϵk+1|Bj|. Now, by ϵk+1-regularity of Bi, Bj,

we have:

|µ(Xi, Xj)− µ(B′
i, B

′
j)| ≤ |µ(Xi, Xj)− µ(Bi, Bj)| + |µ(Bi, Bj)− µ(B′

i, B
′
j)|

≤ 2ϵk+1 < ϵk

Thus, the graph G′ induced on {B′
i : i ≤ k} has the [k, lk, ϵk, β/2] property, and by the

induction hypothesis, it is possible to recursively find vertices b1, . . . , bk with bi ∈ B′
i, such

that they induce the graph H\{vk+1} in G′. Thus, along with the vertex bk+1, we find an
induced copy of H in the original graph G, as was required.

The above discussion indicates the usefulness of having regular pairs in a graph. Indeed
if V (G) can be partitioned in a manner so as to generate a high number of regular pairs,
then much can be said about the structure of such sufficiently large graphs G. A trivial way
is to partition V (G) into singleton sets, to create

(|G|
2

)
regular pairs in the graph G, however,

this is not very useful, as each part of the partition is extremely small. Thus, one can ask
whether a graph G admits a partition which maximises both the size of the parts and the
number of regular pairs in G. In a landmark result for extremal graph theory, Szemerédi [32]
answers the above question in the affirmative, in the form of the following regularity lemma.

Definition 3.1.3. Given a graph G, a partition C0, C1, . . . , Ck of V (G) is said to be an
ϵ-regular partition, if the following properties hold:

• |C0| ≤ ϵ|G|.

• All Ci have the same size for i ≥ 1.

• All but at most ϵ
(
k
2

)
many (Ci, Cj) pairs are ϵ-regular for 1 ≤ i, j ≤ k.

Theorem 3.1.4 (Szemerédi’s Regularity Lemma). For all ϵ ∈ (0, 1) and m ∈ N, there
exist constants M , N such that every graph on at least N vertices has an ϵ-regular partition
{C0, C1, . . . Ck} with m ≤ k ≤M .

We refer you to [32] or [13] for a proof of the above theorem. The usefulness of the
Regularity Lemma stems from the existence of the constant M(ϵ,m) which does not depend
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on the graph G. Thus, arbitrarily large graphs too can be partitioned into at most M parts,
thereby increasing the size of each part as well. The proof of Rödl’s theorem in [31] makes
use of the Regularity Lemma. See [24] for futher applications of the lemma.

3.2 Rödl’s Theorem

In 1986, Rödl [31] proved that every sufficiently large graph G is k-universal for some k,
under some conditions of uniform edge distribution. While Rödl proved a more generalised
form of the theorem below, we content ourselves with the following version:

Theorem 3.2.1. [31] For all k ∈ N and σ < 1/2, there exists constants N0 ∈ N and b < 1,
such that for every graph G on at least N0 vertices, the following holds: If every large subset
S ⊂ V (G), |S| ≥ b|G| has edge density µ(S) ∈ (σ, 1− σ), then G is k-universal.

The proof of this theorem makes use of the regularity lemma to construct an ε-regular
partition of sufficiently large size. The size is chosen large enough, with the help of Ramsey
numbers, to ensure the existence of an induced subgraph with the [k, l, ϵ, β] property. The
theorem then follows from 3.1.3. We now prove the theorem:

Proof. Let k ∈ N and σ < 1/2 be given as above. We can assume without loss of generality
that k ≥ 3/σ (as a k′-universal graph is k-universal for all k′ ≤ k). Let m = R3(k) be the
smallest number, such that every three colouring of the edges of Kn for n ≥ m, contains a
monochromatic Kk. Such a number is known to exist for all k ∈ N from Ramsey theory.
Further, let ϵk = ϵ(k, σ/2) and lk = l(k, σ/2), as provided by Lemma 3.1.3. Finally, set
ε = min{1/(m − 1) − 1/m, ϵk} and let M , N be the constants obtained by applying the
Regularity lemma with ε and m as defined above.

We prove the theorem with N0 := max{N, lkM/(1− ϵk)} and b := k(1− ϵk)/M . Consider
any graph G on at least N0 vertices, such that every large subset S ⊂ V (G), |S| ≥ b|G|
has edge density µ(S) ∈ (σ, 1 − σ). By the regularity lemma, there exists an ε-regular
partition {C0, C1, . . . , Ct} with m ≤ t ≤ M . Note that |C0| ≤ ε|G|, and so, for i ̸= 0,
|Ci| ≥ (1 − ε)|G|/M . Construct the regularity graph H, with V (H) = {1, 2, . . . , t} and
(u, v) ∈ E(H) iff (Cu, Cv) are ε-regular pairs. By the regularity lemma, and the choice of ε,
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we have that:

|E(H)| ≥
(
t

2

)
− ε

(
t

2

)
≥ t2

2

(
1− 1

t
− ε

)
≥ t2

2

(
1− 1

m− 1

)
By Turan’s theorem, the graphH contains a clique of sizem, sayH ′ with vertices {C1, . . . , Cm}
taken without loss of generality. Colour the edges of H ′ in three colours as follows:

• Colour 1: if µ(Ci, Cj) < σ/2.

• Colour 2: if µ(Ci, Cj) ∈ (σ/2, 1− σ/2).

• Colour 3: if µ(Ci, Cj) > 1− σ/2.

By the choice of m, there exists a set J ⊂ V (H ′) such that J induces a monochromatic Kk

in H ′. Note that the set C = ∪i∈JCi has at least b|G| vertices, and so, the graph G′ = G[C]
induced on this set has density µ(C) ∈ (σ, 1− σ). Now, if the clique H ′[J ] is monochromatic
with colour 1, then, we calculate the edge density of G′, by counting the number of edges
between two parts, and inside each part Ci.

µ(C) ≤
(
|Ci|k
2

)−1

·
((

k

2

)
σ

2
|Ci|2 +

(
|Ci|
2

)
k

)
≤ σ

2
+

1

k
< σ

Here, the final inequality follows from the fact that k ≥ 3/σ. Similarly, if J is monochromatic
with colour 3, then, we have:

µ(C) ≥
(
|Ci|k
2

)−1

·
((

k

2

)
(1− σ

2
)|Ci|2

)
≥ 1− σ

2
− 1

k
> 1− σ

Here, the first inequality follows by replacing the denominator with k2|Ci|2/2. Thus, J
cannot be monochromatic with colours 1 or 3, as it contradicts the density requirements on
the set C ⊂ V (G). Then, J is a monochromatic clique of colour 2, and by the choice of ε
and N0, it follows that the graph G[C] has the [k, lk, ϵk, σ/2] property. By Lemma 3.1.3, the
graph G[C], and thus, the graph G is k-universal.

This theorem is powerful in the sense that it indicates a non-typical edge distribution for
the class of H-free graphs. It states that for |H| = k, and σ < 1/2, there exist constants
b and N0 such that every H-free graph on at least N0 vertices has a subset of size at least
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|S| ≥ b|G| with a skewed edge density: µ(S) < σ or µ(S) > 1 − σ. Later, in [18], Jacob
Fox and Benny Sudakov prove Rödl’s theorem without using the regularity lemma. They
obtained a tighter estimate of the constant b, and removed the dependence of N0 from the
theorem. Thus, we can rewrite the same theorem as follows:

Lemma 3.2.2. Let H be a graph with |H| = k and let σ < 1/2, then there exists constant
b < 1, such that every H-free graph G has a subset S ⊂ V (G) of size |S| ≥ b|G| for which
either G[S] or G[S] has at most σ

(|S|
2

)
edges.

The authors of [9] show that the above theorem can also be restated to talk about the
maximum degree of G[S] instead of the number of edges or edge density. They show that:

Lemma 3.2.3. Let H be a graph with |H| = k and let σ < 1/2, then there exists constant
b < 1, such that every H-free graph G has a subset S ⊂ V (G) of size |S| ≥ b|G| for which
either G[S] or G[S] has maximum degree at most σb|G|.

This version of Rödl’s theorem turns out to be very useful in various proofs of the EH-
property, as we shall see in the next chapter. It allows us to focus on either sparse or dense
graphs, if the graph H is self-complementary.
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Chapter 4

Known Instances of the EH-Property

In this chapter, we shall look at the various techniques and concepts involved in proving the
EH-property known for a few prime graphs, namely P4, C5 and the Bull. The concepts in-
volved mainly include self-complementarity, the perfectness of graphs, substitution operation
and combs. The proof for P4 is a well-known result in graph theory, while the others have
been proven in [8] and [9]. We present their original results, with occasional modifications
to the proofs of some theorems.

4.1 The EH-property for P4

We saw that all perfect graphs on n vertices have a homogeneous set of size at least
√
n.

The EH-property for P4 follows as a direct consequence of this result, for the class of P4-free
graphs form a well-studied subset of perfect graphs. Indeed, Erdős and Hajnal themselves
acknowledged this in their 1989 paper while introducing the conjecture. We present a quick
proof outlining these pre-established results. Consider first, the well-studied class of co-
graphs, defined recursively as follows:

Definition 4.1.1. Co-graphs are defined to be a family of finite graphs C such that:

• The graph K1 ∈ C.

• If G1, G2 ∈ C, then G1 +G2 ∈ C and G1 ⊔G2 ∈ C.
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Stated otherwise, all co-graphs can be obtained from the single vertex graph, K1, through
a sequence of join and union operations. Note that the class of co-graphs is closed under
taking graph complements, as the complement of a co-graph can be simply obtained by
switching joins and unions in the sequence of operations above. Hence, if G is a co-graph,
then either G or G will be disconnected, depending on whether the final operation is a union
or not.

Further, the class of co-graphs also admits a forbidden induced subgraph characterisation
in terms of P4, as the join and union operations preserve the P4-freeness of a graph. We
shall prove that the class of co-graphs is precisely the set of P4-free graphs.

Lemma 4.1.1. If G1 and G2 are two P4-free graphs, then their join G1 + G2 and union
G1 ⊔G2 are P4-free too.

Proof. Let G1 and G2 be P4-free graphs. If G = G1 ⊔G2 has an induced P4, then it must lie
completely within G1 or G2, as P4 is connected. However, this is not possible, as both G1

and G2 are P4-free. Hence unions preserve P4-freeness. Further, as P4 is self-complementary,
a graph G is P4-free if and only if its complement G is P4-free. Thus, both G1 and G2 are
P4-free, and the lemma follows by noting that G1 +G2 = (G1 ⊔G2).

Theorem 4.1.2. A graph G is a co-graph if and only if G is P4-free.

Proof. As K1 is P4-free, the forward implication follows directly from Lemma 4.1.1 and a
routine structural induction on the class of co-graphs. It remains to prove that all P4-free
graphs are co-graphs. Suppose not! Let G be a counterexample, minimal with respect to
the number of vertices in G. Then, G is a P4-free graph which is not a co-graph. Further, G
has at least 4 vertices, as all graphs with at most three vertices are co-graphs. Finally, note
that both G and G are connected: for otherwise, the components of G or G form smaller
sized P4-free graphs, and thus are co-graphs by the minimality assumption above. Taking
unions of these components makes G a co-graph, contrary to our assumptions for G.

Pick any vertex v ∈ V (G). Then, H := G\v is P4-free. By the minimality assumption
above, H is a co-graph. Hence, either H or H is disconnected. Without loss of generality,
assume H = G\v is disconnected. As G is connected, there exist a vertex u non-adjacent
to v, and a path P which joins u to v in G. As (u, v) /∈ E(G), It is possible to find two
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adjacent vertices x, y on P such that x is adjacent and y is non-adjacent to v. Further, let
z be any neighbour of v from a component of H not containing x and y. Such a z exists
by the disconnectedness of H. Observe that z − v − x − y induces a P4 in G, which is not
possible. Thus, by contradiction, all P4-free graphs are co-graphs.

Let us now look at how the clique number ω(G) and the chromatic number χ(G) interact
with the join and union operations on graphs. Consider the union operation. Let G1 and
G2 be two graphs and let G = G1 ⊔ G2. The maximum clique in G lies completely within
either G1 or G2 and so the maximum clique size ω(G) = max{ω(G1), ω(G2)}. Similarly,
as both components of G1 and G2 can be coloured independently, the chromatic number
χ(G) = max{χ(G1), χ(G2)} as well.

The relations above are slightly different for the join operation as every vertex of G1 is
adjacent to every vertex of G2. Let G = G1 + G2. Observe that ω(G) = ω(G1) + ω(G2) as
the sizes of cliques in G1 and G2 add up to give larger cliques in G by the virtue of G1 being
complete to G2. Similarly, no colours assigned to V (G1) can be repeated in V (G2) as they
are adjacent, thereby making the chromatic number additive as well: χ(G) = χ(G1)+χ(G2).

These properties can be summarised as follows:

ω(G1 ⊔G2) = max{ω(G1), ω(G2)} ; ω(G1 +G2) = ω(G1) + ω(G2)

χ(G1 ⊔G2) = max{χ(G1), χ(G2)} ; χ(G1 +G2) = χ(G1) + χ(G2)

The mirrored relations for clique number and chromatic number above make the case for
the perfectness of co-graphs. As K1 is perfect, the following theorem follows by structural
induction on the class of co-graphs.

Lemma 4.1.3. All co-graphs are perfect graphs.

As any perfect graph G has a homogeneous set of size at least
√
|G|, the EH-property

for P4 now follows directly as a consequence of the above theorems with γ(P4) ≥ 1/2. This
bound can be shown to be tight by considering the infinite class of graphs {nKn : n ∈ N}.
All these graphs are P4-free, as they are disjoint unions of cliques, and have hom(G) =

√
|G|,

as seen in Example 2.1 from an earlier chapter.
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4.2 The EH-property for the Bull

In the previous section, we saw that perfect graphs can be used to find large homogeneous
sets in a given class of graphs. Indeed, an equivalent version of the Erdős-Hajnal Conjecture
claims that every large enough H-free graph G has a perfect induced subgraph of size at
least |G|c for some constant c dependent on H. The equivalence follows from the fact that all
homogeneous sets are perfect and each perfect graph G has a homogeneous set of size

√
|G|.

The notion of α-narrowness, first defined in [11], tries to roughly capture this requirement
in graphs as follows:

Definition 4.2.1. A function f : V (G) → (0, 1) is said to be good, if for every perfect
induced subgraph P ≤ G, we have that

∑
v∈V (P )

f(v) ≤ 1. A graph G is said to be α-narrow

for some α ≥ 1, if for every good function f : V (G) → (0, 1), the sum
∑

v∈V (G)

f(v)α ≤ 1.

Observe that all perfect graphs are 1-narrow and an α-narrow graph is also α′-narrow
for α′ ≥ α. Further, it is possible to partition the vertices of any graph in such a way that
every part induces a perfect subgraph. For instance, a trivial way of doing so would be to
partition V (G) into parts of size at most four, as all graphs on at most four vertices are
perfect. Thus, every graph is α-narrow for some α ≥ 1, and this value of α reduces if the
graph has larger-sized induced perfect subgraphs, possibly due to a greedy construction of
the partition above. Roughly speaking, then, narrowness is a measure of the perfectness of
a graph, where graphs with narrowness closer to one have larger induced perfect subgraphs.
Following this idea, one can conjecture that if there is a constant α ≥ 1 such that every
H-free graph is α-narrow, then it has some bearing on the EH-property for the graph H;
and vice versa. This is indeed true, as proven by Jacob Fox and presented in [10]. We present
their proof here:

Theorem 4.2.1. [10] A graph H has the EH-property if and only if there exists a constant
α ≥ 1 such that all H-free graphs are α-narrow.

Proof. Let H be a given graph. Consider the reverse direction, and suppose that for some
α ≥ 1, every H-free graph G is α-narrow. Let K be the size of the largest induced perfect
subgraph of G. Clearly, the constant function f(v) = 1/K ∀v ∈ V (G) is good, as for any

perfect induced subgraph P ≤ G, the sum
∑

v∈V (P )

f(v) =
|V (P )|
K

≤ 1. By α-narrowness, we
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have: ∑
v∈V (G)

f(v)α =
|G|
Kα

≤ 1 ⇐⇒ K ≥ |G|
1
α

Thus, any H-free graph G has a perfect induced subgraph of size at least |G|1/α, and so

hom(G) ≥ |G|1/2α. It follows that H has the EH-property with γ(H) ≥ 1

2α
.

Now, consider the forward direction. Let H be a graph having the EH-property, and
let c = 1/γ(H). We show that H-free graphs are 3c-narrow by induction on the size of the
graph. The base case holds trivially as all graphs on at most two vertices are 1-narrow and
3c > 1. Let G be a large H-free graph, and let f : V (G) → (0, 1) be a good function on G.
We partition the vertices of G as follows:

Vi :=

{
v ∈ V (G) | 1

2i
≤ f(v) <

1

2i−1

}
, and Gi := G[Vi] ∀i ∈ N

For any i ∈ N, we have that f(v) ≥ 1
2i
, ∀v ∈ Vi. As f is a good function, any perfect induced

subgraph of Gi has size at most 2i. Thus, hom(Gi) ≤ 2i, and by the EH-property for H, we
have:

|Gi| ≤ hom(Gi)
1/γ(H) ≤ 2ic ∀ i ∈ N

Now we consider the following two cases:

Case I: The set V1 = ϕ. Then, we have:

∑
v∈V (G)

f(v)3c ≤
∞∑
i=2

∑
v∈Vi

(
1

2i−1

)3c

(By definition of Vi)

≤
∞∑
i=2

2ic

23c(i−1)
= 23c

∞∑
i=2

1

22ic
(As |Vi| ≤ 2ic)

=
2c

22c − 1
≤ 1 (By Infinite G.P., and as c > 1)

Case II: The Set V1 ̸= ϕ.

Then, let u ∈ V1 with f(u) ≥ 1/2. Let N = N(u) and M = N [u]c be the neighbours
and non-neighbours of u in G, respectively. Consider the graph G[N ] and suppose that
P ⊂ N induces a perfect induced subgraph in G[N ]. Then, G[P ∪ {u}] is perfect since joins
preserve perfectness, as we saw in the previous section. By the goodness of f , we have that
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∑
v∈P

f(v) ≤ 1 − f(u), and so the function g : N → (0, 1) defined by g(x) = f(x)/(1 − f(u))

is good on G[N ]. By the induction hypothesis, G[N ] is 3c-narrow, and we have:∑
v∈N

g(v)3c ≤ 1 ≡
∑
v∈N

f(v)3c ≤ (1− f(u))3c

Similarly, repeating the above analysis for M , we have:∑
v∈M

f(v)3c ≤ (1− f(u))3c

Combining both the above inequalities, and by V (G) = N ∪M ∪ {u},∑
v∈V (G)

f(v)3c ≤ f(u)3c + 2(1− f(u))3c ≤ 1

where, the final inequality follows by noting that ψ(x) = xa + 2(1− x)a ≤ 1 whenever a ≥ 3

and x ∈ (1/2, 1). Hence, for every good function f , the sum
∑

v∈V (G)

f(v)3c ≤ 1, and so the

graph G is 3c-narrow, as required.

We saw that proving the EH-property for a graph H is equivalent to showing that all
H-free graphs are α-narrow. In 2008, Maria Chudnovsky and Shmuel Safra [8] showed that
all Bull-free graphs are 2-narrow, and hence satisfy the EH-property with γ(Bull) ≥ 1/4.
The proof is a good example of how forbidding an induced graph helps impose additional
structure on the given graph, often altering the properties of the class as a whole. The holis-
tic proof combines the implications of Bull-freeness with self-complementarity, narrowness,
perfectness, and the substitution operation to prove the EH-property for the Bull graph. We
present their proof in this section. We begin by observing that the substitution operation
preserves α-narrowness.

Theorem 4.2.2. [8] Suppose α ≥ 1 and let G1, G2 be two α-narrow graphs. Then, the graph
G = S(G1, v, G2) is α-narrow for all v ∈ V (G1).

Proof. Suppose G1, G2, and α are as given above, and G = S(G1, v, G2) for some v ∈ V (G1).
By Lemma 2.3.1, S = V (G2) is a non-trivial module of G, and let K,N be a partition of
V (G)\S such that S is complete to K and anti-complete to N . Let f : V (G) → (0, 1) be
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any good function on G. Define the constant M as follows:

M := max
P≤G2

 ∑
u∈V (P )

f(u)


where P is a perfect induced subgraph in G2. Let P ∗ ⊂ V (G2) be the perfect graph where
the maximum above is attained. Define the function f1 on the graph G1 by the mapping
f1(v) = M and f1(x) = f(x) ∀x ∈ V (G1)\{v}. Then, f1 is a good function on G1, which
can be seen as follows: Let P ⊂ V (G1) be a perfect graph in G1. If v /∈ P , then we are
done by the goodness of f in G. Otherwise, if v ∈ P , consider the graph G[P ′] obtained
by substituting P ∗ into the vertex v ∈ V (P ). By Lovazs’ replacement lemma [27], G[P ′] is
perfect in G, and so, we have:∑

x∈V (P )

f1(x) =M +
∑

x∈V (P )\{v}

f(x) =
∑

x∈V (P ∗)

f(x) +
∑

x∈V (P )\{v}

f(x) =
∑

x∈V (P ′)

f(x) ≤ 1

Similarly, define a function f2 on G2 as f2(x) = f(x)/M ∀x ∈ V (G2). This is a good
function on G2 by the definition of M . As G1 and G2 are both α-narrow, we have:∑

x∈V (G1)

f1(x)
α ≤ 1 ⇐⇒ Kα +

∑
x∈V (G1\{v})

f(x)α ≤ 1 (4.1)

∑
x∈V (G2)

f2(x)
α ≤ 1 ⇐⇒

∑
x∈V (G2)

f(x)α ≤ Kα (4.2)

That G is α-narrow follows directly by substituting inequality (4.2) into inequality (4.1)
above, as: ∑

x∈V (G)

f(x)α =
∑

x∈V (G2)

f(x)α +
∑

x∈V (G1\{v})

f(x)α ≤ 1

Recall that an induced Ck(orCk) in a graph G, for k ≥ 4 is said to be a hole (anti-hole) in
G. The authors of [8] divide all bull-free graphs into basic and non-basic graphs as follows:

Definition 4.2.2. A Bull-free graph G is said to be non-basic if G has an odd hole or an
odd anti-hole H, such that there exist vertices c, a ∈ V (G\H) for which c is complete and a
is anti-complete to H. All other Bull-free graphs are said to be basic.
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They show that all basic graphs are 2-narrow and all non-basic graphs are non-primes.
The EH-property for the bull graph then follows from Theorems 4.2.2 and 4.2.1. We present
the proofs of both these statements in the remaining section. Note that as the bull-graph is
self-complementary, the class of bull-free graphs is closed under complements. Consequently,
by the definition above, both non-basic and basic graphs are closed under complements.

Basic graphs are 2-narrow

For simplicity, we shall call a graph narrow if it is 2-narrow. If a basic graph G has an odd
hole H, then it must have a vertex c complete to H or a vertex a anti-complete to H, but
not both. Note that either the vertex c or a described above should exist; for otherwise, the
complement G, and hence G, would be non-basic, contrary to our assumptions. We begin
by looking at the structure of basic graphs for each of the two possibilities mentioned above.

Lemma 4.2.3. [8] Let G be basic with an odd hole H and a vertex c /∈ V (H) complete to
H. If u ∈ V (G\H) is non-adjacent to c, then u has at least |H| − 2 neighbours in H.

Proof. Let G,H, c, and u be as above, and let |H| = k with H = {h1, h2, . . . hk}. As G
is basic, u is not anti-complete to H. If u is complete to H, then we are done, and so
we assume that u is neither complete nor anti-complete to H. Then, there exist adjacent
vertices, say h1, h2 ∈ V (H) such that u is adjacent to h1 but non-adjacent to h2. If hi is a
vertex of H non-adjacent to both h1 and h2, then hi must be adjacent to u, for otherwise
the vertices {h1, h2, hi, c, u} would induce a Bull graph in G. Thus, u is complete to the set
V (H)\{h2, h3, hk}. It suffices to show that u is also adjacent to h3 or hk. This follows as, if
u is non-adjacent to hk, then u must be adjacent to h3, for otherwise the set {hk, h1, h3, c, u}
would induce a Bull graph in G. Thus, u has at least |H| − 2 neighbours in H.

Similarly, we have the following lemma for the second possibility:

Lemma 4.2.4. [8] Let G be basic with an odd hole H and a vertex a /∈ V (H) anti-complete
to H. If u ∈ V (G\H) is adjacent to a, then u has at least |H|+1

2
non-neighbours in H.

Proof. Let G,H, a, and u be given as above, and let |H| = k with H = {h1, h2, . . . hk}.
Suppose for contradiction that u has two consecutive neighbours, say h1, h2 ∈ V (H). Let
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i ≤ k be the smallest index so that u is non-adjacent to hi, whose existence is guaranteed as
G is basic. Then, S = {hi−2, hi−1, hi, u, a} induces a Bull graph in G, as a is anti-complete to
H and adjacent to u, giving a contradiction. Thus, u does not have consecutive neighbours
in H, and by the pigeon-hole principle, has at least ⌈ |H|

2
⌉ non-neighbours in H. As H is an

odd hole, u has at least |H|+1
2

non-neighbours in H

Using the previous lemmata, we can show that for a basic graph G, and any vertex
v ∈ V (G), either the neighbours or anti-neighbours of v induce a perfect graph in G, which
would be useful in setting up induction while proving that basic graphs are narrow.

Lemma 4.2.5. Let G be a basic graph with any vertex x ∈ V (G). Let N = N(x) and
M = N [x]c be the neighbours and non-neighbours of x respectively. Then, either G[N ] or
G[M ] is perfect.

Proof. Let G,N,M , and x be defined as above. Suppose for contradiction that neither G[N ]

nor G[M ] is perfect. Then, the following observations can be made:

A. At most one of G[N ] and G[M ] contains an odd hole

Suppose both G[N ] and G[M ] have odd holes HN , HM of size n,m ≥ 5 respectively. Note
that x is complete to HN and anticomplete to HM . Then, by Lemma 4.2.3, every vertex
of HM has at least |HN | − 2 neighbours in HN . Thus, there are at least m(n − 2) edges
from HM to HN . Similarly, by Lemma 4.2.4, every vertex of HN has at least (|HM | + 1)/2

non-neighbours in HM . Thus, there are at least n(m + 1/2) ≥ n(m/2) non-edges between
HN and HM . As the sum of edges and non-edges between HN and HM equals mn, we have:

mn ≥ m(n− 2) + n
(m
2

)
or equivalently, n ≤ 4, a contradiction. Thus at most one of G[N ] and G[M ] has an odd
hole. further, as basic graphs are closed under complements, we have that at most one of
G[N ] and G[M ] has an odd anti-hole. By the strong perfect graph theorem, both G[N ] and
G[M ] must have an odd hole or anti-hole. Thus, we have the following two cases:

Case I: G[N ] has an odd hole and G[M ] has an odd anti-hole.

Suppose that G[N ] has an odd hole HN on n vertices and G[M ] has an odd antihole
AHM on m vertices. By Lemma 4.2.3, every vertex in AHM has at least |HN |−2 neighbours
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in HN , so there are at least m(n− 2) edges between AHM and HN . Further, AHM and HN

switch their roles in the complement graph G, and so by the same analysis, there are at least
n(m − 2) edges between AHM and HN in the graph G. Thus, there are at least n(m − 2)

non-edges between AHM and HN in G. Once again, as the sum of edges and non-edges
between HN and AHM equal mn, we have:

mn ≥ m(n− 2) + n(m− 2)

which is not true for m,n ≥ 5.

Case II: G[N ] has an odd anti-hole and G[M ] has an odd hole.

Let HM be an odd hole in G[M ] of size m, and let AHN be an odd anti-hole of size n.
We proceed in a manner similar to Case I, by using Lemma 4.2.4 instead of 4.2.3, to obtain
the following impossibility:

mn ≥ m

(
n+ 1

2

)
+ n

(
m+ 1

2

)
≡ m+ n ≤ 2

Thus, by contradiction, either G[N ] or G[M ] is a perfect subgraph of G.

Observe that the above proof and its use of the strong perfect graph theorem helps
motivate the definition of basic and non-basic graphs as defined above. We now use these
lemmata to prove that all basic graphs are narrow.

Theorem 4.2.6. If G is a basic graph, then G is 2-narrow.

Proof. We prove this by induction on the size of the graph. For the base case, note that
all graphs on at most four vertices are perfect, and thus are 2-narrow as well. Let G be
a basic graph, and f : V (G) → (0, 1) be a good function. Pick the vertex u ∈ V (G) for
which g(u) is maximum and let N,M be the neighbours and non-neighbours of u in G. By
the previous lemma, either G[N ] or G[M ] is perfect, and by switching to the complement if
necessary, assume that G[N ] is perfect. Note that the switching is possible as basic graphs
are closed under complements. As G[N ] is perfect and joins preserve perfectness, we have
that G[N ∪{u}] is perfect too, and so f(u)+

∑
v∈N

f(v) ≤ 1. Hence, along with the maximality
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of f(u), we have: ∑
v∈N

f(v)2 ≤ f(u)
∑
v∈N

f(v) ≤ f(u)(1− f(u))

Now, for the subset M ⊂ V (G), define g : M → (0, 1) by the rule g(v) =
f(v)

1− f(u)
. If

P ⊂ M induces a perfect graph in G[M ], then G[P ∪ {u}] is also perfect as the union
operation preserves perfectness. By goodness of f on G, we have f(u) +

∑
v∈P

f(v) ≤ 1 and

so,
∑
v∈P

g(v) ≤ 1 for all perfect subgraphs G[P ] ≤ G[M ]. Thus g is a good function on G[M ],

and as G[M ] is narrow by induction, we have:
∑
v∈M

f(v)2 ≤ (1− f(v))2.

Combining all inequalities, we see that for all good functions f :∑
v∈V (G)

f(v)2 = f(u)2 +
∑
v∈N

f(v)2 +
∑
v∈M

f(v)2

≤ f(u)2 + f(u)(1− f(u)) + (1− f(u))2

≤ (f(u) + 1− f(u))2 = 1

Thus, G is narrow, as was required.

Non-basic graphs are not Substitution Primes

Let us begin by defining the following notion of a split set in a graph G.

Definition 4.2.3. Given a graph G, a subset S ⊂ V (G) of vertices is said to be a split set
if for every x ∈ S, neither complete nor anti-complete to S, there exist vertices u, v, w such
that either of the following holds:

• u, v, x form a C3; and w is adjacent to v and non-adjacent to x, u

• u, v, x form an I3; and w is adjacent to x, u but non-adjacent to v

In essence, the vertices {u, v, w, x} induce either of the two labelled graphs shown in the
figure above. Note that both these graphs are complements of each other, and hence, a set
S ⊂ V (G) is a split set in G if and only if S is a split set in G as well. The authors of [8]
showed that if a Bull-free graph G has a split set S and there exist vertices c, a respectively
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Figure 4.1: Graphs induced by {x, u, v, w} for x ∈ S

complete and anti-complete to S, then G is a non-prime graph. Further, the holes and anti-
holes of a Bull-free graph are split sets, and hence, it follows that all non-basic graphs are
non-prime. Let’s begin by proving the first lemma:

Lemma 4.2.7. Let G be a Bull-free graph and S ⊂ V (G) be a split set in G of size at least
two. If there exist vertices c, a ∈ V (G)\S, such that c is complete and a is anti-complete to
S, then G is a non-prime graph.

Proof. Let G be a Bull-free graph with split set S. Let C and A be the set of vertices in
V (G)\S which are complete and anti-complete to S, respectively; and let X = V (G)\(S ∪
C ∪ A). We try to construct a non-trivial module in G. It is given that A,C ̸= ϕ. Choose
any a ∈ A and c ∈ C, We make the following claim:

(I) If (a, c) ∈ E(G), then X is complete to C; and
If (a, c) /∈ E(G), then X is anti-complete to A.

Suppose, for contradiction, that (I) is false, and let x ∈ X be a counter-example. As S
is a split set, there exist vertices u, v, w such that one of the following holds:

Case I: The vertices {x, u, v, w} form the first graph of Figure 4.1.
Here, x is not adjacent to a, for otherwise, {a, x, u, v, w} induces a bull in G. As x is a
counter-example, a is adjacent to C, and hence (x, c) /∈ E(G). Then, {a, c, v, w, x} induces
a bull in G, giving a contradiction.

Case II: The vertices {x, u, v, w} form the second graph of Figure 4.1.
Here, x is adjacent to c, for otherwise, {c, x, u, v, w} induces a bull in G. As x is a counter-
example, a is not adjacent to C, and hence (x, a) ∈ E(G). Then, {a, c, v, w, x} induces a
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bull in G, again giving a contradiction.

Thus, claim (I) holds true. Note that if there exists c ∈ C with no neighbour in A, then
every vertex of A has c ∈ C as a non-neighbour. Thus, either every c ∈ C has a neighbour in
A or every a ∈ A has a non-neighbour in C. We assume the former without loss of generality,
by switching to G if necessary. This is possible as non-primes are closed under complements
and C,A switch roles on taking complements. Now, for every c ∈ C, there exists a ∈ A,
such that (a, c) ∈ E(G), and so by (I), C is complete to X.

Finally, fix some x ∈ X and define the set A′ ⊂ A to be the set vertices a ∈ A which have
an x−a path going through A∪{x}. Let a ∈ A′ and suppose P = (x = a0), a1, a2, . . . , (ak =

a) is an x−a path through A∪{x}. Then, each ai ∈ A′, i ≤ k. If c ∈ C, then (c, x) ∈ E(G)

as C is complete to X. Also, (c, a1) ∈ E(G) by claim (I) and as (x, a1) ∈ E(G). Further,
If ai−1, ai−2 are adjacent to c, then ai is adjacent to c, for otherwise, {c, s, ai−1, ai−2, ai}
induce a Bull in G for any s ∈ S. Thus, by induction, C is complete to A′. Further, A′ is
anticomplete to A\A′, for otherwise, there would be an x− a path extending to A\A′.

Define Z = S ∪ A′ ∪X, then Z is a non-trivial module of size at least two, complete to
C and anticomplete to A\A′. Thus G is non-prime, by Lemma 2.3.1.

Finally, we prove that non-basic Bull-graphs are non-prime.

Theorem 4.2.8. All non-basic graphs are not substitution prime.

Proof. Let G be a non-basic graph, and by switching to G if necessary, assume that H is a
hole in G with |H| = k. Let c, a ∈ V (G)\H be complete and anti-complete to H respectively.
Pick any x ∈ V (G)\H neither complete nor anti-complete to H. We need to find u, v, w ∈ H,
such that {x, u, v, w} induces one of the labelled graphs in Figure 4.1.

Assume without loss of generality that (x, h1) ∈ E(G) and (x, h2) /∈ E(G) for some
h1, h2 ∈ H. If (x, hk) ∈ E(G), then set (u, v, w) = (hk, h1, h2) to get the first graph in
Figure 4.1. Otherwise, (x, hk) /∈ E(G). In this case, setting (u, v, w) = (hk, h2, hk−1) if
(x, hk−1) ∈ E(G), and (u, v, w) = (h2, hk−1, h1) otherwise, induces the second graph from
Figure 4.1 in G. Thus, H is a split set, and so by the previous lemma, G is not a substitution
prime graph.
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Thus, the theorems in this section imply that the bull graph has the EH-property with
γ(Bull) ≥ 1/4. The tightness of this bound can be shown by the following example from
[6]: Consider, for any m ∈ N, the K3-free graph T , constructed by Kim [23] with |T | =
m, as we saw in Section 2.1. Then, T is bull-free as well. Construct the graph G by
substituting T in every vertex of T . Then, G is bull-free by a proof similar to that of
Theorem 2.4.3 as the bull graph is prime and as both T, T are bull-free. Further, hom(G) =

max{ ω(T )ω(T ), α(T )α(T ) } = ω(T )α(T ) ≤ 2hom(T ), as T is triangle free. So, hom(G) ≤
18
√

|T | log |T | = 18(|G| log |G|)1/4, where |G| = m2 ∀m ∈ N. Now, similar to the triangle-
free case in Section 2.1, it follows that γ(Bull) ≤ 1/4.

4.3 The EH-property for C5

The Erdős-Hajnal Property for C5, the cycle on five vertices, was proved recently by Maria
Chudnovsky, Alex Scott, Paul Seymour, and Sophie Spirkl in their paper - "Erdős-Hajnal
for graphs with no 5-hole" [9]. It was an important result, as for a long time it was felt that
the EH-property might not hold true for the case of C5. However, in an interesting proof by
contradiction, it was shown that C5 has the EH-property. More importantly, C5 is the first
non-perfect graph which has the EH-property. By a theorem of Lovazs [27], the substitution
operation preserves the perfectness of graphs, and hence all previously known cases of P4,
bull, etc only proved the EH-property for some perfect graph H.

Indeed, the nagging case of C5 was pointed out by Gryarfas as well, in [20] where he
mentions the following discussion with Erdős:

"We have the following problem with Hajnal. If G(n) has n points and does not
contain induced C4, is it true that it has either a clique or an independent set
with nε points?...": E.P.

... I realized soon that 1
3

is a good ε ... About a month later Paul arrived and
said he meant C5 for C4. And this minor change of subscript gave a problem still
unsolved...

In this section, we present the proof by Chudnovsky et al. The proof goes essentially via
contradiction, and makes use of the structure of a comb in a graph, as we shall see. These
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theorems shall be useful to make some headway on working towards the EH-property for P5

as well, as we shall show in the upcoming chapter. Let us begin by defining a comb.

Definition 4.3.1. Given constants t, k ≥ 0, the set {(ai, Bi) : 1 ≤ i ≤ t} is said to be a
(t, k)-comb in G if the following properties hold:

• All ai are distinct vertices in G.

• All Bi are pairwise disjoint subsets of V (G)\{a1, . . . at}, such that |Bi| ≥ k.

• Bi ⊂ N(ai) and Bj ∩N(ai) = ϕ, ∀i ̸= j.

We shall refer to the sets B1, B2, . . . Bt as the teeth of the comb and the set A :=

{a1, a2, . . .} as the head of the comb. Note that the definition adds no restriction on edges
lying inside the sets B1, . . . , Bt or A. Futher, given two disjoint subsets X, Y ⊂ V (G) in a
graph G, we say that G has a (t, k)-comb in (X, Y ) if A ⊂ X and Bi ⊂ Y ∀i ≤ t. The
following lemma talks about the existence of combs in a given graph.

Lemma 4.3.1. [9] Let ∆, c, d > 0 be fixed constants with d < 1. Further, let G be a graph
with two disjoint subsets of vertices, A and B, such that every vertex in B has a neighbour in
A and every vertex in A has at most ∆ neighbours in B. Then, at least one of the following
holds:

• G has a (t, c t−1/d)-comb in (A,B) for some t > 0.

• |B| ≤ 3d+1

3/2− (3/2)d
cd ∆1−d.

Proof. Suppose we are given a graph G, with disjoint subsets of vertices A,B as described
above. We begin by partitioning B into k-parts, C1, C2, . . . Ck, such that every vertex in A

has at most (2/3)i∆ neighbours in Di := B\(C1 ∪ . . . ∪ Ci) for all i ≤ k. This partition is
constructed as follows:

Let C0 = ϕ andD0 = B. Now suppose C0, C1, C2, . . . , Cs−1 have already been chosen, and
the set Cs has to be chosen from Ds−1 (the remaining vertices of B). Note that every vertex
in A has at most (2/3)s−1∆ neighbours in Ds−1. Order all vertices of A in a manner, such
that for some m ≤ |A|, The sequence As := {a1, a2, . . . , am} ⊂ A is of maximal length with
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the following property: For each i ≤ m, the vertex ai has at least (2/3)s∆ adjacent vertices
in Ds−1 which are not adjacent to any of a1, a2, . . . , ai−1. Define Cs := Ds−1 ∩N(As) ⊂ B.

By construction, every vertex in A has at most (2/3)s∆ neighbours in Ds: for otherwise,
some vertex a /∈ As would have at least (2/3)s∆ neighbours in Ds, which are not adjacent
to any vertex of As, thereby contradicting the maximality of m above. Further, as |As| ≥ 1

whenever Ds−1 ̸= ϕ, and as every vertex of B has a neighbour in A, the process terminates
in finitely many steps once B is covered, thereby returning a partition C1, C2, . . . , Ck of B.

Consider any part Cs from the partition above, and let As ⊂ A be defined as in the
construction above, with |As| = m. For all i ≤ m, Let Pi ⊂ Ds−1 be the set of vertices
adjacent to ai but non-adjacent to aj for j < i. Similarly, let Qi ⊂ Ds−1 be the neighbours
of ai in Ds−1\Pi. By definition of As, we have |Pi| ≥ (2/3)s∆, and as every vertex of A has
at most (2/3)s−1∆ neighbours in Ds−1, the cardinality |Qi| ≤ (2/3)s∆/2.

Now, going backwards from am, we shall call ai ∈ A to be good if at most |Pi|/2 vertices
of Pi are adjacent to some good vertices of {ai+1, . . . , am}. Let I ⊂ [m] be the indexing set
for good vertices, and let Q = ∪i∈IQi. Note that if j /∈ I, then at least |Pj|/2 elements of Pj

are adjacent to some ak, for k > j, k ∈ I. Thus, these elements lie in Qk, and hence in Q.
We get the following estimate for |Q|:

(m− |I|)
(
2

3

)s
∆

2
≤ |Q| ≤ |I|

(
2

3

)s
∆

2

Thus, we have |I| ≥ m/2. Now, let Bi = Pi\Q for i ∈ I. Then, by definition of good vertices,
we have |Bi| ≥ (2/3)s∆/2. Clearly, the good elements ai, along with their sets Bi, form a
(|I|, (2/3)s∆/2)-comb in G. Set t = |I|. If (2/3)s∆/2 ≥ ct−1/d, then we are done. otherwise,
we have t = |I| ≤ [(3/2)s2c/∆]d. As m ≤ 2|I| and Cs = Ds−1 ∩N(As), we have:

|C|s ≤ 2d+1

(
2

3

)s−sd−1

cd∆1−d

If no Cs contains a (t, ct−1/d) comb, then, the latter conclusion of the theorem follows by
summing the above inequality over all values of s.

The previous lemma instructed us on the existence of combs in a given graph G. The
proof for the EH-property for C5, essentially goes via contradiction, wherein the properties
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of a minimal counter-example are used to reach an impossibility. These minimal counter-
examples satisfy the property of τ -criticality which can be defined as follows:

Definition 4.3.2. Given a constant τ > 0, we say that a graph G is τ − critical if
α(G)ω(G) < |G|τ and α(G′)ω(G′) ≥ |G′|τ for all proper induced subgraphs G′ ≤ G.

Note that G is τ -critical if and only if G is τ -critical. It is also possible to refine the
structure of a comb in a given graph. We can define the notion of a tied comb as follows:

Definition 4.3.3. A (t, k)-comb {(ai, Bi)} in a graph G is said to be a tied (t, k)-comb, if
the vertices ai are all pairwise independent, and there exists v ∈ V (G)\∪i ({ai}∪{Bi}) such
that v is adjacent to all ai and anti-complete to all Bi.

We shall call the vertex v, the knot of the tied comb.

The following theorem discusses the existence of tied combs in linear-sized induced sub-
graphs of τ -critical graphs under certain conditions, as dictated by Rödl’s theorem.

Theorem 4.3.2. [9] Given constants σ, b > 0 with σ < 0.05, there exists τ ∈ (0, 1) with
the following property: If G is a τ -critical graph, X is a subset of vertices of G such that
|X| > b|G| and G[X] has a maximum degree no more than σb|G|, then G[X] has a tied

(t,
b|G|

400σt2
)-comb with t ≥ 1/400σ

Proof. Let σ, b > 0 be given as above. Pick a τ > 0, such that the following holds:

21−1/τ

b
+

(
σ +

19

20

)
(σb)−τ < 1 (4.3)

Such a τ > 0 exists, as the left-hand side of the inequality tends to σ + 19
20

as τ tends to
zero, and σ + 19

20
< 1 by the restriction on σ. Now suppose that G is a τ -critical graph, and

let X ⊂ V (G) be such that |X| > b|G| and G[X] has minimum degree at least σb|G|. We
partition the set X as follows:

Set X0 = X. Given Xi−1, pick a vertex vi ∈ Xi−1 with the largest degree in G[Xi−1].
Let Ai = N(vi) ∩ Xi−1 and Ci be the largest independent set in Ai. Finally, let Di =

N(Ci)\(Ai ∪ {vi}) and set Xi = Xi−1\({vi} ∪Ai ∪Di). Repeat this until Xi = ϕ. Note that
the sets Yi := {vi} ∪ Ai ∪Di partition the set X. Let the number of parts be s.
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Set λ =
b

400σ
. Now, consider any Yi. By τ -criticality, we have:

|Ci| = α(Ai) ≥ |Ai|τ

ω(Ai)
≥ |Ai|τ

ω(G)

We now make use of Lemma 4.3.1. Set c = λ|X|/b, ∆ = |Ai|, and d = 0.5. Note that every
vertex in Ci has at most d(vi) = |Ai| neighbours in Di. If there is a (t, ct−2)-comb in (Ci, Di),
then it is a tied-comb with the knot vi, of required size, and the condition that all the teeth
of the comb lie in X implies that t · ct−2 ≤ |X| or, t ≥ 1/400σ. If such a comb does not
exist, then, by Lemma 4.3.1, we have:

|Di| ≤
33/2

3/2− (3/2)1/2

(
λ|X| |Ai|

b

) 1
2

≤ 19

(
λ|X| |Ai|

b

) 1
2

(4.4)

suppose for contradiction, none of the Yis have a tied-comb in (Ci, Di) as mentioned above,
making the previous bounds on Di applicable ∀i ≤ s. As the family of sets {Yi : i ≤ s}
partitions X, and each Yi = {vi} ∪ Ai ∪Di, we have:

s∑
i=1

|Yi|
|X|

=
s∑

i=1

(
1

|X|
+

|Ai|
|X|

+
|Di|
|X|

)
= 1 (4.5)

Let us calculate each of the three terms above. For the first term, note that the vertices
vi form an independent set in G, and so s ≤ α(G) ≤ |G|τ/ω(G) ≤ |G|τ . Further, as
α(G)ω(G) ≥ 2, it follows from τ -criticality, that |G| ≥ 21/τ . Combining these inequalities,
we have:

s∑
i=1

1

|X|
≤ |G|τ

b|G|
≤ 21−1/τ

b
(4.6)

Next, set ai = |Ai|
|X| . Observe that |Ci|ω(G) ≥ (xib|G|)τ ≥ (xib)

τα(G)ω(G), by τ -criticality
of G. Further, the union of all Cis forms an independent set by construction, and thus
s∑

i=1

|Ci| ≤ α(G). Combining both these inequalities, we have:
s∑

i=1

xτi ≤ b−τ . On the

contrary, as G[X] has maximum degree σb|G|, we have, |Ai| = d(vi) ≤ σb|G|. This gives an

upper bound on xi as follows: xi =
|Ai|
|X|

≤ σb|G|
b|G|

= σ. we have the following:

s∑
i=1

|Ai|
|X|

=
s∑

i=1

(xi)
τ (xi)

1−τ ≤ σ1−τ

s∑
i=1

xτi = σ(σb)−τ (4.7)
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Finally, using 4.4, and a technique similar to the inequality above, we have the following
bound for the third term:

s∑
i=1

|Di|
|X|

≤ 19

(
λ

b

) 1
2

2∑
i=1

√
xi ≤ 19

20
(σb)−τ (4.8)

Substituting inequalities 4.6, 4.7, and 4.8, into Equation 4.5, we obtain the following contra-
diction to our choice of τ in 4.3:

21−1/τ

b
+

(
σ +

19

20

)
(σb)−τ ≥ 1

Note that if the above theorem holds for some τ = τ0, then it holds for all constants
τ ∈ (0, τ0). Hence, it is possible to choose small enough non-zero values of τ for which the
theorem holds. We shall use this fact while proving the EH-property for C5 below. The
above theorem is essentially used in the following proof to find a large homogeneous set in a
τ -critical C5-free graph G, thereby leading to a contradiction.

We end this chapter with the proof of the EH-property for C5.

Theorem 4.3.3. [9] The cycle on five vertices, C5, has the EH-property.

Proof. Fix some σ < 1/400 and b > 0 such that Theorem 3.2.3 is satisfied for σ and k = 5.
Now choose a constant 0 < τ < 1/2, small enough so that Theorem 4.3.2 holds and the
following inequality is satisfied:

b

400σ
≥ (400σ)

1
τ
−2 (4.9)

Choosing such a small enough τ is made possible by the remark above, and due to the fact
that 400σ < 1 makes the right side of the inequality strictly increasing in τ and tending to
zero at τ = 0.

Claim: C5 has the EH-property with γ(C5) ≥ τ/2.

Suppose Not! Then, there exist C5-free graphs G with hom(G) < |G|τ/2, and hence
α(G)ω(G) < |G|τ . Let G be a graph satisfying the latter inequality with a minimal number
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of vertices. Then, G is τ -critical, as for all proper induced subgraphs G′ < G, we have
that α(G′)ω(G′) ≥ |G′|τ . By Theorem 3.2.3, there exists X ⊂ V (G) such that |X| ≥ b|G|
and either G[X] or G[X] has maximum degree no more than σb|G|. As τ -criticality and
C5-freeness are preserved under taking complements, we can choose our τ -critical graph G

such that G[X] has maximum degree σb|G|, by switching G and G if necessary.

Applying Theorem 4.3.2 to this graph, we see that G has a tied (t,
b |G|

400σ t2
)-comb in G[X]

with t ≥ 1/400σ. Consider any tooth Bi of the tied-comb, then we have:

α(Bi)ω(Bi) ≥ |Bi|τ ≥
(

b

400σ t2

)τ

· |G|τ (By τ -criticality of graph G)

≥ (400σ)τ(
1
τ
−2) · |G|

τ

t2τ
(From Equation (1))

≥ t2τ−1 · |G|
τ

t2τ
=

1

t
|G|τ (As t ≥ 1

400σ
and τ ≤ 1/2)

Further, let v ∈ V (G) be the knot of the tied comb, and pick any two vertices bi ∈ Bi and
bj ∈ Bj from two distinct teeth. If bi, bj are adjacent, then the vertices {v, ai, aj, bi, bj} induce
a C5 in G, by the structure of a tied-comb. As G is C5-free, all Bi are pairwise anti-complete
and thus, α(G) ≥

∑t
i=1 α(Bi). Consequently, we have:

α(G)ω(G) ≥
t∑

i=1

α(Bi)ω(G) ≥
t∑

i=1

α(Bi)ω(Bi) ≥
t∑

i=1

1

t
|G|τ = |G|τ

Thus, α(G)ω(G) ≥ |G|τ , thereby contradicting the τ -criticality of G. Thus, by contradiction,
C5 has the EH-property with γ(C5) ≥ τ/2.
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Chapter 5

Towards the EH-Property for P5

Presently, P5, the path on five vertices, and its complement, are the only graphs with at
most five vertices for which the EH-property is not known. In this chapter, we attempt to
make some progress towards investigating the EH-property for these graphs, specifically, for
P5. This chapter comprises entirely original work.

5.1 Reduction to Dense Graphs

Let us revisit the proof of Theorem 4.3.3. It can be observed that there are precisely two
instances where individual properties of the graph C5 get used while proving the EH-property:

1. To show that the teeth of the tied comb are all pairwise disjoint, for otherwise, we
could find an induced C5 in the given C5-free graph; and

2. To make Theorem 4.3.2 applicable in both the cases generated by Rödl’s theorem, by
allowing to jump between G and G, while preserving the C5-freeness. This is possible
as C5 is self-complementary.

The former of these instances was useful in constructing a large independent set in the
chosen C5-free τ -critical graph in order to reach a contradiction. The construction was
primarily facilitated by the structure of the tied-comb and the C5-freeness of the graph as
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follows: If v is the knot of the tied-comb, and bi, bj are vertices from two distinct teeth, Then
consider the set of vertices S = {v, ai, aj, bi, bj} in the graph G. By the definition of a comb,
(ai, bi), (aj, bj) ∈ E(G) and (ai, bj), (aj, bi) /∈ E(G). further, v is adjacent to ai, aj, but is
non-adjacent to bi, bj; and (ai, aj) /∈ E(G) as they form an independent set. As a result, S
would induce a C5 in G if bi, bj are adjacent vertices. It follows from the C5-freeness of G,
that all Bi are pairwise anti-complete, and so each of their independent sets, of size α(Bi),
add up to return a large independent set in G.

We make the following observation. Note that other than (bi, bj), all other edges and
non-edges in S have been fixed by the structure of the tied comb, and we saw that S induces
a C5 if bi, bj are adjacent. However, if bi, bj are non-adjacent, then the same set of vertices S
induces a P5 in the graph G! Thus now, the teeth of a tied comb in any P5-free graph must
be pairwise complete, and so the cliques in Bi can be merged, instead of independent sets,
to obtain a sufficiently large clique in the P5-free graph G.

However, the proof for C5 does not entirely follow for P5, simply because P5 is not self-
complementary, and thus does not satisfy the second instance above. Stated otherwise,
the case from the proof of Theorem 4.3.3, where G[X] has a bounded maximum degree,
does not get resolved without the self-complementarity of C5, and hence, stays unresolved
while extending the proof to P5. Despite several attempts, we found it difficult to find a
similar version of Lemma 4.3.2, which works for the case above. Nevertheless, we obtain an
equivalent reduction of the EH-property for P5 in terms of ‘dense’ graphs, as we shall prove
next.

Let us begin by making precise the notion of dense graphs used by us. Classically, they
contain the set of all graphs with Θ(|G|2) many edges. However, we shall restrict ourselves
to the subclass of such graphs with a minimum degree at least β · |G| for some constant
β > 1/2. More formally,

Definition 5.1.1. A Graph G is defined to be β-dense for some constant β > 1
2
, if it has

minimum degree at least β · |G|.

We shall occasionally use the term dense graphs to denote β-dense graphs when the choice
of β is unclear or immaterial. Consider the following version of the EH-property restricted
to dense graphs:

Definition 5.1.2. A Graph H is said to have the dense EH-property, if there exist constants
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β > 1/2, c > 0, and N0 ∈ N, such that every β-dense H-free graph on at least N0 vertices
has hom(G) ≥ |G|c.

We prove the following theorem for P5, thereby giving an equivalent, but reduced version
of the EH-property for P5.

Theorem 5.1.1. P5 has the dense EH-property if and only if it has the EH-property.

Proof. If P5 has the EH-property, then it also has the dense EH-property, since every P5-free
graph G, including dense graphs, has hom(G) ≥ |G|γ(P5). It then suffices to show that the
dense EH-property for P5 implies the EH-property as well.

So, suppose P5 has the dense EH-property. Then, there exist constants β > 1/2, c > 0

and N0 ∈ N such that, every large enough P5-free β-dense graph G with |G| ≥ N0 has
hom(G) ≥ |G|c. Fix some constant 0 < σ < min{1/400, 1− β} and choose b > 0 such that
Theorem 3.2.3 holds for the chosen value of σ and k = 5. Then, for every P5-free graph G,
there exists XG ⊂ V (G) such that |XG| ≥ b|G| and either G[XG] or G[XG] has maximum
degree no more than σb|G|. We choose one of these possibilities for each such graph G and
partition the class of P5-free graphs into two disjoint sets G1 and G2, as follows:

G1 = {G ∈ G, P5-free : G[XG] has maximum degree at most σb|G| }

G2 = {G ∈ G, P5-free : G[XG] has maximum degree at most σb|G| }

We look at graphs in each of these parts separately.

Case I: G is a P5-free graph with G ∈ G2.

Let 0 < τ1 < c. Assume G is large enough so that the following hold:

b|G| − 1 ≈ b|G| and |G| ≥ max

N0

b
,

(
1

b

) c

c− τ1

 .

Let N be the size of the smallest graph in G2 that satisfies these conditions. Note that the
conditions ensure that for all graphs G ∈ G2 on at least N vertices, we have |XG| ≥ N0 and
(b|G|)c ≥ |G|τ1 . Now, as G[XG] has maximum degree at most σb|G| and |XG| ≥ b|G|, we see
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that the P5-free graph G[XG] has minimum degree given by:

δ(G[XG]) = |XG| − 1−∆(G[XG]) ≥ |XG| − σb|G| ≥ (1− σ)|XG| ≥ β|XG|

Thus, G[XG] is β-dense with |XG| ≥ N0. By the dense EH-property, we see that for all
graphs G ∈ G2 with |G| ≥ N , we have:

hom(G) ≥ hom(G[XG]) ≥ |XG|c ≥ (b|G|)c ≥ |G|τ1

Now, as we have done earlier, we shift from this asymptotic statement to its non-asymptotic
version, which is crucial for the use of τ -criticality in the next case. Recall that in Section 2.4,
we defined for every graph G, the constant δG = log(hom(G))/ log(|G|) such that hom(G) =

|G|δG . Then define τ ∗ as follows:

τ ∗ := min {τ1, min{δG : G ∈ G2 and |G| < N}}

As there are finitely many graphs on at most N vertices and as each δG > 0, the last term
is non-zero, thereby making τ ∗ ̸= 0. Hence, for all graphs G ∈ G2, we have hom(G) ≥ |G|τ∗

for some constant τ ∗ > 0.

Case II: G is a P5-free graph with G ∈ G1.

Now choose a constant 0 < τ < min{1
2
, τ ∗}, small enough so that Theorem 4.3.2 holds

for the chosen σ, b; and the following inequality is satisfied:

b

400σ
≥ (400σ)

1
τ
−2 (5.1)

We have seen in the proof of Theorem 4.3.3 that choosing such a τ is indeed possible.

Suppose, for contradiction, that there exist P5-free graphs G ∈ G1 with hom(G) < |G|τ/2,
and hence α(G)ω(G) < |G|τ . Then, there is a graph G ∈ G1 satisfying the latter inequality
with a minimal number of vertices. Every proper induced subgraph G′ < G is such that
either G ∈ G1 and α(G′)ω(G′) ≥ |G′|τ by minimality; or G′ ∈ G2. In the latter case, we have
α(G′)ω(G′) ≥ hom(G′) ≥ |G′|τ∗ ≥ |G′|τ . Thus, by definition, G is τ -critical and satisfies
the requirements of Theorem 4.3.2 since G ∈ G1.

Applying Theorem 4.3.2 to this graph, we see that G has a tied (t,
b |G|

400σ t2
)-comb in
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G[XG] with t ≥ 1/400σ. Consider any tooth Bi of the tied-comb, then we have:

α(Bi)ω(Bi) ≥ |Bi|τ ≥
(

b

400σ t2

)τ

· |G|τ (By τ -criticality of graph G)

≥ (400σ)τ(
1
τ
−2) · |G|

τ

t2τ
(From Equation (1))

≥ t2τ−1 · |G|
τ

t2τ
=

1

t
|G|τ (As t ≥ 1

400σ
and τ ≤ 1/2)

Further, let v ∈ V (G) be the knot of the tied comb, and pick any two vertices bi ∈ Bi and
bj ∈ Bj from two distinct teeth. If bi, bj are non-adjacent, then the vertices {v, ai, aj, bi, bj}
induce a P5 in G, by the structure of the tied-comb. As G is P5-free, all Bi are pairwise

complete and thus, ω(G) ≥
t∑

i=1

ω(Bi). Consequently, we have:

α(G)ω(G) ≥
t∑

i=1

α(G)ω(Bi) ≥
t∑

i=1

α(Bi)ω(Bi) ≥
t∑

i=1

1

t
|G|τ = |G|τ

Thus, α(G)ω(G) ≥ |G|τ , thereby contradicting the τ -criticality of G. Thus, by contradiction,
all graphs G ∈ G1 have hom(G) ≥ |G|τ/2. Further, as τ ≤ τ ∗, it follows from Case I and Case
II, that all P5-free graphs have hom(G) ≥ |G|τ/2 and consequently, P5 has the EH-property
with γ(P5) ≥ τ/2 > 0.

Thus, we can conclude that in order to prove the EH-property for P5, we can restrict
ourselves to working with dense P5-free graphs. However, note that while there could be
more ways to prove the EH-property for a graph H; having a class of graphs closed under
complements is often more helpful in finding a proof, simply because homogeneous sets are
preserved under complements as well. Take for instance, the class of H-free graphs with
H = {P5, P5}. This is a subclass of P5-free graphs, with the added benefit of being closed
under complements. Thus, using a method similar to the proof of Theorems 4.3.3 and 5.1.1,
it can be shown that H has the EH-property as well. Stated otherwise, It can be shown that
H = {P5, P5} had the EH-property as well:

Theorem 5.1.2. There exists a constant c > 0, N ∈ N, such that every {P5, P5}-free graph
G on at least N vertices has hom(G) ≥ |G|c.

The above result was first proven by Gyárfás in [20], where he used a generalised notion of
strong perfectness to show that χ(G) ≤ ω(G)2 for all {P5, P5}-free graphs G. The reflections
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by Gyárfás also motivated the search for polynomial-sized homogeneous sets in {H,H}-free
graphs, for any given graph H, and presently, the EH-property is known to be true for
many such sets of the form H = {H,H}. For instance, in 2014, Maria Chudnovsky and
Paul Seymour [10] proved that H = {P6, P6} had the EH-property by showing that H-free
graphs are α-narrow. Around the same time, N. Bousquet, A. Lagoutte and S. Thomassé,
[4] independently showed that the set {Pk, Pk} has the EH-property for all k ∈ N. They
used the notion of bicliques (also known as pure pairs) and the Rödl’s Theorem (Theorem
3.2.1) to find polynomial-sized perfect induced subgraphs in {Pk, Pk}-free graphs. However,
the ability to switch between a graph and its complement was an essential component in the
proofs of all the results mentioned above.

5.2 Dense Graphs and Distance to Co-graphs

The previous section, specifically Theorem 5.1.1, suggests that we focus our attention on
large homogeneous sets in dense P5-free graphs. One method to do so, as we saw in the case
of P4 and the Bull, is to search for large induced perfect subgraphs in the given graph. In
this section, we explore whether it is possible to find large co-graphs in dense P5-free graphs.

Recall that co-graphs, a subset of perfect graphs, are precisely the set of P4-free graphs,
and any co-graph G has a homogeneous set of size at least

√
|G|. Thus, if a graph can

be made P4-free by deleting a few vertices, then the above facts can be used to find large
homogeneous sets in the graph. Keeping this in mind, we shall call a subset of vertices,
S ⊂ V (G), an induced P4 vertex cover if it intersects the vertex set of every induced P4 in
the graph G. The minimum cardinality of such a set is also called the distance to cograph
number of the graph G, denoted here by IPV C4(G).

Note that as P4 is a self-complementary graph, every subset S ⊂ V (G) induces a P4 in
G if and only if it induces a P4 in G as well. Hence, for all graphs G, we have IPV C4(G) =

IPV C4(G). Further, mapping all induced P4s in the graph G to its outer pair of edges
gives an injective function from the set of induced P4s in G to E(G)×E(G), and thus every
graph G with m edges contains at most m2 many induced P4s. Both these facts roughly
suggest that the class of sparse, and hence dense graphs too, may have a small, perhaps
linearly bounded, distance to co-graph number. This explains our motivation to look for
large co-graphs in dense P5-free graphs. More precisely, if there exists a constant c > 0
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such that for all β-dense P5-free graphs G, we have IPV C4(G) ≤ c|G|, then removing these
few vertices gives us a P4-free induced subgraph of size at least (1 − c)|G|. Consequently,
hom(G) ≥

√
(1− c)|G| ≥ |G|τ for some τ < 1/2 and |G| sufficiently large, thereby proving

that P5 has the dense EH-property, and hence the EH-property, as was required.

Let us first just focus on dense graphs to get a flavour of the problem. We shall look at
P5-free dense graphs later in the section. Recall that by dense graphs, we simply refer to β-
dense graphs for some β > 1/2. We wish to determine if there exist constants 0 < c < 1 and
β > 1/2, such that for every β-dense graph G, we have IPV C4(G) ≤ c|G|. Unfortunately,
we answer this question in the negative as follows:

Lemma 5.2.1. For every constant c ∈ (0, 1), there is some graph G for which the distance
to co-graph number is greater than c|G|.

Proof. Fix some c ∈ (0, 1). Suppose, for contradiction, that every graph G has an induced
P4 vertex cover of size at most c|G|. Then, G has an induced P4-free subgraph of size at least
(1− c)|G|, and thus has a homogeneous set of size at least k =

√
(1− c)|G|. Consequently,

any graph on
k2

1− c
vertices contains a Kk or an Ik, and hence the Ramsey number R(k, k) ≤

k2

1− c
∀ k ∈ N. This contradicts Erdős’ lower bound given by R(k, k) > 2

k
2 [15]. Thus, by

contradiction, there exists some graph with IPV C4(G) ≤ c|G|.

Now that we have shown the existence of a graph with arbitrarily large distance to co-
graph, we use it to construct β-dense graphs G with IPV C4(G) > c|G|, for any β > 1/2

and c > 0, as we had claimed earlier.

Theorem 5.2.2. For all constants c ∈ (0, 1) and β > 1/2, there exists a β-dense graph G
for which IPV C4(G) > c|G|.

Proof. Fix constants c, β as above. By the previous lemma, there exists a graph, say H, for
which IPV C4(H) > c|H|. Choose m ∈ N such that the following holds:

m >
∆(H) + 1

(1− β) · |H|

where ∆(H) refers to the maximum degree of H. Now, we construct a graph G∗ by taking
m disjoint copies of the graph H and let the graph G = G∗ be its complement. We prove
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that G is the required graph. Note that ∆(G∗) = ∆(H). Further,

IPV C4(G) = IPV C4(G
∗) =

∑
m

IPV C4(H)

where the summation is taken over all m disjoint copies of the graph H. Thus, IPV C4(G) >

m · c|H| = c|G|, as was required. The theorem now follows by the following calculation of
δ(G):

δ(G) = |G| − 1−∆(G∗) = |G| − (1 + ∆(H)) > |G| − (1− β)m|H| = β|G|

Thus, our question gets answered negatively when focusing on just dense graphs. Let
us now enforce the additional restriction of P5-freeness, as was originally required, and ask
whether there exist constants 0 < c < 1 and β > 1/2, such that every β-dense P5-free
graph G has IPV C4(G) ≤ c|G|. It is expected that both, the high density of edges and
P5-freeness, should act together to constrain the number of induced P4s in the graph G, and
provide an answer in the affirmative. However, once again, we show that our question takes
on a negative answer.

We look at the following construction suggested by Dr Alex Scott to show that the
constants c, β above, do not exist. Let G = C5, the cycle graph on five vertices, and let
SG = {Gn} be the sequence of graphs obtained after successive substitutions, as defined in
Section 2.4. As C5 is P5-free and P5 is substitution prime, it follows from Lemma 2.4.3 that
all Gn ∈ SG are P5-free as well. Further, we have |Gn| = 5n+1, with G0 = C5.

Let us calculate the distance to co-graph IPV C(Gi) for each Gi ∈ SG recursively. Recall
that the graph Gi+1 ∈ SG can be thought of as the graph G, each of whose vertices (called
bags) contain a copy of the graph Gi. Let X,Xi, and Xi+1 be the smallest induced P4 vertex
covers of G,Gi, and Gi+1, respectively. Then, any induced P4 vertex cover of Gi+1 must
contain entire bags in X ⊂ V (G) (to cover all induced P4s in the skeleton graph G) and
must also contain the vertices Xi from each of the remaining bags in V (G)\X (to cover all
induced P4s in Gis of the remaining bags). It can be checked that this construction gives the
smallest induced P4 vertex cover of Gi+1. Thus, we have the following recurrence relation:

IPV C4(Gi+1) = IPV C4(G) · |Gi| + (|G| − IPV C4(G)) · IPV C4(Gi)
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By substituting |G| = 5 and IPV C4(G) = IPV C4(C5) = 2, we obtain:

IPV C4(Gi+1) = 2|Gi| + 3 · IPV C4(Gi)

Solving the recurrence relation using generating functions, with the initial condition IPV C4(G) =

2, we obtain the following solution:

IPV C4(Gi) =

[
1−

(
3

5

)i+1
]
|Gi|

As the term 1− (3/5)i+1 → 1 as i→ ∞, given any constant c < 1, we can find i ∈ mathbbN

such that IPV C4(Gi) ≥ c|Gi|. Thus, we have the following analogue of Lemma 5.2.1:

Lemma 5.2.3. For every constant c ∈ (0, 1), there is some P5-free graph G for which the
distance to co-graph number is greater than c|G|.

Now, we proceed as in the proof of Theorem 5.2.2. Let 0 < c < 1, β > 1/2 be given. By
the previous theorem, there is a P5-free graph G, with IPV C4(G) ≥ c|G|. Construct the
graph G∗ by taking m many disjoint copies of G, and consider the graph G∗. Observe that
G∗ is P5-free, and thus, the graph G∗ is P5-free. The following theorem now follows by an
appropriate choice of m:

Theorem 5.2.4. For all constants c ∈ (0, 1) and β > 1/2, there exists a β-dense P5-free
graph G for which IPV C4(G) > c|G|.

Thus, contradictory to our intuitions, it is not possible to make all dense P5-free graphs
G P4-free, by deleting at most linearly many vertices. The above theorems also shed some
light on the size of the largest induced cographs in a graph. Define CoG(G) to be the size
of the largest induced subgraph in G which is a cograph. Note that S ⊂ V (G) is a cograph
in G if and only if V (G)\S is an induced P4 vertex cover in G. Thus, we have:

IPV C4(G) > c|G| ⇐⇒ CoG(G) < (1− c)|G|

The previous theorem indicates that IPV C4(G) is not bounded above by c|G| when restricted
to the class of β-dense P5-free graphs. Consequently, the CoG(G) too is not bounded below
by some linear function (1− c)|G| over the class of β-dense P5-free graphs for any β > 1/2.
Stated otherwise, we obtain the following theorem:
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Theorem 5.2.5. For all constants c, β ∈ (0, 1), there exists a β-dense P5-free graph G which
contains induced cographs of size at most c|G|.

Therefore, in this section, we attempted at trying to find linear-sized co-graphs in all
dense P5-free graphs. This is a much stronger requirement than what is claimed by the
EH-property for P5. Thus, finding an efficient vertex deletion algorithm to obtain a P4-free
subgraph might still be potentially useful. While we looked at linear-sized induced P4-vertex
covers, showing that IPV C4(G) ≤

(
1− 1

|G|c

)
|G| for any 0 < c < 1 is sufficient to prove the

EH-property as well. We hope that the assumption of high density might be instrumental
in proving the bounds above.
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Chapter 6

Paley Graphs and Self-Complementarity

Over the past few chapters, we saw that the self-complementary nature of H was highly
useful in most of the proofs seen till now. This is expected, as the Erdős-Hajnal conjecture
primarily deals with hom(G), which is preserved under complements, and with cliques and
independent sets, which switch roles on taking the complement. Thus, some freedom of
switching from G to G is highly desirable and can be achieved if and only if H is self-
complementary. In this section, we show that it is indeed possible to reduce the conjecture
by focusing our attention on a class of self-complementary prime graphs. We shall define the
Paley graphs, which are of interest to us, and use them to equivalently reduce the Erdős-
Hajnal Conjecture in the last section. Proofs in the last section constitute original work. We
first begin with a short background in quadratic residues of a finite field and their properties.

6.1 Quadratic Residues

Let F be a field and let F× be the set of non-zero elements in F . We are interested in
studying the properties of the set of non-zero squares in this field, which are usually known
as the quadratic residues of F .

Definition 6.1.1. An element x ∈ F× is defined to be a quadratic residue of F , if there
exists an element a ∈ F× such that x = a2 in the field F . Else, x is said to be a quadratic
non-residue of F .
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The set of quadratic residues and the set of quadratic non-residues of a field F shall be
denoted as Res(F ) and NRes(F ), respectively. Further, the term quadratic shall be dropped
whenever it does not call for any confusion. Note that by definition, the additive identity 0F

is neither a residue nor a non-residue of F .

We shall restrict ourselves to exploring residues and non-residues of finite fields with odd
orders. Recall that the characteristic of a field, denoted by char(F ), is the smallest integer
m for which the sum of m multiplicative identities 1F + 1F + . . . + 1F equals the additive
identity 0F in the field F . Then, the following properties of a finite field are well-known (See
Chapter 2 of [25]):

Theorem 6.1.1. Let Fq be a finite field of order q and characteristic p, then we have:

(a) All finite fields on q elements are isomorphic. Thus, Fq is unique up to isomorphism.

(b) char(Fq) = p is prime, and there exists an integer r such that q = pr.

(c) The map x 7→ xp is an automorphism on Fq (known as the Frobenius map).

(d) The multiplicative group F×
q is cyclic with order q − 1.

Observe that if Fq is a finite field of even order, then it has characteristic 2. Conse-
quently, the surjective property of the Frobenius map from the previous theorem implies
that Res(Fq) = F×

q . Things become more interesting as non-residues emerge in finite fields
of odd order.

Let us look at some examples. Consider q = 5. Then char(Fq) = 5, and F×
q has four

elements, namely 1, 2, 3, and 4. Squaring each of these gives the set of quadratic residues of
F5. So, 12F = 1F , 22F = 4F , 32F = 9 = 4F , and 42F = 16 = 1F , as multiples of five equal zero in
fields of characteristic 5. Thus, Res(F5) = {1, 4} and NRes(F5) = {2, 3}. Similarly, residues
and non-residues can be calculated for other primes. For instance, Res(F11) = {1, 3, 4, 5, 9}
and Res(F13) = {1, 3, 4, 9, 10, 12}.

Note that finite fields with non-prime order q enjoy a slightly different structure as com-
pared to finite fields of prime order, for they are not a subset of integers and hence, are not
isomorphic to Zq, the ring of integers modulo q. See [25] for more details. For instance, let
us look at the finite field of order 9. As 9 = 32, the finite field F9 is said to be an extension of
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F3 of order 2, and is defined as a two-dimensional vector space over F3 generated by the basis
elements {1F , x}. Here x is simply a root of the irreducible polynomial X2 + 1 over F3, and
thus satisfies the equation x2+1 = 0. This equation, along with the fact that 3F = 0F , can be
used to generate the multiplication table for F9 = {0, 1, 2, x, x+1, x+2, 2x, 2x+1, 2x+2}.
For example, (x+ 1)2 = x2 + 2x+ 1 = 2x, or (2x)2 = 4x2 = 3x2 + x2 = x2 = x2 + 1+ 2 = 2.
Now, the residues can be calculated simply by squaring each non-zero element, as before.
We obtain Res(F9) = {1, 2, x, 2x} and NRes(F9) = {x+ 1, 2x+ 1, x+ 2, 2x+ 2}.

However, the residues of finite fields of odd orders share many common properties which
we shall now explore.

Theorem 6.1.2. If q is an odd prime power, then |Res(Fq)| = |NRes(Fq)| =
q − 1

2
.

Proof. Let q = pr be an odd prime power, and let Fq be the finite field on q elements. Define
the surjective function f : F×

q → Res(Fq) with the map x 7→ x2. Let w ∈ Res(Fq), then
there exists x ∈ F×

q such that x2 = w. It follows that {x,−x} ⊂ f−1(w). further, for any
y ∈ f−1(w), we have y2 = x2, and hence y = ±x. Consequently, f−1(w) = {x,−x} ∀w ∈
Res(Fq).

As char(Fq) = p > 2, we see that for every non-zero element x, the difference x− (−x) =
x(1F + 1F ) ̸= 0. Thus, the elements x and −x are distinct whenever x ̸= 0, and so every
element of Res(Fq) has a pre-image under f with exactly two elements. It follows that

|Res(Fq)| =
|F×

q |
2

=
q − 1

2
and |NRes(Fq)| = |F×

q | − |Res(Fq)| =
q − 1

2

Henceforth, we shall only consider finite fields of odd order in our explorations. Let us
begin by looking at the multiplicative properties of residues and non-residues over such fields.

Theorem 6.1.3. Let Fq be a finite field of odd order, then:

• If x, y ∈ Res(Fq), then x · y ∈ Res(Fq).

• If x, y ∈ NRes(Fq), then x · y ∈ Res(Fq).

• If x ∈ Res(Fq) and y ∈ NRes(Fq) , then x · y ∈ NRes(Fq).
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In order to prove this theorem, we shall define and study scaling functions.

Definition 6.1.2. Given a field Fq and a ∈ F×
q , we define the function SCa : F×

q → F×
q

mapping x 7→ a · x as the scaling map at a.

Note that the scaling maps are bijective with inverses given by SC−1
a = SCa−1 . Further,

the product a · b ∈ F×
q can be represented as both SCa(b) and SCb(a), which would be

useful in our proof. Let us look at scaling maps at residues and scaling maps at non-residues
separately:

Lemma 6.1.4. Let Fq be a finite field of odd order q and let a ∈ Res(Fq). Then, the scaling
map SCa maps residues to residues, and non-residues to non-residues.

Proof. As a ∈ Res(Fq), there exists a non-zero element b such that b2 = a. If x ∈ Res(Fq),
then x = y2 for some y ∈ F×

q , and thus SCa(x) = b2y2 is a residue of Fq. Now consider the
case when x is a non-residue of Fq. If SCa(x) ∈ Res(Fq), then there is a non-zero element
y for which SCa(x) = a · x = y2. As a ̸= 0, we have that x = a−1 · y2 = (b−1y)2, thereby
contradicting the fact that x is a non-residue. Thus SCa maps non-residues to non-residues,
as was required.

Lemma 6.1.5. Let Fq be a finite field of odd order q and let a ∈ NRes(Fq). Then, the
scaling map SCa maps residues to non-residues, and non-residues to residues.

Proof. Let a be a non-residue of Fq. Suppose x ∈ Res(Fq), Then Lemma 6.1.4 implies that
SCa(x) = SCx(a) is a non-residue of Fq. Thus, SCa maps residues to non-residues. Further,
since the scaling maps are bijective and |Res(Fq)| = |NRes(Fq)|, we conclude that each
non-residue has a residue as its pre-image under SCa. Consequently, the scaling function
SCa will map each non-residue to a residue, as was required.

Theorem 6.1.3 now follows directly from Lemmata 6.1.4 and 6.1.5. This multiplicative
property will be crucial for our proofs in the upcoming sections. In order to manifest this
property in a more applicable manner, the following function can be defined:
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Definition 6.1.3. The Quadratic Character on the finite field Fq of odd order q, is defined
as the function χq : Fq → {−1, 0, 1} with the mapping:

χq(a) :=


1, if a ∈ Res(Fq)

−1, if a ∈ NRes(Fq)

0, if a = 0

Note that a character on a field F is a group homomorphism from F× to C×. The
domain of a character can be extended to F by mapping 0F to itself, thereby preserving
its multiplicative nature. Theorem 6.1.3 justifies the use of the term character in the above
definition.

Next, we are interested in looking at the conditions for which the set of residues of Fq are
closed under additive inverses. Such a property would be useful to ensure that the defined
Paley graphs are undirected, as shall be seen in the upcoming sections. By the multiplicative
properties discussed above, it suffices to look for conditions when −1F is a residue of the
field, for χ(−a) = χ(a) iff χ(−1F ) = 1. The following theorem lays out this condition:

Theorem 6.1.6. Given the finite field Fq of odd order q, The element −1Fq is a residue of
Fq if and only if q ≡ 1 mod 4

Proof. Let Fq be the finite field of odd order q. From Theorem 6.1.1, we know that F×
q is a

cyclic group of order q − 1. Let a ∈ F×
q be the generator of this group. Then q − 1 is the

smallest positive integer n for which an = 1. Further, any non-zero element x of the field is
of the form ak for some integer k ∈ [q − 1] and satisfies the equality xq−1 = 1F .

Now −1F = am for some m ∈ [q − 1],m ̸= q − 1. Then a2m = 1 and so q − 1 divides 2m.

As 2m < 2(q − 1), it follows that 2m = q − 1 or m =
q − 1

2
. Finally, an element x = ak is a

residue if there exists some element y = aj for which x = y2. Thus, k = 2j mod (q − 1). It
follows that k is even, as q− 1 is even too. Consequently, −1F is a residue if and only if the

integer m =
q − 1

2
is even, or when q ≡ 1 mod 4.

Recall that for primes p, the finite field Fp is isomorphic to Zp, the ring of integers modulo
p, and so, addition and multiplication in Fp simply overlap with the usual operations on Z
taken modulo p. Thus, it is possible to define the quadratic residues (non-residues) of a
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prime p by identifying them with the set Res(Fp) (NRes(Fp)). Perhaps this also explains
the origin of the term ‘quadratic residues’, for in Fp, they are simply the remainders of perfect
squares which remain after division by a prime p. The domain of the quadratic character χp

too can be extended to all integers by equating χp(a) = χp(b) whenever a ≡ b mod p. As a
result, it is possible to study the residues and non-residues of primes using number theoretic
concepts (see [33] for a detailed overview). The following theorems are examples of some of
the known results on the residues and non-residues of primes (See Sections 6.11 - 6.13 of [21]
for proofs and other discussions):

Theorem 6.1.7. Let p be an odd prime p, then 2 is a residue of p if and only if p ≡ 1

mod 8 or p ≡ 7 mod 8. It is a non-residue otherwise.

Theorem 6.1.8 (Law of Quadratic Reciprocity). Let p, q be two odd primes. Then,

χp(q) · χq(p) = (−1)
1
4
(p−1)(q−1)

Consequently, χq(p) = χp(q) if and only if p ≡ 1 mod 4 or q ≡ 1 mod 4.

Finally, we are interested in looking at a theorem on the distribution of integers into
residues and non-residues for the proof of Theorem 6.3.2. Given a bi-partition (A,B) of
a finite set of primes, Lemma 4.4 from [33] states that there exist infinitely many primes
p for which A ⊂ Res(Fp) and B ⊂ NRes(Fp). We further observed that all these primes
are congruent to 1 mod 4, which shall be crucially used in our results from the upcoming
section. We include a proof of this lemma to emphasise this fact:

Lemma 6.1.9. [33] If Π = {p1, p2, . . . , pk} is a non-empty finite set of primes and if ε :

Π → {−1, 1} is a fixed function, then there are infinitely many primes p ≡ 1 mod 4 for
which

χp(pi) = ε(pi) ∀ i ∈ [k]

In order to prove Lemma 6.1.9, we require the following well-known theorems from num-
ber theory:

Theorem 6.1.10 (The Chinese Remainder Theorem). Let m1,m2, . . . ,mk be pairwise co-
prime integers greater than 1, and let a1, a2, . . . , ak be integers, then there is a unique integer
modulo M = m1 ·m2 · . . . ·mk which satisfies the following system of congruences:

X ≡ ai mod mi ∀ i ∈ [k]
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Theorem 6.1.11 (Dirichlet’s Theorem on Primes in Arithmetic Progressions). If a, b are
two co-prime positive integers, then the arithmetic progression AP (a, b), with first term a

and common difference b, contains infinitely many primes.

See Section 8.1 in [21] and Section 4.4 in [33] for a proof of Theorem 6.1.10 and a discussion
on Theorem 6.1.11, respectively. Note that AP (a, b) refers to the arithmetic progression with
first term a and common difference b. We now end this section with a proof of Lemma 6.1.9:

Proof. Let the set Π and the function ε be given as above. Without loss of generality, assume
that the prime 2 ∈ Π, for otherwise, it can be added to the set Π and the function ε can be
extended to get a new equivalent instance of the theorem.

Arrange the primes in Π in ascending order, say, 2 = p1 < p2 < . . . < pk, and consider
the case when ε(2) = 1. Define a map pi 7→ wi, for i ≥ 2, such that: If ε(pi) = −1, then wi

is an odd number co-prime to pi for which χpi(wi) = −1; and wi = 1 otherwise. Note that
it is always possible to choose wi in the former case, as pi has a non-residue, say x < pi. If
x is odd, then set wi = xi, else set wi = xi + pi. Clearly, pi does not divide both xi and
xi + pi, and so wi is co-prime to pi. Observe that wi has been chosen in such a way that
χpi(wi) = ε(pi).

Now consider the set:

S = AP (1, 8) ∩

(
k⋂

i=2

AP (wi, 2pi)

)

Let p ∈ S be prime. Then p ≡ 1 mod 8, and thus p ≡ 1 mod 4. Further, from Theorem
6.1.7, χp(2) = 1 = ε(2). Moreover, for i ≥ 2, we have:

χp(pi) = χpi(p) (From Theorem 6.1.8 as p ≡ 1 mod 4)

= χpi(wi + 2pin) (As p ∈ AP (wi, 2pi))

= χpi(wi) = ε(pi) (By definition of χpi and the choice of wi)

Thus, any p ∈ S satisfies the requirements of the theorem, and hence, it suffices to show
that there are infinitely many primes in the set S. By Theorem 6.1.10, there is a positive
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integer M which satisfies the following system of congruences (These are well defined as all
wi are odd):

M ≡ wi − w2

2
mod pi ∀ i ≥ 2 ; M ≡ 1− w2

2
mod 4

We claim that the sequence A = AP (w2 + 2M, 8p2p3 . . . pk) ⊂ S. Let x ∈ A, then x =

w2 + 2M + n · 8P 1 where, P 1 = p2p3 . . . pk. First, note that using the congruences above,
2M = 8q + 1 − w2 for some integer q, and so x = 1 + 8(q + nP 1). Hence, x ∈ AP (1, 8).

Next, fix any i ≥ 2. Again, using the congruences above, 2M = 2piq + wi − w2 for some

integer q, and so x = wi + 2pi · (q + 4n
P 1

pi
). Hence, x ∈ AP (wi, 2pi). It follows that the

progression A is a subset of S.

Finally, we show that GCD(8P 1, w2 + 2M) = 1. Suppose not. then, they have a
common factor greater than 1. As w2+2M is odd, by choice of w2, the common factor must
be divisible by pi for some i ≥ 2. But this is not possible, as w2 + 2M ≡ wi mod pi ̸≡ 0

mod pi (Since wi and pi are co-prime). By contradiction, GCD(w2 + 2M, 8P 1) = 1.

It follows from Theorem 6.1.11, that the set A ⊂ S contains infinitely many primes.
Further, all these primes are of the form 1 mod 8 and hence are congruent to 1 mod 4.
Finally, for the case ε(2) = −1, replace AP (1, 8) with AP (5, 8) above, and the same proof
follows. Note that any number of the form 5 mod 8 is congruent to 1 mod 4 as well.

6.2 Paley Graphs

Let q be a prime power such that q ≡ 1 mod 4, and consider the finite field Fq with q

elements. The class of Paley graphs is defined as follows:

Definition 6.2.1. The Paleyq graph is the unique graph with vertex set Fq and edge set

E = {(u, v) : u− v ∈ Res(F×
q )}

Note that choosing q ≡ 1 mod 4 ensures that the Paleyq graph is undirected by the
virtue of Theorem 6.1.6. Further, the uniqueness of the Paleyq graph follows from the
uniqueness of Fq as stated in Theorem 6.1.1. Refer to [22] for a more detailed history and
introduction to Paley graphs.
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Figure 6.1: Examples of Paley graphs: (a) Paley9, (b) Paley13, and (c) Paley17.

Let us look at some examples of Paley graphs. The smallest Paley graph is C5, the
cycle on 5 vertices, with vertex set {1, 2, 3, 4, 5} and two nodes are adjacent if and only if
their difference is 1 or 4 modulo 5. Observe that the residues x and −x contribute to the
same edge. See Figure 6.1 for more examples of Paley graphs (their residues were calculated
in the previous section). Colours have been used to distinguish the set of edges formed by
different residues. All these Paley graphs have some surprising common properties. Let us
begin by proving the property most important to us, namely self-complementarity.

Theorem 6.2.1. The Paleyq graph is self-complementary.

Proof. Let G be the Paleyq graph, with vertex set Fq. Let a be any non-residue of F×
q , and

define the function f : V (G) → V (G) by the mapping f(x) = a · x. We prove that f is an
isomorphism from G to G.
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That f is bijective follows from the existence of its inverse g : V (G) → V (G) defined by
the mapping g(x) = a−1 · x. Note that a−1 exists as a ̸= 0. Next, observe that (x, y) is an
edge in G if and only if the quadratic character χq(y− x) = 1. Similarly, (x, y) is an edge in
G if and only if it is not an edge in G and so χq(y− x) = −1. Further, by the multiplicative
property of the quadratic character, χq(f(y) − f(x)) = χq(a)χq(y − x) = −1 · χq(y − x).
Hence, (f(x), f(y)) is an edge of G if and only if (x, y) is an edge of G, as was required.

As a corollary, we observe that Paley graphs are connected as they are self-complementary
and the complement of a disconnected graph is always connected.

Paley graphs are rich in properties. For instance, they are self-complementary, strongly
regular, connected graphs, with a well-known spectrum of eigenvalues. Roughly speaking,
most of these properties arise as a natural consequence of the high degree of ‘symmetry’
held by these graphs. Here, the notion of symmetry can be made precise by looking at
the automorphism group of Paley graphs and focusing on the properties of vertex and arc
transitivity satisfied by this class of graphs (See [19] for the notion of transitivity). Note
that arcs are simply edges in a graph G with an assigned direction.

Definition 6.2.2. A graph G is said to be vertex transitive, if for every pair of vertices
x, y, there is an automorphism of G which maps x to y.

Definition 6.2.3. A graph G is said to be arc transitive, if for every pair of directed edges
e, f , there is an automorphism of G which maps e to f while preserving their direction.

We first prove that Paley graphs are vertex and arc transitive. The proofs follow from [14].

Lemma 6.2.2. [14] Let G be the Paleyq graph. Let a ∈ Res(F×
q ) and b ∈ Fq. Then the

function f : V (G) → V (G) defined by f(x) = ax+ b is an automorphism on G.

Proof. Let G be the Paleyq graph, and let a, b, and f : V (G) → V (G) be defined as above.
It suffices to prove that f admits an inverse and preserves adjacencies. As a ̸= 0, the
multiplicative inverse a−1 exists in Fq. Let g : V (G) → V (G) be a function defined by
g(x) = a−1(x− b). It is easy to check that g is the desired inverse:

f(g(x)) = f(a−1(x− b)) = a(a−1(x− b)) + b = (x− b) + b = x

g(f(x)) = g(ax+ b) = a−1((ax+ b)− b) = a−1(ax) = x
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To show that f preserves adjacency, consider any two vertices x, y ∈ V (G). By definition
of the Paleyq graph, (x, y) ∈ E(G) if and only if the quadratic character χq(x − y) = 1.
Further, as a is a residue of (F )×q , we have that χq(a) = 1. By the multiplicative property
of the quadratic character, we have: χq(f(x) − f(y)) = χq(a(x − y)) = χq(x − y). Thus,
(x, y) ∈ E(G) if and only if (f(x), f(y)) ∈ E(G), as was to be shown.

Theorem 6.2.3. [14] Paley graphs are vertex-transitive and arc-transitive.

Proof. Let G be the Paleyq graph. We begin by proving that G is vertex-transitive. Let u, v
be any two vertices in G. Set w = v− u and define the function f : V (G) → V (G) using the
rule f(x) = x+w. By the previous lemma, f is an automorphism as 1 ∈ Res(F×

q ). Further,
f(u) = v, as was required.

For arc-transitivity, let (u1, v1) and (u2, v2) be any two edges in G. Define the function
g : V (G) → V (G) as follows:

g(x) =
u2 − v2
u1 − v1

· x +
u1v2 − v1u2
u1 − v1

Note that this function is well-defined as G contains no self-loops. It is easy to see that
g(u1) = u2 and g(v1) = v2. Further, as (u1, v1) and (u2, v2) are edges in G, we have:
χq(v2−u2) = χq(v1−u1) = 1. By the multiplicative property ofXq and the fact that v1−u1 ̸=

0, we see that χq((v1−u1)−1) =
χq(1)

χq(v1 − u1)
= 1, and consequently, χq(a) = χq((u2−v2)(u1−

v1)
−1) = 1. It thus follows from the previous lemma that g is an automorphism on G.

The transitivity properties ensure that all vertices, and likewise all edges, of a Paley

graph, share many common properties. This ensures that these graphs are Regular:

Theorem 6.2.4. The Paleyq graph is
q − 1

2
regular.

Proof. Let G be the Paleyq graph with vertex set Fq. Let x represent the vertex in G

corresponding to the additive identity 0Fq ∈ Fq. Then, any vertex y ∈ V (G) is adjacent to x

if and only if y is a quadratic residue in F×
q . It follows from Theorem 6.1.2 that d(x) =

q − 1

2
.

We conclude by noting that any vertex v ∈ V (G) has the same degree as x, for there exists
an automorphism mapping the vertex v to x by Theorem 6.2.3.
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In fact, Paley graphs satisfy a much stronger form of regularity which emerges when any
two vertices are considered simultaneously. We shall define and prove this property next, for
it plays a crucial role in proving that Paley graphs are substitution prime.

Definition 6.2.4. A graph G is said to be strongly regular with parameters (n, k, λ, µ) if
it is a k-regular graph on n-vertices such that:

• Every pair of adjacent vertices have λ common neighbours.

• Every pair of non-adjacent vertices have µ common neighbours.

Let us look at the number of common neighbours for adjacent and non-adjacent vertices
in the Paleyq graph.

Lemma 6.2.5. [14] Every pair of adjacent vertices of the Paleyq graph has exactly
q − 5

4
common neighbours.

Proof. Let G be the Paleyq graph and let x, y be any two adjacent vertices in G. Define
N = N(x) and M = N [x]c to be the set of neighbours and non-neighbours of x respectively.
Suppose that y has k neighbours in M . Pick any vertex v ∈ N . By Theorem 6.2.3, there
is an automorphism f : V (G) → V (G) that maps the directed-edge (x, y) to the directed-
edge (x, v) (making x a fixed point). As this map preserves adjacencies, it bijectively maps
elements of M onto M , and also maps all neighbours of y in M injectively into M : for if
w ∈M was adjacent to y, then f(w) is adjacent to f(y) = v and gets mapped to M as it is
non-adjacent to f(v) = v. Thus, every vertex in N has exactly k neighbours in M .

Next, asG is self-complementary, the setsM andN simply switch roles in the complement
graphG. Consequently, in the graphG, every vertex inM has exactly k non-neighbours inN .
Adding the number of edges and non-edges going across M and N , we have: k|N |+ k|M | =
|M | · |N |. It follows from |M | = |N | = q − 1

2
, that k =

q − 1

4
.

To conclude, observe that y has d(y) − k − 1 =
q − 5

4
neighbours in N (by subtracting

the k neighbours in M , and the neighbour x). Consequently, every pair of adjacent vertices

has exactly
q − 5

4
common neighbours in G.
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Lemma 6.2.6. [14] Every pair of non-adjacent vertices of the Paleyq graph has exactly
q − 1

4
common neighbours.

Proof. Let G be the Paleyq graph and let x, y be any two non-adjacent vertices in G. Define

the sets A = N(x) and B = N(y), each of cardinality
q − 1

2
. As G is self-complementary

and x, y are adjacent in G, they have
q − 5

4
common neighbours in G by Lemma 6.2.5. In

other words, there are
q − 5

4
vertices in G which are neighbours with neither x nor y in G,

and so |A ∪B| = q − q − 5

4
. The lemma follows from the following equation:

|A ∩B| = |A|+ |B| − |A ∪B| = q − 1

2
+
q − 1

2
− q +

q − 5

4
=

q − 1

4

The following theorem now follows from Theorem 6.2.4, and Lemmata 6.2.5 and 6.2.6.

Theorem 6.2.7. [14] The Paleyq graph is strongly regular with parameters (q,
q − 1

2
,
q − 5

4
,
q − 1

4
)

6.3 Reducing the Erdős-Hajnal Conjecture

Recall that, by Theorem 2.2.1, proving all substitution prime graphs satisfy the EH-property
is sufficient to prove the Erdős-Hajnal Conjecture. We first show that Paley graphs, as intro-
duced in the previous section, are substitution prime as well, thereby forming an important
class of graphs with respect to the conjecture.

Theorem 6.3.1. All Paley graphs are substitution prime graphs.

Proof. We shall prove by contradiction. Let G be the Paleyq graph, and suppose that G is
not a substitution prime graph. Then, by Theorem 2.3.1, the vertices of G can be partitioned
into three sets: S, K, and N where S is a non-trivial module and K (respectively N) is the
set of vertices complete (respectively anti-complete) to S. We shall count the elements of S
in two distinct ways:
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Method 1: By definition of a non-trivial module, |S| ≥ 2. Let x and y be two elements
in S. Note that all elements of K are common neighbours of x and y. By Theorem 6.2.7,

if x, y are adjacent, then they have exactly
q − 5

4
common neighbours, which lie in S or K.

Thus, |K| ≤ q − 5

4
. As x has exactly

q − 1

2
neighbours, including y and elements of K, we

have:
|S| ≥ |S ∩N [x]| = q − 1

2
− |K|+ |{x}| ≥ q + 7

4

Similarly, If x, y were not adjacent, then they have exactly
q − 1

4
common neighbours, which

lie in S and K. Hence, |K| ≤ q − 1

4
. Counting as above, we have:

|S| ≥ |S ∩ (N [x] ∪ {y})| = q − 1

2
− |K|+ |{x, y}| ≥ q + 7

4

In either cases, we have that |S| ≥ q + 7

4
.

Method 2: Let us focus on the set K. Note that K is non-empty, else either N would
be empty or a disconnected component of G. Both these conditions are not viable, as the
former violates the definition of a non-trivial module, and the latter contradicts the fact that
Paley graphs are connected. Thus, |K| ≥ 1.

Further, for any v ∈ K, we note that S ⊂ N(v). Therefore, as d(v) =
q − 1

2
, we conclude

that |S| ≤ q − 1

2
. Similarly, for any w ∈ S, the set N is a subset of non neighbours of

w, and so, |N | ≤ q − 1

2
. If |K| = 1 (say, K = {v}), then |S ⊔ N | = q − 1, which is only

possible if |S| = |N | = q − 1

2
. As a result, K = {v} has all its neighbours in S, and so N

becomes a disconnected component in G. As Paley graphs can are connected, we conclude
by contradiction, that |K| ≥ 2. Let x, y be two vertices in K. Then, all elements of S are

common neighbours of x and y. Thus, irrespective of the adjacency of x, y, |S| ≤ q − 1

4
.

Comparing both methods, we observe that:

|S| ≤ q − 1

4
<
q + 7

4
≤ |S|

Thereby contradicting the existence of S. Hence, G is a substitution prime graph.
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We wish to show that proving the EH-property for Paley Graphs is sufficient to prove
the conjecture. For this purpose, we make the following observation: If H1 is an induced
subgraph of H2, then, every H1-free graph is H2-free as well. This follows from the fact that
any graph containing an induced H2 must contain an induced H1 too, by the transitivity
of the induced subgraph relation. Thus every induced subgraph of a graph H satisfies the
EH-property if H satisfies the property itself, and consequently, it suffices for us to prove
that every graph is an induced subgraph of some Paley graph. We prove that next.

Note that it becomes easier to work with Paleyq graphs of prime order as the finite field
Fp coincides with Zp, the ring of integers modulo a prime p. This allows for the vertices to
be labelled using integers and makes way for the use of various number theoretic arguments
to study these graphs. We shall define such Paley graphs to be primitive.

Definition 6.3.1. The Paleyq graph is defined to be a primitive Paley graph if q is an odd
prime congruent to 1 mod 4.

Further, a graph G is an induced subgraph of a primitive Paleyq graph if and only if we
can label each vertex using distinct integers in such a way that the difference in the labels of
adjacent (non-adjacent) vertices are residues (non-residues) of Fq for every pair of vertices in
G. Our aim would be to find such labellings for every graph G by inducting on the number
of vertices in G.

Definition 6.3.2. We shall say that a graph G admits a residue numbering if there exists
an odd prime q ≡ 1 mod 4, and an injective label map a : V (G) → Zq, such that for every
pair of vertices x, y, the difference a(x) − a(y) ∈ Res(Fq) whenever (x, y) is an edge and is
a non-residue otherwise.

Note that every induced subgraph of a primitive Paley graph admits a residue numbering
with the label map as the inclusion function obtained by the virtue of the induced subgraph
relation.

We now prove that every graph is an induced subgraph of some primitive Paley graph. It
was brought to our attention that a similar theorem was proven by Béla Bollobás and Andrew
Thomason in [2] using "Weil’s theorem proving the Riemann hypothesis for algebraic curves
over finite fields". However, we provide an independent proof using Lemma 6.1.9:
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Theorem 6.3.2. Any graph is an induced subgraph of infinitely many primitive Paley graphs.

Proof. We induct on the number of vertices in the graph G.

The base case follows from the fact that K1, K2, and I2 are induced subgraphs of all
primitive Paley Graphs on at least five vertices. Now, let G be a graph on n vertices, and
let v ∈ V (G) be an arbitrary vertex of G. Then, by the induction hypothesis, there is an
odd prime z ≡ 1 mod 4 such that G\{v} is an induced subgraph of the Paleyz graph.

Let {a1, a2, . . . , an−1} be the numbers assigned to vertices of G\{v} in its embedding as
an induced subgraph of Paleyz, taken in ascending order and let X be the number to be
assigned to the vertex v in order to obtain a residue numbering for G. Define T to be the
set of prime factors for the elements of the set: { aj − ai : i < j, i, j ∈ [n− 1]}.

As T is a finite set, we can pick a set of primes P = {p1, p2, . . . , pn−1} not in T . Define
the following quantities:

M =
n−1∏
i=1

pi, Mi =
∏
j ̸=i

pj

As Mi is co-prime to pi, ∃ yi such that yiMi ≡ 1 mod pi, and let Mi,k =
Mi

pk
. For each

i ∈ [n− 1], define the terms bi as follows:

bi = ai ·
Miyi − 1

pi
+

∑
k ̸=i

ak ·Mi,k · yk

Note that bi is an integer, and by the Chinese remainder theorem, there is an integer c such
that c ≡ yi − bi · yi mod pi ∀ i ∈ [n− 1]. Define:

X =
n−1∑
k=1

ak ·Mk · yk + c ·M ; Xi = X − ai ∀ i ∈ [n− 1]

Claim: 1. pi|Xi, 2. pj ∤ Xi ∀ i ̸= j, and 3. p2i ∤ Xi.

Observe that Xi ≡ ai · (yi ·Mi − 1) mod pi ≡ 0 mod pi, thereby proving 1. Similarly,
for i ̸= j, Xi ≡ aj − ai mod pj. As pj /∈ T , we see that aj − ai ̸≡ 0 mod pj, and hence pj
does not divide Xi. Finally, 3. follows from the following equations:

Xi

pi
= bi + c ·Mi ≡ bi + (yi − biyi) ·Mi mod pi ≡ 1 mod pi
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We have shown that in the set P , only pi divides Xi and does so exactly. Let S be the
set of prime factors of Xi which are not in P ∪ T for all i ∈ [n− 1] and let W = P ∪ T ∪S.
We then define a multiplicative function ε : P → {−1, 1} as follows:

ε(p) = χz(p) ∀ p ∈ T, ε(p) = 1 ∀ p ∈ S

And ε(pi) are chosen such that ε(Xi) = ε(pi) · ε
(
Xi

pi

)
= 1 iff (v, vi) are adjacent, and −1

otherwise.

By Lemma 6.1.9, there is a prime q congruent to 1 mod 4, such that the quadratic
character χq, when restricted to W , equals the mapping given by ε. It follows that G admits
a residue numbering: for χq(ai − aj) = χz(ai − aj) equals 1 whenever (ai, aj) ∈ E(G) by the
induction hypothesis, and by the choice of ε(pi), the difference Xi ∈ Res(Fq) if and only if
v is adjacent to ai. Thus, G is an induced subgraph for some primitive Paleyq graph with
q ≡ 1 mod 4. The infinitude of primes in Lemma 6.1.9 ensures that the assigned label map
V (G) 7→ {a1, . . . , an−1, X} ⊂ Zq is an injective function for large enough primes q.

Essentially, in the proof of the previous theorem, we tried to extend a given residue
numbering of G\{v} to the graph G. In order to do so, we used the primes in P as control
switches to ensure that the differences Xi were residues if and only if (ai, v) ∈ E(G). This
control was enabled by ensuring that each pi ∈ P divides exactly one difference Xi, and none
other. Finally, the condition p2i ∤ Xi was necessary to establish the control, for otherwise,
χq(Xi) = χq(pi)

2 · χq(Xi/pi), and all control over χq(Xi) would be lost as χq(pi)
2 = 1

irrespective of the value of χq(pi). As a consequence of Theorems 6.3.1 and 6.3.2, we obtain
the following reduced conjecture equivalent to the Erdős-Hajnal conjecture:

Conjecture 6.3.3. Every Paley graph of prime order q has the EH-property.

Thus, it is possible to just focus on the self-complementary and substitution prime family
of primitive Paley graphs. This has several potential advantages, as the properties of these
graphs sit at a confluence of finite fields, graph theory, spectral graph theory, and number
theory. Further, the self-complementarity enables the use of various theorems, such as Rödl’s
Theorem and its versions (Theorem 3.2.3), which for instance, allow us to restrict to the class
of dense or sparse H-free graphs, as is best suited. Finally, there are also possibilities of
attempting some form of inductive proof for Conjecture 6.3.3, with the EH-property for C5

as the base case!
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Chapter 7

Conclusion and Future Directions

The Erdős-Hajnal Conjecture has been an exciting problem of interest over the past 25 years.
The present work done towards the problem has opened doors to many useful properties of
H-free graphs, for a given graph H. The conjecture also comes with some algorithmic
implications, as shown in [3]. For instance, the improved bounds claimed by the conjecture
provide for better fixed-parameter tractable algorithms of the Minimum Independent Set

problem, when restricted to certain classes of H-free graphs. The improvement generally
comes in the form of a kernel of lower size.

In this thesis, we took a look at some of the known results pertaining to this conjecture
and tried to incorporate them under a uniform framework of notations. We saw how the
substitution operation preserves the EH-property, and looked at the known proofs of the
property for P4, C5, and the bull. By taking inspiration from the case for C5, we were
able to reduce the EH-property for P5 to finding large homogeneous sets in dense P5-free
graphs. We further noted the significance of self-complementary graphs in relation to the
Erdős-Hajnal conjecture and saw how it facilitates the various proofs by allowing to switch
between G and its complement. To harness this desirable property of self-complementarity,
we looked at the class of Paley graphs. We showed that all Paley graphs are substitution
prime and that every graph is an induced subgraph of some Paley graph of prime order.
Consequently, we further reduced the Erdős-Hajnal conjecture to the equivalent problem of
focusing on the EH-property for the substitution prime self-complementary class of primitive
Paley graphs. As discussed towards the end of Section 6.3, we hope that this reduction proves
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useful in solving the conjecture.

While we explored a classical approach to the conjecture, there have been many other
approaches towards making progress on the problem. For instance, the authors of [26] take
a probabilistic approach to show that for any given graph H, almost all H-free graphs have
polynomial-sized homogeneous sets. The problem was also mapped to an equivalent version
in terms of tournaments, a type of directed graph, and much work has been done in this
version (See [6] for an overview). The authors of [5] tried to improve Erdős and Hajnal’s
original 2c

√
log |G| bound to show that all large enough H-free graphs G have hom(G) ≥

2c
√

log |G| log log |G|, which, as explained in [5], acts as a mid-point between Erdős-Hajnal’s
bound and the conjecture. Finally, the analogues of the conjecture for hypergraphs was
also studied in [12]. They showed that there is a version of the conjecture for uniform
3-hypergraphs which holds true; however, no analogue of the conjecture can be true in k-
uniform hypergraphs for k ≥ 4.

Searching for more graph operations which preserve the EH-property, and studying the
properties of τ -critical graphs, as done in the proof for C5 [9], are some possible future
directions of work on the conjecture. Further, it is also possible to look at a restricted
version of the conjecture as follows: If A is a proper sub-class of graphs, then we can ask
for all graphs H, whether every H-free graph in A has polynomial-sized homogeneous sets,
instead of looking at all possible H-free graphs. For instance, the conjecture readily holds
when restricted to perfect graphs or planar graphs. However, both these restrictions are
trivial, as they have polynomially large homogeneous sets even without the constraint of
H-freeness. The case of non-trivial restrictions is more interesting, and to the best of my
knowledge, the conjecture is not known to be true under any non-trivial restrictions. The
family of Ramsey graphs are a potentially good candidate for such a non-trivial restriction,
and we believe that they could hold some key insights into the conjecture.
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