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Abstract
Causal set theory posits that, in order to derive a quantum theory of gravity, the causal structure of
a spacetime is the fundamental object to be quantized. The discrete objects so obtained, known as
causal sets, are equipped solely with a partial ordering, to enforce causality, and ameasure, to define
volumes of subsets. Spacetimes are conjectured to be causal sets under the limit of a discreteness
scale at the Planck scale, and therefore, the manifold structure of a spacetime must be recover-
able under this limit. In this vein, we attempt to characterise inextendible antichains, structures
which form the causal set-analogues of Cauchy hypersurfaces. Taking inspiration from discrete
space curvatures in the literature, we use an induced distance function defined on these structures
to define a new measure of induced spatial curvature for inextendible antichains, which we have
explicitly derived in the continuum limit for a 3-dimensional globally hyperbolic spacetime. We
then use numerical techniques to implement this curvature, and to explore its feasibility, in the
simplest system: that of flat inextendible antichains in causal sets approximated by Minkowski
spacetime. This preliminary investigation into the characterisation of inextendible antichain cur-
vature would not only add to the growing list of evidence supporting the fundamental conjecture
of causal set theory, but would also provide a valuable tool to characterise causal sets, and would
bring us one step closer to a causal set theoretic understanding of the initial value formulation of
general relativity.
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Chapter 1

Causal Structure and Notation

We will begin by establishing the terminologies used throughout the rest of this work. We use
natural units, wherein 𝑐 = 1, as well as Einstein summation convention and abstract index notation
as in [1]. Our treatment of causality roughly follows that in [2].

We consider 𝑑-dimensional Lorentzian manifolds (𝑀, 𝑔𝑎𝑏) with metrics of signature (− + ⋯ +).
At any point 𝑝 ∈ 𝑀 , denote the tangent space to 𝑀 at 𝑝 by 𝑇𝑝𝑀 and, for 𝑈 ⊂ 𝑀 the space
of all smooth vector fields on 𝑈 by Γ (𝑇 𝑈), where 𝑇 𝑈 denotes the tangent bundle on 𝑈 . Vectors
𝑣𝑎 ∈ 𝑇𝑝𝑀 are classified as follows:

Timelike if 𝑔𝑎𝑏𝑣𝑎𝑣𝑏 < 0
Null if 𝑔𝑎𝑏𝑣𝑎𝑣𝑏 = 0
Spacelike if 𝑔𝑎𝑏𝑣𝑎𝑣𝑏 > 0

Timelike, null or spacelike vector fields are smooth vector fields 𝑣𝑎 ∶ 𝑀 → 𝑇 𝑀 such that 𝑣𝑎(𝑝)
is timelike, null or spacelike respectively, ∀𝑝 ∈ 𝑀 .
The timelike vectors in 𝑇𝑝𝑀 can be classified into two equivalence classes based on the following
equivalence relation: for timelike vectors 𝑣𝑎, 𝑤𝑎 ∈ 𝑇𝑝𝑀 , 𝑣𝑎 ∼ 𝑤𝑎 if 𝑔𝑎𝑏𝑣𝑎𝑤𝑏 < 0. We arbi-
trarily assign the labelling of past-directed and future-directed to the timelike vectors belonging
to these classes. Timelike vector fields 𝑣𝑎 ∈ Γ (𝑇 𝑀) are defined to be past-directed or future-
directed if 𝑣𝑎(𝑝) is past-directed ∀𝑝 ∈ 𝑀 or if 𝑣𝑎(𝑝) is future-directed ∀𝑝 ∈ 𝑀 respectively. Null
vectors can also be labeled as past-directed or future-directed as they are limits of the correspond-
ing timelike vectors. Spacetime (𝑀, 𝑔𝑎𝑏) is said to be time-orientable if there exists a smooth
specification of past and future across 𝑀 , i.e., if there exists a future-directed timelike vector field

7



8 Chapter 1 : Causal Structure and Notation

𝑡𝑎 ∈ Γ (𝑇 𝑀).

A curve is a continuous and smooth (or possibly piecewise-smooth) map of ℝ (or a subset of it) into
𝑀 , 𝛾 ∶ ℝ → 𝑀 . The tangent vector field 𝑇 𝑎 to 𝛾 is used to define the notions of timelike, null and
spacelike curves, as well as past-directed and future-directed timelike curves. A curve is causal
if its tangent vector is always either timelike or null and is future-directed null or past-directed
null if it is a causal curve with tangent vectors that are always future-directed or past-directed
respectively.

A trip is a map of ℝ (or a subset of it) into M, 𝛾 ∶ [𝑎, 𝑏] → 𝑀 which is a piecewise future-
directed timelike curve. A trip from 𝑥 to 𝑦 is a trip 𝛾 that starts at 𝑥 and ends at 𝑦. Therefore
𝛾 consists of a set of points 𝑥 = 𝑥0, 𝑥1, ⋯ , 𝑥𝑛 = 𝑦, where 𝑛 ≥ 1, and future-directed timelike
segments 𝛾𝑖−1 𝑖 from 𝑥𝑖−1 to 𝑥𝑖 for each 𝑖 = 1, ⋯ , 𝑛. A trip without a future (or past) endpoint
is referred to as a future-inextendible (or past-inextendible) trip and one with neither endpoint
is simply an inextendible trip. We say 𝑥 chronologically precedes 𝑦 iff there exists a trip from
𝑥 to 𝑦, and denote this by 𝑥 ≪ 𝑦. A causal trip is defined similarly to a trip except for timelike
curve segments being replaced by causal curve segments (that are possibly degenerate). We say 𝑥
causally precedes 𝑦 iff there exists a causal trip from 𝑥 to 𝑦, and denote this by 𝑥 ⪯ 𝑦.1 Future-
inextendible, past-inextendible and inextendible causal trips can also be similarly defined. Note
that due to the possibility of degenerate null curves, we could have 𝑥 = 𝑥0, 𝑥1 = 𝑥. Therefore,

𝑥 ⪯ 𝑥 ∀𝑥 ∈ 𝑀 ⟹ Causal Precedence is a reflexive relation (1.1)
As all trips are causal trips, we also have

𝑥 ≪ 𝑦 ⟹ 𝑥 ⪯ 𝑦

Next, let 𝑥 ⪯ 𝑦 and 𝑦 ⪯ 𝑧 for 𝑥, 𝑦, 𝑧 ∈ 𝑀 . Then we have causal trips 𝛾 and 𝜎 consisting of sets of
points 𝑥 = 𝑝0, 𝑝1, ⋯ , 𝑝𝑚 = 𝑦 and 𝑦 = 𝑞0, 𝑞1, ⋯ , 𝑞𝑛 = 𝑧 respectively, where 𝑚, 𝑛 ≥ 1, and future-
directed causal curve segments 𝛾𝑖−1 𝑖 and 𝜎𝑖−1 𝑖 from 𝑝𝑖−1 to 𝑝𝑖 for each 𝑖 = 1, ⋯ , 𝑚 and 𝑞𝑖−1 to 𝑞𝑖
for each 𝑖 = 1, ⋯ , 𝑛 respectively. We can now construct the concatenated causal trip 𝛾∗𝜎 consisting
of the set of points 𝑥 = 𝑟0 = 𝑝0, 𝑟1 = 𝑝1, ⋯ , 𝑟𝑚 = 𝑝𝑚 = 𝑦 = 𝑞0, 𝑟𝑚+1 = 𝑞1, ⋯ , 𝑟𝑚+𝑛 = 𝑞𝑛 = 𝑧
and future-directed causal curve segments (𝛾 ∗ 𝜎)𝑖−1 𝑖 = 𝛾𝑖−1 𝑖 for 𝑖 = 1, ⋯ , 𝑚 and (𝛾 ∗ 𝜎)𝑖−1 𝑖 =

1The causal and chronological precedence relations can instead be defined with curves instead of trips, and this
alternative definition is entirely equivalent, as is proven in [2], and more physical, although less convenient



9
𝜎𝑖−𝑚−1 𝑖 for 𝑖 = 𝑚 + 1, ⋯ , 𝑚 + 𝑛. Therefore,

If 𝑥 ⪯ 𝑦 and 𝑦 ⪯ 𝑧 ⟹ 𝑥 ⪯ 𝑧 ∀𝑥, 𝑦, 𝑧 ∈ 𝑀
⟹ Causal Precedence is a transitive relation

(1.2)

We define a closed timelike (or causal) trip to be a timelike (or non-degenerate causal) trip that
is future-directed and closed. Spacetimes that contains no closed causal trips shall be referred to as
causal spacetimes. In these spacetimes, if 𝑥 ⪯ 𝑦 and 𝑦 ⪯ 𝑥 for 𝑥, 𝑦 ∈ 𝑀 , then, by concatenating
the associated future-directed causal paths, we obtain a closed causal trip if 𝑥, 𝑦 are distinct events,
leading to a contradiction. Therefore, in causal spacetimes,

If 𝑥 ⪯ 𝑦 and 𝑦 ⪯ 𝑥 ⟹ 𝑥 = 𝑦 ∀𝑥, 𝑦 ∈ 𝑀
⟹ Causal Precedence is an antisymmetric relation

(1.3)

Relations that are reflexive, antisymmetric and transitive are called non-strict partial orders and
a set with such a relation forms a partially ordered set or a poset. From eqs. (1.1) to (1.3), we see
that causal, time-orientable spacetimes (𝑀, 𝑔𝑎𝑏) have a poset structure, referred to as the Causal
Structure Poset (𝑀, ⪯) of (𝑀, 𝑔𝑎𝑏). This structure will play a key role in causal set theory, as
will be seen in chapter 2.

For a point 𝑝 ∈ 𝑀 , the set 𝐼+ = {𝑥 ∈ 𝑀|𝑝 ≪ 𝑥} is the chronological future of 𝑝, 𝐼− =
{𝑥 ∈ 𝑀|𝑥 ≪ 𝑝} is called the chronological past of 𝑝, 𝐽+ = {𝑥 ∈ 𝑀|𝑝 ⪯ 𝑥} is called the causal
future of 𝑝 and 𝐽− = {𝑥 ∈ 𝑀| ⪯ 𝑝} is called the causal future of 𝑝. For a set 𝑆 ⊂ 𝑀 ,
𝐼+ (𝑆) = ⋃

𝑥∈𝑆
𝐼+ (𝑥) is the chronological future of 𝑆, 𝐽+ (𝑆) = ⋃

𝑥∈𝑆
𝐽+ (𝑥) is the causal future of

𝑆, and similarly for the pasts. 1 A spacetime 𝑀 is said to be future-distinguishing at 𝑝 ∈ 𝑀 if
𝐼+ (𝑝) ≠ 𝐼+ (𝑞) for each 𝑞 ∈ 𝑀 with 𝑞 ≠ 𝑝; Spacetime 𝑀 is said to be future-distinguishing if
it is future-distinguishing at every point.

An achronal set 𝑆 ⊂ 𝑀 is a subset of 𝑀 wherein no two points of 𝑆 are chronologically related,
i.e., if 𝑥, 𝑦 ∈ 𝑆, then 𝑥≪̸𝑦. For an achronal subset 𝑆 ⊂ 𝑀 , the future and past domains of
dependence𝐷± (𝑆) as well as the domain of dependence𝐷 (𝑆) of𝑆 are defined as follows:

𝐷+ (𝑆) ≡ {𝑥 ∈ 𝑀| every past-inextendible trip containing 𝑥 intersects 𝑆}
𝐷− (𝑆) ≡ {𝑥 ∈ 𝑀| every future-inextendible trip containing 𝑥 intersects 𝑆}

1We will, in general, no longer explicitly mention the past analogues of the quantities we describe.
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𝐷 (𝑆) ≡ {𝑥 ∈ 𝑀| every inextendible trip containing 𝑥 intersects 𝑆} = 𝐷+ (𝑆) ∪ 𝐷− (𝑆)

An achronal subset 𝑆 ⊂ 𝑀 such that 𝐷 (𝑆) = 𝑀 is defined to be a Cauchy hypersurface. A
spacetime 𝑀 which admits a Cauchy hypersurface is referred to as a globally hyperbolic space-
time. The Cauchy hypersurface will play an important role in this work.

Finally, let us touch upon a very useful map, known as the exponential map. For a point 𝑝 in a
Riemannian or Lorentzian manifold (𝑀, 𝑔𝑎𝑏), there is a very natural choice of chart for a neigh-
bourhood 𝑈 of 𝑝:
For tangent vector2 𝑣 ∈ 𝑇𝑝𝑀 , consider the unique geodesic 𝛾𝑣 starting from 𝑝 with tangent vector
𝑣 at 𝑝. We may now consider the map exponential map 𝑒𝑥𝑝𝑝 ∶ 𝑇𝑝𝑀 → 𝑀 given by

𝑒𝑥𝑝𝑝(𝑣) = 𝛾𝑣(1)

While the presence of conjugate points may cause 𝑒𝑥𝑝𝑝 to not be injective, one can always find a
small enough neighbourhood 𝑈 of 𝑝 within which 𝑒𝑥𝑝𝑝 is a diffeomorphism. This neighbourhood
𝑈 of 𝑝 is referred to as a Riemann normal neighbourhood of 𝑝 and 𝑒𝑥𝑝𝑝 defines a natural coordinate
system on 𝑈 wherein the geodesics from 𝑝 correspond to straight lines in 𝑇𝑝𝑀 , the metric tensor
at p is given by 𝜂𝑎𝑏 and the Christoffel symbols vanish at 𝑝. This may be extended to a smooth map
𝑒𝑥𝑝 ∶ 𝑇 𝑀 → 𝑀 from the tangent bundle of 𝑀 to 𝑀 . This map will be used in the discussion on
Ollivier Curvature in chapter 3.

2Note that discussions involving the exponential map will not use abstract index notation and Einstein summation
convention due to the confusing notation that it would result in



Chapter 2

Causal Set Theory: A Crash Course

2.1 Motivation
We now progress with the construction of causal set theory, in line with that in [3]. In order to
motivate the approach of causal set theory, we begin by considering a time-orientable, causal, 𝑑-
dimensional Lorentzian manifold (𝑀, 𝑔𝑎𝑏). As mentioned in chapter 1, these spacetimes admit a
partially ordered structure, referred to as the causal poset (𝑀, ⪯). We may consider the structure-
preserving maps of the causal structure poset, known as causal bijections. A causal bijection
between (𝑀1, ⪯1) and (𝑀2, ⪯2) is a bijective map: 𝑓 ∶ 𝑀1 → 𝑀2 such that

𝑥 ⪯1 𝑦 ⟺ 𝑓(𝑥) ⪯2 𝑓(𝑦) ∀ 𝑥, 𝑦 ∈ 𝑀1

The importance of the causal structure poset is hinted at by the following theorem:

Hawking-King-McCarthy-Malament Theorem: Consider d-dimensional spacetimes (𝑀, 𝑔𝑎𝑏)
and (𝑀, ̃𝑔𝑎𝑏) for 𝑑 > 2, that are both future-distinguishing and past distinguishing. If there exists
a causal bijection 𝑓 between spacetimes 𝑀 and 𝑀 , then the two spacetimes are conformally iso-
metric, i.e., there exists a diffeomorphism 𝜑 ∶ 𝑀 → 𝑀 such that 𝜑∗ ( ̃𝑔𝑎𝑏) = Ω2 𝑔𝑎𝑏, where 𝜑∗ is
the pullback induced by 𝜑 and Ω is a smooth function on 𝑀 .

This theorem highlights the importance of causal structure as, under reasonable restrictions on the
spacetimes in consideration, the causal structure poset uniquely determines the spacetime structure
up to a conformal factor. Therefore, in order to obtain a quantum theory of gravity, causal set
theory chooses to quantise the causal structure of spacetime, into the fundamental object known as
the causal set.

11
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2.2 Fundamentals of CST
Definition (Causal Set). A causal set (or causet) (𝐶, ⪯) is a locally finite, partially ordered set,
i.e., a set 𝐶 with a relation ⪯ such that the following conditions are satisfied:

1. Reflexivity: 𝑥 ⪯ 𝑥, ∀ 𝑥 ∈ 𝐶

2. Antisymmetry: 𝑥 ⪯ 𝑦 and 𝑦 ⪯ 𝑥 ⟹ 𝑥 = 𝑦, ∀ 𝑥, 𝑦 ∈ 𝐶

3. Transitivity: 𝑥 ⪯ 𝑦 and 𝑦 ⪯ 𝑧 ⟹ 𝑥 ⪯ 𝑧, ∀ 𝑥, 𝑦, 𝑧 ∈ 𝐶

4. Local Finiteness: ∣𝐼 [𝑥, 𝑦] ∣ < ∞, ∀ 𝑥, 𝑦 ∈ 𝐶, where 𝐼 [𝑥, 𝑦] = 𝐹𝑢𝑡 (𝑥) ∩ 𝑃𝑎𝑠𝑡 (𝑦),
where |.| is the cardinality of a set and

𝐹𝑢𝑡 (𝑥) = {𝑧 ∈ 𝐶|𝑥 ⪯ 𝑧 and 𝑧 ≠ 𝑥}
𝑃𝑎𝑠𝑡 (𝑥) = {𝑧 ∈ 𝐶|𝑧 ⪯ 𝑥 and 𝑧 ≠ 𝑥}

(2.1)

The first three conditions ensure that the relation is a partial order, while local finiteness, the condi-
tion on the finiteness of order intervals 𝐼 [𝑥, 𝑦], enforces discreteness. Since the HKMMTheorem
can be summarised:

Causal Structure + Volume Element = Lorentzian Geometry,

that is, Lorentzian geometry is equivalent to a specification of causal structure and a volume ele-
ment, this can be naturally generalised to the discrete case, known as the ”CST Slogan”:

Order + Number ∼ Lorentzian Geometry

We thus assume a fundamental correspondence between the number of elements in a region of a
causal set and the continuum volume associatedwith that region. We are then led to the fundamental
proposal [4]:

Quantum gravity is a quantum theory of causal sets, and a spacetime (𝑀, 𝑔𝑎𝑏) is
an approximation of an underlying causal set 𝐶, i.e., 𝐶 ∼ (𝑀, 𝑔𝑎𝑏), where

(I) Order ∼ Causal Structure, and
(II) Number ∼ Volume Element.

Note that the set of all causal sets, which replaces the set of all spacetimes, will in general contain
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causal sets that have no correspondence with any spacetime. Therefore, we need to make further
precise the notion of a causal set being manifold-like, that is, the concept of the continuum approx-
imation 𝐶 ∼ (𝑀, 𝑔𝑎𝑏). In order to do so, we define the following maps between causal sets and
spacetimes:

Definition (Embedding). An embedding Φ ∶ 𝐶 ↪−→ 𝑀 is an injective map such that

𝑎 ⪯ 𝑏 ⟺ Φ (𝑎) ⪯𝑀 Φ (𝑏) ∀ 𝑎, 𝑏 ∈ 𝑀

where ⪯𝑀 is the causal precedence relation in 𝑀 and ⪯ is the partial ordering on 𝐶.

While embeddings preserve the poset structure in accordance with Correspondence (I), this is not
sufficient to capture the continuum approximation. Therefore, in accordance with Correspondence
(II), we define the following:

Definition (Faithful Embedding). A faithful embedding of causal set 𝐶 into spacetime 𝑀 is
an embedding Φ such that Φ (𝐶) is uniformly distributed in 𝑀 at density 𝜌, where the uniform
distribution is with respect to the spacetime volume measure. Causal set𝐶 is said to approximate
spacetime (𝑀, 𝑔𝑎𝑏) if 𝐶 faithfully embeds into (𝑀, 𝑔𝑎𝑏) at some density 𝜌.

If there exists such a faithful embedding of 𝐶 into 𝑀 , we denote this by 𝐶 ∼ (𝑀, 𝑔𝑎𝑏) and refer
to 𝐶 as amanifold-like causal set. We may associate with this embedding a discreteness volume
𝑉𝜌 = 1/𝜌 as well as a discreteness scale ℓ𝜌 = 𝜌−1/𝑑. Faithful embeddings provide a way of
not only associating the order relation on the causal set with that on the spacetime, but they also
allow us to associate with 𝑛-element subsets of 𝐶, the volume 𝑛 𝑉𝜌. In this way, we may adopt
a statistical view of spacetimes: A spacetime is a macrostate corresponding to a certain family of
causal sets which are its microstates. Although the images of the causal sets are required to be
uniformly distributed in 𝑀 , there are multiple prescriptions for embeddings that would allow for
this, such as a regular lattice. However, since we require Correspondence (II) to be covariantly
defined, embeddings such as a regular lattice would not serve our purpose.
The most natural choice of distribution then is a uniform random distribution for Φ(𝐶), which
results in Correspondence (II) being determined by a Poisson distribution, wherein the number of
elements, n, ofΦ(𝐶) in a region𝑈 ⊂ 𝑀 of volume 𝑉 is a Poisson random variable with probability
distribution

𝑃 (𝑛) = 𝑒−𝜌𝑉 (𝜌𝑉 )𝑛

𝑛! (2.2)
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Figure 2.1: Poisson sprinkling of 𝑑𝑆2
embedded in 3-d Minkowski spacetime

In this way, the average number of elements in this region 𝑈 is

⟨n⟩ =
∞

∑
𝑛=0

𝑛 𝑃(𝑛) = 𝜌𝑉

allowing for the ”Number ∼ Volume” correspondence of 𝑛 ∼ 𝜌𝑉 to hold upon averaging. We may
now describe how we generate causal sets from a spacetime, in a process known as the Poisson
Sprinkling:
In a Poisson sprinkling into a spacetime (𝑀, 𝑔𝑎𝑏) at density 𝜌, we sample points uniformly (with
respect to the volume element) at random from 𝑀 at density 𝜌 to obtain a subset 𝐶. We then use
the underlying poset structure of the manifold (𝑀, ⪯𝑀) to induce a partial ordering ⪯ onto 𝐶 and
generate a causal set (𝐶, ⪯).
Note that for a causal set obtained in this way, the natural embedding mapΦ ∶ 𝐶 ↪−→ 𝑀 is a faithful
embedding. Therefore, from a spacetime (𝑀, 𝑔𝑎𝑏), using the Poisson sprinkling, we may obtain a
family of causal sets 𝒞 (𝑀, 𝜌)which faithfully embed into𝑀 , forming the ensemble of microstates
corresponding to macrostate of the spacetime, and averaging is to be done over this ensemble. We
say that a causal set𝐶 is approximated by spacetime (𝑀, 𝑔𝑎𝑏) if𝐶 can be obtained from (𝑀, 𝑔𝑎𝑏)
by a high probability Poisson sprinkling. For the sake of convenience, we shall refer to elements of
𝒞 (𝑀, 𝜌) as sprinklings of 𝑀 at (density 𝜌). The example of a sprinkling of 2-d deSitter spacetime
embedded in an ambient 3-d Minkowski spacetime is shown in fig. 2.1.
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2.3 Geometric Reconstruction

As causal set theory posits that a spacetime is an approximation of an underlying causal set, this
causal set is supposed to contain all the physical structure of the spacetime. Therefore, in order
have a self-consistent theory, it is required that if a causal set faithfully embeds at some sprinkling
density into two spacetimes, that both the spacetime manifolds must have the same structure up to
their discreteness scales. This consideration leads us to the Fundamental Conjecture of Causal Set
Theory, the Hauptvermutung:

The Hauptvermutung of CST: Causal set 𝐶 can be faithfully embedded at density 𝜌𝑐 into two
spacetimes (𝑀, 𝑔𝑎𝑏) and (𝑀, ̃𝑔𝑎𝑏) ⟺ (𝑀, 𝑔𝑎𝑏) and (𝑀, ̃𝑔𝑎𝑏) are approximately isometric
By approximately isometric, we mean that they are isometric upto the discreteness scale ℓ𝜌, as
all structure at smaller scales is unphysical; an artifact of the approximation of the causal set as
a continuum. There have been a few attempts at a rigorous definition of such an approximate
isometry[5, 6], although they remain but proposals.

The Hauptvermutung1 implies that all manifold invariants𝒢 of a spacetime (𝑀, 𝑔𝑎𝑏) can be rewrit-
ten order theoretically, i.e., as order invariants𝒪, for the causal sets𝐶 that faithfully embed into the
spacetime2. This motivates the program of Geometric Reconstruction, wherein order invariants
𝒪 are constructed which correspond to manifold invariants 𝒢. This correspondence would then
ensure that if causal set 𝐶 with order invariant 𝒪 faithfully embeds into spacetime (𝑀, 𝑔𝑎𝑏) with
manifold invariant 𝒢, it can not embed into spacetime (𝑀, ̃𝑔𝑎𝑏) with a different manifold invariant
𝒢. This results in a more limited version of the Hauptvermutung specific to order invariants:

𝒪-Hauptvermutung: If causal set 𝐶 with order invariant 𝒪 faithfully embeds into spacetimes
(𝑀, 𝑔𝑎𝑏) and (𝑀, ̃𝑔𝑎𝑏), then 𝒪 must correspond to the same manifold invariant 𝒢 in both mani-
folds.

Using the 𝒪-Hauptvermutung, the larger the set of such geometric-order invariants that are con-
structed, the more credibility that is lent to the Fundamental Conjecture. Since this work lies well
within the program of geometric reconstruction, we will specify in further detail the notions just
presented.

1German for “main conjecture”
2Strictly speaking, these order invariants correspond to the ensemble𝒞 (𝑀, 𝜌𝑐) as a whole, as the relation between

the manifold structure and causal set structure is statistical in nature
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A labelling of a causal set𝐶 is an injective map ℓ ∶ 𝐶 → ℕ, playing the role of a coordinate system
for a causal set. To capture the notion of coordinate independence, we define an order-invariant
of a finite causal set 𝐶 as a function 𝒪 ∶ 𝐶 → ℝ invariant under change of labelling.3

In the context of manifold-like causal sets𝐶 ∈ 𝒞 (𝑀, 𝜌), there is a random variable𝒪 correspond-
ing to every order invariant 𝒪. The Hauptvermutung would suggest that the physically meaningful
quantity ⟨𝒪⟩, obtained upon averaging over ensemble 𝒞 (𝑀, 𝜌), is equal to a manifold invariant
𝒢 in the 𝜌𝑐 → ∞ limit. This limit, known as the continuum limit, although not entirely physical
due to the local-finiteness of causal sets, is used as it represents the situation where the discreteness
scale is small in comparison to the Planck scale. Although these order invariants are defined for
all causal sets, as we will be attempting to reconstruct manifold curvatures, going ahead, we will
restrict our attention to manifold-like causets. We now proceed to describe the primary object of
our study, the inextendible antichain.

2.4 Cauchy Hypersurfaces and Inextendible Antichains
An important structure in the theory of general relativity is the Cauchy hypersurface. Upon speci-
fying initial values and constraints on an 3-dimensional manifold Σ, they can be used to evolve the
surface and generate a globally hyperbolic 4-dimensional solution to the vacuum Einstein equation
within which Σ is a Cauchy hypersurface. Hence, the characterisation of Cauchy hypersurfaces,
particularly their curvatures, is essential in order to translate this formulation into causal set the-
ory.

We first require a causal set theoretic analogue of Cauchy hypersurfaces. From the definition as
mentioned in chapter 1, we can derive the following properties of Cauchy hypersurfaces:

1. A Cauchy hypersurface Σ is a spacelike hypersurface

2. Every point not on the Cauchy hypersurfaceΣ lies either in the causal future 𝐽+(Σ) or causal
past 𝐽+(Σ) of the surface.

These properties may be readily generalised into order-theoretic terms, resulting in the following
definitions:

Definition (Antichain). An antichain is a subset 𝒜 ⊂ 𝐶 of causal set 𝐶 consisting of unrelated
elements, i.e.,

3Finiteness of𝐶 is imposed to ensure finiteness of the order invariant and in practice, can be enforced by restricting
ourselves to compact neighbourhoods of the regions of interest
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𝑥 ⪯̸ 𝑦 ∀𝑥, 𝑦 ∈ 𝒜

Definition (Inextendible Antichain). An inextendible antichain is an antichain 𝒜 ⊂ 𝐶 in causal
set 𝐶 such that

∀𝑥 ∈ 𝐶 𝒜, ∃𝑦 ∈ 𝒜 such that either 𝑥 ⪯ 𝑦 or 𝑦 ⪯ 𝑥
⟹ ∀𝑥 ∈ 𝐶 \ 𝒜, 𝑥 ∈ 𝐹𝑢𝑡(𝒜) or 𝑥 ∈ 𝑃𝑎𝑠𝑡(𝒜)

This allows for a decomposition of the form 𝐶 = 𝐹𝑢𝑡(𝒜) ⊔ 𝒜 ⊔ 𝑃𝑎𝑠𝑡(𝒜), allowing for the inex-
tendible antichain to separate the causal set into disjoint future and past regions.
It is the inextendible antichain4 that play the role of the Cauchy hypersurface in causal set theory.
However, inextendible antichains are not complete analogues of Cauchy hypersurfaces as we will
elaborate upon now. An important consequence of the definition of Cauchy hypersurfaces is that for
Cauchy hypersurface Σ, every inextendible causal curve must intersect Σ. This property indicates
the importance of a Cauchy hypersurface as a surface which provides a complete summary of its
past and allows for a complete description of its future. However, the discreteness of causal sets and
the extreme non-locality of causal links between elements imply that there is always the possibility
of a causal link directly connecting an element 𝑥 ∈ 𝑃𝑎𝑠𝑡(𝒜) with an element 𝑦 ∈ 𝐹𝑢𝑡(𝒜) with-
out any intersection with 𝒜. This is demonstrated in fig. 2.2, wherein a causal set sprinkled into
3-dimensional Minkowski spacetime contains an inextendible antichain embedding into Cauchy
hypersurface Σ ≅ ℝ2. Nevertheless, this apparent failing of the inextendible antichain has not
hindered efforts to reconstruct geometric properties of Cauchy hypersurfaces from inextendible
antichains, and particularly, that of the induced distance function on the Cauchy hypersurface,
as discussed in chapter 4.

Figure 2.2: Failure of Inextendible Antichains as Complete analogues of Cauchy hypersurfaces
4In the rest of this work, whenever we refer to an object as an “antichain”, we are still talking about an inextendible

antichain, with “inextendible” truncated for brevity’s sake
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Chapter 3

Discrete Curvatures in the Literature

Curvature plays a key role in the theory of general relativity. The dynamical equations of motion in
general relativity, the Einstein Equations, relate the intrinsic curvature of the spacetime manifold
to the energy and matter within it. Specifically, we are motivated by the initial value formulation
of general relativity, which involves the decomposition of a 4-dimensional spacetime in terms of a
foliation of Cauchy hypersurfaces Σ𝑡 and the specification of initial values on a particular Cauchy
hypersurface Σ0 to be evolved in time. The initial values specified are the dynamical variables,
the induced metric tensor ℎ𝑎𝑏 and extrinsic curvature 𝐾𝑎𝑏 of Σ0, along with constraint equations
between 𝐾𝑎𝑏 and the intrinsic scalar curvature (3)𝑅 of Σ0. This indicates the importance of charac-
terising the curvature of Cauchy hypersurfaces in globally hyperbolic spacetimes. However, these
measures of curvature are heavily reliant on the powerful machinery provided by manifold struc-
ture and do not all generalise well to causal set theory. While there has been success in defining
the scalar curvature 𝑅 for causal sets [7], inextendible antichains have not been characterised in
a similar way. We proceed to describe two measures of curvature in the literature that are better
adopted to discrete structures.

3.1 Ollivier Curvature
Ollivier curvature is a measure of curvature introduced on metric spaces equipped with Markov
chains (or probability measures, as we will use). In order to arrive at this quantity, we must begin by
defining the quantity known as the Wasserstein metric (or the Kantorovich-Rubenstein distance
of order one). We will eventually specialise to the case of Wasserstein metrics on Riemannian
manifolds.

19
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3.1.1 Wasserstein Metric
In order to motivate the definition of the Wasserstein metric, we begin by considering the problem
of optimal transport:
We have a plot of land, modelled as a metric space (𝑀, 𝑑), with a pile of sand, modelled as a
measure 𝜇 on 𝑀 , which is to be rearranged to another pile, modelled by measure 𝜈 on 𝑀 . As
the amount of sand is to be conserved, we normalise the measures to probability measures, i.e.,
∫𝑀 𝜇(𝑥)𝑑𝑉𝑥 = ∫𝑀 𝜈(𝑦)𝑑𝑉𝑦 = 1. In order to specify the scheme used to rearrange the pile, we use
a transport plan 𝛾 ∶ 𝑀 × 𝑀 → [0, ∞) such that 𝛾(𝑥, 𝑦) is the amount of sand to move from 𝑥 to
𝑦. Therefore, as we require the amount of sand moved from all of 𝑀 to 𝑦 ∈ 𝑀 to be the amount
of sand at 𝑦 in the final pile, we require1

∫
𝑀

𝛾(𝑥, 𝑦)𝑑𝑉𝑥 = 𝜈(𝑦)

Similarly, as the amount of sand to be moved from 𝑥 ∈ 𝑀 to every point in 𝑀 is the amount of
sand in the initial pile at 𝑥, we also require

∫
𝑀

𝛾(𝑥, 𝑦)𝑑𝑉𝑦 = 𝜇(𝑥)

Therefore, we see that 𝛾 is a joint probability distribution whose marginal distributions are given
by 𝜇 and 𝜈. We denote the set of all such joint probability distributions of 𝜇 and 𝜈 by Γ(𝜇, 𝜈).
Associated with transport, we have a cost function which determines the cost to move a unit amount
of sand from one point to another. We will assume that this cost is determined by the distance the
sand is to be transported, that is, that the cost to transport unit amount of sand from 𝑥 to 𝑦 is given
by 𝑑(𝑥, 𝑦). The cost of a given transport plan 𝛾, which we will refer to as the transport distance
associated with 𝛾, is then given by

∫
𝑀×𝑀

𝑑(𝑥, 𝑦)𝛾(𝑥, 𝑦) 𝑑𝑉𝑥 𝑑𝑉𝑦

Therefore, in order to obtain the optimal transport distance, we have to minimise this cost over all
allowed transport plans, leading to an optimal cost of

inf
𝛾∈Γ(𝜇,𝜈)

∫
𝑀×𝑀

𝑑(𝑥, 𝑦)𝛾(𝑥, 𝑦)𝑑𝑉𝑥 𝑑𝑉𝑦

1Integrals such as ∫ 𝑑𝑉𝑥 and ∫ 𝑑𝑉𝑦 are volume integrals
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This optimal transport problem naturally leads us to the definition of the Wasserstein metric, a
metric defined on the space of probability measures on a metric space.

Definition (Wasserstein Metric). Let (𝑀, 𝑑) be a metric space. For probability measures 𝜇 and
𝜈 on 𝑀 , the Wasserstein distance 𝑊(𝜇, 𝜈) is defined by

𝑊(𝜇, 𝜈) = inf
𝛾∈Γ(𝜇,𝜈)

∫
𝑀×𝑀

𝑑(𝑥, 𝑦)𝛾(𝑥, 𝑦) 𝑑𝑉𝑥 𝑑𝑉𝑦 (3.1)

where Γ(𝜇, 𝜈) is the space of all joint probability measures on 𝑀 × 𝑀 with marginals 𝜇 and 𝜈,
that is,

∫
𝑀

𝛾(𝑥, 𝑦)𝑑𝑉𝑦 = 𝜇(𝑥)

∫
𝑀

𝛾(𝑥, 𝑦)𝑑𝑉𝑥 = 𝜈(𝑦)
∀ 𝛾 ∈ Γ(𝜇, 𝜈) (3.2)

The Wasserstein metric is actually a metric on the space of probability measures on a metric space,
as proven in [8], and can be thought of as a distance between measures. While this metric has
been utilised in many applications, we will focus on its use in the definition of Ollivier curvature
in [9]

3.1.2 Curvature from the Wasserstein Metric
Definition (Ollivier Curvature). Consider a metric space (𝑀, 𝑑). For 𝑎, 𝑏 ∈ 𝑀 , the Ollivier
curvature 𝜅(𝑎, 𝑏) is defined by:

𝜅(𝑎, 𝑏) ≡ 1 − 𝑊(𝑚𝜖
𝑎, 𝑚𝜖

𝑏)
𝑑(𝑎, 𝑏) (3.3)

where 𝑚𝜖
𝑎 and 𝑚𝜖

𝑏 belong a family {𝑚𝜖
𝑥}𝑥∈𝑀 of probability measures on 𝑀 defined by:

𝑚𝜖
𝑥(𝑦) ≡

⎧{
⎨{⎩

1
𝑣𝑜𝑙(𝐵𝜖𝑥) if 𝑦 ∈ 𝐵𝜖

𝑥

0 else
(3.4)

where
𝐵𝜖

𝑥 ≡ {𝑧 ∈ 𝑀 | 𝑑(𝑧, 𝑥) < 𝜖} (3.5)

We see that {𝑚𝜖
𝑥}𝑥∈𝑀 is a family of uniform measures on balls of radius 𝜖 about every point in 𝑀 ,

and the Ollivier curvature 𝜅(𝑎, 𝑏)measures howmuch the distance between the uniform probability
measures on balls centered at 𝑎 and 𝑏 deviates from the distance between 𝑎 and 𝑏. We now proceed
to explain the relationship between the Ollivier curvature and other, more familiar measures of
curvature by specialising to the case of a Riemannian manifold.
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Figure 3.1: Optimal Transport Plan

For this discussion on the optimal transport plan, we will not use the abstract index notation and
Einstein convention. Let us consider a 𝐷-dimensional Riemannian manifold (𝑀, 𝑔) and the dis-
tance function 𝑑 associated with the metric tensor 𝑔 and points 𝑎, 𝑏 ∈ 𝑀 . We are concerned only
with the case where the distance 𝑑(𝑎, 𝑏) between 𝑎 and 𝑏 is small enough. In this limit, for balls
𝐵𝜖

𝑎 and 𝐵𝜖
𝑏 in 𝑀 with 𝛿 = 𝑑(𝑎, 𝑏) small enough so that both balls lie within a convex normal

neighbourhood, we may uniquely define the unit vector 𝑣 along the geodesic 𝛾 from 𝑎 to 𝑏, i.e.,
𝑏 = 𝑒𝑥𝑝𝑎(𝛿𝑣). Also, let 𝑥 ∈ 𝐵𝜖

𝑎 at distance 𝜖′ < 𝜖 and 𝑤 ∈ 𝑇𝑎𝑀 such that 𝑥 = 𝑒𝑥𝑝𝑎(𝜖′𝑤).
We may use the covariant derivative on 𝑀 to parallel transport 𝑤 along 𝛾 from 𝑎 to 𝑏, resulting in
𝑤′ ∈ 𝑇𝑏𝑀 . Let us denote the point at distance 𝜖′ along 𝑤′ from 𝑏 as 𝑥′, i.e., 𝑥′ = 𝑒𝑥𝑝𝑏(𝜖′𝑤′) and
define a function Φ ∶ 𝐵𝜖

𝑎 → 𝐵𝜖
𝑏 given by

Φ(𝑥) = 𝑥′

⟹ Φ(𝑥) = 𝑒𝑥𝑝𝑒𝑥𝑝𝑎(𝛿𝑣)(𝜖′𝑤′)
where 𝑥 = 𝑒𝑥𝑝𝑎(𝜖′𝑤) and 𝑤′ is the unique parallel translate of 𝑤 along 𝛾 at 𝑏 = 𝑒𝑥𝑝𝑎(𝛿𝑣)

This is illustrated in fig. 3.1, where 𝛾𝑥 is the unique geodesic from 𝑥 to 𝑥′ = Φ(𝑥). It was shown
in [9] that the optimal transport plan that is chosen in the Wasserstein distance 𝑊(𝑚𝜖

𝑎, 𝑚𝜖
𝑏) is the

one that corresponds to the coupling of 𝑥 ∈ 𝐵𝜖
𝑎 solely with Φ(𝑥) ∈ 𝐵𝜖

𝑏 as described above. The
distance between 𝑥 and 𝑥′ is then given by

𝑑(𝑥, 𝑥′) = 𝛿 (1 − 𝜖′2

2 𝐾(𝑣, 𝑤) + 𝒪(𝜖′3 + 𝜖′2𝛿)) (3.6)

where 𝐾(𝑣, 𝑤) is sectional curvature, given by

𝐾(𝑣, 𝑤) = 𝑅𝑖𝑗𝑘𝑙𝑣𝑖𝑤𝑗𝑣𝑘𝑤𝑙

𝑣𝑖𝑣𝑖 𝑤𝑗𝑤𝑗 − (𝑣𝑖𝑤𝑖)2 (3.7)
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Using this transport plan, setting 𝜖′ = 𝜖 and averaging eq. (3.6) over the set of all vectors𝑤 ∈ 𝑇𝑎𝑀
that belong to a unit ball about the origin, results in the Wasserstein distance, given by:

𝑊(𝑚𝜖
𝑎, 𝑚𝜖

𝑏) = 𝛿 (1 − 𝜖2

2 (𝐷 + 2)𝑅𝑖𝑗𝑣𝑖 𝑣𝑗 + 𝒪 (𝜖3 + 𝜖2𝛿)) (3.8)

Therefore, we obtain an expression for the Ollivier curvature:

𝜅(𝑎, 𝑏) = 1 − 𝑊(𝑚𝜖
𝑎, 𝑚𝜖

𝑏)
𝛿 = 𝜖2

2 (𝐷 + 2)𝑅𝑖𝑗𝑣𝑖 𝑣𝑗 + 𝒪 (𝜖3 + 𝜖2𝛿) (3.9)

This relation provides justification for 𝜅(𝑎, 𝑏) being considered a measure of curvature. Note that
from eq. (3.7), we have resumed use of abstract index notation and Einstein convention.
While this relation still hinges upon themanifold structure of𝑀 , the definition ofOllivier curvature,
based on Wasserstein distance, is only dependent upon the distance function on 𝑀 and therefore,
can still be generalised to discrete spaces. We now discuss a relevant instance of this, in the system
of random geometric graphs, as studied in [10].

3.1.3 Random Geometric Graphs
Random geometric graphs (RGGs) are graphs constructed from a Riemannian manifold (𝑀, 𝑔𝑎𝑏)
as follows:

• Points are randomly sampled from 𝑀 , uniformly with respect to the volume element on 𝑀 ,
through a Poisson point process at number density 𝑛. This generates the vertex set 𝑉 of the
graph.

• Each vertex 𝑣 ∈ 𝑉 is then connected to every other vertext 𝑣′ ∈ 𝑉 for which 𝑑(𝑣, 𝑣′) < 𝑡,
where 𝑡 is a constant threshold for the graph known as the connection radius of the graph,
and 𝑑 is the distance function on 𝑀 generated by the metric tensor 𝑔𝑎𝑏. Each such edge is
then given the weight 𝑑(𝑣, 𝑣′). This results in the edge set 𝐸 of the graph and completes the
description of a weighted graph 𝐺.

In the resulting RGG 𝐺, the idea was to calculate Ollivier curvature under the continuum limit
𝑛 → ∞ and the limits of vanishing ball radius and inter-center radius. In order to do so, a fixed
point 𝑥∗ and a tangent vector 𝑣𝑎 ∈ 𝑇𝑥𝑀 are chosen. The second center 𝑦∗

𝑛 is chosen along the
geodesic from 𝑥∗ along vector 𝑣𝑎, at distances 𝑑(𝑥∗, 𝑦∗

𝑛) = 𝛿𝑛 such that

lim
𝑛→∞

𝛿𝑛 = 0 (3.10)
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A random geometric graph is then sampled fromM and the points 𝑥∗, 𝑦∗
𝑛 are added to the graph ver-

tices 𝑉 and appropriate vertices are added based on the connection radius 𝜖𝑛, which is also defined
to be a function of number density such that it vanishes under the continuum limit. This results
in a random graph 𝐺𝑛 = 𝔾𝑛(𝑥∗, 𝑦∗

𝑛, 𝜖𝑛), referred to as a rooted random graph on 𝑀 , parame-
terised by number density 𝑛. Note that the functional forms of 𝛿𝑛, 𝜖𝑛 are yet to be specified. In
order to define balls on the graph, a graph distance function 𝑑𝐺𝑛

is defined wherein, for 𝑥, 𝑦 ∈ 𝐺𝑛,
𝑑𝐺𝑛

(𝑥, 𝑦) is the length of the shortest path in the weighted graph 𝐺𝑛, leading to a metric space
(𝐺𝑛, 𝑑𝐺𝑛

). The balls of radius 𝑟 centered at 𝑥∗, 𝑦∗
𝑛 are then defined to be the sets of𝐺𝑛’s vertices ly-

ing within graph distance 𝑟 from 𝑥∗, 𝑦∗
𝑛 respectively, that is,𝐵𝑟

𝑥∗ = {𝑧 ∈ 𝐺𝑛 | 𝑑𝐺𝑛
(𝑧, 𝑥∗) < 𝑟} and

𝐵𝑟
𝑦∗𝑛

= {𝑧 ∈ 𝐺𝑛 | 𝑑𝐺𝑛
(𝑧, 𝑦∗

𝑛) < 𝑟} respectively. For the purpose of defining the Ollivier curva-
ture, we consider balls 𝐵𝛿𝑛

𝑥∗ and 𝐵𝛿𝑛
𝑦∗𝑛
, that is, the ball radii are set equal to the inter-center distance,

so that both the ball radii and the inter-center distance vanish under the continuum limit, uniting all
three limits mentioned previously.

Having defined balls𝐵𝛿𝑛
𝑥∗ and𝐵𝛿𝑛

𝑦∗𝑛
on𝐺𝑛, we now define the uniformmeasures𝑚𝛿𝑛

𝑥∗ , 𝑚𝛿𝑛
𝑦∗𝑛
by:

𝑚𝛿𝑛
𝑥∗ (𝑧) ≡

⎧{
⎨{⎩

1
∣𝐵𝛿𝑛

𝑥∗ ∣ if 𝑧 ∈ 𝐵𝛿𝑛
𝑥∗

0 else

𝑚𝛿𝑛
𝑦∗𝑛

(𝑧) ≡
⎧{
⎨{⎩

1
∣𝐵𝛿𝑛

𝑦∗𝑛
∣

if 𝑧 ∈ 𝐵𝛿𝑛
𝑦∗𝑛

0 else

(3.11)

Finally, the graph Ollivier curvature is defined as in eq. (3.3):

𝜅𝐺(𝑥∗, 𝑦∗
𝑛) ≡ 1 −

𝑊𝐺(𝑚𝛿𝑛
𝑥∗ , 𝑚𝛿𝑛

𝑦∗𝑛
)

𝛿𝑛
(3.12)

where 𝑊𝐺 is the Wasserstein metric on the metric space (𝐺𝑛, 𝑑𝐺𝑛
). For this setup, the following

theorem holds, as was proven in [11]:

Theorem: For 𝐷 ≥ 2, let (𝑀, 𝑔𝑎𝑏) be a 𝐷-dimensional smooth, orientable, connected and com-
pact Riemannian manifold, 𝑥∗ ∈ 𝑀 and 𝑣𝑎 ∈ 𝑇𝑥∗𝑀 . For 𝜖𝑛 = Θ (log(𝑛)𝑎𝑛−𝛼) and 𝛿𝑛 =
Θ (log(𝑛)𝑏𝑛−𝛽) as 𝑛 → ∞, where

0 < 𝛽 ≤ 𝛼, 𝛼 + 2𝛽 ≤ 1
𝐷
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and 𝑎 ≤ 𝑏 if 𝛼 = 𝛽 and min {𝑎, 𝑎 + 2𝑏} > 2

𝐷 if 𝛼 + 2𝛽 = 1
𝐷 .

Let 𝑦∗
𝑛 ∈ 𝑀 be the point at distance 𝛿𝑛 along the direction 𝑣𝑎 and 𝐺𝑛 = 𝔾𝑛(𝑥∗, 𝑦∗

𝑛, 𝜖𝑛) be a
rooted random graph on 𝑀 . Then given the graph distance function 𝑑𝐺𝑛

and the family of uniform
probability measures {𝑚𝛿𝑛𝑧 }

𝑧∈𝐺𝑛
, the graph Ollivier curvature satisfies the following:

lim
𝑛→∞

𝔼[∣2(𝐷 + 2) 𝜅(𝑥∗, 𝑦∗
𝑛)

𝛿2𝑛
− 𝑅𝑖𝑗𝑣𝑖𝑣𝑗∣] = 0 (3.13)

where 𝔼 [.] is the expectation value on the sample space of rooted random graphs 𝐺𝑛.

This result relates quantities of two distinct systems: the manifold 𝑀 and the random geometric
graphs 𝐺𝑛. Moreover, this system of random geometric graphs on manifold (𝑀, 𝑔𝑎𝑏) bears a strik-
ing resemblance to that of inextendible antichains in causal sets that are approximated by Cauchy
hypersurface (Σ, ℎ𝑎𝑏) in (𝑀, 𝑔𝑎𝑏); Although the weights of the edges of RGGs are directly in-
herited from the manifold while those of the inextendible antichain edges are determined by the
predistance function, both the graphs have cutoff-dependent connectivity, determined by the con-
nection radius and mesoscale cutoff respectively. Therefore, while RGGs do not feel the effects of
discrete asymptotic silence, eq. (3.13) does hint at the possibility of the continuum convergence of
a similarly defined inextendible antichain Ollivier curvature to a manifold curvature.

However, as we will elaborate upon further in chapter 6, the optimisation involved in determining
the Wasserstein distance on inextendible antichains is a problem in linear programming, which can
prove computationally expensive to calculate for causal sets of sufficient size. Therefore, we now
describe a related quantity that we will evaluate numerically.

3.2 Quantum Ricci Curvature
Wenow follow the discussion of an alternate measure of discrete curvature in [12], which deals with
curvatures on simplicial manifolds, in the Causal Dynamical Triangulation approach to quantum
gravity. In chapter 3, if eq. (3.6) were averaged over the unit sphere in the tangent space instead of
the unit ball, with 𝜖′ = 𝜖, we get the expression:

𝛿 (1 − 𝜖2

2𝐷𝑅𝑖𝑗𝑣𝑖 𝑣𝑗 + 𝒪 (𝜖3 + 𝜖2𝛿))

where 𝐷 is the dimension of the Riemannian manifold. Therefore, even this quantity, although not
an Ollivier curvature, exhibits a limiting behaviour similar to that of the Ollivier curvature, scaled
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by a different constant. However, this quantity suffers the disadvantage of not translating well to
simplicial manifolds due to the very limited convexity radius in such structures. Therefore, they
proposed a more robust measure of distance between 𝑆𝜖

𝑎 and 𝑆𝜖
𝑏 , the spheres of radius 𝜖 about points

𝑎, 𝑏 ∈ 𝑀 : the average distance ̄𝑑

̄𝑑(𝑆𝜖
𝑎, 𝑆𝜖

𝑏) = 1
𝑣𝑜𝑙(𝑆𝜖𝑎)

1
𝑣𝑜𝑙 (𝑆𝜖

𝑏) ∫
𝑥∈𝑆𝜖𝑎

√ℎ (𝑥) 𝑑𝐷−1𝑥 ∫
𝑥′∈𝑆𝜖

𝑏

𝑑(𝑥, 𝑥′) √ℎ (𝑥′) 𝑑𝐷−1𝑥′ (3.14)

where
𝑆𝜖

𝑎 ≡ {𝑥 ∈ 𝑀|𝑑(𝑥, 𝑎) = 𝜖} , (3.15)

𝑆𝜖
𝑏 being defined similarly, ℎ andℎ′ are the determinants, in the coordinate systems {𝑥𝜇} and {𝑥′𝜇},

of the induced metric tensor ℎ𝑎𝑏 on the spheres 𝑆𝜖
𝑎 and 𝑆𝜖

𝑏 respectively and 𝑣𝑜𝑙 is the codimension-
1 volume. While this does not define a true distance function as ̄𝑑(𝑆𝜖

𝑎, 𝑆𝜖
𝑎) ≠ 0, the ratio ̄𝑑/𝛿, as

shown in [13] for 𝐷 = 2, 3, 4 conveys information about curvature:

̄𝑑
𝛿 =

⎧{{
⎨{{⎩

1.5746 + 𝛿2 (−0.1440 𝑅𝑖𝑗𝑣𝑖 𝑣𝑗 + 𝒪(𝛿)) , for 𝐷 = 2
1.6250 + 𝛿2 (−0.0612 𝑅𝑖𝑗𝑣𝑖 𝑣𝑗 − 0.0122 𝑅 + 𝒪(𝛿)) , for 𝐷 = 3
1.6524 + 𝛿2 (−0.0469 𝑅𝑖𝑗𝑣𝑖 𝑣𝑗 − 0.0067 𝑅 + 𝒪(𝛿)) , for 𝐷 = 4

Therefore, analogous to the Ollivier curvature, the quantum Ricci curvature 𝐾𝑞(𝑎, 𝑏) is defined
as ̄𝑑(𝑆𝛿

𝑎, 𝑆𝛿
𝑏 )

𝛿 = 𝑐𝑞 (1 − 𝐾𝑞(𝑎, 𝑏)) (3.16)

where, as before, the sphere radii are set equal to the inter-center distance, and 𝑐𝑞 is a constant
dependent on the metric space. This quantity naturally generalises to discrete spaces as the average
distance can be defined in them as:

̄𝑑(𝑆𝜖
𝑎, 𝑆𝜖

𝑏) = 1
|𝑆𝜖𝑎|

1
∣𝑆𝜖

𝑏 ∣ ∑
𝑥∈𝑆𝜖𝑎

∑
𝑥′∈𝑆𝜖

𝑏

𝑑(𝑥, 𝑥′) (3.17)
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Chapter 4

The Volume-Induced Distance Function

We now describe the construction of the distance function on inextendible antichains, as defined in
[14]. Since the antichain itself contains no structure (due to the lack of any causal relation within it),
the antichain is thickened into the future and structure is imposed onto it from the causal relations
within this thickening. Wewill first define a “Predistance Function” that is induced on the Cauchy
hypersurface Σ ⊂ 𝑀 from the causal poset (𝑀, ⪯), and then proceed to define a distance function
using the predistance. We then translate these definitions into the language of order theory in order
to extend the definition to causal sets, and then mention some key features of the distance function
obtained on inextendible antichains.

4.1 Inducing aDistance Function ontoCauchyHypersurface
We begin by providing the general construction we will use to define the predistance, before mo-
tivating it with relevant cases. We will work with a time-orientable globally hyperbolic causal
spacetime (𝑀, 𝑔𝑎𝑏) with volume element 𝑣𝑜𝑙 and Cauchy hypersurface (Σ, ℎ𝑎𝑏), where ℎ𝑎𝑏 is the
metric induced on Σ. For 𝑎, 𝑏 ∈ Σ, consider their causal futures 𝐽+(𝑎) and 𝐽+(𝑏), and their
common causal future

𝐽 (𝑎, 𝑏) ≡ 𝐽+(𝑎) ∩ 𝐽+(𝑏) (4.1)

For 𝑝 ∈ 𝐽 (𝑎, 𝑏), we call the region
𝐽 (Σ, 𝑝) ≡ 𝐽+ (Σ) ∩ 𝐽−(𝑝)

the “shadow of p”. we define the Suspended Volume function 𝑉 ∶ 𝐽(𝑎, 𝑏) → [0, ∞) by

𝑉 (𝑝) ≡ 𝑣𝑜𝑙 (𝐽 (Σ, 𝑝)) = 𝑣𝑜𝑙 (𝐽+ (Σ) ∩ 𝐽−(𝑝)) (4.2)

29
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We then minimise 𝑉 (𝑝) over 𝐽(𝑎, 𝑏) to define
𝑉 (𝑎, 𝑏) ≡ inf

𝑝∈𝐽(𝑎,𝑏)
𝑉 (𝑝) (4.3)

Finally, we define the predistance ̃𝑑 ∶ Σ × Σ → [0, ∞) by

̃𝑑(𝑎, 𝑏) ≡ 2 (𝑉 (𝑎, 𝑏)
𝜁𝐷

)
1/𝐷

(4.4)

where

𝜁𝐷 ≡ 𝜋 𝐷−1
2

𝐷 Γ (𝐷+1
2 ) (4.5)

To motivate the construction, we will begin by considering the simplest case: an extrinsically flat
Cauchy hypersurface in the 𝐷-dimensional Minkowski spacetime 𝕄𝐷. We will then move on to
constant curvature Cauchy hypersurfaces in 𝕄𝐷 before defining the complete distance function for
Cauchy hypersurfaces in general spacetimes.

4.1.1 Inertial Cauchy Hypersurface in Minkowski Spacetime
In 𝐷-dimensional Minkowski spacetime 𝕄𝐷, let (Σ, ℎ𝑎𝑏) ≅ (ℝ𝑑−1, 𝛿𝑎𝑏) be an inertial Cauchy
hypersurface, i.e., a Cauchy hypersurface with extrinsic curvature 𝐾𝑎𝑏 ≡ ∇𝑎𝜉𝑏 = 0, where 𝜉𝑏 is
the unit future-directed timelike vector field normal to Σ and ∇ is the covariant derivative in 𝕄𝐷.
Given points 𝑎, 𝑏 ∈ Σ, the suspended volume function is illustrated by fig. 4.1.

Figure 4.1: Suspended
Volume Function Con-
struction in Minkowski
Spacetime
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If we set the coordinate system such that 𝑎 = (0, −𝑇 , 0, ⋯ , 0) and 𝑏 = (0, 𝑇 , 0, ⋯ , 0), we see that
at

r𝑚 = (𝑇 , 0, 0, ⋯ , 0) ∈ ℋ(𝑎, 𝑏) = 𝜕𝐽+(𝑎) ∩ 𝜕𝐽+(𝑏)
the suspended volume function takes on its minimum value as the points 𝑎 and 𝑏 become antipodal
points on the 𝐷−2-sphere that forms the set 𝜕𝐵Σ(r𝑚) ⊂ Σ, where 𝐵Σ(r𝑚) = (𝐽−(𝑝) ∩ Σ) is the
base of the cone of suspended volume. The volume then corresponds to that of a 𝐷-dimensional
right cone of base radius 𝑇 and proper time 𝑇 from Σ to r𝑚. This takes the value:

𝑉 (𝑎, 𝑏) = 𝑉 (r𝑚) = 𝜁𝐷 𝑇 𝐷

where 𝜁𝐷 = 𝜋 𝐷−1
2

𝐷 Γ (𝐷+1
2 )

(4.6)

where the value of constant 𝜁𝐷 is derived in appendix A. Therefore, we see that

̃𝑑(𝑎, 𝑏) = 2 (𝑉 (r𝑚)
𝜁𝐷

)
1/𝐷

= 2𝑇 = 𝑑ℎ(𝑎, 𝑏)

where 𝑑ℎ(𝑎, 𝑏) is the distance under the induced metric on Σ. This is illustrated in fig. 4.2.

Although in this case, the predistance function is equal to the distance function, this happens be-
cause of the lack of extrinsic curvature in Σ and intrinsic curvature in 𝑀 . Therefore, in order
to motivate the general construction of the distance function, next we look at the case of Cauchy
hypersurfaces with constant extrinsic curvature in Minkowski spacetime.

Figure 4.2: Minimal
Suspended Volume in
Minkowski Spacetime
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4.1.2 Constant ExtrinsicCurvatureCauchyHypersurface inMinkowski Space-
time

ACauchy hypersurface (Σ, ℎ𝑎𝑏)with constant extrinsic curvature𝐾𝑎𝑏 corresponds to a co-dimension
1 hyperboloid. We will denote the trace of extrinsic curvature by 𝐾 ≡ ℎ𝑎𝑏𝐾𝑎𝑏. We continue to
define the predistance function ̃𝑑 by eqs. (4.2) to (4.5) and, similar to the previous case, as we are
in Minkowski spacetime, there exists an element r𝑚 ∈ 𝐽(𝑎, 𝑏) which realises the minimal value
in eq. (4.3). However, now the predistance function will not equal the induced distance on the
hypersurface as the suspended volume no longer takes the shape of a perfect cone. Rather, it now
takes the form of an inverted “icecream cone” which is scooped out for 𝐾 > 0 and topped off for
𝐾 < 0. Therefore, the predistance function will instead take the value

̃𝑑(𝑎, 𝑏) = 2𝑇 ′

where 𝑇 ′ is not equal to the proper time 𝑇 from 𝑝 to the hypersurface Σ. In order to understand the
quantity 𝑇 ′, we construct an inertial hypersurface Σ′ such that 𝑣𝑜𝑙(𝐽(Σ′, 𝑟𝑚)) = 𝑣𝑜𝑙(𝐽(Σ, 𝑟𝑚)).
Then the suspended volume 𝐽(Σ′, 𝑟) has a height 𝑇 ′ and a flat base 𝐵Σ′(r𝑚) of diameter 2𝑇 ′.
This is illustrated in fig. 4.3. This results in a predistance function of the form

̃𝑑(𝑎, 𝑏) = 2𝑇 ′ = 2𝑇 (1 + sgn (𝐾) 𝜖(𝑎, 𝑏))

where sgn is the sign function and 𝜖(𝑎, 𝑏) is a function of 𝑎, 𝑏 and 𝐾. It can be seen that if we
restrict 𝑎 and 𝑏 to be within a small enough neighbourhood 𝑁 ⊂ Σ, 𝜖 can be bounded. Also, it can
be shown, as in [14], for 𝑎 and 𝑏 with induced distance 𝑑ℎ(𝑎, 𝑏) sufficiently small, the predistance
is given by:

̃𝑑(𝑎, 𝑏) = 𝑑ℎ(𝑎, 𝑏)(1 + sgn(𝐾)𝜖′(𝑎, 𝑏))

for a small function 𝜖′. Therefore, as long as 𝑎 and 𝑏 are restricted to a small enough neighbour-
hood 𝑁 ⊂ Σ, ̃𝑑 approximates 𝑑ℎ to arbitrary precision.

Figure 4.3: Curved hypersurface in Minkowski spacetime
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4.1.3 Compact Cauchy Hypersurface in a General Spacetime
We now proceed to the most general case we will consider: a compact Cauchy hypersurface
(Σ, ℎ𝑎𝑏) in globally hyperbolic 𝐷-dimensional spacetime (𝑀, 𝑔𝑎𝑏). As learnt from the previous
case, we consider the situation where 𝑎 and 𝑏 are sufficiently close to each other and showcase
the behaviour of the predistance function upto leading order. This analysis was performed in [14],
using a combination of Riemann Normal Neighbourhoods (RNN) 𝑀𝑎 of 𝑎 in Σ, RNN 𝑁𝑎 of 𝑎 in
𝑀 , constructed to contain the domain of dependence 𝐷(𝑀𝑎) and Gaussian Normal Neighbour-
hood (GNN) 𝑁Σ of Σ in 𝑀 , referred to as a Gaussian-Riemann Neighbourhood (GRN) wherein
𝑏 is chosen within the GRN. The predistance function ̃𝑑 sill remains defined by eqs. (4.2), (4.4)
and (4.5), while eq. (4.3) is slightly modified so that

𝑉 (𝑎, 𝑏) = inf
𝑝∈ℋ(𝑎,𝑏)

𝑉 (𝑝)

whereℋ(𝑎, 𝑏) = 𝜕𝐽+(𝑎)∩𝜕𝐽+(𝑏)∩𝐷(𝑀𝑎). Due to this construction,ℋ(𝑎, 𝑏) is compact, allow-
ing the suspended volume function to take its minimum value at some point r𝑚 ∈ ℋ(𝑎, 𝑏).

Moreover, as calculated in [15], the construction allows for a series expansion of the suspended
volume function eq. (4.2) as:

𝑉 (𝑟) = 𝑉𝜂(𝑟) (1 + 𝐷
2 (𝐷 + 1)𝐾 (𝑟0) 𝑇 ) + 𝒪 (𝑇 𝐷+2)

⟹ ̃𝑑(𝑎, 𝑏) = 2𝑇 (1 + 1
2 (𝐷 + 1)𝐾 (r𝑚0) 𝑇 ) + 𝒪 (𝑇 3)

where 𝑟0 is the unique point on Σ from which originates a perpendicular geodesic to 𝑟 ∈ ℋ(𝑎, 𝑏)
as allowed for by GNN 𝑁Σ, r𝑚0 ∈ Σ is this point corresponding to r𝑚, 𝑇 is the proper time from
𝑟0 to 𝑟 along this geodesic and 𝑉𝜂(𝑟) is the flat suspended volume function from section 4.1.1,
given by eq. (4.6). We will refer to the trace of extrinsic curvature as 𝐾 as, upto leading order,
𝐾 is constant within 𝑀𝑎. The induced distance 𝑑ℎ(𝑎, 𝑏) can also be expanded on the basis of
dimensional analysis to obtain an error function 𝜖 (𝑎, 𝑏)

𝑑ℎ(𝑎, 𝑏) = 2𝑇 (1 + 𝛼𝐾𝑇 ) + 𝒪(𝑇 3)

⟹ 𝜖 (𝑎, 𝑏) ≡ ̃𝑑(𝑎, 𝑏) − 𝑑ℎ(𝑎, 𝑏) = 2 ( 1
2 (𝐷 + 1) − 𝛼) 𝐾𝑇 2 + 𝒪 (𝑇 3) (4.7)

where 𝛼 is a dimension-dependent parameter. As before, from eq. (4.7), it is clear that as long as we
restrict 𝑎 and 𝑏 so that the GRN is small enough, the error can be bounded to arbitrary precision.
It is to be noted that compactness was not necessary for the discussion so far, but will become
important in the following discussion on the definition of the distance function.
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4.1.4 Distance from Predistance
So far, we have defined a predistance function for compact Cauchy hypersurfaces (Σ, ℎ𝑎𝑏) in glob-
ally hyperbolic 𝐷-dimensional spacetimes, which can be used to approximate the induced distance
𝑑ℎ within small enough neighbourhoods. We would now like to use this predistance function to
construct a distance function on Σ. To do so, we first define the following:

Definition (𝑘-path from 𝑎 to 𝑏). A 𝑘-path 𝛾(𝑊𝑘) from 𝑎 to 𝑏 is a discretised path consisting of an
ordered set of points 𝑊𝑘 ≡ (𝑎 = 𝑤0, 𝑤1, ⋯ , 𝑤𝑘 = 𝑏) where 𝑤𝑖 ∈ Σ, ∀𝑖 ∈ {0, 1, ⋯ , 𝑘}. The
length of the 𝑘-path is defined in terms of the predistance function as

𝑑𝑊𝑘
(𝑎, 𝑏) ≡

𝑘−1
∑
𝑖=0

̃𝑑(𝑤𝑖, 𝑤𝑖+1) (4.8)

We denote the set of all 𝑘-paths from 𝑎 to 𝑏 for all finite 𝑘 by Γ (𝑎, 𝑏). We would like to use 𝑘-
path lengths to construct a distance function. In order to define a true distance function, triangle
inequality must be obeyed. In order to do so, we may attempt to define the distance function to
be

𝑑(𝑎, 𝑏) ?= inf
𝛾(𝑊𝑘)∈Γ(𝑎,𝑏)

𝑑𝑊𝑘
(𝑎, 𝑏)

However, as this definition does not take into account the extrinsic curvature of Σ, it will almost
always result in a 1-path directly from 𝑎 to 𝑏, not conforming sufficiently to the surface Σ. In order
to ensure that the paths under consideration conform to the surface, we restrict the set of paths from
Γ (𝑎, 𝑏) to

Γℓ (𝑎, 𝑏) = {𝛾(𝑊𝑘)∣ ̃𝑑(𝑤𝑖, 𝑤𝑖+1) < ℓ, ∀𝑖 ∈ {0, 1, ⋯ , 𝑘 − 1} , ∀𝑘 ∈ ℕ}

where we have now bounded path-segment lengths to be less than ℓ, referred to as a mesoscale
cutoff.

Figure 4.4: An 8-path from 𝑎 to 𝑏
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Therefore, we may now define a family of distance functions:

Definition (Distance function). The distance function with mesoscale cutoff ℓ is the function
𝑑 ∶ Σ × Σ → [0, ∞) given by

𝑑ℓ(𝑎, 𝑏) ≡ inf
𝛾(𝑊𝑘)∈Γℓ(𝑎,𝑏)

𝑑𝑊𝑘
(𝑎, 𝑏) (4.9)

From the triangle inequality, we can say that the infimum in eq. (4.9) attempts to minimise 𝑘 the
number of segments, while the mesoscale cutoff prevents 𝑘 from being too low by restricting each
segment to a small enough neighbourhood. The compactness of Σ implies that we may cover Σ
with a finite number of GRNs, {𝑁𝛼}𝛼. Taking 𝜖𝛼 to be the supremum of predistance error 𝜖 (𝑝, 𝑞)
defined by 4.7 over all 𝑝, 𝑞 ∈ 𝑁𝛼, the finiteness of the cover of Σ implies that

𝜖Σ = sup
𝛼

𝜖𝛼

is finite. As every path consists of a finite number of segments, the distance function error is
bounded, as long as the mesoscale cutoff ℓ is chosen so that ̃𝑑(𝑝, 𝑞) < ℓ, ∀𝑝, 𝑞 ∈ 𝑁𝛼. From
eq. (4.7), as the intrinsic curvature does not contribute to error at leading order, a useful length scale
to inform a choice of mesoscale cutoff ℓ is the extrinsic curvature radius, given by ℓ𝐾 = 1/𝐾.
We focus more on length scales in 4.3.2.

While the discussions on the predistance and distance functions make extensive use of the manifold
properties of the Cauchy hypersurface and the spacetime, the definitions of the functions only
involve causal structure and spacetime volumes, allowing a natural generalisation to manifold-like
causal sets.

4.2 The Inextendible Antichain Distance Function
We now proceed to consider a manifold-like causal set𝐶 approximated by a𝐷-dimensional space-
time (𝑀, 𝑔𝑎𝑏) at embedding density 𝜌, with a compact Cauchy hypersurface Σ whose causal set
analogue is an inextendible antichain 𝒜. Motivated by the definition of the predistance function
given in eqs. (4.2) to (4.5), the antichain predistance function ̃𝑑 ∶ 𝒜 × 𝒜 → [0, ∞) is defined as
follows:

Given 𝑎, 𝑏 ∈ 𝒜, we define their common future

𝐹(𝑎, 𝑏) ≡ 𝐹𝑢𝑡(𝑎) ∩ 𝐹𝑢𝑡(𝑏) (4.10)

where 𝐹𝑢𝑡(𝑎) and 𝐹𝑢𝑡(𝑏) are defined as in eq. (2.1).
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The suspended volume function 𝑉 ∶ 𝐹(𝑎, 𝑏) → [0, ∞) is then defined

𝑁(𝑐) ≡ |𝐹𝑢𝑡(𝒜) ∩ 𝑃𝑎𝑠𝑡(𝑐)| where 𝐹𝑢𝑡(𝒜) ≡ ⋃
𝑥∈𝒜

𝐹𝑢𝑡(𝑥)

𝑉 (𝑐) ≡ 𝑁(𝑐)/𝜌
(4.11)

Just as in 4.3, we proceed by defining

𝑉 (𝑎, 𝑏) ≡ inf
𝑐∈𝐹(𝑎,𝑏)

𝑉 (𝑐) (4.12)

The predistance function ̃𝑑 is defined as in eqs. (4.4) and (4.5)

̃𝑑(𝑎, 𝑏) ≡ 2 (𝑉 (𝑎, 𝑏)
𝜁𝐷

)
1/𝐷

(4.13)

where

𝜁𝐷 ≡ 𝜋 𝐷−1
2

𝐷 Γ (𝐷+1
2 )

Since Σ is compact, 𝒜 is a finite set. Also due to local finiteness, 𝐹(𝑎, 𝑏) is at most countably
infinite. Therefore, for every number 𝑉 ′ > 0, there are a finite number of elements 𝑐 ∈ 𝐹(𝑎, 𝑏)
such that 𝑉 (𝑐) ≤ 𝑉 ′. We may then find the smallest 𝑉 ′ such that there is only one e ∈ 𝐹(𝑎, 𝑏)
with 𝑉 (e) = 𝑉 ′. This element e is then the element that realises the minimisation in eq. (4.12),
playing the role of r𝑚 in the causal set case. Therefore, the predistance can be redefined as

̃𝑑(𝑎, 𝑏) ≡ 2 (𝑉 (e)
𝜁𝐷

)
1/𝐷

(4.14)

Having defined the predistance, to define the distance function, we proceed identically to sec-
tion 4.1.4, defining 𝑘-paths 𝛾𝑊𝑘 from 𝑎 to 𝑏 in terms of ordered sets of elements
𝑊𝑘 ≡ (𝑎 = 𝑤0, 𝑤1, ⋯ , 𝑤𝑘 = 𝑏) where 𝑤𝑖 ∈ 𝒜, ∀𝑖 ∈ {0, 1, ⋯ , 𝑘}. With a mesoscale cutoff ℓ,
the set of all admissible paths is defined

Γℓ (𝑎, 𝑏) = {𝛾(𝑊𝑘)∣ ̃𝑑(𝑤𝑖, 𝑤𝑖+1) < ℓ, ∀𝑖 ∈ {0, 1, ⋯ , 𝑘 − 1} , ∀𝑘 ∈ ℕ}

and the family of distance functions 𝑑ℓ ∶ 𝒜 × 𝒜 → [0, ∞) is given by

𝑑ℓ(𝑎, 𝑏) ≡ inf
𝛾(𝑊𝑘)∈Γℓ(𝑎,𝑏)

𝑑𝑊𝑘
(𝑎, 𝑏) (4.15)
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4.3 Properties of the Inextendible Antichain Functions:
In the case of the predistance and distance functions on inextendible antichains, there are a few
further subtleties to be addressed. Beyond the continuum-based errors in the causal set predistance
function, arising from the deviation of the underlying geometry from that of an inertial hyper-
surface in flat spacetime, there is also a source of error unique to the causal set case: stochastic
fluctuations. As the suspended volume function is a Poisson random variable, there is an inherent
randomness associated with its value. This error associated with randomness is overcome by the en-
semble averaging that is performed in order to obtain physical quantities. However, there is another
effect of stochasticity that is not overcome by averaging: Discrete Asymptotic Silence.

4.3.1 Discrete Asymptotic Silence
In a causal set𝐶 with inextendible antichain𝒜, that approximates, at density 𝜌, spacetime (𝑀, 𝑔𝑎𝑏)
with Cauchy hypersurface Σ, let us consider points 𝑎, 𝑏 ∈ 𝒜, which are close enough with respect
to an appropriate mesoscale cutoff. Let us refer to the common future and suspended volume
function in the continuum as 𝐹𝑀 and 𝑉𝑀 respectively, and the common future and suspended
volume function in the causal set as 𝐹𝐶 and 𝑉𝐶 respectively. It is to be noted that 𝐹𝐶 ⊂ 𝐹𝑀 as
the partial ordering in 𝐶 is induced from the causal structure of 𝑀 . The causal set minimising
element e will almost always result in a larger continuum suspended volume than the continuum
minimising element r𝑚 as, if

Proposition 1 The causal set volume minimising element e will almost always result in a larger
continuum suspended volume than the continuum volume minimising element r𝑚, i.e.,

𝑉𝑀 (r𝑚) ≤ 𝑉𝑀 (e)

where the equality only holds in a measure-0 subset of the sample space of sprinklings 𝒞 (𝑀, 𝜌)

Proof. The continuum minimising element r𝑚 is unique, and therefore this singleton set will only
be realised as e in a measure-0 subset of the sample space. Therefore, we may proceed under the
assumption that r𝑚 and e are distinct in general.
Let us assume that

𝑉𝑀 (r𝑚) > 𝑉𝑀 (e)

Then,
𝐹𝐶 ⊂ 𝐹𝑀 and e ∈ 𝐹𝐶 ⟹ e ∈ 𝐹𝑀

contradicting the premise that r𝑚 minimises 𝑉𝑀 in 𝐹𝑀 .
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Furthermore, due to the Poisson Sprinkling, for a fixed e, we know 𝑉𝐶(e) is a Poisson random
variable such that ⟨𝑉𝐶(e)⟩ = 𝑉𝑀(e). Therefore, we come to the conclusion that, for a given
𝑎, 𝑏 ∈ 𝒜,

𝑉𝑀(r𝑚) < ⟨𝑉𝐶(e)⟩

Therefore, due to the stochastic nature of the sprinklings, the causal set predistance function al-
ways over-approximates the continuum predistance. Note that the discreteness of the causal set
and its embedding in the spacetime at density 𝜌 results in an intrinsic length scale, referred to as the
discreteness scale, given by ℓ𝜌 ≡ 1/𝜌. This scale defines the minimum length scale of structures
in the manifold that can be considered physical. If 𝑎 and 𝑏 are separated by length scales much
larger than ℓ𝜌, the large sizes of the sets involved in the predistance calculation dampen the relative
effects of the stochastic fluctuations that separate e from r𝑚. This results in a relatively small error
in predistance.

However, if 𝑎 and 𝑏 are separated by length scales comparable to ℓ𝜌, the effects of the stochastic
fluctuations become more significant. This leads to large separation between e and r𝑚, resulting in
a significant fractional error in the causal set predistance ̃𝑑 with respect to the continuum distance
𝑑ℎ. This phenomenon of large deviation of the predistance from the continuum distance is referred
to as Discrete Asymptotic Silence[16]. This is illustrated in fig. 4.5, where 𝑉𝑀(e) and 𝑉𝑀(r𝑚)
are shaded to give one an idea of the aforementioned overestimation of suspended volume.

Figure 4.5: Discrete Asymptotic Silence
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Discrete Asymptotic Silence, or DAS will play a significant role in the rest of this work, leading
to errors that persist on averaging. Although the effects of DAS are observed at all length scales,
it plays a very significant role within a length scale which we refer to as the Discrete Asymptotic
Silence Scale ℓ𝐷𝐴𝑆. We now proceed to discuss all the length-scales involved in our analysis so
far.

4.3.2 Separation of Length-Scales
So far, there are four length-scales of relevance to our analysis of the distance function on inex-
tendible antichains:

• Discreteness scale ℓ𝜌

• Discrete Asymptotic Silence scale ℓ𝐷𝐴𝑆

• Mesoscale cutoff ℓ

• Extrinsic Curvature scale ℓ𝐾

The discreteness scale is the smallest meaningful length scale, and the discrete asymptotic silence
scale characterises the inner extent of the region within which the predistance function accurately
approximates the continuum distance. As the mesoscale cutoff defines the outer extent of the region
within which the predistance can be used as an accurate distance function, it must be chosen so
that

ℓ𝜌 < ℓ𝐷𝐴𝑆 ≪ ℓ

Moreover, as the extrinsic curvature radius determines the region beyond which the effects of ex-
trinsic curvature become significant, it sets an upper bound on the mesoscale cutoff:

ℓ𝜌 < ℓ𝐷𝐴𝑆 ≪ ℓ ≪ ℓ𝐾

Note: If we work in the regime within ℓ, it is sufficient to use the predistance function instead of the
distance function. As a modified version of Dijkstra’s algorithm is required in order to perform the
optimisation in eq. (4.15) in practice, this regime allows for a computationally inexpensive method
to use the distance function. We will take advantage of this in numerical simulations, as discussed
in chapter 6.

Having introduced the distance function, we shall revisit the topic of curvature, specialising to
inextendible antichains. Taking inspiration from the curvatures described in chapter 3, we propose
a curvature to characterise inextendible antichains with.
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Chapter 5

A New Volume-Induced Ricci Curvature

In chapter 3, we have mentioned two curvatures suitable for use on discrete systems:

1. Ollivier curvature, defined on metric spaces and studied extensively on random geometric
graphs

2. Quantum Ricci curvature, defined on metric spaces and introduced for use on simplicial
manifolds

Ollivier curvature provides the most promising way to characterise inextendible antichain curva-
ture, due to its extensive analysis in RGGswhich have strong connections to inextendible antichains
equipped with the distance function. Let us elaborate further upon the calculation of Wasserstein
distances in inextendible antichains: We have a Lorentzian manifold (𝑀, 𝑔𝑎𝑏) with a Cauchy hy-
persurface (Σ, ℎ𝑎𝑏). As we require an ensemble of sprinklings into (𝑀, 𝑔𝑎𝑏) with fixed points 𝑎∗

and 𝑏∗ to center balls at, we choose the set of sprinklings 𝒞 (𝑀, 𝜌) that embed into (𝑀, 𝑔𝑎𝑏), with
inextendible antichain𝒜, and then add 𝑎∗ and 𝑏∗ to each sprinkling and inextendible antichain. This
results in a set of rooted sprinklings 𝒞 (𝑀, 𝜌, 𝑎∗, 𝑏∗) with rooted inextendible antichains 𝒜. We
will go on to use these objects without explicitly referring to them as rooted. The inextendible
antichain 𝒜 is equipped with the distance function 𝑑ℓ with an appropriate mesoscale cutoff ℓ. We
then define a ball of radius 𝜖 centered at 𝑎 ∈ 𝒜 as

𝐵𝜖
𝑎 ≡ {𝑥 ∈ 𝒜 | 𝑑ℓ(𝑥, 𝑎) < 𝜖} (5.1)

41
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Given a ball 𝐵𝜖
𝑎, the uniform measure on it is defined as

𝑚𝜖
𝑎(𝑧) =

⎧{
⎨{⎩

1
|𝐵𝜖𝑎| if 𝑧 ∈ 𝐵𝜖

𝑎

0 else
(5.2)

which is well-defined due to the local-finiteness of causal sets. We now have a family of mea-
sures {𝑚𝜖

𝑎}𝑎∈𝒜 and, given a causal set 𝐶 ∈ 𝒞 (𝑀, 𝜌, 𝑎∗, 𝑏∗), we may define the Wasserstein met-
ric:

𝑊𝒜 (𝑚𝜖
𝑎∗, 𝑚𝜖

𝑏∗) = inf
𝛾∈Γ(𝑚𝜖

𝑎∗ ,𝑚𝜖
𝑏∗)

∑
𝑥∈𝒜

∑
𝑥′∈𝒜

𝑑ℓ (𝑥, 𝑥′) 𝛾(𝑥, 𝑥′) (5.3)

where 𝛾 ∶ 𝒜 × 𝒜 → [0, ∞) is a joint probability distribution such that:

∑
𝑥′∈𝒜

𝛾(𝑥, 𝑥′) = 𝑚𝜖
𝑎∗(𝑥)

∑
𝑥∈𝒜

𝛾(𝑥, 𝑥′) = 𝑚𝜖
𝑏∗(𝑥′)

(5.4)

and Γ (𝑚𝜖
𝑎∗, 𝑚𝜖

𝑏∗) is the space of all such joint distributions. The Ollivier curvature is again given
by

𝜅(𝑎∗, 𝑏∗) = 1 − 𝑊𝒜 (𝑚𝜖
𝑎∗, 𝑚𝜖

𝑏∗)
𝛿 (5.5)

where 𝛿 = 𝑑ℓ (𝑎∗, 𝑏∗). In practice, we will have a finite causal set 𝐶 with a finite antichain 𝒜
of size 𝑁 . In this case, 𝛾 can be thought of as a vector valued function, particularly, 𝛾 ∈ ℝ𝑁2 .
However, there are constraints on the function’s value due to the non-negativity of 𝛾 and eqs. (5.4).
The first consideration restricts 𝛾 to have only non-negative components but does not decrease the
dimensionality of the allowed solution space. However, as each equation in eqs. (5.4) corresponds
to 𝑁 linear equality constraints, this leads to a reduction in dimensionality by 2𝑁 . This results in
Γ (𝑚𝜖

𝑎∗, 𝑚𝜖
𝑏∗), the allowed solution space, being a convex, (𝑁2 − 2𝑁)-dimensional subset of ℝ𝑁2 ,

and the optimal solution 𝛾 of the objective function

∑
𝑥∈𝒜

∑
𝑥′∈𝒜

𝑑ℓ (𝑥, 𝑥′) 𝛾(𝑥, 𝑥′)

existing at some point on the boundary. This is a problem in the field of linear programming, which
can be solved numerically using interior-point methods or simplex methods. However, in practice,
this requires the calculation of the complete distance function (or, at the very least, the complete
predistance function) on 𝒜. Moreover, the most efficient linear programming algorithms[17] are



5.1. A New Dimensionless Ricci Curvature: The Continuum Case 43
of roughly quadratic time complexity in the number of variables 𝑛 = 𝑁2. Therefore, while the
Ollivier curvature is a promising quantity to characterise inextendible antichains with, due to these
computational challenges that we will face in studying the continuum limit, we will not calculate
it numerically in this work. Instead, we will proceed in the vein of 3.2; We will use an average
distance, specialising to the D = 3 case and conjecturing behaviour in the general case.

5.1 ANewDimensionlessRicci Curvature: TheContinuumCase
Due to its computational simplicity, we would like to use an average distance to measure curvature,
beginning with the continuum. Therefore, we consider a 𝐷-dimensional spacetime (𝑀, 𝑔𝑎𝑏) with
a Cauchy hypersurface (Σ, ℎ𝑎𝑏) and the distance function 𝑑 on Σ associated with the induced Rie-
mannian metric tensor ℎ𝑎𝑏. For 𝑝, 𝑝′ ∈ Σ where 𝑑(𝑝, 𝑝′) = 𝛿 is small enough, as in section 3.1.2,
we could work with spheres 𝑆𝜖

𝑝 and 𝑆𝜖
𝑝′ in Σ as defined in eq. (3.15). However, as spheres in an

antichain are measure-0 sets, in general, they will not be sampled in any sprinkling. Therefore,
instead of the prescription of [12], we use balls 𝐵𝜖

𝑝 and 𝐵𝜖
𝑝′ of radius 𝜖 as defined in eq. (3.5), that

is,
𝐵𝜖

𝑝 ≡ {𝑧 ∈ Σ | 𝑑(𝑧, 𝑝) < 𝜖}
𝐵𝜖

𝑝′ ≡ {𝑧 ∈ Σ | 𝑑(𝑧, 𝑝′) < 𝜖}
(5.6)

Instead of the Wasserstein distance, we use the average distance ̄𝑑 (𝑝, 𝑝′; 𝜖) between the balls 𝐵𝜖
𝑝

and 𝐵𝜖
𝑝′ in Σ:

̄𝑑 (𝑝, 𝑝′; 𝜖) ≡ 1
𝑣𝑜𝑙 (𝐵𝜖𝑝)

1
𝑣𝑜𝑙 (𝐵𝜖

𝑝′)
∫

𝑥∈𝐵𝜖𝑝

√ℎ(𝑥) 𝑑𝐷−1𝑥 ∫
𝑥′∈𝐵𝜖

𝑝′

√ℎ(𝑥′) 𝑑𝐷−1𝑥′ 𝑑(𝑥, 𝑥′) (5.7)

where
√

ℎ is the volume element of Σ. Note that this corresponds to the transportation distance
associated with the transport plan given by the product measure 𝛾𝑃 ∶ Σ × Σ → [0, ∞)

𝛾𝑃 (𝑥, 𝑥′) ≡ 𝑚𝜖
𝑝(𝑥) 𝑚𝜖

𝑝′(𝑥′) (5.8)

where𝑚𝜖
𝑝 and𝑚𝜖

𝑝′(𝑥′) are the uniform probability measures on the balls𝐵𝜖
𝑝 and𝐵𝜖

𝑝′ , as in eq. (3.4).
As this work will primarily deal with the case of 3-dimensional spacetimes, we now consider the
case of 𝐷 = 3. In this case, the ratio of this average distance with 𝛿, ̄𝑑(𝑝,𝑝′;𝜖)

𝛿 , can then be expanded
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in the small parameter1 𝑅𝛿2, where 𝑅 is the Ricci scalar at 𝑝:

̄𝑑 (𝑝, 𝑝′; 𝜖)
𝛿 = 𝑐𝑃 + ̃𝑐𝑅 𝑅𝛿2 + 𝒪 (𝑅2𝛿4) (5.9)

where 𝑐𝑃 is the value of this ratio in the Euclidean case. Therefore, analogous to eq. (3.16), we
may use the leading non-trivial term in this expansion to define a continuum dimensionless Ricci
curvature (cDRC) 𝐾𝑃 (𝑝, 𝑝′):

𝐾𝑃 (𝑝, 𝑝′) ≡ 1 − 1
𝑐𝑃

̄𝑑 (𝑝, 𝑝′; 𝜖)
𝛿 (5.10)

where the constant 𝑐𝑃 is a dimension-dependent constant that is, in general, also dependent on the
ratio 𝜇 of the ball radii to the inter-center distance:

𝜇 ≡ 𝜖
𝛿 (5.11)

Note that while 𝜇was set to 1 in the definition of quantumRicci curvature in section 3.2, we allow it
to be a free parameter. We now explicitly perform this calculation for the 𝐷 = 3 case, as described
below.

5.1.1 Dimensionless Ricci Curvature Calculation for 𝐷 = 3
Wewill calculate the average distance as in eq. (5.7), and hence the manifold volume-induced Ricci
curvature as in eq. (5.10), for the case of a 3-dimensional spacetime (𝑀, 𝑔𝑎𝑏) with 2-dimensional
Cauchy hypersurface (Σ, ℎ𝑎𝑏) and distance function 𝑑 on Σ associated with the metric ℎ𝑎𝑏, where
ℎ𝑎𝑏 is the induced metric on Σ. This calculation will follow the similar calculation performed in
[18] for the quantum Ricci curvature. Before proceeding with the calculation, we will mention here
a few useful properties, as in [19], of Riemann normal coordinates (RNCs) in a Riemann normal
neighbourhood 𝑈 ⊂ Σ, with a typical length scale 𝐿, centred about point 𝑝 ∈ Σ:

• For a point 𝑥 ∈ 𝑈 with RNCs 𝑥𝜇, the metric tensor ℎ𝜇𝜈 (𝑥) at 𝑥 can be expressed as

ℎ𝜇𝜈 (𝑥) = 𝛿𝜇𝜈 − 1
3𝑅𝜇𝛼𝜈𝛽𝑥𝛼𝑥𝛽 + 𝒪 (𝐿3) (5.12)

where 𝑅𝜇𝛼𝜈𝛽 = 𝑅𝜇𝛼𝜈𝛽 (𝑝), the curvature tensor at 𝑝.

• For points 𝑝1, 𝑝2 ∈ 𝑈 with RNCs 𝑥𝜇
1 and 𝑥𝜇

2 respectively, the squared distance between 𝑝1
and 𝑝2 is given by

1For 𝐷 > 3, 𝑅 will not completely characterise the hypersurface’s intrinsic curvature, and the expansion may vary
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𝑑2(𝑝1, 𝑝2) = 𝛿𝜇𝜈 (Δ𝑥𝜇
12) (Δ𝑥𝜈

12) − 1
3𝑅𝜇𝛼𝜈𝛽𝑥𝜇

1 𝑥𝛼
2 𝑥𝜈

1𝑥𝛽
2 + 𝒪 (𝐿5) (5.13)

where Δ𝑥𝜇
12 = 𝑥𝜇

1 − 𝑥𝜇
2 . Furthermore, the Riemann normal neighbourhood is defined such

that
𝑅 𝐿2 ≪ 1 (5.14)

• As 𝑈 is centred about 𝑝, it is the origin of the RNC system and hence ℎ𝜇𝜈 (𝑝) = 𝛿𝜇𝜈 and
𝑑2(𝑝, 𝑝1) = 𝛿𝜇𝜈𝑥𝜇

1 𝑥𝜈
1

We consider point 𝑝 ∈ Σ and an RNN, 𝑈 in Σ, centred about 𝑝, with a characteristic length 𝐿.
Point 𝑝′ is chosen in 𝑈 with distance 𝛿 = 𝑑(𝑝, 𝑝′) separating 𝑝 and 𝑝′ and the vector 𝑣 ∈ 𝑇𝑝Σ from
𝑝 to 𝑝′. We then consider 𝜖-radius balls centred at 𝑝 and 𝑝′:

𝐵𝜖
𝑝 = {𝑧 ∈ Σ | 𝑑(𝑧, 𝑝) < 𝜖}

𝐵𝜖
𝑝′ = {𝑧 ∈ Σ | 𝑑(𝑧, 𝑝′) < 𝜖}

(5.15)

where 𝜖 is a small enough radius to allow for 𝐵𝜖
𝑝 and 𝐵𝜖

𝑝′ to be fully contained in the previously
mentioned RNN. This construction is illustrated in fig. 5.1. In this RNN, we further define two
polar coordinate systems: (𝑟, 𝜃) centred about 𝑝, and (𝑟′, 𝜃′) centred about 𝑝′, and as 𝑟 and 𝑟′ are
defined as the geodesic distances to 𝑝 and 𝑝′ respectively, we will use these to coordinatise balls
𝐵𝜖

𝑝 and 𝐵𝜖
𝑝′ respectively. As this RNN is centred at 𝑝, the ball 𝐵𝜖

𝑝 centred at 𝑝 has a coordinate
description identical to that in a flat space that is, 𝑞 ∈ 𝐵𝜖

𝑝 in the Cartesian RNC is given by:

𝑞 = (𝑟 cos 𝜃, 𝑟 sin 𝜃) , where 𝑟 ∈ [0, 𝜖) , 𝜃 ∈ [0, 2𝜋]

Centre 𝑝′ of ball 𝐵𝜖
𝑝′ is chosen along the 𝑥-axis of the Cartesian RNC system, that is,

𝑝′ = (𝛿, 0)

Figure 5.1: Average Distance Construction
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As the ball 𝐵𝜖
𝑝′ is not centred about 𝑝, for 𝑞′ ∈ 𝐵𝜖

𝑝′ , its Cartesian coordinate description will be
modified as follows:

𝑞′ = (𝛿 + 𝑤 (𝑟′, 𝜃′) cos 𝜃′, 𝑤 (𝑟′, 𝜃′) sin 𝜃′) , where 𝑟′ ∈ [0, 𝜖) , 𝜃′ ∈ [0, 2𝜋]

where 𝑤 (𝑟′, 𝜃′) is a function that encodes the deformation of the ball due to curvature. For 𝑞′ ∈
𝐵𝜖

𝑝′ , as the distance between 𝑝′ and 𝑞′ is 𝑟′, we have

𝑟′2 = 𝑑2 (𝑝′, 𝑞′) = 𝑤2 (𝑟′, 𝜃′) [1 − 𝛿2

3 𝑅1212 sin
2 𝜃′ + 𝒪 (𝐿3)]

⟹ 𝑤 (𝑟′, 𝜃′) = 𝑟′ [1 − 𝛿2

3 𝑅1212 sin
2 𝜃′ + 𝒪 (𝐿3)]

− 1
2

To derive an expression to the order we desire, we need only expand 𝑤 (𝑟′, 𝜃′) upto order 𝛿2,
resulting in

𝑤 (𝑟′, 𝜃′) = 𝑟′ [1 + 𝛿2

6 𝑅1212 sin
2 𝜃′] + 𝒪 (𝐿4) (5.16)

Moreover, as the Riemann curvature of a 2-dimensional manifold has only one independent com-
ponent, the value of the curvature tensor at 𝑝 is given in terms of the Ricci scalar 𝑅 at 𝑝 by:

𝑅 = 2 𝑅1212 (5.17)

⟹ 𝑤 (𝑟′, 𝜃′) = 𝑟′ [1 + 𝑅𝛿2

12 sin2 𝜃′] + 𝒪 (𝐿4) (5.18)

We now proceed to find the distance between points 𝑞 ∈ 𝐵𝜖
𝑝 and 𝑞′ ∈ 𝐵𝜖

𝑝′:

𝑑2 ≡ 𝑑2 (𝑞, 𝑞′) = 𝛿𝜇𝜈 (Δ𝑥𝜇
𝑞 𝑞′) (Δ𝑥𝜈

𝑞 𝑞′) − 1
3𝑅𝜇𝛼𝜈𝛽𝑥𝜇

𝑞 𝑥𝛼
𝑞′𝑥𝜈

𝑞𝑥𝛽
𝑞′ + 𝒪 (𝐿5) (5.19)

where
𝑥1

𝑞 = 𝑟 cos 𝜃,
𝑥1

𝑞′ = 𝛿 + 𝑤 (𝑟′, 𝜃′) cos 𝜃′,
𝑥2

𝑞 = 𝑟 sin 𝜃,
𝑥2

𝑞′ = 𝑤 (𝑟′, 𝜃′) sin 𝜃′

We begin with evaluating the first term in eq. (5.19):

𝛿𝜇𝜈 (Δ𝑥𝜇
𝑞 𝑞′) (Δ𝑥𝜈

𝑞 𝑞′) = (𝑥1
𝑞 − 𝑥1

𝑞′)
2 + (𝑥2

𝑞 − 𝑥2
𝑞′)

2

= (𝛿 + 𝑤 (𝑟′, 𝜃′) cos 𝜃′ − 𝑟 cos 𝜃)2 + (𝑤 (𝑟′, 𝜃′) sin 𝜃′ − 𝑟 sin 𝜃)2

(𝑥1
𝑞− 𝑥1

𝑞′)
2 = (𝛿 + 𝑤 (𝑟′, 𝜃′) cos 𝜃′ − 𝑟 cos 𝜃)2 (5.20)
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= 𝛿2 [1 + (𝑟′

𝛿 ) cos 𝜃′ − (𝑟
𝛿) cos 𝜃 + 𝑅𝛿2

12 (𝑟′

𝛿 ) sin2 𝜃′ cos 𝜃′ + 𝒪 (𝐿3)]
2

(5.21)

= 𝛿2 (1 + (𝑟′

𝛿 ) cos 𝜃′ − (𝑟
𝛿) cos 𝜃)

2
[1 +

(𝑟′
𝛿 ) sin2 𝜃′ cos 𝜃′

1 + (𝑟′
𝛿 ) cos 𝜃′ − (𝑟

𝛿) cos 𝜃
𝑅𝛿2

12 + 𝒪 (𝐿3)]
2

(5.22)

= 𝛿2[(1 + (𝑟′

𝛿 ) cos 𝜃′ − (𝑟
𝛿) cos 𝜃)

2

+ 𝑅𝛿2

6 (𝑟′

𝛿 ) sin2 𝜃′ cos 𝜃′ (1 + (𝑟′

𝛿 ) cos 𝜃′ − (𝑟
𝛿) cos 𝜃) + 𝒪(𝐿3)]

(5.23)

Similarly,

(𝑥2
𝑞− 𝑥2

𝑞′)
2 = (𝑤 (𝑟′, 𝜃′) sin 𝜃′ − 𝑟 sin 𝜃)2 (5.24)

= 𝛿2 [((𝑟′

𝛿 ) sin 𝜃′ − (𝑟
𝛿) sin 𝜃)

2

+ 𝑅𝛿2

6 (𝑟′

𝛿 ) sin3 𝜃′ ((𝑟′

𝛿 ) sin 𝜃′ − (𝑟
𝛿) sin 𝜃) + 𝒪 (𝐿3)]

(5.25)

Therefore, the first term of eq. (5.19) is given by:

𝛿𝜇𝜈 (Δ𝑥𝜇
𝑞 𝑞′) (Δ𝑥𝜈

𝑞 𝑞′) = 𝑑2
Eu + 𝑑2

𝑅′ (5.26)

where,

𝑑2
Eu = 𝛿2 [(1 + 𝑟′

𝛿 cos 𝜃′ − 𝑟
𝛿 cos 𝜃)

2
+ (𝑟′

𝛿 sin 𝜃′ − 𝑟
𝛿 sin 𝜃)

2
] (5.27)

𝑑2
𝑅′ = 𝛿2

6 𝑅𝛿2 (𝑟′

𝛿 ) sin2 𝜃′ [(𝑟′

𝛿 ) + cos 𝜃′ − (𝑟
𝛿) cos (𝜃′ − 𝜃)] + 𝒪(𝐿5) (5.28)

where 𝑑Eu is the distance between 𝑝′ and 𝑞′ if curvature 𝑅 is set to 0, and 𝑑𝑅′ is the curvature-
dependent modification to this Euclidean distance. The next term in the distance equation is given
by

𝑑2
𝑅 = −1

3𝑅𝜇𝛼𝜈𝛽𝑥𝜇
𝑞 𝑥𝛼

𝑞′𝑥𝜈
𝑞𝑥𝛽

𝑞′

= −𝑅1212
3 [(𝑥1

𝑞𝑥2
𝑞′)

2 + (𝑥2
𝑞𝑥1

𝑞′)
2 − 2 𝑥2

𝑞𝑥1
𝑞′𝑥1

𝑞𝑥2
𝑞′]



48 Chapter 5 : A New Volume-Induced Ricci Curvature

= 𝑅
6 [2 (𝑟)2 sin 𝜃 cos 𝜃 𝑤 (𝑟′, 𝜃′) (𝛿 + 𝑤 (𝑟′, 𝜃′) cos 𝜃′) sin 𝜃′

− (𝑟 cos 𝜃 𝑤 (𝑟′, 𝜃′) sin 𝜃′)2 − (𝑟)2 sin2 𝜃 (𝛿 + 𝑤 (𝑟′, 𝜃′) cos 𝜃′)2]

⟹ 𝑑2
𝑅 = 𝛿2

6 𝑅𝛿2 (𝑟
𝛿)

2
[(𝑟′

𝛿 ) (1 + (𝑟′

𝛿 ) cos 𝜃′) sin 2𝜃 sin 𝜃′

− (𝑟′

𝛿 )
2
cos2 𝜃 sin2 𝜃′ − sin2 𝜃 (1 + (𝑟′

𝛿 ) cos 𝜃′)
2
] + 𝒪 (𝐿6)

(5.29)

We may now rewrite the complete distance 𝑑 as

𝑑 = √𝑑2
Eu + 𝑑2

𝑅′ + 𝑑2
𝑅 = 𝑑Eu + 𝑑2

𝑅′ + 𝑑2
𝑅

2𝑑Eu
+ 𝒪 (𝐿5) (5.30)

Note that this expansion can be carried out because 𝑑2
𝑅′, 𝑑2

𝑅 ∼ 𝒪 (𝑅𝛿2). However, due to the
presence of √𝑑2

Eu in the denominator, this term in the integrand can not be integrated for 𝜖 > 1/2
as, in this case, 𝐵𝜖

𝑝 ∩ 𝐵𝜖
𝑝′ ≠ ∅. For 𝑥 ∈ 𝐵𝜖

𝑝 ∩ 𝐵𝜖
𝑝′ , as 𝑑Eu(𝑥, 𝑥) = 0, this would cause the integrand

to become singular in this region, leading to failure of this expansion.

In order to evaluate eq. (5.7), we require the volume form 𝑑𝑉 of Σ, in the polar coordinates (𝑟, 𝜃)
in 𝐵𝜖

𝑝, and (𝑟′, 𝜃′) in 𝐵𝜖
𝑝′ , as well as the volumes of 𝐵𝜖

𝑝 and 𝐵𝜖
𝑝′ given by 𝑣𝑜𝑙(𝐵𝜖

𝑝) and 𝑣𝑜𝑙(𝐵𝜖
𝑝′)

respectively. The volume form in the Cartesian RNCs is given by

𝑑𝑉 = √ℎ11ℎ22 − (ℎ12)2 𝑑𝑥1∧ 𝑑𝑥2 (5.31)

Upon transforming eq. (5.31) into polar coordinates (𝑟, 𝜃) for point 𝑞 ∈ 𝐵𝜖
𝑝, we may evaluate the

volume form on 𝐵𝜖
𝑝 using 5.12, resulting in

𝑑𝑉𝑞 = √ℎ(𝑟, 𝜃) 𝑑𝑟∧𝑑𝜃 = 𝑟√1 − 𝑅
6 (𝑟)2 + 𝒪 (𝐿3) 𝑑𝑟∧𝑑𝜃

= [𝛿 (𝑟
𝛿) (1 − 𝑅𝛿2

12 (𝑟
𝛿)

2
) + 𝒪 (𝐿4)] 𝑑𝑟∧𝑑𝜃

(5.32)

Similarly, eq. (5.31) can be transformed into polar coordinates (𝑟′, 𝜃′) for point 𝑞′ ∈ 𝐵𝜖
𝑝′ , resulting

in the volume form on 𝐵𝜖
𝑝′:
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𝑑𝑉𝑞′ = √ℎ(𝑟′, 𝜃′) 𝑑𝑟′∧𝑑𝜃′

= 𝑤2 (𝑟′, 𝜃′)
𝑟′ (1 − 1

6𝑅 [𝛿2 + 𝑤2 (𝑟′, 𝜃′) + 2𝛿𝑤 (𝑟′, 𝜃′) cos 𝜃′] + 𝒪 (𝐿3))
1/2

𝑑𝑟′∧𝑑𝜃′

⟹ 𝑑𝑉𝑞′ = [𝛿(𝑟′

𝛿 )(1 − 𝑅𝛿2

12 [(𝑟′

𝛿 )
2

+ 2 (𝑟′

𝛿 ) cos 𝜃′ + cos 2𝜃′])+ 𝒪 (𝐿4)]𝑑𝑟′∧𝑑𝜃′

(5.33)

These volume elements can be integrated over 𝐵𝜖
𝑝 and 𝐵𝜖

𝑝′ respectively, resulting in

𝑣𝑜𝑙(𝐵𝜖
𝑝) =

𝜃=2𝜋

∫
𝜃=0

𝑑𝜃
𝑟=𝜖

∫
𝑟=0

𝑑𝑟 𝑟 (1 − 𝑟2

12𝑅) + 𝒪 (𝐿5)

= 𝜋𝜖2 − 𝜖4 𝜋
24𝑅 + 𝒪 (𝐿5)

A similar calculation results in 𝑣𝑜𝑙(𝐵𝜖
𝑝′) and the product 𝑣𝑜𝑙(𝐵𝜖

𝑝) × 𝑣𝑜𝑙(𝐵𝜖
𝑝′) as follows:

𝑣𝑜𝑙(𝐵𝜖
𝑝′) =

𝜃′=2𝜋

∫
𝜃′=0

𝑑𝜃′
𝑟′=𝜖

∫
𝑟′=0

𝑑𝑟′ 𝑟′ (1 − 𝑅
12 [𝑟′2 + 2𝛿𝑟′ cos 𝜃′ + 𝛿2 cos 2𝜃′]) + 𝒪 (𝐿5)

= 𝜋𝜖2 − 𝜖4 𝜋
24𝑅 + 𝒪 (𝐿5)

⟹ 𝑣𝑜𝑙(𝐵𝜖
𝑝) × 𝑣𝑜𝑙(𝐵𝜖

𝑝′) = 𝜋2𝜖4 [1 − 𝜖2

12𝑅] + 𝒪 (𝐿7)

The normalisation constant 𝑁 is then given by

𝑁 = 1
𝑣𝑜𝑙(𝐵𝜖𝑝) × 𝑣𝑜𝑙(𝐵𝜖

𝑝′)
= 1

𝜋2𝜖4 [1 + 𝜖2

12𝑅] + 𝒪 ( 1
𝐿) (5.34)

We may now evaluate eq. (5.7), in the form

̄𝑑 = 𝑁
𝜃=2𝜋

∫
𝜃=0

𝑟=𝜖

∫
𝑟=0

√ℎ(𝑟, 𝜃) 𝑑𝑟𝑑𝜃
𝜃′=2𝜋

∫
𝜃′=0

𝑟′=𝜖

∫
𝑟′=0

√ℎ(𝑟′, 𝜃′) 𝑑𝑟′𝑑𝜃′ [𝑑Eu + 𝑑2
𝑤 + 𝑑2

𝑅
2𝑑Eu

+ 𝒪 (𝐿5)] (5.35)

evaluating terms up till 𝒪(𝛿3), resulting in an expansion of the ratio ̄𝑑(𝑝,𝑝′)
𝛿 and the dimensionless
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Ricci curvature 𝐾𝑃 (𝑝, 𝑝′) of the form:

̄𝑑 (𝑝, 𝑝′)
𝛿 = 𝑐𝑃 + ̃𝑐𝑅 𝑅𝛿2 + 𝒪 (𝐿3) (5.36)

𝐾𝑃 (𝑝, 𝑝′) = 1 − 1
𝑐𝑃

̄𝑑 (𝑝, 𝑝′)
𝛿 = − ̃𝑐𝑅

𝑐𝑃
𝑅𝛿2 + 𝒪 (𝐿3) (5.37)

where

̃𝑐𝑅 ≡ 𝜇2

12𝑐𝑃 − 𝑘1 − 𝑘2 + 𝑘3 (5.38)

𝑐𝑃 ≡ 1
𝜋2𝜇4

𝜃=2𝜋

∫
𝜃=0

𝑠=𝜇

∫
𝑠=0

𝜃′=2𝜋

∫
𝜃′=0

𝑠′=𝜇

∫
𝑠′=0

𝑑𝑠 𝑑𝜃 𝑑𝑠′ 𝑑𝜃′ [𝑠 𝑠′𝐷Eu] (5.39)

𝑘1 ≡ 1
12𝜋2𝜇4

𝜃=2𝜋

∫
𝜃=0

𝑠=𝜇

∫
𝑠=0

𝜃′=2𝜋

∫
𝜃′=0

𝑠′=𝜇

∫
𝑠′=0

𝑑𝑠 𝑑𝜃 𝑑𝑠′ 𝑑𝜃′ [𝑠3 𝑠′𝐷Eu] (5.40)

𝑘2 ≡ 1
12𝜋2𝜇4

𝜃=2𝜋

∫
𝜃=0

𝑠=𝜇

∫
𝑠=0

𝜃′=2𝜋

∫
𝜃′=0

𝑠′=𝜇

∫
𝑠′=0

𝑑𝑠 𝑑𝜃 𝑑𝑠′ 𝑑𝜃′ 𝑠 𝑠′[(𝑠′)2+ 2𝑠′ cos 𝜃′ + cos 2𝜃′]𝐷Eu (5.41)

𝑘3 ≡ 1
12𝜋2𝜇4

𝜃=2𝜋

∫
𝜃=0

𝑠=𝜇

∫
𝑠=0

𝜃′=2𝜋

∫
𝜃′=0

𝑠′=𝜇

∫
𝑠′=0

𝑑𝑠 𝑑𝜃 𝑑𝑠′ 𝑑𝜃′ [𝑠 𝑠′ (𝐷2
𝑅′ + 𝐷2

𝑅)
𝐷Eu

] (5.42)

and the functions 𝐷Eu, 𝐷𝑅′ and 𝐷𝑅 are given by

𝐷Eu = √(1 + 𝑠′ cos 𝜃′ − 𝑠 cos 𝜃)2 + (𝑠′ sin 𝜃′ − 𝑠 sin 𝜃)2

𝐷𝑅′ = √𝑠′ sin2 𝜃′ [𝑠′ + cos 𝜃′ − 𝑠 cos (𝜃′ − 𝜃)]

𝐷𝑅 = 𝑠√[𝑠′ (1 + 𝑠′ cos 𝜃′) sin 2𝜃 sin 𝜃′ − 𝑠′2 cos2 𝜃 sin2 𝜃′ − sin2 𝜃 (1 + 𝑠′ cos 𝜃′)2]

(5.43)

where 𝜇 is as defined in eq. (5.11), and the new dimensionless integration variables obtained from
the rescaling

𝑟 = 𝛿 𝑠
𝑟′ = 𝛿 𝑠′ (5.44)

are used in integrating the expressions in eqs. (5.27) to (5.29), (5.32) to (5.34) and (5.44). Due to its
appearance in the limits of integration, these constants have a non-trivial dependence on 𝜇.
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Figure 5.2: Expansion Coefficient behaviour as functions of 𝜇

The plots of 𝑐𝑃 and ̃𝑐𝑅/𝑐𝑃 , the leading order coefficients of the ratio ̄𝑑/𝛿 and the dimensionless
Ricci curvature 𝐾𝑃 (upto a sign) respectively, as functions of 𝜇 are given in fig. 5.2.

In the case of spacetimes of higher dimension 𝐷, we expect a lot of this analysis to carry through
similarly, using hypersperical coordinates. However, in order to fully specify the curvature, we
would not only require the Ricci scalar 𝑅, but also other invariants constructed from the curvature
tensor, such as 𝑅𝑖𝑗𝑣𝑖𝑣𝑗. Having completed our discussion on the manifold calculation of the dis-
crete Ricci curvature, we proceed to describe the construction used to define the causal set discrete
Ricci curvature.

5.2 ANewDimensionlessRicci Curvature: TheCausetCase
For a 𝐷-dimensional spacetime (𝑀, 𝑔𝑎𝑏) with Cauchy hypersurface (Σ, ℎ𝑎𝑏), we will consider
sprinklings 𝐶 into 𝑀 with inextendible antichains 𝒜 corresponding to Σ, equipped with the dis-
tance function 𝑑ℓ for a mesoscale cutoff ℓ. Our construction is inspired by that of [11], mentioned
in section 3.1.3. For 𝑎∗, 𝑏∗ ∈ 𝒜 ⊂ 𝐶 ∈ 𝒞 (𝑀, 𝜌, 𝑎∗, 𝑏∗), we use 𝜖 radius balls 𝐵𝜖

𝑎∗ and 𝐵𝜖
𝑏∗ as

defined in eq. (5.1), that is,

𝐵𝜖
𝑎∗ = {𝑥 ∈ 𝒜|𝑑ℓ (𝑎∗, 𝑥) < 𝜖} , 𝐵𝜖

𝑏∗ = {𝑥 ∈ 𝒜|𝑑ℓ (𝑏∗, 𝑥) < 𝜖} (5.45)

The average distance between 𝐵𝜖
𝑎∗ and 𝐵𝜖

𝑏∗ is given by

̄𝑑 (𝑎∗, 𝑏∗; 𝜖) = 1
|𝐵𝜖

𝑎∗|
1

∣𝐵𝜖
𝑏∗∣

∑
𝑥∈𝐵𝜖

𝑎∗

∑
𝑦∈𝐵𝜖

𝑏∗

𝑑ℓ(𝑥, 𝑦) (5.46)
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It is to be noted that the average distance is the transport distance associated with the transport plan
𝛾𝑃 ∶ 𝒜 × 𝒜 → [0, ∞) given by:

𝛾𝑃 (𝑥, 𝑦) = 𝑚𝜖
𝑎∗(𝑥) 𝑚𝜖

𝑏∗(𝑦) (5.47)

where 𝑚𝜖
𝑎∗ and 𝑚𝜖

𝑏∗ are uniform measures defined on𝐵𝜖
𝑎∗ and 𝐵𝜖

𝑏∗ respectively, as in eq. (5.2). This
allows for the definition of the dimensionless Ricci curvature in the causal set, which we refer to
as the “Causet Volume-Induced Ricci Curvature”2:

Definition (Causet Volume-Induced Ricci Curvature). The causet volume-induced Ricci cur-
vature (cVIRC), 𝜅𝑃 (𝑎∗, 𝑏∗), is defined by the equation:

𝜅𝑃 (𝑎∗, 𝑏∗) = 1 − 1
𝑐𝑃

̄𝑑 (𝑎∗, 𝑏∗; 𝜖)
𝛿 (5.48)

where 𝑐𝑃 is the continuum value of the ratio ̄𝑑/𝛿, given by eq. (5.39).

This is the quantity whose behaviour we will proceed to explore through numerical simulations
in section 6.1. In order to explore its behaviour under the continuum limit 𝜌 → ∞, a procedure
similar to that in section 3.1.3 is followed:

The first rooted point 𝑎∗ is kept fixed across sprinkling densities, but the second rooted point 𝑏∗ and
the ball radius 𝜖 are made functions of sprinkling density, 𝑏∗

𝜌, and 𝜖𝜌 respectively, such that

𝑑ℓ (𝑎∗, 𝑏∗
𝜌) = 𝛿𝜌 → 0 as 𝜌 → ∞ (5.49)

𝜖𝜌 → 0 as 𝜌 → ∞ (5.50)

These functions of density need to be specified by us, and we shall take inspiration from the studies
of Ollivier curvature on RGGs, as discussed in section 3.1.3. We give the ball radius 𝜖𝜌 and the
inter-center distance 𝛿𝜌, the functional form

𝜖𝜌 ∼ 𝜌−𝛼 ⟹ 𝜖𝜌 = 𝜖1𝜌−𝛼 (5.51)

𝛿𝜌 ∼ 𝜌−𝛽 ⟹ 𝛿𝜌 = 𝛿1𝜌−𝛽 (5.52)

where 𝛼 and 𝛽 are positive constants, and 𝜖1 and 𝛿1 are the constant values of these quantities at

2This dimensionless Ricci curvature is referred to as “volume-induced” due to the use of the volume-induced dis-
tance function 𝑑ℓ
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unit density. The continuum calculations performed in section 5.1.1 show us that ratio ̄𝑑/𝛿, upon
expansion in orders of 𝛿, has at least its highest order, non-trivial coefficient as a function not of 𝛿
or 𝜖 individually, but of the ratio 𝜇 = 𝜖/𝛿, as given in eqs. (5.39) to (5.42). Therefore, it would be
meaningful to maintain this ratio’s value across densities, that is,

𝜇𝜌 ≡ 𝜖𝜌
𝛿𝜌

= 𝜖1
𝛿1

𝜌𝛽−𝛼 = 𝜖1
𝛿1

= const ⟹ 𝛼 = 𝛽 (5.53)

In order to set the value of 𝛼, we observe that, on the grounds of dimensional analysis, the antichain
density ̃𝜌 can be expected to relate to the sprinkling density 𝜌 as

̃𝜌 ∼ 𝜌 𝐷−1
𝐷

Therefore, the number of antichain elements ∣𝐵𝜖𝜌
𝑎∗ ∣ in a ball of radius 𝜖𝜌 varies as

∣𝐵𝜖𝜌
𝑎∗ ∣ ∼ ̃𝜌 (𝜖𝜌)𝐷−1 ∼ 𝜌 𝐷−1

𝐷 𝜌−𝛼(𝐷−1) = 𝜌 𝐷−1
𝐷 (1−𝛼𝐷) ∼ ̃𝜌 1−𝛼𝐷 (5.54)

As we increase 𝜌, while we want the radius 𝜖𝜌 to decrease as in eq. (5.50), we would like the number
of elements in the balls to grow in order to approach the continuum limit, so that the average in
eq. (5.46) may approach the continuum average in eq. (5.7). This results in the following functional
forms of 𝜖𝜌 and 𝛿𝜌:

𝜖𝜌 = 𝜖1𝜌−𝛼

𝛿𝜌 = 𝛿1𝜌−𝛼 where 0 < 𝛼 < 1
𝐷 (5.55)

These constraints on the exponent 𝛼 prompt the following considerations of the approach to con-
tinuum behaviour:

• If 𝛼 is close to 0, then as 𝜖𝜌 = 𝜖1𝜌−𝛼 and 𝛿𝜌 = 𝛿1𝜌−𝛼, these quantities will drop off too
slowly, resulting in a sub-optimal rate of convergence to the continuum

• If𝛼 is close to 1/𝐷, then as the sizes of balls vary as eq. (5.54), this results in the sizes of balls
increasing too slowly, again resulting in a sub-optimal rate of convergence to the continuum
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Chapter 6

Implementing Causet Volume-Induced Ricci
Curvature for 𝐷 = 3

We now describe the construction used to calculate the causet volume-induced Ricci curvature
for the simplest case of flat inextendible antichains in Minkowski spacetime, and then explore
its behaviour as well as that of the predistance function, in the continuum limit, using numerical
simulations of sprinklings into Minkowski spacetime. These simulations were performed using
code built upon the C++ code framework of [14], and is available here upon request.

6.1 Computational Setup
We now describe the implementation of this construction in code. We begin with describing the
process of sprinkling the causal set intoMinkowski spacetime and the selection of an antichain. We
then discuss details regarding the predistance calculation and average distance calculation.

6.1.1 Causet Sprinkling, Antichain Selection andPredistanceCalculation
We would like to sprinkle a causal set 𝐶 into a compact subset of Minkowski spacetime at density
𝜌 and then select an inextendible antichain 𝒜 of a given geometry. It is important to mention
an important caveat regarding the correspondence between an inextendible antichain 𝒜 and the
Cauchy hypersurface Σ it is supposed to be approximated by. For a given inextendible antichain
𝒜, it is possible to find a Cauchy hypersurface Σ in 𝑀 that 𝒜 embeds into. However, for a given
Cauchy hypersurfaceΣ, no Poisson sprinkling𝐶 into the spacetime𝑀 will contain an inextendible
antichain 𝒜 which embeds into Σ, as hypersurfaces are measure-0 sets of a manifold.
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https://github.com/randomgenericdude/quantum-Ricci-curvature.git


56 Chapter 6 : Implementing Causet Volume-Induced Ricci Curvature for 𝐷 = 3
Therefore, we can not find a sprinkling 𝐶 into M with an inextendible antichain 𝒜 which embeds
into a given Cauchy hypersurface Σ, unless we artificially append a uniform sampling of Σ into
an antichain 𝒜. While we will artificially append points 𝑎∗ and 𝑏∗

𝜌 to obtain rooted sprinklings
as described in chapter 5, we will not do the same for inextendible antichains. We instead start
selecting antichain elements from the base of the spacetime region in consideration and shape the
base to have the desired Cauchy hypersurface geometry. We now describe the complete method
followed for the case of interest in this work: that of an extrinsically-flat hypersurfaceΣ at the base
of a compact subset 𝑈 of 3-dimensional Minkowski spacetime 𝑀 .

• Wework with a region𝑈𝐿 ofMinkowski spacetime in the shape of a cone, forming the subset
of points in the past of the origin at a time coordinate 𝑡 ≥ −𝐿 for some integer parameter 𝐿,
i.e.

𝑈𝐿 = {(𝑡, 𝑥, 𝑦) ∈ 𝑀∣−𝑡2 + 𝑥2 + 𝑦2 ≤ 0 and − 𝐿 ≤ 𝑡 ≤ 0} (6.1)

The Cauchy hypersurface Σ we are interested is at the base of 𝑈𝐿, given by

Σ = {(−𝐿, 𝑥, 𝑦) ∈ 𝑈𝐿∣𝑥2 + 𝑦2 ≤ 𝐿2} (6.2)

We choose 𝑈𝐿 to be in the shape of a cone with theΣ its base as 𝑈𝐿 is then the future domain
of dependence 𝐷+ (Σ) of Σ. Rooted points 𝑎∗, 𝑏∗

𝜌 are also chosen in Σ, and sampled as the
first elements of both causal set 𝐶 and antichain 𝒜.

• We begin to sample points about the 𝑡 = −𝐿 slice of 𝑈𝐿. At every integer lattice point
(−𝐿, 𝑥, 𝑦) ∈ 𝑈𝐿, a Poisson random number 𝑛 ∼ Pois (𝜌) is sampled and 𝑛 points are
uniformly sampled into 𝐶 from the region

[−𝐿 − 1
2, −𝐿 + 1

2] × [𝑥 − 1
2, 𝑥 + 1

2] × [𝑦 − 1
2, 𝑦 + 1

2] ∩ 𝐽− ((0, 0, 0))

Every time a point is sampled, it is compared to every element in the antichain 𝒜 defined so
far and, if spacelike-separated with every element, is added to 𝒜.

• Once the 𝑡 = −𝐿 slice is completed, the process is repeated over the 𝑡 = −𝐿+1, ⋯ , 0 slices
till the whole region 𝑈𝐿 is sampled. This results in a Poisson sprinkling into 𝑈𝐿 at density
𝜌 and an iteratively-constructed inextendible antichain 𝒜 containing 𝑎∗, 𝑏∗

𝜌. Moreover, since
the sampling for 𝒜 began from the base of 𝑈𝐿, it ends up taking the shape of this base, with
certain thickness Δ in the time-direction. This thickness will go on to contribute to errors
and will decrease with increasing 𝜌.
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It is to be noted that this causal set does suffer from boundary effects as we will soon discuss.
Therefore, for some 0 < 𝐿′ < 𝐿, we consider points (𝑡, 𝑥, 𝑦) ∈ 𝐶 to be padding points if 𝑡 >
−√𝑥2 + 𝑦2 −𝐿′ and working points if 𝑡 ≤ −√𝑥2 + 𝑦2 −𝐿′. We denote the set of working points
by 𝐶′ and define the set 𝒜′ = 𝒜 ∩ 𝐶′.1 For 𝐿 = 30, the constant 𝐿′ can be set to a value such
a 2, which will provide sufficient padding. The code goes further and varies 𝐿′ with density to
maximise utilisation of the points in 𝐶.

We will only work 𝒜′, which we refer to as the effective antichain. In the absence of any curva-
ture, we use the predistance function instead of the distance function as discussed in chapter 4.
The process described in section 4.2 is followed to find the predistance between 𝑎∗ and every other
element of 𝒜′, and the points within predistance 𝜖𝜌 are taken to define ball 𝐵𝜖𝜌

𝑎∗ . A similar process
also defines 𝐵𝜖𝜌

𝑏∗𝜌
, and one such sprinkling with the aforementioned structures is plotted in fig. 6.1.

Having defined the necessary balls, the predistances between points across balls and their aver-
age is calculated, as in eq. (5.46). Upon changing density 𝜌, 𝜖𝜌 and 𝛿𝜌 are scaled according to
eq. (5.55), for a specified 𝛼. It is to be noted that the code is also capable of calculating the com-
plete predistance function over 𝒜′, in order to analyse the predistance function error, which allows
for understanding the discrete asymptotic silence scale ℓDAS.

Figure 6.1: Sprinkling with balls at 𝜌 = 2.5

1Rooted points 𝑎∗, 𝑏∗
𝜌 are always chosen to be 𝐶′
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6.1.2 Additional Features Implemented
These predistance calculations are restricted to points within 𝒜′ instead of all of 𝒜 as, for a point
at the edge of 𝒜, while the volume minimising element in the continuum r𝑚 lies within 𝑈𝐿, the
minimising element e in the causal set could lie outside𝐶, due to proposition 1. The padding points
are therefore added to ensure that even if it does lie outside 𝐶′, it will lie within 𝐶, resulting in
accurate predistance calculation. Moreover, a couple of optimisations are implemented in order to
speed up calculation:

• During predistance calculation, searches over the common future are restricted to a truncated
common future. More specifically, for a given pair of elements 𝑥, 𝑦 ∈ 𝒜′, if the minimising
element in the continuum is r𝑚 at a time coordinate 𝑡′, then the causal future 𝐽+(r𝑚) of r𝑚 is
contained within the common future 𝐽 (𝑥, 𝑦) ⊃ 𝐽+(r𝑚). Since we know the functional form
of the volume of 𝐽+(r𝑚) up to a time coordinate 𝑡′ + Δ𝑇 , we can find a lower bound on the
probability of finding the causal set minimising element e in 𝐽 (𝑥, 𝑦) within time coordinate
𝑡′ + Δ𝑇 . We use this relation in order to restrict every causal future search to the region of
𝐽 (𝑥, 𝑦) within time coordinate 𝑡′ + Δ𝑇 for Δ𝑇 such that the probability of e being within
this search region is a parameter 𝑃 which is very nearly 1. This parameter was set by hand
to 1 − 10−11. A similar procedure is used to determine the padding size 𝐿′.

• The search for the balls 𝐵𝜖𝜌
𝑎∗ and 𝐵𝜖𝜌

𝑏∗𝜌
can be restricted to a sufficiently large neighbourhood

of 𝑎∗ and 𝑏∗
𝜌 instead of the entirety of 𝒜′. This region is chosen based on the radius 𝜖𝜌 and

the discrete asymptotic silence scale ℓDAS.

• Finally, as the simulations were performed for an extrinsically flat 2-dimensional hypersur-
face Σ with translational symmetry, instead of shifting only the second rooted point 𝑏∗

𝜌 with
𝜌, both rooted points 𝑎∗

𝜌 and 𝑏∗
𝜌 are shifted with 𝜌, such that the scaling relations in eq. (5.55)

are obeyed. This results in a more symmetric setup, as seen in fig. 6.1, where the coordinates
of the rooted points are given by

𝑎∗
𝜌 = (−𝛿𝜌

2 , 0, 0)

𝑏∗
𝜌 = (𝛿𝜌

2 , 0, 0)

We now describe the tests performed using the described setup. The results of these tests are pre-
sented in chapter 7 and discussed in chapter 8.
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6.2 Numerical Tests
6.2.1 Test I: Predistance Function Characteristics
Before exploring the average ball distance, we would like to better characterise the predistance
function on these antichains. Therefore, we choose a smaller 𝐿 parameter value of 20 and compute
the complete predistance function ̃𝑑 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝒜′, for a sprinkling at a particular density
𝜌. As we are considering a completely flat Cauchy hypersurface, we also calculate the continuum
distance 𝑑ℎ (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝒜′ where 𝑑ℎ is the distance function defined using the induced metric
ℎ𝑎𝑏 on Σ. This allows us to calculate the predistance error function Δ ∶ 𝒜′ × 𝒜′ → ℝ, defined
as

Δ (𝑥, 𝑦) =
̃𝑑 (𝑥, 𝑦) − 𝑑ℎ (𝑥, 𝑦)

𝑑ℎ (𝑥, 𝑦) (6.3)

We note here that, in order to calculate the continuum distance 𝑑ℎ, we must assume that 𝒜′ ⊂ Σ
which, in practice, involves projecting 𝒜′ onto Σ with the hopes that the error introduced by this
projection dies down at high enough densities. The predistance error function serves as our primary
means of characterising the behaviour of the predistance function. As discussed in section 4.3.1, the
predistance function will overestimate the continuum distance on average, with this overestimation
being more extreme for smaller values of 𝑑ℎ. Therefore, upon plotting a scatter plot of Δ (𝑥, 𝑦)
versus 𝑑ℎ (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝒜′, we expect a set of points with mostly positive error, decreasing with
increasing 𝑑ℎ.

Moreover, an important consideration that can be made in this regard is that of dimension-free
predistance. The causal set predistance function can be rewritten as

̃𝑑(𝑎, 𝑏) = (𝜌)−1/𝐷 [2 (𝑁(e)
𝜁𝐷

)
1/𝐷

] = ℓ𝜌 [2 (𝑁(e)
𝜁𝐷

)
1/𝐷

] (6.4)

where ℓ𝜌 is discreteness scale defined in section 4.3.2. Therefore, we see that dimensionality2 of the
predistance arises entirely from the discreteness scale and, upon factoring out the discreteness scale,
we get a measure of distance in the units of the discreteness scale. This is a quantity independent of
the property of the embedding, i.e., the embedding density 𝜌, which we refer to as the dimension-
free predistance �̃�, a function purely of the antichain structure:

�̃� (𝑥, 𝑦) =
̃𝑑(𝑎, 𝑏)
ℓ𝜌

= 2 (𝑁(e)
𝜁𝐷

)
1/𝐷

(6.5)

2Here, dimensionality refers to the dimension of length as opposed to the spacetime dimension 𝐷
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More generally, any length associated with the causal set has a dimension-free quantity associated
with it, obtained in a similar manner. In our simulation setup, while the scale of the spacetime
region is kept constant across densities, determined by the parameter 𝐿, the dimension-free scale,
given by 𝐿ℓ−1

𝜌 = 𝜌1/𝑑𝐿 does grow with density. Moreover, while the scale of discrete asymptotic
silence is expected to shrink with density, disappearing in the continuum limit, the dimension-free
scale of discrete asymptotic silence remains fixed across densities. This would suggest that the
aforementioned error function

Δ (𝑥, 𝑦) =
̃𝑑 (𝑥, 𝑦) − 𝑑ℎ (𝑥, 𝑦)

𝑑ℎ (𝑥, 𝑦) = �̃� (𝑥, 𝑦) − ℓ−1
𝜌 𝑑ℎ (𝑥, 𝑦)

ℓ−1𝜌 𝑑ℎ (𝑥, 𝑦) (6.6)

upon being plotted over a dimension-free continuum distance

ℓ−1
𝜌 𝑑ℎ (6.7)

must have near identical profiles across densities, with the density only determining the extent of
the plot. Therefore, this 𝐿 = 19 setup is repeated sprinkled into at densities ranging from 𝜌 = 0.5
to 𝜌 = 3.0. At each density, the domain of ℓ−1

𝜌 𝑑ℎ is uniformly binned, and the mean and standard
deviation of the error values within each bin are used to obtain a line plot with a 1𝜎 error region
about it. The plots at various densities are then overlayed to test this prediction and the results of
this test are reported in section 7.1

We now proceed to investigate the behaviour of the average ball distance and hence, the causet
volume-induced Ricci curvature. We mention here that due to the boundedness of the region we
work with, for a given value of 𝐿, there is a trade-off between the values of 𝛿1 and 𝜖1 that needs to
be considered:

1. If one considers well-separated balls, with a large3 inter-centre distance constant 𝛿1, we are
forced to keep the ball radii small in order to keep them within the region 𝒜′, resulting in a
small ball radius constant 𝜖1

2. If one considers balls of large radius constant 𝜖1, then one is forced to push these balls close
to each other, resulting in a small inter-centre distance constant 𝛿1, in order to keep both balls
within the region 𝒜′

3In this discussion, a length scale being “large” implies that it is beyond the ℓDAS length scale, and it being “small”
implies it is within the ℓDAS length scale



6.2. Numerical Tests 61
Therefore, the ideal scenario, of well-separated balls of large radius, will require very large system
sizes, with large 𝐿 values. As this is computationally very expensive, we do not implement this
case, instead choosing to explore the extremes of this trade-off and a middle ground that could be
ideal. The configurations at unit density are now specified, with the density scaling of the system
given by eq. (5.55) with 𝛼 = 1

2𝐷 and 𝐿 being independent of density. While not evident currently,
the discussion of the predistance function characteristics in chapter 8 will justify the consideration
of these setups in light of the cases mentioned above.

In each setup, for a set of densities {𝜌𝑖}𝑖∈𝐼 , ensembles of sprinklings are obtained at each density
𝜌𝑖, and for each such ensemble, the ensemble average value is found:

⟨
̄𝑑 (𝑎∗

𝜌𝑖
, 𝑏∗

𝜌𝑖
; 𝜖𝜌)

𝛿𝜌𝑖

⟩ (6.8)

These ensemble averages are considered to actually convey the curvature information of the hy-
persurface they approximate as opposed to the values for the individual sprinklings, in accordance
with the statistical interpretation of causal set theory. This set of average values is plotted against
the corresponding densities {𝜌𝑖}𝑖∈𝐼 , in order to investigate its convergence in the continuum limit
to the continuum value of 𝑐𝑃 . This allows for a similar plot of the causet volume-induced Ricci
curvature

⟨𝜅𝑃 (𝑎∗
𝜌, 𝑏∗

𝜌)⟩ = 1 − 1
𝑐𝑃

⟨
̄𝑑 (𝑎∗

𝜌𝑖
, 𝑏∗

𝜌𝑖
; 𝜖𝜌)

𝛿𝜌𝑖

⟩ (6.9)

obtained from eq. (5.48) with the ensemble average used in accordance with the aforementioned
statistical interpretation, and its convergence in the continuum limit. The constant 𝑐𝑃 is the ratio
given by eq. (5.39), calculated in the continuum. An important consequence of eq. (6.9) is that, in
this flat case, the causet volume-induced Ricci curvature can be interpreted as the fractional error
in the average causal set distance ratio:

⟨𝜅𝑃 (𝑎∗
𝜌, 𝑏∗

𝜌)⟩ = 1 − 1
𝑐𝑃

⟨
̄𝑑 (𝑎∗

𝜌𝑖
, 𝑏∗

𝜌𝑖
; 𝜖𝜌)

𝛿𝜌𝑖

⟩ = 1
𝑐𝑃

(𝑐𝑃 − ⟨
̄𝑑 (𝑎∗

𝜌𝑖
, 𝑏∗

𝜌𝑖
; 𝜖𝜌)

𝛿𝜌𝑖

⟩)

Therefore, the curvature can be directly used as a measure of the accuracy of the causal set distance
ratio, to compare and evaluate the accuracy of these setups.
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6.2.2 Test II: Causet Volume-Induced Ricci Curvature Setup 1
In this setup, we explore a system closer to the extreme case 1 of this trade-off. This setup consists
of a spacetime region with 𝐿 = 29, with a unit density configuration of balls of radius 𝜖1 = 6,
whose centres are separated by distance 𝛿1 = 30, that is, 𝜇 = 0.2. Ensembles of sprinklings of this
setup are generated, at densities ranging from 𝜌 = 1 to 𝜌 = 10, with ensemble sizes ranging from
100 per density at the lower densities to 50 per density at the higher densities.
6.2.3 Test III: Causet Volume-Induced Ricci Curvature Setup 2
This setup consists of a system closer to the extreme case 2 of this trade-off. This setup consists of
a spacetime region with𝐿 = 29, with a unit density configuration of balls of radius 𝜖1 = 16, whose
centres are separated by distance 𝛿1 = 16, that is, 𝜇 = 1. Ensembles of sprinklings of this setup are
generated, at densities ranging from 𝜌 = 1 to 𝜌 = 5, with ensemble sizes of 50 per density across
densities. Due to the larger sizes of the balls involved, the average predistance calculations in this
setup are more computationally expensive, resulting in a lower ensemble size per density.

6.2.4 Test IV: Causet Volume-Induced Ricci Curvature Setup 3
Finally, we consider a system that might serve the purpose of an effective middle ground between
setups 1 and 2. This setup consists of a spacetime region with 𝐿 = 29, with a unit density con-
figuration of balls of radius 𝜖1 = 12, whose centres are separated by distance 𝛿1 = 26, that is,
𝜇 = 0.46. Ensembles of sprinklings of this setup are generated, at densities ranging from 𝜌 = 1 to
𝜌 = 12.5, with ensemble sizes ranging from 100 per density at the lower densities to 50 per density
at the higher densities.
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Chapter 7

Simulation Results

We now present the results of the simulations performed using the setups detailed in chapter 6. The
results of this chapter are discussed in chapter 8.

7.1 Test I: Predistance Function Characteristics
As described in section 6.2.1, a Poisson sprinkling is performed with 𝐿 = 19 at density 𝜌 = 2, and
the complete scatter plot obtained of Δ (𝑥, 𝑦) versus 𝑑ℎ (𝑥, 𝑦) is given in fig. 7.1a. The high error
points at short continuum distance 𝑑ℎ are then truncated to obtain fig. 7.1b, revealing further detail
in the large 𝑑ℎ regime.

(a) Complete Predistance error scatter plot (b) Area of interest in complete plot a

Figure 7.1: Predistance error for sprinkling at 𝜌 = 2 with 𝐿 = 19
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Moreover, for the same setup, Poisson sprinklings are performed at densities from 𝜌 = 0.5 to
𝜌 = 3.0. The plots of the error function Δ versus the rescaled dimension-free continuum distance
ℓ−1

𝜌 𝑑ℎ at multiple densities are displayed in fig. 7.2. As there are 21 density plots, at densities
uniformly spaced between 𝜌 = 0.5 and 𝜌 = 3.0, in order to compare the profiles of these curves and
their error regions, we present 3 separate plots, each containing the overlayed plots of 7 densities:
fig. 7.2a containing densities 𝜌 = 0.5, 0.625, 0.75, 0.875, 1.0, 1.125 and 1.25, fig. 7.2b containing
densities 𝜌 = 1.375, 1.5, 1.625, 1.75, 1.875, 2.0 and 2.125, and fig. 7.2c containing densities 𝜌 =
2.25, 2.375, 2.5, 2.625, 2.75, 2.875 and 3.0. Finally in order to compare the curves across figs. 7.2a
to 7.2c, all 21 of these plots are overlayed together in fig. 7.2d.

(a) Densities from 0.5 to 1.25 (b) Densities from 1.375 to 2.125

(c) Densities from 2.125 to 3.0 (d) Overlay of all densities from a, b and c

Figure 7.2: Dimension-free error plots across sprinkling densities
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7.2 Causet Volume-Induced Ricci Curvature Setups
Sprinklings are performed as described in sections 6.2.2 to 6.2.4 and, at a handful of densities, the
following properties of these sprinklings at each of these densities are displayed:

• |𝐶|, the ensemble average of causal set size

• |𝒜′|, the ensemble average of effective antichain size

• 𝑡, the ensemble average of the average time coordinate of 𝒜′

• Δ𝑡, the ensemble average of the standard deviation of the time coordinate of 𝒜′

• ∣𝐵𝜖𝜌
𝑎∗𝜌

∣, the ensemble average of the size of ball 𝐵𝜖𝜌
𝑎∗𝜌

• ∣𝐵𝜖𝜌
𝑏∗𝜌

∣, the ensemble average of the size of ball 𝐵𝜖𝜌
𝑏∗𝜌

The quantity 𝑡 is used to indicate the time coordinate of the Cauchy hypersurface Σ that the inex-
tendible antichains approximate, and Δ𝑡 is used to measure the thickness of effective antichains
produced. Also displayed are the plots of 𝜅𝑃 and ⟨𝑑/𝛿⟩ versus 𝜌, as described in section 6.2, along
with their continuum values of 0 and 𝑐𝑃 respectively. The error bars in these plots correspond to a
standard error of 1𝜎.
7.2.1 Test II: Causet Volume-Induced Ricci Curvature Setup 1

𝜌 |𝐶| |𝒜′| 𝑡 Δ𝑡 𝜖𝜌 ∣𝐵𝜖𝜌
𝑎∗𝜌

∣ ∣𝐵𝜖𝜌
𝑏∗𝜌

∣

1.00 26900.233 2423.058 -28.647 0.346 6.000 42.6699 42.6311

2.00 53778.420 3950.060 -28.976 0.297 5.345 61.0100 60.8000

3.00 80633.520 5233.800 -28.991 0.279 4.996 73.8300 74.5800

4.00 107456.170 6349.770 -28.997 0.269 4.762 84.9300 85.3700

5.00 134415.100 7371.940 -29.001 0.263 4.588 95.8100 97.9700

6.00 161330.660 8319.160 -29.003 0.259 4.451 103.7600 105.4000

7.00 188124.950 9191.211 -29.004 0.255 4.338 111.4210 112.4740

8.00 215111.950 10034.110 -29.005 0.253 4.242 118.3400 119.8200

9.00 241946.500 10816.350 -29.006 0.250 4.160 124.3000 123.6900

10.00 268863.940 11584.430 -29.007 0.248 4.088 130.9000 129.1400

Table 7.1: Properties of Sprinklings in cVIRC Setup 1
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Figure 7.3: cVIRC Setup 1: Curvature Plot
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Figure 7.4: cVIRC Setup 1: Distance Ratio Plot
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7.2.2 Test III: Causet Volume-Induced Ricci Curvature Setup 2

𝜌 |𝐶| |𝒜′| 𝑡 Δ𝑡 𝜖𝜌 ∣𝐵𝜖𝜌
𝑎∗𝜌

∣ ∣𝐵𝜖𝜌
𝑏∗𝜌

∣

1.0 26906.018 2417.236 -28.930 0.344 16.000 571.509 569.836

1.5 40346.792 3233.472 -28.960 0.314 14.954 672.264 678.491

2.0 53747.620 3943.280 -28.978 0.296 14.254 757.360 754.540

2.5 67213.521 4606.271 -28.986 0.286 13.734 829.479 829.521

3.0 80634.844 5221.000 -28.989 0.280 13.323 884.778 881.800

3.5 94109.189 5799.698 -28.993 0.274 12.985 942.792 939.849

4.0 107637.110 6361.574 -28.998 0.269 12.699 987.556 991.481

4.5 120974.580 6873.680 -28.998 0.266 12.452 1031.740 1035.460

5.0 134394.260 7368.200 -29.001 0.264 12.236 1070.700 1075.460

Table 7.2: Properties of Sprinklings in cVIRC Setup 2

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.00
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Figure 7.5: cVIRC Setup 2: Curvature Plot
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Figure 7.6: cVIRC Setup 2: Distance Ratio Plot

7.2.3 Test IV: Causet Volume-Induced Ricci Curvature Setup 3
𝜌 |𝐶| |𝒜′| 𝑡 Δ𝑡 𝜖𝜌 ∣𝐵𝜖𝜌

𝑎∗𝜌
∣ ∣𝐵𝜖𝜌

𝑏∗𝜌
∣

1.00 26895.536 2425.906 -28.931 0.345 12.000 289.138 290.217

2.00 53790.211 3937.905 -28.978 0.296 10.690 386.137 386.221

3.00 80625.510 5217.390 -28.990 0.279 9.992 457.000 456.160

4.00 107523.480 6351.070 -28.997 0.270 9.524 514.700 514.530

5.00 134419.530 7379.184 -29.001 0.263 9.177 559.439 560.949

6.00 161422.850 8324.940 -29.002 0.259 8.902 594.740 599.490

7.00 188259.640 9210.130 -29.005 0.256 8.676 632.890 634.160

8.00 215100.400 10030.480 -29.005 0.253 8.485 663.090 660.070

9.00 241938.700 10821.990 -29.006 0.250 8.320 691.556 691.078

10.00 268875.000 11578.160 -29.008 0.248 8.176 720.800 719.400

11.00 295645.640 12306.720 -29.006 0.247 8.047 740.780 745.740

12.00 322457.660 12997.040 -29.007 0.245 7.931 767.680 765.500

Table 7.3: Properties of Sprinklings in cVIRC Setup 3
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Figure 7.7: cVIRC Setup 3: Curvature Plot
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Figure 7.8: cVIRC Setup 3: Distance Ratio Plot
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Chapter 8

Discussion

We now discuss the results presented in chapter 7, beginning with the predistance function charac-
terisation in section 6.2.1.

8.1 Predistance Function Characteristics
We see a typical predistance error plot in section 7.1. As explained previously in section 4.3.1,
the predistance function greatly overestimates the continuum distance 𝑑ℎ at small values of 𝑑ℎ,
resulting in the large error seen in fig. 7.1a. This is the phenomenon of discrete asymptotic silence,
which plays the role of the most significant source of error in our analysis of antichain structure.
Moreover, we see that this error quickly drops off, seeming to tend to 0 at large 𝑑ℎ. In order to
better visualise this decay in error, we use fig. 7.1a and perform the process used to obtain fig. 7.2:
we uniformly bin the domain 𝑑ℎ, and find the mean and standard deviation of the error of all points
within each bin. We may then use these values to obtain the error plot in fig. 8.1, where the error
band represents a 1𝜎 deviation in error. We see that the error effectively drops below 15% past
around 𝑑ℎ = 10, and reaches its minimum value of around 5% near 𝑑ℎ = 30. This plot can then
be used to characterise the discrete asymptotic silence scale ℓDAS, which we may choose to be the
continuum distance at which the average error is around 10%, which corresponds roughly between
𝑑ℎ = 15 and 𝑑ℎ = 20 in this sprinkling. While this characterisation of ℓDAS applies to graphs
at the sprinkling density 𝜌 = 2, this error plot will change shape with sprinkling density. This is
to be expected, as the discreteness scale ℓ𝜌 = (𝜌)−1/𝑑 decreases with sprinkling density, and the
effects of this discretisation will also begin to reduce, resulting in further restriction of the regime
of discrete asymptotic silence.
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Figure 8.1: Error plot, for 𝐿 = 20 and 𝜌 = 2

In order to perform a scale-independent analysis of the predistance error function and discrete
asymptotic silence, we use fig. 7.2, wherein the dimension-free continuum distance ℓ−1

𝜌 𝑑ℎ provides
an embedding-independent description of the antichain. We firstly note the high degree of overlap
of these plots across densities in fig. 7.2d. This lends credence to the aforementioned prediction
of scale independence in these plots, and allows for an absolute characterisation of the discrete
asymptotic silence scale, as we see that the error Δ drops below 10% when the continuum distance
exceeds around 25ℓ𝜌, which we may use to identify the DAS regime. We note that, across densities,
the rescaled error plots in fig. 7.2d tend to deviate from the common trend, and dip towards Δ = 0
at their largest induced distance values. Further investigation is required in order to determine the
nature of this deviation for predistances between boundary points in these sprinklings.

8.2 Causet Volume-Induced Ricci Curvature Calculations
We first make some observations about the general behaviour of the sprinklings that were nu-
merically produced, from tables 7.1 to 7.3. We note that, as we increase sprinkling density, the
inextendible antichain tends to move closer to the 𝑡 = −𝐿 plane, and seem to settle roughly on
this plane at a high enough density. Furthermore, the thickness of these antichains, given by the
standard deviation of their time coordinates, decreases with density. Both of these factors result
in a more accurate continuum distance 𝑑ℎ and a more accurate correspondence with the Cauchy
hypersurface, both in the continuum limit. Finally, as was expected based on the analysis in sec-
tion 5.2, upon increasing density, although the radii of the balls decrease, the number of elements
in the balls increases, which is the desired behaviour of these sprinkling setups.
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A general trend observed in the behaviours of cVIRC setups 1, 2 and 3 through figs. 7.3, 7.5 and 7.7
is that the causal set curvatures are consistently greater than the manifold curvature which, from
eq. (5.36), is given to be 0. This directly results from the quantity ⟨ ̄𝑑

𝛿 ⟩ for the causal sets under-
estimating its manifold value as can be seen from figs. 7.4, 7.6 and 7.8. We do not expect the
causal set values of these variables to oscillate about their manifold values as discrete asymptotic
silence results in stochastic fluctuations with non-zero mean, consistently skewing average causal
set variables away from their manifold values. In order to explain the trend in deviation of these
quantities from their continuum values, we compare and contrast the corresponding constructions
performed in the continuum and the causal set in order to obtain these quantities: For rooted points
𝑎∗, 𝑏∗ belonging to both 𝒜′ and Σ, we first use the distance functions 𝑑 and 𝑑ℓ ≡ ̃𝑑 to find the
𝜖 radius balls 𝐵𝜖 and �̃�𝜖 in the Cauchy hypersurface and the inextendible antichain respectively

𝐵𝜖
𝑎∗ = {𝑥 ∈ Σ|𝑑 (𝑎∗, 𝑥) < 𝜖}

�̃�𝜖
𝑎∗ = {𝑥 ∈ 𝒜′∣ ̃𝑑 (𝑎∗, 𝑥) < 𝜖}

and similarly for 𝐵𝜖
𝑏∗ and �̃�𝜖

𝑏∗ . Then these balls are used to calculate the average continuum and
causal set distances ̄𝑑, ̄̃𝑑 between the respective balls. The rooted points 𝑎∗, 𝑏∗ are chosen such that
𝑑(𝑎∗, 𝑏∗) = 𝛿 and the corresponding causal set quantity ̃𝛿 = ̃𝑑(𝑎∗, 𝑏∗) is also calculated. These
quantities are used to obtain the ratios ̄𝑑

𝛿 and ⟨ ̄ ̃𝑑
̃𝛿 ⟩ in the continuum and causal set respectively.

Finally, these ratios are used identically in eq. (5.48) to obtain the manifold and causet volume-
induced Ricci curvatures 𝜅𝑃 and ̃𝜅𝑃 respectively.

For the purpose of this analysis, we assume 𝒜′ ⊂ Σ, so that �̃�𝜖
𝑎∗, �̃�𝜖

𝑎∗ ⊂ Σ. Then, we see that as,
in general, ̃𝑑(𝑥, 𝑦) > 𝑑(𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝒜′,

𝑥 ∈ �̃�𝜖
𝑎∗ ⟹ ̃𝑑(𝑎∗, 𝑥) < 𝜖 ⟹ 𝑑(𝑎∗, 𝑥) < ̃𝑑(𝑎∗, 𝑥) < 𝜖 ⟹ 𝑥 ∈ 𝐵𝜖

𝑎∗

Therefore, in general, we see that �̃�𝜖
𝑎∗ ⊂ 𝐵𝜖

𝑎∗ and similarly, �̃�𝜖
𝑏∗ ⊂ 𝐵𝜖

𝑏∗ . This is also observed
in the results of the numerical simulations, as shown in fig. 8.2 wherein fig. 8.2a is one of the
sprinklings from cVIRC setup 1, and fig. 8.2b is one of the sprinklings from cVIRC setup 2, where
these plots are obtained by projecting the antichains onto the 𝑡 = −𝐿 plane. Therefore, the points
furthest away from the centers are excluded in the causal set cVIRC calculation. As these are the
points that contribute the largest distances to the average ̄ ̃𝑑 in the causal set case, their exclusion
results in a lowering of the causal set ratio ⟨ ̄ ̃𝑑

̃𝛿 ⟩ with respect to the manifold ratio ̄𝑑
𝛿 . This counter-

intuitive consequence of DAS then results in the causal set VIRC overestimating the continuum
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(a) �̃�𝜖
𝑎∗ and 𝐵𝜖

𝑎∗ for 𝜌 = 1 and 𝜖1 = 6 (b) �̃�𝜖
𝑏∗ and 𝐵𝜖

𝑏∗ for 𝜌 = 1.5 and 𝜖1 = 16

Figure 8.2: Inextendible antichains with predistance and distance-based balls

DRC, as is observed. Moreover, DAS also results in the predistance overestimating all continuum
distances, which should result in a larger causal set ratio ⟨ ̄ ̃𝑑

̃𝛿 ⟩ than the corresponding antichain ratio,
with the most extreme consequences to be felt in setup 2 wherein the balls have significant overlap.
However, from figs. 7.3, 7.5 and 7.7, we see that this effect does not seem to contribute significantly
to the curvature in comparison to the effect of ball underestimation.

Beyond this general trend, we see that some setups better estimate the manifold curvature, with
setup 1 resulting in an antichain curvature with the smallest deviations from manifold curvature
and setup 2 resulting in an antichain curvature with the largest deviations from manifold curvature.
However, setup 1 is also the least well-behaved, with very large fluctuations with changing density,
while setup 2 is the most well-behaved, with small fluctuations in the overall trend of a decreasing
antichain curvature with increasing density. This trend in fluctuations can result from the sizes of
the balls in the setups; As setup 1 has the smallest ball sizes, it is more susceptible to stochastic
fluctuations, as evidenced by the large error bars in fig. 7.3, while setup 2, having the largest ball
sizes, is the least affected by these fluctuations, resulting in the small error bars in fig. 7.5.

Given these properties of setups 1 and 2, setup 3 might represent a more ideal compromise between
the extreme cases of setups 1 and 2. While the fluctuations in setup 3 are still significant with a
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seemingly very slow convergence to continuum curvature, the overall deviation from continuum
curvature is comparable to that of setup 1. Setup 3 also provides a computationally economical
alternative to setup 2, while still not suffering from the effects of stochastic fluctuation as much as
the most computationally economical system of setup 1. Furthermore, since we know that, in the
continuum, the cDRC takes the form

𝐾𝑃 = − ̃𝑐𝑅
𝑐𝑃

𝑅𝛿2 + 𝒪 (𝛿3)

we can conclude from the behaviour of ̃𝑐𝑅/𝑐𝑃 from fig. 5.2 that the effects of intrinsic curvature
diminish with decreasing 𝜇. Therefore, setup 3 might also computationally benefit from 𝜇 being
in the neighbourhood of 𝜇 = 0.5 as the effects of curvature might still be significant enough to
numerically extract out the intrinsic curvature 𝑅 from the causet volume-induced Ricci curvature
𝜅𝑃 . Therefore, we hypothesise that in order to probe converge to the continuum, an ideal value of
the ratio 𝜇 lies somewhere in a neighbourhood of 𝜇 = 0.5. However, as is evident from the error
plots in fig. 7.2, in order to work in a regime wherein the effects of discrete asymptotic silence
are completely negligible, one requires systems of discreteness scale much smaller than the system
size. Therefore, we may benefit significantly from larger scale simulations which may allow us to
observe the behaviour of the cVIRC at a finer scale.
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Chapter 9

Conclusion

In this work, we reviewed curvature measures in the literature in order to propose a volume-induced
curvature for Cauchy hypersurfaces in the continuum, and for inextendible antichains in causal sets,
using the volume-induced distance function. We analytically evaluated the induced continuum cur-
vature for 𝐷 = 3, obtaining a relation between the newly defined curvature and the Ricci curvature
of the hypersurface. As a preliminary test, we implemented the inextendible antichain curvature
numerically for an antichain corresponding to an extrinsically and intrinsically flat hypersurface
in 3-dimensional Minkowski spacetime. We used these numerical results to compare the causal
set curvature with that in the continuum and explored the ranges of viability for free parameters in
the construction. This has resulted in a curvature variable for inextendible antichains, exhibiting
some favourable properties within the limited extents of our flat space simulations, but warranting
further study.

Moving forward, we intend to explore the behaviour of the antichain curvature in more general
antichains which correspond to intrinsically curved Cauchy hypersurfaces in more general space-
times, beginning with numerical analysis. This would allow us to observe the behaviour of the
curvature, beyond the simplest case of 𝑅 = 0, and determine the computational viability of the
quantity. We would also like to analytically derive the antichain curvature, in order to better under-
stand its relation with the continuum curvature, and its behaviour under the continuum limit. This
would also allow us to narrow down the range of viable parameters, in order to tune the volume-
induced antichain curvature to ensure rapid convergence to the continuum.
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Appendix A

Derivation of the volume constant 𝜁𝐷
The constant 𝜁𝐷 is defined as the proportionality constant in the volume 𝑉𝐷 of a 𝐷-dimensional
right circular cone of base radius 𝑇 and height 𝑇 :

𝑉𝐷 = 𝜁𝐷 𝑇 𝐷 (A.1)

In order to derive this expression, we start by deriving the (𝐷 − 2)-dimensional volume of a unit
(𝐷 − 2)-sphere 𝑆𝐷−2, using it to define the (𝐷 − 1)-dimensional volume of a unit (𝐷 − 1)-ball
𝐵𝐷−1, and then the𝐷-dimensional volume 𝑉𝐷 of the cone of interest. We begin by using a standard
method, beginning with the Gaussian integral

∫
ℝ

𝑒−𝑥2 𝑑𝑥 = √𝜋 (A.2)

Exponentiating this equation to the power of 𝐷 − 1, and rewriting the integral in hyperspherical
coordinates, we get

𝜋 𝐷−1
2 = ∫

ℝ𝐷−1
𝑒

−
𝐷−1
∑
𝑖=1

𝑥2
𝑖

𝐷−1
∏
𝑖=1

𝑑𝑥𝑖 = ∫
𝑆𝐷−2

𝑑Ω𝐷−2

𝑟=∞

∫
𝑟=0

𝑒−𝑟2 𝑟𝐷−2𝑑𝑟

= Ω𝐷−2

𝑟=∞

∫
𝑟=0

𝑒−𝑟2 𝑟𝐷−2𝑑𝑟

where 𝑑Ω𝐷−2 is the volume element of the 𝑆𝐷−2, which can be integrated to obtain the volume
Ω𝐷−2 of 𝑆𝐷−2, as the integrand is radially symmetric.
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This can then be used to evaluate Ω𝐷−2:

𝜋 𝐷−1
2 = Ω𝐷−2

2

𝑡=∞

∫
𝑡=0

𝑒−𝑡 𝑡𝐷−3
2 𝑑𝑡 = Ω𝐷−2

2 Γ (𝐷 − 1
2 )

⟹ Ω𝐷−2 = 2 𝜋 𝐷−1
2

Γ (𝐷−1
2 )

where Γ(𝑧) is the gamma function. The volume of unit (𝐷 − 1)-ball 𝐵𝐷−1 can then be obtained
by integrating over the (𝐷 − 2)-sphere slices up to unit radius:

𝐵𝐷−1 =
𝑟=1

∫
𝑟=0

Ω𝐷−2𝑟𝐷−2𝑑𝑟 = 2 𝜋 𝐷−1
2

(𝐷 − 1) Γ (𝐷−1
2 ) = 𝜋 𝐷−1

2

(𝐷−1
2 ) Γ (𝐷−1

2 )

⟹ 𝐵𝐷−1 = 𝜋 𝐷−1
2

Γ (𝐷+1
2 )

Finally, by considering an inverted cone with its apex at the origin, and integrating over the (𝐷−1)-
ball slices of radii 𝑟 at height 𝑟 up till 𝑟 = 𝑇 ,

𝑉𝐷 =
𝑟=𝑇

∫
𝑟=0

𝐵𝐷−1𝑟𝐷−1𝑑𝑟 = 𝜋 𝐷−1
2

𝐷 Γ (𝐷+1
2 )𝑇 𝐷

⟹ 𝜁𝐷 = 𝜋 𝐷−1
2

𝐷 Γ (𝐷+1
2 )
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