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Abstract
We explore the possibility to detect gravitational waves buried in the data stream of gravitational

wave detectors, like Laser Interferometer Gravitational wave Observatory (LIGO), using the par-
ticle swarm optimization (PSO) algorithm. Our results show that PSO is a powerful tool to detect
gravitational waves and as well as estimate source parameters to reasonable accuracy at much
lower computational cost. We also shed light on a variant of PSO developed during the course of
our project. We also present results for another study which aims to investigate geographical fac-
tors and annual timing of LIGO-VIRGO science runs, on the probability of finding electromagnetic
counterparts of an astrophysical gravitational wave source.
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Chapter 1

Introduction

1.1 General theory of Relativity

The general theory of relativity was proposed by Einstein in 1915. Newton’s theory of gravity
does not address a fundamental question – the speed with which gravitational force propagates.
Implying, that any changes in mass distribution locally would result in changes everywhere in the
universe instantaneous. The following idea is in direct conflict with Einstein’s special relativity
which allows that information can not propagate faster than the speed of light c. This fundamental
flaw motivated Einstein to develop a new theory of gravity.

To address the above question, Einstein used the principle of equivalence which later served as
the cornerstone to the theory’s mathematical formulation. The hypothesis is that reference frames
with a uniform gravitational field (like earth) are equivalent to frames which are accelerating with
respect to an inertial reference frame (a freely falling elevator). The very assumption gives rise to
the prediction that gravitational fields should bend the path of photon (discussed later). Eddington
in 1919 proved this prediction showing light from distant star bends due to the gravitational field of
the sun. Over a century, the general theory of relativity has been extensively tested, the experimen-
tal results making a peaceful agreement with the theory each time. One of the last of the untested
theory prediction – the existence of gravitational waves (GW), was verified by LIGO in the land-
mark discovery of February 2016 [5, 6]. We will briefly discuss the mathematical formulation and
the consequences of this theory which has revolutionized modern physics and cosmology.
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Figure 1.1: The two frames shown in the figure are equivalent according to the principle of equiv-
alence. The photon as it travels across the spaceship moving upwards with an acceleration of a
will exit the spaceship at a point lower than its entry as depicted in the figure. This frame is equiv-
alent to a frame with a gravitational potential of a. Thus, the photon path should bend due to the
gravitational potential as depicted in the figure on the right.

As stated, equivalence principle predicts the bending of light as it traverses through a gravitational
potential due to a massive object. Another important consequence which seeds from the same
principle are the gravitational red-shift – photons traveling into a gravitational potential (in GR
it’s more meaningful to use curvature) is blue-shifted and vice-verse, gravitational time dilation –
time runs slower for an object with higher curvature (gravitational potential). How and why does
curvature come into the picture?

Uniform gravitational fields are equivalent to frames which are accelerating with respect to an

inertial reference frame. Let us consider an elevator moving upwards with a constant acceleration
with respect to an inertial reference frame. A photon enters from the left, the trajectory of the
photon as seen from the inertial frame is shown in figure 1.1. Using equivalence principle, the
elevator frame is equivalent to a uniform gravitational field. Thus, photons or test masses bend
in the presence of a uniform gravitational field. To describe these trajectories, called geodesics,
Einstein used manifolds and curvatures.

In Einstein’s special theory of relativity, mass, energy, and momentum are interchangeable. Thus,
in general theory of relativity unlike Newton’s theory of gravity – not just mass but the distri-
bution of energy and momentum which can give rise to gravitational fields. This information is
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incorporated in the 4X4 energy momentum tensor Tαβ [7]. The Einstein’s equations are:

Gαβ = Rαβ −
1
2gαβR = 8πG

c4 Tαβ (1.1.1)

where Rαβ is Ricci tensor which is related to the Riemann curvature tensor Rαβµν and R is Ricci
scalar defined below.

Rαβµν = gαλR
λ
βµν = 1

2(gαν,βµ − gαµ,βν + gβµ,αν − gβν,αµ) (1.1.2)

Rαβ = Rγ
αγβ (1.1.3)

R = gαβRαβ (1.1.4)

gαβ represents the spacetime metric which is related to the Energy-Momentum tensor Tαβ , the
source which gives rise to the curvature of spacetime. In Einstein’s theory, matter and spacetime
are entangled together. In words of Wheeler – “ Spacetime tells matter how to move; matter tells
spacetime how to curve.” One key note to remember – Einstein’s theory is coordinate independent.
Thus, one is always free to choose a convenient coordinate system for calculations. We will use
weak field approximation for all derivations discussed.

1.2 Gravitational Waves

As stated gravitatioanl force arise arise from the curvature of spacetime. In a special case of
weak gravitational fields, the spacetime metric can be approximated as small perturbations hαβ (
|hαβ| << 1 ) to flat spacetime define by the minkowski metric ηαβ (we assume signature as [-1, 1,
1, 1] ).

gαβ = ηαβ + hαβ (1.2.1)

Under the assumption of weak gravitational fields, it is valid to consider hαβ as a tensor in special
relativity. As a result, we use the minkowski metric for raising and lowering indexes of hαβ . The
trace of h is

h = hαα = ηαγhγα (1.2.2)
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We define a trace reverse tensor of hαβ as :

h̄αβ = hαβ − 1
2η

αβh (1.2.3)

The trace of the reverse tensor is h̄ = −h. From equation 1.2.3 one can rewrite h as:

hαβ = h̄αβ − 1
2η

αβh̄ (1.2.4)

Using the equations 1.1.2 and 1.2.3 to evaluate the left hand side of 1.1.1. Then to first order in
hαβ we get:

Gαβ = −1
2(h̄ ,µ

αβ,µ + ηαβh̄
,µν

µν − h̄ ,µ
αµ,β − h̄

,µ
βµ,α ) (1.2.5)

Under Lorentz gauge condition h̄µν,ν = 0, the above equation simplifies to give

Gαβ = −1
2�h̄

αβ = 8πG
c4 Tαβ (1.2.6)

where � is the d'alembertian operator. If we now consider vacuum state solutions (source is at
infinity : Tαβ = 0) of the above equation, we get travelling wave equation.

�h̄αβ = 0 (1.2.7)

The solutions to the above equation can we written in form of a travelling wave in plane wave
basis. The amplitude of wave is Aαβ propagating with wave vector kgamma

h̄αβ = Aαβexp(ikγxγ) (1.2.8)

Using the Lorentz gauge condition on the solutions we get that Aαβ is orthogonal to the wave
propagation vector k.

Aαβkβ = 0 (1.2.9)

We exploit the gauge freedom to further constrain the amplitude. Using gauge invariant conditions
we get

Aαα = 0 (1.2.10)

AαβU
β = 0 ; where U is the four velocity vector. (1.2.11)
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Figure 1.2: The effect of the two polarizations (h+ and h×) of GWs on a ring of test mass particles.
The figure shows how the ring is distorted over time due to the passage of purely polarized GWs.

The condition 1.2.10 requires the trace of Aαβ to be zero. Moreover, using 1.2.10 in 1.2.3, it is
straightforward to see that hαβ = h̄αβ .

The conditions 1.2.9, 1.2.10 and 1.2.11 together define the Transverse-Traceless (TT) gauge. U is
a velocity four-vector in a background minkowski spacetime, we can write it as Uα = δα0. Using
this in 1.2.11, we get Aα0 = 0 for all α. Now consider a frame such that the wave is traveling in
the positive z-axis of space. In this frame 1.2.11 requires Aα3 = 0 for all α.

Summarizing all the constraints above hαβ is symmetric and traceless, hα3 = 0 and hα0 = 0. We
are left with only two independent quantities that define hαβ . Physically, these two independent
quantities are the two possible polarizations of GWs – h+ and h×. A generalized metric satisfying
the TT gauge condition can be written as:

hαβ =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 (1.2.12)

The effect of each polarization on a ring of test mass is shown in figure 1.2. The concept of interfer-
ometry to detect GWs stems from the same picture. Kip Thorne, Ronald Drever and Rainer Weiss
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put forward the idea that the differential movement of the mirrors of the Michelson interferometer
could be used to detect the GWs. But the next question that arises is how much do the mirrors
move due to GWs? We will address this in the next chapter.

1.3 Quadrupole approximation

Consider the equation 1.2.6. If we assume that the astrophysical source of GWs is undergoing slow
motion. Also, all astrophysical sources undergo periodic motion so it is reasonable to assume that
Tαβ is undergoing sinusoidal motion with frequency Ω. With these assumptions we can write,

Tαβ = Real(Sαβ e−iΩt) (1.3.1)

Under the assumption of slowly moving sources, we demand that the velocity inside the source
region is small (Sαβ << 2π/Ω). Solving the equation 1.2.6 with these assumptions leads to the
solution called as quadrupole approximation. We define the inertia tensor as the second order
moment of the distribution of mass as

Ijk =
∫
T 00xjxkd

3x (1.3.2)

Then the GW amplitude under quadrupole approximation is given by

hjk = 2
r

d2Ijk
dt2

(1.3.3)

In the TT gauge with the above assumptions, the independent polarizations of the GW emitted by
a source at distance r is given by

hxx = −hyy = −Ω2(Īxx − Īyy)eiΩr/r ; hxy = −2Ω2Īxye
iΩr/r (1.3.4)

where Ījk is called as the trace-free quadrupole moment tensor and is defined as:

Ījk = Ijk −
1
3δjkI

l
l (1.3.5)

Physical implications of the above equations are immense. Consider a system which is undergoing
spherically symmetric motion, which implies that the inertia tensor is such the Ixx = Iyy = Izz,
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consequently, Īxy = 0 and thus hxx = −hyy = hxy = 0. Thus, any spherically symmetric
motion will not produce GWs. Now consider a system undergoing cylindrical symmetric motion
(Ixx = Iyy 6= Izz). Using the same arguments we see this system too can not emit GWs. Using
quadrupole approximation we see that any motion that is spherically or cylindrical symmetric will
not emit GWs. To have a non-vanishing mass quadrupole moment is necessary for a system to
emit GWs.

Given a source at a distance r that emits energy E in form of GWs with frequency f in time T.
The amplitude of GWs in quadrupole approximation can be derived using the luminosity and flux
equations and is approximated by,

A ∼ 1
πfr

√
E

T
(1.3.6)

1.4 Astrophysical Sources of Gravitational Waves

As stated, GWs can be emitted from any source which has a non-zero quadrupole moment. How-
ever, the amplitude of these waves is very small, posing a challenge in their detection for almost
three decades. The astrophysical sources which emit their energy strongly in GWs are summarized
below.

• Compact Binary Coalesce : black hole - black hole (BH-BH) binaries, black hole - neutron
star (BH-NS) binaries, neutron star - neutron star (NS-NS) binaries, super-massive black
hole binary and galaxy mergers.

• Gravitational collapse : asymmetric supernovae.

• Stochastic GW background : In our vast universe, we expect hundreds and millions of bi-
naries inspiralling together and emitting GWs. All these together form the stochastic GW
background.

• Cosmic GWs : The GWs from the Big Bang.

The figure 1.3 summarizes the frequency band of numerous possible sources of GWs [8]and detec-
tors capable of detecting the GWs emitted by these sources. We will discuss the basic principles
employed in GWs detectors in the next chapter.
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Figure 1.3: Different sources of GWs, categorized by the frequency of the emitted GWs are sum-
marized in the figure above. The detectors which are capable of detecting the respective GW
source in a given frequency bin are shown below. Courtesy: "Gravitational Astrophysics Labora-
tory". science.gsfc/nasa.gov
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Figure 1.4: The EM counterparts of a NS-NS/NS-BH merger are summarized in the figure above.
We see that the signal is distributed over the entire range of the EM spectrum – Gamma ray burst,
Optical-Infrared and Radio. [1]

1.5 Electromagnetic Counterparts

Astronomers have made numerous observations of supernovae transients but we have not yet de-
tected any GWs arising from supernovae. Mergers of NS-NS binaries are expected to emit in a
range of the electromagnetic(EM) spectrum 1.4. NS-BH mergers too can emit in EM spectrum
provided the ratio BH mass to NS mass is less than 5. Tidal disruption of the NS is a necessary
condition for emission in EM spectrum. For higher mass ratios the neutron star is swallowed by
the black hole and EM emission is not likely in such cases. Recently researchers have proposed
mechanisms where, in special conditions, a BH-BH binary too can emit EM radiation. To summa-
rize, many astrophysical processes which emit GWs are also expected to emit EM radiation. But
what knowledge or insight into physics does one acquire by studying both?

The NS is a compact object whose gravitational collapse is balanced by the degeneracy pressure
of the neutrons. However, if one goes inside the NS, at half-radius, the pressure will be high for
unbound free quarks to exist. Quarks are known to exist in the bound state only. Thus, the NS
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equation of state is fundamentally unconstrained. Many possible equation of states are proposed
with different physical considerations. The equation of state effects the GW emitted. Using the
combined information from GWs and the EM radiation emitted, it is possible to constrain the NS
equation of state which is a big motivation to find EM counterparts to GWs.

Combining the information about the source from GWs with EM observations provides complete
information about the astrophysical source ( GWs: mass, spins, location. EM: distance, location,
the environment around, star composition). The evolution of neutron-stars to black holes too is
theoretically unconstrained. Using the combined information it is possible to study the evolution of
compact objects like neutron-stars and formation of black-holes. Moreover, now astronomers have
gathered strong evidence that synthesis of metals heavier than lead is not likely from supernovae
events, making r-process nucleosynthesis the most likely candidate to account for the abundance
of the heavier metals in the universe. This can be studied, verified or debunked by studying the
EM transients of the NS-NS/ NS-BH mergers.

Unfortunately, the task of EM follow-up of a GW event is a big challenge. The GW detectors
are like an antenna, multiple detectors are essential to localize the source in the sky to a few
degrees. The localization can error for the first detection GW150914 [5, 6] was of the order of
600 square degrees. To scan such a large area in a limited observing time before the transients
fades is one challenge. Rejecting false positives from such a large area is another challenge. The
scientific community realizes these problems and aims to resolve them through collaborative efforts
with projects like GROWTH (Global Relay of Observatories Watching Transients Happen), still
awaiting to map a detected GW signal with its EM counterpart.
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Chapter 2

Detecting Gravitational Waves

The equation 1.3.6 relates the amplitude of GW’s emitted from a source at distance r from the
observer, emitting an energy E in form of gravitational radiation in a time T with central frequency
f. Usually, the strain of GWs is scaled to an event in Virgo cluster (distance 15 Mpc), emitting
an energy of 10−4M� in form of gravitational radiation at a frequency of 1 kHz in 1 milli-second.
Then the GW strain in equation 1.3.6 can be rewritten as.

h = 10−22
(

E

10−4 M�

)1/2( T

1 msec

)−1/2( f

1 kHz

)−1( r

15 Mpc

)−1
(2.0.1)

GWs stretch and shrink the spacetime but the differential strain due to the passage of GWs is of
the order of 10−22. To detect changes in the length of this order was the major challenge posed
in detecting GWs. Weber proposed to detect these waves with the use of resonant bar detectors.
However, bar detectors are limited to narrow frequency window and failed to detect GWs. Later,
Kip Thorne, Ronald Drever and Rainer Weiss proposed the use of laser interferometry to detect
the GWs in a broader frequency range. With over three decades of persistent effort to detect GWs,
the GWs were finally detected on 14 September, 2015 [5, 6]. In this chapter, we will discuss the
basic principles employed in the detection of GWs.
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Figure 2.1: The schematic diagram of the LIGO interferometers. [2]

2.1 Laser Interferometer based Gravitational Wave Detector

Detecting GWs posed a challenge so colossal that Einstein believed the GWs will never be de-
tected. However, decades of persistent efforts and subsequent advancements in technology made it
possible to detect possible GWs. In this section, we will briefly discuss the design of the GW detec-
tors using the concept of interferometry to detect gravitational waves. For advance understanding,
one can refer to [2, 9].

Figure 1.2 depicts the distortions in spacetime caused due to GWs. As the differential motion due
to GWs will cause unequal changes in the length of each arm of the Michelson interferometer.
The differential change in the length of the arms can be detected by changes in the interference
pattern making Michelson interferometers a natural tool to detect GWs. By using laser light as
a probe to measure strain (∆L/L) to the order of or below 10−22 in the arms of a Michelson
interferometer it is possible to detect GWs from compact binary coalesces (CBCs). Figure 2.1
gives a schematic design of the Laser Interferometer Gravitational-Wave Observatory(LIGO). In
the following subsections starting with Michelson interferometer, we will briefly describe and
discuss the role of each component shown in figure 2.1.
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Figure 2.2: The figure shows the schematic
layout of the Michelson interferometer.
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Figure 2.3: The figure depicts a Fabry-Perot
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2.1.1 Michelson Interferometer

The basic setup of Michelson interferometer is shown in figure 2.2. A laser beam is incident on the
beam splitter which splits the incident beam into two orthogonal beams. Each beam traverses the
arm of the interferometer. The mirrors at the end of the arms reflect them and the reflected beams
from the two arms reunite at the beam splitter to give interference pattern. Any relative change in
length of the arms changes the interference pattern as the optical path of each beam differs. Again
there are two beams arising at the beam splitter:

• One which leaves the interferometer in the direction opposite to the beam incoming the
interferometer. This beam leads to the loss of power in the arms of the interferometer. In
the modified LIGO design of Michelson interferometer, the Power Recycling Mirror serves
the purpose of minimizing the loss of power from the arms of the interferometer. The power
recycling mirror is designed to have a very high coefficient of reflection.

• The second exits the interferometer in the orthogonal direction. The photodiode records the
interference pattern. In the LIGO design, a Signal Recycling Mirror is placed in between the
beam splitter and the output photodiode. It serves the same purpose as the power recycling
mirror.

As stated earlier, the required sensitivity of strain(∆L/L) to detect GWs is of the order 10−22. For
an arm length of 4 kms, the sensitivity required to detect changes in length is of the order 10−19
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m. By increasing the length of the arms the required sensitivity to detect changes in length will
reduce. However, to a ground-based detector million kilometers long is impossible. To increase the
optical path length in the arms multi-pass techniques are used – like a Fabry Perot cavity. However,
one cannot indefinitely recycle light in a cavity due to beam alignment problems [10, 11]. Phase
degradation and parametric instabilities fundamentally limit the performance of the LIGO detectors
[12].

2.1.2 Electro-optic Modulator and Fabry Perot Cavity

An electro-optic phase modulator(EOM) is an optical device that can modulate the phase of a light
beam, using a crystal which exhibits the Pockels effect. The Pockels effect, also called linear
electro-optic effect, is the change of the refractive index in linear proportion to the electric field
applied across the crystal. When an electric field is induced in a pockels crystal, the refractive
index of that crystal changes. As a result, the light rays move slower in the crystal, changing the
duration of time that the light takes to transverse the crystal. The phase of the light exiting the
crystal is directly proportional to the time taken by the light to transverse the crystal. Thus, by
varying the electric field applied across the crystal, one changes the refractive index of the crystal
and thus the speed of light in the electro-optic-crystal, in this way one can regulate the duration of
time the light stays inside the crystal (t) and thus the phase of the light coming out of the crystal
can be modulated. The change in phase of the laser is given by :

∆φ = 2πt
f

; where f is the frequency of the laser (2.1.1)

In our setup, the EOM is used to modulate the phase of the laser beam and stabilizing the laser
using the Pound-Drever-Hall technique [13] and a fabry-perot cavity plays a crucial role.

The Fabry Perot cavity is used to implement multi-pass in the LIGO detectors. A fabry-perot
cavity consists of two parallel mirrors, light is trapped between the mirrors by the phenomenon of
interference, fig. 2.3, usually coated with a dielectric material for high reflectivity. The fabry-perot
cavity has a very high finesse because of the high reflectivity of the mirrors in the setup. The
finesse of a cavity is defined as its free spectral range divided by the bandwidth of its resonance.
The finesse is determined by the round-trip losses in the cavity. The selectivity of transmitted light
can be obtained by adjusting the distance between the two mirror plates. The net transmission
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through the fabry-perot cavity, disregarding the optical losses is given by:

T = E2
o

t21t
2
2

1 + r2
1r

2
2 − 2r1r2cos(ω2L/c) (2.1.2)

For locking the laser, the reflected phase from the fabry perot cavity provides the signal. When
the laser passes through the EOM crystal, phase modulation side-bands are introduced onto the
monochromatic laser light. At resonance, the reflection coefficient of the fabry-perot cavity ideally
falls to zero, and the monochromatic laser and the side-bands introduced by the EOM, are all
reflected with the same phase.

The higher the finesse, the sharper the resonance and steeper the change in phase with respect to
the change in length of the cavity. This property of the fabry-perot cavity enables us to measure the
change in cavity length accurately once the laser is locked. The change in length of cavity signifies
the drift from resonance and this is used to design the servo for locking the cavity.

Once the LASER is locked, we use Pound-Drever-Hall Technique to measure the small changes in
the length of the cavity caused due to thermal noise and with a help of a feedback servo, compensate
for the changes in the length accordingly. For a brief understanding, one can refer to a nice review
article on the technique [13].

2.2 Sources of Noise

GWs are detected by interferometry by which we measure the arm length over time. However, any
changes in the length of the interferometer arm can be attributed to distortions caused by GWs,
only if the length of the cavity is stable upto an order of a few fermi-meters. However, there are
numerous fluctuations which are cause distorsions of this order by contributing to instrumental
noise. These factors which influence the length measurement can be broadly sub-divided into two
categories – one physically fundamental in nature while the other which are caused due to the
environmantal factors.

• Fundamental constraints

1. Displacement Noise – Heisenberg uncertainty principle fundamentally limits the ac-
curacy with which the position of the mirror. Measurements in mirror motions are
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Figure 2.4: The figure summarizes the different noise sources which limit the advanced-LIGO
detector sensitivity over the range of frequency. [3]

limited in accuracy by the relation ∆x ·∆p ≥ ~. If the data is collected at a sampling
frequency f, the time interval between measurement is τ . Then for a mirror of mass
M, ∆p ∼ M∆x/τ . The sensitivity to measure gravitational strain (∆x/L), where L
is the optical path length in an interferometer, is limited by the uncertainty relation to√
~τ/ML2. Thus, the quantum limit can be reduced by increasing the mass of the mir-

ror and the optical path of the photon. Increasing the sampling frequency also improved
the sensitivity.

2. Shot Noise – Due to the particle nature of light, we have a discrete number of photons
in the laser beam. The photodetector detects the photon s similar to a counting process,
which is poissonian in nature. Thus, for any detection of N photons, there is an inherent
error of

√
N (shot noise).

3. Radiation Pressure Noise – The flux of photons carry a momentum which causes the
test mirrors to move.
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Figure 2.5: Location of the GW detectors across the globe.

• Instrumental and Environmental sources

1. Seismic Noise – The seismic motion from the earth can cause mirror displacements in
much greater order of magnitude than displacements due to the passage of GWs. To
avoid this, mirrors are suspended with anti-spring blades which compensate against the
ground motion keeping the mirror intact. The residual motion of the mirrors due to the
movement of heavy masses nearby, earth, etc lead to seismic noise. Better suspension
systems are aimed to reduce seismic noise contributions.

2. Suspension Thermal Noise – The thermal fluctuations in the fiber which hangs the
mirror.

3. Coating Thermal Noise – The mirrors all have dielectric coatings over them. The brow-
nian motion of atoms and molecules over the mirror gives rise to irregular beam scatter-
ing. To reduce the coating thermal noise, a straight forward answer is to find materials
with better mechanical properties. Other more sophisticated measures include increas-
ing the beam size, reducing coating temperature, using specific modes of the laser [3].

Other noise sources include gravity gradient noise, residual gas noise, etc. The contribution of
each noise source in the advanced LIGO design is shown in figure 2.4 [3].
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The currently working, under construction and proposed GWs detectors across the globe are shown
in figure 2.5

1. LIGO Hanford and LIGO Livingston (USA): Arm length of 4 kms.

2. VIRGO (Italy): Arm length of 3 Kms, currently under upgrade but will soon start observing.

3. GEO (Germany): Arm length of 600 m.

4. KAGRA (Japan): A cryogenically cooled detector with an arm length of 3 Kms under con-
struction in Japan.

5. LIGO-India (approved): Arm length of 4 Kms.

2.3 Gravitational Wave Data Analysis

The primary sources that can be detected by LIGO are compact binary coalescence (CBCs). Ein-
stein’s theory of general relativity predicts for any stellar binaries emit GWs, their orbit shrinks
over time and the stellar objects in binaries ultimately merge. The GWs emitted from NS-NS bi-
naries, NS-BH binaries and BH-BH binaries ( upto few hundreds M� ), can be detected by the
ground-wave detectors 1.3. However, the signal can be buried in noisy data. Extracting the signal
correctly and the correct signal is another challenge. During the process of analyzing the data,
we have to be cautious to ensure and check that instrumental glitches which can mimic the signal
are vetoed and only the signal from the astrophysical sources is considered. That is we have to
reduce the false alarm ratio. In this section, we will start with discussing the source parameters
which determine the emitted GW waveform. Then, we will subsequently build on how the data
accumulated is analyzed.

2.3.1 Waveform and CBC search space

To get the solutions to waveforms arising from CBCs in Einstein’s general theory of relativity
one has to solve the metric equation with source terms. The problem is extremely complicated
it involves partial differential equations that are coupled and nonlinear in nature. In the few sim-
pler systems the Einstein’s equations have been analytically solved – Schwarzschild solution to
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Figure 2.6: The figure shows a typical GW waveform due to compact binary coalesce. The above
waveform arises from to the coalesce of a 35-30 M�. The green, yellow and pink regions respec-
tively represent the inspiral, merger and ringdown phases of the evolution of the binary system.

non-spinning spherically symmetric single stellar object and Kerr solutions for spinning objects.
However, to date no analytic solutions exist for a binary system and the gravitational radiation they
emit. The next best approach to overcome the problem with the use of computers and obtain nu-
merical solutions to the Einstein’s equation. The field in GW physics which tries to find numerical
solutions to Einstein’s equation is called Numerical Relativity. However, solving Einstein’s equa-
tion numerically is both complicated and computationally expensive. To use numerical relativity
to generate a single GW waveforms from CBCs can take a few months. But, to extract the GW
signal buried in noise, one typically requires millions of GW waveforms (Why? We will discuss
soon). These GW waveforms are generated such that they sample the entire range of astrophysical
sources that the ground-based GW detectors can detect. The use of numerical relativity to generate
the GW waveforms for a few millions of astrophysical sources is almost impossible. To solve this
problem one uses approximants which can generate GW waveforms faster.
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The Post-Newtonian(PN) theory [14] is widely used to generate approximant GWs waveform. The
theory approximates the Einstein’s equation as a Taylor series expansion in powers of

√
v/c. The

terms in the Taylor series expansion can be regarded as perturbations or deviations from Newton’s
classical theory of gravity, thus the name PN theory. The waveforms generated using PN theory
have been tested and found consistent with the ones from numerical relativity in the inspiral part
of the waveform 2.6 (upto ISCO). The ringdown part of the waveform is computed using the
black hole perturbation theory. The merger phase is the most complicated and one replies on NR
simulations for this part. Lastly, the three fragments Inspiral, Merger and Ringdown (IMR) are
stitched together to get an approximant GW waveform called IMR waveform.

The parameters effecting the GW waveform from a CBC source are summarized below.

1. m1 and m2 : Masses of the two stellar objects orbiting each other to form a compact binary.

2. S1 and S2 : The spin vectors of the two stellar objects.

3. D : Distance of the binary from Earth.

4. ι : Inclination of the orbital plane of the binary with respect to the line of sight.

5. θ, φ : The declination and the right-ascension of the binary.

6. Ψ : The polarization of the GW emitted.

7. φo : Reference phase for the signal.

8. to : Reference time for the signal.

The mass and spins parameters are intrinsic parameters of a CBC while the remaining parameters
are extrinsic. Any search for a GW signal in the LIGO data stream searches for these parameters.
As stated earlier to extract the signal from the noise required millions of templates. Typically,
many searches consider the intrinsic spin of compact objects in binaries to be aligned or anti-
aligned with the orbital angular momentum L. Allowing for general three-dimensional spin leads
to precession of the spin with respect to the orbital angular momentum. The GW waveform is also
modulated. However, to save computational cost the spin-precessing binaries are ignored in certain
GW searches. We too in our subsequent analysis, discussed in chapter 4 consider cases where the
intrinsic spin is either aligned or anti-aligned with the orbital angular momentum L.
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2.3.2 Notations

The data recorded by the LIGO detectors is a time-series of mirror positions (ti, xi). We represent
the recorded strain as a function of time by s(t). This strain is comprised of noise n(t) but if
there is an astrophysical event leading to the emission of GWs which are strong enough to produce
detectable strain in the detector. Then, the detector also records he strain h(t) due to the GW signal.
Thus, for the time instants where the data has signal embedded in noise we have strains s(t) as:

s(t) = n(t) + h(t) (2.3.1)

When searching for a GW signal in a segment of data, we essentially seek to distinguish between
the two cases

1. Null HypothesisH0 : s(t) = n(t). The data strain has no GW signal.

2. Test Hypothesis H1 : s(t) = n(t) + h(t). The data strain has signal from an astrophysical
source embedded along with noise.

In mathematics, one defines an odds ratio, as the ratio of the probability that the test hypothesis is
true to the probability of null hypothesis bring true. In our formulation, where we aim to detect
GWs embedded in noise, the odds ratio can be expressed as O(H1|s) = P(H1|s) / P(H0|s).

We will be using fourier transforms in subsequent discussions with this consistent definition. We
define fourier transform of a time series x(t) as:

x̃(f) =
∫ ∞
−∞

x(t) e−2πiftdt (2.3.2)

The inverse fourier transform is defined as:

x(t) =
∫ ∞
−∞

x̃(f) e2πiftdf (2.3.3)

We know that instrumental noises are random in nature. However, we can determine statistical
properties of a random process, which can, in turn, be used to understand instrumental noises and
develop data-analysis techniques. The random processes can be divided into sub-categories based
on their statistical properties – stationary and independent. A random process is deemed station-
ary if the statistical properties are time independent. Any observations of statistical quantities or
moments dont change over time. Thus for a stationary random processes, the mean (or higher
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moments) is equal to the average of time-series x(t) over a long time T.

〈x〉 = lim
T→∞

1
T

∫ T/2

−T/2
x(t)dt (2.3.4)

For a more detailed understanding of the concepts employed in GW data analysis one can refer to
[15].

2.3.3 Power Spectral Density

The power spectral density (PSD) or power spectrum is the distribution of energy as a function
of frequency. It represents at any given frequency what is the energy carried by a wave. In GW
detectors the PSD of noise quantifies the sensitivity of the detector.

If we consider a signal x(t) which is a stationary random process in nature. The energy carried by
the signal in time T can be calculated by integrating x2(t) over time T. Power is the rate of change
of energy. Thus, dividing the energy transmitted in time T by the time interval T we get the power
transmitted by the signal. We have assumed that the signal is stationary, so the time average of
x2(t) is equal to the expectation value of 〈x2〉. Implying

〈x2〉 = lim
T→∞

1
T

∫ T/2

−T/2
x2(t)dt (2.3.5)

Using fourier transform of x(t) and Parseval’s theorem the above equation leads to the defining
equation of PSD of a stationary random process.

〈x2〉 =
∫ ∞

0
Sx(f)df (2.3.6)

Sx(f) := lim
T→∞

2
T

∣∣∣∣∣
∫ T/2

−T/2
x(t) e−2πiftdt

∣∣∣∣∣
2

(2.3.7)

Integrating the 2.3.7 with t = t
′ + τ we get the PSD for a stationary random process related to the

signal auto-correlation function Rx as:

Sx(f) = 2
∫ ∞
−∞

Rx(τ) e−2πifτdτ where Rx(τ) = 〈x(t)x(t+ τ)〉 (2.3.8)

The above results hold true for a stationary random process without any assumption on the distri-

28



bution function of the random variable. If we consider gaussian noise (the distribution function is
gaussian) then we can define the noise-weighted inner product of two time-series as:

〈a|b〉 : = 4 Re
∫ ∞

0

ã(f)b̃∗(f)
S(f) df (2.3.9)

=
∫ ∞
−∞

ã(f)b̃∗(f) + ã∗(f)b̃(f)
S(|f |) df (2.3.10)

2.3.4 Bayesian Inference

Bayesian Inference is an important recipe used in statistical inference which uses Bayes’s theorem
to improve the probability of a hypothesis as more data (evidence) is accumulated. Consider a
hypothesis H and an experimental observation O. Bayes’s theorem states the probability of the
hypothesis H being true given we make an observation O is P (H|O) (posterior probability) given
by:

P (H|O) = P (H) P (O|H)
P (O) (2.3.11)

P (H) (prior probability) is the probability of the hypothesis being true regardless of the obser-
vations made. P (O) (marginalized likelihood) is a normalizing factor, constant across all the
hypothesis. P (O|H) (likelihood) is the probability of making a positive observation given that the
hypothesis H is true. In words, Bayes’s theorem makes the statement that the posterior probability
is proportional to prior probability and likelihood. Using this proportionality it is easy to show
P (O) = P (H)P (O|H) + P (H̃)P (O|H̃), which when inserted into equation 2.3.11 yields

P (H|O) = P (H) P (O|H)
P (H)P (O|H) + P (H̃)P (O|H̃)

(2.3.12)

= λ(H|O)
λ(H|O) + P (H̃)/P (H)

(2.3.13)

where P (H̃) represents the probability that the hypothesis H is false, P (H̃) = 1− P (H) and we
define likelihood ratio as

λ(H|O) := P (O|H)
P (O|H̃)

(2.3.14)
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2.3.5 Matched Filter and Likelihood

In the detection of GW from noisy data, as stated earlier, is essential to differentiate between the
two hypothesis defined in section §2.3.2. The two hypothesis can be reframed as one which has
no GW signal present – the null hypothesis H0. The other H1 with the GW signal embedded in
noise. We can now define the likelihood ratio that given a data stream what are the chances it
contains a GW signal to the chances of the data being only detector noise. Using equation 2.3.14,
the likelihood ratio for this case becomes:

λ(H1|s) = p(s|H1)
p(s|H0) (2.3.15)

Assuming stationary gaussian noise, we have p(s|H0) ∝ e−〈s|s〉/2. If the hypothesis H1 is true,
then, n(t) = s(t) − h(t). In this case, we can write p(s|H1) ∝ e−〈s−h|s−h〉/2. Substituting these
expressions in equation 2.3.15, we can write the likelihood ratio as

λ(H1|s) = e−〈s−h|s−h〉/2

e−〈s|s〉/2
(2.3.16)

When trying to detect GW with PSO algorithm we will use the likelihood function in equation
2.3.16 as the fitness function to be optimized. On simplifying the above equation one step further
we get

λ(H1|s) = e〈s|h〉e−〈h|h〉/2 (2.3.17)

We see an interesting result that the likelihood function is a monotonically increasing function of
〈s|h〉. Now, if one needs to define detection thresholds on the likelihood function, we can translate
these thresholds to thresholds on 〈s|h〉, making it an optimal detection statistics. The function
〈s|h〉 is called the matched filter which we had defined in equation 2.3.9. We will also use the
matched filter as a fitness function to be optimized using PSO.
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Chapter 3

Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm was developed by Kennedy and Eberhart [16].
The algorithm was inspired by the social behaviour of a swarm of birds or a school of fishes.
Although the aim was to mimic and understand the social behaviour of animals, it was observed
that swarms converged to optimal solutions of the given function in the parameter space. We know
from Darwinian theory that through evolution species acquire traits which enhance their chances
of survival. Being social by being symbiotic is one of the traits which helps to improve the survival
chances. Thus, one can say for some birds, fishes, ants etc. that evolution gave rise to their social
behaviour. Modelling social behaviours with PSO indirectly models this evolution mechanism. For
this reason, many compare PSO algorithm to evolutionary algorithms like the genetic algorithm.

In this chapter, we will first describe the PSO algorithm §3.1. Then we will discuss the simplest
multi-swarm extension to the standard PSO technique §3.2. In sections §3.3 we will describe the
variant developed during the course of the project followed by its applications and advantages in
section §3.4 and §3.5.

3.1 Particle Swarm Algorithm

Consider a large flock of birds which have collaborated their efforts to search for the best corn field
in a given area. As we consider the swarm being social, we make a simple assumption that all birds
(particles) can interact and communicate with all the other members of the swarm, irrespective of
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the distance between them. The aim of the swarm is to cooperate and find the best corn field
(global best) in the region of survey (parameter space) and ultimately all the particles in the swarm
converge to this location.

To start off with, we assume that all the birds are randomly distributed in the parameter space.
Over time we allow the birds to explore the parameter space. The velocity of any individual bird
(particle) in the swarm is influenced by three factors

1. Inertial weight : At any given instance of time, the particles in the swarm have with some
velocity. Due to their inertial weight, the particles will continue to move in the same direc-
tion. The velocity at any instant of time depends on the velocity before. In PSO 3.1.2, we
define a parameter ω to determines the strength of the inertial weight.

2. Personal Best (pBest) : During the exploration, each particle keeps track of the best location
it came across (personal best). At any instant of time, each particle has an instinct to stop
the search and get back to its personal best location. We are free to choose the attraction
potential, in standard PSO, the attractor potential is harmonic in nature. The parameter γp
determines the strength of the attractor potential. The urge at any instant of time to get back
to the personal best location is modelled by a stochastic parameter rp.

3. Global Best (gBest) : As all the particles in the swarm can communicate with each other, they
are collectively aware of the best location discovered by the swarm (global best). Similar to
personal best, each particle has an urge to give up the search and get to the global best
location. The instinct is determined by the stochastic parameter rg while γg defines the
strength of the global best attractor.

A major advantage of the PSO technique is that it does not use the gradient of the function to be
optimized. As a result, PSO can be used to find optimal solutions of a non-differentiable equation.
The time is discretized in steps of one. With the knowledge of velocity at time t, we can combine
the above factors to calculate the velocity at a later time (t+1), see figure 3.1 for a diagrammatic
representation of the velocity equation. The velocity at any time t is used to get the updated
position. The equations governing the position and velocity are

xi,d(t+ 1) = xi,d(t) + vi,d(t) (3.1.1)
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Figure 3.1: At any instant of time, the factors which influence the velocity of a particle in PSO.

vi,d(t+ 1) = ω · vi,d(t) + γp · rp ·
(
pi,d(t)− xi,d(t)

)
+ γg · rg ·

(
gd(t)− xi,d(t)

)
(3.1.2)

In the above equations, the subscript i represents the ith in the swarm. The subscript d represents
the dimension and t marks the successive iterations.

The PSO algorithm to optimize over a function f , called the fitness function using PSO in a bound
region S. We first initialize the swarm as

1. Distribute N particles randomly in the parameter space S. The position vector of ith particle
is denoted by xi.

2. Initially, each particle’s personal best location is identical to its position vector at time t = 0.

3. To initialize the global best, compute the function f at each location xi[t = 0]. By definition
global best gBest = minimum

(
f(xi)

)
.

4. To each particle assign a velocity v at time t = 0.

Following the initialization the swarm is iteratively evolved until a termination condition is satisfied
(say for M steps). Each looped iteration involves the following

1. Update the position : xi(t+1) = xi(t) + vi(t).

2. Updating the personal best of each particle : if f (xi(t+1)) < f (pBesti)→ pBesti = xi(t+1).

3. Updating the global best of the swarm : if pBesti < gBest→ gBest = pBesti.
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4. Calculate the updated velocity using equation 3.1.2.

3.2 Multi-Swarm Optimization

One standard extension to the standard PSO technique is to use multiple sub-swarms, independent
of each other, to explore the parameter space of the function which we want to optimize. The use
of multiple swarms is more efficient than standard single swarm when the parameter space has
multiple local optima. The efficiency of PSO does not scale linearly with the increasing number
of particles. The use of multiple swarms instead proves beneficial. As each sub-swarm indepen-
dently searches the parameter space, the chances of any one to get to the global optimal location is
improved.

We propose a variant of the PSO which uses multiple sub-swarms to search the parameter space. To
compare the efficiency of our variant we will use the standard PSO and its multi-swarm extension
(Mult-PSO).

3.3 Hostile Particle Swarm

Many species of animals maintain territories and have a hostile attitude towards any intruders. We
translate this idea into the swarms and see how do the search capabilities of the swarms’ change.
We see many interesting results and applications of this variant which we will discuss in the next
section.

Given a function f whose optimal solutions are of our interest in a region of space S (parameter
space). Instead of allowing the multiple sub-swarms independently searching the parameter space,
we instead attribute hostile nature amongst the sub-swarms. To incorporate this hostile nature we
use a repulsion potential. There are two ways to implement the repulsion. One where a particle of
sub-swarm A is repelled from the pBest and gBest of all particles of sub-swarm B, C.... However,
this adds greatly to the computational cost. The second way is to repel all particles of sub-swarm
A from only the gBest location of all the other sub-swarms B, C.... See figure 3.2

In our study, we choose to incorporate repulsion in a way that all particles in any given sub-
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Figure 3.2: A schematic diagram illustrating the hostile swarm variant of PSO.

swarm, at any instant of time, are repelled from the gBest locations discovered by the other sub-
swarms. We introduce a parameter γr to define the strength of repulsion potential. When any
particle is repelled from the other swarm, the fight or flight response at any time is modelled by a
stochastic parameter rr. Incorporating these factors, the velocity equation 3.1.2 for a sub-swarm
m is modified to:

vmi,d(t+ 1) = ω · vmi,d(t) + γp · rp ·
(
pmi,d(t)− xmi,d(t)

)
+ γg · rg ·

(
gmd (t)− xmi,d(t)

)
−
∑
n

n6=m

γr · rr · F
(
gnd (t)− xmi,d(t)

) (3.3.1)

where F represents a repulsion potential. We use an electrostatic or a linear repulsion potential in
our study.

It is straightforward to see that there is a great possibility to drive the convergence unstable in this
algorithm. In cases where two or more sub-swarms end up exploring the same gBest location,
then the repulsion drives the system unstable hindering the convergence of swarm. This can be
beneficial in cases when we are trying to find optimal solutions for rapidly changing function.
This may be a problem in some cases but can be addressed with a slight modification which we
will discuss subsequently. One can implement a hostile swarm search in multiple ways, we will
compare the versions on a test function f comprising of three non-degerate gaussian peaks. The
ways to simulate and search with hostile sub-swarms are,
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1. Simultaneous (Simul) or Relay (Relay) Search : In hostile swarm variant, each sub-swarm
cooperates with members of the same swarm but is repelled from the gBest location of
all other sub-swarms. Thus, given m sub-swarms with (n1, n2, ..., nm) particles. We can
either evolve all the sub-swarms together, each sub-swarm searching the parameter space
simultaneously. Otherwise, a second method in which the sub-swarms have a relayed search.
That is, we allow the sub-swarm 1 with n1 particles to explore, followed by the sub-swarm
2 with n2 particles but this time each particle of this sub-swarm is repelled from particles
of sub-swarm 1. Following sub-swarm 3 will be evolved to search being repelled from both
sub-swarms 1 and 2 and so on.

2. Distance constrainted Search : As stated earlier, if multiple sub-swarms end up discovering
the same gBest location, it affects the convergence of the sub-swarms. One way to overcome
this problem is to allow a small distance or a box around the gBest of each sub-swarm, where
the gBest of any other sub-swarm is not possible. We will refer to this distance as Dc for
future references. However, there is a big problem if the process is applied naively. Swarms
can converge to fake or unrealistic peaks not present in the system. This scenario is explained
using the figure 3.3. Moreover, even in cases where the sub-swarms converge to a different
optimal solution in parameter space, the presence of the repulsion potential influences the
convergence 3.4. Solution to both the problems, fake peaks and convergence can be solved
by ending the simulation with few iterations (5 to 10) of standard PSO. Caution: When we

set the last standard PSO run – re-initialize the velocity of the particles in the sub-swarms!

By doing so, particles trapped in fictitious peaks converge to the nearby global or local
optimal solution. The trend observed in figure 3.4 also disappears as the repulsion potential
is removed.

To summarize the various possibilities to implement a hostile swarms search are:

1. Simultaneous search without any distance constraint.

2. Relayed search without any distance constraint.

3. Simultaneous search with a distance constraint Dc.

4. Relayed search with a distance constraint Dc.

We will present the results for each of the search method stated above in all our simulations in
section §3.4.3.
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Figure 3.3: The distance constraint around the global best will carve out the area shaded in green
from the parameter space. In doing so, the location where line cuts the curve becomes a fictitious
peak arising due to the constraint.

Figure 3.4: The plot shows the particles in a sub-swarm fail to converge due to the effect of the
repulsion potential. The particles tend to drift away from the optimal location due to the repulsion
force from the other sub-swarm.
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3.4 Applications

We will test our variant with a fitness function comprising of three non-degenerate gaussian peaks
in N dimension, where we can vary N = 1, 2, 3, ... and so on. We will measure the performance of
our algorithm against the standard PSO. In our analysis, we first determine the number of particles
required to find the global best in the case of standard PSO algorithm. Next, we will use the same
number of particles to build hostile sub-swarms.

We will characterize hostile swarms algorithm by discussing the variation in performance of hostile
swarms algorithm with the ratio of split in the subsection §3.4.1. However, a more basic question
that arises is how does one quantify performance. As our interest is to ensure the sub-swarms ex-
plore different regions and thus, different regions of the parameter space. We measure performance
by checking out of 1000 trials how many lead to different peaks in the parameter space. One also
has the liberty to choose the repulsion potential between the sub-swarms. We will compare the
performance between the hostile swarms with electrostatic repulsion potential and linear repulsion
potential in subsection §3.4.2. Next, we will compare the performance between the simultaneous
and relay search methods – with or without the distance constraint in §3.4.3. Lastly, we will dis-
cuss the advantages of this method by showing the improved chance of detecting the global best
peak §3.4.4 and detecting degenerate peaks simultaneously.

3.4.1 Varying Number of Particles

As stated earlier, our test fitness function f comprises of three gaussian peaks of different peak
strengths. The peak values of the three gaussians in our test functions are six, three and two

respectively. As we try to find a global solution in higher dimensions using the standard PSO, we
increase the number of particles. The number of particles used in the standard PSO technique in N
dimension is referred to as Nppso. The number of particles used to survey the parameter space in
PSO with different dimension is summarized in table 3.1.

When we use hostile swarms, we split the particles Nppso into two hostile swarms. This division
of particles can be asymmetric. The sub-swarm with the higher number of particles is called as
primary sub-swarm, while the other is referred to as secondary sub-swarm. We vary the ratio of
particles in the primary to secondary sub-swarm as 2:1, 5:3, 4:3 and 1:1. That is, the secondary
swarm has 0.5, 0.6, 0.75 and 1 times the particles in the primary swarm. We determine the number
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Figure 3.5: The figure shows that the performance of the hostile swarms is independent of the
ratio of split of particles in the primary and secondary swarm. The simulation presented uses
hostile swarms with an electrostatic repulsion potential between the sub-swarms to search an eight-
dimensional parameter space with a total of 2400 particles.
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Dimension Nppso Dimension Nppso
2 200 9 2700
3 300 10 4000
4 400 11 5500
5 500 12 6000
6 600 13 6500
7 1400 14 7000
8 2400 15 7500

Table 3.1: The table summarizes the total number of particles used to sample the parameter space
in N dimension. The boundaries are defined at (-5, 5) along any dimensional axis.

of particles in each sub-swarm by constraining the total number of particles in the hostile swarm
search over N dimensions to be equal to Nppso.

Figure 3.5 summarizes the performance of the hostile swarms algorithm in eight dimensions using
a total of 2400 particles with different split ratios of particles in primary to secondary swarm. We
have used an electrostatic (1/r2) potential between the swarms for reasons which will become clear
in the next section. From the figure, it is evident that the performance of hostile swarms variant is
almost same and seems independent of the ratio of split as long as both swarms have a statistically
significant number of particles to sample the parameter space.

3.4.2 Repulsion Potential

The choice of repulsion potential is crucial to the performance of the hostile swarms algorithm.
The hostile swarms variant aims to improve performance and search the parameter space in a way
that tries to ensure that particles of different sub-swarms do not end up exploring the same region
of the parameter space. This idea is mimiced in a computationally simulated search with the use of
repulsion potentials. Thus, the choice of repulsion potential significantly affects the performance
of hostile swarms. We will explore the parameter space with two repulsion potentials – one linear
with distance and the other which is electrostatic (1/r).

Figure 3.6 summarizes the results for all the possible search methods within hostile swarms with
a linear repulsion potential between the sub-swarms, exploring an eight-dimensional parameter
space with a total of 2400 particles. The number of particles in each sub-swarm is equal (split ratio
= 1). We see that with linear repulsion the performance is poor, especially in higher dimensions.
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Figure 3.6: Simulations with a linear repulsion potential between sub-swarms while searching an
eight-dimensional parameter space with 2400 particle. We see linear repulsion potential is a poor
choice for higher dimensional spaces.
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Note: The performance is acceptable for lower dimensional spaces, as we go to higher dimensions
the performance degrades.

In the case of relayed search, the first swarm performs like a standard PSO search, but the perfor-
mance of the second swarm is very poor. In the case of simultaneous search, both the swarms do
not seem to perform optimization. Let us try to understand the reason for the under-performance.
The answer is simple, the linear repulsion potential drives the swarms unstable. As the dimension-
ality of the parameter space increases, the maximum possible distance between two points in the
parameter space increases and so does the average separation between the global best of swarm A
and the particles of other sub-swarms. As the force in linear potential is proportional to distance,
the force becomes so strong that particles do not converge but are kicked out of the search space
and randomly reallocated. Thus, the swarm intelligence does not evolve and optimal solutions are
not achieved.

The electrostatic potential serves the purpose well (figure 3.5) and will be used in the rest of our
searches.

3.4.3 Search Methods in HPSO

Having justified the use of electrostatic repulsion potential and understood the effect of split ratios,
we now proceed to compare the performance of the possible search methods, stated earlier, in
hostile swarm optimization. As in earlier runs, we will use an eight-dimensional parameter space
with 2400 particles equally divided into two sub-swarms which are hostile to each other. In figure
3.7, we plot the optimal solution found by each sub-swarm. We have also plotted the solutions
obtained by using the standard PSO technique to allow comparisons.

1. Relayed search with a distance constraint Dc – The two swarms perform the job of opti-
mization very well. There are a few cases of false peaks arising when the two sub-swarms
converging to the same global optimal solutions. However, in these cases too, one of the two
swarms holds the global optimal solution which can be checked for.

2. Relayed search without any distance constraint – As we neither have a distance constraint for
possible global best attractors or the last few iteration steps of standard PSO, the instances
of the second swarm converging to fictitious peak increases. Again this arises in a relayed
search where the second sub-swarms ends up exploring the same region of parameter space
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Figure 3.7: A comparison of the possible search methods with hostile swarms in an eight-
dimensional search space. A total of 2400 particles are equally distributed between the two sub-
swarms of hostile nature simulated by an electrostatic repulsion potential.
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like the first swarm. Due to the repulsion force from the first swarm, the particles in the
second swarm can not obtain the best possible location in that sub-domain.Thus forced to
wander in contours around the global best of the first swarm.

3. Simultaneous search with a distance constraintDc – The problem becomes a bit complicated
in a simultaneous search. As the sub-swarms evolve at the same time, the global optimal
solutions improve dynamically. As repulsion arises from the global best location at any
point of time. The repulsion forces also change from step to step as global bests evolve
giving rise to complicated sub-swarm interaction dynamics. When we constrain the possible
distance, we force the swarms to look in other regions of phase space and avoid the chances
of the global best attractor of two swarms to be the same. It is evident from the figure that
this constraint gains importance in a simultaneous search where the global best attractor is
changing iteratively. To further provide support to this hypothesis we see the unconstrained
simultaneous search yields poor results.

4. Simultaneous search without any distance constraint – The method is not very effective as
swarms start competing for global best location. Sometimes, the swarms end up close to
optimal solutions without any one of the two converging to the optimal solution. In other
cases, a situation similar to distance constrained simultaneous search arises where one of the
swarm converges to the optimal solution and the other is forced to wander about it.

3.4.4 Improved efficiency of Global Optimum

We are now curious to see that does the hostile swarm method improve the chances of getting to
the global optimum solution as compared to the standard PSO technique. The reason to ask this
question can be understood by considering a case when one of the sub-swarm has converged to a
local optimum and not global. The second sub-swarm will be repelled from this location and we
wish to see does this lead to the global solution? To answer this question we do the following. If
the sub-swarms converge to the same peak location, we remove one of the two and consider only
one. This removal is done by calculating the distance between the global best location of the two
swarms. If the peaks are separated by a distance less than one we remove the one with a lower
global best value. Otherwise, we keep information of both the solutions. By doing so we have
removed the common peaks.

44



1 0 1 2 3 4 5 6 7
gBest value

0

100

200

300

400

500

600

700

800

N
u
m

b
e
r 

o
f 

E
n
tr

ie
s

Relay_nD Relay_D Simul_D PSO

Dimension 6

1 0 1 2 3 4 5 6 7
gBest value

0

100

200

300

400

500

600

700

N
u
m

b
e
r 

o
f 

E
n
tr

ie
s

Relay_nD Relay_D Simul_D PSO

Dimension 7

1 0 1 2 3 4 5 6 7
gBest value

0

100

200

300

400

500

600

700

N
u
m

b
e
r 

o
f 

E
n
tr

ie
s

Relay_nD Relay_D Simul_D PSO

Dimension 8

1 0 1 2 3 4 5 6 7
gBest value

0

100

200

300

400

500

600

700

N
u
m

b
e
r 

o
f 

E
n
tr

ie
s

Relay_nD Relay_D Simul_D PSO

Dimension 9

1 0 1 2 3 4 5 6 7
gBest value

0

100

200

300

400

500

600

700

800

N
u
m

b
e
r 

o
f 

E
n
tr

ie
s

Relay_nD Relay_D Simul_D PSO

Dimension 10

1 0 1 2 3 4 5 6 7
gBest value

0

100

200

300

400

500

600

700

800

N
u
m

b
e
r 

o
f 

E
n
tr

ie
s

Relay_nD Relay_D Simul_D PSO

Dimension 11

Figure 3.8: Comparing the performance of hostile swarm technique (after removing, if any, recur-
rent solution in a given trial) with PSO. We see with hostile swarm method provides an increased
efficiency of exploring both the global and local optimal solutions.
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Next, we combine all the non-recurrent peaks from the hostile swarms algorithm and the PSO. The
result after removing the common peaks is plotted in figure 3.8. We see hostile swarm technique
has an improved chance of detecting the global optimum compared to PSO, at the same computa-
tional cost. The trend is consistent with higher dimensions. Moreover, we see that there is a greater
chance of the second sub-swarm to converge to another optimum solution. Thus, increasing the
chance of getting both the global and optimal solutions. Thus making hostile swarm method a
great tool to explore and study degenerate systems.

3.5 Discussions

We have shown that hostile swarms is a powerful method to find optimal solutions of a fitness
function f in a given parameter space1. With an improved chance of exploring the global optimum
solution as compared to the standard PSO. The method also yields local optimal solutions. This
salient feature provides an upper hand when the system of interest has degenerate solutions. More-
over, if an optimal solution to a function is known apriori, relayed hostile swarm search method
can be used to find other optimal solution to the problem, to check and gain confidence whether
the known solution is indeed the global optimum or not.

1The project is completed and we are in the writing process.
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Chapter 4

Detecting Gravitational waves using PSO

Particle swarm optimization is a very power algorithm to find optimal solutions in higher-dimensional
space. We discussed in section §2.3.1 the parameters which influence the GW waveform from an
astrophysical source can be as high as fifteen. To recover astrophysical signals from a noisy data
stream and estimation the parameters of the astrophysical source is a computationally expensive
job. Our project aims to use particle swarm optimization to reduce the computational burden in
extracting the signal from noise. The use of PSO in GW data analysis was proposed by Wang
and Mohanti (2010) [17]. Moreover, reduced cost implies lesser time to recover the signal and we
could have a faster prompt system to notify the observatory collaborations across the globe to start
looking for EM counterparts of the GW events. In our project, we also interested to estimate the
parameters of the astrophysical source to considerable accuracy in the process of detection. This
is crucial as EM counterparts from BH-BH mergers or extreme mass ratio NS-BH binaries are
unlikely, if initial estimates are precise then the observatory will save the important time resource.
With interesting results, the project is in progress and the future work aims to calculate the sky
localization with PSO.

In this chapter, we will describe the methods and the parameter space used in section §4.1. We
use a range of variants of the PSO to recover the GW signal. We will briefly describe these
variants in section §4.2. We will motivate the study and present the results of different boundary
conditions (BC) in section §4.3. Lastly, we will discuss the results of our simulations and compare
the different variants of PSO used to recover the GW signal in section §4.4.
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BH-BH binaries NS-BH/NS-NS binaries
Parameter’s Non-spin Low Spin High Spin Non-spin Low Spin High Spin

Mass m1 (M� ) 20 - 80 20 - 80 20 - 80 1.4 - 20 1.4 - 20 1.4 - 20
Mass m2 (≤ m1,M� ) 20 - 80 20 - 80 20 - 80 1.4 - 10 1.4 - 10 1.4 - 10

Spin S1z 0 -0.5 - 0.5 -0.85 - 0.85 0 -0.5 - 0.5 -0.85 - 0.85
Spin S2z 0 -0.5 - 0.5 -0.85 - 0.85 0 -0.5 - 0.5 -0.85 - 0.85

Lower frequency cutoff (Hz) 20 20 20 20 20 20
Number of Injections 1000 1000 1000 1000 1000 1000

Waveform Approximant IMRPhenomC Taylor3.5PN

Table 4.1: Injection parameters in different search categories. All the signals which are injected
have a SNR ≥ 8.

4.1 Approach

Our aim is to develop and test PSO algorithm to detect GW signals buried in noise. For the purpose,
we generate N simulated injections in different mass and spin ranges. The injection parameters are
grouped and summarized in table 4.1. All the injections generated and results are generating using
the PyCBC software package [18, 19, 20]. As stated in section §2.3.1, to save computational cost,
we consider binary systems with aligned or anti-aligned spins. We also add injections which have
no GW signal, but only stationary gaussian noise. The reason for adding and searching over a
time-series of noise is that any detection algorithm should not claim or trigger when there is just
noise in the data stream.

Now let us consider an injection from an astrophysical source. To each such injection, we add
white noise weighed by the PSD of the LIGO detectors. By doing so we have simulated data
output from a GW detector which has signal buried in noise. The next job is to be able to detect
this signal with the PSO algorithm. We will use PSO to optimize over the Matched filter and
Likelihood functions discussed in section §2.3.5 and by doing so, we will try to hunt for the GW
signal buried in noise. Our present work uses only one detector data. As a result, localization
studies are not included. Lastly, we will use the standard (for a single detector) SNR threshold of
8 to flag any event as a successful detection. The dimension of our parameter space is six, as a
result, linear repulsion potential is effective to sample the paramter space.
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Figure 4.1: The figure shows the average change in global best location averaged over 1000 trials
as a function of time. We see in later iterations the global best barely changes.

4.2 Variants of PSO

We use the standard PSO algorithm described in section §3.1 and its extension to multiple inde-
pendent swarms described in section §3.2. We use the hostile swarms algorithm §3.3 with both
linear and electrostatic potential. Lastly, a variant of PSO useful particularly to GW data analysis
is described below.

4.2.1 Remove PSO

The process of matched filtering a single template with a data stream is computationally expensive.
It involves a cross-correlation with data which can be few hundreds to thousands of seconds long.
Thus, at each step evaluation of the match or likelihood function is costly. In remove PSO we use
a simple trick to reduce this cost. The method will be useful in cases where the cost of evaluation
of the fitness function is costly.

PSO algorithm is a quick method to find optimal solutions of a given function (fitness function).
When evolved over N iterations the swarm of particles eventually converges to an optimal loca-
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tion in the parameter space. However, when the swarm has converged, in successive iterations the
particles explore and wander close to the gBest, thus the gBest value remains constant on changes
slightly during the later stages. The figure 4.1 shows the evolution of gBest over successive itera-
tion averaged over 1000 trials.

When the cost of evaluation of the fitness function is high, the later steps which do not improve
the gBest significantly can be compromised to save time. Thus, we can remove the particles from
the swarm at later stages without affecting the swarm’s efficiency to explore the gBest. Consider
a total of N iterations were allowed for the swarm to evolve. However, in order to save time, we
choose to remove particles after M (<N) iterations. The removal of particles can be done in two
ways described below.

1. Removing the converged particles – After M iterations, we construct a box around the gbest
or hypersphere of radius r centered at gBest. Next, we remove a fraction f of the particles
which lie within this volume.

2. Removing the grouped particles – We divide the parameter space (d1, d2, d3....) in (n1, n2, n3....)
bins. Be doing so we have divided the parameter space in grids. After M iterations, remove
a fraction f of the particles which lie in the same hyper-grid.

We will compare the performance of all the variants of PSO in the last section of this chapter.

4.3 Boundary Conditions

Boundary conditions serve the purpose of re-spawning the particle, in cases when after successive
iterations, the particles leave the parameter space under survey. Sometimes particles may simply
enter regions of parameter space which are not of interest. Other times the problem becomes more
complicated when the particles fly into unphysical regimes, parameter values are unrealistic and
not in accord with the fundamental principles of physics. BCs are used to overcome these problems
in simulation. The choice of BCs to use in a given system is important to a uniform sampling of
the parameter space.

In PSO particles may have high velocities in the initial steps and points close to the boundaries
may be undersampled due to this reason. To elaborate consider a one-dimensional space with
boundaries (-5,5) with the solution located close to the boundary. With the velocity of a particle
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BC Detection efficiency Relative ∆MChirp(%) Relative ∆Q(%) ∆χeff
(SNR ≥ 8) Mean Sigma Mean Sigma Mean Sigma

Rand 0.939 -4.98 10.95 43.27 44.02 -0.039 0.178
Ref 0.943 -5.31 11.66 44.36 40.74 -0.044 0.195

StoRef 0.935 -5.42 11.40 43.31 38.05 -0.049 0.200
Moving (p = 0.50) 0.943 -4.83 11.55 41.77 40.55 -0.036 0.188
Moving (p = 0.75) 0.935 -4.54 10.97 40.74 39.72 -0.033 0.176
Moving (p = 0.90) 0.944 -4.92 11.45 41.90 42.36 -0.038 0.188

Table 4.2: Detection efficiency and errors in source parameter estimation for different boundary
conditions used, when all the 1000 injections are forced near the boundary. All the signals are
injected with an SNR ≥ 8. The table summarizes the mean and standard deviation in the error
estimation of the parameters – chirp mass, the mass ratio and effective spin parameters.

being high it is likely they will overstep the boundary, eg from 3 to 7, thereby undersampling the
regions near the boundary. We use multiple BCs, to figure out which is possibly the best candidate
in our case. The different BCs we use are described below.

1. Random Uniform Re-spawning (Rand) – During the course of evolution, any particle which
escapes the parameter space is randomly put back in the parameter space with a prior using
a uniform distribution.

2. Reflecting (Ref) – Particles which are flying out of the boundary are instead reflected back
into the parameter space.

3. Stochastic Reflecting (StoRef) – The reflection is like a scattering process. Particles which
are flying out of the parameter space are reflected stochastically. By adding a stochastic term
– a random number between 0 and 1, determining the magnitude of reflection is used. This
is done with the aim to sample more points near the boundary.

4. Moving (Moving) – We allow a probability p for the points to be outside the parameter space.
If the particle is lucky it can wander away. Otherwise, it is respawned in the parameter space
with the random uniform respawning method.

To compare the performance of the various boundary conditions, we force all the injections near
the boundary with Q value in the range [1, 1.1]. The injections are Low Spin BH-BH injections
(see table 4.1). We use two independent swarms with hundred particles each to recover these
injections with likelihood maximization. The comparison between the different BCs discussed
above is summarized in table 4.2.
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BC Detection efficiency Relative ∆MChirp Relative ∆Q ∆χeff
(SNR ≥ 8) Mean Sigma Mean Sigma Mean Sigma

Rand 0.975 -2.79 18.94 11.50 44.04 -0.044 0.33
Ref 0.963 -3.60 18.75 14.48 49.90 -0.050 0.34

StoRef 0.961 -3.31 18.04 12.87 47.84 -0.045 0.32
Moving (p = 0.50) 0.961 -3.24 18.14 8.54 45.48 -0.048 0.32
Moving (p = 0.75) 0.973 -3.36 18.58 12.55 48.66 -0.047 0.33

Table 4.3: Detection efficiency and errors in source parameter estimation for different boundary
conditions used, when the 1000 injections are uniformly smeared in the parameter space defined
in the low-Spin BH-BH binaries category in table 4.1. All the signals are injected with an SNR ≥
8. The table summarizes the mean and standard deviation in the error estimation of the parameters
– chirp mass, the mass ratio and effective spin parameters.

We see the detection efficiency is comparable among the various BCs used. However, the way they
estimate the parameters and thus the estimation of errors by each method is more significant. We
find the Moving BC with p = 0.75, implying that particles have a 75% chance to remain outside
the parameter space. We see by increasing this probability further the efficiency decreases, which
is expected as the number of particles sampling the parameters space of our interest reduce.

One should note that this discrepancy in performance arises when injections are forced near the
boundary. If the injections are smeared uniformly in the parameter space, the performance between
different BCs is summarized in table 4.3. We find the random respawning and moving BC with a
fifty percentage chance for the particles to fly away perform well. The latter outperforms the other
in the estimation of Q values. The detection efficiency between different BCs is again comparable.

4.4 Results and Discussion

We will now compare the detection efficiency and the estimation efficiency of different variants of
PSO. One should note that in a template bank search, the templates are placed with a mismatch of
3% compromising accuracy to reduce computational cost and increase speed [21]. This mismatch
translates to approximately 10% loss in detection efficiency.

We will use the variants of PSO to find a global optimal solution of the matched filter function
and the likelihood function. We will present the results for the BH-BH binary and NS-NS/NS-BH
binary in the following subsections.
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Figure 4.2: Comparing different variants of PSO (using a total of 400 particles) from their effi-
ciency to estimate source parameters from likelihood optimization to recover high-spin BH-BH
injections.
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Figure 4.3: Comparing different variants of PSO (using a total of 400 particles) from their ef-
ficiency to estimate source parameters from likelihood optimization to recover low-spin BH-BH
injections.
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PSO Variant Detection Efficiency (SNR ≥ 8)
High Spin BH-BH Low Spin BH-BH

Standard PSO 0.951 0.947
Hostile Swarms - ES 0.965 0.955

Hostile Swarms - Linear 0.967 0.965
Multiple Independent 0.965 0.955

Table 4.4: The table summarized the detection efficiency of different variants of PSO surveyed.
The search is done using the likelihood function as the fitness function. All the signals are injected
with an SNR ≥ 8.

4.4.1 BH-BH binary

For BH-BH binary systems, both the likelihood optimization and matched filter optimization yield
similar results. The latter outperforms in the number of successful detections, while the former
provided better first hand estimated to the source parameters. We keep the total number of particles
used in any variant as constant. This is done to ensure each variant takes the same computational
cost to detect and estimate the parameters. Using data from the single detector, we search over six
parameters – masses, aligned spins, distance, and inclination. We use a total of 400 particles to
recover the BH-BH binary signal embedded in stationary gaussian noise. However, the detection
efficiency is almost same for 200 particles. We choose the random uniform respawning (Rand) BC
in all the simulations.

We have broken the parameter space of BH-BH binary into two – high spin binary systems and low
spin binary systems. The detection efficiency of different variants for each is summarized in table
4.4. The error in estimation of the chirp mass, the mass ratio(Q) and coalesce time (τ0, τ3) for high-
spin BH-BH binary system and low-spin BH-BH binary system, from likelihood optimization, are
shown in figure 4.2 and 4.3 respectively.

We see that although the different variants had similar performance in triggering a successful detec-
tion. However, the corresponding error in parameter estimation in each is quite different amongst
the variants. We see that the hostile swarms with linear repulsion potential performs slightly better
than hostile swarms with electrostatic potential, which in turn, perform better than standard PSO.
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Detection Efficiency (SNR ≥ 8) – NS-BH/NS-NS
PSO Variant Likelihood Optimization Matched Filter Optimization

High Spin Low Spin High Spin Low Spin
Standard PSO 0.699 0.834 0.920 0.960

Hostile Swarms - ES 0.742 0.853 0.916 0.968
Hostile Swarms - Linear 0.764 0.840 0.938 0.971

Multiple Independent 0.702 0.836 0.924 0.954

Table 4.5: The table summarized the detection efficiency of different variants of PSO surveyed.
All the signals are injected with an SNR ≥ 8.

4.4.2 NS-NS/NS-BH binary

The picture and results drastically change for a NS-NS/NS-BH search. The detection efficiency
and parameter estimates vary drastically between the likelihood and matched filter optimization.
We increase the number of particles used to 600 to better sample the parameter space. The other
search tools – BCs, dimension, etc are similar to BH-BH binary search. The detection efficiency for
NS-NS/NS-BH binary system for both likelihood and matched filter optimization is summarized
in table 4.5. The plots 4.4, 4.5 and 4.6, summarize the errors in the estimation of parameters in the
case of likelihood optimization over low-spin NS-NS/NS-BH injections, matched filter optimiza-
tion over low-spin and high-spin NS-NS/NS-BH binaries respectively. The error in the estimation
of the effective spin parameter in different injection sets is collectively summarized in figure 4.7

From the plots, it is clearly evident that, in NS-NS/NS-BH binary search, the performance of
different variants of PSO has improved when the matched filter optimization is used. Thus, making
PSO and its variants a promising algorithm for developing quick detection pipelines which may
make it easier for the telescopes across the globe to find and EM counterpart of a GW trigger.

4.5 Future Work

We will now extend our search for a network of GW detectors and aim to obtain the sky localization
errors with PSO.

56



20 10 0 10 20 30 40 50

Relative Error in Mchirp

0

50

100

150

200

250

300

N
u
m

b
e
r 

o
f 

E
n
tr

ie
s

Std-PSO:
µ= 0. 44, σ= 5. 88

HPSO-ES:
µ= 0. 62, σ= 7. 65

HPSO-Lin:
µ= 0. 28, σ= 4. 64

Mult:
µ= 0. 45, σ= 5. 65

100 0 100 200 300 400 500 600 700

Relative Error in Q
0

20

40

60

80

100

N
u
m

b
e
r 

o
f 

E
n
tr

ie
s

Std-PSO:
µ= 21. 25, σ= 88. 79

HPSO-ES:
µ= 18. 76, σ= 72. 61

HPSO-Lin:
µ= 6. 94, σ= 73. 23

Mult:
µ= 13. 37, σ= 68. 98

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

Error in τ0

0

20

40

60

80

100

120

140

160

180

N
u
m

b
e
r 

o
f 

E
n
tr

ie
s

Std-PSO:
µ= − 0. 09, σ= 1. 06

HPSO-ES:
µ= − 0. 09, σ= 1. 05

HPSO-Lin:
µ= − 0. 06, σ= 0. 94

Mult:
µ= − 0. 08, σ= 1. 04

0.6 0.4 0.2 0.0 0.2 0.4 0.6

Error in τ3

0

20

40

60

80

100

120

N
u
m

b
e
r 

o
f 

E
n
tr

ie
s

Std-PSO:
µ= − 0. 04, σ= 0. 27

HPSO-ES:
µ= − 0. 03, σ= 0. 26

HPSO-Lin:
µ= − 0. 06, σ= 0. 25

Mult:
µ= − 0. 05, σ= 0. 26

Figure 4.4: Comparing different variants of PSO (using a total of 600 particles) from their effi-
ciency to estimate source parameters from likelihood optimization to recover low-spin NS-NS/NS-
BH injections.
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Figure 4.5: Comparing different variants of PSO (using a total of 600 particles) from their ef-
ficiency to estimate source parameters from matched filter optimization to recover low-spin NS-
NS/NS-BH injections.
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Figure 4.6: Comparing different variants of PSO (using a total of 600 particles) from their effi-
ciency to estimate source parameters from matched filter optimization to recover high-spin NS-
NS/NS-BH injections.
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Figure 4.7: Estimation of χeff
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Chapter 5

Geographic and Annual Influences on
Optical Followup of Gravitational Wave
Events

In §1.5 we discussed the motivation and challenges in the EM follow-up of GW events detected
by LIGO. The LIGO-VIRGO GW detectors all have an antenna like all-sky sensitivity. If one
consider a network of GW detectors which successfully detect a given astrophysical event. A
network of two detectors has poor localization capability, a typical localization size is of the order
of hundreds of square degrees. The accuracy to localize the source improves with increasing the
number of detectors. This is a motivation for the IndIGO project. Moreover, the localization
efficiency depends on the location of the source in the sky [4], figure 5.1.

We motivate our project with the question that do the discrepancies in the localization efficiency
in different regions of the sky translate to some locations on the globe being better sites for optical
telescopes. The "good" location is also dependent on the timing of the LIGO science runs. For
example, consider the LIGO detectors are operational during the northern winters. Then the north-
ern hemisphere observatories will have a longer time duration available to observe the localization
patch. In our study, we will consider these two factors and see how do they affect the EM-followup
capabilities of various observatory sites.

We will explain our approach and methodology used in the analysis in section §5.1. The effect of
timing of LIGO-VIRGO runs is discussed in section §5.2. The results for the timing of LIGO runs
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Figure 5.1: Using the time of arrival information to localize the source in the sky, the blue ellipses
represent the 90% localization area in the sky. The red crosses are the blind spots of the detector
network. The plot uses the O2 (2017-2018) detector sensitivity to localize the sources in the sky.
[4]

are presented in §5.3. Lastly, we will conclude with the implications of our study in section §5.4.
For a more detailed study kindly refer to the published article [22].

5.1 Method

Our interest is to study the effect of (1) site location and (2) the timing of LIGO-VIRGO science
runs, on the probability of finding EM counterparts from GW events. For the reason, it is very
important to set aside telescope capabilities from location. As we want to compare sites, we do
not consider telescope parameters like – field of view, exposure time, telescope downtime, etc. We
make the assumption that any given site across the globe has a capability to cover N sq. deg. of the
sky. Then the question which site is favourable or better for EM follow-up of GW events can be
translated to "Given each site can cover N sq. deg. , then which site on an average has a greater
probability of finding an EM counterpart?". To answer the question, we simulate the EM follow-up
of GW events independently from each site taken in our survey.
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Figure 5.2: The locations of the Optical-Infrared ground-based observatories which took part in
the EM-followup of GW150914 event. We have added Hanle as a representative observatory in
Asia.

As discussed in section §1.5, the NS-NS mergers are theoretically unconstrained. A number of
model varying in physical consideration and the proposed mechanism of the evolution of ejecta
arising from a NS-NS merger. The EM signal arising from NS-NS/NS-BH merger is termed as
kilonova. Different models predict different timescales for kilonovae transient signal. Several
models [23, 24, 25, 26, 27] predict a kilonovae transient evolving on a timescale of a day or more.
For these models, the transients evolve slightly during successive days, the first twenty-four hours
following the trigger is a good representative of the entire event of EM followup. Moreover, for
models evolving on timescales of a day, the sub-day responses loose significance. In our analysis,
we do not consider the time delay(sub-day response) between the time when the signal arrived
(detected by the GW detectors) and the first possible EM observation. This delay is corresponding
to the time taken to ensure the signal in the detector is attributed to an astrophysical source and not
to a machinery artifact.

63



5.1.1 Site Selection

For our survey, we choose the locations of ground-based optical observatories which took part
in the follow-up of GW150914 [28]. We have added Hanle, India - site for the upcoming 0.7 m
telescope purely dedicated to EM follow-up through the GROWTH project. These locations are
shown in figure 5.2 and the corresponding details are summarized in table 5.1

5.1.2 Simulated GW Events

We use the GW localizations released by Leo P. Singer et al (2014) [29]. These GW localiza-
tions are obtained by simulating NS-NS binaries and then using proposed detector sensitivity of
LIGO-Hanford(H), LIGO-Livingston(L) and VIRGO(V) during the LIGO-O1 phase and LIGO-
O2 phase, they try to detect the GW signal from these NS-NS binaries. Any binary is considered
as successfully detected only if the surpasses the pre-defined detection thresholds like SNR. The
sky localization is calculated using BAYESTAR [30] and is available for public access in form of
HEALPix files. The released set of patches comprises of 630 events recovered with HL detector
network at O1 sensitivity. The O2 release comprises of 365 HL, 15 HV and 14 LV events along
with 81 events recovered with HLV network at O2 sensitivity. However, these simulated detections
are done assuming the detectors are operational during the period from 18 August to 19 October,
during both the O1 and O2 detector data acquisition runs. This is not consistent with the actual ob-
serving run O1 and the expected dates for O2. The date stamp of the localization must be changed
before we can study the geographic and annual influences.

The area of localization in the sky, as stated earlier, depends on the sensitivity of the GW detectors
in the direction of the source in the sky. For example, any source detected if located above South
America will be poorly localized compared to a source above North America, figure 5.1. The
GW detector sensitivity is fixed in the geocentric coordinate system. Implying that any source
localization recovered with a network of GW detectors on a given day and time can be mapped to
a different day and time, as long as the relative orientation of the geocentric (detector) and celestial
(source) coordinate is the same. That is, we can map and shift the dates as long as the sidereal
time is invariant under the transformation. In our analysis, all transformations of the localization
released in [29], to different dates ensure that the sidereal time is invariant. For the O1 observing
run, we uniformly distribute all the simulated events in the period between 12 September 2015 to
19 January 2016. For O2, we split the observing period into two parts – O2A and O2B. During
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O2A, we consider only HL detectors as operational during the period spans from 1 December 2016
to 28 February 2017. During O2B, we consider all three detectors HLV operational in the period
from 1 April 2017 to 31 May 2017. We emphasize the dates for O2 are tentative.

We will from now on use the term "patch" in further discussion, which stands for the 99% credible
localization region. To study the effect of location in follow-up, we shift all the simulated GW
events to the day of equinoxes – each location has the same amount of time available to observe
the patch. We also shift all the simulated GW events to the day of summer and winter solstice – an
estimate of the maximum possible annual variation. Results from these simulations are discussed
in section §5.2.

5.1.3 Analysis

We use Astropy and Healpy to analyze the patches. We allow a time period of twenty-four
hours from the trigger time for the observations to be recorded by each site independently. One
important note: as we have chosen a time period of twenty-four hours from the trigger, our analysis

is not valid for kilonovae transients with a timescale of few hours. Any region of the patch is
qualified to be observable if the following conditions are satisfied

1. Horizon ≥ 24 ° : Any part of the patch can be observed only if it is 24° above the horizon.
This constraint is put for two reasons. One, the telescope cannot point arbitrary close to the
horizon, instrumentally not possible. Second reason is more of a quality check parameter.
Pointing close to parameter means the light/signal from the source has to travel a greater
path length. The light is scattered significantly and image quality degrades. To ensure good
image clarity this constraint is followed by many ground-based observatories.

2. Twilight : Any part of the patch is observable only if it the sun is 18° below the horizon. In
layman terms this constraint implies that it must be dark enough at night before the observa-
tory can open its dome to start observations.

From each given patch we simulate the event of followup and select the HEALPix pixels satisfying
the above conditions. The we sort the pixels in decreasing order of probability of having an EM
counterpart. Then we sum the probability in the first N sq. deg. tiles, where N = 1, 3, 10, 30, 100,
300, 1000, 3000 sq. deg. We choose 3000 sq. deg. as an upper bound because typically, for events
localized using a two GW detector network vary in size from a few tens to a few thousands of
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Figure 5.3: A box and whiskers plot for a given histogram plot.

square degrees. It is for the same reason, that results show very slight improvement as we increase
the coverage capability from 1000 sq. deg. to 3000 sq. deg. We have added an ideal observatory
"Best" whose observations are constrained only by the sun. Any pixels outside a 42 ° from the sun
is considered as observable in this case. Before we proceed to the discussions let me explain the
box and whisker plot with the help of figure 5.3. The results of our simulations are presented using
box and whiskers plots. The line in the center of the box represents the median while the star is the
mean of the distribution. The lower and upper ends of the box mark that points below which 25 %
and 75% of the distribution lies. The difference between the two is statistically referred to as the
inter-quartile range (IQR). Whiskers on either side of the box are points where the distribution is
1.5×IQR. Outliers are points which lie outside the whiskers. The box and whiskers plot are used
throughout the results section to compare the performance of the locations under inspection. Our
interest is to see the distribution and thus the outliers have been in some plots scaled away.

5.2 Observing on Solstices and Equinoxes

As discussed earlier we shift all the events to the day of equinox and compare the probability
covered from each site. We break the simulation into two parts – recovery of injected events with
a two GW detector network and recoveries with a three GW detector network.

67



0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040 3 sq. degrees

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35 30 sq. degrees

La Serena Hanle Palomar
Observatories

0.0

0.2

0.4

0.6

0.8

1.0 300 sq. degrees

Figure 5.4: Comparing the performance of three locations – La Serena, Hanle and Palomar, after
shifting all the injections recovered with a two detector network to the day of vernal equinox
(green), summer solstice (yellow), autumn equinox (chocolate) and winter equinox (blue).
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Figure 5.5: We plot the median probability covered by any location when all the injections re-
covered with a two detector network (left) and with a three detector network (right) are shifted
to the day of the vernal equinox (green), summer solstice (yellow), autumn equinox (chocolate)
and winter equinox (blue). We see a trend in the median probability covered as a function of the
latitude.
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Figure 5.6: The figure compares the location wise performance of all locations when all 1024
events recovered with a two detector network are shifted to the day of the autumn equinox. We see
all locations perform comparable with a slight trend in latitude.
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For the 1024 patches recovered with a two GW-detector network on the day of autumnal equinox,
we observe from figure 5.6 that all sites have comparable performance. The maximum extent
of variations across the year for an observatory can be estimated by moving all the injections to
the day of summer and winter solstice. One expects that northern hemisphere observatories will
outperform the southern on the day the winter solstice and the opposite scenario will occur when
all injections are moved to the day of summer solstice. Figure 5.4 supports this hypothesis.

Figure 5.5 shows the probability covered by all the locations under survey, we see an interesting
trend when the locations are organized by latitudes. We see that the locations near the mid-latitudes
have a higher chance of detecting an EM counterpart as compared to location higher up in latitude –
the ones in the temperate zones. The changes across seasons too are less drastic for the former. This
discrepancy in performance arises due to two reasons. One, because of the antenna-like sensitivity
LIGO detectors, the chances of a source to be detected in the mid-declination is greater than the
chance of detecting sources near the equatorial or polar regions. Second, the sites in higher up
latitudes have a smaller region of the sky accessible for observation, even on the day of equinox.
These factors together explain the trend in performance as a function of latitude.

5.3 LIGO-VIRGO Science Runs

We now shift to more realistic situations. We ask the question how do different locations perform
when the detections are distributed over a time interval. We consider the time period of the LIGO
O1 run and an example set of dates for the LIGO O2 run. Our results are consistent to changes of
dates by ∼ 10 days.

We again break the recovered injection into two sets – localization with two GW-detector network
and localization with three GW-detector network. The simulation results for 630 events recovered
with HL network at O1 sensitivity are shown in figure 5.8. The performance for the 394 events
recovered with two detector network but with O2 sensitivity are shown in figure 5.9.

For events recovered with a three GW-detector network, we summarize the location-wise perfor-
mance with a box and whiskers plot for consistency of representation 5.10. Due to improved
localization, we see from figure 5.7, that a large fraction of events are either followed-up to great
extent (probability covered >0.95) or could not be followed-up at all (probability covered < 0.05).
For a detailed discussion please refer to the published article [22].
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Figure 5.7: Distribution of probability covered when each location is equipped with a 30
sq. deg. coverage capability. We see the performance is limited by the patch visibility and ac-
cess from any given location as we have a large number of triggers which are covered almost
completely pobs > 0.95 while other triggers are barely followed-up pobs < 0.05.

5.4 Discussion

From the simulations, it is evident that the odds of finding the EM counterparts which evolve
on a timescale of a day or longer show a dependence on latitude. Observatories located in the
mid-latitudes perform better than the temperate ones. Longitudinal dependence is not seen for the
transients evolving on timescales of a day or longer. The seasons have a much larger effect on
the performance of an observatory as with seasons the time available to follow-up a localization
region changes significantly. The effect of the seasons in follow-up too are relatively harsh in
high-latitudes as the length of night changes appreciably. [31] have independently reached similar
conclusions by using a different methodology and slightly different assumptions.
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Figure 5.8: Location wise performance for 630 events recovered at O1 detector sensitivity during
the O1 observational period.
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Figure 5.9: Location wise performance for 394 events recovered at O2 detector sensitivity, with
events uniformly distributed over the example O2 observational period.
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Figure 5.10: Location wise performance for all the events recovered with a three detector network
at O2 detector sensitivity. The events are uniformly smeared over the example O2B observational
period.
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