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This thesis is dedicated to my friends, family, and teachers, without whose constant love

and motivation, accomplishing this body of work would have been unthinkable





Declaration

I hereby declare that the matter embodied in the report entitled Dynamical Trapping of

Matter-Wave Bright Solitons in Optical Lattices are the results of the work carried out by

me at the Department of Physics, Indian Institute of Science Education and Research,

Pune, under the supervision of Dr. Rejish Nath and the same has not been submitted

elsewhere for any other degree.

Ashutosh Misra





Acknowledgments

First and foremost, I would like to express heartiest gratitude to my supervisor, Dr. Rejish

Nath, Department of Physics, IISER Pune, for providing treasured guidance and constant

motivation through the formative years of my research experience. In the two years spent

under his tutelage, I have been able to catch glimpses of his staggering work ethic and

immaculate research etiquette which I shall diligently strive for in my own conduct as a

researcher. Immense gratitude is owed to the imaginative culture of our research group, where

testing out new things is highly encouraged and creative thoughts are carefully nurtured. I

am grateful to fellow researchers Gautam, Inderpreet, Ratheejit, and Sandra for the several

fruitful discussions with them regarding current and previous works which helped me in

creating a unique amalgam of perspectives, ultimately coalescing to form an integral part of

my thesis. Thanks are due to Dr. Sebastian Wüster for his insightful comments during the
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Abstract

In this thesis, we investigate the dynamics of quasi-one-dimensional (Q1D) bright solitons

in weakly coupled Bose-Einstein Condensates. The resulting dynamical regimes including

Josephson-like oscillations and macroscopic quantum self-trapping (MQST) of solitons de-

pend critically on the relative strengths of linear coupling and nonlinear interactions, mass

imbalance, and the relative phase. We focus on a specific setup where bright soliton(s) trav-

eling in a quasi-1D tube encounter a finite region where the coupling between the neighboring

tubes is turned on, which leads to some very interesting dynamics. Depending on the shape

of the coupling region, the initial velocity, and the dynamical regime, we observe dynamical

trapping of the solitons within this coupling region. We characterize the nature of this trap-

ping and describe the e↵ective potential responsible using variational methods. We further

propose an experimental setup for its realization and discuss the scope of applications of

such trapping in experiments.
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Introduction

The early work of S. N. Bose and A. Einstein laid the foundation for the theory of gas with

indistinguishable particles of integer spins, which led to the discovery of a novel quantum

phenomenon now called Bose-Einstein Condensation (BEC) [1, 2]. When the experimental

observation of BECs was finally achieved after 70 years with the help of newly developed

techniques in quantum optics [3, 4, 5], it led to a cascading emergence of unexpected avenues

for new physics owing to the merger of atomic and optical physics [6]. Since then, ultra-cold

atoms optics has emerged as a discipline in itself, capturing theoretical and experimental

exploitation of an array of highly tunable quantum setups displaying extremely rich physics

with extensive scope for applications.

Research on studying quantum gases in various trap geometries has gained a lot of impor-

tance owing to the precise control that can be achieved over its environment. Manipulation

of coherent matter-wave solitons through external optical fields holds tremendous promise for

applications in precision measurements using atomic interferometry and quantum informa-

tion processing [6]. Not only that, but there is also scope for the development of quantum

devices like atomic chips with bright solitons utilizing their scattering properties against

barriers and enhanced phase sensitivity [7]. Moreover, the formation of bright solitons in

optical lattices also opens up various paths for applications in building quantum simulators.

With extensive control over its propagation in an external potential as well as its internal

properties using techniques like Feshbach resonances, it has become increasingly possible to

engineer a plethora of novel quantum technologies.
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Tunneling between lattice sites or nonlinear interactions can be made space-dependent,

which as we uncover in this study, can lead to a wide range of non-trivial physics. Dynamical

localization in BECs can be seen using various techniques from disordered potentials to

periodically driven lattices [8, 9]. In our case, we induce weak coupling between two Q1D

tubes in a 2D optical lattice for a finite region and load a pair of moving bright solitons

to study their dynamics on interaction with this region. We observe a dynamical potential

leading to the localization of solitons depending on various parameters.

The thesis is structured in the following manner:

• Chapter 1 : We explain the fundamental concept of Bose-Einstein Condensation and

introduce its defining characteristics. We discuss the Hamiltonian in the mean-field

approximation and the assumptions leading to quasi-1D bright solitons.

• Chapter 2 : We overview the physics of BECs in optical lattices and introduce lat-

tice approximations used in Wannier basis representation. We also briefly discuss the

conditions for the collapse and decay of attractive condensates in traps.

• Chapter 3 : We classify the dynamical regimes and the critical behavior of weakly

coupled Q1D bright solitons through the mass imbalance and relative phase.

• Chapter 4 : We investigate the dynamics of moving bright soliton(s) in the presence

of a finite region with non-zero coupling. We characterize the dynamical confinement

of the condensate within the coupling region and utilize a variational approach to

understand the nature of the e↵ective trapping potential.

• Chapter 5 : We make final remarks on the results obtained and discuss its future

scope.
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Chapter 1

Bose-Einstein Condensation and

Bright Solitons

1.1 Bose-Einstein Statistics

In this section, we look at the origin of Bose-Einstein condensation using the quantum

statistical description developed by S. N. Bose and A. Einstein for non-interacting indis-

tinguishable particles. We work in the grand canonical ensemble, where we can have an

arbitrary number of particles in a given state, to make the interpretation much simpler. The

probability of occurrence of a configuration in a gas with N’ particles in a state k with energy

Ek is given by PN 0(Ek) = e
��(Ek�µN

0). Here, µ is the chemical potential that fixes the overall

particle number, and � = 1/kBT is the temperature.

For non-interacting bosons, we have an independent Hamiltonian for each particle and

the resulting single-particle eigenstates allow unbounded occupation numbers in any of the

states. Computing the full grand canonical partition function by summing over all possible
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particle numbers, we are left with:

Z =
Y

i

1

1� e��(Ei�µN 0)
(1.1)

where Ei are the energy eigenstates of the single-particle states. We note here that for this

sum to converge, we are required to assume that Ek > µ for all the states k. Similarly, for

the ground state energy, µ < E0. Using the partition function, we now evaluate the average

number of particles or number density:

hnii =
1

e�(Ei�µ) � 1
(1.2)

which is the Bose-Einstein distribution. This reduces to the familiar Boltzmann distribution

in the limit of (E � µ)/kBT >> 1. We notice that when µ ! E0, the occupation number of

the ground state diverges and becomes:

N0 = hn0i =
1

e�(E0�µ) � 1
(1.3)

while for all the higher energy states, the thermal occupation number, NT =
P

i 6=0hni(µ, T )i,

increases for a given temperature T until it reaches a maximum cap of the critical occupation

number Nc at µ = E0. This is the principle behind the macroscopic occupation of the

ground state which we call Bose-Einstein condensation. Note that as T increases, Nc(T )

also increases, and when it goes beyond the total number of particles, Nc(T ) > N , that

temperature is called the critical temperature Tc and is defined as:

NT (Tc, µ = E0) = N (1.4)

Below this critical temperature, we can observe the phenomenon of Bose-einstein condensa-

tion. Let’s consider a non-relativistic gas in a three-dimensional box of volume V. Then in

the limit of very large N, one can replace the discrete energy spectra, E = ~2k2
2m , with the
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continuum approximation and get the density of states:

g(E) =
V

4⇡2

 
2m

~2

!3/2

E
1/2 (1.5)

Here, since the lowest energy state is E = 0, µ is constrained to be negative. However, we

carefully note that, as a result of the continuum approximation, g(E) is proportional to E
1/2

and completely ignores the occupation of the E = 0 state. To rectify this omission, we write

the occupation number as follows:

N = NT +N0 (1.6)

where,

NT =
V

4⇡2

 
2m

~

!3/2 Z
E

1/2
dE

z�1e�E � 1
=

V

�
3
T

g3/2(e
�µ) (1.7)

and

N0 =
1

z�1 � 1
=

z

1� z
(1.8)

where �T is the thermal wavelength and z = e
�µ. The g3/2(z) is one of the classes of the Bose

functions and for z = 1, it is equal to the Riemann zeta function, gn(1) = ⇣(n). Applying

the condition given in (1.4), we arrive at the following expression for Tc:

Tc =
2⇡~2
mkB

 
n

⇣(3/2)

!2/3

(1.9)

So, Tc for a gas in a 3D box depends entirely on the density of the gas. Combining the

results from the expressions above for NT and N0, for T < Tc, we have:

N0

N
= 1�

 
T

Tc

!3/2

(1.10)
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Clearly, as T ! 0, more particles occupy the macroscopic ground state as it approaches the

total number of particles. More particles added to the system for a fixed temperature go

directly to the condensate fraction as the thermal cloud is already saturated.

1.2 One-Body Density Matrix and Order Parameter

1.2.1 O↵-Diagonal Long-Range Order

After gaining an intuition from a microscopic perspective on how BECs come about,

we turn to formalize the concept with the help of field operators. We obtain the one-body

density matrix by tracing out the overall many-body density matrix and get:

⇢
(1)(r, r0) = h ̂†(r) ̂(r0)i (1.11)

where  ̂(r) and  ̂†(r) are the creation and annihilation operators, respectively, at the point

r. For a pure state, if the N-body wavefunction is given by  n(r1, r2, ..., rN), then the

one-body density matrix can be evaluated by integrating over all the remaining degrees of

freedom:

⇢
(1)
n
(r, r0) = N

Z
dr2 dr3...drN  

⇤
n
(r, r2, ..., rN) n(r

0
, r2, ..., rN) (1.12)

To evaluate this density matrix, we assume a spatially uniform and isotropic system of N

particles in volume V and expand the field operators in terms of plane waves:

 ̂(r) =
1p
V

X

k

b̂ke
ikx (1.13)
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where the annihilation and creation operators for bosons follow the commutation relations

given by:

[ b̂k, b̂q
†
] = �(k� q) (1.14)

With the help of the above, we can write the one-particle density matrix in the momentum

basis as follows:

h ̂†(r) ̂(r0)i = 1

V

X

k,q

hb̂q
†
b̂kieikr�iqr0 (1.15)

From the commutation relations, it can be derived that hb̂q
†
b̂ki is proportional to �(k� q).

Treating the k = 0 = q case separately, we have:

⇢
(1)(r, r0) =

N0

V
+
X

k 6=0

hnkieik(r�r0) (1.16)

We gather from this expression that for |r� r0| ! 1, the last term vanishes because of the

rapidly oscillating complex exponential, and, as a result,

⇢
(1)(r, r0) ! N0

V
as |r� r0| ! 1 (1.17)

The single-particle density matrix provides information about correlations between the basis

states of the wave function. As larger |r � r0| is reached, these correlations are usually

expected to exponentially decay. However, as a result of the indistinguishability in the case

of bosons housed in the commutation relations, the o↵-diagonal terms of this matrix do

not vanish and saturate at a nonzero value, N0/V . For T < Tc, as we have seen, there is

a macroscopic occupation of this zero-momentum ground state and ⇢(1)(|r � r0|) ! N0/V ,

which is finite and of the order of N/V over large distances. The system is said to possess

an o↵-diagonal long-range order (ODLRO), which establishes coherence between atoms over

a large spatial extent and allows them to migrate over long ranges without perturbing the

system. This is a defining property of BECs.
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1.2.2 Order Parameter

For interacting and non-uniform systems, instead of plane waves, we use the eigenfunc-

tions of our Hamiltonian and write the field operators as:

 ̂(r) = �0(r) b̂0 +
X

i 6=0

�i b̂i (1.18)

where b̂i are the annihilation operators for �i eigenstate. Here, we apply the Bogoliubov

Approximation, where we replace the operators b̂0 and b̂
†
0 with the c-number

p
N0. The

reasoning for this comes from the macroscopic occupation of the i = 0 state, N0 >> 1, and

hence, the action of the creation or annihilation operator of a single particle in this ground

state results in a negligible change in the state of the system. Moreover, we can combine

the other k 6= 0 terms in one fluctuation term as � ̂(r), and therefore, the field operator

becomes  ̂(r) =
p
N0�0 + � ̂(r).

We call the scalar term  0 =
p
N0�0 the ”order parameter” of the system, as it encap-

sulates the transition to the macroscopically occupied GS in BECs for T < Tc. We also

note the gauge freedom present in the choice of this order parameter, as the quantum state

remains invariant on multiplication by a phase factor ei↵. This is the U(1) gauge symmetry,

which is spontaneously broken as we make an explicit choice of the phase and, hence, is the

marker for the phase transition that leads to the formation of Bose-Einstein condensates.

1.3 Interacting Hamiltonian and Mean-Field Regime

In this section, we derive the mean-field equations for a weakly interacting system of

condensates. We start by writing the full many-body interacting Hamiltonian in terms of

10



the field operators  ̂:

Ĥ =

Z  ~2
2m

r ̂†r ̂+  ̂†
Vext(r) ̂

!
dr+

1

2

Z
 ̂† ̂†0

V (r0 � r) ̂ ̂0
dr0dr (1.19)

where Vext(r) is the external potential and V (r) is the two-body interaction potential. We

assume the two-body collisions to be short-range and isotropic and write them as:

V (r0 � r) = g�(r0 � r) (1.20)

At low temperatures, only the s-wave scattering term stays relevant in the two-body poten-

tial. This is equivalent to an e↵ective contact interaction potential with a given scattering

length as, which we now write as:

V (r0 � r) =
4⇡~2as

m
�(r0 � r) (1.21)

Using the macroscopic occupancy of the GS in BECs, we replace the field operator with

the order parameter  . Further, after introducing contact interactions, we arrive at the

well-known Gross-Pitaevskii equation:

i~@ 
@t

(r, t) =

✓
�~2
2m

r2 + Vext(r, t) + g | (r, t)|2
◆
 (r, t) (1.22)

The Gross-Pitaevskii equation (GPE) describes the dynamics of a weakly interacting BEC

within the mean-field approximation. It gives the time evolution of the order parameter  

subject to non-linear self-interaction. For g > 0, the interactions are repulsive, for g < 0,

the interactions are attractive.
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1.4 Reduced Dimensionality

With considerations regarding stability aside, BECs display highly manipulable experi-

mental properties. Using a strong trapping potential, it is possible to dictate the shape of

the condensate to a large extent and arrive at any desired geometry. In many cases, it is use-

ful to have asymmetric condensate by employing an anisotropic external trapping potential.

These anisotropies are often used to deform it into a pancake shape by taking !z > !y,!x

or a elongated cigar shape by making !y,!x > !z.

Given a su�ciently strong confinement, condensates in lower dimensions can even be

realized. Consider V (x, y, z) = 1
2m(!2

x
x
2 + !

2
y
y
2 + !

2
z
z
2) for which !y,!x >> !z. It is

possible to factor out the transverse part of  (x, y, z) for this case and eliminate the extra

degrees of freedom by assuming the wave function to be frozen in the GS of the strong

harmonic trap in the xy plane. We can substitute this into the Gross-Pitaevskii equation

and integrate over x and y to get the quasi-1D GPE:

µ1D z =

✓
�~2
2m

@
2

@z2
+

1

2
m!

2
z
z
2 + g1D | (z, t)|2

◆
 (z, t) (1.23)

Here, we get g1D = g

2⇡lxly
and µ1D = µ � 1

2~(!x + !y). Condition on the validity of this

approximation can be written as ~(!x!y)1/2 >> µ1D. We are left with a cigar-shaped tube

of condensate, whose transverse degrees of freedom are frozen out.

Similarly, for the !y,!x << !z case, we end up with a pancake-shaped condensate,

which has its d.o.f. along the z-axis eliminated. Note that, for studying the dynamics in

condensates with reduced dimensionality, it is to be ensured that the validity condition on

chemical potential always holds.
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1.5 Q1D Bright Solitons in BECs

Without any external potential, the one-dimensional GPE is:

i~@ 
@t

= � ~2
2m

@
2
 

@z2
+ g | |2  (1.24)

This belongs to a class of equations referred to as the 1D Non-linear Schrodinger equations,

which is encountered regularly when studying optics in non-linear media. It supports so-

lutions called solitons which are non-linear localized wave packets that possess robustness

against external perturbations. Their resistance to dispersion makes them ideal for use in

communication media like optical fibers. They are called so because of their particle-like

behavior in collisions.

Solitonic solutions for NLS equations are obtained using a technique called the inverse

scattering transform. Depending on the sign of the interaction parameter g, dark solitons and

bright solitons are supported. For g > 0 repulsive condensates, dark solitons are supported

by the GPE which corresponds to a dip in the local density along with a phase jump across

its middle. These also show particle-like behavior during collisions. For g < 0, when the

interactions are attractive, the GPE supports solutions called bright solitons. These are

peaks in local density and come about due to the self-trapping of the atoms against the

dispersion. Their general form can be written as:

 (x, t) =

r
k

2
sech(k(x� ut)) exp[if(x, t) + i�] (1.25)

where k characterizes the length scale depending on the interaction strength g, u and f(x, t)

determine the velocity, and � is the complex global phase.

In this chapter, we have familiarized ourselves with the concept of Bose-Einstein Conden-

sation and the mean-field equations governing the dynamics of interacting gas of BECs. We

also looked at the conditions for realizing lower dimensional systems and their 1D solitonic
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solutions. Now, we move on to study BECs in periodic potentials and various approximations

involved for weakly interacting systems.
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Chapter 2

Condensates in Optical Lattices

This chapter deals with the fundamentals of ultracold atoms in optical lattices. We give

an overview of the light-matter interaction involved in generating a lattice potential using

lasers. We write down the full many-body Hamiltonian and study it in the limit of weakly-

interacting bosons. We give a brief outline of the dynamics in the case of repulsive atoms in

periodic potentials before moving on to studying the attractive case.

2.1 Optical Lattice Potential

A periodic trapping potential that can hold Bose-Einstein condensates can be constructed

using an interference pattern generated by counter-propagating laser beams. On interacting

with an atom, the oscillating electric field induces a dipole moment in the atom, which now

oscillates with the driving field. This dipole moment further interacts with the electric field

to yield a dipolar potential as a result of the ac Stark shift seen in the atomic energy levels.

We can write the energy shift or the dipolar potential as:

Udip = �1

2
↵(!)hE2(r, t)i (2.1)
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where ↵(!) is the polarizability depending on the driving frequency ! = !res+� and� is the

detuning to the transition frequency, !res, for the atomic resonance. The time-averaged light

intensity I / |E(r)|2 of two identical counter-propagating laser beams, which appears in the

above potential, creates an interference pattern with nodes and anti-nodes separated by half

of the wavelength called the lattice spacing. The spatial modulation of the potential energy

leads to a gradient force acting on the atoms such that they behave as if in a periodic lattice.

Most experiments operate frequencies very close to the resonance where detuning � << !res

or the rotating wave approximation holds and the rapidly oscillating terms can be neglected.

The sign of polarizability ↵(!) close to !res depends on whether the light is red-detuned

(� < 0) or blue-detuned (� > 0), which decides whether the nature of the intensity peaks

will be attractive or repulsive. In the general case with three pairs of counter-propagating

beams, the spatial variation of the potential is given by:

VOL(x, y, z) = V0(sin
2
kx+ sin2

ky + sin2
kz) (2.2)

Since the dipole force is derived from the gradient of this interaction potential, the force is

conservative in nature. However, in the semiclassical case, we have the damping term that

comes from the spontaneous decay of the excited state of the two-level system. Within this

two-level approximation, if the decay rate due to spontaneous emission is �, then we can

write the corresponding scattering rate as:

�sc /
 
�

�

!2

(2.3)

In order to reach a conservative potential suitable for the dipolar trapping of condensates, we

are interested in the far-detuned case to minimize scattering as much as feasible. Therefore,

to realize such optical traps, experiments usually recommend keeping high intensities and

large detunings.

It is extremely hard to understate the incredible amount of control and tunability o↵ered

16



by optical trapping potentials on setups with ultracold atoms. From highly tunable lattice

parameters to creating interesting lattice geometries in various models and state-dependent

potentials using di↵erent polarization vectors, the possible extent of applications is vast (refer

[10, 11] for a detailed review). In the next section, we look at one of such cases, i.e., the

Hamiltonian of BECs in a lattice potential, and focus our study primarily on the weakly

interacting case.

2.2 Hamiltonian

Starting with the many-body Hamiltonian for a gas of N interacting bosons, we approxi-

mate the two-body collisions by contact interactions given by V (r0�r) = (4⇡as~2/m)�(r0�r)

to arrive at the Gross-Pitaevskii equation in the mean-field regime for a dilute gas:

i~@ 
@t

(r, t) =

✓
� ~2
2m

r2 + VOL(r) + g | (r, t)|2
◆
 (r, t) (2.4)

Consider a one-dimensional potential of the form:

VOL(x) = V0(sin
2
kx) (2.5)

where k = ⇡/L. In accordance with the periodicity of the above potential, the condensate

eigenfunctions can be written using Bloch’s theorem:

�n,q = e
iqx

un,q(x) (2.6)

where q is the quasimomentum, n is the label for the energy band, and functions un,q(x+L) =

un,q(x) are periodic to allow expansion of the solution and potential in a Fourier series, all

within the first Brillouin zone of the reciprocal lattice. Bloch functions form an orthogonal

basis and the constituent condensate wavefunction is periodically extended over the entire

lattice structure. The eigenfunctions and their energies depend on the depth of the lattice
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potential V0. In the context of a shallow lattice depth, Bloch functions are delocalized

over the lattice and they give the exact band structure and the excitation spectrum using

analytical and numerical methods. However, for a su�ciently deep lattice potential, energy

scales are such that only the lowest-lying band is involved and the wavefunctions are highly

localized at each site. To get a localized wavepacket in real space, a superposition of Bloch

functions is used:

�n(R, x) =
1

L

Z
e
�iRq�n,q(x) (2.7)

which is periodically translated using the phase factor e�iRq, where R is the real-space lattice

vector. This is equivalent to a change of basis, a unitary transformation from the Bloch states

to a set of localized states called Wannier functions [12, 13, 14]. Unlike Bloch states, these

give the localized wavefunctions at the center of each lattice site, which subsequently get

translated to the other lattice sites. On performing this transformation, we exchange the

localization in energy for the localization in space, and hence, WFs are not eigenstates of

the Hamiltonian.

In the weakly interacting case, the spatial extent of Wannier states depends on the number

of atoms in each lattice site. For a 1D lattice potential with strong transverse confinement,

the ansatz can be factored as follows:

 (r, t) =
p

NT

X

n

 n(t)⇥(r� rn) (2.8)

Introducing this to the GPE, we arrive at the well-known discrete non-linear Schrodinger

equation (DNLSE):

i~@ n

@t
= �K( n�1 +  n+1) + U | n|2 n + ✏n n (2.9)

where K is the nearest neighbor tunneling term, ✏i is the on-site energy, and U is the non-

18



linear interaction term:

K = �
Z

dr

"
~2
2m

r⇥n.r⇥n+1 +⇥nVOL⇥n+1

#
(2.10)

✏n =

Z
dr

"
~2
2m

(r⇥n)
2 + VOL⇥

2
n

#
(2.11)

U = gN

Z
dr|⇥n|4 (2.12)

By choosing an ansatz with a time-dependent particle number and phase at each site, the

dynamics of the DNLSE have been extensively studied in [15]. In this thesis, our focus is

mainly on condensates with attractive interactions, which are briefly discussed in the next

section.

2.3 Collapse in Attractive BECs

A BEC in 3D with attractive interaction is unstable as it tends to coalesce infinitely to

reach higher densities and eventually collapses on itself. This situation can be simply avoided

by adding an external trap that stabilizes the system [16, 17]. Using the Gross-Pitaevkii

equation, it has been predicted in multiple studies [18, 19], and verified experimentally

[20, 21], that when the number of atoms N in a trapped BEC with negative scattering

length exceeds a critical value Ncr, a singularity is born at the center of the trap where

the collapse dynamics is triggered, similar to the uniform case in 3D. If N < Ncr, energy

from the interatomic interactions is below the spacings of the trapping potential and the

condensate slowly decays through quantum tunneling. The scattering length of atoms in

BECs can be controlled via a magnetic field using Feshbach resonances and tuned such that

the interaction strength changes value from positive to negative and provide estimates of the

stability conditions. Many theoretical and experimental studies have obtained a value for Ncr

for distinct geometries, including [22], which provide an estimate of Ncr for the cylindrically
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symmetrical case. They characterize the relation between Ncr, the scattering length asc and

the transverse scaling a? in the following form:

Ncr|asc|
a?

= k (2.13)

As a result of strong transverse confinement, this condition demands that the atoms are

frozen in the lowest transverse vibrational level and the interatomic interactions are negligi-

ble compared to the level spacings. This can serve as a reference for the implementation of

quasi-1D cylindrical tubes described later in this thesis, since as previously discussed, BECs

in reduced dimensions are realized through anisotropic traps and stipulate similar restric-

tions on Ncr and asc can be derived. Attractive condensates show extended bright solitons

in one-dimensional optical lattices which have been studied in the mean field regime and

compared with DMRG results for the Bose-Hubbard Hamiltonian [23, 24, 25], where the

phase coherence is lost in condensate for strong interaction strengths and it destabilizes to

a quantum superposition state instead.
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Chapter 3

Bright Solitons in Q1D Coupled

System

In this chapter, we investigate the dynamics of bright solitons in two uniformly coupled 1D

tubes and characterize their distinct dynamical regimes. In each of these regimes, we study

the e↵ect of population imbalance and relative phase on the dynamics. We identify a control

parameter to tune the competing quantum interactions that govern the transition between

these regimes and show its dependence on the initial state. We use the understanding of the

distinct nature of competing interactions to further explain the dynamics in the spatially

dependent coupling case in Chapter 4.

3.1 Setup

In this section, we introduce the coupled setup and the equations governing its dynamics.

We first initialize a 2D optical lattice potential in xy plane given by V (x, y) = V0 [ sin
2(kx)+

sin2(ky) ] and keep the z-axis free of any external confinement. We assume that the lattice

potential is su�ciently strong such that we are in the tight-binding regime and macroscopic
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wavefunction is given by Wannier states associated with the lowest energy band in the

transverse plane. From the resulting set of Q1D cigar-shaped tubes, we focus our study

on the dynamics of only two such weakly coupled tubes. The evolution of macroscopic

condensate wavefunction,  (r, t), is governed by the 3D Gross-Pitaevskii equation, given as:

i~@ (r, t)
@t

=


�}2r2

2M
+ g0| (r, t)|2 + V (x, y)

�
 (r, t) (3.1)

where g0 = 4⇡asc}2N/M characterizes the short range contact interaction with asc being the

s-wave scattering length. In this thesis, we consider only attractive short-range interactions

(asc < 0). In the tight binding regime, we can factorize the wavefunction at each lattice site

and write it as a sum of localized Wannier basis states as:

 (r, t) =
X

ij

 i,j(r, t) =
X

ij

wi,j(x, y) i,j(z, t) (3.2)

Using this ansatz (3.2) in the 3D GPE (3.1) and applying the weak coupling approximation

described in [15], we obtain the discrete non-linear Schrodinger equation (DNLSE) given by:

i~@ i,j

@t
= � ~2

2M

@
2
 i,j

@z2
+ g1D| i,j|2 � J [ i+1,j +  i�1,j +  i,j+1 +  i,j�1] (3.3)

where,

J = �
ZZ

dx dy w
⇤
i,j
(x, y)


� 1

2

✓
@
2

@x2
+

@
2

@y2

◆
+ V (x, y)

�
wi+1,j(x, y)

and g1D = g0

RR
dx dy |wi,j(x, y)|4. Since we are considering only two such coupled 1D tubes,

our equations reduce to:

i~@ 1

@t
= � ~2

2M

@
2
 1

@z2
+ g1D| 1|2 1 � J 2

i~@ 2

@t
= � ~2

2M

@
2
 2

@z2
+ g1D| 2|2 2 � J 1 (3.4)
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We place a single ground state bright soliton in each of the two tubes with no spatial o↵set

in the z-direction, with the initial states given by:

 j(z) =
Nj

p
|g1D|
2

sech

✓
Nj|g1D|z

2

◆
e
i�j (3.5)

and the total number of atoms in both sites is fixed to NT = N1 + N2. An initial constant

phase di↵erence, �0 = (�1��2), and/or a mass imbalance, p0 = N1�N2, can now be added

between the two solitons in order to trigger non-trivial dynamics between the two sites. We

run numerical simulations of (3.4) with the above ansatz for di↵erent values of J, p0, and �0

and study the dynamics of the system.

3.2 Stationary States

First, we find the stationary points of the coupled system and look at their stability. This

will later help us understand the dynamics arising due to deviation from these equilibrium

states. We first make the (3.4) dimensionless by rescaling the variables and arrive at:

i
@ 1

@t
= �1

2

@
2
 1

@z2
+ g1D| 1|2 1 � J 2

i
@ 2

@t
= �1

2

@
2
 2

@z2
+ g1D| 2|2 2 � J 1 (3.6)

where g1D ! g1DMb

~2 , J ! JMb
2

~2 and b is the lattice spacing. We can derive the above coupled

GPEs from the Lagrangian given by:

L(t) =

Z 1

�1

(
X

j

"
i

2

✓
 

⇤
j

@ j

@t
�  j

@ 
⇤
j

@t

◆
� 1

2

����
@ j

@z

����
2

+
|g1D|
2

| j|4
#
+ J( ⇤

1 2 +  1 
⇤
2)

)
dz

(3.7)
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We input the GS ansatz from (3.5) into the above Lagrangian and evaluate the integral to

obtain the following:

L(t) = �[�̇1N1 + �̇2N2] +
|g1D|2

24
[N3

1 +N
3
2 ] +

4J

NT

N1N2I(p) cos(�) (3.8)

where we have defined mass imbalance as p(t) = (N1 � N2)/NT and phase di↵erence as

� = (�1 � �2). The integral I(p) cannot be solved analytically and is given by:

I(p) =

Z 1

0

dz

cosh2(z) + sinh2(pz)
(3.9)

On solving the Euler-Lagrange equations for p(t) and �(t), we get these time evolution

equations:

ṗ = (1� p
2)I(p) sin(�)

�̇ = �⇤p� cos(�)
d

dp
[(1� p

2)I(p)] (3.10)

where t is rescaled by a factor of 2J and

⇤ =
(|g1D|NT )2

16J
(3.11)

By putting the time derivatives in the LHS of (3.10) equal to zero, we get the following

stationary states:

�0 = 0, p0 = 0

�0 = ⇡, ⇤p0 = I
0(p0 )(1� p

2
0)� 2p0I (p0 )

�0 = cos�1

"
2⇤

⇡

#
, p

2
0 = 1 (3.12)

On performing linear stability analysis by adding small perturbations to the above stationary

states, we obtain the following information about their stability. For �0 = 0 and p0 = 0, we

start with identically distributed atoms in both the two tubes with no initial phase di↵erence.
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This is a stable fixed point as we get sinusoidal solutions for small fluctuations in p(t) and

�(t). For the ⇡-phase stationary point, small fluctuations lead to distinct unsteady states

depending on the value of ⇤ and, hence, it is an unstable fixed point. The third stationary

state only exists when ⇤ < ⇡/2. For such values of ⇤, the fixed point is always unstable

since any small perturbation in the �(t) and p(t) leads to a periodic transfer of atoms

between the two tubes. Note that the dynamical parameter ⇤ above decides the stability

of the stationary states and is therefore key in understanding the dynamics obtained from

non-equilibrium initial states studied in the next section.

3.3 Self-Trapping and Switching Dynamics

We start with a pair of bright solitons, one in each tube, linearly coupled with each other

via the lattice potential. We numerically simulate (3.4) using the Split Step Method (SSM)

for the diagonalized Hamiltonian. It should be noted here that we only start with the GS sech

form of the wavefunction given in (3.5) and the SSM allows it to take any waveform during

its time evolution, allowing for higher excitations to emerge. For this scenario, we observe

di↵erent dynamical regimes based on ⇤ = (gNT )2

16J , which represents the relative strength of

the contact interactions and tunneling strength, for a varying extent of initial asymmetry

between the solitons. We divide the results into three cases around the critical value ⇤c:

• ⇤ << ⇤c: Switching

• ⇤ / ⇤c: Non-periodic Transfer

• ⇤ > ⇤c: Self-Trapping

To change the value of ⇤, we can either (i) modify the overlap between the transverse atomic

clouds of the two condensates by changing the lattice depth V0 or the spacing between the

tubes or (ii) change the number of atoms in the condensate. Here, we assume that the weak
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coupling approximation used to derive (3.4) still holds, where the non-linear interactions in

the inter-layer overlap are weaker than the nonlinear self-interactions within each layer.

3.3.1 ⇤ << ⇤c: Switching

For ⇤ = 0.31 << ⇤c, we start with an out-of-equilibrium initial state by providing an

asymmetry in the mass and the phase of the solitons. In this high coupling limit, for a single

soliton loaded in one tube, p0 = 1, and �0 = 0, we see periodic Rabi-like oscillations in the

population di↵erence between the tubes with a frequency of !R ⇡ 2J . Here, p(t) oscillates

around p = 0 between p = ±1. This is called complete or perfect switching as the entire mass

of the soliton migrates from one layer to the other during the oscillations. When p0 = 0.6

or any 0 < p0 < 1 and �0 = 0, the soliton switches incompletely between the tubes as p(t)

still oscillates around p = 0 but with an amplitude of approximately p0 < 1. Figure (3.1)

(a) and (b) show the density evolution in each of the tubes and figure (3.2) gives the plots

for mass di↵erence p(t) during the dynamics.

Providing an asymmetry via an initial phase di↵erence also leads to similar dynamics.

For p0 = 0 and �0 = ⇡/2, the soliton switches completely and periodically oscillates between

p = ±1 while for �0 = ⇡/4, the switching is incomplete. Figure (3.3) (a) and (b) give the

density plot for �0 = ⇡/2. This mass flow can be better understood using the hydrodynamic

description of BECs [16]. The phase di↵erence given in the transverse direction is interpreted

as an initial nonzero superfluid velocity towards the increasing phase.

Periodic oscillations in the density arise from the linear coupling between the tubes. Here,

we operate in the non-interacting limit where the non-linear e↵ects of contact interactions

are negligible. So, in the absence of interactions, atoms in the condensate tend to coherently

tunnel between the two tubes. We note that for 0 < ⇤ << ⇤c, very small excitations emerge

around the central solitonic waveform during each oscillation which can be attributed to the

nonlinearity present in the system. However, they have a negligible impact on the dynamics
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Figure 3.1: Dynamics of two linearly coupled bright solitons in Q1D tubes with an initial
mass di↵erence p0 = 0.6 between them for g1D = �1. The density evolution given in each
row corresponds to a system of two coupled Q1D tubes and colorbar on top gives the density
scale for all. ⇤ = 0.31 in (a) and (b), mass asymmetry leads to coherent population transfer
oscillations between the solitons with hpi = 0. ⇤ = 1.25 in (c) and (d), atomic flow yields
non-periodic oscillations in density around hpi ⇡ 0. In (e) and (f), ⇤ = 2.08, the direction
of flow gets reversed and condensate gets self-trapped with hpi 6= 0 in the tube with larger
initial mass.
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Figure 3.2: Population di↵erence p(t) with rescaled time Jt for �0 = 0 and (a) p0 = 1 and
(b) p0 = 0.6; For both cases (a) and (b): ⇤ = 0.31 leads to switching dynamics, ⇤ = 1.25
leads to non-periodic population transfer, ⇤ = 2.08 leads to self-trapping
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and can be safely ignored.

3.3.2 ⇤ / ⇤c: Non-periodic Transfer

On increasing ⇤ / ⇤c, oscillations in p(t) become non-periodic but are still around the

average hp(t)i ⇡ 0. The amplitudes of the oscillations are also reduced. As J is smaller

than before for a fixed g in this case, the time period of the oscillations increases. This

can be seen from Figures (c) and (d) in (3.1) where p0 = 0.6 and in (3.3) where �0 = ⇡/2

and the mass imbalance plots in (3.2) and (3.4). Since the interactions are non-linear and

attractive, they provide a self-focussing tendency to condensate and lend an anharmonic

character to the oscillations. We see that nonlinear interactions disrupt the periodicity of

these oscillations analogous to the dynamics of a non-rigid pendulum where the initial mass

imbalance corresponds to the initial angular momentum [26, 27]. It should be noted that

due to the increase in relative non-linearity, peripheral excitations around the soliton get

slightly bigger, however, still are negligible enough to substantially impact the dynamics for

the time scales considered.

Due to the spatial freedom a↵orded to the wavefunction along the tube axis with respect

to its waveform, we do not observe a critical slowing down of the dynamics at ⇤c as seen in

[26, 28, 27], where p(t) decays to 0. Instead, a mixture of behaviors from both the dynamical

regimes from below and above ⇤c is seen as we approach closer, and hence, a sharp border

cannot be determined for ⇤ = ⇤c. We choose to identify ⇤c based on the value of hp(t)i,

averaged over a reasonable time scale depending on J, as we vary ⇤. Plots for these are

explained in section 3.4.
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Figure 3.3: Dynamics of two identical coupled bright solitons in Q1D tubes with an initial
phase di↵erence �0 = ⇡/2 between them for g1D = �1. The density evolution given in
each row corresponds to a system of two coupled Q1D tubes and colorbar on top gives the
density scale for all. ⇤ = 0.25 in (a) and (b), phase gradient leads to coherent population
transfer oscillations between the solitons with hpi = 0. ⇤ = 2.0 in (c) and (d), non-periodic
oscillations in density around hpi ⇡ 0 takes place. In (e) and (f), ⇤ = 6.25, condensate gets
self-trapped with hpi 6= 0 in the tube opposite to the direction of initial atomic flow. Note
the initial direction of flow stays the same for all three cases.
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Figure 3.4: Population di↵erence p(t) with rescaled time Jt for p0 = 0 and (a) �0 = ⇡/4
and (b) �0 = ⇡/4; For both cases (a) and (b): ⇤ = 0.25 leads to switching dynamics,
⇤ = 2.0 leads to non-periodic population transfer, ⇤ = 6.25 leads to self-trapping, however,
in di↵erent tubes in spite of the same direction of initial flow.
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3.3.3 ⇤ > ⇤c: Self-Trapping

As we further increase ⇤ beyond a certain threshold, the mass imbalance starts to oscillate

non-periodically around a non-zero hpi 6= 0 with a small amplitude, as shown in Figure (3.1)

and (3.3). This is called macroscopic quantum self-trapping (MQST) which results from the

nonlinearity of the contact interactions within the condensate. The nonlinear interactions

counter the tendency of the condensate atoms to tunnel coherently to the neighboring tube.

For ⇤ = 2.08 and p0 = 1, a small fraction of the soliton’s mass tunnels to the other tube, and

a larger fraction stays in the initial tube, resulting in small oscillations around hpi = 0.79,

whereas, for p0 = 0.6, mass instead flows from the tube with the smaller soliton mass to

the other, finally oscillating about hpi = 0.77 (see fig. 3.2). When p0 = 0 and �0 = ⇡/2,

self-trapping is seen for a larger value of ⇤ = 6.25 due to the dependence of ⇤c on the initial

conditions.

We note that while the value of �0 or p0 decides the direction of the initial mass flow

between the tubes, we cannot predict which tube the condensate will eventually get self-

trapped in, which can be seen from Figure (3.2) and (3.4). Due to this unpredictability, it

becomes di�cult to engineer applications involving controlled ”atomic switching” of solitons

using these coupled tubes to mimic the behavior seen in directional fiber couplers [29].

On increasing ⇤ further, we risk losing the validity of the mean-field approximation and

the weak coupling limit as quantum fluctuations come into play to describe the dynamics

accurately.

3.4 Dependence of ⇤c on Initial State

The dynamics of this weakly coupled system of BECs with non-linear interactions can be

understood using some analogies in classical mechanics. It has been stated in previous works
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Figure 3.5: hpi vs J for varying asymmetry in (a) p0 and (b) �0. Transition from hpi 6= 0
to hpi ⇡ 0 marks Jc corresponding to ⇤c for g1D = �1. ⇤c increases (a) from ⇤c = 1.33 for
p0 = 0.1 to ⇤c = 1.69 for p0 = 0.9 and (b) from ⇤c = 2.5 for �0 = ⇡/4 to ⇤c = 3.47 for
�0 = ⇡/2.
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[26, 27] that the dynamical scenarios observed in such systems correspond to the dynamics

of a non-rigid pendulum in a plane, where p(t) is the angular momentum, � is the tilt angle

to the vertical, and
p

1� p2 is the length of the pendulum. The parameter ⇤, the measure

of non-linearity to linearity here, can be mapped to the inverse of the moment of inertia of

the pendulum. This governs the critical transition from the switching to the self-trapped

case.

The oscillations which occur about p ⇡ 0 can be represented by the case where the

pendulum isn’t provided with su�cient kinetic energy to overcome the potential fence cor-

responding to the bob at the ”⇡ position” and thereafter slows down to halt before changing

its direction of motion and oscillating so forth. The smaller the amplitude of p0, the more

periodic the oscillations. When the kinetic energy or p0 is su�cient to overcome the po-

tential barrier, the bob crosses over the ”⇡ position”, avoids the zero angular momentum

state p = 0, and instead performs rotations about some p 6= 0. This corresponds to the

self-trapped case where there is a perpetual mass imbalance and the relative phase runs

abound.

We note that the potential barrier peak at � = ⇡ must depend on the value of the mo-

ment of inertia. Moreover, the initial energy given through both p0 and �0 dictates how the

length of the non-rigid pendulum evolves, and hence, is also a key factor in deciding the

height of the potential’s peak. Therefore, to obtain a critical value pc or �c for which the

bob crosses the ”⇡ position”, with the help of energy conservation, we obtain an expression

that depends on ⇤ [28]. So, for a given ⇤, there exists a critical initial asymmetry given

through pc or �c, which will mark the transition from switching to the self-trapped case.

Equivalently, it can be asserted that for a given p0 and �0, there exists a critical value ⇤c

marking the same transition. We study the variation in ⇤c for di↵erent initial conditions

through time averaged p. Figure (3.5) gives this time-averaged value of p as a function of J

or ⇤ obtained through the numerical simulation of the GPE (3.4). ⇤c is identified from the

value of J where hp(t)i ⇡ 0. We note that ⇤c increases with the extent of asymmetry in the
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initial state, both through mass and phase di↵erence.

In summary, the dynamics of two weakly coupled bright solitons in Q1D tubes show a

critical dependence on ⇤ exhibiting a transition from coherent switching to macroscopic self-

trapping dynamics. The di↵erent regimes are manifest in the average population imbalance

wherein for the switching case hpi ⇡ 0, which di↵ers from the self-trapped case where hpi 6= 0.

Further, we look at the dependence of the critical parameter on the initial conditions and

explain it in analogy with the classical non-rigid pendulum.
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Chapter 4

Dynamical Confinement

Randomness and disorder are ubiquitously found in physical systems in the form of defects

and impurities, which typically trigger dispersive processes throughout the system, thus,

disrupting any meaningful dynamics. This naturally generates interest in finding systems

where these di↵usive tendencies are negated and the order can be maintained through lo-

calization in energy and space. Localization can be defined as a concentration of energy

or probability density in a finite region of space against di↵usive tendencies. In a major

breakthrough, P.W. Anderson (1958) discovered a counter-intuitive phenomenon of strong

localization arising in a disordered quantum system such that given enough disorder, no

di↵usion takes place [8]. Since then, from solitons in external traps and periodically driven

lattices to disordered quantum setups, many studies focus their search on novel quantum

phenomena that allow for control and flexibility over the dynamics through localization and

many have made major headway.

In this chapter, we introduce a setup with a spatially dependent coupling parameter,

J(z), in coupled Q1D tubes and study the dynamics as a single or a pair of moving bright

solitons interact with this coupling region. We observe dynamical confinement of solitons

inside this region as it gets localized spatially. We employ a variational approach to explain
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the resulting dynamics and obtain an e↵ective potential for J(z).

4.1 Setup

Figure 4.1: Schematic for spatially dependent coupling J(z) setup with a moving bright
soliton in Q1D tube along the z-axis. We have divided the space into three regions. In Region
I and III, tubes are uncoupled with a negligible overlap in the transverse wave function, and
Region I hosts the initial soliton moving with a velocity +k0. Region II extends over a length
2� in between where the tubes are coupled with strength J0 which determines the dynamical
regime of the system.

In this section, we describe the system with the space-dependent coupling term, J(z).

As discussed in the previous chapters, in order to modify the dynamical parameter ⇤, we

can either vary the interaction strength g or change the lattice parameters, like spacing b

and depth V0, to make J space-dependent. In this study, we choose for J to take the explicit

form:

J(z) =

8
<

:
0, if |z| > �

J0, if |z|  �

(4.1)

where we consider a uniform inter-layer coupling J0 between the tubes over a central region

of length ”2�”, as illustrated in (4.1). In 4.1.1, we point out certain imperfections that need

to be considered in getting to the quasi-1D setup with J(z).
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4.1.1 Imperfections

We start with the same 3D GPE as before but now with the 2D lattice potential,

V (x, y, z), having its depth varying along the z-axis, such that, the transverse overlap of

the Wannier states is larger inside the region II. Therefore, the 3D GPE is given by:

i~@ 
@t

(r, t) =

✓
�~2
2M

r2 + Vol(x, y, z) + g | (r, t)|2
◆
 (r, t) (4.2)

The potential now changes with z as

Vol(x, y, z) = V0(z) (sin
2(kx) + sin2(ky)) (4.3)

where V0(z) is reduced to induce a larger overlap inside the coupling region. This af-

fects the Wannier bases as well, given by wi(x, y, z). We use the ansatz  (x, y, z, t) =

w1(x, y, z) 1(z, t) + w2(x, y, z) 2(z, t) and simplify the 3D GPE in the same way as before,

using the weak coupling approximations and finally arrive at dimensionless 1D GPE for  1:
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and similarly for  2, where,

J(z) = �
Z ✓

�1

2
w

⇤
1

✓
@
2

@x2
+

@
2

@y2

◆
w2 + w
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1 Vol(z) w2

◆
dxdy (4.5)
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Additional correctional terms are obtained as imperfections along with the original coupled

1D GPE, now with a spatially dependent J(z). Here, we assume that these corrections do

not significantly a↵ect the characteristics of the dynamics. Alternatively, we can explore a

method to induce this spatial dependence using the laser-controlled tunneling described in

[30].

Now, we have the following coupled equations for our setup:

i
@ 1

@t
= �1

2

@
2
 1

@z2
+ g1D| 1|2 1 � J(z) 2

i
@ 2

@t
= �1

2

@
2
 2

@z2
+ g1D| 2|2 2 � J(z) 1 (4.6)

We load a bright soliton in one of the tubes in region I, and provide it with an initial kick

of velocity k0 towards region II. We then examine its behavior as it enters region II and the

e↵ect of variation in J0 and k0 on the dynamics.

4.2 Results

We look at the dynamics of the coupled equations above in this section. Two distinct

cases occur based on the value of J0 or ⇤. The dynamics are further divided into two

scenarios based on k0.

4.2.1 ⇤ < ⇤c

Upon entry, the population oscillates between the two tubes due to dominant tunneling

as the soliton moves toward the right, as expected. Small excitations arise in each soliton’s

periphery during each cycle owing to the nonlinearity in the system. For ⇤ just below ⇤c,

the oscillations are non-periodic and damped due to the competing interactions. A sudden
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Figure 4.2: Dynamics of moving bright soliton encountering a region with coupling ⇤ =
1.25 < ⇤c, where g1D = �1 and � = 50. Density evolution in each row corresponds to
two coupled tubes and the colorbar on top sets the density scale for all. (a) and (b) for
k = +0.03, soliton gets confined within region II in combination with performing population
transfer oscillations around p ⇡ 0 and (c) and (d) for k = +0.245, soliton mass oscillates
between the tubes when inside region II and escapes confinement into region III.
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Figure 4.3: hptotali vs time (red line) for ⇤ = 1.25 < ⇤c case. See (a) for k = +0.03 and
(b) for k = +0.245. We note the sudden rise and fall of hptotali on encountering boundaries
of region II accompanied by relatively stable evolution elsewhere, in both (a) and (b). hp1i
and hp2i also show rapid changes at boundaries but oscillate about each other elsewhere in
region II for both cases.
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increase in the total momentum, ptotal(t), is observed here, as shown in (4.3). Depending on

the initial velocity k0, two distinct cases are described below for a fixed �.

For ⇤ < ⇤c and k0 = 0.03, the soliton accelerates after entering region II, as the density

tunnels back and forth between the layers generating small non-linear excitations in the

process (see (a) and (b) in figure 4.2). On interacting with the region II boundary, the

soliton in both tubes reflects back almost completely, leaving only the tiny excitations to

pass through to region III. The condensate mass keeps on oscillating between the layers as

it gets trapped inside region II. Similar behavior is observed as k0 is increased over a large

range.

For very large velocity scales above a critical velocity scale kc, near k0 = 0.24, large

fractions of the soliton transmit out to region III and the remaining fraction reflects back

(see (c) and (d) in figure 4.2). For k0 = 0.4 or higher, the majority of the soliton passes

through to region III. However, with smaller time scales and relatively low non-linearity due

to large J0, the soliton is unable to tunnel back to one of the tubes which would have led to

a lower energy configuration. On emerging through to region III in this case, it continues to

propagate without much dispersion with arbitrary fractions of the solitons in each layer. It

should be noted that by varying �, kc also varies and so do the emergent soliton fractions at

k > kc. As a result, the average total mass fraction trapped inside region II shows a gradual

drop near k0 ⇡ kc.

4.2.2 ⇤ > ⇤c

Once the soliton enters region II, a major fraction of the soliton stays self-trapped in the

same layer due to dominant self-focusing attractive interactions, as expected, while a small

fraction tunnels through to the other layer. Depending on how close ⇤ is to ⇤c, the fraction

in each well varies. The total momentum, ptotal(t), of the two layers also shows a sudden

increase upon entry to region II. Similarly, we now describe two cases based on k0.
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Figure 4.4: Dynamics of moving bright soliton encountering a region with coupling ⇤ =
2.08 > ⇤c, where g1D = �1 and � = 80. Density evolution in each row corresponds to two
coupled tubes. Colorbar on top sets the density scale for (a) and (c) and on the right sets
a smaller density scale for (b) and (d). (a) and (b) for k = +0.0015, soliton gets confined
within region II and self-trapped in tube (a). (c) and (d) for k = +0.0042, soliton is self-
trapped when inside region II and escapes confinement into region III.
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Figure 4.5: hptotali vs time (red line) for ⇤ = 2.08 > ⇤c case. See (a) for k = +0.0015 and
(b) for k = +0.0042. Here also, we note the sudden rise and fall of hptotali on encountering
boundaries of region II in (a) and (b). hp1i and hp2i also show rapid changes at boundaries.
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For a low velocity k0 = 0.03 (see (c) and (d) in figure 4.4), on entry, the condensate

stays self-trapped and splits into a minor and a major fraction, as discussed above. On

approaching the boundary of region II at z = +�, the smaller fraction tunnels back to

integrate with the larger part, and the condensate transfers back to one layer completely.

While ptotal(t) suddenly increases during entry to region II, it shows a sharp decrease upon

exiting region II (Figure 4.5). The soliton emerges outside nearly identical to the initial

soliton, but with a di↵erent momentum.

As we lower the initial velocity k0 for the same J0, despite the dynamics being qualita-

tively identical, the emerging soliton records a trend of decreasing ptotal(t) exiting from the

region II. Eventually, it reaches a critical velocity kc, where its final ptotal(t) becomes nearly

zero. For any further decrease in k0, the sign of ptotal(t) changes at the boundary and the

soliton reflects back into region II instead of passing through. Subsequently, it always reflects

back on encountering the boundaries at z = ±� again and hence gets confined within region

II (see (a) and (b) in figure 4.4). The average total mass fraction trapped inside region II

shows a sudden drop near k0 ⇡ kc, below which the majority of the soliton fraction gets

confined in region II, while still staying self-trapped within one of the tubes. For all k0 > kc,

the soliton gets transmitted through to region III.

4.2.3 Dynamical Potential

We see that the condensate is confined within region II below a critical velocity kc for

values of ⇤ in both dynamical regimes. Corresponding to the critical transition observed

in the dynamics when ⇤ crosses ⇤c, there is a sudden drop in the critical velocity required

for the soliton to pass through. From this, it can be inferred that the e↵ective trapping

potential evolves dynamically with the system. To explore the relation between this ”e↵ective

potential” and the dynamical regimes, we first look at the evolution of the total momentum.

Evidently, linear momentum is not conserved because J(z) breaks the translational invariance
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of the Hamiltonian. We calculate an expression for the force on the overall condensate by

taking the time derivative of hptotal(t)i:

dhp̂totali
dt

=
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@J(z)

@z

◆
 2 +  
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2
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 1
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dz, (4.7)

This suggests that the condensate experiences a non-zero force at the boundary where J(z)

changes value and that it has a dependence on the wave functions as well. Using the Ehrenfest

theorem, we get an insight into the nature of this potential:
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(4.8)

We use a variational approach in the next section to get an explicit expression for this

e↵ective potential in terms of dynamical variables and compare the resulting dynamics to

numerical simulations of the GPE.

4.3 Variational Calculation

We divide this section into two parts based on the initial states and the number of

variational parameters.

4.3.1 Symmteric Case

Owing to the complexity a↵orded to the Lagrangian by the o↵-diagonal term J and the

moving solitons, we start with a symmetric initial state to simplify the calculations. We

consider two identical GS bright solitons, one in each tube, in the central region II. Both the

solitons are given an initial velocity +k0 at initial time t = 0. Since no initial asymmetry
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in mass or phase is allowed, no population transfer is expected. This allows us to assume a

symmetric GS sech ansatz for our calculations, given by:

 j =
Ap
2
sech

⇣
z � z0

l

⌘
exp (+i↵(z � z0) + i�) (4.9)

where A (real amplitude), z0 (center of mass), l (width), � (phase), and ↵ (slope) are

constrained to be identical for both wavefunctions during the dynamics. From (3.4), the

Lagrangian is given by:
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Inserting the variational ansatz in the above and evaluating the Lagrangian, we get
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From the Euler-Lagrange equations for � and ↵, we get ż0 = ↵ and conservation of total

mass, 2A2
l = NT . Rewriting the Lagrangian,
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From the E-L equations for z0 and l, we get the following coupled equations for their time

evolution:
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We numerically simulate these two coupled di↵erential equations. Dynamical trapping is

observed depending on the initial value of ↵0 and J0. Figures (4.6) and (4.7) give the

evolution of the COM z0(t) and width l(t) for ⇤ = 1.25 < ⇤c and ⇤ = 6.25 > ⇤c respectively.

For each value of J0, we find a ↵0 to ensure confinement within the central region and a

critical ↵c required for it to escape confinement. Evolution of l(t) for the trapped case shows

that, for a small ↵(0), the width of the soliton varies negligibly at the boundaries, where it

squeezes, and regains its width as it reflects back inside the region II.

The e↵ective potential Veff (z0) can be determined by integrating the force acting on the

COM coordinate, z̈0, through Eq.(4.13). Assuming l(t) varies negligibly at the borders, the

expression for Veff (z0) can be written as:

Veff (z0) = �
Z

z0

F (z)dz =
J0

2


tanh

⇣
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l

⌘
� tanh

⇣
z0 + �

l
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(4.14)

For a fixed width l, Veff (z0) is shaped like a smooth well centered at z = 0. The depth of

the well is proportional to J0 and the slope at the borders depends inversely on the width

of the soliton. Figure (4.8) shows Veff (z0) vs z0, which describes the nature of the confining

potential faced by the soliton at its center of mass. Starting from z = 0, as z0(t) approaches

z = ±� during evolution, it encounters a rising restorative force towards the center z = 0

as the potential hill gets steeper. As we go past z = ±�, the force starts to reduce as the

potential hill begins to plateau. This is analogous to a ball thrown up a hill from inside a

valley, with the hill is shaped like tanh. Given enough kinetic energy from the throw, the ball

climbs up the hill, reaches the plateau, and continues to roll along with a reduced velocity.

If the initial kinetic energy is not su�cient to make the climb, the ball rolls back inside

and oscillates back and forth inside the valley. Consequently, if the initial kinetic energy is

exactly J0/2, the ball must come to an eventual stop at z0 ! 1. A key di↵erence to point

out in our system is that the slope of the potential hill depends on the l(t) of the soliton,

which is a dynamic parameter.

However, it should be noted that since the norms and phases are constrained to be the
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Figure 4.6: Time evolution of variational parameters for ⇤ = 1.25 < ⇤c: (a) z0(t) and (b)
l(t) for two identical bright solitons in region II kicked with velocity k. Critical velocity to
escape confinement in region II lies between 0.25 < kc < 0.35.
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Figure 4.7: Time evolution of variational parameters for ⇤ = 6.25 > ⇤c: (a) z0(t) and (b)
l(t) for two identical bright solitons in region II kicked with velocity k. Critical velocity to
escape confinement in region II lies between 0.1 < kc < 0.15.
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Figure 4.8: E↵ective Dynamical Potential Veff vs z0 (purple line) for a pair of identical
bright solitons inside coupling region. Dashed vertical line denotes the region boundaries at
±� and the yellow line represents bright solitons inside it.
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same, the e↵ect of the critical transition between self-trapping and switching regimes cannot

be captured through this variational calculation.

4.3.2 Asymmetric Case

Here, we introduce a scope for asymmetry in the variational ansatz to allow for more

complex dynamics but use a normalized gaussian waveform to simplify calculations. It is

given by:

 j =
Aj

⇡1/4
exp

 
� (z � z0)2

2l2
j

+ i↵(z � z0) + i�j

!
(4.15)

where the parameters are the same as before but have been indexed with j for the two tubes.

Note that z0 and ↵ are still taken to be identical.
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Note that ✓ is a cyclic coordinate and hence conserved throughout the dynamics and can be

safely ignored. We now use the E-L equations and get the 5 coupled di↵erential equations,

of which we state:
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For z0:

z̈0 =
J0 cos(�)

NT

s
N

2
T
�R2

⇡l1l2

"
exp

✓
� (z0 + d)2(l21 + l

2
2)

2l21l
2
2

◆
� exp

✓
� (z0 � d)2(l21 + l

2
2)

2l21l
2
2

◆#

(4.19)

While numerical simulations of these five coupled equations should yield dynamics close to

the original GPE, we utilize these expressions to get a more qualitative feel for the e↵ective

potential. From (4.19), it can be seen that z̈0 is proportional to J0 which decides the

maximum depth of the valley in Veff . It is also proportional to cos(�) and
p

N
2
T
�R2. As

can be seen,
p

N
2
T
�R2 is maximum at R(t) = 0 and reduces like an inverse parabola as

R goes away from 0. For the switching case, hR(t)i ⇡ 0, which implies that Veff is deeper

on average compared to the self-trapped case, where hR(t)i 6= 0. This explains the rapid

climb seen in the critical velocity kc (figure) required to escape region II, as we cross from

one dynamical regime to the other.

From this chapter, we conclude that the introduction of spatial dependence in coupling

J of matter-wave bright solitons leads to their dynamical confinement inside the coupling

region critically depending on the velocity k0. The dynamical regimes based on ⇤ studied

previously lead to qualitatively di↵erent cases of confinement. On further investigation using

variational methods, we derive the explicit form of the e↵ective trapping potential which is

shaped like a valley. We emphasize the importance of the localization phenomenon observed

in this setup and its possible implications on the controllability of solitons in optical lattices.
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Chapter 5

Conclusion

In this thesis, we studied the dynamics of weakly coupled matter-wave bright solitons in

a 2D optical lattice. We first looked at the dynamics of two GS bright solitons in Q1D

tubes as a function of the critical parameter ⇤. We see that when an initial asymmetry

is provided in the overall phase or population of the two solitons, non-trivial dynamics are

triggered and a critical transition is observed between two dynamical regimes based on ⇤.

For ⇤ < ⇤c, coherent Josephson-like oscillations with a frequency of !R ⇡ 2J are seen in the

population di↵erence p around zero. As the interactions are increased, ⇤ ⇡ ⇤c, oscillations

in p, while still around zero, become increasingly anharmonic before transitioning to the

macroscopically quantum self-trapped (MQST) regime for ⇤ > ⇤c, where p oscillates about

some p 6= 0, and the soliton gets self-locked in one of the tubes. We find that ⇤c depends on

the initial state p0 and �0, and increases with the extent of initial asymmetry.

We then study the dynamics of moving bright soliton(s) when the linear coupling is turned

on for only a finite region in the two tubes. We observe two cases of dynamical confinement

in the region depending on the velocity k for ⇤ < ⇤c and ⇤ > ⇤c. In the former case, the

soliton gets confined inside the region while the population oscillates for all velocities below

a large kc. In the latter case, the soliton gets confined only below a very small kc and stays
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self-trapped in one tube. Using variational calculations, an e↵ective dynamical potential for

trapping is derived which is shaped like a smooth well, with its depth and slope varying with

the solitons’ dynamics.
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Malomed, Marek Trippenbach, et al. Reversible ultrafast soliton switching in dual-core
highly nonlinear optical fibers. Optics Letters, 45(18):5221–5224, 2020.

[30] Quentin Beaufils, Gunnar Tackmann, Xiaolong Wang, Bruno Pelle, Sophie Pelisson,
Peter Wolf, and F Pereira Dos Santos. Laser controlled tunneling in a vertical optical
lattice. Physical Review Letters, 106(21):213002, 2011.

59


	Abstract
	Bose-Einstein Condensation and Bright Solitons
	Bose-Einstein Statistics
	One-Body Density Matrix and Order Parameter
	Interacting Hamiltonian and Mean-Field Regime
	Reduced Dimensionality
	Q1D Bright Solitons in BECs

	Condensates in Optical Lattices
	Optical Lattice Potential
	Hamiltonian
	Collapse in Attractive BECs

	Bright Solitons in Q1D Coupled System
	Setup
	Stationary States
	Self-Trapping and Switching Dynamics
	Dependence of c on Initial State

	Dynamical Confinement
	Setup
	Results
	Variational Calculation

	Conclusion

