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Abstract

Heatwaves are large deviations of near-surface temperatures from the climatology, over a

period of around a week to sometimes as long as a month. In addition to severely impacting

human health, heatwaves also a↵ect the economy and infrastructure. In the current warming

scenario, heatwaves have been predicted to become more common due to projected changes

in land surface properties and the large-scale circulation due to warming.

In this project, we study the e↵ects of land surface properties and large-scale warming on

heatwaves. We do this by setting up multiple model configurations with di↵erent land surface

properties and large-scale warming. To sample heatwaves in a computationally e�cient

manner, we utilise the GKLT algorithm, a rare event sampling algorithm. Using the GKLT

algorithm, we calculate the return times of extreme heatwaves.

We find that the return times of temperature extremes change as the land surface proper-

ties and the large-scale circulation are changed. We see that the shapes of the extreme tails

of the temperature distribution change between the di↵erent model configurations, leading

to the changes in the return times observed.

Finally, we perform a statistical analysis on the heatwaves sampled by the algorithm for

the di↵erent configurations and study how the changes in return times can be understood

in terms of the intensity, duration and number of heatwaves. We find that for the land sur-

face configurations, the return times of the time-averaged temperature anomalies decrease

uniformly across anomalies as the relative humidity over land is decreased. For the warm-

ing configurations, the return times of the time-averaged temperature anomalies decrease

predominantly for the larger anomaly values as the atmosphere is warmed, while the return

times of the lower anomaly values remain close to that of the baseline.
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Chapter 1

Introduction

Heatwaves are the deadliest class of extreme weather events, with a higher mean attributed

annual mortality than any other class (Kyselý, 2002). In the absence of a formal definition,

heatwaves are episodes of extreme positive deviation of temperature from the climate. The

Paris 2003 (Vandentorren et al., 2006), Chicago 2005 (Karl and Knight, 1997), Russia 2010

(Wright et al., 2014) and India 2015 (Ghatak et al., 2017) heatwave incidents are some of

the more infamous examples, where persistent hot temperatures had a pronounced, adverse

e↵ect on human well-being. In addition to severely a↵ecting human health, resulting in

high mortality rate (Patz et al., 2005), heatwaves also have a strong impact on the economy

through a decrease in the labour capacity (Dunne et al., 2013) and increased demand for

resources like electricity (Hsiang et al., 2017).

From the available observational records, the frequency and intensity of temperature

extremes have been shown to be increasing through the decades (S. E. Perkins et al., 2012),

with the frequency and intensity expected to continue to increase in a warming climate

(Dosio et al., 2018). Given the extensive impact of heatwaves and the current trend, we wish

to understand the large-scale dynamics that drive temperatures to the extremes and study

how the extremes are a↵ected by changes in large-scale dynamics.

Previous studies of heatwaves over the Indian region (Rohini et al., 2016; Sandeep and

Prasad, 2018) have shown that these heatwaves are associated with quasi-stationary Rossby

wave patterns over the mid-latitudes. The ensuing anomalous anticyclonic flow in the middle

and upper troposphere and persistent highs cause a sinking motion, which warms the surface
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by adiabatic compression. Moreover, these conditions also result in clear skies, maximising

the insolation that reaches the surface. The other observed mechanism for heatwaves is

atmospheric blocking (Xoplaki et al., 2012). The European, Russian and Chicago heatwaves

have been attributed to atmospheric blocking episodes (Sarah E. Perkins, 2015).

In addition to the aforementioned large-scale atmospheric dynamics, land-surface interac-

tions also need to be accounted for to better capture the variability from the climate (Sandeep

and Prasad, 2018; Seneviratne, Lüthi, et al., 2006). Surface temperatures are strongly in-

fluenced by land-surface properties like soil moisture and surface fluxes. Low soil moisture

can trigger positive land-atmosphere feedbacks that enhance sensible heat flux, leading to

further depletion of moisture, favouring the initiation of heatwaves, and contributing to their

duration, intensity and propagation (Miralles et al., 2019).

Consequently, changes in the large-scale atmospheric circulation or the land-surface prop-

erties will have an e↵ect on the intensity and frequency of temperature extremes. Changes

in equator-pole temperature gradient due to anthropogenic radiative forcing can alter the

large-scale circulation and favour the occurrence of temperature extremes (Coumou et al.,

2015; Mann et al., 2017). Moreover, in a global warming scenario, the land relative humidity

is projected to decrease (Byrne and O’Gorman, 2016), further enhancing the e↵ect.

As temperature extremes are more sensitive to the variance of temperature as compared

to the mean temperature (and more so the rarer the event is) (Katz and Brown, 1992),

the probability distribution function (PDF) of temperature around the mean is essential

to study temperature extremes. With horizontal advection being the primary mechanism

for temperature variability at a synoptic scale, reduction in the equator-pole temperature

gradient can reduce variability and influence extremes (Schneider et al., 2015). In addition

to the mean and variance, higher moments like the skewness of the distribution can also have

serious implications in a warming scenario, with short warm tailed distributions being much

more susceptible to extremes than analogous Gaussian distributions under a simple uniform

warming across the PDF (Loikith, Neelin, et al., 2018).

In this thesis, we wish to study separately the e↵ect of atmospheric and surface dynamics

on the PDFs of near-surface temperature distribution, especially the tails. We achieve this

by using an idealised Atmospheric General Circulation Model (AGCM), similar to Frierson et

al., 2006. The radiation in the model is independent of air humidity, removing the radiation-

water vapour feedback from the model. We study di↵erent large-scale circulation scenarios
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by varying the optical depth profile of the atmosphere; To model changes in near-surface

relative humidity, we vary the ratio of outgoing sensible heat flux to outgoing latent heat

flux (Bowen ratio) at the surface via scaling of the relative humidity over land.

In this study, we quantify the tails of the near-surface temperature PDFs in terms of

the return time associated with these extremes. As heatwaves are characterised by large

anomalies over a few weeks and sometimes as long as a month (IMD, 2022), we specially

focus on the return times of time averages of near surface temperature. The return time

of an event is the average time between two successive occurrences of the event, and is a

very useful metric, which has been utilised in other studies to quantify the risk associated

with extreme events (Kumari et al., 2019; Christidis et al., 2015). To compute return times

reliably, we need a good sampling of the tail.

As extreme temperature events occur rarely, sampling them directly from climate model

integrations is computationally costly. Therefore, we implement and utilise a rare event

algorithm (Lestang et al., 2018) that selectively samples from the tail of the time averaged

temperature distribution by performing a biased sampling. This algorithm was used in a

previous study on European heatwaves (Ragone, Wouters, et al., 2018) to sample extreme

temperature events, and compute their return times at a fraction of the computational cost of

a direct run. In addition to e�ciently calculating return times, the algorithm also provides

a biased ensemble of trajectories that are real solutions of the model. These trajectories

provide us with a large sample of heatwaves, which can be used subsequently to analyse the

dynamics of these heat waves.

Contributions of the thesis

• The Frierson boundary layer scheme was implemented and validated on CliMT.

• A baseline Atmospheric General Circulation Model (AGCM) was designed using CliMT.

The baseline configuration was run for a duration of 1000 years.

• The GKLT algorithm was implemented and validated on the baseline configuration.

The algorithm was validated by comparing with the 1000 year long run.

• Modifying the baseline configuration, we designed four other configurations - Drier

land, Wetter land, 2 degrees warming and 4 degrees warming configurations.
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• Using the algorithm, we compared the return times of near-surface temperature ex-

tremes for the di↵erent configurations.

• From the data obtained from the algorithm, a statistical analysis was performed. We

examined how the heatwave properties di↵er between configurations.
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Chapter 2

Methods

2.1 Model description

For this project, we use an idealised AGCM created using CliMT (Monteiro et al., 2018), a

climate modelling toolkit. CliMT’s modular design and flexibility enables us to easily and

quickly work with di↵erent components and parameterisation.

The AGCM configuration is very similar to the model setup in Frierson et al., 2006;

Di↵erences in components used and parameterisations are highlighted below.

The model is an aquaplanet, with zonally symmetrical strips of land between 20� and

40� in both hemispheres. The surface is an idealised slab, with prescribed depth and heat

capacity value. The area type can be either land or sea, with di↵erent depth and heat

capacity values for sea and land grids. The prescribed depth value for land is 1 m, with a

heat capacity value of 2000 Jkg�1K�1. For the ocean, the prescribed depth value is 2 m,

with the heat capacity being the heat capacity of water, 4182 Jkg�1K�1. The temperature

of the surface is controlled dynamically by the energy balance at the surface. There is no

topography in our model.

For the atmosphere, the grey radiation scheme is used, with values for atmosphere opacity

⌧ prescribed as follows.
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⌧ = ⌧0(
p

ps
) (2.1)

⌧0 = ⌧0e + (⌧0p � ⌧0e) sin
2(�) (2.2)

where ⌧0p = 1.5 and ⌧0e = 6 are values of atmosphere opacity at the surface at the pole

and equator, respectively. p and ps are pressure and surface pressure, respectively. � is the

latitude.

For stability reasons, the vertical profile of optical depth with pressure in our model is

purely linear, unlike in Frierson et al., 2006, where a combination of linear and quartic terms

were used. The incoming solar flux values Rs are prescribed as in Frierson et al., 2006, but

for May conditions, with maximum flux at 10�N, and decreasing towards the poles with

functional form

Rs(�) =

8
<

:
Rmax[1 + �sp2(�� 10�)] for � � �80�

Rmax[1 + �sp2(�90�)] otherwise,
(2.3)

where

p2(✓) =
1

4
[1� 3 sin2 ✓] (2.4)

is the second Legendre polynomial and � is the latitude. Rmax = 150 Wm�2 and �s =

1.4 controls the meridional gradient of solar flux.

The model has no seasonality and no diurnal cycle. Moist convection in the model

is parameterised using the Emanuel convection scheme (Emanuel and Živković-Rothman,

1999).

The surface flux and boundary layer formulation of Frierson et al., 2006 was implemented

with some modification (see next subsection) as a component in CliMT for this project.

The relative humidity at the surface is set to the saturation specific humidity at the surface

temperature scaled by a parameter SL = 0.5. This parameter models the moisture limitation
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over land and controls the Bowen ratio.

These components are run along with a spectral dynamical core. The dynamical core

performs the integration of the primitive equations that model the global atmospheric flow.

The model grid resolution is 62 x 128 (2.76� x 2.79�), which equates to a grid length of

approximately 310 km at the equator. The model has 28 height levels and an integration

time step of 20 minutes. As we are interested in the large scale dynamics of rare events, this

model setup is a good trade-o↵ between the model resolution and the computational cost

needed for rare event sampling.

2.1.1 Modification to the Frierson boundary layer scheme

Frierson et al., 2006 calculates the di↵usion coe�cients at height z as-

K(z) =

8
><

>:

Kb(z) for z < fbh

Kb(fbh)
z

fbh


1� z�fbh

(1�fb)h

�2
for fbh < z < h,

(2.5)

where h is the boundary layer height, fb = 0.1 is the surface layer fraction, and Kb is the

surface layer di↵usion coe�cient given by

Kb(z) =

8
><

>:

ua

p
Cz for Ria < 0

ua

p
Cz


1 + Ri

Ric

lnz/z0
(1�Ri/Ric)

��1

for Ria > 0,
(2.6)

and Ri defined as

Ri(z) =
gz[⇥v(z)� ⇥v(za)]/⇥v(za)

|v(z)|2 (2.7)

However, Kb in Eqn.(2.6) is not consistent at Ria = 0 as the value of Kb is discontinuous

at Ria = 0. To solve this, we have modified the multiplier in the second case as

13




1 +

Ria
Ric

lnz/z0
(1�Ria/Ric)

��1

for Ria > 0 (2.8)

Figure 2.1: The modified multiplier with Ric = 1 and ln(z/z0) = 5

The modified multiplier is consistent at Ria = 0, and decreases from 1 to 0 as Ria

approaches Ric. As the surface layer di↵usion coe�cient Ria indicates stability close to the

surface, this behaviour makes physical sense. The di↵usion coe�cient at the surface is small

when the near-surface atmospheric temperature structure is stable, and is zero beyond a

threshold of stability, given by Ric.

2.1.2 Column test for boundary layer implementation

To test the Frierson boundary layer implementation, a column test was run, along with a

slab surface, RRTMG radiation component and the Emanuel convection component.

The atmospheric temperature and potential temperature profiles after spinup are as be-

low.
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Figure 2.2: Top left - The air temperature profile. Bottom left - Temperature profile of
model compared against dry and moist adiabatic lapse rate profiles. Top right - Potential
temperature profile. Bottom right - Potential temperature profile close to the boundary
layer.

The profiles in Fig. 2.2 highlights the characteristic features of the boundary layer. From

the bottom right panel, we see that the potential temperature gradient within the boundary

layer is close to zero, with the region being slightly more stable than neutral. The bottom

left panel a�rms that the temperature profile in the boundary layer region is close to a dry

adiabatic profile.

15



2.2 The observable

In this study, we consider a fixed rectangular region of land between 20�N and 40�N latitude,

with a longitudinal extent of 30� (shown below). As we are particularly interested in the

large-scale dynamics of temperature extremes, the lengths of the region of interest are taken

to be of order of the synoptic scale (more than 1000 km). The position of the land is chosen

such that the land is close to the meridional location of the jet stream and the storm track.

This allows us to capture and study the dynamical e↵ects associated with the the jet stream

and the storm track, along with other processes like large-scale advection (Schneider et al.,

2015; Garfinkel and Harnik, 2017). As the model is zonally symmetric, the longitudinal

position of the land is arbitrary. We arbitrarily set the longitudinal extent of the region of

interest to be from 100�E and 130�E.

Figure 2.3: Surface configuration; Blue and brown regions are sea and land grids, respectively.
The hatched region is the piece of land that is under study.

The spatial average of near-surface temperature over the piece of land TL(t) is a good

indicator of large-scale temperature extremes within the region of interest. The PDF and

autocorrelation of 6 hourly values of TL(t) computed from a long run (1000 years) of the

model described in section 2.1 are given below. The autocorrelation plot was drawn using

the python statsmodels package.
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Figure 2.4: Left - PDF of TL. Right - Autocorrelation function of TL.

The mean of TL(t) µ ⇡ 298.38 K and the standard deviation � ⇡1.69 K. The PDF is

negatively skewed (skewness ⇡ -0.47), with a longer tail for values below the mean. With our

region of interest being equatorward of the zonal jet stream, the negative skewness observed

is consistent with previous studies that have shown that the skewness of temperature PDFs

are associated with the relative location from the jet stream and the storm track, with the

PDFs being positively skewed on the poleward side of the jet and negatively skewed on the

equatorward side (Garfinkel and Harnik, 2017; Loikith, Waliser, et al., 2015).

The autocorrelation time ⌧c of TL(t) has been estimated using the methodology detailed

in Ragone and Bouchet, 2020 as ⌧c ⇡ 6.7 days. As we are studying temperature extremes,

we also compute the anomaly timeseries AL(t), where AL(t) = TL(t)� µ. As AL(t) and TL

are same up to a translation of µ, both AL(t) and TL have been used in subsequent analysis,

sometimes interchangeably.

2.3 The estimator

2.3.1 Block maximum estimator

To compute the tails and the return times of extreme events in our observable, we utilise a

block maximum estimator (detailed in Lestang et al., 2018). The estimator is as follows.
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If we have a timeseries {A(t)}0tTd
, we divide it into M blocks of length �T � ⌧c,

where ⌧c is the autocorrelation time, such that Td = M�T .

For 1  m  M , we define block maximum am to be

am = max{A(t)|(m� 1)�T  t  m�T} (2.9)

We assume that the distribution of extreme events follow a Poisson distribution with rate

� = 1/r(a), where r(a) is the return time of events with threshold a, with the assumption

that occurrences of extreme events are random and independent of each other. Hence, within

the limits ⌧c ⌧ �T ⌧ r(a), , the probability qm(a) that am is larger than some threshold a

is well approximated by

qm(a) ' �T/r(a) (2.10)

qm(a) for rare event threshold a can be alternatively computed as 1
M

PM
m=1 sm(a), where

sm(a) =

8
<

:
1 for am > a

0 otherwise,
(2.11)

Hence, we can estimate r(a) using the block maximum estimator

rB(a) =
TdPM

m=1 sm(a)
(2.12)

2.3.2 Modified block maximum estimator

The block maximum estimator is valid only in the limit �T ⌧ r(a). A better estimator of

r(a) is the modified block maximum estimator, valid even when �T/r(a) is of order 1. It is

obtained by taking qm(a) = 1� e��T/r(a), with the estimator being
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r0B(a) =
��T

ln(1� 1
M

PM
m=1 sm(a))

(2.13)

The modified block maximum estimator lets us compute return time plots very e�ciently,

while being equivalent to other direct methods of return time computation (Lestang et al.,

2018).

Derivation of the modified block estimator

In this subsection, we show how the modified block maximum estimator (Eqn. 2.13) can

be derived from our assumption that the distribution of extreme events follow a Poisson

distribution. We also show that the block maximum estimator (Eqn. 2.12) is a special case

of the modified block maximum estimator, with an additional constraint imposed.

Consider an ensemble of M trajectories, or equivalently, M blocks. Let E be the number

of blocks that satisfy the extreme event condition am > a, where am is the block maximum

and a is some threshold. N = M � E is the number of trajectories that do not satisfy the

above extreme event condition.

When the block lengths are 0, E = 0 and N = M . If we then simulate the blocks

for a small time dt, assuming that that the distribution of extreme events follow a Poisson

distribution with rate � = 1/r(a), where r(a) is the return time of events with threshold a,

the change in E can be expressed as

dE =
Ndt

r(a)
=

(M � E)dt

r(a)
(2.14)

rearranging, we have

dE

(M � E)
=

dt

r(a)
(2.15)

integrating Eqn.(2.15), we get
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�ln(M � E)
���
E0

0
=

t

r(a)

���
T 0

0
(2.16)

rearranging, we get

E 0

M
= q(a) = 1� e�T 0/r(a) (2.17)

where T 0 is the total block length and E 0 is the number of blocks with the rare event.

Eqn.(2.17) is the modified block maximum estimator relation, which is general and valid

even when T 0/r(a) is of order 1.

With an additional constraint T 0 ⌧ r(a), Eqn.(2.17) can be simplified to

E 0

M
= q(a) = T 0/r(a) (2.18)

giving us the block maximum estimator relation, which is valid only in the limit T 0 ⌧
r(a).

2.4 The GKLT algorithm

Climate model integration is computationally costly, making model runs longer than a 1000

years infeasible. This restricts our sampling to events with return times of around a 1000

years.

To overcome this barrier, we utilise rare event sampling algorithms. We use the GKLT

algorithm in particular, which has been used in a previous study to sample temperature

extremes in a climate model (Ragone, Wouters, et al., 2018). The GKLT algorithm selectively

samples from the tails of the observable of interest, increasing the e�ciency of extreme event

sampling by a few orders of magnitude. The algorithm also provides an ensemble of biased

trajectories where the extreme events are a common occurrence, which can be used for

subsequent dynamical analysis.
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The GKLT algorithm is specifically designed to study time averaged observables. There-

fore, we focus on the time averaged observable aL in the subsequent analysis, where

aL =
1

T

Z T

0

AL(t) dt (2.19)

where AL(t) is the anomaly timeseries as described in section 2.2.

The estimator assumes that the observable aL are independent and identically distributed

(iid) variables (for an in-depth treatment, see Rohwer et al., 2015). For a correlated process,

the averaging time should atleast of order 10⌧c for this assumption to be reasonably valid,

where ⌧c is the autocorrelation time of the process. Thus, the lower limit for the averaging

time T that can be used is set by the autocorrelation time of the process. For instance, in

Lestang et al., 2018, an averaging time of 10 was used for the GKLT implementation on an

Ornstein–Uhlenbeck process with an autocorrelation time of 1. As the autocorrelation time

of our observable TL(t) is around 6.7 days, the minimum averaging time that can be used is

around 60 days.

For this study, we use an averaging time T = 90 days, as in Ragone, Wouters, et al.,

2018, which is the extent of a season. In this case, the algorithm selectively samples for large

positive deviations in temperature over the duration of a season. The algorithm is insensitive

to the particular value of T , provided that it is greater than 60 days.

A brief description of the algorithm is given below, more details can be found at Ragone,

Wouters, et al., 2018 and Ragone and Bouchet, 2020.

2.4.1 Algorithm description

We begin by defining P0({X(t)}0tTa = {x(t)}0tTa) as the probability that our trajectory

X(t) is some x(t) in our unbiased model. We simulate N model trajectories, with the starting

initial conditions sampled randomly and uniformly from P0.

The trajectories are simulated for a total duration of Ta, with resampling done at intervals

of ⌧ . Thus, resampling is done i times, with i = 1, .., Ta/⌧ . At resampling time ti = i⌧ , we

stop the simulation and assign to each trajectory n the weight
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W =
e
k
R ti
ti�1

A(Xn(t))dt

Ri
(2.20)

where

Ri =
1

N

NX

n=1

e
k
R ti
ti�1

A(Xn(t))dt ⇠
N!1

E0[e
k
R ti
ti�1

A(Xn(t))dt] (2.21)

A(Xn(t)) is the observable of interest, the spatial average of near-surface temperature

for the nth trajectory in the ensemble. k is a parameter that can be tuned to control the

strength of the biasing (selection parameter).

E0 denotes an average over P0. The error associated with evaluating averages over observ-

ables goes as 1/
p
N (Ragone and Bouchet, 2020), with the relation being true asymptotically

for large N .

The trajectories are sampled proportional to their weights such that the trajectories with

higher weights are kept and cloned and the trajectories with lower weights are killed o↵. The

clones are slightly perturbed, so that they evolve di↵erently from the original trajectory. The

perturbation is introduced in the coe�cients of the spherical harmonics of the logarithm of

the surface pressure, with the perturbation values sampled uniformly from [�✏
p
2, ✏

p
2],

where ✏ = 10�4.

After the first resampling, we obtain trajectories sampled according to a new PDF P1

with

P1(X(t)) = P0(X(t))
ek

R ⌧
0 A(X(t))dt

R1
(2.22)

Similarly, after the second resampling time, the trajectories are sampled according to

PDF P2 where

P2(X(t)) = P0(X(t))
ek

R ⌧
0 A(X(t))dtek

R 2⌧
⌧ A(X(t))dt

R1R2
= P0(X(t))

ek
R 2⌧
0 A(X(t))dt

R1R2
(2.23)
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By successively biasing the PDF at each step, after m = Ta/⌧ resampling steps, we have

PDF Pm as

Pm(X(t)) = P0(X(t))
ek

R Ta
0 A(X(t))dt

QTa/⌧
i=1 Ri

(2.24)

Pm(X(t)) for any trajectoryX(t) in the final ensemble is 1/N (one among N trajectories).

We invert Eqn.(2.24) to get the probability of the final trajectories in the original distribution

P0 as

P0(X(t)) =
1

N
e�k

R Ta
0 A(X(t))dt

Ta/⌧Y

i=1

Ri (2.25)

Thus, we obtain N trajectories, with corresponding probabilities pn (1  n  N) in

P0. For each trajectory, we compute an (1  n  N), the maximum of the time averaged

observable aL with an averaging time T = 90 days.

an = max({aL}0tTa�T ) (2.26)

The modified block maximum estimator (2.13) can be generalised for trajectories with

non-equal probabilities as

r(a) = � Ta � T

ln(1�
PN

n=1 pnsn(a))
(2.27)

with

sn(a) =

8
<

:
1 for an > a

0 otherwise
(2.28)
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2.4.2 Algorithm implementation

The algorithm configuration and implementation closely follows Ragone, Wouters, et al.,

2018, where specific details can be found. The implementation of the algorithm is as follows.

We simulate a total of N = 512 trajectories for an algorithm run. The initial conditions

for the trajectories are samples from a pool of around 1000 model states obtained from a

long run. The states were sampled 10 days apart, which ensures that they are statistically

independent. To prepare the initial conditions, the model was run for a duration of 30 years,

which is negligible compared to the return times that can be calculated from the algorithm.

The algorithm is insensitive to the the particular value of the resampling time ⌧ , provided

⌧ is su�ciently larger than the numerical timestep and lower than the Lyapunov time of the

process. The Lyapunov time of a process the time after which the process loses memory of

its initial state. We can estimate the Lyapunov time for our process by simulating processes

with nearby initial conditions (see plot below). The average distance between the trajecto-

ries increases rapidly and then saturates. At saturation, the di↵erent runs are completely

uncorrelated from each other. The above limit on ⌧ ensure that the clones diverge from the

original trajectory, while still being in the neighbourhood of the original trajectory.

Figure 2.5: The time-evolution of average distance between the spatial average of tempera-
ture TL from di↵erent runs (30 runs) started from nearby initial conditions.
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From the plot, saturation is reached at around 30 days. Hence, we set the resampling

time ⌧ to be 8 days, close to the autocorrelation time ⌧c.

The trajectory length Ta is set to 128 days, with the length of aL, the 90-day averaged

observable being 38 days. A trajectory length of 128 days ensures that the block length after

time averaging is atleast a few times the autocorrelation time ⌧c, while keeping the total

computational cost of the algorithm low.

A(Xn(t)) in the weight calculation is taken to be the spatial average of near-surface

temperature, as described in section 2.2. Trajectories are selected and cloned proportional

to their weights. As the model is deterministic, two trajectories starting from an initial

condition will evolve in the exact same way. To ensure that the trajectories diverge, we

introduce a perturbation in the initial condition for the clones. The methodology for cloning

and introducing perturbation in the clones is detailed in Ragone, Wouters, et al., 2018. The

averaging time is taken to be T = 90 days.

We run the algorithm multiple times with di↵erent values of k, the selection coe�cient.

Return time curves are drawn as described in section 2.4.1 for k = 10, 20, 30, 40 and 50.

For k = 20 and 40, the algorithm was run twice, with di↵erent initial conditions for the

trajectories. The return time curves from the di↵erent runs are averaged and combined to

get a best estimate return time curve. The exact methodology for combining the return time

curves from di↵erent runs is detailed in Ragone, Wouters, et al., 2018.

The computational cost of a single algorithm run is around 180 years. The total com-

putational cost across the di↵erent runs is around 1260 years, which is of the same order as

that of the 1000 year long run.

2.5 Experiment details

The model configuration described in section 2.1 is run for a duration of 1000 years. This

model configuration is the baseline configuration, which acts as a control for the other model

configurations. We calculate the return time for temperature extremes from this long run

using the modified block maximum estimator (section 2.3.2)

The GKLT algorithm is implemented for the baseline configuration. The return times
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estimated from the algorithm are compared with the return times from the long run. This

ensures that the algorithm is functioning as expected and agrees with the long run.

After demonstrating that the algorithm works for the baseline, we run the algorithm for

modified model configurations. We are interested in the di↵erences in return times of the

modified configurations from the baseline. The modified configurations are as follows

Drier land configuration : In this configuration, only the scaling parameter that

controls the relative humidity over land SL is decreased from 0.5 to 0.2. This represents a

scenario where the land is drier than in the baseline model.

Wetter land configuration : In this configuration, only the scaling parameter that

controls the relative humidity over land SL is increased from 0.5 to 0.8. This represents a

scenario where the land is wetter than in the baseline model.

2 degrees warming configuration : In this configuration, the value of longwave optical

depth ⌧0e (see Eqn. 2.2) is increased from 6 to 6.6 to represent an average 2� K surface

warming scenario. Other components and parameters are exactly as in the baseline.

4 degrees warming configuration : In this configuration, the value of longwave optical

depth ⌧0e is increased from 6 to 7.2 to represent an average 4� K surface warming scenario.

Other components and parameters are exactly as in the baseline.

The exact version of CLiMT used for this project can be found at https://github.com/

Ai33L/climt/tree/rare-event-code

The scripts for the GKLT algorithm implementation along with supporting scripts and

documentation can be found at https://github.com/Ai33L/Heatwaves-GKLT
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Chapter 3

Results and Discussion

3.1 Model climatology

3.1.1 Baseline configuration

The climatology of the baseline configuration is shown in Fig. 3.1. The climatology is

computed as the time average of the model fields over a 30 year simulation. The spinup time

of our model, the time from initialisation after which the model’s climate is equilibriated, is

around a year. We have spun up our models for 3 years before any analysis was performed

to ensure that equilibrium was reached.

As the maximum insolation is at 10�N, the temperature maximum is in the northern

hemisphere (panel a and b). The jet streams are clear in the zonally averaged u-wind plot

(panel c), with a stronger jet in the winter hemisphere as expected. The jet in the northern

hemisphere is at around 53�N, slighly poleward of the land, while the jet in the southern

hemisphere is at around 27�S. The maximum jet speed in the northern hemisphere is around

27.6 ms�1, and around 50.4 ms�1 the southern hemisphere. The storm track intensity,

indicated by the zonal mean variance of the meridional wind (panel d) is close to the zonal

jet, atleast in the northern hemisphere.

The average sensible and latent heat fluxes over land are around 19.8 Wm�2 and 46.5

Wm�2.
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Figure 3.1: Climatology of the baseline configuration. (a) Zonally averaged air temperature
(K). (b) Air temperature at the lowest model level (K). (c) Zonally averaged u-winds (zonal
winds) (ms�1). (d) Zonal mean variance of meridional wind (m2s�2) - marks the location of
the storm track. The zonally averaged u-wind is overlaid (black contours).

3.1.2 Drier land configuration

The climatology of the drier land configuration is given below (Fig. 3.2). The major di↵er-

ences from the baseline configuration are highlighted in Fig. 3.3.

The average near surface temperatures over land have increased by around 4.2 K from

the baseline configuration (Fig. 3.2, panel a and b; Fig. 3.3, panel a). The northern

hemisphere jet stream has shifted towards the equator by around 3� with the maximum jet

speed increased by around 3.6 ms�1. The maximum speed of the southern hemisphere jet

has reduced by around 2.4 ms�1, without any shift in latitudinal position (Fig. 3.3, panel

b). The storm track intensity in the northern hemisphere has weakened by around 25 m2s�2

and strengthened in the southern hemisphere by around 25 m2s�2 (from Fig. 3.3, panel c).
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The average sensible heat flux over land has increased by around 18.8 Wm�2 from the

baseline, while the average latent heat flux has decreased by around 42 Wm�2 (not shown).

Figure 3.2: Climatology of the drier land configuration. (a) Zonally averaged air temperature
(K). (b) Air temperature at the lowest model level (K). (c) Zonally averaged u-winds (zonal
winds) (ms�1). (d) Zonal mean variance of meridional wind (m2s�2) - marks the location of
the storm track. The zonally averaged u-wind is overlaid (black contours).
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Figure 3.3: Di↵erence in the climatology of the drier land configuration from the baseline
configuration. (a) Di↵erence in zonally averaged temperature (K). (b) Di↵erence in zonally
averaged u-wind (ms�1). (c) Di↵erence in zonal mean variance of meridional wind (m2s�2).
The respective baseline configuration fields are overlaid (black contours).

3.1.3 Wetter land configuration

The climatology of the wetter land configuration is given below (Fig. 3.4). The major

di↵erences from the baseline configuration are highlighted in Fig. 3.5.

The average near surface temperatures over land have decreased from the baseline con-

figuration by around 2.1 K (clear in Fig. 3.5, panel a). The maximum jet speed in the

southern hemisphere has increased by around 1 ms�1 from the baseline configuration, with

no significant shift in its latitudinal position. (Fig. 3.5, panel b). The storm track intensity

in the southern hemisphere has weakened by around 20 m2s�2 and strengthened by around

12 m2s�2 in the north (from Fig. 3.3, panel c).

The average sensible heat flux over land has decreased by around 12.7 Wm�2 from the

baseline, while the average latent heat flux has increased by around 27.9 Wm�2 (not shown).
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Figure 3.4: Climatology of the wetter land configuration. (a) Zonally averaged air temper-
ature (K). (b) Air temperature at the lowest model level (K). (c) Zonally averaged u-winds
(zonal winds) (ms�1). (d) Zonal mean variance of meridional wind (m2s�2) - marks the
location of the storm track. The zonally averaged u-wind is overlaid (black contours).

Figure 3.5: Di↵erence in the climatology of the wetter land configuration from the baseline
configuration. (a) Di↵erence in zonally averaged temperature (K). (b) Di↵erence in zonally
averaged u-wind (ms�1). (c) Di↵erence in zonal mean variance of meridional wind (m2s�2).
The respective baseline configuration fields are overlaid (black contours).
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3.1.4 2 degrees warming configuration

The climatology of the 2 degrees warming configuration is given below (Fig. 3.6). The major

di↵erences from the baseline configuration are highlighted in Fig. 3.7.

The air temperatures have increased from baseline configuration, with the average near-

surface air temperature over land increasing by around 2.5 K. Panel a of Fig. 3.7 clearly

shows warming throughout the troposphere. The jet stream in the northern hemisphere has

strengthened polewards, while the maximum jet speed of the southern hemisphere jet has

increased by around 2.5 ms�1 (Fig. 3.7, panel b). The poleward flank of the storm track in

the northern hemisphere has strengthened by around 12 m2s�2 (Fig. 3.7, panel c).

Figure 3.6: Climatology of the 2 degrees warming configuration. (a) Zonally averaged air
temperature (K). (b) Air temperature at the lowest model level (K). (c) Zonally averaged
u-winds (zonal winds) (ms�1). (d) Zonal mean variance of meridional wind (m2s�2) - marks
the location of the storm track. The zonally averaged u-wind is overlaid (black contours).
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Figure 3.7: Di↵erence in the climatology of the 2 degrees warming configuration from the
baseline configuration. (a) Di↵erence in zonally averaged temperature (K). (b) Di↵erence in
zonally averaged u-wind (ms�1). (c) Di↵erence in zonal mean variance of meridional wind
(m2s�2). The respective baseline configuration fields are overlaid (black contours).

3.1.5 4 degrees warming configuration

The climatology of the 4 degrees warming configuration is given below (Fig. 3.8). The major

di↵erences from the baseline configuration are highlighted in Fig. 3.9.

The air temperatures have increased from baseline and the 2 degrees warming configu-

rations, with the average near-surface air temperature over land increasing by around 4.7 K

from the baseline. The tropospheric warming is almost twice that in the 2 degrees warming

configuration (Fig. 3.9, panel a). The northern hemisphere jet stream has strengthened

polewards, while the maximum jet speed of the southern hemisphere jet has increased by

around 4.7 ms�1 (Fig. 3.9, panel b). The southern hemisphere storm track and the poleward

flank of the northern hemisphere storm track have strengthened by around 30 m2s�2 and 20

m2s�2 respectively (Fig. 3.9, panel c).
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Figure 3.8: Climatology of the 4 degrees warming configuration. (a) Zonally averaged air
temperature (K). (b) Air temperature at the lowest model level (K). (c) Zonally averaged
u-winds (zonal winds) (ms�1). (d) Zonal mean variance of meridional wind (m2s�2) - marks
the location of the storm track. The zonally averaged u-wind is overlaid (black contours).

Figure 3.9: Di↵erence in the climatology of the 4 degrees warming configuration from the
baseline configuration. (a) Di↵erence in zonally averaged temperature (K). (b) Di↵erence in
zonally averaged u-wind (ms�1). (c) Di↵erence in zonal mean variance of meridional wind
(m2s�2). The respective baseline configuration fields are overlaid (black contours).
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Summary of di↵erences

Table of climatological quantities

Quantity Baseline Drier
land

Wetter
land

2 degrees
warming

4 degrees
warming

Avg. northern hemisphere
land surface temperature

301.41 K 308.82 K 297.23 K 303.69 K 305.72 K

Avg. global ocean surface
temperature

283.89 K 283.92 K 283.81 K 286.0 K 287.94 K

Avg. northern hemisphere
near-surface temperature

298.38 K 303.50 K 295.91 K 300.80 K 302.96 K

Avg. global ocean near-
surface temperature

284.16 K 284.38 K 283.98 K 286.45 K 288.55 K

North jet position and
max. wind speed

53.3 N,
27.9 ms�1

50.4 N,
31.6 ms�1

52.0 N,
27.7 ms�1

53.3 N,
27.8 ms�1

53.3 N,
28.3 ms�1

South jet position and
max. wind speed

27.3 S,
50.8 ms�1

27.3 S,
48.2 ms�1

27.3 S,
51.5 ms�1

27.3 S,
53.3 ms�1

27.3 S,
55.4 ms�1

North storm track position
and max. intensity

53.3 N,
168 m2s�2

50.4 N,
148 m2s�2

53.2 N,
169 m2s�2

53.2 N,
168 m2s�2

53.2 N,
174 m2s�2

South storm track position
and max. intensity

47.5 S,
193 m2s�2

47.5 S,
215 m2s�2

44.6 S,
181 m2s�2

47.5 S,
195 m2s�2

47.5 S,
216 m2s�2

Avg. sensible flux over
northern hemisphere land

18.33
Wm�2

39.25
Wm�2

5.32
Wm�2

17.16
Wm�2

16.03
Wm�2

Avg. latent flux over
northern hemisphere land

61.92
Wm�2

11.25
Wm�2

93.54
Wm�2

68.06
Wm�2

73.66
Wm�2

Avg. sensible flux over
global ocean

-6.53
Wm�2

-8.52
Wm�2

-5.54
Wm�2

-8.15
Wm�2

-9.57
Wm�2

Avg. latent flux over
global ocean

80.31
Wm�2

82.91
Wm�2

79.14
Wm�2

86.37
Wm�2

91.59
Wm�2

Table 3.1: Summary of the various climatological values for the di↵erent configurations.

The average northern hemisphere land surface temperatures decrease as the relative hu-

midity over land is increased and increases with warming. The near-surface temperature over

the northern hemisphere land follows the same pattern, with a smaller magnitude of di↵er-
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ences. The global ocean surface and near-surface temperatures do not change significantly

across configurations.

For the warming configurations, the northern hemisphere jet stream strengthens pole-

wards as the warming is increased (Fig. 3.7 and Fig. 3.9). However, the maximum jet speed

and its location does not change. The northern hemisphere jet shifts equatorwards for both

the drier and wetter land configurations, with a maximum jet speed increase in the drier

land configuration. The large change in the northern hemisphere jet speed and location for

the drier land configuration was unintentional and is a result of the particular land configu-

ration we have implemented, with the meridional position of the jet being at the land-ocean

boundary.

3.2 Return times

The results of the experiments detailed in section 2.5 are presented in the following subsec-

tions. We use the baseline configuration to validate and explain the algorithm procedure.

For the other configurations, the results are directly presented as the algorithm procedure is

essentially kept the same between configurations.

Note that as we have computed return times for the anomalies from the climatology for

each configuration, the e↵ects due to changes in the mean temperatures are removed. The

changes in return times captured are only due to changes in higher moments of the 90-day

averaged temperature anomaly distributions.

3.2.1 Baseline configuration

The return time curves and the corresponding cumulative probability distributions for the

baseline configuration are given below.

For the baseline configuration, a 1000 year long run was used as a control. The algorithm

was run 7 times, with di↵erent selection coe�cient values (see section 2.4.2).
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Figure 3.10: Left - Return times for the 90-day averaged temperature anomalies. Right -
Cumulative probabilities for the 90-day averaged temperature anomalies. The time window
taken for probability calculation is 1 year.

The return times curves computed from the di↵erent algorithm runs are trimmed and

averaged as described in Ragone, Wouters, et al., 2018 to get the estimated return time

curve.

Figure 3.11: The estimated return time curve from the GKLT algorithm (red) and the return
times computed from the 1000 year run (black). The grey area is the error bar, calculated
as 1 standard deviation (SD) of the curves averaged at each point.
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The algorithm correctly computes the return times for the 90-day averaged temperature

anomalies with return times in the range of 100 to 103. Moreover, the algorithm lets us

compute return times upto order 106, which was not possible with the 1000 year run. As

the computational power used by the algorithm is of the order of the 1000 year direct run,

the algorithm has a sampling e�ciency of order 103.

Fig. 3.12 illustrates the basic working of the algorithm. The algorithm selectively samples

around some value at the tail of the 90 day averaged temperature distribution. As the

selection coe�cient k is increased, the value at the tail around which the sampling is done is

higher. As algorithm runs with di↵erent selection coe�cients sample around di↵erent values

at the distribution tail, combining multiple algorithm runs gives us a good sampling across

a range of values at the tail of the distribution.

Figure 3.12: PDF of 90 day temperature anomalies computed from the direct run, compared
with the PDFs computed from selected algorithm runs.
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Figure 3.13: PDF of temperature anomalies (no time averaging) computed from the direct
run, compared with the PDFs computed from selected algorithm runs.

However, from Fig. 3.13 we can see that even though the algorithm samples higher

instantaneous temperature anomaly values, the instantaneous temperature values sampled

by the algorithm and the direct run have a large overlap. From Fig. 3.12 and Fig. 3.13,

it is clear that the algorithm is designed to sample a class of extreme events, with large

deviations from the mean over a long period of time, 90 days in this case.

3.2.2 Drier land configuration

The return time curves and the corresponding cumulative probability distributions for the

drier land configuration are given below. Note that to calculate the anomalies in this case,

the climatology of drier land configuration was used.
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Figure 3.14: For the drier land configuration. Left - Return times for the 90-day averaged
temperature anomalies. Right - Cumulative probability of the 90-day averaged temperature
anomalies.

The estimated return time curve for the 90 day averaged temperature anomalies in the

drier land configuration is given below.

Figure 3.15: The estimated return time curve from the GKLT algorithm for the drier land
configuration (red) and the baseline configuration (black). The grey area is the error bar,
calculated as 1 standard deviation (SD) of the curves averaged at each point.
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From the plot above, the return times of 90 day averaged temperature anomalies are

lower in the drier land configuration than in the baseline configuration. This means that the

probability of occurrence of these events is larger in the drier land configuration.

3.2.3 Wetter land configuration

The return time curves and the corresponding cumulative probability distributions for the

wetter land configuration are given below.

Figure 3.16: For the wetter land configuration. Left - Return times for the 90-day averaged
temperature anomalies. Right - Cumulative probability of the 90-day averaged temperature
anomalies.

The estimated return time curve for the 90 day averaged temperature anomalies in the

wetter land configuration is given below.
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Figure 3.17: The estimated return time curve from the GKLT algorithm for the wetter land
configuration (red) and the baseline configuration (black). The grey area is the error bar,
calculated as 1 standard deviation (SD) of the curves averaged at each point.

The return times of 90 day averaged temperature anomalies are higher in the wetter

land configuration than in the baseline configuration. This means that the probability of

occurrence of these events is lower in the wetter land configuration.

3.2.4 2 degrees warming configuration

The return time curves and the corresponding cumulative probability distributions for the 2

degrees configuration are given below.
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Figure 3.18: For the 2 degrees warming configuration. Left - Return times for the 90-day
averaged temperature anomalies. Right - Cumulative probability of the 90-day averaged
temperature anomalies.

The estimated return time curve for the 90 day averaged temperature anomalies in the

2 degrees warming configuration is given below.

Figure 3.19: The estimated return time curve from the GKLT algorithm for the 2 degrees
warming configuration (red) and the baseline configuration (black). The grey area is the
error bar, calculated as 1 standard deviation (SD) of the curves averaged at each point.
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From the plot above, the return times for the 90 day average temperature anomalies in

the 2 degrees warming configuration are less than in the baseline configuration in the range

of 104 to 106 years, and more than in the baseline configuration in the range of around 1 to

100 years. However, the baseline curve is within the error bar of the other curve, except in

the range of 1 to 100 years.

3.2.5 4 degrees warming configuration

The return time curves and the corresponding cumulative probability distributions for the 4

degrees configuration are given below.

Figure 3.20: For the 4 degrees warming configuration. Left - Return times for the 90-day
averaged temperature anomalies. Right - Cumulative probability of the 90-day averaged
temperature anomalies.

The estimated return time curve for the 90 day averaged temperature anomalies in the

4 degrees warming configuration is given below.
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Figure 3.21: The estimated return time curve from the GKLT algorithm for the 4 degrees
warming configuration (red) and the baseline configuration (black). The grey area is the
error bar, calculated as 1 standard deviation (SD) of the curves averaged at each point.

The return times for the 90 day average temperature anomalies in the 4 degrees warming

configuration are lower than those in the baseline configuration, especially in the range of

return times higher than 100 years. Hence, the probability of occurrence of these extreme

events is larger in the 4 degrees warming configuration.

A predominant di↵erence between the land surface configurations and the warming con-

figurations is as follows - For the land surface configurations, the return times of the 90-day

averaged temperature anomalies decrease uniformly across anomalies as the relative humid-

ity over land is decreased. In contrast, for the warming configurations, only the the return

times of the larger 90-day averaged temperature anomalies decrease as the atmosphere is

warmed, while the return times of the lower anomaly values remain close to that of the

baseline.
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3.3 Statistical analysis

From the return time plots in section 3.2, we see that the return times of the 90 day averaged

temperature anomalies change in a non-trivial way from the baseline. We wish to understand

what has changed between configuration to induce this e↵ect.

To understand this, we need to look at the trajectories themselves. For each model

configuration, we have 3584 biased trajectories of length 128 days each, where heatwaves are

very common. As the algorithm is kept exactly the same (only the configuration changes), we

can compare between the trajectories of di↵erent configurations to understand the changes

statistically.

We first define heatwaves as any event where the anomaly of the spatially averaged

temperature over our area of interest (see section 2.2) exceeds a threshold. We set the

threshold to 2.7 K, the 95th percentile of daily temperature maximum values, computed

from the 1000 year long run for the baseline configuration. The anomalies for di↵erent

configurations are computed using the climatology of the particular configuration. The

threshold for the heatwave is kept the same between configurations. The following results

are not sensitive to the particular value of the threshold used, as similar results were obtained

even when the threshold was set to 3.1 K, the 98th percentile of daily temperature maximum

values.

Using this definition, we decompose the trajectories as shown in Fig. 3.22. We decompose

the trajectory into segments above and below the threshold. For each segment, we calculate

the duration and intensity, where the duration is the length of the segment and the intensity

is the mean value of the anomaly over the segment. This procedure ensures that the 90-day

averaged anomaly calculated from the decomposed trajectories remain the same.
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Figure 3.22: (Red curve) Original trajectory - Heatwave episodes shaded in red. (Black
curve) Decomposed trajectory - mean value of temperature anomaly computed for di↵erent
segments above and below the threshold.

However, from our analysis (not shown), we found that the 90-day averaged temperature

anomalies could be accounted for by the heatwave episodes alone (Fig. 3.22, shown in red).

Therefore, we attempt to explain the changes observed in the return times of the 90 day

averaged temperature anomalies (section 3.2) in terms of the intensity, duration and the

number of heatwaves in the decomposed trajectories of the di↵erent configurations. For our

convenience, we consider the di↵erent land configurations and the warming configurations

separately.

3.3.1 Land configurations

We look at the heatwaves in the trajectories of the di↵erent land relative humidity scaling

configurations. We filter out trajectories associated with negative 90 day averaged tempera-

ture anomalies as they are of no interest to us. The results are the same irrespective of this

filtering.

Fig. 3.23 shows cumulative plots for number of heatwaves above some duration/intensity
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value. The cumulative number of heatwaves is highest in the drier land configuration and

lowest in the wetter land configuration. This pattern is consistent across duration/ inten-

sity values. Note that the duration/ intensity values are for individual heatwaves in the

trajectories.

Figure 3.23: For the land configuration experiments. Left - number of heatwaves with
duration larger than some value. Right - number of heatwaves with intensity larger than
some value.

Fig. 3.24 shows a histogram plot of the number of heatwaves for di↵erent durations and

intensities. A clear trend in intensity and duration of heatwaves between configurations is

seen, with both intensity and duration decreasing from the drier land to the baseline to the

wetter land configuration. From the drier land to the baseline configuration, the predominant

change is the reduction in intensity, while from the baseline to the wetter land configuration,

the primary change is the shortening of the duration.
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Figure 3.24: For the land configuration experiments - histogram plots for the number of
heatwaves of di↵erent duration and intensity values.

Hence, the return time di↵erences seen in section 3.2 for the land configurations can be

attributed to an increase in the number of heatwaves, as the scaling of the relative humidity

over land is decreased, with an increase in both duration and intensity of the heatwaves.

3.3.2 Warming configurations

We look at the heatwaves in the trajectories of the di↵erent warming configurations. We

filter out trajectories associated with negative 90 day averaged temperature anomalies.

Fig. 3.25 shows cumulative plots for number of heatwaves above some duration/intensity

value. The cumulative number of heatwaves is in general lowest in the baseline configuration

and highest in the 4 degrees warming configuration. The clearest di↵erence between the

configuration is seen in the duration plot (left panel), with medium duration heatwaves being

more frequent in the 4 degrees warming scenario than in the other warming configurations.

Also, there seems to be fewer high duration events in the 4 degrees warming configuration.

Fig. 3.26 shows a histogram plot of the number of heatwaves for di↵erent durations

and intensities. We see no clear trend in the intensity and duration distribution of the

heatwaves between configurations. The total number of heatwaves seems to be the major

change between configurations.
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Figure 3.25: For the warming experiments. Left - number of heatwaves with duration larger
than some value. Right - number of heatwaves with intensity larger than some value.

Figure 3.26: For the warming experiments - histogram plots for the number of heatwaves of
di↵erent duration and intensity values.

To verify that the number of heatwaves is the dominant cause of the di↵erences seen in

the return time plots for the warming experiments (section 3.2), we perform an additional

analysis, where we sample heatwaves for trajectories with an associated 90 day averaged

temperature anomaly above 2.4 K. This value is chosen because the return time plots for

the warming experiments (especially in Fig. 3.19) are di↵erent beyond an anomaly of 2.4 K.

Fig. 3.27 shows cumulative plots for number of heatwaves above some duration/intensity

value for the filtered trajectories. The cumulative number of heatwaves is highest in the 4
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degrees warming scenario and lowest in the baseline configuration.

Figure 3.27: For the warming experiments and for filtered trajectories. Left - number of
heatwaves with duration larger than some value. Right - number of heatwaves with intensity
larger than some value.

From the histogram plot (Fig. 3.28), the clearest pattern that we observe is the decrease

in duration and increase in intensity of heatwaves with warming. However, the change in

the number of heatwaves seems to be the dominant di↵erence between the warming config-

urations.

Figure 3.28: For the warming experiments and for filtered trajectories - histogram plots for
the number of heatwaves of di↵erent duration and intensity values.

Hence, the return time di↵erences seen in section 3.2 for the warming configurations,
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especially at the larger values of the 90 day averaged anomalies can be attributed to just the

increase in the number of heatwaves as the warming is increased.
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Chapter 4

Conclusion

In this project, an idealised climate model was set up using CliMT. We used an intermediate

complexity model, similar to that in Frierson et al., 2006, with a complexity between simple

energy balance models and full-scale GCMs with all feedbacks included. The GKLT rare

event sampling algorithm was successfully implemented on this model, giving us the capa-

bility to e�ciently sample extreme heatwaves and accurately compute their return times.

Note that in this study, we have defined heatwaves using temperature anomalies instead of

absolute temperatures. This is because we are interested in the changes in the return times

due to changes in the higher moments of the distribution, associated with changes in the

circulation, and not due to changes in the mean, governed by the large-scale thermodynamics

and energy balances.

We find non-trivial changes in the return times of extreme heatwaves as we change the

land surface relative humidity scaling and introduce large-scale warming. For the land sur-

face configurations, the return times of the 90-day averaged temperature anomalies decrease

uniformly across anomalies as the relative humidity over land is decreased. For the warming

configurations, only the return times of larger 90-day averaged temperature anomalies de-

crease as the atmosphere is warmed. We observe a decrease in the duration and intensity of

heatwaves as the land relative humidity scaling is increased, while the number of heatwaves

increases predominantly with large-scale warming.

Studies like Seneviratne and Hauser, 2020 and Hirsch et al., 2021 and have been done

to examine heatwaves using observational and CMIP6 data, both on regional and global
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scales. Such studies are important as they estimate the likelihood of occurrence of temper-

ature extremes at a regional scale, and how they might change in warming scenario. These

estimations guide policy makers to plan better and design adaptive measures. In contrast,

we approach heatwaves from a conceptual perspective. We start with a simplified model,

where the processes that govern heatwaves are easier to understand, while being su�ciently

realistic. Features like realistic radiation and land-atmosphere feedbacks due to soil and veg-

etation, which contribute to heatwaves are left out. It is essential to understand the processes

and dynamics in the simplified model thoroughly before adding additional components like

topography and realistic land-ocean configurations.

Incorporating the GKLT algorithm on our simplified model allowed us to study the true

impact of the changes in circulation on the temperature distribution tails. For instance, the

changes in return times for the warming configurations at large anomaly values could only be

computed from the robust statistics obtained by biased sampling. The heatwaves sampled

from the algorithm can be studied using an intensity-duration-frequency framework, where

we look at the intensity, duration and frequency of individual heatwaves in the trajectories

obtained from the algorithm. This framework provides a consistent way to combine the

physics and the statistics of heatwaves, as the physical processes that govern the intensity,

duration and frequency of heatwaves can be studied separately.

In this project, we have only focused on the statistical aspect of heatwaves, in terms on

their intensity, duration and frequency. In a future study, we intend to look at how the

physical processes of interest in our simplified model - the large-scale horizontal advection,

subsidence and surface fluxes, quantitatively contribute to the intensity, duration and fre-

quency of heatwaves. Also, in our current model configuration, we observe that the jet is

unintentionally strengthened when the relative humidity over land is decreased. This is a

limitation of the land configuration we have implemented. We intend to change the land con-

figuration in a future work to address this issue. After gaining a thorough understanding of

the dynamics at play in the simplified model, more realistic components like topography can

be added to understand the more complex processes that emerge, in a systematic manner.
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