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Abstract

Classical systems have a definite position and momentum, which can be visualised using a

point in the phase space. Analogous treatment to classical phase space in quantum mechanics

gives rise to quasi-probability distributions. One such representation is the Wigner function,

which is very helpful to visualise quantum states at different points. We define and visualise

the discrete Wigner function for various quantum states and their evolution. We perform

experiments for the tomography of the Wigner function and find how the Wigner function

can be used to find unknown quantum states. We find a computationally inexpensive method

to distinguish between amplitude damping, dephasing and depolarisation channel in Wigner

phase space. We also examine phase transitions from the perspective and how they connect

to the Wigner phase space formalism. We also look at quantum chaos and the classical-

quantum correspondence using the quantum kicked-top model.
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Chapter 1

Introduction

In classical mechanics, the state of a system is described by its position and momentum. The

phase space provides a way to visualize this information, thus, allowing us to understand

the trajectories of the system. This also leads to a better understanding of chaos, and

statistical properties of the system [1]. There have been multiple attempts for an analogous

description to phase space for quantum mechanics. The reason it has been difficult to do so

is that classical mechanics inherently deals with trajectories, while quantum mechanics deals

with probabilities. Classical phase space has been used extensively to study phenomena in

quantum mechanics, including chaos [2], dynamical tunnelling and quantum control [3]. This

approach is equivalent to finding trajectories of ensembles in classical mechanics.

We, however, take a different formulation, using the quantum phase space, namely the

Wigner Phase Space. This formulation is equivalent to the matrix mechanics or wave mechan-

ics formulation, however, treating both position and momentum equally. Other quasiprob-

ability distributions include the Husimi Q representation[4] and the Sudarshan-Glauber P-

distribution[5].

The thesis starts with the theory of Wigner functions in Chapter 1. This contains

Wigner’s definition of the Wigner function for studying statistical mechanics [6], which was

later recognized as a quantum phase space formulation by Moyal [7]. It follows with the

discrete generalisation, the even-dimensional phase space [8], with discussions of the “Phase

Space Point Operators”, which account for a significant part of the theory of discrete gener-

alisations of the Wigner phase space.
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1.1 Wigner Functions

The Wigner function is defined as the Wigner-Weyl transform of the density matrix ρ̂. Thus,

W (q, p) =

Z
dλ

2πℏ
eiλp/ℏ⟨q − λ/2|ρ̂|q + λ/2⟩. (1.1)

It is the unique function which satisfies the three defining properties [9]:

1. W (q, p) is real for all q and p values.

2. The overlap (Frobenius inner product) between states is given by

Tr[ρ̂1ρ̂2] = 2πℏ
Z

dq dp W1(q, p)W2(q, p). (1.2)

3. The integral along a line a1q + a2p = a3 of the Wigner function gives the probability

that measurement along the line, i.e., a1Q̂+ a2P̂ has a3 as its result. Thus, we get the

following two equations:

Z +∞

−∞
dp W (q, p) = ⟨q|ρ̂|q⟩

Z +∞

−∞
dq W (q, p) = ⟨p|ρ̂|p⟩. (1.3)

For pure states,

Z +∞

−∞
dp W (q, p) = |ψ(q)|2

Z +∞

−∞
dq W (q, p) = |ϕ(p)|2, (1.4)

gives probability densities in q and p, respectively.

Mathematically, it can be shown that this is the only function that satisfies all three prop-

erties.

The Wigner function is a quasiprobability function. This is because the Wigner function

is not a true probability function as it takes both positive and negative values. These negative

values are generally provable to be small enough and do not extend beyond a few ℏ values

while scaling. This is due to the Heisenberg Uncertainty Principle, and thus, in the classical

limit (ℏ ≈ 0), the probability distribution is always positive. Except for the definitions of

the Wigner function, we have used the units with ℏ = 1 in the rest of the thesis.
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1.1.1 Phase Space Point operators

The Wigner function can also be written as the ensemble average of “Phase Space point

Operators” or “Fano Operators” Â,

W (q, p) = Tr[Â(q, p)ρ̂], (1.5)

where the operators Â(q, p) are defined as [10]

Â(q, p) = 1/(2πℏ)2
Z

dλ dλ′ exp(−iλ(P̂ − p)/ℏ+ iλ′(Q̂− q)/ℏ). (1.6)

These operators are very important in the discussion of the discrete generalisation of the

Wigner phase space. Given the operators Â(q, p), we can find the density matrix from the

Wigner distribution as

ρ̂ = 2πℏ
Z

dq dp W (q, p)Â(q, p). (1.7)

The three defining properties of Â(q, p), which lead to the three defining properties ofW (q, p)

are:

1. Â(q, p) must be Hermitian for all values of q and p.

2. Â(q, p) forms a complete orthogonal set of operators. Thus,

Tr[Â(q, p)Â(q′, p′)] =
1

2πℏ
δ(q − q′)δ(p− p′) (1.8)

3. Integrating the operators along a line in phase space, we get a projection operator.

Thus, Z
dq dp δ(a1q + a2p− a3) Â(q, p) = |a3⟩⟨a3|, (1.9)

where |a3⟩ is an eigenstate of the operator a1Q̂− a2P̂ , with a3 as the eigenvalue.

This Wigner function has found applications in quantum optics, information processing,

electronics, quantum chemistry and signal processing [11].
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1.2 Discrete Generalisation

TheWigner function forms the motivation of most definitions of finite dimensional quasiprob-

ability distributions. The first generalisation to satisfy all required properties was given by

Wootters [10] for a prime dimensional Hilbert space. Numerous others followed this, includ-

ing spherical phase space, finite fields and even dimensional phase space [12], each having

different properties and applicability. We focus on the even-dimensional phase space, given

by Leonhardt [8].

This formulation transforms a Hilbert space of N dimensions into a Wigner phase space

of 2N dimensions. Given the Hilbert space, we define an arbitrary basis Bx = {|n⟩, n =

0, 1...N − 1} as the position basis. We define momentum basis states as Bp = {|k⟩, k =

0, 1, ...N−1}, where momentum states |k⟩ are given by the Fourier Transform of the position

basis.

|k⟩ = 1√
N

X

n

exp(i 2πnk/N)|n⟩ (1.10)

The phase space point operators A(q, p) are defined using the translation operators Û , V̂

and R̂, defined as

Û |n⟩ = |n+ 1⟩
V̂ |k⟩ = |k + 1⟩ (1.11)

R̂|n⟩ = |− n⟩

where addition is mod(N). U and V are diagonal in momentum and position basis, respec-

tively.

Ûm|k⟩ = exp(−i 2πmk)|k⟩ V̂ m|n⟩ = exp(i 2πmn)|n⟩ (1.12)

Then, A(q, p) can be given as

A(q, p) =
1

2N
U qRV −p exp(i πpq/N), (1.13)

where q, p ∈ 0, 1, ...2N − 1. Then,

W (q, p) = Tr[A(q, p)ρ̂]. (1.14)
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Although the phase space is defined in a 4N2 dimensional space, there are only N2

independent Fano operators, and others can be derived from these N2 operators by the

linear relationship

W (q + sqN, p+ spN) = W (q, p)(−1)spq+sqp+sqspN (1.15)

for sp, sq = 0, 1. This relationship is also satisfied by the “point operators” [13]. We denote

the first quadrant as GN and full 4N2 dimensional space as G2N . We define a line in the

phase space as L(n1, n2, n3) = {(q, p) ∈ G2N , such that n1p+n2q = n3, with 0 ≤ ni ≤ 2N−1.

Here addition is done modulo N. Two lines parameterised by the same set of integers (n1, n2)

with different n3 are said to be parallel. The operator ÂL defined as ÂL =
P

(q,p)∈L Â(q, p)

can be written as

ÂL =
2N−1X

(q,p)=0

Â(q, p)δ2N (n1p− n2q − n3)

=
1

2N

2N−1X

λ=0

2N−1X

(q,p)=0

Â(q, p) exp

�
−i

2π

2N
λ(n1p− n2q − n3)

�

=
1

2N

2N−1X

λ=0

T λ(n1, n2) exp

�
i
2π

2N
n3λ

�
, (1.16)

where T̂ (n, k) are called translation operators defined as

T (n, k) =
2N−1X

(q,p)=0

Â(q, p) exp

�
−i

2π

2N
(np− kq)

�
(1.17)

These operators are cyclic, such that TN = I.

The Wigner function satisfies the following properties in analogy with the continuous

Wigner function:

1. As the operators Â(q, p) are Hermitian, W (q, p) is real for all values of q and p.

2. The Frobenius inner product of two states is given as

Tr[ρ1ρ2] = N
X

α∈G2N

W1(α)W2(α). (1.18)
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3. As TN = I, the eigenvalues of the operator T should be the eigenvalues of unity, with

the form exp(−i2πϕj/N) with eigenvectors |ϕj⟩, where ϕj are integers. Thus,

ÂL =
NX

j=0

δ2N(2ϕj − n3)|ϕj⟩⟨ϕj|. (1.19)

Therefore, ÂL are projection operators onto a subspace generated by a subset of the

eigenvectors of the translation operator T̂ (n1, n2). The dimensionality d of this sub-

space is given by the trace of ÂL. In qubit systems, N is always even whether we work

with density matrices or their partial traces. Hence, d is given as

d = 1/2
N−1X

λ=0

δN(λn1)δN(λn2) exp

�
i
2π

2N
mλ

�
[1 + (−1)n3 ] (1.20)

Thus, for odd n3, the sum over a line is always 0. For a line, Lq defined as q = n3, the

Wigner function summed over it is given by

X

(q,p)∈Lq

W (q, p) =
X

p

W (n3, p) = ⟨n = n3/2|ρ̂|n = n3/2⟩ (1.21)

for even n3 and 0 for odd n3. The same follows for the line Lp defined as p = n3. This

is the discrete equivalent of the property 1.3.

Â(α) form a complete set in GN with the following identity.

Tr[Â(α)Â(α′)] = δN(q − q′)δN(p− p′) (1.22)

with δN(x) = 1/N
PN−1

n=0 e2πix. δN(x) is the “periodic delta function”, which is zero unless

x = 0mod N. Given these operators, we can write the density matrix as a one-to-one function

of the Wigner phase space as

ρ̂ = N
X

α∈G2N

W (α)A(α) (1.23)

= 4N
X

α∈GN

W (α)A(α)

for all the valid Wigner phase space representations. Given a unitary process U(t) acting on

10



the density matrix ρ such that

ρ(t) = U(t)ρ(0)U(t)†, (1.24)

the evolution in phase space is given by the matrix Zαβ. Thus,

W (α, t) =
X

β∈G2N

W (β, 0)Zαβ (1.25)

Zαβ = NTr[Â(α)UÂ(β)U †] (1.26)

In this thesis, we have studied phenomena such as Quantum chaos, characterization

of noise processes and Quantum Phase Transitions using the Discrete Wigner Formalism.

We have also performed experimental characterisation of quantum chaos using the Wigner

functions in NMR architecture. Chapter 2 contains experimental details of the project,

including quantum circuits, details of molecules and a short introduction to Nuclear Magnetic

Resonance (NMR) Quantum Information Processing (QIP). Chapter 3 provides the results of

the numerical simulations and experiments, with details about quantum phenomena explored

using the Wigner phase space, including phase transitions and quantum kicked top. Chapter

4 contains the conclusions based on the methods and the results.
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Chapter 2

NMR Experiments

2.1 Theory

NMR is a spectroscopic technique based on the nuclear spins of certain isotopes. The spin

leads to a magnetic moment, which precesses in the presence of a strong magnetic field [14].

For atoms with nonzero nuclear magnetic spin quantum number I, this leads to a splitting

in energy levels, called the Zeeman effect. These energy levels are given by

Em = γmB0, (2.1)

where B0 is the applied magnetic field, γ is the gyromagnetic ratio of the atom, and m is

the magnetic quantum number, which takes 2I + 1 values from {−I,−I + 1...I − 1, I}. The
corresponding frequency of transitions is the Larmor Frequency

ω0 = −γB0 (2.2)

Absorption of frequency is called resonant when spins with a given ω0 are perturbed by an

external magnetic field of the same frequency. This phenomenon is called Nuclear Magnetic

Resonance[15]. NMR happens in nuclei with a nonzero I, called NMR active nuclei. For

quantum information processing purposes, we generally use nuclei corresponding to I = 1/2.

13



The internal Hamiltonian of a system with one spin-1/2 atom is given by

H0 = ω0Iz, (2.3)

where Iz = σz/2, thus, it behaves as a two-level system–a qubit. Qubits are quantum

analogues of the two-level systems called bits, used in classical computation.

2.1.1 Qubit states

For n coupled spin-1/2 nuclei, the internal Hamiltonian is given as [16]

H0 =
nX

i=1

ωiI iz + 2π
nX

i<j

JijI
i · Ij. (2.4)

Here n is the number of qubits, Jij is the scalar coupling, and ωi is the Larmor frequency.

Under the weak coupling approximation i.e., |Jij| ≪ |ωi − ωj|, we can drop the xx and yy

terms and simplify to the secular Hamiltonian form

H0 =
nX

i=1

ωiI iz + 2π
nX

i<j

JijI
i
zI

j
z . (2.5)

NMR qubits are initialized in the thermal equilibrium state at temperature T , following

Boltzmann distribution. This state is given as

ρeq =
e−H0/kBT

Tr[e−H0/kBT ]
. (2.6)

where H0 is the internal Hamiltonian. At room temperature, the energies Ei ≪ kBT . Thus,

using Taylor expansion for n qubits,

ρeq ≈ I/2n − H0

2nkBT

≈ I/2n +
2n−1X

i=0

ω0i

2nkBT
I iz. (2.7)

The first part is the identity matrix which plays no role in the signal. The second part is called

the traceless deviation matrix ρI , which contributes to the signal. This part is inversely

14



proportional to 2n and, thus, severely limits the scalability of NMR quantum simulators.

This part is very small compared to the total density matrix, making NMR states highly

mixed. However, it is possible to prepare pseudo-pure states (PPS), which can effectively

mimic the dynamics of pure states [17]. These states have a deviation matrix proportional

to the effective traceless representation of the pure state. Similarly, an entangled NMR state

obtained at room temperature is always pseudo-entangled.

2.1.2 Quantum gates

NMR nuclei typically have radio frequency (rf) range energy differences. Thus, single qubit

gates can be experimentally realized using rf frequency pulses, defined by their amplitude,

phase and duration. For a single-qubit system, given an rf pulse, we have the Hamiltonian

H tot(t) = H0 +Hrf (t)

= ω0Iz + ω1[Ix cos(ωrf t+ ϕ) + Iy sin(ωrf t+ ϕ)]. (2.8)

Here, ω1 = −γB1 is the rf amplitude, with B1 as the applied magnetic field. We convert it

to a time-independent effective Hamiltonian using the interaction picture. Thus,

He = ΩIz + ω1[Ix cos(ϕ) + Iy sin(ϕ)]. (2.9)

Here Ω = ω0−ωrf is the offset frequency. An initial state ρ(0) evolves under this Hamiltonian

in time τ as

ρ(τ) = e−iHeτρ(0)eiHeτ . (2.10)

Similarly, these gates can be applied to multiple qubits. However, they also evolve under the

coupling Hamiltonian 2πJIzSz, where Iz and Sz are z spin matrices of the two qubits. For

a given J , any effective rotation angle can be realized by changing the pulse time.

Generally, we use short-duration hard pulses, which have wide bandwidth in the frequency

spectrum. Such pulses uniformly affect multiple resonance frequencies. However, in some

cases, for example, specific spin selection in homonuclear systems or in case of significant rf

inhomogeneity, we use short pulses with low bandwidth in the frequency domain (soft pulses)

and other specific methods to create selective pulses, called optimal control algorithms, for

example, GRAPE [18].
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2.2 Experimental Details

All the experiments were liquid-state NMR experiments on a Bruker 500 MHz NMR spec-

trometer at an ambient temperature of 300 K and on resonant conditions.

2.2.1 Quantum Circuit for Wigner space tomography

As W (q, p) is the expectation value of the operator A(q, p), it can be directly measured for

a given state using the circuit in Figure 2.1 [19].

H • H|0⟩⟨0|

A(q, p)ρ̂

Figure 2.1: Quantum Circuit for direct measurement of W (q, p)

We use this, and the decomposition A(q, p) as 1.13 to get the whole circuit as consisting of

four total operators applied multiple times- cR, cV −1, cU and R1
z(π/4), where cO is operator

O operating on the last two qubits with control on the first. R1
z(π/4) is an operator that

rotates the first spin along the z-axis by an angle of π/4, given by exp(−iIzπ/4).

This circuit has been optimized in the experiments using GRAPE and Push-Pull [20]

optimization techniques to find optimal pulses for the circuit. We perform experiments for

two qubits with one qubit as the ancilla, i.e., using 2 + 1 qubit systems. We only find the

first N2 entries in the Wigner phase space, using the measurement circuit with appropriate

re-scaling and the other 3N2 using the linear relationship (1.15).

2.2.2 Experimental samples

We experimentally study the discrete phase space distribution for two qubits using two

samples of three qubits each, as explained below.
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DBFM

We used 19F and 13C nuclei as the system and the 1H nucleus as the ancillary qubits of the

molecule Dibromofluoromethane (DBFM) with labelled carbon (C-13) dissolved in acetone-

D6. The phase space points were determined using hard pulses, while GRAPE was used to

prepare PPS [21]. The simplified circuit is given in the figure 2.2.

H • • • • • Rz(π/4)
pq H

Z

√
Z • •

p times q times

Figure 2.2: Simplified Circuit for direct measurement of W (q, p), used for DBFM

The couplings of the molecule are given in the table 2.1.

Br 13C3

Br

1H1

19F2

Figure 2.3: Molecular Structure of the DBFM molecule

1H (Hz) 19F (Hz) 13C(Hz) T2(s) T1(s)

0 49.7 224.5 1H 0.3 13.7

0 -310.9 19F 0.2 5.2

0 13C 0.5 1.9

Table 2.1: Chemical Shifts (diagonal elements) and J-coupling constants for the DBFM
molecule, with relaxation times T1 and T2
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During these experiments, we found a source of error being nonlinearity in the carbon

channel of the spectrometer, which resulted in calibration errors in the GRAPE pulses.

This led us to change our sample in the experiments, for which we selected the molecule

Trifluoroiodoethene (TFIE).

TFIE

As the experiment for nonlinear effects was not very successful in DBFM due to nonlinearities

in the C-13 channel of the spectrometer, we continued that experiment with another molecule

containing no labelled carbon. We used TFIE dissolved in acetone-D6 as it has good coupling

and high chemical shifts, thus, making it easier to address each spin separately. The coupling

constants for the Hamiltonian are given in the table 2.2.

19F3

C

I

C

19F1

19F2

Figure 2.4: Molecular structure of the TFIE molecule

19F1 (Hz) 19F2 (Hz) 19F3(Hz) T ∗
2 (s) T1(s)

11841 69.9 47.7 19F1 0.8 6.9

0 -128.2 19F2 0.8 7.5

-17293 19F3 0.6 6.2

Table 2.2: Chemical Shifts (diagonal elements) and J-coupling constants for the TFIE
molecule, with relaxation times T1 and effective relaxation time T ∗

2

We prepared the PPS using the circuit given in [22]. However, instead of the Gaussian

selective pulses, we use GRAPE to create pulses as gaussian pulses are generally more prone

to rf inhomogeneity, which can affect our experiment.

As the circuit has a large number of gates for a given (q, p), we use a different pulse

for performing the gate c(U qR) for the four values of q. Because of this, the total pulse

duration can be shortened, and thus, our pulses are less prone to rf inhomogeneity. Other
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than that, the gates simplify quite a bit, and given that our cV −1 pulse works well under rf

inhomogeneity, we need to create four pulse sequences instead of two.

19



20



Chapter 3

Results

In this chapter, we will discuss the results of the numerical simulations and experiments. We

will start with results about state tomography, noise, and phase transitions and finally look

at results in nonlinearity based on the quantum kicked top.

3.1 Wigner Phase Space Tomography

As a result of 1.15 and 1.3, we find the normalisation condition for the even-dimensional

Hilbert space:

X

(q,q)∈GN

W (2q, 2p) = 1, (3.1)

=⇒
X

(q,p)∈GN/2

W (2q, 2p) =
1

4
. (3.2)

This is only for even values in G2N because given 1.15, all the odd values of (q, p) have

a negative of them in the phase space. This condition then corresponds to the condition

that Tr[ρ] = 1, thus, making all probabilities sum to one. We also note only the even

rows/columns give probabilities when summed up. For a given even row with p = p0 in the
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quadrant GN , we have the positivity conditions:

|
X

odd q

W (q, p0)| ≤
X

even q

W (q, p0). (3.3)

Similarly, for even column with q = q0, in the quadrant GN ,

|
X

odd p

W (q0, p)| ≤
X

even p

W (q0, p). (3.4)

This condition ensures that the probabilities p(q0/2) and p(p0/2) are always positive.

Similarly, for a state to be pure, purity should be equal to one. Thus, using 1.18

Tr[ρ2] = 1

=⇒ N
X

α∈G2N

W (α)2 = 1 (3.5)

=⇒ 4N
X

α∈GN

W (α)2 = 1. (3.6)

3.1.1 Position and momentum eigenstates

For a position eigenstate(computational basis), we get ρq0 = |q0⟩⟨q0|. We can easily solve

the equation for the Wigner function of this state as [13]

W (q, p) =
1

2N
⟨q0|U qRV −p|q0⟩ (3.7)

=
1

2N
δN(q − 2q0)(−1)p(q−2q0)N . (3.8)

Here zN = z(mod N). This corresponds to two vertical strips, a constant positive strip

W = 1/2N at q = 2q0 and an oscillating strip at q = 2q0 ± N , with W = 1/2N for even

values of p and W = −1/2N for odd values of p. A similar behaviour is seen for momentum

eigenstates, with the strips being horizontal instead of vertical.

For a linear superposition state, |ψ⟩ = (|q0⟩+eiϕ|q1⟩)/
√
2, we get four strips corresponding

to two each of q0 and q1, and two fringes showing the interference between the two states at

(q0 ± q1)N .
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(a) Position Eigenstate
|ψ⟩ = |0111⟩

(b) GHZ state
|ψ⟩ = (|0000⟩+ |1111⟩)/

√
2

Figure 3.1: Wigner function of two simple states

The equation 1.21 implies that the even numbered rows and columns of the Wigner Phase

Space signify the probabilities, and the odd numbered signify the coherence or interference

in the given basis. Thus, given a position basis, the diagonal terms of the density matrix

are denoted by the even columns, and the non-diagonal terms by the odd columns of the

Wigner distribution. Hence, we see that a position eigenstate has two vertical strips at even

numbered points, but is totally delocalised in the momentum space, and vice versa which

also comes from the Heisenberg Uncertainty Principle.

Figure 3.2: When the density matrix elements are transformed to the Wigner Phase Space,
the even numbered columns (starting from 0) are related to the populations (diagonal ele-
ments) in the computational basis and the odd numbered columns are related to the coher-
ences (off-diagonal elements).
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Thus, a state that is localised in the Wigner Phase Space is the state which has the least

uncertainty product in the position and momentum. In the continuous Wigner function

formalism, that state is the Gaussian wave packet. We found that Gaussian states, i.e.,

states with populations that follow a Gaussian distribution are highly localised in the Wigner

Phase Space for a large Hilbert Space just like the continuous case (Fig 3.3). We explore

such states in more detail in the section 3.4.

Figure 3.3: A spin 11.5 (24 dimensional Hilbert Space) Gaussian state

For the experiments, we use Frobenius inner product as the fidelity, defined for two states

ρ1 and ρ2 as

F (ρ1, ρ2) = Tr[ρ1ρ2]. (3.9)

As the Frobenius norm, given by Tr[ρ2] of mixed quantum states is less than one, the fidelity

of mixed quantum states with themselves is less than one. Thus, this measure of fidelity

only works if our expectation of the final state is a pure state. As all our experiments are

theoretically supposed to give pure state results, we argue that using Frobenius inner product

as a measure of fidelity makes sense.

3.1.2 Experimental Results

We used the Wigner Phase Space Tomography to visualise basic quantum states experimen-

tally. The fidelities are calculated using the relation 1.18. For a given value of α, we call

W (α) as a pixel. We perform the whole run of the quantum circuit to calculate one pixel of

the Wigner Phase Space.
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(a) 2 qubit |00⟩ state with experiment to theory fidelity 0.9426

(b) 2 qubit |++⟩ state with experiment to theory fidelity 0.9387

(c) Bell state, (|00⟩+ |11⟩)/
√
2 with experiment to theory fidelity 0.8837

Figure 3.4: Wigner function of a few eigenstates. The first column shows the theoretical
prediction. The second column shows the simulation with the GRAPE pulses, and the third
column shows the experimental result.

We see that our tomography circuit works fairly well for product states, with fidelities

around 0.94. However, the experiments have a larger error in case of entangled states, with

fidelities around 0.88. This can happen because of errors in both state preparation, as well

as tomography of the states.
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One limitation in our approach to measure Wigner Phase Space directly is that the

resulting Wigner Phase Space, even on small errors can be non-physical (i.e., can correspond

to invalid density matrices). In our case, that happened for an error of 5% in calculating

the individual pixels of the Wigner Phase Space. For such cases, tricks used for quantum

state tomography can be useful. For example, having an equality constraint like 3.1 can help

us get normalized Wigner function, and can also reduce the number of experiments by one.

However, even taking that into consideration, we found that sometimes, the conditions 3.3

and 3.4 are not satisfied.

3.2 Noise Characterization

Given operator U acting on a state ρ, we have a simple vector transformation Zαβ between

original Wigner Phase Space W (α) and final phase space W (β), where α = (qα, pα). In the

Liouville space, noise processes can be modelled using the operator sum representation of

Kraus operators [23],

ρ(t) =
X

m

Km(t)ρ(0)K
†
m(t). (3.10)

For such a process, we prove that the final matrices Zαβ can be written as the sum of all the

individual operators, i.e.,

Zf
αβ =

X

m

Zm
αβ. (3.11)

We numerically simulated the Wigner function for three noise channels, which are essential

in experimental studies - depolarization, dephasing and amplitude damping channels [23], for

global noise channels in two qubit systems. We studied the three channels both qualitatively

and quantitatively to understand how noise manifests itself in the Wigner Phase Space. We

found the following qualitative changes -

1. The contrast between the colours of the Phase Space decreased for increasing intensity

of noise. This was constantly seen for dephasing and depolarization, but for amplitude

damping, extra contrast is seen in the phase space.
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(a) |Φ+⟩ (b) 50% dephasing

(c) 50% depolarization (d) 50% amplitude damping

Figure 3.5: state |Φ+⟩ under different noise channels

2. The number of non-zero values first increased, then they started to decrease as the state

changed to a mixed state. We studied this property using the entropy of the Wigner

Phase Space distribution. We did this by binning it to a probability distribution and

calculating the Shannon entropy of the function.

Figure 3.6: |Φ+⟩ under noise. The x-axis is the noise strength, the y-axis is the entropy.
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3. For states with an equal contribution of 0s and 1s in their representations, the depo-

larization and dephasing channels have similar dynamics, which is what we expect.

Figure 3.7: |++⟩ under noise. The x-axis is the noise strength, and the y-axis is the entropy.

To characterize noise dynamics using the equation 3.11, we found the matrix Zf
αβ for the

three channels on 2 qubits in a global noise scenario, i.e., same form of noise acting on both

the qubits. Another assumption is that the noise acts independently on all the qubits. We

found that the total Ztot is given as

Ztot = aI+ bZamp + cZdeph + dZdepol, (3.12)

where Zamp, Zdeph, and Zdepol are the matrices Zf
αβ for the amplitude damping, dephasing

and depolarization channel for full noise strength. This acts on the Wigner function as

Wnoise = ZtotWpredicted. (3.13)

We find the Wigner functions with individual contributions of the different forms of Z, to

find that

Wnoise = aWpredicted + bWamp + cWdeph + dWdepol. (3.14)

For only one channel acting on the qubits, we found that a least squares regression on Wnoise

gives the coefficient of the channel and its compliment for a. For example, for an amplitude

damping channel of strength 0.6 acting on the qubits, we get b = 0.6, a = 0.4, and the other

two coefficients as 0. For multiple channels acting on the qubits but in an independent global

noise process, we find that least squares regression gives all four coefficients.
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3.3 Phase transitions

We numerically study phase transitions at zero temperature (ground state phase transition)

in two Ising-type models in the Wigner phase space. First, we studied the transverse Ising

model [24]. To start with, we assumed all-to-all interaction, thus, giving the Hamiltonian

H(a, J) = a
X

i

σi
x + J

X

i<j

σi
zσ

j
z. (3.15)

Here, a is the transverse field strength, J is the Ising coupling strength and |J | ≫ a. Here,

σi
x, σ

i
z are the Pauli spin matrices at site i. When J > 0, the system is a frustrated spin

system, and the interactions of the Ising model are of the antiferromagnetic type. However,

when J < 0, the system is non-frustrated and the interactions are ferromagnetic.

We simulated the Wigner phase space for multiple values of the parameter J/a to find

signatures of phase transitions in the Wigner phase space model. We found the following -

(a) J/a = −6 (b) J/a = −1

(c) J/a = 0.7 (d) J/a = 6

Figure 3.8: Ground state of the system for different values of the parameter J/a
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1. The Wigner function changed its qualitative nature from the negative to positive values

of the parameter J/a (Figure 3.8).

2. Approaching the phase transition, J/a = 0, the Wigner function simplifies as a whole

in a continuous way.

(a) J/a = −0.1 (b) J/a = 0 (c) J/a = 0.1

Figure 3.9: Wigner function near J/a = 0

3. To quantify this, we plotted the entropy of the Wigner function, which has a sharp dip

at the point of phase transition, which becomes sharper with the number of bins. We

have plotted the same for entropy calculated according to 80 bins.

Figure 3.10: Entropy for the 3 qubit Ising model

For a 4-qubit model, we get the following figure while calculating the entropy. We take

the 4 qubits in a linear chain instead of an all-to-all coupling as it is very tough to find

such a system in nature.
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Figure 3.11: Entropy for the 4 qubit Ising model

After finding a strong signature of phase transitions in this model in the Wigner Phase

Space, we studied another model of phase transitions, defined by the Hamiltonian

H(Bz) = σ1
zσ

2
z + Bz(σ

1
z + σ2

z). (3.16)

This Hamiltonian has the eigenvalues 1 + 2Bz,−1 and 1− 2Bz for the states |00⟩, |ϕ+⟩ and
|11⟩. The symmetry of the Hamiltonian does not allow evolution to the singlet state [25].

These energy values lead to a phase transition at Bz = 1 and Bz = −1. We see in the figure

3.12, that there is a discontinuity at the points of phase transition. This time, however, the

discontinuity is not a sharp dip.

Figure 3.12: Wigner Space Entropy of the ground state
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However, we find that the phase transition in this model is not experimentally possible

due to the level crossings at the points of phase transitions [26]. To study experimental

dynamics, we add a small term Bx(σ
1
x + σ2

x) to the Hamiltonian. As the value of this term

increases, the phase transition becomes less visible as the difference in energy due to the Bx

term will take over the phase transition due to the energy difference of the other two terms.

(a) Bx = 0.1 (b) Bx = 0.001

Figure 3.13: Entropy of the Wigner function for two different values of Bx

However, trying to perform adiabatic evolution of the Hamiltonian, we find that the

phase transitions are seen clearly even at Bx values as high as 0.1. This effect implies that

using this method will help understand phase transitions even in scenarios when the normal

experimental procedures lead to a problem as level crossings and infinite time can not be

achieved in real experimental systems.

Figure 3.14: Entropy of the adiabatically evolved model when Bx = 0.1
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While measuring phase transitions using the Wigner Phase Space, we find that sometimes,

there is a dip in the entropy, and sometimes, there is just a discontinuity, or a very large

jump. Thus, the measure itself keeps changing. This also signifies the problem of studying

phase transitions, which has been puzzling people for a long time. Also, our method gives

discontinuities at points which are not proven to be points of phase transitions. It could be

due to either using large number bins for calculation of entropy, which is necessary to detect

phase transitions or just an artefact of the specific phase space distribution function.

3.4 Nonlinear Quantum Dynamics

To explore nonlinearity in the phase space dynamics, we used the “Quantum Kicked Top”

model. We looked at the dynamics of the Wigner phase space under the Kicked Top Hamil-

tonian, and looked at multiple measures as the signatures of chaos.

3.4.1 Quantum Kicked Top

The Quantum Kicked Top is given by the Hamiltonian [2],

H =
k

2jτ
J2
z + pJx

n=+∞X

n=−∞
δ(t− nτ), (3.17)

where Jx, Jy and Jz are the x, y, z components of the angular momentum operator J. τ is the

time period, and k is the chaoticity parameter. This model shows periodic trajectories for

k < 1 and chaotic trajectories for large k. The intermediate chaoticity values lead to a mixed

behaviour, with both chaotic and periodic trajectories depending on the initial conditions.

We study the classical trajectories in polar coordinates (θ,ϕ), with p = π/2.
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(a) k = 0.5 (b) k = 2.0

(c) k = 2.5 (d) k = 4.0

Figure 3.15: Classical trajectories for four values of k

The quantum version follows a similar trend, with the states being spin coherent states

|θ,ϕ⟩. The Hamiltonian leads to a unitary evolution such that

UQKT = UNLUkick, UNL = e−ikJ2
z /2j, Ukick = e−ipJx . (3.18)

Even though UNL does not commute with Ukick, the delta function in the Hamiltonian allows

us to write the total unitary as their products. This model is one of the most studied model

to study quantum chaos, as it can easily be used to study qubit systems and spin systems.

Experimentally, the spin-spin interaction Hamiltonian for the kicked top is given by [27]

HJ = 2πJ23I
1
z I

2
z (3.19)

for time τ , such that τ = k/2πJ23. For this experiment, We apply π pulses on 2 and 3 to
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refocus the spin of the first qubit. The kicks, given by the Hamiltonian

Hrf =
π

2∆
(I1x + I2x), (3.20)

are applied using rf pulses on both the qubits. The pulse duration is such that π/(2∆) = p.

This corresponds to a π/2 pulse in the x direction. For DBFM, we applied the hard pulse

directly, and for TFIE, we used GRAPE to generate the pulses.

3.4.2 Signatures of Chaos

There have been multiple studies to look for quantum signatures of chaos - the quantum

quantities, including entanglement and discord, which show chaos in their dynamics [28].

We use the Wigner function to look for signatures of chaos in the model.

We performed experiments on the spin coherent states with the quantum kicked top

Hamiltonian to check our theoretical simulations. We selected the chaoticity values k = 0.5,

where every initial condition is periodic, k = 2.5, which has a mixed phase space, and k =

2π+2.5, which behaves just like k = 2.5 because of the 2π periodicity of the two qubit model.

For experiments, we considered different initial states with some in the regular and some in

the chaotic region. We selected three points for our experiments, (θ,ϕ) = (π/6, 4π/3), (1, 2.5)

and (0, 0) for their different behaviours under the QKT Hamiltonian.

Figure 3.16: The classical kicked top dynamics for k = 2.5. The points for our analysis are
shown by black solid dots.
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We first start with the state (θ,ϕ) = (π/6, 4π/3), which is in the regular region of the

phase space when k = 2.5, 2π + 2.5. For checking chaos, we only focus on the first row of

the Wigner phase space.

(a) k = 0.5 (b) k = 2.5

(c) k = 2π + 2.5

Figure 3.17: Localisation in first row for state (θ,ϕ) = (π/6, 4π/3)

The second state we study is (θ,ϕ) = (1, 2.5), which lies in the chaotic part of the phase

space for k = 2.5, 2π + 2.5.
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(a) k = 0.5 (b) k = 2.5

(c) k = 2π + 2.5

Figure 3.18: Localisation in first row for state (θ,ϕ) = (1, 2.5)

Except for the values of the sum being very chaotic by itself, one other way for us to

understand the chaoticity in this model is through the very definition of chaoticity, i.e.,

sensitivity to initial conditions in the model. We see that for the first case, at all values of

the chaoticity, the experimental data matches the theoretical prediction very well. However,

in the second case, we see that the experimental data is much different from the theory,

which we conclude is due to the differences in the initial conditions.

To conclude our studies, we plotted the same data for (θ,ϕ) = (0, 0), which is again

supposed to be in the chaotic regime. We see results similar to the previous case, which was

also in the chaotic part of the classical phase space.
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(a) k = 0.5 (b) k = 2.5

(c) k = 2π + 2.5

Figure 3.19: Localisation in first row for state (θ,ϕ) = (0, 0)

3.4.3 Localized state

Following the result that Gaussian states are localized in the Wigner Phase Space, we created

such a state in two qubits. We found that this state also is largely localised in a small number

of pixels in the Wigner Phase Space. We now look at the dynamics of the localised state

under the quantum kicked top Hamiltonian for different values of the chaoticity parameter.
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Figure 3.20: Localised state, with evolution under the kicked top Hamiltonian

We found that the various quantities that showed signatures of chaos have periodic dy-

namics when started with the localised state, even for high chaoticity values. We try to

study this state, and the periodic properties in the experiments. We prepared the localised

state using the molecule TFIE. The result of the Wigner tomography for the state is given

in the figure 3.21.

Figure 3.21: Localised state tomography, fidelity 0.9085
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Performing the quantum kicked top experiment on the localized state, we find that it

matches with the theory with lesser amplitude of oscillations. We observe that the state

has a periodicity, as predicted by the simulations, with errors which we attribute to the

experimental sources of error, like rf inhomogeneity. This is also shown in the figure 3.22c-

3.22d, which shows fidelities of the theory and GRAPE simulations with the experiment.

Thus, we claim that this localized state is robust against quantum chaos, at least in some

specific Hamiltonians.

(a) k = −1 (b) k = −2

(c) k = −1 (d) k = −2

Figure 3.22: (a)-(b)We take the five pixels the initial state has maximum absolute value in,
and plot the sum of them. The x-axis denotes the number of kicks, while the y-axis denotes
the sum. (c)-(d) The fidelities of the experimental result with the simulations.

40



Chapter 4

Conclusion

• In this thesis, we studied the dynamics of different quantum systems and how they

correspond from the Liouville space to the Wigner Phase Space.

• Our first objective while working on this topic was to visualize quantum states using

the Wigner phase space distribution. We found such a function that has not only a

one-to-one correspondence with density matrices, but also is easy to visualize.

• We studied the discrete even-dimensional Wigner phase space and worked out differ-

ent quantum phenomena using the formalism. We studied the visualizations of these

phenomena, which helped us gain a better understanding of them.

• We found a computationally inexpensive least squares regression method to differ-

entiate between amplitude damping, phase damping and depolarization global noise

channels in multi-qubit systems. We also found that the same technique can be used

to find the contribution of the three types of noise in case they act on the system

together. Thus, this method is computationally less expensive than quantum process

tomography.

• However, this method cannot be used to find the exact Kraus operators acting on the

state. Thus, it gives lesser information than process tomography.

• We performed NMR experiments to measure Wigner functions directly. We used

the molecules Dibromofluoromethane (DBFM) and trifluoroiodoethene (TFIE) as our

three-qubit quantum registers.

41



• We found methods to study phase transitions in the Wigner Phase Space, using dis-

continuities in the entropy of the Wigner Phase Space distribution.

• We also looked at the quantum kicked top experiment using the Wigner Phase Space

and found signatures of chaos in the distribution.

• Using localization in the Wigner Phase Space, we found quantum states which are not

sensitive to chaos and, thus, can be used effectively in studying quantum chaos.
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Outlook

Through our discussions and results on the phase transitions problem, for which we also

worked out the adiabatic evolution of a Hamiltonian, we think that the Wigner Phase Space

formulation can have applications in non-equilibrium quantum mechanics.

We have taken composite systems here as a single system in this thesis, thus, not going

into enough detail about the available correlations in the quantum system. Given the intrinsic

connection of the continuous Wigner function with quantum correlations like entanglement

[29], we believe that the discrete Wigner distribution has such a connection, which we think

can be explored as a follow-up to this study. There might also be non-trivial details in

the Wigner function distribution that can be studied to find other measures of quantum

correlations, like discord, in the Wigner function.

Another possible direction can be to understand the Wigner function in the classical

limit, to study the quantum-classical correspondence principle. We also think this formalism

can help us understand quantum computing visually and help develop or optimise algorithms

for quantum computing and control applications.
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control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent

algorithms. Journal of Magnetic Resonance 172, 296–305. issn: 1090-7807. https:

//www.sciencedirect.com/science/article/pii/S1090780704003696 (2005).

19. Miquel, C. et al. Interpretation of tomography and spectroscopy as dual forms of quan-

tum computation. Nature 418, 59–62. issn: 1476-4687. https://doi.org/10.1038/

nature00801 (2002).

20. Batra, P., Krithika, V. R. & Mahesh, T. S. Push-pull optimization of quantum con-

trols. Phys. Rev. Research 2, 013314. https : / / link . aps . org / doi / 10 . 1103 /

PhysRevResearch.2.013314 (1 2020).

46



21. Cory, D. G., Fahmy, A. F. & Havel, T. F. Ensemble quantum computing by NMR-

spectroscopy. Proceedings of the National Academy of Sciences 94, 1634–1639. eprint:

https://www.pnas.org/doi/pdf/10.1073/pnas.94.5.1634. https://www.pnas.

org/doi/abs/10.1073/pnas.94.5.1634 (1997).

22. Golze, D., Icker, M. & Berger, S. Implementation of two-qubit and three-qubit quan-

tum computers using liquid-state nuclear magnetic resonance. Concepts in Magnetic

Resonance Part A 40A, 25–37. eprint: https://onlinelibrary.wiley.com/doi/

pdf/10.1002/cmr.a.21222 (2012).

23. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th

Anniversary Edition (Cambridge University Press, 2010).

24. Rao, K. R. K. et al. Multipartite quantum correlations reveal frustration in a quantum

Ising spin system. Phys. Rev. A 88, 022312. https://link.aps.org/doi/10.1103/

PhysRevA.88.022312 (2 Aug. 2013).

25. Zhang, J., Cucchietti, F. M., Laflamme, R. & Suter, D. Defect production in non-

equilibrium phase transitions: experimental investigation of the Kibble–Zurek mecha-

nism in a two-qubit quantum simulator. New Journal of Physics 19, 043001. https:

//dx.doi.org/10.1088/1367-2630/aa6653 (Apr. 2017).

26. Damski, B. & Zurek, W. H. Adiabatic-impulse approximation for avoided level cross-

ings: From phase-transition dynamics to Landau-Zener evolutions and back again. Phys.

Rev. A 73, 063405. https://link.aps.org/doi/10.1103/PhysRevA.73.063405 (6

June 2006).

27. Krithika, V. R., Anjusha, V. S., Bhosale, U. T. & Mahesh, T. S. NMR studies of

quantum chaos in a two-qubit kicked top. Phys. Rev. E 99, 032219. https://link.

aps.org/doi/10.1103/PhysRevE.99.032219 (3 2019).

28. Madhok, V., Gupta, V., Trottier, D.-A. & Ghose, S. Signatures of chaos in the dynamics

of quantum discord. Phys. Rev. E 91, 032906. https://link.aps.org/doi/10.1103/

PhysRevE.91.032906 (3 Mar. 2015).
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