
Developing AI-Based Surveillance
Software

A Thesis

Submitted to

Indian Institute of Science Education and Research Pune
in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

Submitted by:

Dipayan Pal

Indian Institute of Science Education and Research, Pune

Under the supervision of:

Mr. Sudhir Kumar(Coriolis Technologies)

Co-Supervisor: Mr. Rohan Nandode (Coriolis Technologies)

TAC Member: Dr. Leelavati Narlikar (IISER Pune)

Certificate

This is to certify that this dissertation entitledDeveloping AI-Based Surveillance
Software towards the partial fulfilment of the BS-MS dual degree programme at the
Indian Institute of Science Education and Research, Pune represents study/work
carried out by Dipayan Pal at Indian Institute of Science Education and Research,
Pune under the supervision of Sudhir Kumar, Member of Technical Staff, Coriolis
Technologies, Pune, during the academic year 2022-2023.

Sudhir Kumar
Member of Technical Staff

Coriolis Technologies

Committee:

Supervisor: Sudhir Kumar (Coriolis Technologies)
Co-Supervisor: Rohan Nandode (Coriolis Technologies)
TAC Member: Dr. Leelavati Narlikar (IISER Pune)

2

Declaration

I hereby declare that the matter embodied in the report entitled Developing AI-
Based Surveillance Software, are the results of the work carried out by me at
the Department of Data Science, Indian Institute of Science Education and Research,
Pune, under the supervision of Sudhir Kumar (Coriolis Technologies), and the same
has not been submitted elsewhere for any other degree.

Dipayan Pal

3

4

This Thesis is Dedicated to

My parents: Gita Sen(Mother) and Samir Pal(Father)
&

2 of my best friends without whom this project
wouldn’t have been completed:

Sahil Mulewar and Deepesh Khushwani

Academic Acknowledgements

Being a naive kid from a small city like Agartala in Tripura, IISER

has taught me a lot of things. It has shaped my personality and

helped me a lot with my transition from a clueless teenager to a

responsible adult. There were many ups and downs on the path, but

IISER always tried its best to take good care of us.

First and foremost, I would like to thank my supervisor, Mr. Sudhir

Kumar. He has guided me through everything, starting from ex-

plaining the ins and outs of the project, suggesting what to do next

when I got stuck in a dead end, and overall providing me with a good

direction for the project. He has also constantly motivated me to

keep going when things looked very tough, and without his constant

support, I wouldn’t have been able to complete this project.

I can’t thank Prof. Leelavati Narlikar enough for all the support she

has provided me, both academically and emotionally. Doing an in-

dustrial project in IISER seemed like a difficult experience for me, but

she always assured me, helped me clear out a lot of my thoughts, and

motivated me to move forward with my project. Prof. Leelavati put

me in touch with Mr. Sudhir, which ultimately led me to this project.

I also pursued a semester project with her in my last semester, and

she was the best supervisor one could ask for. She started from the

basics and helped me develop a scientific temperament throughout

the project.

It is an understatement to use the word blessed when I look back

at the opportunities I had and the teachers I had the opportunity to

learn from. It is because of them and their support and affection that

I have been able to learn whatever I have learned till now. All the

labs and webinars have truly been an enriching experience for me. It

has helped me grow a lot, both professionally and personally.

I would like to thank my co-supervisor, Mr. Rohan Nandode, for his

constant inputs throughout the project.

I would also like to thank my CEO, Mr. Basant Rajan, for giving me

this wonderful opportunity.

I would also like to thank all my colleagues at Coriolis Technologies,

who helped me a lot and made me feel like family there. In particular,

I would like to thank Hashim, who was my collaborator at the start

of the project and helped kickstart my project.

Personal Acknowledgements

The Fifth Year Master’s Thesis at IISER Pune culminates our 5-year

journey of BS-MS. I am writing this as I am tearing up remembering

all the events that have happened over the past 5 years. I wish I could

repeat all these experiences, but alas, that’s not how things work.

When I landed at IISER 5 years ago with a lot of dreams to become a

physicist and equal bits of anxiety and imposter syndrome, I couldn’t

have imagined, in my wildest dreams, what my journey at IISER

would turn out to be. It was a roller coaster ride from experiencing

my first global pandemic (hopefully the last one) to changing my

course completely from Physics to Data Science. IISER also helped

me a lot with my personal exploration, a major thanks to all the

extra-curricular activities, especially the Satrangi Club.

I wouldn’t have been able to graduate from IISER without the con-

stant support and companionship of two of my best friends, Deepesh

Khushwani and Sahil Mulewar. I found myself in a full blown ”mental

breakdown” at the start of my fifth year. During those tough times,

they have been by my side throughout my journey, and I honestly

can’t thank them enough for what they did.

Deepesh is honestly one of the funniest persons I have met, and I

thank Deepesh for making me fall in love with music once again. I

wouldn’t forget all the countless all-nighter discussions that we had.

Best times indeed!

I can’t thank Sahil enough for the amount of meme materials he

has provided through our IISER journey. One of the most quirky,

charming, and good-hearted people I have seen. But your hair hon-

estly doesn’t look good.

Finally, my friends: Prantik, who was always there to help me when-

ever I needed him and who sparked my interest in reading novels,

and Lubdhak, who was one of the best roommates I could ask for,

and yes, you will never retire from Kalpa.

It is hard to resist the temptation to write a huge acknowledgement

for this gigantic journey, but I would stop here.

IISER gave me many helpful seniors who always treated me as their

equal, with no hierarchy at all, and also many cheerful juniors who

were some of the sweetest people to talk to.

With this, I would end my love letter to all these 5 wonderful years

at IISER. Thanks to everyone for bearing with me, and I will cherish

all these memories for the rest of my life.

8

Abstract

In this work, we developed an AI-based surveillance system to be used

by businesses to improve public safety, security, and law enforcement

efforts. The system has numerous potential applications, including

lost item retrieval, efficient emergency response, facial biometric ver-

ification, and more. Our software utilises advanced algorithms and

state-of-the-art technologies to analyse videos from CCTV cameras

and accurately identify individuals and objects in real-time.

Despite recent advances in face recognition, small face recognition

at scale remains a significant challenge. To address this, we utilized

Insightface models for face recognition and achieved an accuracy of

75% with the system processing 15 frames per second.To optimize

the system, we implemented several infrastructure changes, including

shifting from Elasticsearch to Opensearch, which reduced the loading

time of our UI interface from 2 minutes to 10-15 seconds. The entire

system is highly scalable and fault-tolerant, capable of processing 60

million images per day due to its implementation in Kubernetes.

Contents

1 Introduction 1

1.1 Softwares used . 1

1.1.1 Docker . 1

1.1.2 Kubernetes . 1

1.2 Infrastructure . 3

1.2.1 Camera . 3

1.2.2 Producer . 3

1.2.3 Kafka . 4

1.2.4 Consumer . 4

1.2.5 Spark . 4

1.2.6 Filebeat . 5

1.2.7 Opensearch . 6

1.2.8 UI . 6

2 Insightface details 7

2.1 What is Insightface? . 7

2.2 Buffalo models . 7

2.2.1 Architecture . 8

3 Introducing vidiQulus 11

i

3.1 Motivation . 11

3.2 Uses . 12

3.2.1 Lost Item Retrieval . 12

3.2.2 Enhanced emergency response 13

3.2.3 Enhanced Biometric systems 13

4 Facial recognition Algorithm 15

4.1 Challenges faced with small faces . 15

4.2 How Insightface solves these problems 16

4.3 Pipeline . 17

4.4 Preparing the Database of images . 17

4.5 Using the database to recognise faces 18

4.6 Testing the model . 19

4.6.1 Experiments with different distance functions and KNN algo-
rithms . 20

4.6.1.1 Case 1 . 21

4.6.1.2 Case 2 . 23

4.6.1.3 Case 3 . 25

4.6.1.4 Case 4 . 27

4.6.1.5 Case 5 . 29

4.6.2 Discussions . 31

4.6.3 Varation of K . 31

4.6.4 Variation of size . 32

4.6.5 Increasing the number of images in the database 32

4.6.5.1 Comparison of both versions of dataset 35

4.6.6 Discussions . 37

4.7 Deploying the model . 37

ii

5 Infra changes 39

5.1 Automating the creation of the Kubernetes cluster 39

5.1.1 What is Ansible? . 39

5.1.2 Ansible architecture . 40

5.1.3 How Ansible saved time? . 41

5.2 Changing from Elasticsearch to opensearch 41

5.2.1 What is Elasticsearch? . 41

5.2.2 Problems with using Elasticsearch 42

5.2.3 What is opensearch? . 42

5.2.4 Changes observed . 42

6 Spark changes: Making processing images faster 45

6.1 What is Apache spark? . 45

6.2 Spark architecture . 46

6.2.1 Driver Node . 46

6.2.2 Cluster Manager . 46

6.2.3 Worker Node . 47

6.3 UDFs . 47

6.3.1 Pandas UDFs . 47

6.4 RDD . 48

6.5 Algorithm used . 49

6.6 Benefits of using the RDD based approach 50

7 Conclusions 51

8 Further work 53

A Body similarity 57

iii

B Exact KNN vs HNSW KNN 61

B.1 Exact KNN . 61

B.2 HNSW . 62

iv

List of Figures

1.1 Flowchart of the infrastructure that we used 3

1.2 Spark architecture taken from [4] . 5

2.1 Mobilenetv3 architecture taken from [15] 8

4.1 Face recognition pipeline . 17

4.2 Results for Case 1 . 22

4.3 Results for Case 2 . 24

4.4 Results for Case 3 . 26

4.5 Results for Case 4 . 28

4.6 Results for Case 5 . 30

4.7 Number of images recognised and number of true positives recognised
for various thresholds for version 1 vs version 2 of database 35

4.8 Percent of images recognised and percent of true positives recognised
for various thresholds for version 1 vs version 2 of database 36

5.1 Ansible architecture taken from [20] 40

6.1 Algorithm used for implementing RDD method 49

v

vi

List of Tables

4.1 All possible configurations tried with different loss functions and KNN
algorithms . 21

4.2 Number of images recognised and number of true positives recognised
for various thresholds. 21

4.3 Number of images recognised and number of true positives recognised
for various thresholds. 23

4.4 Number of images recognised and number of true positives recognised
for various thresholds. 25

4.5 Number of images recognised and number of true positives recognised
for various thresholds. 27

4.6 Number of images recognised and number of true positives recognised
for various thresholds. 29

4.7 Number of images recognised and number of true positives recognised
for various values of k. 31

4.8 Number of images recognised and number of true positives recognised
for various values of size. 32

vii

viii

Chapter 1

Introduction

1.1 Softwares used

1.1.1 Docker

Docker is an open-source platform that allows developers to create, publish, run, up-
date, and manage containers.

Containers are lightweight and portable software packages that run in an isolated
environment within a system that includes everything necessary to run a piece of
software, including the code, runtime, libraries, environment variables, and system
utilities. Containers provide a consistent and reproducible execution of our codes,
making it simpler to deploy and run programs in a consistent manner across many
environments.

Docker is the most popular containerization platform, and it offers an intuitive in-
terface for constructing, deploying, and managing containers. With Docker, you can
bundle your application and its dependencies into a container image that can be de-
ployed and executed on any server with Docker installed.

Due to all these advantages, we have extensively used Docker in our project to make
containers for our applications.[1]

1.1.2 Kubernetes

Kubernetes is an open-source framework for automating the deployment, scaling, and
management of containerised applications.

Kubernetes offers several benefits for the deployment and management of container-

1

ized applications, including:

1. Scalability: Kubernetes makes it easy to scale applications up or down as
needed, making it well-suited for large-scale, dynamic workloads.

2. Portability: Kubernetes provides a standard environment for delivering appli-
cations, making it simple to migrate them between various environments and
cloud platforms.

3. Resilience: Kubernetes self-healing features make it simpler to maintain the
availability and dependability of applications in the case of node outages.

4. Resource management: Kubernetes has strong resource management fea-
tures, making it simpler to guarantee that applications have the necessary re-
sources to function efficiently.

5. Automation: Kubernetes provides a uniform platform for automating the
deployment, scaling, and administration of containerized applications, therefore
facilitating the management of complex applications and services.

All these advantages compelled us to use Kubernetes as the backbone of our infras-
tucture, and all of our containers were deployed using Kubernetes.[2]

2

1.2 Infrastructure

Figure 1.1: Flowchart of the infrastructure that we used

1.2.1 Camera

These are CCTV cameras installed in the Coriolis premises that capture images at
the rate of 24 frames per second. Currently, we have deployed 32 cameras, which are
generating on the order of 60 million images per day.

1.2.2 Producer

A producer in Apache Spark refers to a process or system that creates data and saves
it in a data source that Spark can read from, such as a Kafka topic. A producer
in Apache Spark can be thought of as the source of data that Spark processes and
analyzes. This information may be gathered from a variety of sources, including logs,
sensor data, and user interactions.

In our case, the producer takes the data that is generated from the cameras and
stores the data to a Kafka topic.

A producer is responsible for writing data to one or more topics in a Kafka clus-
ter in Apache Kafka. Spark may then ingest, process, and analyse this data. By
utilising a distributed data processing framework such as Apache Spark, it is feasible
to manage extraordinarily huge amounts of data in real-time and provide scalable
and efficient insights and analysis.[3]

3

1.2.3 Kafka

Apache Kafka is a widely used distributed, scalable, and fault-tolerant message bro-
ker for real-time data pipelines and streaming applications.

It can be used in conjunction with Apache Spark where Spark may take data from
one or more Kafka topics, analyse the data using the Spark framework in parallel, and
then publish the findings back to another data source or utilise them for additional
analysis.

Apache Kafka is extremely scalable and is capable of processing hundreds of thou-
sands of messages per second. It is also fault-tolerant and can recover automatically
from faults, making it a dependable and robust data streaming system. By combining
Apache Spark with Apache Kafka, we can construct scalable, real-time data pipelines
for processing massive amounts of data and gaining real-time insights from that data.
[3]

1.2.4 Consumer

A consumer in Apache Spark is a process or system that reads and processes data
from a data source, such as a Kafka topic. A consumer in Apache Spark is a process
or system that reads data from a source, such as a Kafka topic, and processes or
analyses that data. A consumer is responsible for consuming data from one or more
topics in a Kafka cluster in Apache Kafka.

In our case, consumer consumes the data from the kafka topic and, through a Python
script it applies some transformations to the images that makes them easier to apply
our ML models to. Finally, the python script saves the images on our distributed
NFS servers. [3]

1.2.5 Spark

Apache Spark is an open-source, distributed computing system built for analysing
massive amounts of data. One of the primary benefits of Apache Spark is its capacity
to process data in parallel over a cluster of computers, which makes it significantly
quicker than conventional data processing systems.

The Spark’s architecture is based on the master-slave model. Its cluster is com-
posed of a single master and many slaves.

4

Figure 1.2: Spark architecture taken from [4]

The main features of the Spark architecture are:

1. Driver: The word ”driver” in Apache Spark refers to the process that executes
the primary function of a Spark application and creates a SparkContext. Spark-
Context serves as the entry point for all Spark applications and coordinates the
execution of tasks throughout the cluster. The driver process is accountable for
splitting the application into tasks and allocating those tasks to the executors.

2. Cluster manager: A cluster manager in Apache Spark is a component re-
sponsible for allocating Spark executors’ resources, such as CPU and memory.
Additionally, the cluster manager is responsible for initiating and stopping ex-
ecutors as required and controlling the cluster’s overall health.

3. Worker Node: A worker node in Apache Spark is a machine in a cluster that
executes one or more Spark executors. The responsibility of worker nodes is
to execute the tasks given to them by the driver and return the results to the
driver.

4. Executors: The term ”executor” refers to the processes that execute the tasks
assigned to them by the driver and operate on the worker nodes of a Spark
cluster. Executors are responsible for carrying out the duties allocated to them
and reporting the outcomes to the driver. Executors are also responsible for
caching data in memory and providing it to the tasks as needed. [5]

1.2.6 Filebeat

Filebeat is a log data shipper for the Elastic Stack. It is used to collect and centralize
log data from various sources and send it to Elasticsearch.

5

Filebeat is designed to be lightweight, scalable, and efficient, which makes it suit-
able for gathering log data from large-scale, distributed systems. It is configured to
gather logs from a range of sources, including system logs, application logs, and cus-
tom logs, and runs as a process on any server that needs to submit log data.

After Filebeat has gathered the log data, it can be transmitted to the specified output
destination for additional processing and analysis.

1.2.7 Opensearch

Opensearch is a distributed, RESTful, open-source search and analytics engine built
to manage massive volumes of data. It is a Lucene-based search engine used for a
number of purposes, including full-text search, analytics, and logging.

Opensearch is well-suited for large-scale, data-intensive applications as it is extremely
scalable and can handle millions of search requests per second.

Opensearch delivers a variety of advanced tools for data analysis and visualisation
in addition to search functionality. It also interfaces with other technologies, such
as Filebeat and Opensearch-Dashboard, to provide an end-to-end solution for log
analysis and data visualisation. [6]

1.2.8 UI

UI stands for ”User Interface”. It refers to the website we had created to visualise
the results of our entire data processing, starting from taking images with cameras
up untill applying the ML models to those images. Here are some of the screenshots
from our web interface to show what the final product looks like.

6

Chapter 2

Insightface details

For our project, we have used Insightface as the base model for our face analysis. We
have selected the default Buffalo-l model under the insightface framework.

2.1 What is Insightface?

InsightFace is a framework for face identification and analysis based on deep learning.
It was created by the research team at Megvii Technology, the industry leader in com-
puter vision and artificial intelligence. InsightFace offers a collection of pre-trained
models for face recognition, face detection, and face alignment, as well as training
and fine-tuning tools for these models using custom data.

Deep convolutional neural networks (CNNs) are used by InsightFace to conduct fa-
cial recognition and analysis tasks. The framework has a variety of models, including
the Buffalo model, which is a very accurate and efficient model for large-scale facial
recognition.

InsightFace is optimised for a variety of real-world applications, such as face identi-
fication in films, photographs, and live broadcasts. It is also meant to be extremely
efficient and scalable, making it appropriate for usage in real-time applications and
systems with limited computing resources. [7] [8] [9] [10] [11] [12] [13] [14]

2.2 Buffalo models

Buffalo models are a range of models included under the Insightface framework that
we used for face recognition. Buffalo models can perform face recognition on a large
number of images accurately and efficiently.

7

2.2.1 Architecture

The architecture of the Buffalo model is based on a network called MobileNetV3.
This network is lightweight and efficient, making it appropriate for real-time applica-
tions like facial recognition. The Buffalo model optimises MobileNetV3 architecture,
particularly for facial recognition applications.

Figure 2.1: Mobilenetv3 architecture taken from [15]

The Buffalo model performs facial recognition using a mix of depth-wise separable
convolutions and inverted residuals. These layers enable the network to efficiently
analyse massive amounts of data without losing precision.

In addition, the Buffalo model features a secondary branch. This is a distinct portion
of the network that delivers extra training-related information. This enhances the
network’s precision and makes it more resilient.

Finally, the Buffalo model employs a loss function called ArcFace that is tailored
for face recognition applications.

8

The ArcFace loss function can be expressed by the following expression: [16]

Larcface = − 1

N

N∑
i=1

log
es·cos(θyi+m)

es·cos(θyi+m) +
∑n

j=1,j ̸=yi
es·cos θj

(2.1)

where:

N is the batch size
s is the scaling factor
θyi is the angle between the input feature vector and the weight vector of the true
class yi
m is the additive margin
n is the total number of classes

The goal of this loss function is to maximize the cosine similarity between the input
feature vector and the weight vector of the true class while minimizing the similarity
to other classes. The scaling factor and additive margin are hyper-parameters that
control the margin between classes and the magnitude of the features, respectively.

This loss function improves the network’s accuracy and resilience by increasing the
inter-class variance and decreasing the intra-class variance.

The basic architecture of the buffalo-l model follows the following broad pathways:

1. Preprocessing: The supplied image is preprocessed in order to align the face
and change its size and aspect ratio. This preprocessing phase is essential
for ensuring that the network can efficiently process the picture and extract
pertinent information.

2. Convolutional Layers: Following preprocessing, the input picture is passed
into the first convolutional layer of the Buffalo model. This layer applies filters
to the input picture to extract characteristics and identify patterns. The layer’s
output is subsequently transmitted to the subsequent layer.

3. Depthwise Separable Convolution Layers: Next, a sequence of depth-wise
separable convolutional layers are applied to the output of the convolutional
layer. In these layers, a single filter is applied to each input channel, allowing
the network to more effectively process the data. The outputs of these layers
are then mixed using pointwise convolution to produce a single output.

4. Inverted Residual Layers: The output is processed by a sequence of inverted
residual layers after the depthwise separable convolution layers. In these layers,
the input is changed using a succession of 1x1 and 3x3 convolutions before being
recombined with the original inputs. This enables the network to effectively
discover both basic and complicated data modifications.

9

5. Auxiliary Branch: The final network block has an auxiliary branch. The
auxiliary branch comprises a sequence of layers that are trained concurrently
with the primary network. The final forecast is formed by combining the output
from the auxiliary branch with that of the main network. [15] [17]

10

Chapter 3

Introducing vidiQulus

vidiQulus is a state-of-the-art video surveillance app that can be used to search among
CCTV images. It is a highly versatile visual search engine that is capable of tracking
people by location and time.

It analyses CCTV video feed in real-time and displays the results in a user-friendly
web application.

vidiQulus interface enables an user to search and narrow down their searches in any
video by mainly three components: what, where, and when.

These components are described as below:

• What : Users may like to filter out results by just providing the object name
and retrieving any images containing the relevant item.

• Where : Users may request all images in which the term ”person” appears in
a balcony, canteen, or other specific location, i.e., filtering results by location.

• When : Users may also wish to restrict search results to a specific time pe-
riod. For example, someone may want to search for images containing the word
”handbag” between 12 noon on July 27 and 8 a.m. on July 28 i.e., filtering
results by time.

3.1 Motivation

In recent years, security has been a growing priority for both individuals and busi-
nesses. There is a need for efficient and effective surveillance systems that can moni-
tor and protect public spaces in light of the growth in crime rates and security risks.
Conventional surveillance systems have limited capabilities and rely significantly on

11

human monitoring, which can be costly, error-prone, and time-consuming.

To solve these issues, there is a rising interest in building AI-based surveillance
systems that can automate the monitoring and analysis of live video feeds. With
sophisticated algorithms, such systems can detect, track, and identify humans and
objects, even misplaced items. Particularly, facial recognition technology has evolved
as a potent tool for identifying and tracking persons, making it an integral feature of
contemporary surveillance programs.

By incorporating face recognition technology based on artificial intelligence into surveil-
lance systems, it is not only possible to identify individuals, but also to recover lost
objects and monitor suspicious behavior.

Developing an AI-based surveillance system using facial recognition technology can
be a cost-effective and efficient means of increasing public space security and safety.
By automating the monitoring and analysis of video feeds, this technology can free up
important human resources and enable security staff to respond to possible threats
with greater speed and efficiency. In addition, the system can provide useful insights
into behavioral patterns, enabling enterprises to improve their security procedures
and enhance public safety.

To solve these challenges, an idea sprung up in Coriolis Technologies to create a
surveillance system that would use state-of-the-art facial recognition algorithms com-
bined with high-end infrastructure that is capable of recognising and tracking people.

3.2 Uses

vidiQulus can be used for various purposes including:

3.2.1 Lost Item Retrieval

Losing belongings such as phones, wallets, keys, or equipment may be a stressful
experience, resulting in time-consuming searches and, on occasion, expensive replace-
ments.

vidiQulus aims to provide a solution to this issue and has the potential to save valu-
able employers time and effort while searching for misplaced items.

vidiQulus combines object detection and face recognition to rapidly locate your miss-
ing item.

For instance-

12

If Ishita loses her laptop in the office around 2:00 PM, we may utilise the vidiQulus
interface to search for both ”Ishita” and ”Laptop” between 1:30 PM and 3:30 PM.
This will help us determine where Ishita was last seen with her laptop, thereby expe-
diting our search for Ishita’s laptop.

Individuals and businesses alike can use vidiQulus’s simple, customisable user in-
terface for all of these.

.

3.2.2 Enhanced emergency response

To improve workplace safety, vidiQulus can also be integrated with emergency re-
sponse systems. Every second matters in an emergency, such as a fire or a stroke
victim collapsing.

By integrating real-time monitoring and automatic alerting, vidiQulus enables se-
curity professionals and emergency services to respond to emergency situations more
quickly and efficiently.

vidiQulus is capable of monitoring live video feeds from CCTV cameras and sen-
sors in order to detect possible emergencies in real time. Using machine learning
techniques, vidiQulus can learn to spot trends in surveillance data that may signify
an emergency. When it detects an emergency, it can automatically notify the emer-
gency services.

By implementing vidiQulus, offices can drastically shorten response times and boost
the likelihood of a successful conclusion.

3.2.3 Enhanced Biometric systems

As office security becomes a primary priority for businesses, many are resorting to
cutting-edge technologies such as surveillance AI systems with facial biometric capa-
bilities to safeguard their assets and employees. vidiQulus can also be combined with
a facial biometric system to enhance office security.

vidiQulus can monitor live video feeds from the facial biometric scanning camera,
and when it recognises an office employee, it can immediately unlock the door and
let the employee in.

vidiQulus can save organisations the cost of employing security guards or provid-
ing access cards to every employee by using an automated system to perform these
tasks.

13

14

Chapter 4

Facial recognition Algorithm

Person recognition is one of the most significant features of our surveillance software.
We can accomplish this in two ways:

• Recognising by Face(Facial recognition)

• Recognition by whole body(Person Re-identification)

We have tried to implement both features in our software.

The results of our facial recognition algorithm are discussed in this section.

We also tried recognition by entire body but weren’t able to achieve significant re-
sults with the Person Re-identification algorithms. The results and algorithms are
discussed in Appendix A.

4.1 Challenges faced with small faces

We noticed that the faces that are present in our CCTV images are very small, which
creates problems for many types of facial recognition due to the following reasons:

• Poor Image Quality : One of the most difficult aspects of recognizing small
faces is that the photos captured by cameras are frequently of poor quality, with
low resolution and poor illumination. This can make it challenging for facial
recognition algorithms to detect and identify faces with precision.

• Limited Facial Feature : Small faces contain fewer facial characteristics,
making it difficult for face recognition systems to differentiate between persons.
With fewer features to work with, the algorithm may have difficulty distinguish-
ing between individuals, resulting in a decrease in accuracy.

15

• Limited Training Data : Most of the face recognition algorithms are trained
on large datasets of facial images; however, these datasets may not contain
sufficient examples of small faces. This can result in decreased accuracy while
attempting to identify little faces.

• Occlusion : Accessories such as hats, spectacles, and masks are more likely to
partially conceal small faces. This can hinder the algorithm’s ability to detect
and recognize the face effectively.

• Pose Variations : Small faces are more likely to display fluctuations in position
and orientation, making it challenging for the algorithm to precisely match the
face with the reference image. [18]

4.2 How Insightface solves these problems

We tried various algorithms before settling on Insightface as our preferred choice of
facial recognition algorithm. Insightface solves the problem of small faces recognition
due to the following reasons:

• Advanced Facial Feature Extraction : Insightface employs various sub-
networks for extraction of facial traits, including both global and local charac-
teristics. This improves the accuracy by capturing a greater variety of facial
features, even in small faces.

• Robust Image Enhancement and Normalization : Insightface uses ad-
vanced image enhancement and normalisation techniques, such as histogram
equalization and adaptive contrast enhancement, to improve the quality of pho-
tos, especially those with poor lighting circumstances.

• Large-Scale Datasets : Insightface is trained using massive datasets compris-
ing a wide variety of faces, including several small faces. This ensures that the
system can effectively recognize faces in a variety of sizes and variants.

• Occlusion handling : Insightface integrates strategies for addressing occlu-
sion, including the use of attention mechanisms to focus on the viewable regions
of the face and the use of robust feature representations that are less influenced
by occlusion.

• Pose-Invariant Features : Insightface employs posture-invariant character-
istics, which are less impacted by fluctuations in position and orientation, to
increase accuracy in the recognition of small faces that may display pose varia-
tions.

Insightface has been optimized for high-performance computing, making it possible to
process large volumes of images quickly and efficiently, even on resource-constrained

16

systems. This enabled us to create a highly scalable facial recognition algorithm that
also achieves high performance, capable of processing 15 frames per second that is
capable of detecting faces that are as small as in the range of 30 x 30 cm to 18 x 18
cm. [17]

4.3 Pipeline

This section describes the pipeline that we used for our facial recognition algorithm.

Figure 4.1: Face recognition pipeline

1. Input image: First, we take the input image for which we want to identify the
person in that image.

2. Embeddings generation: We take the input image and pass it to the Buffalo-
l model of Insightface. If it detects a person, we take embeddings of the face of
the person recognised in that image. Let’s call it I⃗

3. Similarity search in Opensearch: We have a database of images stored
inside Opensearch. Each of these images has the embeddings of different people
tagged to them with the name of that person. Let’s call one of the mebddings
as O⃗.

4. Getting the image with the best score: We calculate the similarity score
between I⃗ and O⃗ for each of the O⃗ vectors present in the database. We obtain
the image in the database that has the highest similarity score.

5. Recognising image: We take the name tag of the image that has the highest
similarity score, let’s say X and say that the recognised face in the input image
is X.

4.4 Preparing the Database of images

1. We scanned through multiple images from the CCTV cameras and identified the
”best” images from those images for each person. By ”best”, we mean images
in which a person is clearly visible and is identifiable by eyes.

17

2. We collected various such images for many of the Coriolis employees and pre-
pared a database of images that can be used for face recognition.

3. We stored the embeddings of all those images along with the name of the person
in Opensearch.

4.5 Using the database to recognise faces

Suppose we have an image that has a face in it. We use Insightface to generate em-
beddings for that face, let’s call it I⃗.

We also have the embeddings of each image in the database, let’s call them D⃗i,
where i represents each image in the database.

We then calculate the cosine similarity between those 2 vectors using the formula:

cos(θ) =
I ·Di

∥I∥∥Di∥
(4.1)

Then we transform it using the following equation to get the distance function
value, let’s call X:

X =
1

1 + cos(θ)
(4.2)

We calculate Xi for each of images in the database and display the results in de-
scending order of values of X.

We take the highest value of Xi, let’s say it is Xm.

We then look for the name that was associated with Dm, suppose that the name
associated with Dm is Ishita.

So, we would conclude that the face in the input image is that of Ishita. We also call
Xm as the ”confidence” with which the person is recognised in the image.

The algorithm described earlier is dependent on the number of people in the database
of images. If it detects a new face that is not the database, it should display ”Un-
known”.

18

To achieve that, we have to put a threshold, let’s say K. If Xm ¡ K, we would say that
the person recognised in the image is ”Unknown”.

4.6 Testing the model

To test the accuracy of our model, we generated a test data. We also used the test
data to determine the threshold score below which we will say that the recognised
person is ”Unknown”.

We curated a list of 181 images to test our algorithm. In all those images, we manu-
ally identified each person in all those photos. We will call all these names ”correct
names”.

Then we used Insightface and the algorithm that was described earlier to identify
the person in that image. We call these ”recognised name”. We also calculate the
”confidence” score of detection.

Let’s define 2 terms that will be useful for our analysis further percent of detection
and percent of true positives.

Number of recognised images(D)

All the images that had a confidence score greater than the threshold are labeled
as recognised image.

Number of true positives(T)

Among all the recognised images, the images that satisfied the condition ”correct
name”=”recognised name”, are labeled as True positive image.

19

We define percent of detection(PD) and percent of true positives(PT) as:

PD =
D

X
∗ 100 (4.3)

PT =
T

D
∗ 100 (4.4)

where X stands for the total number of images.

We calculated percent of detection and percent of true positives for differ-
ent values of threshold and obtained the results.

4.6.1 Experiments with different distance functions and KNN
algorithms

Our first experiment involved trying out different distance functions and different
KNN algorithms to find the best combination of distance function and KNN algo-
rithm, and also the best threshold value.

We tried with different distance functions, namely:

1. cosine similarity.

2. L2 distance function

3. Minkowski distance function with p=3

The formula for each of the loss function are given below:
Cosine similarity distance function

cosine similarity(u,v) =
u · v
|u||v|

where u and v are two vectors, · denotes the dot product between them, and | · |
denotes the Euclidean norm of a vector.

L2 distance function

L2 distance =

√√√√ n∑
i=1

(xi − yi)2

20

where xi and yi are the i-th elements of vectors x and y, respectively, and n is the
dimensionality of the vectors.

Minkowski distance function

DM(p,q) =

(
n∑

i=1

|pi − qi|r
)1/r

.

where u and v are two vectors and r is a parameter. We have used r=3 for our
analysis.

We also tried to compare if the approximate KNN search that we are using in
Opensearch (HNSW) any different from the exact KNN search, so we also performed
exact KNN search using sklearn python library. Both of the KNN methods are de-
scribed in Appendix B.

All the cases that we have tried is mentioned in the following table:

Case number Loss function KNN algorithm used
Case 1 cosine similarity Approximate(Opensearch)
Case 2 cosine similarity Exact(SKlearn)
Case 3 L2 similarity Approximate(Opensearch)
Case 4 L2 similarity Exact(SKlearn)
Case 5 minkowski p=3 Approximate(Opensearch)

Table 4.1: All possible configurations tried with different loss functions and KNN algorithms

Below I present the results of all the cases.

4.6.1.1 Case 1

Threshold Number of Recognitions Number of True positives
0.55 118 95
0.56 118 95
0.57 113 93
0.58 106 88
0.59 94 83
0.6 85 78
0.61 76 71
0.62 66 62
0.63 60 58
0.64 47 45
0.65 35 34

Table 4.2: Number of images recognised and number of true positives recognised for various thresholds.

21

(a) Number of images recognised and number of true positives recognised for various thresholds.

(b) Percent of images recognised and percent of true positives recognised for various thresholds.

Figure 4.2: Results for Case 1

22

4.6.1.2 Case 2

Threshold Number of Recognitions Number of True positives
0.05 120 107
0.1 120 107
0.15 120 107
0.2 120 107
0.25 116 107
0.3 105 101
0.35 90 89
0.4 75 74
0.45 50 50
0.5 27 27
0.55 18 18

Table 4.3: Number of images recognised and number of true positives recognised for various thresholds.

23

(a) Number of images recognised and number of true positives recognised for various thresholds.

(b) Percent of images recognised and percent of true positives recognised for various thresholds.

Figure 4.3: Results for Case 2

24

4.6.1.3 Case 3

Threshold Number of Recognitions Number of True positives
0.001 120 94
0.0011 120 94
0.0012 120 94
0.0013 120 94
0.0014 117 93
0.0015 113 91
0.0016 104 83
0.0017 91 73
0.0018 76 63
0.0019 62 52
0.002 54 45
0.0021 48 39
0.0022 39 32
0.0023 33 26
0.0024 29 23
0.0025 26 21
0.0026 22 20
0.0027 18 16
0.0028 17 15
0.0029 15 14
0.003 15 14
0.0031 12 12
0.0032 11 11
0.0033 11 11
0.0034 11 11
0.0035 11 11
0.0036 11 11
0.0037 10 10
0.0038 10 10
0.0039 10 10
0.004 10 10

Table 4.4: Number of images recognised and number of true positives recognised for various thresholds.

25

(a) Number of images recognised and number of true positives recognised for various thresholds.

(b) Percent of images recognised and percent of true positives recognised for various thresholds.

Figure 4.4: Results for Case 3

26

4.6.1.4 Case 4

Threshold Number of Recognitions Number of True positives
10 118 92
11 115 89
12 115 89
13 114 88
14 113 87
15 111 85
16 110 84
17 109 83
18 106 81
19 103 79
20 94 73
21 86 67
22 69 52
23 55 40
24 34 24
25 16 11

Table 4.5: Number of images recognised and number of true positives recognised for various thresholds.

27

(a) Number of images recognised and number of true positives recognised for various thresholds.

(b) Percent of images recognised and percent of true positives recognised for various thresholds.

Figure 4.5: Results for Case 4

28

4.6.1.5 Case 5

Threshold Number of Recognitions Number of True positives
0 120 94
1 120 94
2 120 94
3 120 94
4 118 92
5 115 89
6 113 87
7 109 83
8 101 77
9 71 54
10 29 21
11 3 2

Table 4.6: Number of images recognised and number of true positives recognised for various thresholds.

29

(a) Number of images recognised and number of true positives recognised for various thresholds.

(b) Percent of images recognised and percent of true positives recognised for various thresholds.

Figure 4.6: Results for Case 5

30

4.6.2 Discussions

In all these cases, we can see that as the threshold is increased, the number and per-
cent of detection keep decreasing as with a higher threshold, the number of images
that will be recognised with a confidence greater than the threshold will be decreased.

We also noticed that the number of true positives decreased with increasing threshold,
in line with its definition. However, the percent of true positives kept on increasing
with an increasing threshold as the number of low confidence recognitions kept on
decreasing and the number of true positives kept on decreasing.

From these experiments, we concluded that the best performing combination was
when the distance function was cosine similarity paired with the approx KNN method
by Opensearch.(Case 1)

We rejected cases 2 and 4 because they gave almost the same results but took much
longer to process (approx 10 times more). We rejected case 3 and case 5 as the per-
cent of true positives was less than in case 1.

We also decided on a threshold of 0.57 for our algorithm, as it wasn’t leaving a lot of
images unrecognised but was also making a reasonable amount of correct predictions.

4.6.3 Varation of K

In a K-nearest neighbors (KNN) search, K refers to the number of nearest neighbors
that will be used to make a prediction for a new data point. For example, if K=3,
then the algorithm will consider the 3 closest points to the new data point and make
a prediction based on the labels of those 3 points.

We wanted to see if the variation of K had any effect on our result or not. To check
that, we varied the values of K keeping all other variables the same with thresh-
old=0.57.

Here are the results:

Threshold Number of Recognitions Number of True positives
1 116 107
5 116 107
10 116 107
15 116 107
20 116 107
25 116 107
30 116 107
1000 116 107

Table 4.7: Number of images recognised and number of true positives recognised for various values of k.

31

From the above table, we can clearly see that the number of images recognised and
the number of true positives doesn’t change with changing values of k. So, from our
experiments, we can conclude that the hyperparameter k in our model doesn’t affect
the results.

4.6.4 Variation of size

Size in our model refers to the number of images that OPensearch pulls from its KNN
search. More is the size, more is the number of images that are pulled. Out of all
those images, we take the one with the highest score and call that the recognised
image.

We wanted to see if the variation of size had any effect on our result or not. To
check that, we varied the values of size while keeping all other variables the same
with threshold=0.57.

Here are the results:

Threshold Number of Recognitions Number of True positives
1 116 107
5 116 107
10 116 107
15 116 107
20 116 107
25 116 107
30 116 107
1000 116 107

Table 4.8: Number of images recognised and number of true positives recognised for various values of size.

From the above table, we can clearly see that the number of images recognised
and the number of true positives don’t change with changing values of size. So, from
our experiments, we can conclude that the hyperparameter size in our model doesn’t
affect the results.

4.6.5 Increasing the number of images in the database

One of the experiments also involved increasing the number of images in the database
from 168 to 417.

The hypothesis that we wanted to check was whether increasing the number of images
improves the accuracy of the face recognition model.

32

We tested both databases on the same test dataset, which consisted of 161 images
that were curated by me and tagged with names. Here are the results:

33

34

4.6.5.1 Comparison of both versions of dataset

(a) Version 1 of database

(b) Version 2 of database.

Figure 4.7: Number of images recognised and number of true positives recognised for
various thresholds for version 1 vs version 2 of database

35

(a) Version 1 of database

(b) Version 2 of database.

Figure 4.8: Percent of images recognised and percent of true positives recognised for
various thresholds for version 1 vs version 2 of database

36

4.6.6 Discussions

From the above 2 experiments, it was clear that increasing the number of images in the
database does indeed lead to a significant increase in the accuracy of recognitions.
So, it supports our initial hypothesis that increasing the number of images in the
database will lead to a better result in face recognition.

4.7 Deploying the model

After rigorously testing the model, we determined that it was ready to be deployed in
our production cluster. So we had to translate our models to be capable of running
on Spark. We made those changes and deployed them on the production cluster. The
code was successfully deployed, and the UI was successfully able to display the images
with a bounding box on the persons faces with a name tag attached to it.

37

38

Chapter 5

Infra changes

5.1 Automating the creation of the Kubernetes
cluster

As discussed in the architecture section, our entire cluster is built on the backbone
of Kubernetes. Setting up a Kubernetes cluster is a very time-consuming and tricky
process. So, to avoid any future troubles with this and to ensure that the Kubernetes
cluster can be created without any trouble with just a few simple commands.

5.1.1 What is Ansible?

Ansible is an open-source automation tool for configuration management, application
deployment, and job automation. Michael DeHaan built it in 2012, and Red Hat
acquired it in 2015. Ansible defines a set of actions that should be run on distant
machines using a simple YAML syntax called ”playbooks.” [19]

39

5.1.2 Ansible architecture

Figure 5.1: Ansible architecture taken from [20]

The Ansible orchestration engine interacts with a user who is writing the Ansible
playbook to execute the Ansible orchestration and interact with the services of a pri-
vate or public cloud and a configuration management database.

The Ansible architecture operates as follows:

• Control Machine : Ansible is installed on a control machine, which is used
to manage the remote hosts. The control machine runs the Ansible playbooks
and executes tasks on the remote hosts

• Inventory: The inventory is a configuration file containing a list of remote
hosts that Ansible will manage. The control machine uses the inventory file to
determine which hosts to connect to and which tasks to conduct.

• Playbooks: Playbooks are YAML files that define the tasks that Ansible will
run on remote systems. Playbooks are comprised of one or more plays, each of
which contains a list of actions to be carried out by a certain set of hosts.

• SSH: Ansible uses SSH to connect to and execute tasks on remote servers.
Ansible may be configured to use a variety of SSH settings, including SSH keys,
usernames, and passwords.

• Execution: Ansible conducts tasks in parallel on distant computers, making
it quick and effective.

Ansible’s design is based on a client-server model. Ansible does not require the
installation of agents on client machines, which means it can communicate with other
host machines, setup ansible engine in those host machines and execute the commands
on those host machines. This makes Ansible portable and simple to use.

40

5.1.3 How Ansible saved time?

As said earlier, deploying a Kubernetes cluster is a repetitive and time-consuming
process. So, to automate the process of this repetitive and time-consuming process,
we have developed ansible playbooks, which will create a Kubernetes cluster by exe-
cuting the ansible playbooks with a few simple commands.

Since Ansible is lightweight, it also does the job very fast and creates the kuber-
netes within 15 minutes, which earlier took around 3 hours to create.

5.2 Changing from Elasticsearch to opensearch

A large part of our infrastructure involves taking the embeddings of an input image
and doing a similarity search. So, we needed a software that can perform the similarity
search in a fast and accurate manner. This is where elasticsearch came into picture.

5.2.1 What is Elasticsearch?

Elasticsearch is a distributed search and analytics engine built to process massive
volumes of data in near real-time. It is built on the Apache Lucene search library and
offers a scalable, flexible, and reliable platform for searching, indexing, and analyzing
data.

Elasticsearch employs a distributed design that enables the indexing and searching
of data over numerous nodes in a cluster, enabling high availability, fault tolerance,
and scalability. It can index and search data in a variety of formats, such as JSON,
text, geographical data, and structured data.

Elasticsearch’s robust search capabilities, which include full-text search, aggregations,
filters, and sorting, are one of its defining characteristics. Furthermore, fuzzy match-
ing, proximity search, and partial matching are supported.

Elasticsearch’s RESTful API and support for many programming languages facil-
itate integration with a wide variety of applications and systems. In addition, it
contains numerous built-in tools and plugins for data visualization, data ingestion,
security, monitoring, and administration.

Overall, Elasticsearch is a highly powerful search and analytics engine that can assist
enterprises in searching, indexing, and analyzing enormous volumes of data rapidly
and efficiently. It is a popular option for a variety of applications and use cases, includ-
ing e-commerce, log analysis, security analytics, and more, thanks to its distributed
design, sophisticated search capabilities, and extensive feature set.

41

5.2.2 Problems with using Elasticsearch

Before, we used Elasticsearch as our software for choice for querying data for UI.

But we noticed 3 distinct problems during our course of our internship:

• Persistent storage : A major problem that we faced was that the data that
elasticsearch stored, i.e., embeddings and other metadata of all the images, were
deleted everytime elasticsearch stopped working.

• Slow loading time of UI: During the course of our project, we noticed that
elasticsearch was loading data in a slow way taking around 2-3 minutes to load
a full day’s data.

So, to solve these 2 crucial issues we moved to Opensearch. Also, combined with
the fact that the similarity search feature in Elasticsearch was paid and in Opensearch
was free prompted us to move to Opensearch.

5.2.3 What is opensearch?

OpenSearch is an open-source, distributed search and analytics engine meant to pro-
vide a platform for indexing, searching, and analyzing data that is quick, scalable,
and customizable. AWS just forked Elasticsearch, and a group of developers and
contributors are currently developing and maintaining it.

OpenSearch, like Elasticsearch, is based on the Apache Lucene search framework
and supports a variety of data kinds and formats, such as JSON, text, geographical
data, and structured data. It employs a distributed design that enables data to be
indexed and searched across several nodes in a cluster, hence delivering high avail-
ability, fault tolerance, and scalability.

OpenSearch provides many of the same fundamental features and capabilities as Elas-
ticsearch, including full-text search, aggregations, filters, and sorting. In addition, it
contains extra functionality not found in Elasticsearch, including anomaly detection
and index state management.

It also provides similarity search free of cost.

5.2.4 Changes observed

• Persistent storage : Introducing opensearch solved our problem of persistent
storage. Opensearch has been stopped multiple times but it has always been
reinstated.

42

• Slow loading time of UI: The loading time of all day’s data was reduced
from 2-3 mins to 1 min.

43

44

Chapter 6

Spark changes: Making processing
images faster

6.1 What is Apache spark?

Apache Spark is an open-source, distributed computing system built for analysing
massive amounts of data. It can quickly handle very large data sets and distribute
data processing tasks across several computers, either alone or in conjunction with
other distributed computing technologies.

Spark was developed by AMPLab at U.C. Berkeley in 2009. From its humble origins,
it has become one of the key big data distributed processing frameworks in the world.
[5]

It achieved this phenomenal growth on the backbone of its 4 key design principles:

• Speed : Spark’s internal implementation is optimized to take advantage of
the hardware industry’s improvements in CPU and memory performance, and
its physical execution engine, Tungsten, uses whole-stage code generation to
generate compact code for execution. This makes Spark hugely fast with a
huge performance boost.

• Ease of Use : Spark provides a simple programming model for building big
data applications in familiar languages.

• Modularity : Spark offers unified libraries with well-documented APIs to cre-
ate a unified processing engine for workloads.

• Extensibility : Spark is a fast, parallel computation engine that decouples
storage and compute, allowing it to read data from multiple sources and process
it in memory.

45

6.2 Spark architecture

A Spark system is comprised of a number of independent machines working cooper-
atively towards a shared objective. Spark’s architecture is based on the master-slave
model.

To make the entire cluster working, we need to have a machine which manages the
cluster as a whole. That machine is called the Driver Node.

6.2.1 Driver Node

The Spark driver is used to orchestrate the whole Spark cluster. It manages how work
is spread across the cluster and which computers are available for the duration of the
cluster’s existence and ensures the distribution and smooth running of all spark jobs.

The driver node is similar to any other computer in the cluster. It contains hardware
like as a CPU, memory, DISKs, and a cache; however, these components are employed
to host the Spark Program and control the cluster as a whole. The driver is the user’s
connection to the physical computing necessary to finish any job submitted to the
cluster.

All the machines inside the spark cluster requires JVM(Java Virtual Machine) to
be running inside the machines. JVM is responsible for managing memory, garbage
collection, and other low-level system resources necessary for executing the Spark
application.

This JVM is utilised by the Spark Program to build the SparkContext, serves as
the entry point for all Spark applications and coordinates the execution of tasks
throughout the cluster.

The driver contains various components which are responsible for translating user
code into Spark jobs which are to be executed on the cluster.

6.2.2 Cluster Manager

The driver node conceals the cluster manager, which is responsible for procuring
Spark cluster resourcess, such as CPU and memory and allocating them to Spark
jobs. Additionally, the cluster manager is responsible for initiating and stopping ex-
ecutors as required and controlling the cluster’s overall health.

46

6.2.3 Worker Node

A worker node in Apache Spark is a machine in a cluster that executes one or more
Spark executors. The responsibility of worker nodes is to execute the tasks given to
them by the driver and return the results to the driver. [21]

6.3 UDFs

Spark’s UDFs allow developers to design their own functions that may be used in
Spark SQL queries and DataFrame manipulations. A UDF is a function that accepts
several inputs and returns one output.

When a Spark UDF is registered, it becomes accessible to all Spark sessions run-
ning on the same cluster. This means that UDFs can be shared across many apps
and reused in various codebase components.

Spark implements UDFs internally as distributed functions that are executed through-
out the cluster. Spark serialises the called UDF and transmits it to the worker nodes
responsible for data processing when a UDF is invoked. Thereafter, the UDF is exe-
cuted on the worker nodes and the results are delivered to the driver node.

In short, Spark’s UDFs are a powerful tool for extending Spark’s functionality and
constructing unique data processing pipelines that can handle a broad variety of use
cases.

6.3.1 Pandas UDFs

The class of UDFs that were used before I joined in Coriolis was Pandas UDFs.

Pandas UDFs, also known as Vectorized UDFs, are a method for applying Python
code that use Pandas functions to Spark DataFrames. Pandas UDFs allow users
to conduct complex data operations on huge datasets in a distributed manner using
Spark.

Fundamentally, Pandas UDFs in Spark operate by partitioning input data and ap-
plying the UDF to each partition. This allows the UDF to be executed in parallel
across the cluster, making it far faster than standard row-based UDFs.

Pandas UDFs work in the same manner as regular UDFs but because of using pandas
under the hood technology of handling large datasets, it can perform computations
in a much faster way.

47

My job was to move away from pandas UDF based approach to a RDD based
approach.

6.4 RDD

In Apache Spark, RDD stands for Resilient Distributed Dataset. RDD is Spark’s core
data structure that is used to represent a cluster-wide distributed collection of data.

RDDs are durable, so if a node in the cluster fails, Spark can retrieve the miss-
ing data by recomputation from the original source. This makes RDDs perfect for
fault-tolerant processing of large-scale data.

Additionally, RDDs are meant to be cacheable, meaning they may be cached in
memory for quick access. This allows RDDs to be reused throughout several stages
of a Spark application, enhancing speed by minimising the number of times identical
data must be recomputed.

In Spark all transformations are lazy, meaning that they do not immediately calcu-
late their outcomes. Spark instead retains the alterations made to a base dataset (e.g.
a file). Only when an action requires a result to be returned to the driver program
are the transformations computed.

By default, each modified RDD is recomputed whenever an operation is performed on
it. As can be seen from the above figure. RDDs can be retained in memory using the
persist (or cache) technique and Spark will keep the elements on the cluster for con-
siderably faster access on the next query. This creates extremely fast computations.
[22]

48

6.5 Algorithm used

Figure 6.1: Algorithm used for implementing RDD method

The first step of the algorithms involve generating a sparkContext in the driver node.

Once the sparkContext is generated, we read the data from Kafka topic which stores
all the data from the cameras in the form a streaming dataset.

We filter out the necessary information from the streaming dataframe.

We then pass this Dataframe into a transform function. The transform function
takes each row of the dataframe. It extracts all the key columns of each of these rows.

One of those columns include the path of the image. We use the image to apply
the insightface model on that image. If it detects any face we generate the embed-
dings and the coordinates of the faces in that image.

We use the embeddinsg and the face recognition algorithm that we develped ear-
lier to recognise the persons in that image and the confidence with which the persons
are detected.

We then put all the data into a json format and save that json in a disk and push the
data to a Kafka topic to be used for further processing.

49

6.6 Benefits of using the RDD based approach

The pandas UDF based approach was using a for loop to loop over all the columns
in the row. The for loop is a very time consuming algorithm and the introduction of
the RDD based approach completely eliminated the need of the for loop making it a
much faster process.

The RDD is also a much faster was to apply transformations as described in the
earlier section.

All these lead to a tremendous boost in the performance of the algorithm. The
previous UDF based approach was processing at an speed of 15 frames per second.
Our RDD based approach increased the speed of the computation to 24 frames per
second.

50

Chapter 7

Conclusions

In conclusion, we have made a prototype of an AI surveillance system that can serve
the following purposes:

• Detect people by their whole body and face and display them in a comprehensive
UI.

• Recognise people’s faces and display the name above the bounding box.

• Search by people’s face embeddings.

• Search by people’s names and show them in descending order of time.

We have used Insightface models to generate the embeddings of the detected faces.

We also developed a face recognition algorithm using the embeddings given by the
insightface model. The algorithm detects faces with an accuracy of 75% accuracy on
a carefully curated test dataset.

We have also transformed all the codes for use in the Spark environment and de-
ployed the codes in the production environment.

The UI has been made more fast and responsive thanks to transferring from Elastic-
search to Opensearch.

We have also made the entire system more scalable, which is capable of handling
6̃0 million images per day.

By installing Opensearch, we have ensured that the entire system is fault tolerant
and in the event of failures, there is no loss of data.

We have also increased the processing speed of the spark codes by changing from

51

a UDF based approach to a RDD based approach, and it increased the processing
speed from 15 frames per second to 24 frames per second.

52

Chapter 8

Further work

• Less accuracy of face recognition: The accuracy of the face recognition
algorithm that have been developed, and currently has an accuracy of 75%
on a carefully curated dataset, which is probably less when we use it on real-
time images. So, we have found ways to improve the algorithm, some possible
changes that can be implemented include increasing the number of images in
the dataset, changing the models that generate the embeddings, improving the
KNN search algorithm in opensearch.

• Implementing the improved Spark RDD code: We have implemented
some modifications to the Spark code that does all the processing in our clus-
ter. We have changed from a UDF based approach to a RDD based approach.
Currently, the code is saving all the RDD dataframes on our disk, so after a
certain point in time the disk space in the machine is overloaded, resulting in
the machine going down. So we have to find a way to delete the data frames
so that code keeps on running, and we can implement that in the production
system.

• Recognition by entire body: We wanted to implement recognition by the
entire body, but we haven’t found an algorithm that generates embedding that
is able to recognise a person by those embeddings. So we have to find a model
that is capable of recognising a person by its body embeddings accurately. We
can also try to use a training dataset to train our models instead of using pre-
trained models.

• Make the UI more fast and responsive: Currently, the UI is lagging and
the responses take a lot of time to appear. So we have to make the UI much
more fast and responsive.

53

54

References

1. Turnbull, J. The Docker Book (2016).

2. Poulton, N. The Kubernetes Book (2017). http://leanpub.com/thekubernetesbook.

3. Narkhede, N., Shapira, G. & Palino, T. The Defi nitive Guide REALLTIME
DATA AND STREAM PROCESSING AT SCALE ().

4. Spark Architecture https://www.javatpoint.com/apache-spark-architecture.

5. Chambers, B. (A. & Zaharia, M. Spark : the definitive guide : big data processing
made simple 576. isbn: 9781491912218 ().

6. Gormley, C. & Tong, Z. Elasticsearch the definitive guide : a distributed real-time
search and analytics engine isbn: 9781449358549 ().

7. Et. al, J. G. InsightFace: 2D and 3D Face Analysis Project https://github.
com/deepinsight/insightface. 2021.

8. Guo, J., Deng, J., Lattas, A. & Zafeiriou, S. Sample and Computation Redistri-
bution for Efficient Face Detection. arXiv preprint arXiv:2105.04714 (2021).

9. An, X. et al. Partial FC: Training 10 Million Identities on a Single Machine in
Arxiv 2010.05222 (2020).

10. Deng, J., Guo, J., Liu, T., Gong, M. & Zafeiriou, S. Sub-center ArcFace: Boosting
Face Recognition by Large-scale Noisy Web Faces in Proceedings of the IEEE
Conference on European Conference on Computer Vision (2020).

11. Deng, J., Guo, J., Ververas, E., Kotsia, I. & Zafeiriou, S. RetinaFace: Single-Shot
Multi-Level Face Localisation in the Wild in CVPR (2020).

12. Guo, J., Deng, J., Xue, N. & Zafeiriou, S. Stacked Dense U-Nets with Dual
Transformers for Robust Face Alignment in BMVC (2018).

13. Deng, J. et al. The Menpo benchmark for multi-pose 2D and 3D facial landmark
localisation and tracking. IJCV (2018).

14. Deng, J., Guo, J., Niannan, X. & Zafeiriou, S. ArcFace: Additive Angular Margin
Loss for Deep Face Recognition in CVPR (2019).

15. Howard, A. et al. Searching for MobileNetV3.

16. Deng, J. et al. ArcFace: Additive Angular Margin Loss for Deep Face Recogni-
tion.

17. Miao, Y., Lattas, A., Deng, J., Han, J. & Zafeiriou, S. Physically-Based Face
Rendering for NIR-VIS Face Recognition. https://github.com/deepinsight/
insightface/tree/master/recognition.

55

http://leanpub.com/thekubernetesbook
https://www.javatpoint.com/apache-spark-architecture
https://github.com/deepinsight/insightface
https://github.com/deepinsight/insightface
https://github.com/deepinsight/insightface/tree/master/recognition
https://github.com/deepinsight/insightface/tree/master/recognition

18. Solomon, M. M., Meena, M. S., Kaur, J., Student, M. T. & Professor, A. CHAL-
LENGES IN FACE RECOGNITION SYSTEMS. 6. http://ijrar.com/.

19. Geerling, J. Ansible for DevOps Server and configuration management for hu-
mans isbn: 978-0-9863934-0-2. http://leanpub.com/ansible-for-devops
(2014).

20. Spark Architecture https://www.ecanarys.com/Blogs/ArticleID/401/The-
Ansible-Architecture.

21. Zaharia, M. et al. This open source computing framework unifies streaming,
batch, and interactive big data workloads to unlock new applications. COM-
MUNICATIONS OF THE ACM 59 (11 2016).

22. Zaharia, M. et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction
for In-Memory Cluster Computing.

23. Wang, C.-Y., Bochkovskiy, A. & Liao, H.-Y. M. YOLOv7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors.

24. Yolov5 Github https://github.com/ultralytics/yolov5.

25. Efficientnet Github https://github.com/qubvel/efficientnet.

26. Tan, M. & Le, Q. V. EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks. 36th International Conference on Machine Learning, ICML
2019 2019-June, 10691–10700. https : / / arxiv . org / abs / 1905 . 11946v5
(May 2019).

27. OSnet Github https://github.com/KaiyangZhou/deep-person-reid.

28. Zhou, K., Yang, Y., Cavallaro, A. & Xiang, T. Omni-Scale Feature Learning for
Person Re-Identification. Proceedings of the IEEE International Conference on
Computer Vision 2019-October, 3701–3711. issn: 15505499. https://arxiv.
org/abs/1905.00953v6 (May 2019).

29. Guo, G., Wang, H., Bell, D., Bi, Y. & Greer, K. KNN model-based approach
in classification. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2888, 986–
996. issn: 16113349. https://link.springer.com/chapter/10.1007/978-3-
540-39964-3_62 (2003).

30. Malkov, Y. A. & Yashunin, D. A. Efficient and robust approximate nearest neigh-
bor search using Hierarchical Navigable Small World graphs. IEEE Transactions
on Pattern Analysis and Machine Intelligence 42, 824–836. issn: 19393539.
https://arxiv.org/abs/1603.09320v4 (4 Mar. 2016).

56

http://ijrar.com/
http://leanpub.com/ansible-for-devops
https://www.ecanarys.com/Blogs/ArticleID/401/The-Ansible-Architecture
https://www.ecanarys.com/Blogs/ArticleID/401/The-Ansible-Architecture
https://github.com/ultralytics/yolov5
https://github.com/qubvel/efficientnet
https://arxiv.org/abs/1905.11946v5
https://github.com/KaiyangZhou/deep-person-reid
https://arxiv.org/abs/1905.00953v6
https://arxiv.org/abs/1905.00953v6
https://link.springer.com/chapter/10.1007/978-3-540-39964-3_62
https://link.springer.com/chapter/10.1007/978-3-540-39964-3_62
https://arxiv.org/abs/1603.09320v4

Appendix A

Body similarity

In this section, we will discuss about the other method of Person recognition that is
recognition by the entire body or Person Re-Identification.

We observed many images in which a face was not detected but it detects a person in
that image. So, not to waste those images we thought of having a body recognition al-
gorithm. The algorithm would be capable of recognising a person by their entire body.

The first step to check that the model was working or not was through body similarity.
In this method, we will take an image, detect a person in that image(done through
yolov5) [23] [24] and take the embeddings of that person and search for images which
have embeddings similar to that.

Many models have been tried in Coriolis before me which didn’t lead to any good
result. I focused my efforts on 2 of the most promising models.

• Efficientnet: EfficientNet is a family of deep neural network models designed
to deliver state-of-the-art accuracy with much fewer parameters than conven-
tional networks. EfficientNet can aid in the re-identification of individuals by
facilitating more efficient feature extraction from photos.

In person re-identification, the objective is to identify individuals across many
camera views, even if their appearance may alter owing to changes in lighting,
pose, clothes, or other factors. To do this, deep learning models are trained
to extract characteristics from photos that are robust to these fluctuations and
can be used to compare and match individuals across several perspectives.

EfficientNet models are intended to attain high levels of accuracy with fewer
parameters, allowing for more efficient extraction of features from huge datasets.
This is particularly beneficial in human re-identification, where big datasets with
numerous variations in appearance are frequently used to train deep learning
models. [25] [26]

57

• Osnet: OSNet (Omni-Scale Network) is a deep learning network built for hu-
man re-identification, which entails detecting individuals across numerous cam-
era perspectives. OSNet aids in re-identification of individuals in multiple ways:
[27] [28]

1. Feature Embedding: OSNet is meant to extract highly discriminative
characteristics from photos that are robust to differences in lighting, posi-
tion, and other factors that can affect the appearance of individuals across
many camera perspectives. This facilitates matching individuals across
several perspectives.

2. Cross-Resolution Matching: OSNet is designed to extract features
from input photos at several scales or resolutions. This enables it to col-
lect features at various degrees of detail, which is crucial for human re-
identification in situations where individuals can appear at various scales
in various camera views.

3. Metric Learning: OSNet employs metric learning to optimize the em-
bedding space, meaning it learns to map photographs of the same person to
similar feature vectors and images of different persons to dissimilar feature
vectors. This facilitates the comparison and matching of feature vectors
across several camera viewpoints.

However, both these models failed to give any meaningful results. We tried various
variations of both these models: EfficientNet B0, EfficientNet B1, EfficientNet
V2S, Osnet x1 0, Osnet ibn x1 0, Osnet ain x1 0.

The are major challenges to identifying a person by its body embeddings that we
faced during our project was:

• Viewpoint variation: Different viewpoints of same person due to different
cameras leads models to believe that they are different person.

• Illumination changes: Lighting conditions might vary between camera view-
points, making it difficult to match a person’s appearance across photographs.

• Intra-class variation: Even within the same individual, there can be consid-
erable variations in look, such as changes in dress, accessories, or hairdo.

• Inter-class similarity: Different individuals may share similar physical char-
acteristics, making it difficult to identify between them.

• Occlusion: Individuals can be partially or completely obscured in an image,
making it difficult to compare their appearance to other photographs.

• Scale variation: Humans can appear at various distances from the camera,
resulting in variations in their perceived size and scale.

58

One potential solution, which we thought of implementing was taking a bunch of im-
ages which will have different person’s whole body in them, annotating them manually
and then train the models with that annotated data and using those trained models
instead of using pre-trained models. However, due to lack of time we couldn’t do that.

So, we decided to focus our efforts instead on the face recognition algorithm and
making a working prototype of our software.

59

60

Appendix B

Exact KNN vs HNSW KNN

B.1 Exact KNN

K-Nearest Neighbor (KNN) is a classification algorithm that falls under the category
of instance-based or memory-based learning. However, for our project we used KNN
algorithm as a similarity search algorithm.

Instance-based or memory-based learning is a sort of machine learning in which the
model memorizes the complete training dataset rather than being explicitly trained
on a set of labeled data. In this method, the model retains all labeled data in memory
and classifies new data points based on their similarity to the training data.

In KNN, the model memorizes the full training dataset rather than learning any
parameters. When a new data point must be classified, KNN analyzes the distance
between the new data point and all of the points in the training dataset and selects
the K-nearest neighbors. Next, KNN assigns the new point’s class label based on the
majority class of its K-nearest neighbors. [29]

Algorithm used in our case:

1. Input: The algorithm’s input consists of a collection of labeled data points and
a query point.

2. Distance Metric: The algorithm calculates the distance between the query
point and each of the data points using a distance metric such as Euclidean
distance, Manhattan distance, or Minkowski distance.

3. K-nearest neighbors: Based on the estimated distances, the algorithm finds
the K-nearest neighbors of the query point.

4. Similarity searcch: Based on the scores generated on the above steps we find
the points that are most similar to the query vector.

61

Although the output generated from the exact KNN search would be more accurate,
however, it takes a lot of computational power to generate the results.

B.2 HNSW

The Hierarchical Navigable Small World (HNSW) technique is a variation of the K-
Nearest Neighbor (KNN) algorithm designed for fast search of nearest neighbors in
high-dimensional spaces. HNSW is a memory-based technique that stores data points
in a hierarchical data structure and enables rapid and scalable KNN search.

1. Build the graph: The algorithm begins by constructing a network in which
each node represents a data point and each edge reflects the similarity between
two data points. The graph is generated with a variation of the approach for
randomized partition trees.

2. Build the hierarchy:The graph is subdivided into numerous levels in order to
produce a hierarchical structure. Each successive level comprises an increasing
number of nodes, beginning with a tiny number of nodes at the top level.

3. Assign connections: Each node is assigned a predetermined number of con-
nections to other nodes on the same level and the next level.

4. Indexing:The data points are indexed utilizing a hierarchical framework. Each
point is assigned to a leaf node at the highest level of the hierarchy, and its
connections are assigned to the nodes at the next level.

5. Search: To do a KNN search, the algorithm begins at the top of the hierarchy
and navigates through the nodes to locate the query point’s nearest neighbors.
At each level, the method employs a heuristic to decide the following node to
visit depending on its distance from the query location.

HNSW is a much faster algorithm compared to the exact KNN search but it is less
accurate. [30]

62

	Introduction
	Softwares used
	Docker
	Kubernetes

	Infrastructure
	Camera
	Producer
	Kafka
	Consumer
	Spark
	Filebeat
	Opensearch
	UI

	Insightface details
	What is Insightface?
	Buffalo models
	Architecture

	Introducing vidiQulus
	Motivation
	Uses
	Lost Item Retrieval
	Enhanced emergency response
	Enhanced Biometric systems

	Facial recognition Algorithm
	Challenges faced with small faces
	How Insightface solves these problems
	Pipeline
	Preparing the Database of images
	Using the database to recognise faces
	Testing the model
	Experiments with different distance functions and KNN algorithms
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5

	Discussions
	Varation of K
	Variation of size
	Increasing the number of images in the database
	Comparison of both versions of dataset

	Discussions

	Deploying the model

	Infra changes
	Automating the creation of the Kubernetes cluster
	What is Ansible?
	Ansible architecture
	How Ansible saved time?

	Changing from Elasticsearch to opensearch
	What is Elasticsearch?
	Problems with using Elasticsearch
	What is opensearch?
	Changes observed

	Spark changes: Making processing images faster
	What is Apache spark?
	Spark architecture
	Driver Node
	Cluster Manager
	Worker Node

	UDFs
	Pandas UDFs

	RDD
	Algorithm used
	Benefits of using the RDD based approach

	Conclusions
	Further work
	Body similarity
	Exact KNN vs HNSW KNN
	Exact KNN
	HNSW

