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Abstract

The field of Beyond the Standard Model phenomenology is rich with possibilities and presents
us with a variety of potentially new and interesting answers which would eventually help us
understand the small-scale, as well as the large-scale structure of our universe better. Hence,
an appropriate extension of our current understanding of the Standard Model with Dark
Matter, providing results and predictions which can be verified to high accuracy is very
desirable. A possible solution to this is a hidden and confined DM sector with strong self-
interaction of the particles, similar to mesons in QCD. Building such a model and probing
its existence is explored in this project. In this model we find that multiple annihilation
mechanisms can work to give us the correct relic density of dark matter. We show that
this model cannot give us a signal through Direct Detection experiments. We also show how
Indirect Detection signatures can be used to probe the phase space of the model.
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Chapter 1

Preliminaries

1.1 Introduction

One of the major challenges in physics is the search for missing matter in the universe, as
suggested by many Astrophysical as well as Cosmological observations. It is believed that
ordinary matter and radiation adds up to only 5% of all the matter energy content of the
universe. The accelerated expansion of space necessitates the addition of a Dark Energy
component in our Cosmological theories and calculation which forms an essential 68% of
all matter-energy in the universe. This leads us to the hypothesised “extra” 27% of the
remaining mass which we call Dark Matter. Dark Matter is a popular and a widely accepted
solution to the problem, where it is believed that, the Standard Model of particle physics,
which nicely describes all of the visible physics around us, can be extended to accommodate
previously unaccounted, additional types of exotic matter. Studying dark matter comes with
its own set of problems, one of which is that it does not interact with ordinary matter via the
electromagnetic force. This means that it cannot be observed directly and must be inferred
through its gravitational effects on visible matter. However, there are several indirect ways
in which dark matter can be detected. As in most topics in science, a theory of Dark Matter
must have a well developed and verifiable hypothesis of the same, which must be seen in the
light of experimental results.

My focus here has been to learn about the field of Dark Matter (DM) Phenomenology in
detail and contribute to research work in the same. The field of Beyond the Standard Model
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physics presents us with a variety of potential new and interesting answers to unexplained
problems in fundamental physics which would eventually help us understand the small-scale,
as well as the large-scale structure of our universe better. Hence, as mentioned, an appro-
priate extension or re-modulation of our current understanding of the Standard Model with
a Dark Matter description, providing results and predictions which can be verified to high
accuracy is a very desirable aspect for physicists (which is very important, since we under-
stand that Dark Matter as a concept was introduced specifically to explain experimental
inconsistencies with the known theory). A possible solution to the inconsistencies of Astro-
physical and Cosmological observations with our expectations, which has been explored for
several years now, is the presence of DM which does not interact with ordinary matter via
standard model interactions, or does so very weakly. Weakly Interacting Massive Particles
(WIMP) interacting via the electroweak force (DM-SM) but with much weaker couplings
than SM-SM and with no self-interactions (DM-DM), has been widely studied. For any the-
ory of DM, cosmological predictions, direct and indirect detection observations must also be
consistent. Several high-precision searches for various WIMPy DM models have been unable
to see a reliable signal. In recent years, there has been growing interest in exploring the
possibility of self-interacting dark matter (SIDM). This is a theoretical framework in which
dark matter particles interact with each other through some unknown force. SIDM models
offer a potential solution to several outstanding problems in the standard cold dark matter
(CDM) model (say for instance, the ‘cusp-core’ problem). A possible solution to this, which
we explore, is a hidden and confined DM sector with strong self-interaction of the particles,
similar to mesons in QCD.

In the thesis, we start by understanding the underlying theory, concepts, calculation
and computational techniques (as in the respective sections), and try an implement them in
previously explored cases in literature. This showcases our understanding of the concepts for
verifiable cases, after which, we move on to applying the wide range of knowledge gathered,
in-order to build our own theory, and exploring the same.

The study of dark matter phenomenology is an active and exciting field of research that
has the potential to revolutionize our understanding of the universe. With new observational
and experimental techniques being developed all the time, we are poised to make significant
progress in unraveling the mysteries of this elusive substance.
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1.2 Astronomical Observations of Dark Matter

The Dark Matter (DM) detection techniques and observational evidences [1, 2] are well
documented throughout astrophysics literature. Broadly speaking these are observational
evidences either in the observed Cosmic Microwave Background (CMB), or in observing
a surplus mass in galaxies and galaxy structures, leading to higher rotational velocities
(observed through redshifts) than predicted by galactic models which takes into account only
the matter visible through electromagnetic radiations (say for instance, estimating masses
using X-Ray received from thermal Brehmstralung processes by hot-galactic media). For this
purpose, gravitational lensing techniques come in handy in estimating the mass in a given
region of a galaxy cluster. Various galactic model theories have been applied containing a
variety of DM distribution schemes across the region spanned by the galaxy to search for a
good candidate fit [3].

1.3 Overview of DM detection techniques

Direct Detection techniques are related to experiments and observations that try to look
for existing DM in the universe by scattering them off a target. We do not have any de-
scription for cold dark matter in our current theory of the Standard Model (SM). The main
requirements for a candidate are it being massive, non-relativistic, weakly-interacting and
stable over billions of years. This rules out in general, charged particles, coloured particles
and very light particles. It becomes necessary for us to look beyond the Standard Model of
particle physics. It has been estimated that the local DM density must be of the order of
0.4 GeV/cm3. For instance if DM is made up of particles of masses around 100 GeV, this
results in about 4 particles/m3. If we assume a model of a DM halo surrounding galaxies,
Earth must come across many (∼ 1013) DM particles per year. Dark matter interacts with
standard matter via a scattering with the nucleons (or electrons) of the atoms present in
such Direct Detection experiments. The recoil energy of nuclei are measured in order to
measure the interactions of DM with ordinary matter, and to estimate the dark matter mass
and the scattering cross section with nucleons, σN .

On the other hand, a more difficult detection process would be to produce and detect
DM or novel particles produces in colliders at accelerator experiments. However multiple
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limitations exist in such experiments based on various theoretical assumptions which makes
such detections difficult. Clearly both Direct and collider constraints on the parameter space
are important aspects while forming any new Beyond the Standard Model (BSM) theory.

Figure 1.1: Schematic of the various detection possibilities for DM [1]

Indirect Detection techniques try to detect products of DM annihilation in DM dense
astrophysical objects. Such annihilation processes might occur in the early universe, which
also had high energy density with the potential to fuel them. Therefore, self consistency
between early universe cosmology and current annihilation rates can imply the presence
of Indirect Detection channels. A characteristic feature of such signals in general, is an
anti-matter excess in the radiations observed from the source (as a consequence of DM
annihilation and SM pair production). We can consequently, constrain the parameter space
of a new DM theory further by imposing constraints learnt from such observations. The
topic is explored further in 4.2 in the light of our work.

1.4 Scattering and Decays

Classically we describe scattering of particles as the change in trajectory of two interacting
particles after a collision. We have the number of particles scattered per unit time in a given
solid angle,

dn

dΩ
= Fiσ(θ, φ)
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where Fi is the incident flux and σ is the cross-section of scattering. It depends on factors
like kinetic energy, the impact parameter b of the incoming particles and the strength of the
interaction. However dealing with sub-atomic particles necessitates quantum mechanics, and
hence we turn to a description of quantum scattering cross-sections.

At sub-atomic levels, we can visualize particles associated with respective wave-functions
and the fields related to force in the classical case as potentials which we can use in the
Schrodinger equation (SE). For most asymptotic cases where we assume the incident particle
on a potential as plane waves, and the scattered particles at the detectors (r → ∞) as
spherical waves ( we can compute this by substituting the incident wave function for V(r)=
0 at r → ∞ in the SE).

We start by using Fermi’s Golden Rule to construct a general expression for scattering
and decays,

Γfi = 2π|Tfi|2ρ(Ef )

where, Γfi is the number of transitions per unit time from state i to f, Tfi as a transition
probability matrix which is specific to the process, and ρ represents the density of states for
the states that the particle can be found in. Here, we note that the state transition is the
particle’s initial to the particle’s final state. Starting from,

ρ(Ef ) =

(
dx

dE

)
Ef

=

∫
dx

dE
δ(E − Ef )dE

Therefore we can write Fermi’s golden rule in terms of the four momenta of particles as,

Γfi = (2π)4
∫

|Tfi|2δ(E − Ei)δ
3(p − pi) d

3pi
(2π)3

Tfi = 〈f |T |i〉

Tfi = 〈ψf1, ψf2...|T |ψi1, ψi2...〉
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With the f being the final states and i being the initial states of the interacting particles
and T being the relevant interaction matrix (of the Hamiltonian) of the process. We can
write a quantity M called the scattering amplitude which essentially has the relativistic
correction φ =

√
2Eψ instead of ψ. This gives us a relation(we specify for a 2-2 scattering

process)

Tfi =
Mfi√

2Ei12Ei22Ef12Ef2

For 2-2 scattering processes, we can show that the probability of interaction of one type
of particle with another is given by

Γ = vσ

with v being the relative velocity between the particles. Therefore, substituting all of the
above in the modified Fermi’s rule, we shall have,

σ =
(2π)4

(2π)62E12E2(v1 + v2)

∫
|Mfi|2δ(

∑
i

Ei)δ
3(
∑
i

pi)d
3p3
2E3

d3p4
2E4

In the Centre of Mass (CoM) frame with
∑

i pi = 0, we can get to,

σ12 =
1

64π2

|p∗f |
|p∗i |

∫
|Mfi|2dΩ

where * represents the zero of the delta function, velocity is written as the ratio of
momenta and energy, and with s = (p1 + p2)

2.

An even simpler derivation is the general expression for the decay rate of a particle into
two others, calculated in the same spirit and given as,

Γfi =
1

32π2
|p∗1|

∫
|Mfi|2dΩ

10



The decay rate, which also describes the probability per unit time, of having the initial
state of a single particle, decay into multiple new particles can therefore also be derived
using a quantum picture.

This therefore brings us to the simple conclusion of the relation of the decay rates to
the interaction between the particles at a vertex being proportional to each other in a crude
sense.
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Chapter 2

Calculating Dark Matter Density

2.1 Thermal Relic density and Freeze-out

The minimal idea of how to estimate the DM density comes from the idea of how a thermal
bath of all particles in the early universe behaves in an expanding universe. Assuming that
all particles are in thermal equilibrium in the early universe, the new particles can have the
distribution functions of Fermi-Dirac for fermions and of Bose-Einstein for bosons which is
given by,

fi(Ei, µ, T ) =
gi

exp(Ei−µ
kBT

± 1)
(2.1)

where the + sign is for fermions and − for bosons, gi is the degeneracy (degrees of
freedom), µ being the chemical potential and kB being the Boltzmann constant. Such distri-
butions in the primordial soup of the early universe, where the temperatures are very high
simplify to the Maxwell-Boltzmann distribution for cases where the interactions between
particles are weak and the chemical potential is negligible. Whilst the particles are in ther-
mal equilibrium with the plasma with a common temperature, the distributions are driven
only by the temperature. However, as the universe expands, and the temperature decreases,
not only does the energy carried by particles for each collision reduce, the distances between
particles in the plasma, on an average increases, which limits the rate of interaction. The
equilibrium can hence be broken, and the unstable particles decay and the stable ones un-
dergo a “Freeze-out”. We introduce the concept of Relic Density (RD) which refers to the
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density of DM particles in the universe at the time of “Freeze out” (Thermal Relic density)
( “Freeze in” in the case of non thermal DM density)[4]. In the case of Thermal DM and its
consequent Thermal RD, the DM particles which we seek to know more about are in thermal
equilibrium in the early stages. Since the stable particles do not decay, their number density
is frozen to a constant owing to their low interaction rates. Consequently the number density
of stable particles decreases as a−3.

Figure 2.1: An illustration of the DM Relic density before and after thermal Freeze-out
(zf ) of WIMP, [3]. Here Y refers to scaled value of the relic density, which follows the curve
Yeq up till Freeze-out.

2.1.1 Explanation for DM Relic density [3]

We look closely into the Freeze-out scenario and try to quantify the Relic Density of DM.
We follow the evolution of the inelastic scattering process with time using the Boltzmann
equation. We have, the number density of a given particle is related to its phase-space
density, f(E,t),

n = g

∫
f(E, t)

d3p

(2π)3
(2.2)

where g is the number of spin degrees of freedom of the particle. After Freeze-out, the
DM is no longer in chemical equilibrium i.e. through inelastic scattering with another DM
particle leading to two standard model particles, but it remains in thermal equilibrium with
the surrounding plasma via the elastic interactions. We look at two sides of the Freeze-out

14



equation separately. Putting in a simple way, the LHS looks at the change in number density
of the DM particles with time. To take into account the expansion of the universe, we scale
the n term in the LHS by a factor of 1

a3
, to eventually give us,

d

a3dt
na3 =

dn

dt
+ 3Hn (2.3)

Where H is the Hubble’s constant and equal to ȧ
a
, and a is the cosmological Scale-factor.

The RHS, shows the change in the number of DM particles produced/ annihilated using
the difference in the forward and reverse reaction rates as,

−Σspins

∫
(f1f2(1± f3)(1± f4)|M1,2−→3,4|2 − f3f4(1± f1)(1± f2)|M3,4−→1,2|2)

· (2π)4δ4(p1 + p2 − p3 − p4)dΠ1dΠ2dΠ3dΠ4 (2.4)

In the above equation, fi and gi are the phase-space densities and spin degrees of free-
dom, respectively, for particle i, and Mx→y is the scattering amplitude for the reaction x→y.
Terms like, (1±f) are used to represent Pauli blocking and Bose enhancement; minus sign
for fermions and plus signs for bosons. These terms are based on the logic that it is easier
for a boson to transition to a state that already contains a boson and harder for a fermion
to transition into a state that already contains a fermion. The four dimensional delta term
limits the possible values of the momenta of the particles to those allowed by the momen-
tum conservation only in the momentum space. The last four differentials are the three
dimensional phase space integration factors, given by-

dΠi =
d3pi

(2π)3Ei

We can make the following assumptions to simplify our calculations-

• The phase-space distributions take on the Fermi-Dirac or Bose-Einstein forms, due to
kinetic equilibrium.
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• The temperature of each species satisfies,

Ti << Ei − µi

where µi is its chemical potential, so that they follow the Maxwell-Boltzmann distribu-
tion. In this case, (1 ± f) approximately equals 1.

• The visible sector particles involved in the interactions are in thermal equilibrium with
the photon bath.

We define a quantity, Møller velocity as,

(vMl) =

√
(pi · pj)2 − (mi ·mj)2

EiEj
(2.5)

Consequently we can re-write the RHS of our equation as,

−
∫

(vMl)12dn1dn2(vMl)34dn3dn4 (2.6)

where, σij is the cross section matrix for the scattering process. The Møller velocity
is Lorentz invariant, whereas vrelninj, the relative velocity for relativistic processes is not.
When the DM is also in equilibrium with the Standard Model final states,

〈σv〉12neq
2 = 〈σv〉34n3

eqn4
eq (2.7)

Consequently, The Boltzmann equation can be reduced to,

ṅ+ 3Hn = 〈σv〉(neq2 − n2) (2.8)

i.e. we express entirely in terms of DM cross-sections and number densities. neq accounts
for the creation of the DM, χ through the inverse process and n accounts for the depletion of

16



DM particles χ through annihilation. Given that the universe is expanding, we can scale the
DM number density by a factor s, the entropy density of the universe, to define, Y = n/s.
Therefore we can study the evolution of DM number density without worrying about it’s
reduction due to expansion effects and only due to the interactions of the DM with particles
that are in thermal equilibrium with the photon bath. Therefore our equation is modifies
as,

dY

dt
= 〈σv〉s(Yeq2 − Y 2) (2.9)

dY

dx
=

−xs〈σv〉
H(m)

(Y 2 − Yeq
2) (2.10)

where x= m/T is the re-scales time variable in which m is the mass of the DM. We
have also used the fact that sa3 is constant to get the relation that ṡ = 3sH in the above
expressions to get s instead of H. To be more elaborate, we write the time derivative of Y as
a product of the re-scaled time derivative of Y and dx/dt. We have used a simple logic that,
the photon temperature is inversely proportional to its wavelength, which scales with a.

dY

dx

dx

dt
= 〈σv〉s(Yeq2 − Y 2) (2.11)

using, x = m
T
, T as K/a and H(x) in terms of a(x) and it’s time derivative, we can write-

d

dt

(m
T

)
= m

d

dt

a

K
=
ma

K
· ȧ
a
=
mH(x)

T
= H(x)x (2.12)

Here Y is therefore the DM number density re-scaled to remove the effects of the uni-
verse’s expansion (related to RD as, Y = 2.8 · 10−8 RD). Therefore, the changes in Y as
in the Boltzmann equation are strictly from interactions of the DM with states present in
thermal equilibrium with the photon bath. No analytical solution exists for the expression
above and one must rely on numerical methods.
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We have been looking at a specific DM model which shapes the eventual DM RD observed
today. We can explore the parameter space of each constructed model and the corresponding
RD to learn more about the constraints from observed quantities which we must worry about.
In the following sections, we will be looking at the make-up and results of two tried and tested
Freeze-out models using a program “MadDM” [5], and analysing the data.

2.2 Simplified dark matter model with spin-0 mediator

Here we look at simple extensions of the Standard model lagrangian. In our case, in addition
to particles and terms present in LSM , we introduce fermionic Dark Matter, and a singlet
scalar (s-channel) mediator belonging to the dark sector and connecting the SM and the
dark sectors. Consequently, the strengths of the interactions between the Dirac DM and the
singlet scalar (denoted by Y0), and similarly, the SM particles and the scalar are dependent
on their masses. We referred to [6] for a general impression of how to include extra scalar
fields in our Lagrangian.

2.2.1 General Observations

• The more probable (bigger cross-section), the forward reaction (corresponding vertex
strength) is, lower will be the predicted RD (observed value= 0.112) and vice versa.
This would mean that more and more DM particles annihilate into the scalar Y0 which
in turn can pair produce SM particles, thus carrying the energy density from the
hidden sector to the SM sector. There must exist an equilibrium for this process for
some values of couplings for SM-Y0 and DM-Y0 (i.e. for a ratio of the two numbers).
If the ratio of DM-Y0 to SM-Y0 is more than this value, the forward reaction will be
favoured and the RD is lowered.

• The observed DM relic density is 0.112. Any scenario leading to a lower RD is called
under-abundant and a higher RD is called over-abundant. It’s a neat task to scan the
parameter space generated by our model and realise the observational constraints in
it.

• In this model, mass of dirac DM, mass of additional scalar, and couplings between the
scalar field and the particles, happen to be reasonable parameters.
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• A basic Feynman diagram for the general process has been provided. S refers to the
singlet scalar. The motivation behind the addition of such a particle in an extended
theory is that, it provides an outlet for generating DM masses in a simplified hidden
sector.

k

S

DM

DM ′ f ′

f

Figure 2.2: Feynman diagram for the process

2.2.2 Hidden sector contribution to the Lagrangian

We group the Lagrangian into two segments.

LY0XD
= XD(g

s
XD

+ igpXD
γ5)XDY0 (2.13)

LY0SM =
∑
i,j

[
di
ydij√
2
(gsdij + igpdijγ5)dj + ui

yuij√
2
(gsuij + igpuijγ5)uj

]
Y0 (2.14)

2.2.3 Relic Density over parameter space

We present the results of the parameter space for the RD. In all of the figures of 2.3, we
must keep our sight around the 10−1 contour line to guide us as that is close to the observed
RD value of 0.11. The coupling-coupling parameter space figure has quite a predictable
behaviour, with the RD decreasing, roughly linearly, as we increase either of the coupling
values. The (coupling of DM to scalar- DM mass) plot also has a predictable behaviour,
with a minima in the predicted RD lying around the region where the DM mass is about half
of the mediator mass, owing to on-shell resonance effects. In our case, the minima also lies
around the 0.1 contour line. The RD increases significantly as we go away from the sweet
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Figure 2.3: Exploring the value of the RD over the parameter space for the spin-0 mediator
model. RD for (top left) varying mass of DM and scalar mediator Y0, (top right) varying
couplings of Y0, (bottom) varying mass of DM and coupling of Y0 to DM; All above masses
have been represented in GeV.

spot, in either direction. As compared to the change in DM mass, the change in coupling
value from 0.1 to 1 has a less pronounced effect on the RD. As the coupling of Y0 to DM
increases, the forward reaction of the already described s-channel process increases, leaving
less energy in the dark sector and a lower RD. A plot capturing the RD in the parameter
space of changing masses and fixed couplings is also provided in figure 2.3 for reference. In
the first figure, we keep all the Y0 coupling values at 1, varying the tun-able mass parameters.
In the second figure, the DM mass is also kept fixed at 50 GeV and only the couplings, which
contribute sufficiently to the RD are varied. In the third figure, all Y0 to quark couplings
are kept at 0.5, whereas the DM mass is varied. Additionally, for both the second and third
figure, we explore the parameter space of the RD for fixed spin-0 mediator mass 100 GeV.
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2.3 Simplified dark matter model with spin 1 mediator

Once again we look at another simple extension of the SM Lagrangian. Here, in addition
to particles and terms present in LSM , we introduce fermionic DM, and a vector (s-channel)
mediator belonging to the dark sector and connecting the SM and the dark sectors. The
strengths of the interactions between the Dirac DM and the singlet scalar (denoted by Y0),
and similarly, the SM particles and the mediator are no longer dependent on their masses.
For DM candidates heavier than a collection of quarks, all the quarks channels contribute
equally to the eventual RD. A singlet scalar field does exist in the Lagrangian, but only to
give mass to the particles in the dark sector, and not as a mediator. It doesn’t interact
with the SM particles. However we now have dark vector-SM, and dark vector-Dirac DM
couplings as new sets of parameters along with the mass parameters. General observations
are the same as in the previous section.

k

Y1

DM

DM ′ f ′

f

Figure 2.4: Feynman diagram for the process

2.3.1 Hidden Sector Contribution to the Lagrangian

Similar to the previous case, we write the Lagrangian as,

LY1XD
= XD(g

V
XD

+ igAXD
γ5)XDY

µ
1 (2.15)

LY1SM =
∑
i,j

[
diγµ(g

V
dij

+ igAdijγ5)dj + uiγ
µ(gVuij + igAuijγ5)uj

]
Y0 (2.16)

where XD is the Dirac fermion, d and u denote down and up type quarks, respectively,
(i, j = 1,2,3) are flavour indices, and gV/A are the vector/axial-vector couplings of DM and
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quarks. We can get the pure vector and pure axial-vector mediator scenarios by setting the
parameters values appropriately.

2.3.2 Relic Density over parameter space

Upon comparing the behaviour taken up by the RD in the spin-1 mediator case to that
of the spin-0 mediator, we recognize the similarities in certain aspects (after-all the overall
mechanism remains the same (s-channel dominated energy transfer) and only the nature of
the mediator changes from a scalar to a vector one.

• In the first image of figure 2.5, once again, the minima for RD lies roughly around DM
mass equaling half of the mediator mass, along with other similar features. However,
unlike before, it doesn’t coincide with the observed RD of 0.11. The 10−1 contour
largely lies between DM masses of 200 GeV-400 GeV for the coupling range of 0.1 - 0.9
(i.e. about 3/10 of the mediator mass on average).

• The DM mass-Y1 mass plot has a RD minima along the diagonal as can be seen, quite
similar to the spin-0 case. The area which interests us, once again, is the 10−1 contour
line which heavily depends on the mass of Y1 than the DM mass. This is expected in
light of what we observed in the DM coupling-mass plot (observed RD lying around
3/10 of mediator mass).

• In figure 2.6, we see how RD changes with changing the mediator coupling, both on
the SM side (for all particles) and the DM side. As we can see, the change in RD along
either axis is roughly symmetric hinting towards equal weight-age towards the RD. For
the DM mass equal to 4 GeV case the 10−1 contour occurs at smaller coupling values
whereas for the DM mass equal to 1 GeV case it occurs only at higher coupling values.
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Figure 2.5: Exploring the value of RD over the parameter space for Spin-1 Mediator: The
figure on the top shows the variation as a function of DM mass and DM coupling to the
vector mediator, for a fixed mediator mass of 1000 GeV. The second figure looks at the
variation as a function of the two tun-able mass parameters for fixed coupling values for the
DM and SM particles to the mediator. The “island” like minima zones are a result of the
granularity of our parameter scan. Had they been continuous, or if we had smaller step sizes,
we should have encountered a continuous band across the diagonal. All masses are presented
in GeV.
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Figure 2.6: Exploring the Relic Density over the parameter space: Looking at RD whilst
changing couplings of the vector mediator Y1 to DM and SM quarks. The first figure is for
DM mass 1 GeV and the second figure is for DM mass 4 GeV for a mediator mass of 100
GeV.
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2.4 The Freeze-in mechanism and the FIMPs

Freeze-out has been studied in detail over many decades [3, 1, 7]. On the other hand, an
assumption that DM does not exist in the primordial soup but is created later, is an alternate
hypothesis that is explored in the Freeze-in paradigm [4].

In the Freeze-in mechanism, the DM density stems from a DM creation process instead of
resulting from the thermal Freeze-out of the DM annihilation process, for example through
annihilation into DM particles via s-channel (AA → DM DM) or a decay process giving
atleast one DM particle in the process(A →DM B). Such processes, assumed to already be
out of thermal equilibrium, freeze when the production rate gets Boltzmann suppressed as
we had seen earlier; i.e. when the kinematics of the reaction fueled by the temperature falls
below the masses of A or DM depending on the reaction. Like in Freeze-out the number of
particles produced depends only on the masses and couplings involved in the DM creation
process. As mentioned, the Freeze-in mechanism requires weaker couplings to the standard
model particles than WIMPs, and introduce particles called Feebly Interacting Massive Par-
ticles (FIMP). To start with, the FIMPs were de-coupled from the primordial plasma, and
may have only been created in limited amounts through the decay of the primordial fields.
However, even though they interacted feebly with the plasma, these interactions still caused
the production of more FIMPs and increased their concentration until the temperature of the
plasma became too low for it to be kinematically feasible to produce them any further. In
contrast, Freeze-out scenarios do not rely on any such assumptions about the initial creation
of these particles since they are assumed to have been in thermal equilibrium from the start.

The substantially weak couplings associated with FIMPs (approximately 8-10 orders
lesser than WIMP) makes it difficult to detect via direct or indirect detection of the s
channel type processes at colliders. Therefore we understand that the DM essentially lies
in some dark (or hidden) sector that is feebly coupled to the visible sector. The full hidden
sector (the parts not included in the SM Lagrangian) Lagrangian can be written as

L = LSM + ψ
′
(iD′ +mψ)ψ

′ (2.17)

here, the second term represents the hidden sector with weak coupling.

The A particles can be abundantly produced at colliders if A has substantial coupling
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to the SM particles in the visible sector. It is to be noted that, A could be either, a known
SM particle or a new hypothetical particle. However, a new particle is likely to be long-lived
due to its feeble couplings.

Another possibility is that of direct detection (the A-A annihilation reaction). Here
the A particle is a SM particle, which would mean that the predicted DM density depends
only on the DM particle mass, on the interaction with the connector particle A and on any
interaction which may be important within the hidden sector.

2.4.1 Freeze-in via dark photons

The dark photon model involves QED-like interactions between a new gauge boson γ′ and a
DM particle in the hidden sector that is charged under this new interaction. It involves in
addition to the SM sector, new fermions which are assumed to be charged under a new U(1)′

gauge symmetry. Thus, in principle, in a most general but simple model, the Lagragian
should have the SM current, the light mediator or dark photon coupling with the fermionic
SM current, a term containing the dark fermion and dark photon, the dark fermion coupling
with the SM terms and a kinetic mixing term as we will see in figure 2.7. The need for the
presence of each of these terms should be specific to the relative coupling strengths used
in our model. In the case of the study, if the kinetic mixing and hidden sector terms are
feeble, then we can simply determine the density of dark matter by counting the number of
dark matter particles created through the connector, i.e. the Freeze-in scenario, and ignore
the hidden sector interaction with the SM sector. However, if either one or both of the
interactions are stronger, we must take into account the effect of thermalization in both the
visible and dark sectors on the DM density.

The Lagrangian used for the model-

L = LSM + ψ
′
(iD′ +mψ)ψ

′

We can add The Kinetic mixing portal, to the above model, which looks like-

L 3 − ε

2
F µν

Y F
′
µν (2.18)
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We have the following couplings to the SM and DM currents,

L 3 −eEMJµEMγµ + e′
εcosθε√
1− ε2

JµDMγµ − e′JµDMγ
′
µ − e′

εsinθε√
1− ε2

JµDMZµ − g
cosθW
cosθε

JµZZµ (2.19)

with JµSM and JµDM corresponding to the U(1)em and U(1)′ currents, θW is the Weinberg
angle, ε is a quantity much smaller than 1, see appendix A.1 and where we have defined,

eEM =
e√

1− ε2cos2θW

The dominant process for the transfer of energy from the visible sector to the hidden
sector is through the creation of DM pairs, via the s-channel. The relative probability
of encountering one of the contribution (and hence considering them in our calculations)
depends on various factors.

For the case where we ignore Z acting as a mediator, we look at the case of mDM > mZ/2

. For mDM < 1 GeV also, the process via the Z boson can be ignored as the process via
the γ is enhanced at low temperatures. For the corresponding intermediate mass range it is
more convenient to express all Boltzmann equations directly in terms of the decay width.

2.4.2 The Boltzmann equation

Considering all the dominant processes we can approximate to ignore certain process. We
summarise as follows.

From figure 2.7, we can see processes of the first kind as above are the most important in
the Boltzmann equation for terms including energy transfer. The last term, is also included
as the hidden sector interaction. The complete Boltzmann equation looks like-

szH
dY

dz
=
∑
i

γiconnect

(
1− Y 2

Y 2
eq(T )

)
+ γHS

(
1− Y 2

Y 2
eq(T

′)

)
(2.20)
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Figure 2.7: In the figure, we see Feynman diagrams of the processes for the production of
DM and thermalization of the hidden sector (HS). We work in the basis such that hidden
photons only couple to DM and not SM degrees of freedom. The first figure with the s-
channel mediator is our dominant process. The last figure on the extreme right includes
energy being carried away from the HS but no energy transfer to the visible sector. The
third figure with the t-channel has experimentally low contribution to our calculations.

with s the entropy density, H the Hubble constant and Y the DM number density to
entropy density ratio, Y = ne

s
. z is some alternate description of the time variable written in

terms of H. The first one, Yeq(T ), parametrizes the number of SM particles participating in
the SMiSMi → DMDM processes. The second one, Yeq(T ′), parametrizes the number of γ′

which participate in the dark fermion- dark photon interaction as shown above. Therefore
the Yeq’s correspond to their respective equilibrium number density neq’s in the subsequent
reactions. Note that the γ’s in equation 2.20 do not represent “photons” but rather is a scaled
reaction probability rate, γ = Γneq. Recall that the reaction probability rate can be written
for a specific reaction with the knowledge of the type of interaction, interacting particles,
Cross section amplitude M and the relativistic four-momentum phase space integral terms.

Equivalently, we can also write in terms of cross sections,

z
HdY

sdz
=
∑
i

〈σconnectv〉i(Y 2
eq(T )− Y 2) + 〈σHSv〉(Y 2

eq(T
′)− Y 2) (2.21)

Now based on the relative values of T and T ′, there can be two possible scenarios.

a) If the DM particles do not thermalize with the dark photons, which happens if the
terms specifying the coupling strengths of the hidden sector terms (their interactions to the
visible sector) are small, the Boltzmann equation for the DM abundance simplifies. It is the
case when T >> T ′ ; the dark fermion to dark photon reaction doesn’t reach equilibrium.
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Instead the temperature is way higher, as a result of which, the majority of the dark fermions
annihilates into dark photons, allowing us to get rid of one term in our modified equation.

szH
dY

dz
=
∑
i

γiconnect

(
1− Y 2

Y 2
eq(T )

)
(2.22)

Therefore, the number of DM particles is based on the balance between DM pair creation
from SM particles and vice-versa.

b) If the hidden sector thermalizes for some T ′ ≤ T, we must perform all the necessary
calculations for the second term as well. We will need T as a function of T ′. For this purpose,
we need the hidden sector energy density ρ′ as a function of T. We can use the cosmological
Scale-factor a to express the energy density as some power law of T. The energy density
transferred to the hidden sector by a process of the form 12 → 34 is given by the following
Boltzmann equation.

dρ′

dt
+ 3H(ρ′ + P ′) =

∫ 4∏
i=1

d3pi · gif1(~p1)f2(~p2)|iM |2(2π)4δ(4)(p1 + p2 − p3 − p4)∆Etr (2.23)

In short, the RHS in the above expression accounts for the energy transfer from the
visible sector to the hidden sector via the SMiSMi → DMDM, 2-2 scattering process as we
have discussed.

The LHS however captures, the total change in energy density which the hidden sector
undergoes, as a result of the above process. Here, ρ′ accounts for the energy density of DM
in the universe. Here is a brief work out of the LHS-

Combining the two Friedmann equations we can get to a result,

d(ρ(t)a3)

da
+ 3p(t)a2 = 0 (2.24)

Expanding this we get,
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dρ

da
=

−3(ρ+ P )

a
(2.25)

δρ = −3(P + ρ)δlna (2.26)

dρ

dt
+ 3H(ρ+ P ) = 0 (2.27)

This expression therefore depicts, the change in energy density. It also relates the same
energy density to the Scale-factor which can then be used to relate ρ′ to T as required.
Everything included, we shall have the complete expression relating the visible sector energy
density, and T to ρ′, we have-

d(ρ
′

ρ
)

dT
= − g1g2

H(T )Tρ32π4

∫
ds · σ(s)(s− 4m2)sTK2

(√
s

T

)
(2.28)

see [4] Appendix C

Comparing the LHS of equations 2.23 and 2.28 for the same RHS (the modification of
the RHS in equation 2.23 to that of 2.28 can be seen in Appendix C of [4]) we essentially
need to show that,

∂ρ′

∂t
+ 4Hρ′ =

∂ ρ
′

ρ

∂T
H(T )Tρ (2.29)

with the need to change variables from time coordinates to temperature coordinates.

Expanding the RHS of the above equation 2.29,

(
∂ρ′

ρ∂T
− ρ′∂ρ

ρ2∂T

)
H(T )Tρ (2.30)

Using equation of state corresponding to a radiation dominated universe and differenti-
ating both sides with respect to T,
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∂ρ

∂T
= −4ρ

∂t∂lna

∂T∂t
(2.31)

∂ρ

∂T
= −4Hρ

∂t

∂T
(2.32)

Therefore upon substituting equation 2.32 in equation 2.30, we see that, H(T) must be
equivalent to ∂

∂t
, which is exactly the case in an expanding universe, where we need to take

into account, the expansion coefficient a and it’s change with time. Hence,

ȧ(t)

a
T = H(T )T ≈ ∂

∂t
T (2.33)

We show the detailed calculation of the scattering amplitudes and cross-sections, which
are to be put in a Boltzmann equation solver in Appendix A.1.

2.4.3 Parameters for Freeze-in

We now briefly, look at the significance of the connector parameter κ (= ε
√
α/α′, con-

tains coupling parameter related to both the visible and hidden sector ), and Hidden Sector
coupling term α′ to see how varying parameters affect the make up of the model. In the
Boltzmann equation calculations of equation 2.21, we saw contributions from both the con-
nector terms, and the exclusively hidden sector term. If we are to make qualitative categories
for the contribution of the different terms,

• Removal of the HS term essentially removes the contribution from the hidden sector
process, DM DM → γ γ, whose cross section depends on the parameter α′. Hence for
low enough values of α′ and κ, all we are left with is an expression which looks like,

dY

dT
=

−γconnecct
TH(T )s

(2.34)

i.e. we ignore the last three terms of the equation completely, this as we discussed
before, corresponds to the Freeze-in scenario, where we don’t have any interactions to
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thermalize the DM particles. Therefore typically, since the DM particles are already
frozen out, the energy density increases with decreasing temperature as the connector
processes converts SM particles into DM ones. Thereafter the relic density hits a
plateau as discussed in section 2.

• With an increase in either κ or α′, the other terms i.e. the HS terms and the connector
terms also start having a sizeable contribution to the RD. For instance, if we are to
increase ε keeping α′ constant, we include the second term of equation 2.21, and if
both κ and α′ were to increase, the HS terms also contribute. This case is also called
the re-annihilation regime.

We reproduced the Dark matter Relic Density as a function of z (= mDM/T ), in the
simplest, Freeze-in scenario, discussed previously, as an exercise in figure 2.8.

Figure 2.8: Calculated DM density Y, for the freeze-in scenario, along with the expected
equilibrium density Yeq, which represents a case of DM being in thermal contact with its
surrounding plasma, in the early universe.
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Chapter 3

Strongly Interacting Dark Matter

With the backbone of a hidden sector connected to the SM sector via a vector mediator,
we proceed to modify the dark sector to include confined composite particles composed of
”dark quarks”. One can refer to similar ideas found in [8, 9, 10, 11]. We also referred to [12]
for some theoretical insight of vector mediators in DM theories which we would be using.

3.1 A model of Dark Pions

We start with drawing inspiration from the SM, and what we observe around us. Our current
understanding of the SM does classify all particles and force mediators using, fermions and
bosons. At low energy scales, which are relevant for most of the physics we study, most of
the matter around us, manifest and make their presence felt as bound states of quarks such
as mesons and hadrons. Such stable states of matter allow the rich nuclear chemistry and an
interactive particle zoo which we see around us, which further allows an even richer atomic
chemistry when we speak of even lower energy physics. It should be a good guess to envisage
a similar picture of the hidden sector, even if not as rich with the same variety of particles
in the SM.

In our model, we propose that early universe cosmology, which deals with extremely high
temperature and thus very high energy physics, involves the presence of ‘strongly’ charged
fermionic DM with two flavours (we shall be calling them d̃1 and d̃2 going forward). They are
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responsible for the cosmological results at extremely early times (which might potentially be
verified in the future when we learn to harness multimessenger astronomy and GW analysis
even better). As the universe cools down and the DM (along with other SM particles)
particles lose kinetic energy. This leads to confined states of DM, much like what we see in
case of mesons like pions, or hadrons like the proton. This analogy which we can draw with
the SM mesons also enables us to borrow the mathematical machinery corresponding to it.

We have an additional SU(3)′ group, similar to the SU(3) gauge group used for QCD.
Only the dark fermions however are charged under the new gauge symmetry. Accordingly
we also introduce the force mediator, dark gluons and a new index called dark colour (three
types), carried by the dark fermions and dark gluons. This gives rise to the so called ‘strong
interaction’ of the dark sector.

After confinement, the DM of this theory consists of a stable dark pion comprising of
bound states of the dark fermions similar to charged pions in SM. We have, d̃1d̃2 = πc and
d̃2d̃1 = π†

c . We refer to these as cross dark pions.

The diagonal bound states πd have a dark fermion along with its own anti-particle, and
is therefore unstable. It easily decays into SM particles, via some Z ′. We have a four-
vertex πcπ†

c →πd πd energy transfer channel as the dominant one, in our theory. Another
annihilation mode in our theory would be a πcπ†

c →Z ′ →SM. The πd decay into two Z ′s is
also an allowed channel, although with lesser contribution. The πc and π†

c can annihilate to
form the unstable diagonal πd, which can further decay directly into SM particles, or through
the intermediate Z ′, as mentioned before.

We therefore have a few key parameters to work with: (a) The couplings between the
dark pions; (b) couplings of Z ′ to SM and dark sector fermions (b) Mass of the DM fermions;
(c) Mass of the bound state pions; (d) Mass of an additional vector particle Z ′ (which maybe
constrained by LHC experiments). See figures 3.1 and 3.2
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Figure 3.1: The main annihilation channels for DM to SM energy transfer via unstable dark
pion to SM fermions
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Figure 3.2: DM to SM decay via an additional Z ′ vector mediator which can decay into SM
fermions
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3.1.1 Simplified model implementation

Having described our model in detail, we implement our model in micrOmegas. We shifted
tools from MadDM to micrOmegas [13, 14] which is an automatic DM observable calcula-
tor.

To start with, we ignore the presence of the Z ′ and simply look at the energy transfer
via the unstable dark pion portal. For simplicity while calculating, we also approximate the
confined bound states as scalars. Therefore, in these approximate calculations πc and its
conjugate represent a complex scalar particles, and the πd represent a real scalar. Such an
approximation works as we intend to use confined states which resemble SM pions which
happen to be psuedo-scalars themselves (carrying a net spin of 0).

Lagrangian for the Simplified Model

LDM ⊃ gDMπcπcπdπd + g′DMπcπcπd −M2
πd
πdπd − λπdπ

4
d (3.1)

−M2
πcπcπc − λπc(πcπc)

2 +
∑
f

gff · fπd

Firstly, we would like to have an understanding of what would be the appropriate degrees
of freedom depending on the temperature in the early universe. We therefore look at how
the Freeze-out temperature varies with the mass of the DM candidate in figure 3.3.

Figure 3.3: We show the Freeze-out temperatures for different DM mass candidates. Here,
xf and T are related as, xf = m/T. T is measured in GeV.
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We see, what value of couplings are needed to get the correct RD for certain masses of
DM, and temperatures in the early universe 3.4.

Figure 3.4: Here, xf and T are related as, xf = mDM/T. We have plots for the coupling
coefficients corresponding to the vertex between the πd and πc.

We can keep in mind that increasing the coupling strength of an energy transfer channel
and the mass of the DM candidate reduces the eventual RD based on the reasons sighted
before.

3.1.2 Effective Theory for the Dark Pion picture

Moving away from the toy model, we make two important additions to it. We not only need
to add a Z ′ (some Z ′ theory can be seen in [15]) vector mediator, but also need to consider
the appropriate Effective Field Theory for the energy scales with which we are dealing with.

As discussed, the picture of the DM model which we bring to light mimics a SM strong
sector, driven with QCD like mathematics, with the exception of having only one generation
of up and down dark quarks/fermions carrying dark colour indices. However, we work with
a confined dark meson/pion like picture, because of temperature of the early universe at the
time of DM freeze out. Hence we need to look closely at the construction and mathematics
of a suitable effective field theory of this dark Pion model, which would best represent our
case.

In the visible sector, we use the leading term of the chiral Lagrangian to explain the
theory and write the Lagrangian for the confined picture. The chiral Lagrangian can be
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reachd by expanding the following expression which we receive from the Chiral perturbation
theory,

We have, Σ

Σ = exp 2iΠ/f

L0 =
f 2

4
TrδΣ†δΣ = TrδΠδΠ+

1

3f 2
[δΠ,Π]2 (3.2)

Here, Π is the field corresponding to the pions which we consider, f is the meson decay
constant.

Instead of dealing with Gell-mann matrices as in the case of SM pions, we use a SU(2)
structure. The meson matrix Π ≡ πaTa (with Ta = Σp

a = σi /
√
2, the Pauli vector compo-

nents) appears in the exponent of Σ is a traceless 2 × 2 matrix.

We therefore have,

Πd =
1√
2

[
πd1 πd2 − iπd3

πd2 + iπd3 −πd1

]
(3.3)

which, as we can understand has contribution from all three Pauli-matrices,

Πd ≡ πda · Σp
a. In the dark pion matrix one can consider the diagonal components to be

like π0 from the SM pion theories, and the cross component to resemble the π+ and πi SM
analogues. Therefore, we call πd1 = π0, (πd2 - iπd3) = πd+ and (πd2 + iπd3) = πd−

Substituting 3.3 in 3.2 we have the following expansion.

We look at the first term,
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Tr[δΠdδΠd] = Tr
1

2

[
δπd0 δπd+
δπd− −δπd0

][
δπd0 δπd+
δπd− −δπd0

]
(3.4)

Tr[δΠdδΠd] =
1

2

[
(δπd0δπ

d
0 + δπd+δπ

d
−) + (δπd−δπ

d
+ + δπd0δπ

d
0)
]

and for the second term,

1

3f 2
Tr[δΠd,Πd]

2

=
1

3f 2
Tr[δΠdΠd − ΠdδΠd]

2

=
1

6f 2
Tr

∣∣∣∣∣
[
δπd0 δπd+
δπd− −δπd0

][
πd0 πd+
πd− −πd0

]
−

[
πd0 πd+
πd− −πd0

][
δπd0 δπd+
δπd− −δπd0

]∣∣∣∣∣
2

=
1

6f 2
Tr

∣∣∣∣∣
[
(δπd0π

d
0 + δπd+π

d
− − πd0δπ

d
0 − πd+δπ

d
−) (δπd0π

d
+ − δπd+π

d
0 − πd0δπ

d
+ − πd+δπ

d
0)

(δπd−π
d
0 − δπd0π

d
− − πd−δπ

d
0 − πd0δπ

d
−) (δπd−π

d
+ + δπd0π

d
0 − πd−δπ

d
+ − πd0δπ

d
0)

]∣∣∣∣∣
2

Simplifying we get,

1

3f 2
Tr[δΠd,Πd]

2 =
1

6f 2
(δπd+π

d
− − πd+δπ−)

2 + 4(δπd0π
d
+ − πd0δπ+)(δπ

d
−π

d
0 − πd−δπ0)

+ (δπd−π
d
+ − πd−δπ+)

2 + 4(δπd−π
d
0 − πd−δπ0)(δπ

d
0π

d
0 − πd0δπ+)

Upon further simplification and combining similar terms the Lagrangian looks like,

L = δπd0δπ
d
0 + δπd+δπ

d
− +

1

6f 2

[
(δπd+π

d
−δπ

d
+π

d
−) + (δπd−π

d
+δπ

d
−π

d
+)− 2πd+δπ

d
−π

d
−δπ

d
+

]
(3.5)

+
2

3f 2

[
πd+δπ

d
−π

d
0δπ

d
0 + πd−δπ

d
+π

d
0δπ

d
0 − πd+π

d
−δπ

d
0δπ

d
0 − δπd+δπ

d
−π

d
0π

d
0

]
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With the first two terms being the Kinetic terms for π(+,−,0) and the third term being
the interaction terms for the dark pion vertex. In the model, we fix mπc > mπd . We stick
to a default relation of mπd = 0.9mπc , but also study what happens upon varying this mass
difference.

We once again start with documenting how the Freeze-out temperature depends on the
mass of the DM candidate in figure 3.5. Note that the following results do not include
the presence of the Z ′ channel. The data closely resembles the toy model. This allows us
to understand what phase of the DM candidates we need to consider, for our Freeze-out
calculations. As we can see, the typical DM Freeze-out temperatures, lie around 4-5 GeV,
which is much lesser than the pion DM masses which we consider. This would therefore
mean that the temperature around the DM Freeze-out point is not high enough to break
them into their component Dirac DM form, and allows us to work with the pion DM phase
only, safely assuming that the DM will be in the confined state.

Figure 3.5: Here, xf and T are related as, xf = mDM/T . The data closely resembles the toy
model. The x-axis in both the plots are log-scaled.

We then look at how the coupling terms of the πc-πd vertex affect the RD behaviour
along with the DM candidate masses. Notably, we observe a major difference when we
look at the values of the couplings needed to get the correct RD as compared to the toy
model in the behaviour in figures 3.6. We have a decreasing trend as compared to the
previous increasing trend. This can be explained, using the likes of equation 2.23. The
momenta dependent vertex implies an increase in the energy transfer to the SM sector with
the increasing momenta. A higher candidate mass also leads to a higher value of this integral
leading a reduced RD. Therefore, in-order to get the correct RD we need to compensate in
the coupling value (lower coupling values).
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Figure 3.6: A plot showing the coupling (which has been written in terms of the pion decay
factor f) required to give the observed value of RD for different masses of DM.

We look at the same calculation, but instead with the term f alone on the y-axis as in
the dark-pion Lagrangian 3.7.

Figure 3.7: A plot showing the value of f required to give the observed value of RD for
different values of DM masses.
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Finally, we also recall that we have been using a 10% mass difference between the stable
and unstable dark pions for all our calculations. We look at figure 3.1.2 to see what f values
we require to get the correct value of the RD for varying differences between the diagonal
and cross pions across a mass range. Predictably we see that, an increase in mass (with cross
(stable) pion having a greater mass than diagonal (unstable) pion) difference, increases the
value of the required f , since increasing the difference between the DM particles and the
mediator increases the reaction rate and thus demands a lesser value of coupling strength of
the vertex.

Figure 3.8: A plot showing the value of f required to get the correct RD for values of mDM

ranging from 1-100 GeV and each with four different cases of percentage difference between
masses of πc and πd.
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3.2 Adding a U(1)′ charged vector boson Z ′

We now look at how our results change upon adding the vector mediator Z ′ which can be a
mediator between SM and DM sectors.

While dealing with pseudo-scalars like the dark pions in our case, we need to consider
their axial currents. For the process, πDMπDM → Z ′, after which the Z ′ decays into SM
fermions, we note that we are looking at two pseudo scalar spin-1 particles annihilating with
each other to give rise to a spin 1 vector mediator. Clearly, in-order to conserve the spin, we
can only use the spin-0 component of the vector mediator, i.e. the longitudinal component
of the vector mediator. It has been shown that decay of pions can only happen through axial
vector component corresponding to the current.

jµ5 = ψγµγ5ψ

The axial (chiral) current is the Noether current for the axial transformation,

ψ(x) → eiαγ
5

ψ(x)

with α ∈ R denoting a continuous symmetry.

A thorough examination of the new physics encountered upon introducing the heavy Z ′

mediator alongside the already existing strong channel revealed many interesting features
of our theory and made it colorful (just the adjective) in many ways. As we will soon find
out, there are three channels for energy transfer, depending upon the parameters at use.
The strong channel (SC), as we have already discussed, is the case where the energy transfer
takes place completely or dominantly via the unstable dark pions and the subsequent decay
mechanisms. Two more channels which came into light upon the introduction the heavy
boson, a Z ′ pair channel (ZC), and a Z ′ resonant channel (RC). The interplay of energy
transfer through the two mediators is what will be looked at in the next section.
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Figure 3.9: We show the point of intersection between the Ωh2 = 0.112 line and the curve
which shows how the RD changes with the mass of the DM.

3.2.1 The strong annihilation channel

For the limiting case that Z ′ is quite a heavy particle as compared to our dark matter
candidate (taken to be in the 1-1000 GeV mass range), we once again shall almost entirely
have the SC case as we had showed before, but with a slight modification. The pion decay
factor f has experimentally studied to be proportional to the mass of the dark pion. Hence
for further calculations we have fixed mDM = f to have one lesser parameter to deal with.
Although this keeps the new strong sector qualitatively identical to the previously discussed
behaviour, it changes quantitatively. For instance, the new mDM = f value for which the
SC gives the correct RD is 137.4 GeV instead of the previous f= 117.6 GeV at mDM =
100. Referring to figure 3.9, here g′DM and g′SM are the couplings of the Z ′ to DM and SM
respectively (although it doesn’t matter in this plot, it does play a role in subsequent ones
where ZC is important). Here the mass of the Z ′ particle is fixed at 5 TeV.

3.2.2 Interplay between the Z ′ channel and strong channel

We now look at the case where Z ′ is light enough to allow annihilation via πcπ†
c → Z ′Z ′.

Such low masses may be allowed if coupling to SM is small but DM is large. We return to
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this at the Z ′ channel (ZC).

Figure 3.10: Change in RD with DM mass for the ZC. All the parameter values are displayed
in the plots. With exception that the second plot shows a scaled x axis as shown, the two
plots are identical.

Firstly we see the complete interplay between ZC and SC with varying of the mass of
Z ′ (mZ′), keeping f and mDM at a fixed value in figure 3.10. Starting with f = mDM =
137.4 GeV (which gives us the correct RD), the πcπ†

c → Z ′Z ′ channel is open for mZ′ ≤ f

(close toeach other). As the mZ′ decreases from 137.4 GeV to 50 GeV we go away from mDM

= mZ′ and the ZC channel contribution decreases, hence increasing the RD. The increase
of RD is steeper for mZ′ > mDM since the contribution of the ZC falls off quicker (due to
kinematic conditions). After a sufficiently large value of mZ′ as compared to mDM , the SC
which is always active due to the comparable masses of the stable and unstable dark pions,
is the only contributing channel and the RD settles onto the RD = 0.112 a shown. However
when mZ′ is around 2 times the mass of the DM we hit the resonant channel (RC) for the
DM DM → Z ′ annihilation and we see a steep fall in RD around this region. We shall study
this in the next section

In the same spirit, we also look at how changing the coupling between the vector particle
and DM, g′DM affects the same results in figure 3.11.
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Figure 3.11: Quite clearly, as we decreased g′DM from 1 to 0.1, the strength of the coupling
and the rate of the annihilation reaction decreased, thereby increasing the value of RD as a
general trend.

With clarity about the general interplay of the two channels and the behaviours, we must
also look at how varying f (and mDM) and mZ′ simultaneously, keeping the couplings fixed
affect the RD in figures 3.12 and 3.13. We have both line plots and contour plots to explain
the same.

In figure 3.12 we see how the behaviour of the RD curves changes with value of f . As
expected they resemble figure 3.10, with the mZ′ values of the two minimas in RD shifted
depending on the value of f used. The same thing can be seen in the contour plot in figure
3.13 upon close inspection. The contour plot is more useful to distinguish the 0.11 contour
and hence distinguish the acceptable region in our parameter space. We have scanned across
relatively small region of parameters here (with the discreteness arising due to a step size of
25 GeV for our data points). We also see a subsequent percentage contribution plot of the
SC for the same sets of parameters instead of RD. Clearly, the curves have quite a similar
appearance when it comes to the positions of the minimas. Since the SC is always turned
on, a drop in contribution of SC would mean the switching on of the ZC and RC (depending
on the position of the minima respectively). This would mean higher cross-section in the
region and hence lower value of RD.
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Figure 3.12: RD values while scanning mZ′ from 50 GeV - 400 GeV and mDM scanned from
25 GeV - 250 GeV.

The same exercise is also performed on a wider range of mZ′ and f values which makes it
much useful for our purposes. We can notice in figure 3.14, the two regions (/lines if we had
a more continuous set of points) of minimas, one of them around mZ′ = f (both SC and ZC
active) and the other one around mZ′ = 2f , as is consistent with our previous observations.
This potentially allows four different values of mZ′ for each value of f which can give us the
correct RD value. Given that each minimum is surrounded by the 0.1 contour as can be
seen, we can clearly understand how a f = 400 GeV (say) line cuts the 0.1 contour at four
different locations (roughly speaking, around 100, 400, 700 and 900 GeV). For instance we
can also gauge that, given our choice of not considering DM masses in excess of 1 TeV, we
need not consider mZ′ in excess of 2.1 TeV. Note that the islands of minima can actually
be considered to be a connected, linear region. The output is simply a manifestation of the
granularity of the parameters scanned.
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Figure 3.13: The image on the left provides the contour plot for mapping the RD across
the two parameters f and mZ′ for figure 3.12. The image on the right shows the percentage
contribution from the strong channel for the same sets of parameters.

Figure 3.14: The contour plot for mapping the RD whilst varying the parameters f and mZ′

across the larger ranges, f = 50 - 1000 and mZ′ = 100 - 3000 GeV.
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3.2.3 The Z ′ Resonant channel

Having studied the interplay between SC and ZC we now shift our attention to the Resonant
channel (RC). We now have three parameters fixed instead of two mDM = f = mZ′/2. We
thereby vary mDM and see the behaviour of the RD as in figure 3.15. As we are dealing with
the resonance condition, we now have the curve cutting the RD= 0.112 line at much higher
values, due to the higher annihilation rates corresponding to the RC. At higher masses, the
cross-section of interaction to decay via the DMDM → Z ′ → ff process is lower, and hence
the higher RDs. The sharp dip starting from mDM ≈ 160- 165 GeV can be explained by
opening of a new channel, DMDM → Z ′ → t t (the mass of the top quark around a 172 GeV
which favours the decay of Z ′ into the top quark and anti-quark).

Figure 3.15: We vary mDM= f = mZ′/2 and look at the behaviour of RD once again. We
have marked two points on the curve using the x = 1557.5 and x = 188 lines. We have two
variations of the same plot, the first one being a log-linear plot, and the second one being a
log-log plot.

3.2.4 Dependence of RD on pion mass difference

For completeness we also look at how the difference between masses of the stable and unstable
dark pion affect the RD. We change the difference in masses from 1% to 20% in figure 3.16.
Clearly, the larger the mass difference between the two dark pions (with unstable pion having
the lower mass), the easier it is for two stable dark pions to annihilate into two unstable
dark pions and hence, the channel shall have the higher cross-section, thereby reducing the
RD. For the following plots, the values of mπc where each curve corresponding to a certain

49



value of δm/mπc (in percentages) intersect the RD = 0.112 line are, 50 GeV, 85 GeV, 137
GeV, 192 GeV, 250 GeV and 560 GeV for percentage differences of 1, 5, 10, 15, 20, and 50
respectively.

Figure 3.16: We vary mπc and look at the percentage difference between masses of the stable
and unstable dark pion for the SC by setting mZ′ = 5TeV. We also have the same plot for
a narrower and log-log scaled mass range where we encounter a linear increase.

We also have a contour plot for the same where we can simply look at the 0.1 contour
for simplicity in figure 3.17.

Figure 3.17: A contour plot showing the RD for varying the percentage difference between
the DM candidate and the diagonal Pion mediator (in percentage) of the SC and the value
of f and mDM .
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Chapter 4

Complementary Signatures of SIDM

In this chapter, we look at detection prospects of our model via direct or indirect detection
searches.

4.1 Direct Detection of Dark Matter

We look at the interaction of DM particles with fixed nucleon targets, by their collision
with the nucleons. In this regard, we are essentially interested in a t-channel interaction
between the DM particle (or anti-particle) and the nucleons used in the experiment, or more
specifically, the up and down quarks (or anti-quarks) which constitute the nucleons.

The interaction between the DM pions and SM particles happen only through the Z ′

and only via the longitudinal component. This is proportional to the axial vector current
component of the interaction between Z ′ and SM fermions due to the involvement of a
pseudoscalar spin 0 DM, and the need to have the spins aligned for the interactions to be
enabled. This resulted in us using the axial vector component of the vector current involved
only, which also has spin 0. Given how the relevant part of the Lagrangian therefore looks,

LDM ⊃ g′SM
∑
f

mf (fγ
µγ5f)Z ′

µ (4.1)
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LDM ⊃ g′SM
∑
f

mf (fLγ
µγ5fR + fRγ

µγ5fL)Z
′
µ (4.2)

We understand that there is a fermion mass proportionality factor in the above terms.
This therefore makes the interaction between our DM candidate and the lightest quarks, up
and down extremely weak, as a result of which we do not see an interaction between DM
and nucleons of the target.

In the case of our model, we find the scattering cross-section between the dark pion
(cross) in our theory and nucleons to be zero, i.e. there exists no interaction between the
Hadrons used in colliders for the scattering experiments and the DM candidate. This leads
to zero exclusion constraints set by Direct detection. Since there exists no interaction of our
DM theory with a rather stringent constrain-er of most DM theories, we have essentially
found a way to by-pass an important filter and have the license of using a large part of our
parameter space.

4.2 Indirect Detection of Dark Matter

We already provided a brief introduction of Indirect detection of DM in the section 1.3. Here
we look at the theory of Indirect detection [16] a bit more closely, followed by the results
from our model.

As mentioned before, should primordial self-annihilations take place in the early uni-
verse, the same process would take place now in the denser regions of the galactic DM halo,
which correspond to higher densities of DM. At the core of such galaxies, the high tem-
peratures can re-activate processes such as the different DM annihilation channels active
in the early universe (with the availability of higher energies) which had frozen as the uni-
verse expanded. DM annihilation in the Galactic halo produces pairs of Standard Model
particles that hadronize and decay into stable particles. The final states with γ, positrons,
anti-protons, and neutrinos are particularly interesting and they are the subject of indirect
searches. In general the production rate of particles from DM annihilation at location x has
a form,
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Qa(x, E) =
1

2
〈σv〉〈ρ(x)

2〉
M2

DM

fa(E) (4.3)

where, ρ(x) is the DM mass density at the location x and fa(E) = dNa

dE
is the energy

distribution of the particle a produced in one reaction. 〈σv〉 is the annihilation cross-section
times the relative velocity of incoming DM particles which we evaluate in the limit v = 0.

4.2.1 Annihilation channels and fluxes observed

We consider DM annihilation (parameterized by the DM DM cross section 〈 σv 〉) and decays
(described by the DM decay rate Γ = 1/τ ) into the following primary channels:

e+Le
−
L , e

+
Re

−
R, µ

+
Lµ

−
L , µ

+
Rµ

−
R, τ

+
L τ

−
L , τ

+
R τ

−
R , qq, γγ, gg, decays into the three types of neutrinos

and their anti-neutrinos, or finally, decay into two vector mediators which give decays into
4 leptons. Here, q refers to the quarks, g refers to gluons and h refers to the higgs particle.

The particles produced in Dark Matter annihilation/decay will be provided with parton
showers and hadronization, in such a way to eventually obtain the fluxes of, e±, p, d, γ, νe,µ,τ

and νe,µ,τ , where, the study of their excess is the most commonly used for characteristic
indirect detection studies of DM.

4.2.2 Using Pythia

Since we have non-standard decay modes, we cannot use the basic pure modes that are
hard-coded in micromegas. We therefore use Pythia to obtain the exact spectrum of the
four commonly studied fluxes. PYTHIA is a program for the generation of high-energy
physics collision events. For more information on installation and general details one can
refer to [17], or visit Pythia. Pythia’s algorithm provides us with the respective energy fluxes
which we can then use to compare with real data as in [18, 19, 20]

We present the data for the fluxes of photon, anti-proton, positron and neutrinos, as
predicted by our model in the following sections. As mentioned, the computations were
performed via Pythia. These energy spectra, are expected to be present in addition to the
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usual observed background fluxes from other SM processes (which is typically modelled as
approximately dφ

dE
∝ E−2). We present figures showing the number density per energy bin

dN
dE

, for each of the fluxes, across the energy spectra 0 → 250 GeV, for two cases of DM
masses each with the cases of Z ′ resonance and the strong channel. We note that, all of the
measurements have been made taking, the coupling values, g′DM =1 and g′SM = 0.1.
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Figure 4.1: We show the four kinds of fluxes, for four different cases in the parameter space.
Here, RC denotes the Z ′ resonant channel and SC denotes the strong channel.

A characteristic feature of both the cases which we observe is that in the case of the Z ′

resonance, we see our final state products accessing higher energy bins, and hence the fluxes
are more spread out across the energy range than the case including the strong channel only.
This is a direct consequence of the fact that the presence of a case allowing a heavy mediator,
brings additional mass-energy to the table, whose decay products, as a consequence can also
access higher energies.
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4.2.3 Prospects for Indirect Detection

We compare the photon energy spectra as simulated by Pythia and predicted by our model to
observations of Cherenkov Telescope Array (CTA). We present a comparative figure showing
the upper limit (95% containment limit (C.L.) ; sensitivity plot) for the observed background
photon energy spectra observed by CTA, to our signal simulation. If the signal (spectra due
to the DM candidate), is not contained within this upper limit, it would mean that we could
potentially observe annihilation events giving the energy spectra via CTA. If not, then even
though our model isn’t ruled out, there would be no way of confirming our hypothesis by
distinguishing such signals from the background uncertainties (see figure 6 [18]).

We used the following general expression (for mass-less particles) for going from number
of photons per energy bin per annihilation, to the differential flux observed per energy bin,
for photon fluxes, so that we can compare our simulation with the available data.

dΦγ

dΩdEγ
(Eγ, ψ) =

1

4π

∫
l.o.s.

dl(ψ)ρ2DM(r)

(
〈σv〉ann

2SDMm2
DM

dNγ

dEγ

)
(4.4)

where the integration is performed along the line of sight (l.o.s.) in the observing direction
(ψ). Here, 〈σv〉ann is the average velocity-weighted annihilation cross-section, SDM is a
symmetry factor that is = 1 if the DM particle is its own anti particle and = 2 if not, Nγ is
the number of photons per annihilation.

We used the value 7.1·1022 GeV 2cm−5 for the integral (taking the constants outside the
integral from equation 4.4 we are left with the following expression, also called the J factor),
corresponding to the one used in the calculations for CTA. The quantity is calculated based
on the assumed DM distribution models in the galaxy (refer to section 5.3 in [18]).

J ≡
∫
dΩ

Ω

∫
dl(ψ)ρ2DM(r) (4.5)

Referring to figure 4.2, we see that the C.L. of the background spectra from CTA can be
compared with the following two special cases encountered earlier. (a) f= mDM = 137 GeV,
mZ′ = 5TeV, which represented the case which gave us the correct RD with the dominant
mode of annihilation being the SC; (b) f= mDM = 1557.5 GeV, mZ′ = 3115 TeV, which
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represented the case which gave us the correct RD with the dominant mode of annihilation
being the ZC. All other cases are an interplay between these two cases. Here, we had the
coupling value of g′DM = 1 and g′SM = 0.1.
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Figure 4.2: The simulated photon fluxes for the two cases, SC and ZC.

For the SC case in figure 4.2, the simulated fluxes does not exceed the C.L. However
we see that for the RC case in figure 4.2, we see that the simulated energy fluxes exceeds
the background C.L. implying that the model and the photon fluxes corresponding to its
annihilation channels should be visible in CTA observations, for the used set of parameters.
This suggests that the model should be verifiable through complementary signatures from
Indirect detection, for some regions of the parameter space.
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Chapter 5

Conclusion

In this work, we started off by studying, analyzing and reviewing the work presented in [4].
This allowed us to understand how a general DM model is built, and familiarized us with
the relevant theories present behind this construction. We worked out various theoretical
expressions and the scattering cross-sections of the different energy transfer channels in the
theory, which get substituted into the Boltzmann equation, and in turn is used to calculate
one of the most important restrictions of any DM theory, the Relic Density. We looked at
how the parameter space affects the RD of any theory.

We then learnt to use multiple programs/tools such as MadDM, micrOmegas and Pythia,
for the computation of DM observables, and put them to test to produce parameter spaces for
different quantities of a few simple DM models already present in literature. We performed
an in-depth analysis for the results of models with the motivation to carry out the same
exercise for new and uncharted territories.

We worked on the construction of a novel, Strongly Interacting Dark Matter (SIDM)
model. The model depicted a DM candidate which mimics a standard model stable pion,
something which we call a dark Pion, which can decay into the visible sector via either
an unstable dark pion (which will also be predicted to be present by the model which we
constructed) or an additional heavy vector mediator which satisfies the required properties
of such a model. Therefore, we also introduced an additional gauge group, SU(3)′ and the
required indices, along with the particles, to make the theory complete. We analyzed the
resulting parameter space, which comes to the forefront as a result of the phenomenolog-
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ical description of the model, to look for an acceptable RD of DM, given by cosmological
constraints. We looked at the results obtained from the two channels in details, and what
interesting implications they present.

We also looked at complementary signals for the model simulated the energy spectra of
the fluxes which we expect to observe via Indirect detection of the model, which can be
compared to real life data. We verified through simulation that, the photon fluxes predicted
by our model should be detectable over the background energy spectra of our galactic core,
if such a model exists. We also reasoned as to why such a theory shouldn’t be detectable
using our current Direct detection experiments.
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Appendix A

A.1 Calculation techniques for Scattering Amplitudes
and Cross-section matrices

We learn how the scattering amplitudes and cross-sections, which go into the useful Boltz-
mann equation solving codes for calculation of DM RD is calculated are constructed by
calculating the same, present in the reference, [4] which we want to study. First, we start by
calculating the scattering cross-section in the first figure of 2.7. Here energy is transfered to
the HS by annihilation of SM fermions to dark fermions via ohotons (or dark photons).

The scattering amplitude term for a s channel f+f− → e−′ e+′ is given by,

vs
′
(p′)(

−iKi

√
4παγµcosθε

cosθW
√
1− ε2

)us(p)(−igµν/q2)urDM(k)(−i
√
4πα′ ε cos θε√

1− ε2
γµ)vr

′

DM(k′) (A.1)

Here α′ is the coupling constant for the dark fermions, α, the coupling constant for the
usual electroweak interaction, the central term refers to the photon mediator, it’s momentum
q, and a gµν for index contraction. Ki is a constant which scales the value of the electric
charge according to the fermion used

The above is a very simplified scattering amplitude based on the kind of DM Lagrangian
that we are interested in. It ignores the Z Boson mediator term, the dark sector interaction,
and the Z Boson decaying into two DM fermions at high enough energies as in the 3 Feynman
diagrams displayed before. |iM| can be written as,
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(
iKi4π

√
αα′ε cos2 θε

q2cosθW (1− ε2)

)
(v(p′)γµu(p))(uDM(k)γµvDM(k′)) (A.2)

Here, if the u’s denote particle wave functions, the v’s with the same momentum label
alphabet denote the corresponding antiparticle wave function. The primes associated with
the momenta labels to differentiate the two particle momenta on either side of the vector
gauge. x denotes complex conjugates. Note that both u and v are defined by contraction of
the particle field with the momentum eigenstate. Following on from this, |M|2, (iM(−iM∗))
looks like,

(
Ki4π

√
αα′ε cos2 θε

q2cosθW (1− ε2)

)2

(v(p′)γµu(p)u(p)γνv(p′))(uDM(k)γµvDM(k)′vDM(k)′γνuDM(k)

(A.3)

Using the knowledge that we send fermions polarised in spin up or down state, for both
of which we can construct a wave function owing to a certain momentum state, for the
scattering experiment, we divide both sides by (1/2)(1/2) and sum over all the spin state
wave functions.

Finally, using the completeness relations we can write,

∑
s

us(p)us(p) = γµpµ +m (A.4)

and for the anti-particles,

∑
s

vs(p)vs(p) = γνpν −m (A.5)

Note that we must think m as m multiplied by some identity operator, so that the LHS
and RHS gives us a matrix equation.

Contracting all the indices in equation A.3 and looking at the final result,
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(
Ki4π

√
αα′ε cos2 θε

2q2cosθW (1− ε2)

)2

tr[(γµp′µ−1mf )γ
ν(γρpρ+1mf )γ

σ]tr[(γαkDMα+1mDM)γβ(γδk′DMδ−1mDM)γε]

(A.6)

For the t channel scattering process of SM particles and DM particles, we have a very
similar expression with a few minor changes.

If the fermion anti-fermion momenta were p, p′ and k, k′ respectively, they can now be
written as p → p1, p′ → −p′1. Similarly, the DM momenta terms change as, k → p′2 and
k′ → -p2. This is related to the fact that we rotate the Feynman diagram, and in the new
diagram, the directions of p and kDM are simply reversed. Therfore we have(Using the slash
notation now instead of the γµ pµ summation notation),

(
Ki4π

√
αα′ε cos2 θε

2q2cosθW (1− ε2)

)2

tr[(p′1 + 1mf )γ
µ(p1 + 1mf )γ

ν ]tr[(p′2 + 1mDM)γµ(p2 + 1mDM)γν ]

(A.7)

Given below is the Feynman Diagram of the first kind in 2.7, the calculation for which,
and the corresponding t-channel diagram is shown above.

p1
−p′1

k

γ/γ′ −p′2p2

fSM

f ′
SM e′DM

eDM

We can simplify both the s-channel and t channel diagrams by using the Clifford algebra
properties of the gamma matrices and the consequent properties of their traces. A summary
of the trace properties would be as follows,

* tr(1)= 4

* tr(γµ) = 0
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*tr(odd number of gamma matrices multiplied to each other) = 0 (use tr(γ5γ5 = 1 to
show tr(x) = -tr(x))

* tr(γµγν) = 4gµν (use the property, γµγν = 2gµν1)

*tr(γ5) = 0

*tr(γµγνγργσγ5) = -4iεµνρσ

*tr(γµγνγργσ) = 4(gµνgρσ - gµρgνσ + gµνgρσ )

Upon using the above properties we can simplify equation 22 for the s-channel as,

8

(
Ki4π

√
αα′ε cos2 θε

q2cosθW (1− ε2)

)2

[(p·k)(p′·k′)+(p·k′)(p′·k)+m2
f (k·k′)+m2

DM(p·p′)+2m2
fm

2
DM ] (A.8)

We can make our life lot simpler by representing all the pi’s in terms of the energies and
subsequently in terms of the Mandelstam variable s and other constants/parameters like the
various masses and couplings. Note that it is easier to integrate over s since it varies from
2m2

f to infinity. But the functional form inside the integral is converging, and thus we can
terminate our limit to a high enough value to get an approximate result, computationally.

If initial energies of the particle is given by E1 and E2, in CM frame for particle anti-
particle annihilation, using energy conservation, we can use the following,

q2 = (p+ p′)2 = 4E2 = s

p · p′ = E2 + |p|2 = s/2

k · k′ = E2 + |k|2 = s/2

p · k = p′ · k′ = E2 − |p||k|cosθ = −(t−m2
DM −m2

f )/2

p · k′ = p′ · k = E2 + |p||k|cosθ = −(u−m2
DM −m2

f )/2

|k|2 = E2 −m2
DM

|p|2 = E2 −m2
f
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(using)

t = (k − p)2 = (k′ − p′)2

t = (k − p′)2 = (k′ − p)2

p2 = p′2 = m2
f

k2 = k′2 = m2
DM

to write the RHS further as,

8

(
Ki4π

√
αα′ε cos2 θε

4E2cosθW

)2 [
(E − |p||k|cosθ)2 + (E + |p||k|cosθ)2 +m2

DM(E2 + |p|2)
]

[
+m2

f (E
2 + |k|2) + 2m2

DMm
2
f

]

(8/16)

(
Ki4π

√
αα′ε cos2 θε
cosθW

)2 [
2 +

2(E2 −m2
f )(E

2 −m2
DM)

E4
+
m2
DM(2E2 −m2

f )

E4

]

[
+
m2
f (2E

2 −m2
DM)

E4
+

2m2
DMm

2
f

E4

]

Upon re-arranging we get,
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(
Ki4π

√
αα′ε cos2 θε
cosθW

)2 [
1 +

m2
DM +m2

f

E2
+ cos2θ(1−

m2
DM +m2

f

E2
+
m2
fm

2
DM

E4
)

]

Going from |M |2 to σ we make the following adjustments

dσ

dΩ
=

|k|
2E2

CM16π2ECM

(
Ki4π

√
αα′ε cos2 θε
cosθW

)2

|M ′|2 (A.9)

Finally giving us,

dσ

dΩ
=
K2
i κ

2α2cos4θε
4E2

CMcos
2θW

√
1− m2

DM

E2

[
1 +

m2
DM +m2

f

E2
+ cos2θ(1−

m2
DM +m2

f

E2
+
m2
fm

2
DM

E4
)

]
(A.10)

After integrating across θ from 0 to π, we can get to the final expression,

dσ

dΩ
=
πK2

i κ
2α2cos4θε

E2
CMcos

2θW

√
1− m2

DM

E2

[
1 +

m2
f +m2

DM

E2
+
E2 −m2

f +m2
DM + 4m2

fm
2
DM

E2

]
(A.11)

putting E2 = E2
cm/4 = s/4 we get,

dσ

dΩ
=
πK2

i κ
2α2cos4θε

scos2θW

√
1− m2

DM

E2

[
1 +

4m2
f + 4m2

DM

s
+
s− 4m2

f + 4m2
DM + 16m2

fm
2
DM

3s

]
(A.12)

If we are to write everything in equation A.12 in terms of the Mandelstam variables and
particle masses as shown, we have an expression,
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8

(
Ki4π

√
αα′ε cos2 θε

q2cosθW (1− ε2)

)2 [
(t−m2

DM −m2
f )

2

4
+

(u−m2
DM −m2

f )
2

4
+
s(m2

f +m2
DM)

2

]

And similarly, we can simplify equation 23 for the t-channel as,

8

(
Ki4π

√
αα′ε cos2 θε

q2cosθW (1− ε2)

)2

[(p1·p′2)(p′1·p2)+(p1·p2)(p′1·p′2)−m2
f (p2·p′2)−m2

DM(p1·p′1)+4m2
fm

2
DM ]

(A.13)

For the fourth type of Feynman diagram that we see in 2.7 shall be considering, to be used
in the Boltzman code, we shall be using the fermion propagator and external photon lines
(for both directions with respect to the time direction), which were not used before. This
is diagram comprises of only the dark sector fermions and bosons. In Compton scattering,
as presented below, all the momenta directions are along the time direction, which makes
writing the cross section matrix simpler, after which we simply employ crossing symmetry
to reach the required Feynman diagram by making the necessary changes in the momenta
directions. Using the standard Feynman rules where we go along one direction (either along
the time direction, or against) we see that, for the Compton scattering case |iM | can be
written as,

iM = u(p′)(−ieγµ)ε∗µ(k′)
i(p+ k +mDM)

(p+ k)2 −m2
DM

(−ieγν)εν(k)u(p)

+ u(p′)(−ieγν)εν(k)
i(p− k′ +mDM)

(p− k′)2 −m2
DM

(−ieγµ)εµµ(k′)u(p)

Here, the two terms summed together are due to the fact that, we can have two cases
of Compton scattering with the directions of the respective momenta of the vector boson
interacting with the particle interchanged. It is similar to a difference between a t channel
and u channel diagram if I am to draw a rough analogy. Compton scattering diagrams
depicted below. ε and ε∗ depict the polarization vector associated to the two photons with
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their respective momenta(k and k′) as shown.

Figure A.1: In the two-photon production case, our momenta associated to the external lines
as in the above case change as, p → p1, p′ → -p2, k → -k1, k′ → -k2, as will be calculated.
This change owes to the crossing symmetry between the Compton scattering process and
the release of two photons process.

Upon some simplifications i.e., using the standard, p2 = m2 and k2 = 0 we can use,
(p+ k)2 −m2 = 2p · k and (p− k′)2 −m2 = -2p · k′.

And for the later part in both the terms summed together, we can use the result derived
using some Clifford algebra,

(p+m)γνu(p) = (2pν − γνp+ γνm)u(p)

= 2pνu(p)− γν(p−m)u(p)

and, using the dirac equation, we can set the second term to 0, therefore getting

(p+m)γνu(p) = 2pνu(p) (A.14)

iM = ie2ε∗µ(k
′)εν(k)u(p

′)

[
γµkγν + 2γµpν

2p · k
+

−γνk′γµ + 2γνpµ

−2p · k′

]
u(p) (A.15)

Using further trace calculations and manipulations as described in the s-channel and
t-channel cases, for which I shall provide a reference and detailed calculations to, we get to
the final expression,
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1

4

∑
spins

|M |2 = 2e4

[
p · k′

p · k
+
p · k
p · k′

+ 2m2

(
1

p · k
− 1

p · k′

)
+m4

(
1

p · k
− 1

p · k′

)2
]

(A.16)

Figure A.2: Diagram for two hidden sector fermions giving rise to two dark photons. The
internal particle propagator must have a three momentum given by p1 - k1, due to conser-
vation of momentum. Ref: M. Peskin, E. Shroeder Introduction to QFT

Now, looking at the 2 photon (dark) annihilation process, we must make the necessary
changes in momenta notations, signs, which can be derived using the crossing symmetry,
and coupling constants as shown above. The desired expression looks like,

1

4

∑
spins

|M |2 = −2(4πα′)2

[
p1 · k2
p1 · k1

+
p1 · k1
p1 · k2

+ 2m2

(
1

p1 · k1
− 1

p1 · k2

)
−m4

(
1

p1 · k1
+

1

p1 · k2

)2
]

(A.17)

Note that as before, this equation represents a superposition of two kinds of double (dark)
photon annihilation, with the directions of the vector bosons interchanged.

In terms of initial energy of the dark fermion in the CM frame, the expression for dσ
dcosθ

which contains the above, 1
4

∑
spins

|M |2 term, in the high energy limit is,

dσ

dcosθ
=

2πα′2

s

(
1 + cos2θ

sin2θ

)
(A.18)

Here s, the Mandetstam variable is equal to the total energy of the incoming particle in
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the CM frame.

However for our case, we cannot be using the High Energy Approximation just yet, as
we must keep room for large DM masses too. As a result, we simply try an simplify the
expression A.17 in terms of s.

We intend to write the expression in terms of the laboratory friendly quantities, s and
θs. The detailed calculations are shown in the appendix* .

Thhe Final expression which we have for σ(s) for the two photon release channel, looks
like,

σ =
πκ4α′2

2ε4s

√
s

s− 4m2

[
16m4

s(s/4−m2)− s2/4
− 4− ln

∣∣∣∣∣(s/4−m2)−
√
s/4(s/4−m2)

(s/4−m2) +
√
s/4(s/4−m2)

∣∣∣∣∣ · A
]

(A.19)

where A is,

s(s+ 4m2)− 8m4

s
√
s/4(s/4−m2)

(A.20)

Calling the RHS of equation 27 as I, equation 28 as II and equation 34 as III, we finally
substitute them in σ(s) of the following Boltzmann equation which was mentioned before,
to get a final result for the most general form.

d(ρ
′

ρ
)

dT
= − g1g2

H(T )Tρ32π4

∫
ds · σ(s)(s− 4m2)sTK2

(√
s

T

)

Recall, σ(s) had the form,

σ(s) ≡ 1

2E12E2vmol

∫ 4∏
i=3

d3pi · gi|ιM |2(2π)4δ(4)(Σps,t,ui ) (A.21)
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A.1.1 Z-Resonances

In theory we must also involve the Z-Boson which we ignored in our calculations before. It
introduces the phenomena of Z- resonances which must give rise to some unique structures
in our plots. The conservation laws are exactly the same as in QED+ (i.e. QED with
the presence of the Z Boson). Conservation of lepton number. Therefore analogously, we
might consider conserving the dark fermions too, in our diagram. We also have the usual
conservation laws: energy, momentum, angular momentum. The Z boson is heavy, roughly
91 GeV. Thus we might want to look at it as some massive version of the photon with similar
properties but the corresponding coupling constants. The Z boson is usually virtual. It only
exists quantum mechanically and is never directly measured(quickly decays i general due to
it’s unstable, high mass). Since it is virtual this process occurs even when the participating
fermions (leptons) are not energetic enough to produce a physical Z boson. But when the
electrons have just enough energy to produce a physical Z; the process goes “on shell” and
is greatly enhanced. This is the phenomena of Z-resonance.

The final expression for the total cross section element for the Z boson pathway looks
like,

σe+e−ZDMDM =
sg2g2DM

192π((s−m2
Z)

2 + (mZΓZ)2)
[(ceV )

2 + (ceA)
2][(cDMV )2 + (cDMA )2] (A.22)

σe+e−ZDMDM =
sg2g2DM

192π((s−m2
Z)

2 + (mZΓZ)2)
K (A.23)

with g being the usual coupling constant for the weak interaction and gDM being,

gDM = − e′εsinθε√
1− ε2

= −
√
4πα′εsinθε√

1− ε2
(A.24)

A detailed calculation for the same is as below (starting with the simple case of a decay
mode into electrons and positrons only)-
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k

Z

e−

e+ e′DM

e′DM

We have the e+ e− vertex which can be given as,

v(p2) · (−igZγµ)
1

2
(ceV − ceAγ

5)u(p1)

with subscripts v and A denoting the vertical and axial components of the vertex coupling
respectively.

The Z propagator is given by, (−igµν/q2 −m2
Z)

The eDM e′DM vertex term looks like,

uDM(p3) · (−ig′Zγν)
1

2
(cDMV − cDMA γ5)vDM(p4)

Leaving us with a scattering amplitude of the form,

M =

(
−gZgZ′

q2 −m2
Z

)
gµν

[
v(p2)γ

µ1

2
(ceV − ceAγ

5)u(p1)

] [
uDM(p3)(γ

ν)
1

2
(cDMV − cDMA γ5)vDM(p4)

]

Here, gZ = -gcosθW/cosθε ; g′Z = −e′εsinθε/
√
1− ε2 Also, let cV = cL+cR, cA = (cL−cR)

Therefore we can write,

1

2
(cV − cAγ

5) =
1

2
(cL + cR − (cL − cR)γ

5)

=
1

2
cL(1− γ5) +

1

2
cR(1 + γ5)
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also, we shall use, (1− γ5)u = 2uL , (1 + γ5)u = 2uR and so on.

We can therefore re-write the resulting scattering amplitude as,

Mfi =

(
−gZgZ′

q2 −m2
Z

)
gµν [c

e
Lv(p2)γ

µuL(p1) + ceRvγ
µuR(p2)]

·
[
cDML uDM(p3)γ

νvDMR(p4) + cDMR uDM(p3)γ
νvDML(p4)

]
using, uRγµvR , uLγµvL = 0 and similarly for the DM terms, we can write,

Mfi =

(
−gZgZ′

q2 −m2
Z

)
gµν [c

e
LvR(p2)γ

µuL(p1) + ceRvLγ
µuR(p2)]

·
[
cDML uDML(p3)γ

νvDMR(p4) + cDMR uDMR(p3)γ
νvDML(p4)

]
Quite clearly, upon expanding the scattering amplitude which we have now written in

terms of the left handed and right handed components of the particle fields, we shall now
have terms in the scattering amplitiude M, proportional to,

MRR ∝ [vL(p2)γ
µuR(p1)] [uDMR(p3)γ

νvDML(p4)] = s(1 + cosθ)

MRL ∝ [vL(p2)γ
µuR(p1)] [uDML(p3)γ

νvDMR(p4)] = s(1− cosθ)

MLL ∝ [vR(p2)γ
µuL(p1)] [uDMR(p3)γ

νvDML(p4)] = s(1− cosθ)

MRL ∝ [vR(p2)γ
µuL(p1)] [uDML(p3)γ

νvDMR(p4)] = s(1 + cosθ)

with q2 = s = E2
CM . Therefore, we finally get terms like

73



|MRR|2 = s2
∣∣∣∣ −gZgZ′

q2 −m2
Z

∣∣∣∣ (ceRcDMR)2(1 + cos2θ)

|MRL|2 = s2
∣∣∣∣ −gZgZ′

q2 −m2
Z

∣∣∣∣ (ceRcDML)2(1− cos2θ)

|MLR|2 = s2
∣∣∣∣ −gZgZ′

q2 −m2
Z

∣∣∣∣ (ceLcDMR)2(1− cos2θ)

|MLL|2 = s2
∣∣∣∣ −gZgZ′

q2 −m2
Z

∣∣∣∣ (ceLcDML)2(1 + cos2θ)

which are a lot more neat and can be used in the final expression.

We also need to keep in mind that while dealing with a massive mediator, the mass term in
the denominator of the propagator can create a divergence while we integrate the scattering
amplitudes. In-order to prevent this we use a Breit Wigner Resonance distribution, instead of
allowing the mas term to cancel s at s = √

mZ . Also, the Z boson is a heavy and an unstable
particle which tends to decay into other lighter particles associated with a corresponding
lifetime for the decay.

For a stable particle we roughly use,

ψ ≈ e−imt

where, ψ denotes the approximate wave-function for the sub-atomic particle. For a heavy
and an unstable Z-boson, we modify the above as,

ψ ≈ e−imte−ΓZt/2

with τ = 1/ΓZ . Applying the Breit-Wigner modification, we shall change the mass term in
our earlier expression as,

m→ m− iΓZ
2

Thereby modifying,
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∣∣∣∣ 1

s−m2
Z

∣∣∣∣2 → ∣∣∣∣ 1

s−m2
Z + imZΓZ

∣∣∣∣2
Finally, using (as shown before)

dσ

dΩ
=

|Mfi|2

64sπ2

and
|Mfi|2 =

1

4

(
|MRR|2 + |MRL|2 + |MLR|2 + |MLL|2

)
We get,

dσ

dΩ
=

(gZg
′
Z)

2

64sπ2((s−m2
Z)

2 −m2
ZΓ

2
Z)

(
1

4

[
(ceV )

2 + (ceA)
2
] [
(cDMV )2 + (cDMA )2

]
(1 + cos2θ) + 2cevc

e
Ac

DM
V cDMA cosθ

)
(A.25)

Integrating over the solid angle and therefore using,∫ 1

−1

(1 + cos2θ)dcosθ =
8

3

∫ 1

−1

(cosθ)dcosθ = 0

We finally have,

σ =
(gZg

′
Z)

2

192πs((s−m2
Z)

2 −m2
ZΓ

2
Z)

([
(ceV )

2 + (ceA)
2
] [

(cDMV )2 + (cDMA )2
])

(A.26)

We put all of the scattering cross-sections in 2.21 or 2.28 as used in the Boltzmann solver
and run the code to have an idea of the expected RDs. As we learnt, varying the parameters
plays a crucial role in. Thereby, we have explored the theoretical base of all the fancy codes
written and all the seemingly simple calculations performed, by advanced DM codes, and
gather a better understanding of what goes on underneath the glamour.
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A.2 Calculation of σ for the release of dark photons
from dark fermions in terms of s

We start from (with the crossing symmetry applied to the Compton scattering process) A.17,

1

4

∑
spins

|M |2 = −2(4πα′)2

[
p1 · k2
p1 · k1

+
p1 · k1
p1 · k2

+ 2m2

(
1

p1 · k1
− 1

p1 · k2

)
−m4

(
1

p1 · k1
+

1

p1 · k2

)2
]

Moving from the scattering amplitude to the differential scattering cross-section element
dσ/dcosθ, we can immediately make the following modification,

dσ

dcosθ
=

2πα′2

s

Eini
| ~pini|

[
p1 · k2
p1 · k1

+
p1 · k1
p1 · k2

+ 2m2

(
1

p1 · k1
− 1

p1 · k2

)
−m4

(
1

p1 · k1
+

1

p1 · k2

)2
]

(A.27)
which can be further written in terms of E and p as,

dσ

dcosθ
=

2πα′2

s

Eini
| ~pini|

[
E2 + (pcosθ)2

m2 + (psinθ)2
+

2m2

m2 + (psinθ)2
− 2m4

(m2 + (psinθ)2)2

]
(A.28)

Using the following labels and expressions from,

with,

s = (p1 + p2)
2 = p21 + p22 + 2p1p2

= E2 − p2 + E2 − p2 + 2(E2 + p2) = 4E2

p2 = E2 −m2 =
s

4
−m2

Substituting the above we can then write the following version of A.17,
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Figure A.3: Kinematics of the release of two dark photons process in the center of mass
frame. Ref: M. Peskin, E. Shroeder Introduction to QFT

dσ

dcosθ
=

2πα′2

s

√
s

2
√
s/4−m2

[
(1/4)

(s+ (s− 4m2)cos2θ) + 2m2

m2 + (s/4−m2)sin2θ
− 2m4

(m2 + (s/4−m2)sin2θ)2

]
=
πα′

2s

√
s

s− 4m2

[
(s− 4m2)cos2θ

m2 + (s/4−m2)sin2θ
+

s+ 8m2

m2 + (s/4−m2)sin2θ
− 8m4

(m2 + (s/4−m2)sin2θ)2

]

where the three terms inside the parenthesis are three different types of integral in terms
of cosθ. Simplifying the expression (say writing the entire expression in terms of cosθ only
and calling it some variable x) and thereby performing three somewhat tedious but doable
integrals, we reach the expression A.19,

σ =
πκ4α′2

2ε4s

√
s

s− 4m2

[
16m4

s(s/4−m2)− s2/4
− 4− ln

∣∣∣∣∣(s/4−m2)−
√
s/4(s/4−m2)

(s/4−m2) +
√
s/4(s/4−m2)

∣∣∣∣∣ · A
]

A.3 Useful Dirac algebra properties and proofs

Proving,
tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) (A.29)

Using,
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γµγν = 2gµν · 1 − γνγµ

which we derive from the anti-commutator property of two dirac matrices, γµ and γν

We have (using the cyclicity of traces),

tr(γµγν) = tr(2gµν · 1 − γνγµ)

= 8gµν − tr(γµγν)

= 4gµν

tr(γµγνγργσ) can be written as,

tr(2gµνγργσ − γνγµγργσ)

Adding and subtracting γν2gµργσ inside the trace on the RHS, and writing one of those
terms as γνγρ2gµσ using the anti-commutator property of Gamma matrices we see,

tr(γµγνγργσ) = tr(2gµνγργσ − γν2gµργσ + γνγρ2gµσ − γνγργσγµ)

= (1/2)2 [gµνtrγργσ − gµρtrγνγσ + gµσtrγνγρ]

= 4(gµνgρσ − gµρgνσ + gµσgνρ)

where we used tr(γµγν) = 4gµν as shown, to get to the last step.

We now return to the evaluation of the squared matrix element in A.7. We expand,

tr
[
(p′ −mf )γ

ν(p+mf )γ
ρ = tr

[
(p′p)γµγνγργσ −m2

fγ
νγσ −mfpγ

νγργσ + p′mfγ
µγνγσ

]]
(where we have used the fact that the trace of an odd number of matrices is zero to
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cancel the last two terms)

Using the earlier results obtained for traces of the product of even number of matrices
we get to,

4
[
p′µpν + p′νpµ − gµν(p · p′ +m2

f )
]

Similarly, for the second part we have,

tr
[
(kDM +mDM)γβ(k′DM −mDM)γε

]
= 4

[
kµk

′
ν + kνk

′
µ − gµν(kDM · k′DM +m2

DM)
]

Finally we substitute the results into the relevant expressions to get the following expression
which upon some modification gives us A.8,

8[(p · k)(p′ · k′) + (p · k′)(p′ · k) +m2
f (k · k′) +m2

DM(p · p′) + 4m2
fm

2
DM ]
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