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Abstract

Evolutionary therapies for cancer understand malignancies as adapting populations

under Darwinian selection. They use concepts from ecology and evolutionary biology

to deal with the emergence of resistance in these malignancies – a big problem in

cancer treatments. Extinction Therapy (ET) is an evolutionary therapy that aims for

complete eradication of the tumour. It fights the emergence of resistance with the

smart and effective use of drugs/treatments to exploit the vulnerability of a small or

declining population using multiple strikes (in the form of drugs, surgery, etc). In other

words, extinction therapy “kicks the tumour while it’s down”. In this thesis, we model ET

analytically using evolutionary rescue theory and run stochastic simulations to under-

stand the behaviour of a cancer population undergoing ET. We also perform predictive

mathematical modelling to aid the design and analysis of future experiments in ET. We

find that the timing of subsequent strikes (after the primary therapy) is a very impor-

tant determinant of the extinction probability. We calculate the optimal timing for these

strikes and show how it changes with other model parameters. This work is one of the

first few models of ET and sets the stage for future analytical and computational work

in the field.
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Chapter 1

Introduction

1.1 Evolutionary Therapies in Cancer

Cancer populations, in many ways, are akin to an ecosystem consisting of different
species. Just like species in an ecosystem interact, compete for resources, adapt to
changing environmental conditions and undergo natural selection, so do cancer cells in
a tumour’s ecosystem. Darwinian principles guide the evolutionary trajectories of the
many heterogeneous cancer subpopulations, which inevitably affects their response
to therapies (Iwasa, Nowak, and Michor 2006). Understanding the evolutionary pro-
cesses that drive cancer growth can provide valuable insights into developing more
effective therapies. (Korolev, Xavier, and Gore 2014; Enriquez-Navas, Wojtkowiak,
and Gatenby 2015).

Cancer therapy has come a long way in recent years, but resistance to treatment re-
mains a significant hurdle in the fight against the disease. Despite initial success in
reducing tumour size and symptoms, cancer cells often evolve and develop resistance
to the therapies used against them. This can lead to a relapse of the disease, making
it difficult to achieve long-term survival rates. Despite the critical role that resistance
plays in cancer outcomes, very few conventional treatments account for the evolution-
ary dynamics of cancer populations which can be leveraged to the patient’s benefit
(Aktipis et al. 2011).

One of the challenges of targeting specific molecular mechanisms is that cancer cells
can use a variety of adaptive strategies to develop resistance (Pressley et al. 2021).
Cancer cells can utilize a range of genetic mutations and alterations to evade thera-
pies. This means that targeting a single mechanism may be ineffective in the long term,
as cancer cells can quickly adapt and find alternative ways to survive (Greaves and
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Maley 2012). Therefore, a more comprehensive understanding of the diverse adaptive
strategies used by cancer cells is necessary to develop effective long-term solutions.

Mathematical modelling of clonal dynamics and emergence of resistance in cancer
can facilitate our study of fundamental principles governing the system, which is crit-
ical for optimizing the response and outcome of clinical treatments based on evolu-
tionary principles, specifically designed to fight resistance in cancer systems (Gatenby
and Brown 2020). Historical development of evolutionary therapies has followed a tra-
jectory that begins with exploration of eco-evolutionary concepts through theoretical
disciplines such as mathematics (West, Adler, et al. 2023). These concepts are sub-
sequently built upon by various studies to achieve a complete understanding of the
phenomenon. Laboratory experiments serve to apply these concepts and help elu-
cidate the process in a real-world setting. To further translate the findings to clinical
practice, modelling is used to calculate the effects of specific drugs and compounds on
the relevant system under controlled settings. Finally, the treatment undergoes clinical
trials. Therefore, a thorough comprehension of the eco-evolutionary dynamics of a
cancer population is the foundation of an evolutionary therapy.

1.1.1 The development of Adaptive Therapy

Adaptive therapy is a great example of an idea that began as a mathematical model
and developed into an evolutionary therapy in clinical trials. Contemporary cancer
treatments adhere to the notion that the ultimate objective is to achieve the maximal
feasible reduction in the size of the malignant cell population. This approach is typically
achieved through the implementation of Maximum Tolerated Dose (MTD), a therapeu-
tic strategy in which toxicity due to a treatment is the primary limit to the amount of
drug administered. Essentially, the MTD approach seeks to administer the maximum
possible dose that can eliminate the greatest number of cancer cells while avoiding
excessive toxic side-effects to the patient. However, investigation into the evolutionary
principles underlying cancer population dynamics challenges this idea (West, Adler, et
al. 2023; Enriquez-Navas, Wojtkowiak, and Gatenby 2015; Gatenby and Brown 2020).

Adaptive therapy is a therapeutic strategy aimed at controlling tumour burden by ex-
ploiting the competition between sensitive and resistant clones within a heterogeneous
cancer population (Monro and Gaffney 2009; Gatenby, Silva, et al. 2009). The phe-
nomenon of competitive release, where sensitive cells are killed off, leaving resistant
cells to grow without competition, is a major contributor to relapse in conventional can-
cer therapies (West, Ma, and Newton 2018). Unlike conventional cancer treatments,
which aim to reduce tumour size as much as possible (often leading to competitive
release), adaptive therapy aims to maintain a controlled tumour size while delaying the
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emergence of resistance. It does so by altering the dose of the treatment in response
to the changing tumour burden. Therefore, the treatment dose in adaptive therapy is
dynamically determined using evolving population dynamics with the aim of long-term
control of tumour burden.

Historically, the term ‘adaptive therapy’ was termed by Gatenby, Silva, et al. (2009),
but the concept was introduced much earlier in 1992 (R. B. Martin et al. 1992). Fol-
lowing the work of Gatenby, Silva, et al. (2009), there was much theoretical work on
the conceptual exploration of adaptive therapy, employing methods like optimal con-
trol (J. J. Cunningham et al. 2018; R. B. Martin et al. 1992), agent based models
(You et al. 2017; J. A. Gallaher, Brown, and Anderson 2019; J. Gallaher et al. 2022),
Lotka-Volterra models (Zhang et al. 2017; Strobl et al. 2020) and frequency/density
dependent models (Viossat and Noble 2021; Brady-Nicholls et al. 2021) among oth-
ers. The theory of adaptive therapy was generalized and made more robust with recent
progress in the area (Viossat and Noble 2021; West, Adler, et al. 2023). Several in-vivo
and in-vitro experimental studies further analysed adaptive therapy in more specific
contexts (Gatenby, Silva, et al. 2009; Zhang et al. 2017; Enriquez-Navas, Kam, et al.
2016; Kavran et al. 2022). This led to the first few clinical trials of adaptive therapy
(Moffitt; NCT02415621, Moffitt; NCT03543969, etc). Further clinical trials are planned
while more mathematical, computational and experimental studies continue to explore
the field.

What we learn from the development of adaptive therapy is that collaborative research
across experimental, clinical, theoretical and computational domains is best for a holis-
tic progress of any evolutionary therapy for cancer. As theoretical foundations are laid
by works like Viossat and Noble (2021), clinical trials (ANZadapt; NCT05393791) con-
tinue to test the feasibility of such therapies in practice. An interdisciplinary view goes
a long way to ensure that all fundamental aspects of any treatment-motivated phe-
nomenon are well understood and implemented.

1.2 Drawing inspiration from background extinctions

Large-scale eco-evolutionary interactions of competition and population control inspire
adaptive therapy. Similarly, our focus, Extinction Therapy (ET) draws inspiration from
large-scale eco-evolutionary dynamics of species extinction events. There are broadly
two types of extinction events – mass extinctions and background extinctions (Walther
et al. 2015). Mass extinctions occur when a single impact or strike drives entire popula-
tions and communities to extinction. In these events, a single strike is effective enough
that the population is unable to bounce back and eventually goes extinct. This can be
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due to high environmental stress or reduced adaptive capabilities among other factors.
Background extinctions are not as dramatic, and involve multiple events that eventually
lead to a species’ demise (Walther et al. 2015). They are much more common than
mass extinctions because a single strike can often fail to lead to extinction due to the
presence of resistance in the population. These are the cases that lead to evolutionary
rescue, in which a population destined to go extinct undergoes adaptive evolutionary
changes and escapes extinction. Different events in the process of background extinc-
tion typically have different mechanisms of working. An individual surviving one event
and becoming resistant to it could still be susceptible to another strike. Even though
we talk about evolutionary rescue in terms of conservation biology, with the motive of
avoiding extinction, the same theory is applicable in cases where we want a population
to go extinct, like bacterial populations or cancer (Alexander et al. 2014).

1.3 The concept of Extinction Therapy

Anthropocene extinctions in recent times, like that of the Galapagos goat (Gatenby,
Artzy-Randrup, et al. 2020), demonstrate how knowledge of eco-evolutionary pro-
cesses in the target population can help us predict and control future evolutionary
trajectories of the population. Similarly in the case of cancer populations, since the
oncologist has the power of controlling the tumour environment, it provides them an
opportunity to anticipate evolutionary trajectories of cancer cells and treat the tumour
accordingly. Under the right conditions, with the right treatments, an extinction vortex
can be created, leading to complete cure (Gatenby, Zhang, and Brown 2019). This is
what we call Extinction Therapy (ET), which aims for a complete eradication of cancer
meta-populations as opposed to long-term maintenance and control, as in Adaptive
Therapy (AT).

How do multiple strikes lead to extinction? Even if single-strike treatments fail to
completely eradicate cancer populations due to resistant phenotypes, they succeed
in leaving the population small and fragmented. The small population size is highly
vulnerable to changes due to drift, and it is less capable of adapting to environmen-
tal changes owing to loss in heterogeneity (Alexander et al. 2014). Individual growth
rates may also be limited due to Allee effects (Dennis et al. 2016). Subsequent strikes
(therapies) can take advantage of the stochasticity of small populations to initiate an
extinction vortex. This means that the population is driven below the Minimum Viable
Population (MVP) threshold, after which it is highly unlikely for the cancer to survive,
due to demographic/environmental stochasticity and further reduced adaptability.

Subsequently, there are few important factors to consider when attempting to study
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ET. First, how effective is the first strike and does it make the population vulnerable
enough for further strikes to work? How do we characterise the threshold below which
a population is considered appropriate for a subsequent strike? Second, we need to
consider the emergence of resistant clones in the population, both pre-existing mutants
and those generated during the treatment. What is the probability that a population is
rescued by these resistant mutants? To calculate that, we must find the probability
of a resistant clone escaping stochastic extinction and crossing the “establishment
threshold”, beyond which selection dominates over drift. Lastly, we must take into
account effects on growth rates of clonal lineages in the population,and especially
cost of resistance and density dependence (including Allee effects).

With the aim of complete eradication, ET draws from eco-evolutionary concepts of
population extinctions and exploits them in the context of cancer treatment. To do
this, multiple “strikes” are employed at different times, again based on the population
dynamics of a continuously evolving population.

1.3.1 How is ET different from Combination Therapy?

Combination therapies in cancer use multiple drugs or multiple treatment strategies in
order to target a larger section of the cancer cell population (Meille et al. 2016). These
combinations are generally chosen such that cells resistant to one treatment/drug are
sensitive to the other. The concept of such collateral sensitivity is important for ET as
well. Multiple strikes will only be effective if they can kill cells that are resistant to the
first strike. The difference between ET and combination therapies is the timing of the
second strike and the use of evolutionary principles to guide treatment strategy.

In combination therapy, or sequential therapy, second or subsequent treatments are
usually given when the first treatment shows sign of failure and the population begins
to relapse. In other cases, multiple drugs with collateral sensitivities are simultane-
ously administered at the beginning of the treatment to achieve a maximum response
(Chakrabarti and Michor 2017). Conversely, in the case of extinction therapy, the ob-
jective is to attack the cancer population while it is at its most vulnerable stage, likely
resulting in the population falling below the No Evidence of Disease (NED) threshold,
rendering it clinically undetectable. Moreover, previous models of ET have hypoth-
esized that it may be necessary to give the second strike while the tumour is still
decreasing in size in response to the first therapy.

The success of extinction therapy is expected to be highly sensitive to the timing of the
second strike. It needs to be administered in a time window within which the population
is vulnerable and susceptible to it. If it is given before the population reaches that
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stage, or after it has relapsed and crossed the establishment threshold again, then
the second strike will not lead to extinction (Gatenby, Artzy-Randrup, et al. 2020).
Sometimes, the timing may seem non-intuitive but in it lies the strength of ET – its basis
in eco-evolutionary theory. Essentially, empirical instances in which a combination or
sequence of treatments are used in the clinic conventionally follow a fixed treatment
regimen with fixed cycles of interventions, mostly independent of tumour response
(Reed et al. 2020). A hallmark of evolutionary cancer therapies is that treatment is
given in response to the dynamic tumour burden. Extinction therapy is different from
combination therapy or sequential therapy in the same way adaptive therapy is different
from intermittent dosing and metronomic therapy.

1.4 Existing models of Extinction Therapy

One of the first models of extinction therapy was proposed by Gatenby, Artzy-Randrup,
et al. (2020). Their work uses simulations to provide a proof of concept of the idea
behind ET. A population in a steady state is put under environmental stress (primary
therapy). As a result, some cell lineages have a selective advantage depending on
the degree of resistance in that lineage. Resistance is modelled as a continued trait.
This means that there is no single wild-type and resistant variant, but rather it is a
distribution of fitness values in which the higher values are relatively more resistant.
This way of modelling resistance in cellular populations is an alternative to considering
fully resistant/sensitive phenotypes, but both are considered equally valid.

A second therapy or ”strike” is given some time after the onset of primary therapy,
with the expectation that the population will go extinct, owing to the vulnerability of
small populations due to the stochastic risk of extinction and Allee effects (Gatenby,
Zhang, and Brown 2019). The timing and severity of the second strike are essential
determinants of extinction dynamics. The original model (Gatenby, Artzy-Randrup, et
al. 2020) provides estimates of a window of opportunity in which a second strike is the
most effective, and how Allee effects increase the efficacy of the treatment.

What the existing model lacks is a quantitative calculation of the extinction probabilities
of population under this treatment. While it sets the stage for further work on extinction
therapy, there is much to be done. Most of the questions regarding the timing of the
second strike, the time till extinction, the effect of environmental and demographic
factors, and most importantly the conditions under which ET is a feasible alternative to
other therapies, remain unanswered.

In this thesis, we achieve three main objectives – 1) developing the first analytical
model to describe extinction therapy. We obtain expressions for extinction probabilities
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and optimal timing for the second strike. We derive from concepts in evolutionary res-
cue to build a simple, tractable mathematical model with few assumptions. 2) We run
stochastic simulations to understand the system in a more general setting. We under-
stand the effect that demographic stochasticity plays when we compare the analytical
results with simulation results. Ultimately, we draw inferences about the behaviour of
a system under extinction therapy with many different parameters. 3) In anticipation of
experiments to be conducted on extinction therapy, we perform predictive modelling to
aid design and analyses in the laboratory.
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Chapter 2

Theory

A tumour cell population under treatment is analogous to a population of a species
faced with a severe environmental change. Extinction in both scenarios can be avoided
by adaptation to the new environment via the evolution of resistant phenotypes (either
by genetic adaptation or plasticity) (Alexander et al. 2014). This phenomenon of the
prevention of extinction due to adaptive evolutionary changes is termed evolutionary
rescue. It is different from other forms of rescue like demographic rescue which occurs
when the population is rescued due to population dispersal and immigration of fitter
phenotypes. In evolutionary rescue, resistance must emerge at a timescale similar to
that of population decay under environmental stress, which is why it is often described
as a “race against extinction” (Carlson, C. J. Cunningham, and Westley 2014). While
the conventional goal of evolutionary rescue is to maximise the probability of rescue,
the same mathematical formulations can be applied with the aim of extinction.

In this thesis, we use the extensive theory of evolutionary rescue (ER) to find the prob-
ability of extinction in cancer populations undergoing extinction therapy. Mathematical
models of ER analytically study systems that experience external stress, determining
how and under what conditions is it possible for the population to undergo evolution-
ary changes in order to rescue the population (Bell 2013). There are many factors
that affect this process, broadly divided into: genetic factors, demographic factors and
external factors (Carlson, C. J. Cunningham, and Westley 2014). Depending on the
system one is working with, different factors end up playing important roles.

For our case, a mathematical model of evolutionary rescue in an isolated, asexual
population under two different environmental stresses, we must have three essential
components corresponding to the interactions between the three most important de-
terminants of population extinction (Alexander et al. 2014; G. Martin et al. 2013; Bell
2017). These interactions are summarised in Fig. 2.1A. Small population size, low
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genetic variance and a high degree of environmental stress are factors that might lead
to species extinction (Bell 2013).
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Figure 2.1: (a) Components of a typical mathematical formulation of evolutionary res-
cue. The three most important determinants of extinction risk and how they affect each
other must be specified to quantify the probability of rescue. (b) A schematic of evolu-
tionary rescue, adapted from Alexander et al. (2014). Standing genetic variation (SGV)
and de-novo mutations are shown. The rescued population is composed of resistant
cells, while the sensitive (wild-type) population goes extinct. This is an illustration of
the typical U-shaped trajectory seen in evolutionary rescue.

Small populations are at a higher risk of stochastic extinction. Furthermore, the total
mutation rate is lower because the number of individuals is small, so the generation
of resistant lineages is slow. Even if resistant lineages exist, they might die out due
to demographic stochasticity. The risk is even greater if one considers Allee effects
(reduced growth rate at low population sizes) (Dennis et al. 2016). Therefore, changes
in population size with environmental stress must be specified.

Prior to the onset of stress, it is assumed that the resistant variants are rare or non-
existent. If they are abundant, it is almost certain that the population will survive (Orr
and Unckless 2014). Given these conditions, one can assume density-independent
growth (in discrete or continuous time) for the resistant mutants in the beginning and
use branching processes to model it (Orr and Unckless 2008).

A population is rescued from extinction when one or more resistant lineages fix in the
population. The generation of resistant mutants is controlled by the mutation rate,
which may or may not depend on the degree of stress. The mutants that ultimately es-
tablish themselves in the population and lead to evolutionary rescue are called rescue
mutants. The probability of establishment of a resistant mutant can be approximated
by Haldane’s 2s (Haldane 1927), where s is the selective advantage of the mutant over
the wild-type, which depends on the degree of stress. For a more general, continuous-
time estimate, we use diffusion approximation to get the establishment probabilities of
resistant lineages staring with one cell (Lambert 2006; Alexander et al. 2014),
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πe = 1− exp

(
−2r

σ

)
(2.1)

where r is the growth rate of the resistant lineage and σ is its reproductive variance.
This expression is derived using a stochastic population growth equation from (Lam-
bert 2006). We use Eq 2.1 in the following sections to calculate extinction probabilities.

An important distinction is that the probability of rescue by pre-existing mutants (from
before the onset of stress, called standing genetic variation) is different from that of
new mutants (via de-novo mutations) (Orr and Unckless 2008). This is because the
pre-existing mutants (SGV) typically get more time than the de-novo mutants (DN) to
grow their lineage. There are several expressions by different authors (G. Martin et al.
2013; Uecker, Sarah P. Otto, and Hermisson 2014; Orr and Unckless 2008) for the
probability of evolutionary rescue by both these classes of mutants, but considering
the common conceptual basis, they all reduce to the following,

PSGV = 1− exp(−N0πef0) (2.2)

PDN = 1− exp

(
−µπe

∫ text

0

Ntdt

)
(2.3)

where N0 is the population size at the onset of stress (t = 0), µ is the per capita, per
unit time mutation rate after the onset of stress, f0 is the frequency of resistant variants
at t = 0 and text is the time at which the population would go extinct if it is not rescued.
We usually try to get the integral in Eq 2.3 with respect to population size, because text

is not easy to determine analytically. The above equations are derived on the basis of
one main assumption – the generation of rescue mutants in the population is a Poisson
process (Alexander et al. 2014). Once the rate of the Poisson process is calculated, it
is easy to obtain the probability of extinction which will be equal to the probability that
no rescue mutants are generated.

Additionally, we make assumptions about the density independence of rescue lineages
and that the probability of establishment of a resistant mutant is constant throughout.
There is extensive literature on what happens when these assumptions do not hold.
Analytical results can be derived in all such situations using stochastic methods and
taking continuous time approximations (Uecker, Sarah P. Otto, and Hermisson 2014;
G. Martin et al. 2013; S. P. Otto and Whitlock 1997; Kuosmanen n.d.).

To summarise, with evolutionary rescue models, one can derive the probability of ex-
tinction of a population under stress, given its initial state. In Section 4.2, we use
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these results extensively in the context of extinction therapy. The principles of evolu-
tionary rescue provide a foundation for building the theoretical formulation of extinction
therapy. There are, of course, significant differences to account for – firstly, most
evolutionary rescue models consider either one abrupt change in the environment or
a continuous, gradual change (Bell 2017). However, extinction therapy is based on
using two or more subsequent strikes, all of which are abrupt changes in the environ-
ment. Second, most existing models consider a single resistant variant (an exception
is G. Martin et al. (2013)), while the existing model for extinction therapy works with
a continuum of resistance effects. Both these constructions are equally valid in liter-
ature, so we choose to develop the simpler case in which we have discrete genetic
variation. Third, the assumption of density-independent interactions is often made in
evolutionary rescue models, but this neglects Allee effects which may become impor-
tant in the case of extinction therapy (Brown, J. J. Cunningham, and Gatenby 2017).
We check if Allee effects are needed for extinction therapy to work and include appro-
priate density dependence. We therefore theoretically understand extinction therapy
as the prevention of evolutionary rescue.
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Chapter 3

Methods and Model Building

3.1 Reproducing and Analysing the Existing Model

As ideated in the paper by Gatenby, Zhang, and Brown (2019), extinction therapy is
a broad concept in the sense that it relies on fundamental properties of an ecologi-
cal system moving towards extinction. One of their key arguments is that a two-strike
model exploits the stochasticity of small and vulnerable populations to drive the can-
cer population to extinction (Section 1.4). Their model uses stochastic simulations of
the system under different treatment schedules, using the Gillespie algorithm (Sec-
tion 3.3.1) to obtain their results. The major results from the model define a window of
time in which the second strike is the most effective. This window is shown to be close
to the minimum population reached before relapse. These results, although promis-
ing, are limited by the assumptions and constraints of their specific model, which are
particularly complex, involving many assumptions and illustrating a limited number of
cases.

The main assumptions and limitations of their model are:

• The nature of resistance: An arbitrary measure of resistance x ∈ [0, 1] is used to
generate heterogeneity in the cancer cell population. The proliferation rates depend
on the value of x, which is chosen at random in the beginning of the simulation. This
means that there are no fully resistant or fully sensitive cells. There is a continuum of
resistance levels within the population and the response to therapy on any individual
cell depends on its value of x.

• Nature of the second strike: The second strike takes the form of an instant reduc-
tion in the cell population, with the efficacy of 20-40%. The primary treatment is
continued throughout.
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• Allee effects: The reduction in growth rates at small population sizes plays an im-
portant role in the model. The window of opportunity for the second strike is shown
to increase in size if the Allee threshold increases. It is not shown, however, if the
model works without any Allee effects.

• Particular functional forms: Response to therapy and proliferation rate of an individ-
ual cell has a specific dependence on its level of resistance. This may be restrictive
and the results might be sensitive to changes in these functional forms. The model
parameters and descriptions are given in Table 3.1 Moreover, we are left with a num-
ber of parameters used to specify the functional form of these variables, but have
no physical interpretation. This makes the model hard to translate to a laboratory
setting.

Parameter/Variable Symbol Default values/formulae

Initial population size N0 10000

Carrying capacity K 10000

Allee threshold A 15

Resistance level of a cell x ∈ [0, 1] None

Parameter to control Allee effects a 0

Concentration of drug (treatment 1) C 0.4

Minimum intrinsic birth rate λmin 0.2

Maximum intrinsic birth rate λmax 1

Intrinsic death rate µ 0.1

Parameter to control cost of resistance s 0.25

Parameters to control drug-induced death rate (α, β) (0.8, 0.2)

Birth rate of a cell b(t) λmax − xs(λmax − λmin)

Death rate of a cell d(t) µ+D

Drug-induced death rate D max[0, β(C − x)α]

Table 3.1: List of parameters and variables, their descriptions and default values in the
model given by Gatenby, Artzy-Randrup, et al. (2020)

Understanding the generality and applicability of the existing model was the first step
towards building our own model. However, despite repeated attempts over the last
year, we were unable to obtain the simulation code from the authors of the papers.
Therefore, following the model description in Gatenby, Artzy-Randrup, et al. (2020), we
attempted to reproduce, verify and analyse their results. A few additions were made
in order to understand our results better. The subsequent algorithm was employed for
these set of simulations:

1. Set initial population size N0 and specify simulation parameters including carrying
capacity, Allee threshold, function parameters for treatment-induced death and for
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cell proliferation. Set seed.
2. Pick x values for all cells from a uniform distribution between 0 and 1. Grow the

population till carrying capacity to obtain a steady-state distribution of x values in
the population. Use this population as a staring point for therapy. Label all cells with
lineage numbers (1,2,...).

3. Start treatment 1. Birth events result in two daughter cells that replace the mother
cell, each with an x value sampled from a Gaussian distribution around the x value
of the mother cell with a standard deviation of 0.02. Note the label of the parent cell
to keep track of cell lineages. Death rates are affected by the treatment, depend-
ing on the level of resistance of an individual cell. After each demographic event,
update the population size, cell labels and x values.

4. For the first run, do not apply the second strike. For subsequent runs, apply the
second strike at a specified time point, which can be determined by the first run
(which does not have a second treatment). Note the distribution of x before and
after the second strike.

This algorithm allows us to track individual cell lineages to observe the impact of treat-
ment on tumour heterogeneity. Additionally , we can also analyse the distributions of
growth rates and x values at key time points throughout the simulation, allowing us to
derive insights into the effect of the second strike on the population under this model.

The major limitation of this model is that it is very complex, without explaining the need
for such complexity. There are many inter-connected parameters which do not have
a physical interpretation and are therefore hard to translate to the laboratory. The
parameter space for this model becomes very large and impractical to explore mean-
ingfully. A secondary limitation is that these simulations are extremely time-consuming,
even for small populations of sizes up to 103 cells. We were therefore unable to sim-
ulate larger populations in this framework. For the same reason, we (and the original
authors) were unable to obtain actual extinction/relapse probabilities, which is an im-
portant component of a stochastic system like this one. Moreover, the lack of an ana-
lytical model leaves us with no other way to analyse these probabilities. In an attempt
to simplify this model, while keeping the core concept of extinction therapy intact, we
formulate our own framework including an analytical model and simulations, which we
describe in the following sections.

3.2 Analytical Insights

The theory of evolutionary rescue (Section 2) from conservation biology provides us
with a strong theoretical basis for an analysis of extinction therapy. We start with an
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Description Symbol

Initial tumour population size N0

Probability of fixation of a single Ri lineage πi

Probability of mutating to the Ri variant pi

Mutation rate µ

Growth rate of S cells gS

Growth rate of Ri cells gRi

Table 3.2: List of parameters for the analytical model. Note that the probability of
mutating to a certain cell type is conditional on the mutation event occurring. Wherever
relevant, i = 1, 2.

original permissive environment, which in our case will be the absence of treatment.
The primary therapy (presence of the first drug) constitutes the first kind of stressful
environment. Further strikes lead to different environments, possibly with varying lev-
els of stress. The way we model the second (and further) strikes depends on the type
of treatment administered and their method of action. Within this framework, we have
multiple cases which lead to qualitatively different results. These preliminary mod-
els are described in Appendix A. Our final analytical model builds on the preliminary
models.

Taking insights from cases 1-4 in Appendix A, we understand that a bottleneck therapy
is not viable due to the nature of its effect on cells. An instantaneous elimination of a
fixed fraction of the population is an unrealistic treatment method. Something similar
can be achieved in case of a surgical removal of tumour, but to do so at very small
population sizes (when the second strike is expected to be the most effective) is not
possible. The trivial results of case 1 also demonstrates that the model is too limited to
describe this system. From case 2, we understand that overlapping treatments 1 and
2 results in the emergence of a cell type that is resistant to both the therapies, which
almost always leads to rescue. The nature of the results indicates that the treatment
method is unsuitable for extinction therapy. Finally for this case, we consider two resis-
tant cell types (R1 and R2) and one sensitive or wild-type cell type (S). However, this
time we work with two non-overlapping treatments, each inducing an environment (E1

and E2). Cell type R1/2 is resistant in E1/2 but sensitive in E2/1, while S cells respond
to therapy in both the environments. Model results are given in Section 4.

With this model, we can calculate extinction probabilities for different parameter ranges.
Moreover, it accounts for pre-existing mutants and the growth of R1 before the second
strike. We make a few assumptions here – 1) The second strike threshold Nτ ≥ Nmin,
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which is the minimum population reached without a second strike, 2) the fraction of
R2 cells remains the same at time 0 and at Nτ , 3) The growth of R1 cells before the
second treatment is logistic, and 4) The population decays logistically during the sec-
ond treatment. However, this framework allows for further analytical development in
addition to being easy to simulate.

The limitations of this analytical framework arise due to the importance of accounting
for stochastic dynamics at small population sizes, which is something that this model
does not achieve. This is where the simulations add value. They account for the
stochasticity of the system and allow us to make predictions that the analytical model
cannot. We therefore simulate this same framework to gain further insights.

3.3 Stochastic simulations of our model

To test the hypothesis of Extinction therapy on the simple system described in Sec-
tion 4.2.1, we consider two strikes. Each strike induces a different environment (E1

and E2) and possibly a different level of stress on the population. The total population
at time t is N(t) = NS(t),+NR1(t) + NR2(t). We use a Gillespie-like algorithm to sim-
ulate this system. The code developed for its implementation is designed to be highly
versatile and easy to modify. It can be extended to analyse more complex systems
with more number of treatments and corresponding cell types.

3.3.1 Gillespie-like Implementation

The stochastic simulation algorithm (SSA), commonly referred to as the Gillespie algo-
rithm (Gillespie 1977), is a Monte Carlo method initially devised in 1977 for modelling
the temporal evolution of chemical reactions in a well-mixed system. It has since be-
come an important tool in computational chemistry and systems biology. By simulating
specific reactions or events given their rate of occurrence, the Gillespie algorithm mim-
ics the time evolution of a complex system.

We implement a version of the Gillespie algorithm for simulating the population dynam-
ics of our system in the context of Extinction therapy. The idea is that given a set of
rates corresponding to birth, death and mutation events, we can track the population
sizes of each subpopulation. These rates are specified for all the cell types and can
change with time or in response to the environment. The basic steps of our algorithm
are as follows:

1. Initialize the system by specifying an initial population for all cell types (NS(0), NR1(0),

NR2(0)) and setting the time to zero. Define all possible demographic events and
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their corresponding rates.
2. Calculate the rate of any one event occurring, which is the sum of all individual

rates ωi(t). From this we can obtain the time interval after which the next event
will take place. To do this, generate a sample from an exponential random variable
with the rate parameter equal to the total rate (

∑
i ωi(t)). Alternatively, one can

generate a random number z1 from the uniform distribution between 0 and 1 and
use the following formula to determine the time interval for the next event: tint =

− ln(z1)/
∑

i ωi(t).
3. Calculate event probabilities for the next event by dividing the individual event rates

by the total rate: pi(t) = ωi(t)/
∑

i ωi(t). Use these probabilities to select the next
event by generating a random number z2 between in 0 and 1. The chosen event k
would be the largest j such that (z2 −

∑j
i=0 pi(t)) > 0.

4. Implement the chosen event by updating the population of the corresponding cell
types. Increment time t = t+ tint. For example, if the chosen event is the birth of an
R2 cell, then R2(tint) = R2(t) + 1.

5. Repeat steps 2-4 till a stopping condition is reached.

Note that the effects of carrying capacity and treatment are included while specifying
birth and death rates (Section 3.3.2). All simulation parameters used to compute the
individual event rates are listed in Table 3.3.

Simulations are stopped under one of three conditions: if the population goes extinct,
if it exceeds the maximum simulation time, or if it exceeds some maximum population
size. Similarly, the outcome of one run of a simulation can be one of three possibili-
ties: extinction (N(t) = 0), progression (N(t) ≥ N(0)) or persistence (N(t) < N(0)).
Note that the stopping conditions do not have an equivalent simulation outcome (Ta-
ble 3.1(b)).

3.3.2 Determining Demographic Event Rates

Following our variant of the Gillespie algorithm, one must define all possible demo-
graphic events at the beginning of the simulation and define rates corresponding to
those events at each time step. Note that an individual event includes the type of event
and the type of cell. For example, a mutation event S → R1 is one individual event and
has a rate specified for it. Similarly, birth of an S cell is a different event than the birth
of an R1 cell.

We derive the birth and death rates for all cell types from the deterministic Logistical
model for population growth.
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Description Parameter Default value

Initial population sizes (NS(0), NR1(0), NR2(0)) (104, 1, 1)

Carrying capacity K 10002

Per capita base birth rate of S cells αS 1

Cost of resistance (cR1 , cR2) (0.5, 0.5)

Per capita base birth rates of R1 cells αR1 = αS − cR1 0.5

Per capita base birth rates of R2 cells αR2 = αS − cR2 0.5

Per capita base death rates (βS, βR1 , βR2) (0.1, 0.1, 0.1)

Per capita death rate due to treatment (DEi
S , DEi

R1
, DEi

R2
), i = 1, 2 (0, 1, 1)

Mutation rate µ 10−5

Strike-2 threshold Nτ 500

Table 3.3: Model parameters with default values adopted from Gatenby, Artzy-
Randrup, et al. (2020). Per capita birth/death rates are specified for each cell type.
Per capita death rates due to treatment are the same for all the resistant cell types, but
depend on the environment (induced by the ongoing treatment). As default values, we
keep the drug-induced death rate same in both the environments. The second treat-
ment begins at the population threshold of Nτ .

dN(t)

dt
= g(t)N(t); g(t) = r

(
1− N(t)

K

)
−DEi , (3.1)

where g(t) is the per capita growth rate of the entire population at time t and r is the
per capita base growth rate. The total treatment-induced death rate in environment i
is DEi For a subpopulation within the entire population, the per capita time-dependent
growth rate will be,

g{S,R1,R2}(t) = r{S,R1,R2}

(
1− N(t)

K

)
−DE1

{S,R1,R2} (3.2)

g{S,R1,R2}(t) = (α{S,R1,R2} − β{S,R1,R2})

(
1− N(t)

K

)
−DE1

{S,R1,R2} (3.3)

From Eq 3.3, we can separate the positive and negative parts to obtain the total birth
and death rates,

b{S,R1,R2}(t) = α{S,R1,R2} − (α{S,R1,R2} − β{S,R1,R2})
N(t)

K
(3.4)

d{S,R1,R2}(t) = β{S,R1,R2} +DE1

{S,R1,R2} (3.5)
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The compound birth and death rates for each cell type account for the effects of envi-
ronmental factors like carrying capacity and treatment-induced death. We use Eqs 3.4
and 3.5 for our simulations.

For mutation events, we consider a constant mutation rate µ for all cell types. Once the
source population is chosen (say, S cells), the target cell is chosen at random from the
remaining cell types (R1 and R2). However, these mutation probabilities from one cell
type to the other can be modified. This can be important in cases where back mutation
rates or mutation rates between resistant cell types are much lower.

3.3.3 Switching to the Second Treatment

The treatment induced death rate depends on the cell type and the environment, which
in turn changes with time. For this study, we consider two environments E1 and E2,
each corresponding to the two strikes or treatments. Now we ask the question: how
does the environment change with time? In other words, what is the condition under
which we switch treatments and apply the second strike? This is a very important
question because the hypothesis of Extinction therapy relies on the timing of the sec-
ond strike. However, it is an indirect relation. Extinction therapy aims to exploit the
stochasticity of a small population at the time of the second strike. This means that the
switch between treatments depends on the population size. Therefore, we define the
parameter Nτ – the population threshold at which we switch to the second treatment.

It is necessary to understand the behaviour of this threshold Nτ in order to evaluate the
efficacy and limitations of Extinction therapy. Specifically, its relation with the minimum
population reached in the absence of the second strike (Nmin) is important to explore.
As reasoned by Gatenby, Artzy-Randrup, et al. (2020), the hypothesis is that the opti-
mal Nτ (the Nτ at which probability of extinction is the highest) would be close to Nmin.
To test this, we run a set of simulations with the same parameter values but with dif-
ferent seeds. For a single seed, we run multiple simulations, each with a different Nτ ,
at different distances from Nmin. This ensures that any differences due to stochasticity
are eliminated. With 100 seeds for a single set of parameters, we calculate extinction
probabilities for Nτ at various distances from the Nmin (Fig 3.1(a)). The algorithm is as
follows:

1. Select a set of parameter values, excluding Nτ . All other parameters need to be
specified and are kept constant throughout.

2. Set seed for this set of simulations, thus eliminating differences due to stochasticity.
3. Run the first simulation without any second strike. Equivalently, set Nτ equal to

zero for this run. From the results of this run, save the values of Nmin and its
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corresponding time point (tmin).
4. Run the remaining set of simulations with Nτ = mNmin where the factor m goes

from 1 to a specified value (set to 20 for our simulations). Record the outcomes of
the all the runs (according to Table 3.1(b)).

5. Repeat steps 2-4 for the desired number of seeds. Each set of simulations with a
different seed is independent and will have different values of Nmin. This means that
the absolute Nτ values will be different for each independent realisation. Therefore,
in order to calculate extinction probabilities, we keep the factors m constant for all
seeds.

6. Calculate extinction probabilities using outcomes for each seed, corresponding
to the values of m. We thus obtain extinction probabilities for various values of
Nτ /Nmin.
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Nmin
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Nmin

Nmin

No second strike

(a)

Stopping condition Outcome condition Outcome

N(t) = 0 N(t) = 0 Extinction

t ≥ T N(t) ≥ N(0) Progression

N(t) < N(0) Persistence

N(t) ≥ min(0.99K,Nmax) N(t) ≥ N(0) Progression

N(t) < N(0) Persistence

(b)

Figure 3.1: (a) Illustration of the set of simulations to find the relation between
Nmin and the optimal Nτ . Shown is the first run without any second treatment,
which defines Nmin as the minimum population size before relapse. The fac-
tor m =Nτ /Nmin goes from 1 to 20 on both sides of tmin: before reaching Nmin

and after crossing it. Subsequent runs take these marked points as Nτ and
record the outcome in each case. (b) Stopping conditions and corresponding
outcomes of a simulation. In the second condition, T is the maximum simula-
tion time defined at the beginning. Generally, if we see a significant number
of outcomes with persistence (more than 10%, for example), it means that T
is not large enough. In the third condition, the threshold 0.99K is arbitrary.
The outcome remains the same as long as the threshold is close to K. We
take the minimum of two quantities for cases where K is much larger than the
initial population size, and a threshold of Nmax is enough to declare the out-
come. Typically, K and Nmax are greater than N(0), so persistence in the last
condition is not observed. However, the condition is mentioned for generality.
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Chapter 4

Results

In this section, we will review our results and briefly discuss the inferences and ramifi-
cations. Starting with the reproduction of the existing model, we get some new insights
into the dynamics of cell lineages during extinction therapy, as described in Gatenby,
Artzy-Randrup, et al. (2020). We derive analytical results from our model and compare
those findings to simulation results. We discuss the significance of these approaches
as well as their advantages and disadvantages. We then turn to the simulation re-
sults and their in-depth examination. Lastly, we model errors in genetic barcoding
experiments, a technique expected to be used extensively in in-vitro experiments of
extinction therapy.

4.1 Results and observations from the reproduced model

We simulated the model described in the paper by Gatenby, Artzy-Randrup, et al.
(2020), attempting to reproduce their results in order to understand the population
dynamics better. However, we were compelled to do so only based on the details pro-
vided in the paper, without their simulation code. We were able to obtain qualitatively
similar results but with different parameter values. Our results are shown in Figure 4.1.
Original simulation parameters are given in Table 3.1.

We make three major observations – first, that Allee effect is essential for the second
strike to work in this model. This is something that the authors of the original paper
have not explored. Although the results depend heavily on the specific combination of
parameters, in our exploration of the parameter space, there were no cases in which
the second strike led to the expected result in the absence of Allee effects. Therefore,
we demonstrate that Allee effects affect the outcome of the therapy in this model.
Second, there is a significant shift in the mean resistance values (mean x) in the
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Figure 4.1: Demonstration of the model presented in Gatenby, Artzy-Randrup, et al.
(2020). Each histogram shows the distribution of growth rates and resistance values
of the population at the given time point. Pre(post)-strike time points show the distri-
butions right before(after) the strike is implemented. The black dashed lines indicate
the respective means. We use different parameter values than the original model to
get qualitatively same results. This was done because the model and values, as de-
scribed in the paper, did not produce the same results. Possible explanations are
mentioned in the text. The parameter values are chosen in order to illustrate the con-
trast between different treatment combinations. We observe that the only instance
in which extinction therapy seems to work is the case with Allee effect in which the
second strike is applied before (or as soon as) the population reached the NED (No
Evidence of Disease) threshold. Additionally, we notice the shift in mean x in re-
lapsed populations due to selection of highly resistant cells. Lastly, we also see a
shift in the distributions between cases where the strike is applied before and after
NED. Growth parameters: λmin = 0.2, λmax = 1, s = 0.25, µ = 0.1. Population level
parameters: A = 15, a = 0, K = 6000, N0 = 6000. Treatment related parameters:
C = 0.4, β = 1.5, α = 0.8
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population in cases when the population relapses. This, again depends on the specific
treatment related parameters used for this simulation. Third, we notice that the growth
rate distributions are skewed in different directions when the second strike is applied
before and after the NED. This demonstrates the exact mechanism of relapse and
the importance of the timing of the second strike. If the population is struck while the
growth rates are skewed to the left and the mean x value is low, the population has
little chance of being rescued. If the strike is after the growth rates are already skewed
to the right, or equivalently the mean x value is high, then the tumour will likely relapse.

For these results, we used different parameter values than those given in the original
paper because with the given description, we were unable to reproduce their results.
The treatment related parameters were altered to give a stronger treatment. Specifi-
cally, β was increased from 0.2 to 1.5. This was necessary because the population did
not show decrease in size, as expected from the results in the original paper. Addition-
ally, the method to obtain the initial steady-state distribution was not detailed in order to
be reproduced. We used a two-sample Kolmogorov-Smirnov test to determine conver-
gence to steady state. The distribution obtained with this algorithm, although visually
similar to the one in the original paper, did not produce the same results. From a pre-
liminary analysis, it seemed that the tail of the x distribution needed to be quite thin in
order to lead to extinction. A Beta(3,30) distribution was therefore used to approximate
this form. This allowed us to analyse the results with a range of initial x distributions.

Following an analysis of various starting tumour cell populations (both from steady-
state analyses and beta distributions), we observed that the outcome of the treatment
is very sensitive to the distribution of x values (resistance values) in the beginning. If
the number of cells with x > C is high, then the evolution of resistance is fast and the
population does not reduce in size enough for the second strike to work. Further, the
initial distribution of x values in the population is determined by the cost of resistance
parameter s. This parameter is not a direct additive cost to the intrinsic proliferation
rates, but an exponent which indirectly determines the cost of resistance (formula given
in Section 1.4). The higher the value of s, the higher the cost of resistance.

Practically, in an actual tumour it is hard to find the distribution of costs of resistance.
This becomes an issue because a parameter which plays an important role in deter-
mining therapy outcomes cannot be easily predicted or monitored. To classify a cancer
as suitable for extinction therapy, we would need a proxy to indirectly determine the ef-
fect of the costs of resistance in a given population. To that end, we added a function
to track the lineages of each cell in the initial tumour population in our simulations.
The motivation for this was to perform predictive modelling for future experiments in
extinction therapy. Proposed experiments include barcoding the initial cell population
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(see Section 4.4 in which we mathematically model experimental errors in barcoding
experiments) to track their dynamics and categorise populations that are likely to re-
spond well to extinction therapy. Focusing on differentiating cases with different cost of
resistance distributions, an analysis of cell lineages in our simulations shows that the
statistics of growth rates across cell lineages can help inform the ultimate outcome of
therapy (shown in Figure 4.2).

Figure 4.2: A comparison between lineage dynamics of systems with high and low
resistance costs. (a) In the high resistance case, the lineage growth distribution before
second strike is skewed to the left, indicating that there are few lineages with a positive
growth rate (resistant lineages) while in (b), the low resistance case, the distribution is
skewed to the right indicating that there are many resistant lineages. (c,d) Experimen-
tally, one can classify a system suitable for extinction therapy by observing the number
of lineages in a relapsed population. A small number of lineages with the same total
population size means that the bottleneck due to treatment was very small, in which
case extinction therapy is likely to lead to extinction.

To demonstrate the effect of varying s, we compared two sets of model parameters with
different outcomes post-therapy due to different trade-offs between resistance level
and proliferation rate. Case 1 leads to a successful treatment outcome if the second
treatment is given before the population reaches the nadir (minima, or equivalently,
before NED), while case 2 does not. These parameter values are chosen such that
they represent two extreme and contrasting behaviours of the initial resistance trait
value distribution. The primary therapy is constant throughout the treatment schedule.

A high fitness cost of resistance leads to a left-skewed lineage growth rate distribution
(Fig. 4.2a), such that highly-resistant (positive growth rate) lineages are extremely rare
by the time the second strike is applied. In this scenario, the primary treatment reduces
the tumour to a very small size and subsequent application of the second strike is
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expected to lead to extinction. In contrast, a weaker cost of resistance leads to a right-
skewed lineage growth rate distribution (Fig. 4.2b) and treatment failure. In this case,
the scales are tipped the other way, and there are enough high-resistance lineages
that the population size does not decrease much.

When the second strike fails, our simulations predict that the nadir population size
can be inferred from the final lineage frequency distribution. Each lineage originates
from a single cell at t = 0. A narrow bottleneck (low nadir, as expected in the high
resistance cost scenario) shifts the distribution towards a small number of lineages
with a lot of cells (Fig. 4.2c), whereas a wide bottleneck preserves a multitude of
smaller lineages (Fig. 4.2d). In an experiment, this method can help determine the
feasibility of extinction therapy for a given population. To summarise, a tumour relapse
which consists of only a few lineages of large sizes, indicates a system with high
cost of resistance, and therefore relatively higher sensitivity to extinction therapy. On
the contrary, a relapsed population that consists of many small lineages indicates a
low cost of resistance system, which is expected to be less responsive to extinction
therapy.

With this limited analysis of the existing model, we realise the need for a simpler model
with fewer degrees of freedom. We require a way to calculate extinction probabilities
and to meaningfully explore parameter spaces in the context of reasonably large can-
cer populations.

4.2 Analytical results

4.2.1 The model

We consider two collaterally sensitive drugs, each corresponding to a resistant cell
type (R1 and R2). A simplifying observation we make here is that ultimately, any case
of evolutionary rescue will be due to R2 cells if we switch to the second treatment at
any point of time. If R1 rescues the population, then at some point, due to treatment
2 (second strike) it will go extinct and further rescue by the R2 variant will be subject
to the environment at that time. In this framework, we can also take into account
standing genetic variation. We are therefore left with two conditions to consider –
rescue due to pre-existing R2 cell that persist till the onset of the second treatment and
new rescue variants that are generated during the second treatment. Here, we make
an assumption that any R2 lineages generated during the first treatment go extinct due
to a negative growth rate. All model parameters are listed in Table 3.2.

Assuming that the initial number of R2 cells is given by NR2(0), we can estimate the
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expected number of these cells remaining at time τ .

E[NR2(τ)] =
NR2(0)Nτ

N0

(4.1)

We obtain this expression by assuming that the R2 cells are equivalent to sensitive
cells in the first environment. We know that the distribution of pre-existing rescue
variants is Poisson with a rate equal to λ1 = π2E[NR2(τ)], with which we can calculate
the probability that all these pre-existing variants go extinct in E2. Here, π2 is the
probability of fixation of an R2 lineage starting from one cell (see Section 2). Note that
the number of R2 cells at time τ are treated as standing genetic variance for treatment
2.

For de-novo mutations in E2, we have the rate of generation of R2 cells

λ2 = π2µp2

∫ text

τ

Ntdt (4.2)

This rate is conditional to the population going extinct at time text. With the assumption
of Logistic growth, we can make the substitution Nt = (dNt/dt)(1/g(t)(1−Nt/K)):

λ2 = π2µp2

∫ 0

Nτ

dNt

g(t)(1−Nt/K)
(4.3)

where g(t) is the growth rate of the population as a function of t. The growth rate
is not constant in this case because as the sensitive cell population declines, the R1

population increases. The growth rate of the entire population at any point of time
would be dependent on the fraction of R1 cells in the population.

g(t) =
NR1(t)

Nt

gR1 +
NS(t)

Nt

gS (4.4)

where gR1/S is the growth rate of R1/S cells in the first environment. We do not need
include the growth rate of R2 cells because before the onset of the second treatment,
their population is negligible compared to R1 and S cells. To find the fraction of R1 cells
in the population at time τ , we look at the growth equations for both the cell types.

˙NR1(t) = gR1NR1(t)(1−Nt/K) and ˙NS(t) = gSNS(t)(1−Nt/K) (4.5)
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After simplifying and eliminating the density dependence term, we integrate twice from
0 to τ ,

˙NR1(t)

gR1NR1(t)
=

ṄS(t)

gSNS(t)
(4.6)

=⇒
∫ τ

0

1

gR1

d lnNR1(t)

dt
dt =

∫ τ

0

1

gS

d lnNS(t)

dt
dt (4.7)

=⇒ NR1(τ)

NR1(0)
=

(
NS(τ)

NS(0)

)gR1
/gS

(4.8)

=⇒ Nτ = NR1(τ) +NS(τ) = NR1(τ) +NS(0)

(
NR1(τ)

NR1(0)

)gS/gR1

(4.9)

We get the expected number of R1 cells at time τ as a function of the total population
at time τ . Since Eq 4.9 is an implicit equation, we solve it numerically to get the
growth rate at population size Nτ . Using this result, we can now compute the extinction
probabilities.

− lnPE = λ1 + λ2 (4.10)

=
NR2(0)

N0

Nτπ2 + π2µp2I (4.11)

(4.12)

Here, we have replaced the integral term in Eq 4.3 with I. Since explicit calculation of
the integral I is complicated and unnecessary, we obtain an expression to find the rate
of change of the probability of extinction (PE) with Nτ .

−d lnPE

dNτ

=
NR2(0)

N0

π2 + π2µp2
dI

dNτ

(4.13)

=
NR2(0)π2

N0

− π2µp2
g(τ)(1−Nτ/K)

(4.14)

Given a boundary condition, we can calculate PE for different values of Nτ and find
the optimal Nτ in this scenario. It is important to note that Eq 4.13 is only valid for
the range of Nτ values that are practically possible. The lower limit to the range of Nτ

values is Nmin, the minima reached by the population without any second treatment.
Any value below Nmin cannot be a threshold to switch to the second treatment because
the population will never reach that threshold. To determine this range, we need to
calculate Nmin. With the assumption that the R2 population is negligible before the
second strike, we know that the total population before reaching Nmin has a negative
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growth rate g(t). After Nmin, the population will have a positive growth rate. Therefore,
we need to find the population at which the growth rate of the population (including S

and R1 cells) becomes zero. Taking the frequency of R1 cells in the population at the
minima to be q, we solve:

g(t) = 0 =⇒ qgR1 + (1− q)gS = 0 (4.15)

=⇒ q(gR1 − gS) = −gS (4.16)

=⇒ q =
gS

gS − gR1

(4.17)

At this frequency, using Eq 4.9, we can get the value of Nmin:

Nmin = qNmin +NS(0)

(
qNmin

NR1(0)

)gS/gR1

(4.18)

Dividing by Nmin throughout and simplifying, we get,

Nmin =

(
(1− q)

NS(0)

[
NR1(0)

q

]gS/gR1

)gR1
/(gS−gR1

)

(4.19)

=

(
gR1

NS(0)(gR1 − gS)

[
NR1(0)(gS − gR1)

gS

]gS/gR1

)gR1
/(gS−gR1

)

(4.20)

We note that the value PE at Nτ= 0, according to the model, is 1. This means, triv-
ially, that the population is sure to go extinct if the second strike is applied when the
population goes extinct. This becomes a convenient boundary condition to solve the
differential equation for PE.

Another crucial observation relates to the extrema of the PE function against Nτ . In
Eq 4.13, if we equate the differential to zero, we get,

NR2(0)

N0

g(τ)

(
1− N∗

τ

K

)
+ µp2 = 0 (4.21)

N∗
τ = K

(
1− µp2N0

NR2(0)|g(τ)|

)
(4.22)

Assuming g(τ) to be negative, which is a valid assumption to make before the popula-
tion reaches Nmin, we obtain the expression of Nτ . Substituting the default parameter
values from Table 3.3, we find that in most cases, the value of N∗

τ is close to K. To
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determine the nature of the extrema, we differentiate Eq 4.13 again with respect to Nτ

to see that the resulting expression is negative, implying that − lnPE reaches a max-
imum at this point and therefore the probability of extinction is minimum at N∗

τ . With
this information, we conclude that PE decreases as Nτ increases, with a maximum at
Nτ = 0 and a minimum at N∗

τ . However, since the relevant values of Nτ are greater
than Nmin, for our purposes, the maximum PE is expected to be at Nmin.

Building on the results in this section, we analyse and compare them with the sim-
ulation results. Note that the simulations have the same framework as the analytical
model, using the same parameter values wherever applicable. To begin, we calculated
the probability of extinction for different values of Nτ by numerically solving the differ-
ential equation given in Eq 4.13, using the boundary condition that PE= 1 at Nτ= 0.
The results are shown in Figure 4.3. We study the trend of PE with Nτ , over a range
of initial population sizes (N0) and treatment values (D). The treatment parameter is
equal to the death rate induced by the treatment, and is kept the same for both treat-
ments. Major observations and results from the analytical model are described in the
following sections.

4.2.2 Significance of Nmin in simulations and analytical results

As seen in Figure 4.3, the behaviour of PE for Nτ<Nmin is very different from the
expected trend from analytical calculations. This is because these thresholds are never
reached by the population, so the outcomes are the same as would be without a
second strike (only primary treatment throughout). For this reason, in the analytical
model, the expression for PE holds only for values of Nτ>Nmin. The starting condition
of PE= 1 for Nτ= 0 is interpreted as the probability of extinction if the second strike
is applied when the population has already gone extinct. Because this is not possible
due to evolutionary rescue of the population by R1 cells, the simulations show a low
probability of extinction in these cases.

Ideally, if the population is large enough, these probabilities will be zero. However, in
a few cases with low population sizes (Figure 4.3A,B,C), we see non-zero PE below
the Nmin threshold. This is because of the stochastic nature of population dynamics.
Every time we run an independent simulation, the value of Nmin is different, more so
in smaller populations. This leads to a gradual decrease in PE in this range. As we
increase the population size to 1 million cells, we see a sharp decrease in PE for Nτ

below Nmin, as expected.

On the other side of Nmin, we see a decrease in PE, which provides evidence for the
hypothesis that the maximum PE is reached at Nmin. To verify the relative positions of
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Figure 4.3: Analytical predictions compared to simulation results for low, medium and
high treatment levels for both small and large populations. Each plot shows the trend
of PE with varying Nτ . The initial population sizes (N0) and treatment parameters (D)
are mentioned for each case. Black dots are simulation results and the grey solid line
indicates analytical predictions. Error bars show 95% binomial proportion confidence
intervals. The analytical expectation of the minimum population reached in absence
of second treatment (Nmin) is shown with a dashed red line, with values mentioned
alongside. Grey dotted lines indicate the second strike thresholds at which the extinc-
tion probability is maximum, as observed in the simulations. From our simulations, this
optimal Nτ is shown to be a good estimate of the empirical Nmin (see Section 4.3.2).
All deviations from expected PE values are reasoned in the text with possible explana-
tions.
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Nmin’s in the simulations, we run a separate set of simulations that compare Nmin with
other values of Nτ to verify that the optimal Nτ is Nmin (Section 4.3.2). Therefore, we
use the optimal Nτ as an estimate of the empirical Nmin in Figure 4.3 and Figure 4.4.

4.2.3 The analytical model provides reliable estimates of the opti-
mal second strike threshold in most cases

Our analytical model provides a way to calculate the optimal Nτ (or Nmin) using only the
growth rates and initial conditions of the population (refer to Eq 4.20). We compare this
analytical estimate to the observed optimal Nτ ’s in the simulations in Figure 4.4A,B.
We see that the analytically calculated Nmin describes the observed behaviour well for
most of the treatment levels, with the exception of very low treatment levels (D = 1).

Note that only absolute values of treatment-induced death rates (D) in the population
are shown in the figures, but the overall effect of treatment is relative to the intrinsic
growth rates. Since the intrinsic growth rate of treatment-sensitive (S) is taken to be
0.9 by default (Table 3.2), D = 1 is a low treatment level. This is also why lower
values of D are not shown. For higher levels of treatment, we see good agreement
in the expected and observed values of optimal Nτ . Therefore, our analytical model
can be used to easily calculate the optimal second strike threshold which leads to the
maximum extinction probability.

4.2.4 Minimum population size (Nmin) is higher than expected for
low treatment levels

For larger populations, we observe that the Nmin does not correspond to the maximum
PE when the treatment level is low (Figure 4.3A,D and Figure 4.4A,B). A hypothesis to
explain this behaviours is that the R1 cell population does not grow as fast as expected
in these cases. Since the contribution of the R1 population is what ultimately allows for
relapse, the value of the minima depends on how fast it is able to grow large enough
such that the total growth rate becomes positive.

In our analytical model, we assume logistic growth for R1 subpopulation from the be-
ginning of the primary therapy. This assumption may not be valid for cases in which
the sensitive cell population decays slowly so that the R1 lineages take more time than
expected to escape stochastic extinction. Our analytical framework does not account
for this extra time because we do not include the stochasticity of the R1 subpopulation
while it is small. This results in a higher Nmin than observed in the simulations.
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4.2.5 Extinction probability is higher than expected for large pop-
ulation sizes

In large populations, we see that the observed extinction probability is higher than what
is estimated using the analytical model. While the broad trend is estimated well, the
analytical model systematically underestimates the extinction probabilities for all treat-
ment levels starting with D = 1. A possible hypothesis to explain this could be the error
in calculation of R2 cells at the second strike threshold (Nτ ). Since our model assumes
that the proportion of R2 cells remains constant throughout the primary therapy, it ig-
nores stochastic death due to the small abundance of R2 cells. The starting population
of the resistant cells is very small, and is subject to stochastic extinction. This effect
results in a lower number of R2 cells at the beginning of the second treatment, and
consequently, a higher rate of extinction.

However, this may be just one of the reasons for the observed deviations from ex-
pected trends. This does not explain why the deviation decreases as the treatment
level is increased (Figure 4.3E,F). We hypothesize that in cases in which the error in
estimation of R2 cells at the beginning of the second strike does not play a big role,
we see less deviation from expected behaviour. These may be the cases in which our
approximation holds or cases in which the observed extinction probability is low due to
other factors. For instance, the same deviations are not observed for small population
sizes. The observed trend of extinction probabilities in that case is well estimated by
the analytical predictions. A possible reason for that could be that even though the
same factors affect growth dynamics in all cases, in smaller population sizes, the dy-
namics are much faster than in larger populations (Nmin is reached earlier, for example)
so these effects do not manifest such that we can observe them.

4.2.6 Conditions for feasibility of analytical predictions

We observe that the analytical predictions match with the simulation outcomes only
under certain conditions. There are many factors at play, some of which are not ac-
counted for by our analytical model. The major limitation of our model is that we do not
include the effects of stochasticity on small populations. Our assumption of Logistic
growth and decay also does not hold completely in some cases. Most of the deviations
from the predicted behaviour can be explained if we include these effects. Even so, our
model manages to predict Nmin values within acceptable error bounds (barring cases
with very low treatment levels). Moreover, the overall trend of extinction probability
varying with Nτ is also estimated well for small Nτ values and higher treatment levels.

As a result, we can carve out a region of feasibility for our model. Generally, we can
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Figure 4.4: Behaviour of Nmin with N0 and D. (A,B) Comparison of observed (black
dots) and expected (grey line) Nmin for a range of treatment values. This range of D is
different for small and large population sizes. In both the cases, values below 0.9 are
not considered because they result in a net positive growth rate. Values of D above 2
are not considered for the smaller population size because it leads to extinction without
the need of a second strike (Nmin close to 0). These cases are not of interest to us
because our aim is to prevent relapse in cancer populations using a second strike.
The error bars in the observed Nmin indicate least count errors. The observed values
of Nmin are estimated by the optimal Nτ in each case, which is the the threshold at
which the extinction probability is the maximum. (C) Change in Nmin with increase in
initial population size. As the treatment parameter is increased, Nmin decreases for all
starting population sizes. The red dashed lines indicate populations at which variation
of PE with Nτ is shown in Fig 4.3. The lower region of this plot is the region of feasibility
for Nmin predictions using the analytical model.

expect the analytical estimate for Nmin or optimal Nτ to be accurate except in cases
with very low treatment levels. In Figure 4.4C, the lower region of the plot corresponds
to the parameter values for which our analytical model can provide reliable estimates
of the optimal Nτ .

The drawbacks of the analytical model prevent reliable exploration of certain regions
of the parameter space. Especially, the exact change in extinction probability as the
second strike threshold changes is not accurately predicted by the model. We there-
fore simulate this model for wide ranges of various parameters, in order to obtain a
complete understanding of the system in context of extinction therapy. Additionally,
simulations allow us to verify our hypothesis that PE peaks at Nmin, while accounting

34



for the stochasticity in the system.

4.3 Stochastic simulation results

Using the methods outlined in Section 3.3, we simulate our model for two initial popu-
lation sizes – 104 and 106. To begin with, we take all relevant parameter values from the
existing model to aid comparison. Building on that, we explore more of the parameter
spaces for both the population sizes and compare them. The difference between the
two systems shows the importance of a stochastic growth component needed in our
model. The main results are described in this section.

4.3.1 Second treatment increases the probability of extinction

As a proof of concept, we demonstrate that switching to the second treatment (the
second strike) works. We see an expected increase in the probability of extinction
when a second strike is applied. To compare with the original model in Gatenby, Artzy-
Randrup, et al. (2020), we also simulate the system with model parameters directly
taken from their paper, but with relevant changes to make it suitable for our framework.
For example, the original model has a treatment-induced death rate which is a function
of the resistance values. The maximum value of this function is taken as the treatment
level for our simulation. Figure 4.5 demonstrates the effect of extinction therapy.

We note here that since the staring conditions of both the resistant cell types are the
same, Nτ= 0 is equivalent to Nτ= N0 in terms of extinction probability. Switching from
treatment 1 to 2 is equivalent to switching from treatment 2 to 1. After this proof of
concept, we show the effect of change in (primarily) Nτ and other parameters.

4.3.2 The optimal threshold for second strike is equal to the min-
imum population

One of the results of the paper by Gatenby, Artzy-Randrup, et al. (2020) is that the
optimal threshold for the second strike is close to the minimum population reached
without a second strike. To verify this, we ran simulations on the same system with
different values of the second strike threshold (See Section 3.3). Due to the stochas-
tic nature of the simulations, Nmin is different for each independent simulation. We
therefore analyse the extinction probability PE as a function of the factor Nτ /Nmin. The
hallmark U-shaped curve of a rescued population means that this factor will give two
instances of each Nτ – one before the minima and one after. Figure 4.6 shows both
these classes of thresholds relative to Nmin.

35



NT  = 500

NT  = 0

NT  = 500

PE = 0
D = 0.2

PE = 0.25
D = 1

PE = 0.86
D = 1

Total population

Sensitive cells (S)

Resistant to treatment 1 (R1)

Resistant to treatment 2 (R2)

Low treatment
with second strike

High treatment
without second strike

High treatment
with second strike

Figure 4.5: Simulations showing the effect of a second strike. The case with low
treatment takes parameters from the original model. In the case with high treatment, a
second strike significantly the extinction probability (PE). The Nτ threshold is the same
as in the original model. Plots show 25 out of 500 total runs. Persistence probabilities
in all cases is equal to zero. Other parameter values are the default ones specified
in Table 3.3. Note that the treatment levels in both the environments (under both the
treatments) are the same, i.e. DE1 = DE2 = D.

We observe that the extinction probability is consistently the highest for Nτ=Nmin, both
for small and large populations, thus verifying the hypothesis presented by previous
models. Moreover, we notice a significant difference in extinction probabilities for same
Nτ ’s before and after the minimum population is reached. The extinction probability is
higher if the switch to the second treatment is made after the minimum population
has been crossed. This is because the growth rate of the relapsed is less than the
initial population (before the minima). Since the relapsed population is dominated by
resistant variants (R2), it suffers from a cost of resistance which makes it easier to
push the population to extinction. This result is robust to changes in the treatment
level during the second treatment. In Figure 4.6D, the treatment-induced death for the
second treatment is lower than the first treatment. This results in a lower PE overall,
but the extinction probabilities for Nτ ’s after the minima are still much higher than the
ones before the minima.

An inference of this result is that it is safer to initiate the second strike after the pop-
ulation has reached its minima, not before as suggested by previous work. We get a
“window of opportunity” which is skewed to the right.
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Figure 4.6: Results of simulations to determine the relationship between the second
strike threshold (Nτ ) and the minimum population reached without a second treatment
(Nmin). Extinction probability is shown for many values of Nτ /Nmin and for two initial
population sizes. The maximum PE is consistently at Nτ=Nmin (indicated with a grey
dashed line), implying that the optimal Nτ is equal to Nmin. Additionally, Nτ ’s after
the minima are better than Nτ ’s before the minima has been reached. Note that for
panels A,B and C, the treatment-induced death (or treatment level) is the same in both
the environments (under both the treatments), i.e. DE1 = DE2 = D. For panel D,
we consider two different values of treatment levels in the two environments, but the
general trend remains the same.

37



4.3.3 Optimal threshold for second strike increases with carrying
capacity
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Figure 4.7: Heatmaps and scatter plots for extinction probabilities over a range of Nτ

and K values. We see an increase in the value of the optimal Nτ as the carrying ca-
pacity is increased. The scatter plots at the bottom show this increase for two specific
K values in each case. The default simulation parameters are marked with red dots
on the heatmaps. Grey dashed lines indicate the empirical optimal Nτ in each case,
as observed in the stochastic simulations.

Focusing on Nτ as our main parameter of interest, we simulate how our model re-
sponds to changes in Nτ with other parameters. The carrying capacity (K) in our
model’s default parameters is equal to the initial population N0. When we increase
K, we observe an increase in the optimal Nτ , defined as the Nτ at which we get the
maximum extinction probability. In Figure 4.7, we see this increase while comparing
two values each of K for two different population sizes. For both the populations (104

and 106 cells), we see a marked increase in the peak of the extinction probability vs Nτ

plot. However, also note the decrease in the value of PE (extinction probability) at the
peak as K increases.

Since we know that the optimal Nτ is at the minimum population reached in the ab-
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sence of a second strike (Nmin), we can infer that the Nmin for a system with higher
carrying capacity is higher. We can visually verify this with Figure 4.8, where we see
that the mean Nmin is higher for the system with higher carrying capacity. Moreover,
we see that the initial decay rate is different in both the cases (higher for lower K). This
is because in a population with a lower K, there is an extra constraint on population
growth since it is closer to its carrying capacity. This difference leads to a lower Nmin

in lower K systems.

In our analytical model, the expression for Nmin (Eq 4.20) does not depend on K, be-
cause we assume logistic growth for the R1 population (resistant to the first treatment).
While in the simulations, we can infer that the initial stages of R1 population growth
is not logistic due to stochastic effects. This leads to a delay in the time needed for
the R1 population to reach a certain size. If the growth were logistic, the change in
growth rate in in the R1 clone would balance the difference in decay rates experienced
by the sensitive population. However, due to stochastic growth at small population
sizes, these two effects do not balance out, giving a lower Nmin than expected, which
depends on the carrying capacity.
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Figure 4.8: Plots showing the difference between population minima in systems with
different carrying capacities. The approximate Nmin is seen to increase with K. The
initial decay rate of the population decreases with an increase in K.

4.3.4 Extinction probability increases with cost of resistance for
all second strike thresholds

The default parameters in our model simulations (Table 3.3) include an intrinsic birth
rate of 1. Relative to that, we vary the cost of resistance (from 0 to 1) and observe
the change in extinction probabilities (PE) for different second strike thresholds (Nτ ).
As expected, we see an increase in the extinction probabilities for all Nτ ’s with PE= 1
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for a cost of resistance equal to the intrinsic birth rate. In Figure 4.9, we can see this
behaviour for two initial population sizes.

We expect this behaviour because for a low cost of resistance, the resistant variants
have a greater advantage over the sensitive cells, so the rescue probability increases.
It is interesting to note that the region of high PE narrows down as we go towards low
costs of resistance. This gives us an optimal Nτ for almost all costs of resistance.
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Figure 4.9: Heatmaps showing extinction probability as we vary Nτ and the cost of
resistance. We see that the region of high PE increase as the cost of resistance
increases. The default parameters are marked as red dots. Note that the costs for
both resistant variants R1 and R2 are the same (cR1 = cR2 = c).

4.3.5 Extinction probability is higher with a lower treatment level
at a given second strike threshold

Perhaps the most important behaviour to understand in extinction therapy is the effect
of treatment level. We simulate a range of treatment levels for two different population
sizes and several Nτ values. In Figure 4.10A, the first thing we notice is the sharp drop
in extinction probability below threshold near 1. This is because the intrinsic growth
rate of the sensitive (S) cells is 0.9, so the minimum level of the treatment needed in
order to result in a net negative growth rate must be greater than 0.9. Below this limit,
PE will be zero. We see a small region below the line indicating a treatment level of 0.9
because of the heterogeneity in the population. A similar limit, even though not visible
in the heatmap (Figure 4.10B) is present in the system with a higher initial population.
Above the limit of intrinsic growth rate, we see that with increasing treatment levels,
the probability of extinction goes down. This trend is more clearly visible in the system
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Figure 4.10: Heatmaps of extinction probability as we vary Nτ and the treatment
level (treatment-induced death). The intrinsic growth rate of the sensitive population,
marked as a white dashed line, is the limit below which PE= 0 due to a net positive
growth rate. Above this limit, for a constant Nτ , a higher treatment level has lower PE

than a lower treatment level. Panels C,D show this behaviour in the form of scatter
plots. Default parameter values are marked on the heatmaps (red dots) and the scat-
ter plots (red dashed lines and red pointers on the colourbar). Note that the treatment
levels for both the treatments are kept the same (DE1 = DE2 = D)

with initial population of 106 cells (Figure 4.10D). In the system with a smaller starting
population, the trend is masked due to higher level of stochasticity, and possibly due
to the fact that we only increase the treatment level till D = 2.

Lower PE with a higher treatment level is an unintuitive result. We hypothesize that this
is due to a shift in the Nmin with change in treatment levels. As predicted by our ana-
lytical model, a higher treatment level will result in a lower Nmin due to a faster decay
of the sensitive population. Because the resistant population (R1 cells) experience no
change in growth rate, the effect of treatment is reflected in the minimum population.
While the Nmin decreases with treatment level, we keep Nτ ’s constant in our analy-
sis. Therefore, at the same second strike threshold, we have different Nmin’s due to
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increase in treatment levels. Consequently, a given threshold Nτ will be further away
from the Nmin for a higher treatment level. With our observation that the maximum PE

is when Nτ=Nmin, an Nτ that is further away will from the Nmin (the optimal Nτ ) will
have a lower extinction probability.

Notably, the hypothesis explained above does not directly imply that we get the ob-
served trend. Another crucial factor is the faster population decay due to a higher
treatment level. Even though a fixed Nτ will be further from the optimal Nτ , it will have
the advantage of a greater effect on population size. It is not intuitive as to which factor
will dominate in such a situation, but from our simulations, we see that the disadvan-
tage of a suboptimal Nτ is greater than the advantage of a higher decay rate due to
treatment.

4.4 Error modelling for Barcode dynamics

For comparing model predictions to data, individual lineages must be tracked exper-
imentally. Genetic barcoding is a method to track cell lineages using unique, short
sequences of DNA that are taken up by each cell of the starting population (Bhang
et al. 2015). These genetic markers are stably inherited. Each cell gives rise to clones
which can be uniquely identified via sequencing techniques following amplification.
The relative abundance of barcodes tagging a particular type of cell (say, cells with
high growth rates) can be used to infer the absolute number and frequency of cells of
that type. This technique is expected and proposed to be a great tool for experiments
on extinction therapy because it can help us identify lineages with high growth rates
and subsequently classify systems according to their predicted response to extinc-
tion therapy. Overall, we can better understand the population dynamics in a system
undergoing extinction therapy.

We need to model experimental errors in order to compare data to simulation pre-
dictions (Thielecke et al. 2017). There are primarily three sources of noise when
analysing cellular barcoding data – stochastic growth effects, DNA amplification and
sequencing. We model them separately at first and then combine them to get a total er-
ror estimate. DNA amplification via PCR – the first step to quantify barcode abundance
in the DNA sample, can lead to errors in measurement due to DNA damage, errors
made by polymerase, etc. The amplification process is exponential so the measure-
ments with noise are assumed to follow a log-normal distribution (Noble and Recker
2012).

Ramp = 2XRsim (4.23)

where X ∼ N (0, σ2) and Rsim is the simulated number of reads. Next, we assume that
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sequencing introduces Poisson sampling errors in the number of reads corresponding
to a given barcode (Levy et al. 2015). Given the frequency F of the chosen barcodes
in the sample, the observed number number of reads R, for that cell lineage is given
by a Poisson distribution with mean RampF where Ramp is the total number of reads
post amplification.

P(R = r|F = f) =
(Rampf)

r exp(−Rampf)

r!
(4.24)

Consequently, the abundance of reads corresponding to the barcode follows a mixed
Poisson-lognormal distribution. It gives the conditional probability of observing r reads
of the barcode given the actual frequency of the corresponding cells in the population
is f . Lastly, we consider stochastic growth effects which lead to differences across
replicates. Quantifying the stochastic dynamics of multiple clonal lineages, all compet-
ing with each other, is extremely complex, so for our purposes, to estimate the variation
in growth curves, we can run our simulation several times and obtain approximate dis-
tribution parameters like mean and variance.

A complete description of the model is given below where Nr is the number of reads
of the desired barcode.

X ∼ N (0, σ2) (4.25)

Ramp = 2XRsim (4.26)

r|F ∼ Poisson(RampF ) (where F = Nr/Rsim) (4.27)

E[Nr] = γ, Var[Nr] = δ (4.28)

4.4.1 Deriving the expression for error in number of reads

The conditional probability distribution of the number of reads corresponding to a
particular barcode given its true frequency is assumed to be a Poisson distribution
(Eq (4.24)) with rate equal to RampF . Since the rate parameter itself is a lognormal
random variable, we have a Mixed Poisson variable R (given F ), for which the ex-
pected value is given by,

E[R|F ] = E[RampF |F = f ] (4.29)

= E[Rsim2
XF |F = f ] (4.30)

= E[2XNr|Nr = nr] (4.31)

= nrE[2X ] (4.32)
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Since X ∼ N (0, σ2), the expected value of the lognormal value 2X is given as follows,

v = E[2X ] =
1

σ
√
2π

∫ ∞

−∞
2x exp

(
−x2

2σ2

)
dx (4.33)

=
1

σ
√
2π

∫ ∞

−∞
exp

(
−(x− σ2 ln 2)2

2σ2

)
exp

(
σ2 ln2 2

2

)
dx (4.34)

= exp

(
σ2 ln2 2

2

)
(4.35)

Consequently, Var[2X ] = exp(2σ2 ln2 2)−exp(σ2 ln2 2) = v4−v2. Using these quantities,
we can compute the variance of the Mixed Poisson-lognormal variable, given by,

Var[R|F ] = E[RampF |F = f ] + Var[RampF |F = f ] (4.36)

= nrv + n2
r(v

4 − v2) (4.37)

The unconditional variance of the number of resistant reads R can be calculated using
the conditional moments.

Var[R] = E[Var[R|F ]] + Var[E[R|F ]] (4.38)

= E[Nrv +N2
r (v

4 − v2)] + Var[Nrv] (4.39)

= vE[Nr] + (v4 − v2)E[N2
r ] + v2Var[Nr] (4.40)

= vγ − v2γ2 + v4(γ2 + δ) (4.41)

where v is a function of σ.
v = exp

(
σ2

2
ln2 2

)
(4.42)

If the value of σ is small, v will be close to 1, which means that the dominant terms
in Var(R) will be δ and γ, the parameters of the growth distribution. This serves as
a check of the accuracy of the expression because, in the limit of small experimental
error, the total error reduces to noise across replicates.
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Chapter 5

Discussion

Extinction therapy is a novel evolutionary therapy which aims to push a cancer to ex-
tinction by exploiting the stochasticity of small and vulnerable populations. This is
done via the use of multiple “strikes” or treatments at appropriate times. A tumour
that responds well to a primary therapy is in a way, primed for a second strike be-
cause it is small and susceptible to stochastic effects. When applying extinction ther-
apy on a cancer ecosystem, we aim to “kick it while it’s down”. The origins of this
idea come from Anthropocene extinctions and background extinctions in large-scale
ecosystems (Gatenby, Zhang, and Brown 2019). Extinction therapy translates these
eco-evolutionary phenomena into the context of cancer treatments.

Previous models on extinction therapy provide a working model and proof of con-
cept for the treatment (Gatenby, Artzy-Randrup, et al. 2020). We build on that with
a quantitative, analytical model of extinction therapy with which we can estimate quan-
tities of importance like extinction probabilities (PE) and optimal timing for the second
strike (Nτ ). Our simulation results show us how a population under extinction ther-
apy changes when crucial system parameters are altered. Moreover, these results
point to the gaps left by the analytical model due to its limitations, and at the same
time verify the main conclusions made by it. The combination of analytical and com-
putational analyses, both derived from the principles of evolutionary rescue, arms us
with powerful tools to explore extinction therapy in a wide range of parameters with a
solid basis in eco-evolutionary theory. Lastly, we model experimental errors and pre-
dictions for upcoming experiments in extinction therapy using mathematical modelling
and simulations tracking cellular lineages.

Analytical results: Our analytical model, building on our previous preliminary models
(Appendix A), is simple, tractable and easy to simulate. We attempt to make as few
assumptions as possible and find the minimal set of parameters needed to accurately
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model extinction therapy. Using the theory of evolutionary rescue, we find explicit
expressions for calculating extinction probabilities. On analysing the behaviour of ex-
tinction probability as a function of the second strike threshold (Nτ ), we find that the
maximum probability of extinction is expected to occur when the second strike thresh-
old is equal to the minimum population reached in the absence of a second strike
(Nmin). This result verifies the hypothesis made by the model proposed by Gatenby,
Artzy-Randrup, et al. (2020).

Based on the analytical model, we constructed a simulation model with the same pa-
rameters. Comparing analytical predictions to simulation results highlights the limita-
tions of the analytical results. Major deviations from the analytical model are seen in
the form of higher extinction probabilities than expected for larger populations. We
suggest that deviations from predictions occur because the mathematical model does
not account for stochastic population growth at small sizes and makes assumptions
of Logistic growth which do not necessarily hold in all cases. We propose plausible
explanations to support this hypothesis.

Apart from these limitations, the analytical model is able to accurately predict the op-
timal second strike threshold – the population size at which if the second strike is
administered, the extinction probability is maximised. We also show that this optimal
threshold is expected to be equal to the minimum population size reached in the ab-
sence of a second strike (a result in agreement with the simulations). We note that the
optimal second strike threshold is one of the most important quantities to determine.
The ability to analytically predict this value for a large range of parameter values can
allow us to design treatment schedules for extinction therapy. Following these results,
we define a region of feasibility for accurate prediction of the optimal second strike
threshold.

Stochastic simulation results: To explore a wider range of parameter values, includ-
ing those outside the region of feasibility of the analytical predictions, we ran a large
number of simulations which allowed us to empirically calculate extinction probabili-
ties and optimal second strike thresholds (Nτ ). First, we show that a second strike
increases extinction probability and that reaching a low enough population is neces-
sary for the second strike to be effective. A small population size is key because the
population must be in a regime where it is susceptible to stochastic effects. To char-
acterise what “small” means in the context of extinction therapy, we compare different
second strike thresholds relative to Nmin, the minimum population size reached with-
out a second strike. In our cases of interest, the minimum population size is non-zero
because those are the cases in which relapse is imminent but can be avoided if the
second strike is implemented. As a result, we conclude that Nmin is the optimal second
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strike threshold, which agrees with our analytical predictions. So when we say that the
population must be small enough for extinction therapy to be effective, it means that
the population size must be close enough to Nmin.

The range of values around Nmin that result in an extinction probability greater than a
given tolerance level (say, 90%) can easily be calculated using both the analytical and
simulation models. An important distinction here is between second strike thresholds
implemented before and after the minimum population size is reached. In the char-
acteristic U-shaped trajectory of a population undergoing evolutionary rescue, a given
population threshold Nτ is met twice, once before the minima and once after. Previous
models do not distinguish between these two and hypothesize that the “before-minima”
thresholds are better in terms of treatment efficacy. On the contrary, we show that the
“after-minima” thresholds result in a much higher extinction rate. We hypothesize that
this is due to the difference in fitness of resistant and sensitive clones. Since the popu-
lation is dominated by resistant clones after the minima has been reached, treatment-
induced death adds to the cost of resistance resulting in an overall higher death rate
than would be observed before the minima. Consequently, the so-called “window of
opportunity” extends further to the right of the minima than it does to the left. In fact,
on the right side of the minima, the probability of extinction can be as much as double
the value for the same Nτ on the left side. In practice, this would imply that an error in
the estimation of Nmin is much costlier to the left than to the right (after the minima), so
it is better to wait and risk missing the optimal Nτ than to make the same error before
the minima has reached.

Next, we explore the parameter space of our model, with a focus on the second strike
threshold (Nτ ). We find that optimal Nτ increases with carrying capacity (K). This is
because we see an increase in the minimum population Nmin as K increases. How-
ever, the analytical calculation for Nmin does not include this dependence on carrying
capacity possibly because it comes about due to stochastic growth effects in the initial
stages of growth for the resistant clone R1, which leads to a slower overall growth than
expected by the analytical model. Meanwhile, the sensitive population continues to
decay at the expected rate, resulting in a lower Nmin for lower carrying capacities. For
a given second strike threshold, however, the peak extinction probability will tend to
decrease as the Nmin goes higher and further away from the threshold. Considering
the effect of carrying capacity on extinction therapy is very important. It plays a role
in in-vitro experiments (size of the petri dish, for example) and in actual tumours in
patients. There are processes like angiogenesis that can alter the carrying capacity
of a tumour. Ultimately, in order to implement extinction therapy, one must take into
account the effect of carrying capacity and its implications for the given system.
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We also assess the effect of fitness of the resistant clones on the Nτ threshold. As
expected, we see a higher extinction probability for less fit clones (high cost of resis-
tance). Moreover, we see an increase in the size of the “window of opportunity” as
the cost of resistance increases. This implies that if the resistance clones are not too
fit compared to the sensitive clones, then it is highly likely that the population goes
extinct regardless of the second strike. However, these are the cases in which the first
strike is enough to kill the entire population so there is no relapse. We are interested
in cases where evolutionary rescue is imminent. Therefore, we care about fit resis-
tant clones (low cost of resistance) and infer that even in the extreme cases (no cost
of resistance), there exists a window of opportunity, albeit narrow, making extinction
therapy a viable option.

Finally, we investigate the effect of treatment-induced death rate on extinction proba-
bilities. Surprisingly, we find that for a given second strike threshold, higher treatment
levels result in a lower extinction probability. We hypothesize that this trend for high
treatment levels is a result of two opposing effects. A higher death rate pushes the
population towards extinction, but also pushes the Nmin (or optimal Nτ ) towards lower
values. Since the Nτ is fixed, a lower Nmin means that the threshold is further away
from the optimum. The disadvantage of suboptimal timing ends up dominating over
other factors. This result emphasizes the importance of timing in extinction therapy –
A stronger treatment with bad timing is worse than a weaker treatment given at the
right time.

Predictive modelling for experiments in extinction therapy: Given the current
nascent stage of the development of extinction therapy, experimental verification and
testing of the concept is necessary in the near future. These experiments are ex-
pected to use techniques like genetic barcoding to track cellular lineages to test the
efficacy of extinction therapy. To aid the design and analysis of future experiments, we
performed predictive mathematical modelling with two aims – 1) to help characterize
systems based on their growth distributions in order to determine if they are suitable
for extinction therapy, and 2) to model errors in barcoding experiments to determine
the accuracy of lineage tracking experiments. For aim 1, we used stochastic simula-
tions to show that systems with high and low costs of resistance respond differently to
treatments and illustrated how such differences in intrinsic growth parameters can be
experimentally determined. We find that growth rate distributions and lineage counts
at certain time points are useful tools for characterizing systems undergoing extinc-
tion therapy. For aim 2, we derived an expression for error in the number of reads of
a given barcode, taking into account the errors introduced by PCR amplification and
sequencing. Using this expression with experimental data can provide an estimate of
the experimental error. Predictive modelling of extinction therapy with experiments in
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mind helps us understand the limitations of theoretical work and tells us what to expect
when these experiments do get conducted.

Limitations of this work: Our results are based on a few assumptions and conse-
quently subject to limitations. First, our analytical model does not account for stochas-
tic growth effects which are a crucial component of population dynamics at low popu-
lation sizes. Even from the stochastic simulation results, it is clear that the analytical
predictions deviate from empirical outcomes in cases where stochastic dynamics are
expected to play an important role. Second, we use a very simple and specific model
formulation to obtain our results. As model specifications change, the results might
vary. While the qualitative insights would still be valid, the significance of individual pa-
rameters depends highly on the model formulation. For example, the effect of carrying
capacity seen in our results may be dependent on the way density dependence man-
ifests in the population. Third, for the sake of simplicity we limit our analysis to a few
cases with a limited number of parameters while keeping everything else constant. For
example, treatment-induced death rates are kept equal for both the treatments in our
model. Fourth, we only consider small populations relative to a typical tumour burden.
Therefore, our work may be valid for tumour metastases but when the population size
is in the order of a billion cells, the results may vary. With this work, we aim to produce
the simplest working model of extinction therapy in order to understand the fundamen-
tal dynamics that take place in such systems. However, several aspects of our work
need to be expanded upon to gain a more realistic understanding of the system.

When should extinction therapy be used? Extinction therapy involves eradicating at
least a large portion of the initial population in order to take it to a stage where it is sus-
ceptible to further strikes. However, such a strategy may not always be the best way
to go. For instance, in systems with very fit resistant phenotypes, extinction therapy
might just give way to competitive release. More importantly, we are faced with practi-
cal considerations like the availability of a large and diverse group of drugs/treatments
that the tumour responds to, and the feasibility of techniques to monitor tumour burden
at a chosen time point (Reed et al. 2020). The most added benefit of ET would show
up in cases where the rate of relapse is high following a good response to treatment.

Another situation in which extinction therapy may be useful is when the second treat-
ment is not as effective as the first one (also suggested by Gatenby, Artzy-Randrup,
et al. (2020)). The first treatment will drastically reduce the population size but may
result in a relapse. However, even a weaker treatment is effective as a second strike
because of two reasons – 1) small population sizes are subject to stochastic extinc-
tions and even a weak treatment can push the population into the extinction vortex,
and 2) if the population is dominated by treatment-resistant cell types at the beginning
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of the second strike, a weaker treatment is sufficient to cause population decay be-
cause the population’s intrinsic growth rate is already limited by the cost of resistance.
Ultimately, extinction therapy is about the strategic use of multiple treatments to obtain
the best possible outcome (Gatenby, Artzy-Randrup, et al. 2020).

Extinction therapy in the clinic: The closest practical realisation of the concept of ex-
tinction therapy is seen in the treatment of paediatric Acute Lymphoblastic Leukaemia
(ALL), which has multiple “phases” of chemotherapy of varying intensities (Gatenby,
Zhang, and Brown 2019). However, there is little exploration of the optimal time dif-
ference between two phases or the optimal intensity of each phase. Nonetheless, the
success of the ALL treatment regime motivates further investigation into the causal
eco-evolutionary factors behind it. In this case, there are already considerations of
extinction therapy in the context of diseases like LARC (locally advanced rectal adeno-
carcinoma, Felder, Fleming, and Gatenby (2021)), mPC (metastatic prostate cancer,
Gatenby, Zhang, and Brown (2019)) and paediatric sarcomas (Reed et al. 2020). As
the influence of evolutionary therapies increases, we see more and more clinical and
pre-clinical trials being conducted to test this new paradigm.

Conclusion and future directions: Extinction therapy is still a theoretical model at
this stage, lacking any experimental evidence, with perhaps a little empirical support.
A robust, complete theory of extinction therapy is needed for a comprehensive un-
derstanding of this phenomenon and its applicability in the context of cancer. In this
thesis, we set the stage for further theoretical and experimental development of extinc-
tion therapy. Our model emphasizes the importance of the timing of the second strike
and analyses its effects on other model parameters. We predict the behaviour of sys-
tems undergoing extinction therapy within the scope of our analytical and stochastic
simulations model. However, it is important to integrate stochastic growth effects and
plasticity into analytical models and explore the implications of continuous resistance
traits. Overcoming the limitations presented in our model could be the first step to a
more general understanding of extinction therapy.
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Appendix A

Analytical insights from preliminary
models

While attempting to build a simple model for extinction therapy, we analysed some
preliminary models and understood the components necessary for our main model.
Here are 4 such preliminary models.

A.1 Case 1: Bottleneck treatment with exponential de-

cay

To begin with, we try to simplify the type of treatment described in Gatenby, Artzy-
Randrup, et al. (2020) and model it using evolutionary rescue theory. Here, we con-
sider only one resistant variant, since there is only one drug-based treatment. The
second strike is administered in the form of a bottleneck on the population, after which
a certain fraction q of cells are killed. The second strike does not distinguish between
resistant (R) and sensitive (S) cells and kills cells at random. The rationale for this
could be that the second strike would typically be chosen such that it has a different
mechanism of action than the primary drug, which means that both types of cells will
be sensitive to this strike.

For simplicity, we first consider exponential decay (with rate g < 0) of the population
due to the primary treatment. Additionally, we assume that the rescue mutants have a
small growth rate so that the total number of rescue mutants can be estimated by the
number of mutations from S → R. Following the theory developed in Section 2, the
instantaneous rate of generation of resistant mutants is Ntµπ where µ is the per capita
mutation rate (S → R) and π is the fixation probability of a single resistant mutant (see
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Section 2). The rescue variants generated till time τ are Poisson distributed with the
rate,

λ = µπ

∫ τ

0

Ntdt (A.1)

= µπ
N0 −Nτ

|g|
(A.2)

We apply the second treatment at time τ , with the assumption that Nτ > Nmin. This
means that Nτ is a decreasing function of τ . At time τ , a fraction q = k/Nτ of all
cells are killed at random. The population can be rescued either if any rescue mutant
survives the bottleneck or if resistant mutants generated after the second strike escape
stochastic extinction. This means that if the population is to go extinct, two conditions
must be met: no rescue mutants should survive after the bottleneck and any resistant
mutants generated after the bottleneck should not fix in the population.

For condition 1, we derive the probability that the second strike kills all rescue mutants
in the population till time τ . Assuming that the number of cells k that die during the
second strike is much larger than the rate λ, we obtain that the probability of no rescue
mutants surviving the bottleneck is exp[−λ(1 − q)] (derivation in Section A.1.1). For
condition 2, analogous to Eq A.2, rate of generation of rescue mutants after the second
strike is λ′ = Nτ (1− q)µπ/|g|.

Therefore, the total extinction probability for this case is,

PE = exp[−λ(1− q)] exp[−λ′] (A.3)

To find the optimal time for the second strike, we find the value of τ for which λ(1−q)+λ′

is minimum, which corresponds to the maximum PE.

argmin
τ

λ(1− q) + λ′ (A.4)

=argmin
τ

µπ(1− q)
N0 −Nτ

|g|
+ µπ(1− q)

Nτ

|g|
(A.5)

=argmin
τ

µπ(1− q)
N0

|g|
(A.6)

From Eq A.6, we see that the time of the second strike does not matter in this case.
This result implies that if a therapy eliminates a fixed fraction of the population, the
probability of extinction does not depend on the population size at which the elimina-
tion occurs. This can be explained by looking at the two terms in Eq A.3. The first
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part, corresponding to the probability of killing all rescue mutants in the second strike,
decreases with Nτ because the fraction of rescue mutants in the population keeps on
increasing while the total population decays. It becomes harder and harder to elimi-
nate all rescue mutants as the threshold population decreases and with it, the number
of cells that die in the second strike decreases. However, as a result the time after
the second strike till extinction also decreases with Nτ , because Nτ is lower for higher
values for τ . This does not allow many rescue mutants to escape stochastic death
after the second strike. So, the second term of the expression is higher at lower Nτ ’s,
as opposed to the first term, which is lower at lower Nτ ’s. These two terms perfectly
balance each other and PE in this case turns out to be constant throughout,

PE = exp

[
−µπ(1− q)

N0

|g|

]
. (A.7)

A.1.1 Derivation of probability of rescue mutants after a bottle-
neck

Given that a fraction q of the total population is killed in the bottleneck, we derirve
the probability that there are no rescue mutants left after the bottleneck. Assume that
k = qNτ cells are eliminated in the bottleneck and X is a random variable denoting the
number of rescue mutants before the bottleneck, then the probability that the number
of rescue mutants after the bottleneck (X ′) is equal to zero is,

P(X ′ = 0) =
k∑

i=0

P(X = i)
(
Nτ−i
k−i

)(
Nτ

k

) (A.8)

=
k!(Nτ − k)!

Nτ !

k∑
1=0

P(X = i)(Nτ − i)!

(k − i)!(Nτ − k)!
(A.9)

=
k!

Nτ !

k∑
i=0

exp(−λ)λi

i!

(Nτ − i)!

(k − i)!
(A.10)

where λ is the Poisson rate of generation of resistant mutants. Now, assuming that
i << k,Nτ because the probability of an i close to k would be small, meaning that the
product of the terms inside summation will be small, we get:

P(X ′ = 0) =
k!

Nτ !

k∑
i=0

exp(−λ)λi

i!

Nτ !

k!

(
k

Nτ

)i

(A.11)

=
k∑

i=0

exp(−λ)λiqi

i!
(A.12)
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Assuming that k >> λ which, again is reasonable, given that λ is the rate of generation
of resistant mutants, we have:

P(X ′ = 0) =
∞∑
i=0

exp(−λ(1− q))
(λq)i exp(−λq)

i!
(A.13)

= exp(−λ(1− q)) (A.14)

A.2 Case 2: Bottleneck treatment with density depen-

dence

In this case, we add density dependence in the framework of Case 1. The carrying
capacity of the system is K and the rest of the parameters remain the same. We have
the distribution of rescue mutants described by a Poisson distribution with rate given
by Eq A.1. Given the Logistic growth equation with growth rate g < 0, we substitute
the integral term,

λ = µπ

∫ Nτ

N0

dNt

g(1−Nt/K)
(A.15)

=
µπK

g

∫ Nτ

N0

dNt

K(1−Nt/K)
(A.16)

=
µπK

|g|

[
ln

(
1− Nτ

K

)
− ln

(
1− N0

K

)]
(A.17)

We apply the second treatment at time τ , eliminating a fraction q of all cells. Again,
the probability that all rescue mutants die in this strike is exp[−λ(1− q)] (assuming that
the growth rate of rescue mutants is positive but small). After the bottleneck, rescue
mutants are generated with rate λ′,

λ′ =
µπK

g

∫ 0

Nτ (1−q)

dNt

K(1−Nt/K)
(A.18)

=
µπK

|g|

[
− ln

(
1− Nτ (1− q)

K

)]
(A.19)

Therefore, the total extinction probability for this case is,

PE = exp[−λ(1− q)] exp[−λ′] (A.20)

To find the optimal time for the second strike, we find the value of τ for which λ(1−q)+λ′

is minimum, which corresponds to the maximum PE.
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− lnPE = λ(1− q) + λ′ (A.21)

=
µπK(1− q)

|g|

[
ln

(
1− Nτ

K

)
− ln

(
1− N0

K

)]
+

µπK

|g|

[
− ln

(
1− Nτ (1− q)

K

)]
(A.22)

= − µπK(1− q)

|g|
ln

(
1− N0

K

)
+

µπK

|g|

[
(1− q) ln

(
1− Nτ

K

)
− ln

(
1− Nτ (1− q)

K

)]
(A.23)

Since the value of Nτ can range from 0 to N0, we see that the maximum extinction
probability is obtained at Nτ= N0. Therefore, we get minimum PE at Nτ = 0 and it
keeps increasing for higher values of Nτ .

min PE = exp

[
µπK(1− q)

|g|
ln

(
1− N0

K

)]
(A.24)

max PE = exp

[
µπK

|g|
ln

(
1− (1− q)N0

K

)]
(A.25)

In this case, the second treatment increases the probability of extinction as Nτ in-
creases. This is different from case 1 where due to exponential decay, the probability
of killing rescue mutants in the second strike does not depend on the population size at
the time of the second strike because the two terms in the expression for PE cancel out
to give a constant value throughout. That balance is skewed here because the pop-
ulation experiences a faster decay due to the extra constraint of a carrying capacity.
At the same population size, a population under density dependence will have fewer
rescue mutants than a population with exponential decay.

Note that the biggest drawback both in cases 1 and 2 is the assumption that rescue
mutants have a small growth rate. We make this assumption so that we can estimate
the total population of rescue mutants with the number of rescue mutant lineages. The
expression for the probability distribution and expected number of rescue mutants at a
given time τ is hard to compute analytically, given the stochastic nature of population
growth. For the same reason, we do not take into account standing genetic variation.
Heuristically, if we do consider these two effects, then the probability of extinction will
decrease overall.
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A.3 Case 3: Two overlapping drug treatments with ex-

ponential decay

A bottleneck treatment that instantly eliminates a fixed proportion of cells is not a re-
alistic system. In practice, one would tend to combine two or more drugs that have
complementary mechanisms of action. When we consider two drug treatments, we
have to model two resistant variants and a single wild-type or sensitive variant. Each
resistant variant corresponds to a different environment. The environment in turn de-
pends on the type of treatment in both the strikes. In this case, we take both the
treatments to be drugs that alter the growth rate of tumour cells. We thus have two en-
vironments with different effects on the cells. Environment 1 (E1) is when only the first
drug (drug 1) is administered. Environment 2 (E2) is when the second drug (drug 2)
is given in addition to the first drug. Consequently, we have two types of resistant mu-
tants – clone R1 resistant to drug 1 and clone R2 resistant to both the drugs. Note that
saying a cell is “resistant” to a drug is equivalent to saying that it has positive growth
rate in the corresponding environment. Table A.1 lists all the relevant parameters for
this case.

Parameter Description

di < 0 Decay rate of the sensitive cells in Ei (i = 1, 2)

µi Rate of mutation to resistant variants in Ei (i = 0, 1, 2)

πj Probability of establishment of a single resistant cell in clone Rj (j = 1, 2)

pj Probability of mutating to the j th resistant variant (j = 1, 2)

Table A.1: List of parameters for case 3

The instantaneous rate of generation of rescue mutants in E1 is given by Ntµ1πdt,
where Nt is the total population of cells at time t and π = p1π1 + p2π2 is the expected
probability of establishment of a single resistant cell, which consists of both the resis-
tant cell type fixation probabilities because both R1 and R2 cells are resistant in E1.
The rate of generation of rescue mutants in E1 is,

λ1 =

∫ τ

0

Ntµ1πdt = µ1π

∫ τ

0

Ntdt (A.26)

=
µ1π

|d1|
(N0 −Nτ ) (A.27)

Similarly, for environment E2, we have,

λ2 =
µ2π2Nτ

|d2|
(A.28)
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We take the expected probability of establishment for λ1 but not for λ2 because clone
R2 is resistant to both the drugs and can lead to the generation of rescue mutants in
both the environments, but R1 is resistant only in E1 and does not play a role in E2.

Therefore, the probability of extinction is given by,

PE = exp[−(λ1 + λ2)] (A.29)

Our aim is to maximise the probability of extinction with respect to the time of the
second strike (τ ).

argmax
τ

PE (A.30)

= argmin
τ

λ1 + λ2 (A.31)

= argmin
τ

µ1π

|d1|
(N0 −Nτ ) +

µ2π2Nτ

|d2|
(A.32)

= argmin
τ

N0
µ1π

|d1|
+Nτ

(
µ2π2

|d2|
− µ1π

|d1|

)
(A.33)

= argmin
τ

Nτ

(
µ2π2

|d2|
− µ1π

|d1|

)
(A.34)

Hence, the optimal time for the second strike in this case, depends on the relative
values of parameters in both the environments. Let U = µ2/µ1 and D = |d2/d1| be the
relative change in mutation rates and wild-type decay rates in E1 and E2. If τE is the
time of extinction of the population, then

π2

π1

>
p1D

U − p2D
=⇒ argmax

τ
PE = τE and, (A.35)

π2

π1

<
p1D

U − p2D
=⇒ argmax

τ
PE = 0 (A.36)

We observe that in this case, the second drug should either not be given or should be
given simultaneously with the first drug to get a combined effect. The decision depends
on the ratio of the probabilities of fixation of the two resistant variants. If U = D = 1,
then the comparison is just between the fixation probabilities. If the second resistant
variant has a higher probability of fixation, then it is better to not administer the second
strike at all.

One must note that this simple condition resulting in only two outcomes – a complete
absence of drug 2 versus simultaneous administration of the two drugs – is a result
of the type of treatments considered. If there is an environment with both the drugs
present (i.e. a second strike is given), it is likely that a cell type resistant to both the
treatments will emerge and fix in the population. If there is no second strike, then the
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R1 cells will fix in the population, if they escape stochastic extinction. Therefore, the
optimal Nτ only depends on the difference in growth rates between the two resistant
cell types and one of the treatments is rendered obsolete in any case.

A.4 Case 4: Two overlapping drug treatments with den-

sity dependence

Next, if we add density dependence to case 3, from Eq A.32 we get,

λ1 + λ2 (A.37)

=
µ1πK

|d1|

[
ln

(
1− Nτ

K

)
− ln

(
1− N0

K

)]
+

µ2π2K

|d2|

[
− ln

(
1− Nτ

K

)]
(A.38)

= − µ1πK

|d1|
ln

(
1− N0

K

)
+ ln

(
1− Nτ

K

)[
µ1πK

|d1|
− µ2π2K

|d2|

]
(A.39)

Since Nτ takes values between 0 and N0, we again have the same result, with mini-
mum/maximum PE at Nτ = 0 depending on the parameter values. The conditions for
the same are described in Eqs A.35.
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