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Abstract
The structure S-matrix in matter Chern-Simons theories is different from the
S-matrix in trivially gapped theories. In this project we present a conjecture
for the structure, compounding and crossing rules for matter Chern-Simons
theories, which hold even at finite N and k. This is done by the use of the
Worldline formalism and the inherent topological nature of the pure Chern-
Simons theories. For 2 → 2 scattering of fundamental particles in matter
Chern-Simons theories with gauge group SU(N)k and U(N)k theories, we
find the crossing rules to be q-deformations, with q = e2π/κ, of the classical
crossing symmetry rules. These results are also consistent with the results
of

Jain:2014nza
[4], which are obtained by direct Feynman diagram computations in large

N .
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Chapter 1

Introduction

introd

The Scattering matrix is among the most important observables in quantum
field theories. While the exact form of the matrix varies from theory to the-
ory, the general structure of the S-matrix can be ascertained for large classes
of QFTs from general physical principals. For example, for all trivially-
gapped theories (theories with a mass gap which flow to the trivial quantum
field theory in the IR), the S-matrix takes the general form

S = Sid + ιτ (1.1) smat1

where Sid is the forward scattering part of the S-matrix( which includes a
delta function signifying the localization of this part in forward direction)
and the analytic part τ , which encodes the actually scattering amplitude
information and is an analytic function of the various external momenta
associated to the scattering process.

While S-matrices of trivially gapped are extremely well studied, by con-
trast the S-matrix of quantum field theories without a mass gap does not
even have a universally accepted definition. The difficulty arises due to the
IR infinities that plague gapless QFTs whose severity varies from theory to
theory. 1 The systematic understanding of gapless quantum field theories
has remained elusive, and is therefore not discussed in the present work.

There is, however, a third class of theories that interpolate between the
gapless and the trivially gapped QFTs, the topologically gapped quantum
field theories. These theories possess a mass gap but flow to a topological

1These IR issues have been tackled in some simple yet important cases such as by
Faddeev and Kullish

Kulish:1970ut
[1] in D = 4 QED.
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field theory in the IR limit.2 The standard examples of TQFTs are the
Chern-Simons field theories coupled to matter fields in 2 + 1 dimensional
spacetime.

The general aim of this work is to study the structure of S-matrix in
Chern-Simons matter theories and specifically understand the crossing-symmetry
and unitarity properties of the analytic part of the S-matrix in these theories.

1.1 Crossing and Unitarity in Quantum Field

Theories
crsuni

Crossing Symmetry is the property of S-matrix which relates the scattering
amplitudes of closely related scattering processes in a relativistic quantum
field theory. It states that the scattering amplitude of a process involving an
incoming (or outgoing) particle is related to the scattering amplitude of an
outgoing (or incoming) anti-particle via analytic continuation. More specif-
ically we can obtain the anti-particle scattering amplitude by analytically
continuing the particle scattering amplitudes to negative energies.

It is important to note that crossing symmetry is a non-trivial property
which is not universally true.3 An important consistency check of the validity
of crossing symmetry is whether the analytically continued scattering matrix
satisfies the unitarity condition.

The unitarity of the S-matrix can be written mathematically as

S†S = Sid (1.2) unitarity

Unlike the crossing symmetry, unitarity of the S-matrix is considered to be an
integral property of any consistent quantum field theory. In trivially gapped
theories, using the expansion (

smat1
1.1), we can rewrite the unitarity equation

(
unitarity
1.2) as

ι(τ † − τ) = τ †τ (1.3) unitarity2

The above expression can be used to derive the Optical theorem.
It is natural to consider whether a similar analysis holds for Chern-Simons

matter theories.
2Topological quantum field theories are QFTs where the correlation functions do not

depend on the background metric of the spacetime. This causes the theories to have
incredibly simple dynamical properties. This makes it tractable to define these quantum
field theories rigorously as done by Witten in

Witten:1988ze
[2]

3for a brief review and appropriate references refer to the introduction of
Mizera:2022dko
[3]
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1.2 Crossing and Unitarity in Chern-Simons

Matter Theories
crsunics

The unitarity and crossing properties of Chern-Simons matter theories with
gauge groups SU(N)k and U(N)k

4 which are coupled to fundamental fermion
or boson matter are explored in

Jain:2014nza
[4] in the large N ’t Hooft limit. 5

In the paper the authors present explicit computations and conjectures
for the analytic part of the scattering amplitudes for 2 → 2 fundamental-
fundamental and fundamental-anti-fundamental scattering. It is well known
that in a trivially gapped field theory with a SU(N) global symmetry, the
2→ 2 scattering amplitudes for fundamental- fundamental and fundamental-
anti-fundamental scattering are related via the crossing symmetry

τI =
τs(N + 1) + τa(N − 1)

2

τadj =
τs − τa

2

(1.4) crosym1

where τI and τadj are the analytic part of the fundamental-anti-fundamental
scattering amplitude in the singlet and adjoint channel respectively. τs and
τa are the symmetric and antisymmetric channel scattering amplitudes in the
fundamental-fundamental scattering. A derivation of relations (

crosym1
1.4) is given

in section (
pqr
4.6) In the large N limit we see that the above relations become

τI = N

(
τs + τa

2

)
τadj =

τs − τa
2

(1.5) crosym2

In
Jain:2014nza
[4], it was realised that in order for unitarity conditions to be satisfied

by 2 → 2 the crossing relations in the large N limit have to be changed by
adding a correction factor and become

τI = N

(
sin πλ

πλ

)(
τs + τa

2

)
τadj =

τs − τa
2

(1.6) crosym3

4where k denotes the level of the Chern-Simons gauge theory
5In the ’t Hooft limit, N → ∞ and k → ∞ while N/k → λ is held fixed. λ is called

the ’t Hooft coupling.
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This presents the following question: How does one derive these altered cross-
ing relations and whether it is possible to derive these relations at arbitrary
N and k.

The thesis is organised as follows: In chapter 2 we review some key aspects
of pure Chern-Simons and Chern-Simons matter theories. Chapter 3 covers
the proposed general structure of S-matrix in Chern-Simons matter theories.
Then we review and reformulate the crossing symmetry problem in chapter
4, followed by the main formalism for crossing symmetry in chapter 5. We
apply the formalism proposed in chapter 5 to the case of 2→ 2 scattering in
chapter 6, followed by a discussion of results and future directions in chapter
7.
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Chapter 2

Chern-Simons Matter Theories

csmt

The aim of this section is to give a brief introduction to Chern-Simon gauge
theories and Chern-Simons matter theories. We shall also discuss briefly
some results associated to these these theories that shall be relevant to us in
the subsequent sections.

2.1 Chern-Simons Gauge Theories

Chern-Simons Gauge Theories are topological field theories in the 2 + 1 di-
mension. The action is the integral of the Chern-Simons 3-form

SCS =
k

4π

∫
M

Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
(2.1) csaction

where A is a one-form gauge field in the adjoint representation of the gauge
group G. k is called the level of the theory and must take integer values for
the path integral to be single valued. These theories have no propagating field
and are classically trivial. On the quantum mechanical level the theories have
been solved exactly for arbitrary gauge group G and level k in the seminal
work of Witten

Witten:1988hf
[5].

2.2 Wilson Lines and Knot Theory

Since the usual gauge invariant local observable spoil the general covariance
of the theory, it is more appropriate to study Wilson line operators as observ-
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ables in Chern-Simons theories. Let C be a closed curve inside the spacetime
M . Then one can define the Wilson loop WR(C) as follows

WR(C) = TrRP exp

∫
C

Aidx
i

 (2.2) wlop

where R is an irreducible representation of the gauge group G. Note that
since the pure Chern-Simons theory is a topological field theory, the expecta-
tion values of Wilson loops give rise to a whole class of topological invariants.
As the curve C can be considered a knot embedded in the space M , expec-
tation value of Wilson loop (

wlop
2.2) is a knot invariant.

In his seminal paper
Witten:1988hf
[5], WItten showed that the Jones polynomials, a

class of Knot invariant polynomials can be obtained as Wilson loop expec-
tation values of Chern-Simons gauge theories with gauge group SU(2).

In order to compute correlation functions of WIlson loops, we must first
quantize the Chern-Simons gauge theories, which was first done by Witten
in

Witten:1988hf
[5].

2.3 Quantization of Chern-Simons gauge the-

ories and relation to Wess-Zumino-Witten

theory

One of the most important steps in exactly solving the pure Chern-Simons
theory is its holographic duality to the Wess-Zumino-Witten theory. While
the duality can be stated in a more general way, we shall instead recall here
the most important result of this duality. If one canonically quantizes the
Chern-Simons theory on a ball with Wilson-lines which have insertion in
representation R1, · · ·Rm on the boundary spheres, the Hilbert space of the
theory is isomorphic to the space of conformal blocks on the WZW theory
with level k and the target group G being isomorphic to the gauge group of
the Chern-Simons theory.

Thus there exists an inner product on the space of conformal blocks,
which is known as the Witten inner product.
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2.4 Level-Rank Duality

There is also a set of dualities between Chern-Simons theories called the level-
rank dualities. These dualities posit that the following theories are equivalent
to each other,

U(N)k,k ∼ SU(|k|)−sgn(k)N

U(N)k,κ ∼ U(|k|)−sgn(k)N,−κ
(2.3) ref

From here on, we denote the Chern-Simons theory with gauge group
U(N)k,k+N at Type I theory and U(N)k,k as Type II theory. The Type II
theory is level-rank dual to SU(N) theory and Type I theory is level-rank
dual to itself. These dualities provides a robust check for many relations in
Chern-Simons matter theories and are also related to the conjectured Bose-
Fermi dualities in matter Chern-Simons theories.

2.5 Chern-Simons matter theories

The main theory of interest to us is the Chern-Sinoms theory coupled to
matter fields in a minimal fashion. Unlike the pure Chern-Simons theories
matter Chern-Simons theories have not been solved exactly. However, at-
tempts have been made to solve these theories atleast in the large N ’t Hooft
limit. 1 The aim of this thesis, based on

Mehta:2022lgq
[9] is to understand crossing sym-

metry in S-matrix in Chern-Simons matter theories. We now look at the
structure of the S-matrix in Chern-Simons matter theories.

1we refer the reader to references
Yokoyama:2012fa
[6],

Jain:2012qi
[7]

Aharony:2012nh
[8] for a better picture of matter Chern-Simons

theories
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Chapter 3

Modification of the structure of
S matrix

As previously mentioned, the S-matrix has the structure of trivially gapped
theories takes the form (

smat1
1.1). In the case of the Chern-Simons matter the-

ories, this structure must be altered. The most direct evidence for this is
given in

Jain:2014nza
[4], where by Feynman diagram computations, one finds that the

S-matrix breaks up as follows

S = cos(πν)Sid + ιτ (3.1) aharnov scat

Where ν is a phase factor which we shall explain shortly.
The physical reason for the appearance of the cos factor is by looking

at the non-relativistic limit of the Chern-Simons theory. Since there are no
propagating modes in the Chern-Simons field, the interaction of two par-
ticles interacting via the Chern-Simons field is a long-distance phase type
interaction. In the non-relativistic limit this means that in the frame where
one of the two particles is kept fixed the wave-function of the other particle
acquires a phase as it moves around the first particle once. This is precisely
the Aharonov-Bohm effect.

3.1 Aharonov-Bohm effect and forward scat-

tering

The Aharonov-Bohm effect describes the quantum mechanics of a charged
particle in the presence of a small solenoid. As is well known the particle
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wave-function acquires a phase factor ei2πν as it goes around the solenoid.1

The scattering matrix of the Aharonov-Bohm effect is well know and takes
the form of (

aharnov scat
3.1).

The factor in front of the forward scattering term Sid has a simple in-
terpretation. Two different paths are possible for a forward scattering path
along the two sides of the solenoid. These two paths have eiπν and the e−iπν

phase factors as these must be added together to give the total term and
each factor contributes an equal half to the final term (thus a factor of half
in front of the terms) one gets the final factor to be

eiπν + e−iπν

2
= cos(πν) (3.2)

A derivation of the Aharonov-Bohm S-matrix can be found in
Sitenko:2013cda
[10]. Based on

the Aharonov-Bohm effect one can conclude that the Chern-Simons S-matrix
will have form of (

aharnov scat
3.1). There is however, the question of what value ν in

the Chern-Simons case.

3.2 Forward Scattering Phase in the Chern-

Simons case

We consider the 2 → 2 scattering process αβ → αβ where particles α and
β correspond to the representations Rα and Rβ in the WZW theory dual to
the Chern-Simons theory under consideration. Then if Oα and Oβ are the
primary operators of these representation, the fusion rules are denoted as
follows

OαOβ = Σ
M
NM
αβOM (3.3) fusion rules

Then we define νMαβ = hM − hα − hβ and the S matrix has the form

SM = cos(πνMαβ)Sid + ιτM (3.4) scat mat 2

The motivation for νMαβ comes from the monodromy phase factors one encoun-
ters in the theory of rational conformal field theories. For a more through
discussion the reader is advised to read the relevant sections in

Mehta:2022lgq
[9].

We now move to the discussion of crossing symmetry in Chern-Simons
matter theories.

1The ν factor depend on the magnetic flux in the solenoid and it’s exact form is not of
interest
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Chapter 4

Crossing symmetry in theories
with a global symmetry

In this section we will will review crossing symmetry in trivially gapped
theories with a continuous global symmetry. The material in this section
is not original however the reader may find it’s presentation unusual. This
will however help us generalize the analysis to the case of our interest, the
Chern-Simons matter theories.

4.1 Invariant Tensors and Invariant Maps

Consider the space
H = R1 ⊗R2 · · · ⊗Ri+j (4.1) tensor

where the Ri are irreducible representations of the global symmetry lie group
G. Consider a tensor residing in H

T ~ma1 ~ma2 ... ~mai+j (4.2) tensor2

Here ~mak are representation indices in Rk. Clearly we can group rotate the
tensor, obtaining a new tensor,

T
~ma1 ~ma2 ... ~mai+j
G = G

~ma1
~m′a1

G
~ma2
~m′a2

. . . G
~mai+j
~m′ai+j

T
~m′a1 ~m

′
a2
... ~m′ai+j (4.3) tensor3

where G
~mak
~m′ak

is the matrix element associated with the rotation of the Rkth

representation. The tensor T is defined to be a group invariant tensor if

T
~ma1 ~ma2 ... ~mai+j
G = T ~ma1 ~ma2 ... ~mai+j (4.4) tensor4
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thus the unrotated and rotated tensors are equal. There is also the concept
of an invariant map, closely related to the idea of invariant tensors. Consider
the linear operator O that maps an initial Hilbert space Hin

Hin = R1 ⊗R2 · · · ⊗Ri (4.5) hilb1

into the Hout,
Hout = R∗i+1 ⊗R∗i+2 · · · ⊗R∗i+j (4.6) hilb2

Note that H = Hin ⊗H∗out. Then O group invariant map if

O |χ〉 = |ψ〉 → OG |χ〉 = G |ψ〉 (4.7) tensor5

This condition translates to O = G†OG. Now consider for each representa-
tion Ri having an orthogonal basis |mai〉, clearly the action of group rotation
becomes as follows

G |~mai〉 = (G)
~m′ai
~mai
|~m′ai〉 (4.8) tensor6

Now in this basis an invariant map MT can be written as

MT = T ~ma1 ~ma2 ... ~mai+j |~ma1〉 . . . |~mai〉 〈~mai+1
| . . . 〈~mai+j | (4.9)

If MT is an invariant map, then T must be an invariant tensor.
Now if we consider a scattering process with the in-states Hilbert space

Hin and the out-states being inside Hout the S-matrix will clearly break down
into

S = SiMTi (4.10) map

where MTi span over a basis of invariant maps and Si are the momentum
dependence part of the S-matrix.

4.2 Crossing and Compounding and Unitar-

ity

Now consider an invariant tensor T inside the Hilbert space H. Now separat-
ing the Hilbert space into the initial and final Hilbert spaces, in two different
ways associates two different invariant maps to the same tensor T . Cross-
ing symmetry claims that the momentum dependant functions that multiply
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these two tensors in the S-matrix are related to each other by analytic con-
tinuation.

In terms of equations suppose we separate the Hilbert space H into Hin⊗
H∗out and H ′in ⊗H

′∗
out spaces. Then the S-matrix can be written as

S =
∑
SiMTi

S =
∑
S̃iM̃Ti

(4.11) map2

Now another operation we can perform using invariant maps is compo-
sition. Consider a map MT from (

hilb1
4.5) to (

hilb2
4.6) and another map MT ′ from

(
hilb2
4.6) into (

hilb3
4.12)

H ′out = R′1 ⊗ . . . R′p (4.12) hilb3

Note that T ′ is a tensor in the space Hout ⊗ H
′∗
out. The compounded tensor

TT ′ can be obtained by multiplying the associated maps as

MTMT ′ = MTT ′ (4.13) compouding

By explicit evaluation of the RHS of (
compouding
4.13) TT” is given by multiplying the

tensors T and T ′ and contracting the indices associated to space Hout. One
can also verify that if T anf T ′ are invariant tensors then so is TT ′. Now the
unitarity condition SS† = I becomes the following∑

final states

∑
i,j

(S∗j ? Si)M
†
Tj
MTi = SidMid (4.14) compounding2

Note that ? is a convolution operation with the measure Π
i

d3pi
(2π)3

(2π)δ(p2
i +m

2).

It now important to choose a useful basis set for the invariant tensor to
continue our analysis. The basis we shall look at is known as the projector
basis.

4.3 Projector Basis

In order to construct the projector basis we first consider the Clebsch-Gordan
decomposition of the tensor product

Ri ⊗ · · · ⊗Ri =
∑
a

QaR̃a (4.15) cb exp
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where a runs over all unitary irreducible representations of the global sym-
metry group G and Qa denotes the number of times the representation R̃a

appear in the fusion product. When Qa ≥ 1, we work in an orthogonal basis
in the space of tensors which transform representation Ra.

We work with states |~m〉a,r (r = 1, .., Qa). We also demand that the basis
be an orthonormal one, with

〈~m|~m′〉r,a a′,r′ = δa,a′δr,r′δ~m,~m′ (4.16) orth

The projector basis is defined as

P rr′

a =
∑
~m

|~m〉a,r′ 〈~m|a,r (4.17) proj1

now P rr′
a and (P rr′

a )† constitute the basis for invariant maps from Hin → Hout

and from Hout → Hin respectively. Now this basis is useful because when
when compounding of these operators is in some sense orthogonal as

(P r1r2
a )†P r3r4

a′ = δaa′δr2,r4
∑
~m

|~m〉a,r1 〈~m|a,r3
= δaa′δr2,r4P̂

r3r1
a (4.18) orth2

Now P̂ r3r1
a form a basis of invariant maps from Hin → Hin. Because of this

P̂ r1r3
a = (P̂ r3r1

a )†. This makes the compounding equation as follows

P̂ r1r2
a × (P̂ r3r4

a′ ) = δaa′δr1r4P̂
r3r2
a (4.19) orth3

The projectors also satisfy the following identity∑
r,a

P̂ rr
a = Mid (4.20) proj2

where Mid is the identity operator on Hin. From here on we will use T rr
′

a to
denote the tensor associated to P̂ r1r2

a . We denote Tid as the tensor associated
to Mid.

4.3.1 Unitarity in Projector Basis

Now if we rewrite the S-matrix in terms of the projector basis

S =
∑
a,r1,r2

Sr1r2a P r1r2
a (4.21) smat2
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The unitarity equation becomes∑
final states

∑
r

(Sr1ra )∗ ? Srr2a = Sidδr1,r2 (4.22) smat3

In the special case when the initial particles are the same as the final particles,
the S-matrix can be expanded as (

smat1
1.1). Then we can also write

Srr′a = δrr
′Sid + iτ rr

′

a (4.23) smat4

4.3.2 Crossing symmetry in the Projector Basis

Consider two different crossing frames with projector bases {P r,r′
a } and {P̃ r,r′

a }.
We denote {T r,r′a } and {T̃ r,r′a } as the tensor bases associated to the invariant
maps {P r,r′

a } and {P̃ r,r′
a } respectively. If the two tensor bases are related as

follows
T rr

′

a =
∑
ss′b

M bss′

arr′ T̃
ss′

b (4.24) tensor cross1

The matrix M is called a 6-j symbol and are a very well studied concept in
group theory. Now crossing symmetry claims that∑

rr′a

M bss′

arr′Srr
′

a = S̃ss′b (4.25) tensor cross2

with the equality holding after the appropriate analytic continuation in cross
ratios. Note that the definition of the projector basis is critically dependent
on the orthonormal basis we choose. It is however important to note that
the choice of this basis is not unique. For example multiplying each basis
vector with a phase does not change our analysis. Regardless, it is useful to
construct the basis more systematically.

4.4 Construction of projector Index Struc-

tures

Note that the definition of projector map P rr′
a in (

proj1
4.17) depends on what

basis states |m〉a,r we choose for each of the representations involved. In
this section we define these states in a way that we shall find useful in the
subsequent sections.
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Consider fusion of representations Ra and Rb, whose decomposition is as
follows

Ra ⊗Rb = N c
a,bRc (4.26) cg proj

Now we pick an appropriate basis for the Clebsch-Gordan(CG) coefficients
(Cc

a,b) so that the the states

|~m〉c,r =
∑
~ma, ~mb

(Cr)~ma, ~mb~mc
|~m〉a |~m〉b (4.27) cg1

obey orthonormality relations.

〈~m′|~m〉c′,r′ c,r = δ~m,~m′δc,c′δr,r′ (4.28) cg ortho

Plugging in (
cg1
4.27) into (

cg ortho
4.28) we get the condition∑

~ma, ~mb

(Cr)~ma ~mb~mc
(Cr′)

∗ m′
c′

ma,mb = δ
~m′
c′

~mc
δcc′δr,r′ (4.29) cg ortho2

Because the dependence onmc andm′c′ in the previous equation is determined
by group invariance, we don’t lose any information by contracting away these
indices. After doing this operation we get∑

~ma, ~mb ~mc

(Cr)~ma ~mb~mc
(Cr′)∗ mcma,mb

= δcc′δr,r′D
cl
c (4.30) cg ortho3

where Dcl
c is the dimension of the representation space Rc.

We can now find a orthonormal basis for a representation Ra in the tensor
product of R1, · · · , Rm decomposed into irreducible representations. The
process is iterative, first obtain all the possible irreducible representations
R(1) by doing a decomposition of tensor product R1 ⊗ R2. We label the
representations by r1 andR(1) (r1 labelling which copy ofR(1) is being referred
to here). We understand how to construct an orthonormal basis for R(1) from
the preceding discussion.

Next we fuse R(1) with R3, for which we get additional variables R(2) and
r2. We iterate this process until we fuse Rm1 with Rm and look at how many
Ra representations we get. Each possible Ra representation is labelled by r
which represents the variables (r1, r2, · · · , rm1 , R

(1), · · ·R(m−2)). An elegant
way to depict this pictorially in fig (

classfuse
4.1).1 For a more through discussion on

the construction of these classical bases, the reader is encouraged to look at
Mehta:2022lgq
[9].

1This pictorial representation is inspired by the Moore-Seiberg notation found in
Moore:1988qv
[11]
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Figure 4.1: Diagrammatic representation of classical fusion classfuse

4.5 Explicit Example: 2→ 2 fundamental scat-

tering in SU(N)

We consider the tensor product space

RF ⊗RF ⊗R∗F ⊗R∗F (4.31) hilbertspace1

where RF is the fundamental representation of SU(N) and R∗F is the anti-
fundamental representation. The space (

hilbertspace1
4.31) can be separated in two dis-

tinct ways. First way is the fundamental-fundamental scattering in which
we divide into

Hin = Hout = RF ⊗RF (4.32) hilbertspace2

The other way is the fundamental-antifundamental scattering where

Hin = Hout = RF ⊗R∗F (4.33) hilbertspace3

in both cases Hin⊗H∗out is (
hilbertspace1
4.31). Before we understand each crossing chan-

nel, it is useful to set some notational conventions.
We fix i and i′ to be the indices associated to the first and second fun-

damental representation and j and j′ as the indices associated to the two
anti-fundamental representations in (

hilbertspace1
4.31). When the fundamental state |i〉

transforms like a lower index, the anti-fundamental state |j〉 carries an up-
per index. Complex conjugation (Hermitian conjugate of tensors) flips the
upper/lower index to lower/upper index. With this convention we can write
a basis for the space of invariants of (

hilbertspace1
4.31).

(Td)ii′
jj′ = δji δ

j′

i′

(Te)ii′
jj′ = δj

′

i δ
j
i′

(4.34) tensor basis1

The Hermitian conjugate of the basis is

(T †d )ii
′

jj′ = δijδ
i′

j′

(T †e )ii
′

jj′ = δij′δ
i′

j

(4.35) tensor basis2
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We will now construct the projector basis.

4.5.1 Fundamental-Fundamental Scattering

The Hilbert spaces in (
hilbertspace2
4.32) can be decomposed as follows

RF ⊗RF = RSym ⊕RAsym (4.36) ff decomposition1

The tensor product is a direct sum of the symmetric and antisymmetric
representations, which are irreducible representations of the group SU(N).
The projector invariant basis is then

Ts =
Td + Te

2
=⇒ (Ts)ii′

jj′ =
δji δ

j′

i′ + δji′δ
j′

i

2
and (T †s )ii

′

jj′ =
δijδ

i′

j′ + δij′δ
i′
j

2

Ta =
Td − Te

2
=⇒ (Ta)ii′

jj′ =
δji δ

j′

i′ − δ
j
i′δ

j′

i

2
and (T †s )ii

′

jj′ =
δijδ

i′

j′ − δij′δi
′
j

2
(4.37) ff basis

One can verify that under compounding these tensors behave exactly like
projectors as shown in (

ff comp
4.38).

T †sTs =
∑
jj′

(T †s )i2i
′
2
jj′(Ts)i1i′1

jj′ =
δi2i1δ

i′2
i′1

+ δ
i′2
i1
δi2i′1

2
= T̂s

T †aTa =
∑
jj′

(T †a )i2i
′
2
jj′(Ta)i1i′1

jj′ =
δi2i1δ

i′2
i′1
− δi

′
2
i1
δi2i′1

2
= T̂a

T †sTa = T †aTs = 0

(4.38) ff comp

Note that here since Hin = Hout, Ts and Ta live in the same space as T̂s
and T̂a and we choose the phase of the projectors so that Ts/a = T̂s/a. Also

clearly, Ts/a = T †s/a.

4.5.2 Fundamental-Anti-fundamental Scattering

In (
hilbertspace3
4.33), the tensor product decomposes into the singlet (denoted by RI)

and adjoint (denoted by RAdj) representations as follows

RF ⊗R∗F = RI ⊕RAdj (4.39) fa decomposition
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The projector invariant map basis is then

TI =
Td
N

=⇒ (TI)i
j
i′
j′

=
δji δ

j′

i′

N
and(T †I )ij

i′

j′
=
δijδ

i′

j′

N

TAdj = Te −
Td
N

=⇒ (TAdj)i
j

i′
j′

= δj
′

i δ
j
i′ −

δji δ
j′

i′

N
and (T †Adj)

i

j

i′

j′
= δij′δ

j
i′ −

δijδ
i′

j′

N
(4.40) fa basis

The multiplication of the tensors gives us

T †I TI =
∑
i,j

(T †I )ij
i2

j2
(TI)i1

j1
i

j
=
δi2j2δ

i1
j1

N
= T̂I

T †AdjTAdj =
∑
i,j

(T †Adj)
i

j

i2

j2
(TAdj)i1

j1

i

j
= δi1j2δ

i2
j1
−
δi2j2δ

i1
j1

N
= T̂Adj

T †I TAdj = T †AdjTI = 0

(4.41) fa comp

As in the fundamental-fundamental scattering case, we choose the phases to
ensure that TI/Adj = T̂I/Adj. Moreover, TI/Adj = T †I/Adj.

4.6 Crossing rules in global symmetry
pqr

Using (
ff basis
4.37) and (

fa basis
4.40), it can be verified that

Ts =
(N + 1)TI + TAdj

2

Ts =
(N − 1)TI − TAdj

2

(4.42) crossing

Then if we write the fundamental-fundamental S-matrix as

(S)ii′
jj′ = SidTid + (τa)ii′

jj′Ta + (τs)ii′
jj′Ts (4.43) crossing2

Similarly the fundamental-anti-fundamental S-matrix is

S j j′

i i′ = SidTid + (τI)
j j′

i i′ TI + (τAdj)
j j′

i i′ TAdj (4.44) crossing3

Now Crossing Symmetry claims that the S-matrix corresponding to the same
invariant tensor are related by analytic continuation. Therefore,

τI =
((N + 1)τs + (N − 1)τa

2

τAdj =
τs − τa

2

(4.45) crossing4
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In the large N limit, (
crossing4
4.45) becomes (

crosym2
1.5).

Having derived the crossing relations in the global symmetry case, we
now move to the analysis of the Chern-Simons matter theory.
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Chapter 5

Crossing symmetry in
Chern-Simons Matter Theories

csmtg

5.1 World-Line Formalism

We start by understanding the path-integral of Chern-Simons matter theo-
ries. Instead of working in the flat spacetime, we regularize this space to a
Lorentzian cylinder C (see figure (

pillbox
5.1)). We consider the spatial extant R

and temporal extant T to be very large (Rm >> 1 and Tm >> 1) with the
spatial extant being much larger than the temporal extant. The condition
of R >> T ensures that the wavefunction of the particles being scattered
vanishes at the curved boundaries of the cylinder so we don’t have to worry
about scattered particles encountering the curved boundary. Since no parti-
cle reaches the curved boundary of the cylinder C, the Hamiltonian vanished
on the boundary. We can therefore shrink away the curved boundary, leaving
us with a solid ball as depicted in fig (

pillbox
5.1).

We now use the worldline formalism1 to evaluate the matter part of the
path integral as sum over particle trajectories with bulk interactions. The
schematic equation looks as follows∫

DAµDφ(· · · ) =

∫
DAµ

∑
Particle Trajectories

(· · · )

=
∑

Particle Trajectories

∫
DAµ(Wilson Lines)

(5.1) worldline1

1For a review of the world line formalism we encourage the reader to refer to
Schubert:1996jj
[12]
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Figure 5.1: Lorentzian cylinder and Sphere pillbox

The Wilson lines that appear in the last line in general include Wilson lines
that branch at interaction points. Now since

∫
DAµ(Wilson Lines) is just

the expectation value of Wilson lines in Pure Chern-Simons theory we get
the path integral to assume the form

S ∼
∑

Ptcl.Trajectories

〈Wilson Loops〉Pure CS Theory (5.2) worldline2

Because the pure Chern-Simons theory is a topological theory, the space of
all particle trajectories can be decomposed into sectors/chambers of topologi-
cally equivalent trajectories. The path integral then takes the much simplified
form

S ∼
∑

Chambers

〈Wilson Loops〉Chamber

∑
Trajectories in Chamber

eiSL (5.3) worldline3

where eiSL is the weight associated with each particle trajectory. Thus the
path integral becomes a weighted sum of Wilson line expectation values with
the Wilson lines starting and ending at specific boundary points (This is
encoded in the boundary condition of the path integral). We can then write
(
worldline3
5.3) more compactly as

S =
∑

Topologies t

StWt (5.4) worldline4

where Wt is the path integral of the pure Chern-Simons theory with Wilson
line insertion in topology t. St is the S-matrix associated with the topology
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t. By the seminal paper of Witten
Witten:1988hf
[5], we know that for each topology t,

Wt =
∑
i

αitGi (5.5) cblock1

where Gi are running over the space of conformal blocks with insertions
associated with boundary points of the Wilson lines. If we define

Si =
∑
i

αitSt (5.6) cblock2

then by plugging in (
cblock1
5.5) into (

worldline4
5.4) we get

S =
∑
i

SiGi (5.7) cblock3

Comparing (
cblock3
5.7) with (

map
4.10) one finds that in the Chern-Simons case the

role of invariant tensors is taken by conformal blocks. This correspondence
is also highlighted in work of Moore and Seiberg

Moore:1988uz
[13]. Indeed in the large k

limit 2 one finds that conformal blocks do indeed become the corresponding
invariant tensors.

Until now, however, note that the conformal blocks remain ill defined
and we do not understand how to ’compound’ conformal blocks (like we
compounded the invariant tensors). In the subsequent sections we elucidate
on these matters.

5.2 Conformal block and Tangles of Wilson

lines

As we have understood in the previous subsection, a ’tangle’ of Wilson line
insertion in a path integral is related to WZW-conformal blocks. Indeed one
can represent each conformal block in the pictorial form (an example being
fig.(

blocksq
5.2)). At first glance one might be puzzled by this assertion. This is

because the conformal blocks are supposed to depend only the position of
boundary insertions. There, however, seems to be an infinitely more informa-
tion in the bulk of tangle diagrams. However, this line of thinking is flawed
because the topological nature of the Chern-Simons theory ensures that the

2the classical limit
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only worthwhile difference in the tangles are those that change the topology
of the tangles. These moves are captured by the multi-sheeted nature of
conformal blocks.

Figure 5.2: Wilson line representation of conformal blocks blocksq

One feature that the pictorial representation does not capture is the fram-
ing of Wilson lines. The framing for us however will be implicit in the fol-
lowing discussion. With a specific framing the Wilson line tangle diagrams
are a faithful representation of conformal blocks. It is natural to ask what
conformal blocks correspond to the classical projector maps. We shall dis-
cuss the systematic construction of the projector blocks later. Presently we
propose a conjecture for how to compound conformal blocks using the tangle
representation.

5.3 Compounding and Unitarity

For the unitarity condition S†S = I to be satisfied when we plug in (
cblock3
5.7), we

must make sense of G†j×Gi. In order to do this we deal with a representation
of conformal blocks in terms of a tangle of Wilson lines on a solid ball.

We then divide the insertions in each of the blocks into initial and final
insertions. The initial insertions has the corresponding Hilbert space Hin

and the final insertions correspond to Hilbert space Hout. We then flatten
out the final half of the insertions on our conformal block as denoted in fig
(
prodflag1
5.3).

In order to do a hermitian conjugate of a conformal block, we reflect the
block around its flat surface, and also reverse all the arrows along each Wilson
line. Reversing the arrows is akin to complex conjugating all representation
associated to boundary insertions. This is shown in the top left diagram of
fig. (

prodfig2
5.4).
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Figure 5.3: Flattening of the final half of insertions prodflag1

Finally G†j×Gi is obtained by glueing the two final blocks as shown in fig.
(
prodfig2
5.4). Clearly the final diagram obtained is also representative of a block. As

both GI and Gj will have initial and final Hilbert spaces as Hin and Hout, the

resulting block G†j × Gi will have have Hin as both initial and final Hilbert
space.

Figure 5.4: Block compounding prodfig2

The condition that the framing of Wilson lines in the compounded block
should be the same as the framing of the blocks Gi and Gj ensure that our
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gluing method is unique3.
It is also important to note another possible source of ambiguity in the

compounding, related to the sheet structure of conformal blocks. As con-
formal blocks in general are multi-sheeted, a Wilson line tangle represents a
conformal block along with a choice of sheet. One can move between sheets
using monodromy operations which also affect the tangle representation as
depicted in fig. (

entangle
5.5). It should however be noted that there is no real

ambiguity here due to sheet structure. This is because the monodromy of
the resulting block encodes the monodromy degrees of freedom of the initial
conformal blocks.

Figure 5.5: Monodromy operation on a simple identity block entangle

5.4 Identity Block

For the unitarity equation S†S = I to make sense we must define the symbol
I. The identity block will have insertion in Hin ⊗H∗in. Also the block must
satisfy

I ×G = G and G′ × I = G′ (5.8) identity

The Wilson line representation of such a block is depicted in fig. (
identi2
5.6). We

shall denote the identity block from here on as Gid.
In Wilson line representation (

identity
6.6) is depicted in fig. (

compound
5.7).

3Otherwise one could potentially perform Dehn twists before glueing in which case the
compounding operation becomes ill defined
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Figure 5.6: The Identity block identi2

Figure 5.7: Compound the Identity block with a generic block compound

5.5 Projector Blocks

In the classical case it is a well known fact in group theory that all invariant
tensors can be constructed using only the Clebsch-Gordan coefficients. Our
strategy to construct conformal block analogues of projector invariant maps
is similar.

The Wilson line tangles with trivalent vertices are studied by Witten in
Witten:1989wf
[14]. The analogue of Clebsch-Gordan coefficient C ~ma, ~mb

~mc
in the Chern-Simons

case is a three-point block with initial insertion Rc and final insertions R∗a
and R∗b . All three-point blocks will have a Wilson line tangle representation
of the kind depicted in fig. (

3ptblc
5.8).

We fix a choice of vertical framing for all blocks from here on.4

4For a better understanding of reasoning behind this framing the reader is encouraged
to look at

Witten:1989wf
[14]
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Figure 5.8: Three-point conformal block 3ptblc

Figure 5.9: Compounding of three-point blocks 3ptorth

Note that at large enough k (where NWZW
abc is equal to N cl

abc) there is a
one-one correspondence between CG-coefficients and three-point conformal
blocks. Next we wish to make the basis of three point conformal blocks
orthonormal analogous to (

cg ortho2
4.29). The analogue of contracting indices of

the Clebsch-Gordan coefficients in Chern-Simons theory is the compounding
procedure explained in the previous subsections.

Compounding of three point blocks is depicted in fig. (
3ptorth
5.9). Next, note

that since the LHS and RHS of fig. (
3ptorth2
5.10) have the same external insertions

these conformal blocks lie in the same vector space of two-point conformal
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Figure 5.10: Compounding of three-point blocks 3ptorth2

blocks. It is well known that the vector space of two-point conformal blocks
is one dimensional. So the innerproduct of these blocks with any two-point
conformal block (like in fig. (

3ptorthn
5.12)) has an equivalent amount of informa-

tion as the original equation. This statement is the Chern-Simons analogue
of the classical statement that (

cg ortho2
4.29) and (

cg ortho3
4.30) carry an equal amount of

information.

Figure 5.11: Compounding of three-point blocks 3ptorthn

Note that the expectation value of circular Wilson loop in in representa-
tion Rc is equal to the quantum dimension of the representation which is the
analogue of the classical dimension that occurs in the RHS of (

cg ortho3
4.30).

The equation in fig. (
3ptorthn
5.12) also fixes the normalization of the three point

blocks. Having made the choice of orthonormal basis of CG coefficients one
can now construct an orthonormal basis for a more general class of conformal
blocks, with representations R1, · · ·Rm fusing into Ra. This block in the
Wilson line representation is depicted in fig.(

blocksq
5.2). Note that the abstract

fusion of the classical case in fig. (
classfuse
4.1) is now a real Wilson line tangle in fig.

(
blocksq
5.2).
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Figure 5.12: Compounding of three-point blocks 3ptorthn

The analogue of projector P rr′
a is depicted in fig. (

projblock
5.13). We shall denote

this block by Grr′
a . The orthonormality relation of of the block will look like

(Gr1r2
a )† ×Gr3r4

a′ = δaa′δr2r4Ĝ
r3r1
a (5.9) block1

Figure 5.13: Analogue of projector block projblock

where Ĝr3r1
a are blocks with insertions in Hin ⊗ H∗in. Analogous to the

classical equation (
orth3
4.19) we will have

Ĝr1r2
a × Ĝr3r4

a′ = δaa′δr2r4Ĝ
r3r1
a (5.10) block2

and clearly (Ĝr1r2
a )† = Ĝr2r1

a . To prove (
block1
5.9), we just need to show that the

equation in fig.(
whyorthg2
5.14) holds. To show that fig.(

whyorthg2
5.14) is true, note that blocks

on both LHS and RHS of fig. (
whyorthg2
5.14) are two-point blocks and as the space

of two point blocks is unidimensional, fig.(
whyorthg2
5.14) is equivalent to fig. (

whyorthg3
5.15).

To prove that the first equality in fig.(
whyorthg3
5.15) holds, we need only prove the

equality in fig. (
witten_proc1
5.16). Then we can use fig. (

witten_proc1
5.16) recursively get the first

equality in fig. (
whyorthg3
5.15).
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Figure 5.14: whyorthg2

Note that the second equality in fig. (
whyorthg3
5.15) is clear from fig. (

3ptorthn
5.12).

Therefore we must only prove that fig. (
witten_proc1
5.16) holds. We use Witten’s analysis

in
Witten:1989wf
[14] to proceed with our proof. We first cut the LHS horizontally as shown

in the diagram into two two=point conformal blocks. Algebraically, this
move is akin to looking at a number as an innerproduct. We then insert
the completeness relation depicted in fig. (

abc
5.17). The completeness relation

also holds because of the unidimensional nature of the space of two-point
blocks. Inserting the completion relation proves the equality in fig. (

witten_proc1
5.16).

This shows that the projector blocks obey equations similar to the classical
projector maps.

Figure 5.15: whyorthg3

5.6 Unitarity and Crossing Symmetry

As in the classical case, projector blocks on the space Hin ⊗ H∗in obey the
relation ∑

a,r

Ĝrr
a = Gid (5.11) uni1
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Figure 5.16: witten_proc1

Figure 5.17: abc

For a proof of this statement we refer the reader to
Mehta:2022lgq
[9]. With this statement

we can unitarity equations in the Chern-Simons case as follows:
First we expand the S-matrix as

S =
∑
a,r,r′

Srr′a Grr′

a (5.12) uni2
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Plugging (
uni2
5.12) into the unitarity equation S†S = SidGid, we get

S†S = SidGid

=⇒
∑

final states

(∑
a,r,r′

(Srr′a )∗(Grr′

a )†

)
×

(∑
b,t,t′

(Stt′b )(Gtt′

b )

)
= Sid

(∑
c,r

Ĝrr
c

)
=⇒

∑
final states

∑
a,r,t,r′

(
Srr′a )∗ ? (Srt′a )

)
Ĝrt
a =

∑
a,r,t

SidδtrĜrr
a

(5.13) uni3

This equation is the Chern-Simons analogue of (
smat3
4.22). We now move on to

understanding the crossing relations in these theories.
As in the classical case we can separate boundary insertions into initial

and final. Each distinct separation gives us a basis for the space of conformal
blocks with the aforementioned insertions, and the basis change between the
blocks along with analytic continuation gives us the statement of crossing.

Consider two divisions of insertions into initial and final. We expand the
S-matrix as

S =
∑
a,r,r′

Srr′a Grr′

a (5.14) cs cross1

and
S =

∑
a,r,r′

S̃rr′a G̃rr′

a (5.15) cs cross2

where Grr′
a and G̃rr′

a are both bases of blocks for different divisions of inser-
tions. Therefore there exists a map between these bases

Grr′

a =
∑
s,s′,b

Marr′

bss′ G̃
ss′

b (5.16) cs cross3

Crossing symmetry is the assertion that

τ̃ ss
′

b =
∑
s,s′,b

Marr′

bss′ τ
rr′

a (5.17) cs cross4

where the appropriate analytic continuations have been performed. The
coefficient Marr′

bss′ are matrix elements which may be computed using the in-
nerproduct on conformal blocks. As

|Grr′

a 〉 =
∑
s,s′,b

Marr′

bss′ |G̃ss′

b 〉 (5.18) cs cross5
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then we have

Marr′

bss′ =
〈G̃ss′

b |Grr′
a 〉

〈G̃ss′
b |G̃ss′

b 〉
(5.19) cs cross5

Now the inner product 〈G̃ss′

b |G̃ss′

b 〉 is equal to the quantum dimension of the
representation Rb , labelled as Dk

b . For a reasoning of this fact we refer the
reader to

Mehta:2022lgq
[9].

Marr′

bss′ =
〈G̃ss′

b |Grr′
a 〉

Dk
b

(5.20) cs cross5

Note that the innerproduct being used here is the one introduced by Witten
in

Witten:1989wf
[14]. We use this innerproduct more explicitly in the subsequent sections.

We now look at an example of 2 → 2 scattering in Chern-Simons matter
theories.
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Chapter 6

Scattering in
fundamental-fundamental and
fundamental-anti-fundamental
insertions

cstx

We now study the fundamental-fundamental and fundamental-anti-fundamental
scattering in Chern-Simons matter theories of Type I, Type II and SU(N).
We will also work out some checks of the our result.

6.1 Fundamental-Fundamental scattering

We first look at the two fundamentals scattering into two fundamentals. The
basis for this this process is show in fig. (

sasym
6.1) We denote the symmetric and

anti-symmetric blocks as Gs and Ga respectively. It is also clear (by taking
the appropriate reflection of blocks) that G†s = Gs and G†a = Ga. It should
also be noted that the two blocks are orthogonal as depicted in fig. (

sasymorth
6.2).

The argument for the orthogonality goes as follows, we compound the two
blocks to get the block in the upper right hand corner. We can then scoop out
the two-point block, which amounts to factoring the block path integral into
an inner product. Since the two-point block has different external insertions
it is zero, and thus the whole inner-product, that is the entire block, must
be zero.

Note that the conformal blocks Gs and Ga become the classical invariant
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Figure 6.1: Block basis for fundamental-fundamental scattering sasym

tensors in the limit k →∞. Next we look at the compounding of the blocks
Gs and Ga with themselves respectively. This compounding is depicted in

Figure 6.2: Orthogonality of symmetric and snti-symmetric blocks sasymorth

the fig.(
sasymsasym
6.3). We see that compounding of G†s/a with Gs/a equals Ĝs/a times

a numerical factor αSym/Asym.
Note that as Hin = Hout in fundamental-fundamental scattering, the
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Figure 6.3: Compounding of symmetric/anti-symmetric block with itself sasymsasym

suitably normalized conformal blocks must satisfy Ĝs/a = Gs/a. Note that
this normalization condition is non-trivial to the give a concrete definition of
the projector blocks.

Figure 6.4: Evaluation of αSym/Asym aingadjnorm

In order to evaluate αSym/Asym like in the previous section we need only
take an inner product with the two point identity conformal block as done
in fig(

aingadjnorm
6.4). In order to make the blocks into projectors, one of two thing
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could be done. The first is to note that the diagram in the numerator of
fig.(

aingadjnorm
6.4) depends on the value we set for the three-point conformal blocks. If

we demand the appropriate normalization, we get find that αSym/Asym = 1.
Alternatively, we can explicitly multiply the three-point blocks with the

square root of 1/αSym/Asym. We choose the latter, as it makes our calculations
explicit. The normalized four-point blocks are depicted in fig (

symasymn
6.5).

Figure 6.5: Normalized symmetric and anti-symmetric blocks symasymn

With this normalization, by (
uni1
5.11) we can write

Gid = Gs +Ga (6.1) unitsymasym

To check the validity of (
unitsymasym
6.1), we first write (

unitsymasym
6.1) in vector form as

|Gid〉 = |θ〉 = |Gs〉+ |Ga〉 (6.2) unitsymasym2

By taking the inner product of (
unitsymasym2
6.2) with 〈Gs/a| gives us the condition

〈Gs/a|θ〉 = 〈Gs/a|Gs/a〉 (6.3) unitsymasym3

As previously stated,
〈Gs/a|Gs/a〉 = Dk

s/a (6.4) unitsymasym4

Both (
unitsymasym3
6.3) and (

unitsymasym4
6.4) by fig. (

identity
6.6). Note that details about the inner product

used can be found in
Witten:1988ze
[2].

We now move to the other channel of fundamental-anti-fundamental scat-
tering.

6.2 Fundamental-Anti-fundamental scattering

An orthogonal basis in the fundamental-anti-fundamental scattering channel
is depicted in fig.(

sadj
6.7). We denote the Singlet and Adjoint blocks by GI and
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Figure 6.6: Computation of 〈Gs/a|Gs/a〉 and 〈Gs/a|θ〉 identity

Figure 6.7: Singlet and Adjoint blocks sadj

GAdj respectively. The two blocks are orthogonal by an argument identical
to the one in the previous subsection, as is depicted in fig. (

sadjorth
6.8). We next

normalize the blocks to make them into projectors as we did earlier. The
compounding of blocks GI and GAdj with themselves, respectively, we get the
equation in fig. (

ssadjadj
6.9). As in the previous subsection, we can find the value
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Figure 6.8: Orthogonality of Singlet and Adjoint blocks sadjorth

of αI/Adj by taking an innerproduct with the identity two-point function as
shown in fig.(

singadjnorm
6.10). We can then normalize the blocks GI and GAdj to make

them into projector blocks. The normalized blocks are depicted in fig.(
adjn
6.11).

Figure 6.9: G†I/Adj ×GI/Adj = αI/AdjĜI/Adj ssadjadj

The normalized blocks as defined in fig.(
adjn
6.11) must satisfy the identity

G̃id = GI +GAdj (6.5) ide

Where the G̃id is the identity blocks. Like the analogous equation (
unitsymasym
6.1) in

the previous subsection, this equation can also be proved directly by similar
methods.
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Figure 6.10: Evaluating αI/Adj singadjnorm

Figure 6.11: Normalized blocks GAdj and GI adjn
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Note that although G̃id is indeed the identity block, but it is the identity
block associated to the space Hin⊗H∗out, with Hin = Hout = RF ⊗R∗F , which
is distinct from the identity block Gid in (

unitsymasym
6.1). Both blocks belong to the

same space of conformal blocks and are indeed related to each other by a
monodromy operation.

Also note that the norm of the projector blocks is equal to the quantum
dimension of the associated representation. So we have,

〈GI |GI〉 = 1 and 〈GAdj|GAdj〉 = Dk
Adj (6.6) qdim1

Finally, we should also note that the unnormalized block GI is equal to
the identity conformal block G̃id. This is because the Wilson line insertion
associated to the singlet channel in fig. (

sadj
6.7) is only there for clarity. Since

the singlet representation is the trivial representation, in the path integral
form of the conformal block there is no Wilson line insertion for the same.
Thus if we remove the singlet Wilson line, we get the identity conformal
block.

6.3 Crossing Symmetry

In order to obtain the crossing symmetry we first need to relate the fundamental-
fundamental and fundamental-anti-fundamental conformal blocks to each
other. We can write

Gs = αIsGI + αAdjs GAdj

Ga = αIaGI + αAdja GAdj

(6.7) crs1

Using the norm of GI and GAdj we see that

αIa/s = 〈GAdj|Ga/s〉 and αAdja/s =
〈GAdj|Ga/s〉

Dk
Adj

(6.8) crs2

In order to find the inner product between Gs/a and GI/Adj, we must glue the
ket state of Gs/a to the bra state GI/Adj. To do this we deform the conformal
blocks as we have done in fig.(

innprod
6.12). For Gs/a, we move both the fundamental

insertions and the left most anti-fundamental insertion to the top half, which
we then flatten.

48



For the conformal blocks in the other channel, we first exchange the fun-
damental and anti-fundamental insertions, then moving the insertions and
flattening the final half as before.

Figure 6.12: Manipulation of blocks to take the inner product innprod

We then take a reflection of this block and complex conjugate all the
Wilson line representations, which amounts to making the ket vector into a
bra vector (or equivalently taking the hermitian conjugate of the block).
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Figure 6.13: sasymadj

Finally we join the resulting two sets of blocks together as shown in (
innprod
6.12).
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Note that the exchange of insertions is necessary because it makes the relative
position of insertion the same as in the fundamental-fundamental scattering
channel.

Figure 6.14: sasymsing
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Fig.(
sasymadj
6.13) and fig.(

sasymsing
6.14) depict the evaluation of the innerproduct of nor-

malized conformal blocks. Here we use the formalism developed by Witten
in

Witten:1989wf
[14] . To go from step one to step two in figures (

sasymadj
6.13) and (

sasymsing
6.14), we

untwist the three-point vertex which results in a phase factor. Note however
that half twist is not a unique choice. We can make a clockwise half twist,
an anti-clockwise half twist, a one and a half twist etc. There are an infi-
nite number of such choices. We will return to this issue later. Presently,
however, we focus on evaluating the inner product with the choice we have
made.

Going from step two to step three, we pull the Wilson line over the rest
of the tangle and then use the phase factor twists to get a tetrahedron. The
tetrahedron can then be evaluated using skein relations and this is done
explicitly in

Witten:1989wf
[14].

Using skein relations, we go from step three to step four in figures (
sasymadj
6.13)

and (
sasymsing
6.14). Beyond this we can use methods already introduces to evaluate

the innerproduct. We cut the diagram along the horizontal line and insert a
completion relation to get step five. Now the factor Ns/a I/Adj is evaluated
for SU(N) in

Witten:1989wf
[14]. We generalize this result to type I and type II theories as

well by replacing the SU(N) skein relations with the skein relations of Type
I and Type II. As reader who are familiar with

Witten:1989wf
[14] will note the rest of the

derivation is identical. For SU(2), Type I and Type II theories we get

Ns/a I/Adj =
e−

πi
2

(4hF−hs−ha)eπi(hs/a+hI/Adj−2hF )(eπi
hs−ha

2 − e−πihs−ha2 )

1− e−πi(4hF−hs−ha)e2πi(hs/a+hI/Adj−2hF )
(6.9) Nsa

With this one finds the final answer for the inner product to be

α
I/Adj
s/a =

Ns/a I/AdjD
k
s/a

Dk
F

(6.10) inp

Plugging in the values, we get the relation between conformal blocks of dif-
ferent channels as

Gs =
GIe

−2πihF bN + 1cq +GAdje
πi(hAdj−2hF )

b2cq

Ga =
GIe

−2πihF bN − 1cq −GAdje
πi(hAdj−2hF )

b2cq

(6.11) blockstrnfmain
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Where the notation bacq denotes the q-deformed numbers which are denoted
by

bacq =
q
a
2 − q−a2
q

1
2 − q−1

2

where q = e
2πi
κ (6.12) crs3

where κ = sgn(k)(|k|+N). Note that this result is the q-deformation of the
classical result (

crossing
4.42). With (

blockstrnfmain
6.11) we can write the crossing relations,

τ
(0)
I = eπi(hI−2hF )

(
τs

(
bN + 1cq
b2cq

)
+ τa

(
bN − 1cq
b2cq

))

τ
(0)
Adj = eπi(hAdj−2hF )

(
τs − τa
b2cq

) (6.13) Smattrq

with the appropriate analytic continuation having been done. Now recall
that in the previous section while taking the inner product of the conformal
blocks we had mentioned that an infinite number of choices for the twists
exist. So if we define

νI = 2hF − hI and νAdj = 2hF − hAdj (6.14) phases1

Then in general we can write the crossing relation as

τ
(n)
I = e(2n−1)πiνI

(
τs

(
bN + 1cq
b2cq

)
+ τa

(
bN − 1cq
b2cq

))

τ
(n)
Adj = e(2n−1)πiνAdj

(
τs − τa
b2cq

) (6.15) Smattrqt

by putting n = 0 in (
Smattrqt
6.15) one can verify that (

Smattrq
6.13) holds. The reasoning

behind why this ambiguity occurs is unclear. However, it is important to
note that this ambiguity has no effect on any observables because we wish to
look at the probability density not scattering amplitudes. We can therefore
simply absorb the phases into the definition of scattering amplitudes as

τ
(n)
I = ei(2n−1)πνIτI ,

τ
(n)
Adj = ei(2n−1)πνAdjτAdj,

(6.16) staun
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With this redefinition we can rewrite the crossing relations in their final form

τI =

(
τs

(
bN + 1cq
b2cq

)
+ τa

(
bN − 1cq
b2cq

))

τAdj =

(
τs − τa
b2cq

) (6.17) Smattrqth

6.3.1 Crossing result in the classical and the ’t Hooft
limit

In the classical limit, where we take k → ∞, keeping N finite, we find that
the q-deformed numbers go to classical numbers and therefore we get back
the classical crossing relation (

crosym1
1.4). This result is expected since in the large

k limit we expect the crossing to work like in the classical global symmetry
case.

Next, if we take the ’t Hooft limit, where we take N → ∞ and k → ∞,
while keeping N

k
= λ, one finds the relations (

crosym3
1.6). This explains the extra

correction factor first conjectured in
Jain:2014nza
[4]. Therefore our result matches the

direct Feynman diagram computations in the large N limit.
These limits serve as very strong checks for our conjecture. We look at

another check of our conjecture using the level-rank duality.

6.3.2 Duality

Recall that Chern-Simon theories are dual to each other under the level-
rank dualities. As the result (

Smattrqt
6.15) applies equally well to SU(N), Type I

and Type II U(N)k theories, the crossing relation must be consistent under
duality. Under the level rank duality one finds

N ′ = |k| k′ = −sgn(k)N, κ′ = −κ, q′ = q−1 (6.18) dual1

Then under duality one can easily show that

bN − 1cq → b|k|+ 1cq−1 = bN − 1cq (6.19) dual2

and the phases change under duality to

e−2πih′F = −e−2πihF , eπi(h
′
Adj−2h′F ) = eπi(hAdj−2hF ) (6.20) linkbetld
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along with an exchange of the conformal blocks Gs ↔ −Ga we find that
the crossing relations agree under duality. Note that under level rank duality,
the symmetric and anti-symmetric representations change places. The neg-
ative sign of the anti-symmetric block is due to the matter field exchanging
between boson and fermion.
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Chapter 7

Results and discussion

In this thesis, a conjecture of the crossing rules for Chern-Simons matter
theory is presented. We hypothesise that the structure of S-matrix in Chern-
Simons matter theories to be of the form

S = cos(πν)Gid + ι
∑
i

τiGi (7.1) res1

where the Gis are conformal blocks, the Chern-Simons analogue of the classi-
cal invariant tensors. We propose the structure of projector conformal blocks
and their compounding rules in chapter

csmtg
5. With this information one can

write down the unitarity equation and crossing symmetry relations. Then
in chapter

cstx
6, we apply our formalism to the case of 2 → 2 scattering in

Chern-Simons matter theories of Type I, Type II and SU(N) and find the
Chern-Simons crossing relations (

Smattrqth
6.17) to be exactly the q-deformations of

the classical crossing relations (
crosym2
1.5). This result also explains the crossing

relations for Chern-Simons matter theory in the ’t Hooft limit found in
Jain:2014nza
[4],

which had an extra correction factor.
While our proposed formalism, covered in chapter

csmtg
5, is motivated by phys-

ical considerations and also passes various non-trivial checks in the special
case of 2 → 2 scattering, we would like derive the formalism possibly from
the path integral formalism.

Another possibility that we have not touched upon is the role of Quantum
Groups. Quantum Groups are associative algebras which are deformation
of classical Groups, which possess many properties of the classical Groups.
Among these properties is the ability to take tensor products of represen-
tations to produce new representations and associate invariant tensors to
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these representations. The relation between the Quantum Group and pure
Chern-Simons gauge theory is well known and it was shown by Faddeev et
al. that Wess-Zumino-Witten theories possess a Quantum group symmetry.
It is therefore an appealing proposition to try an mirror the classical crossing
symmetry formalism in the Chern-Simons case using quantum groups instead
of classical groups. We have not explored this possibility here.

In the future we would like to generalise our formalism to general topolog-
ically gapped theories, which we hope will provide us insight into scattering
theory of even gapless theories.

The most direct implications of this work is to understand the crossing
symmetry in the mass-deformed ABJM theory. The ABJM theory is a 3-
dimensional supersymmetric analogue of the Chern-Simons theories. The
ABJM theory has gained prominence in recent years due to its conjectured
duality to M-theory on AdS4 × S7 via the AdS/CFT correspondence.

A final point that we would like to clear up better is the role of phases in
our crossing relations. The physical origin of the phase ambiguity mentioned
earlier remains elusive at present and a better understanding of the phases
is another goal we would like to pursue in the future.
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