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Abstract

In this thesis, we study the proof of the so-called Yamabe Problem. This problem was
proposed by Yamabe in an attempt to solve the Poincaré conjecture eventually. The problem
was to prove whether, given any compact Riemannian manifold M, (n > 3), a conformal
change of metric exists such that the manifold has a constant scalar curvature. This geometric

problem reduces to proving the existence of smooth, positive solutions to a semilinear elliptic
PDE of the form
Au+ h(z)u = \f(z)u® ! (0.0.1)

where h, f € C*°(M) and f > 0. In this thesis, we study the solution to Yamabe’s problem.
This includes studying many prerequisites such as Sobolev spaces, Regularity theory for
uniformly elliptic equations, and a little Calculus of Variations. In the end, we study Lee-

Parker’s paper|7] for a solution to Yamabe’s problem.
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Introduction

The main aim of this thesis is to study the prerequisites necessary to understand the proof
of solution to the Yamabe Problem. Yamabe problem is an important example of a non-
linear PDE which has been solved. Initially, this question was posed by Yamabe[l1]. In the
same paper, he also attempted a proof, which was later found to be erroneous. Finally, the
problem was solved due work of multiple authors such as Trudinger, Aubin, Hebey, Vaugon,

Schoen, and Yau.

In Chapter 1, we define various geometric prerequisites necessary to understand the rest
of the thesis. This includes definitions and properties of manifolds, Tangent spaces/bundles,

connections, Riemannian metric, etc. This chapter is a combination of concepts from [1| and

[6]-

In Chapter 2, we study one of the most fundamental concepts in the study of PDEs.
We define and study properties and theorems about the Sobolev spaces on Euclidean spaces
(R™ and subdomains of R") and compact Riemannian manifolds. In particular, we give a
brief proof of the best Sobolev constant, which plays a critical role in solving the Yamabe

problem. [3] and [1]| are the books followed for all of the proofs in this chapter.

In Chapter 3, we study the regularity theory for uniformly elliptic PDEs. [4] is the

primary reference for this chapter.

In the final chapter, we first understand the difficulty in the Yamabe problem by first
solving the subcritical case and noticing why this approach fails in the critical case due to
lack of compactness. We then prove the smoothness of the solution in both critical and
sub-critical cases. The rest of the chapter is devoted to proving the existence of a solution in

the critical case. A complete proof of this would require many more concepts, which cannot



be completed in a year. So we assume a vital theorem known as the Positive mass theorem.
All proofs in this chapter will be found in [1],[10] and [7].

Original Contribution

This thesis has no claims on any original results by the author. It is a presentation of a
solution to the Yamabe Problem. While many survey articles are already available on this
topic, these articles assume a familiarity with Sobolev spaced and Regularity theory. In this
thesis, we provided an almost complete presentation of a solution to the Yamabe problem,
which any Mathematics student can pick up and read after knowing a minimal amount of

Functional analysis and geometry.



Chapter 1

Preliminaries

1.1 Manifold and Differentiable Manifold

Definition 1.1. A Manifold M, is a second countable, Hausdorff topological space such that
for any given point p in M,,, there exists an open neighborhood U of p which is homeomorphic

to R"(or equivalently an open subset of R™).

Definition 1.2. A chart on a manifold M, is a pair (U, ¢), where U is an open set of M,

and ¢ a homeomorphism from U to an open subset of R".

For any point p € U, components of ¢(p) are called the local coordinates w.r.t the chart
(U, ¢). Two charts (Uy, o) and (Ug, ¢g) are called C* compatible (smoothly compatible) if
the transition map ¢g0 ¢! : ¢o(Us NUs) — ¢5(U, NUp) is a C* (smooth!) diffeomorphism.

Definition 1.3. A collection (U;, ¢;);er of charts which covers M, i.e. | .., U; = M, is called

an Atlas. An Atlas is said to be of class C* (smooth) if any two given charts in the atlas are

i€l
C* (smoothly) compatible.

Two atlases are said to be C* (smoothly) compatible if there union is still a C* (smooth)
atlas. Compatibility is an equivalence relation. An equivalence class of C* (smooth) atlases

is called a C* (smooth) differentiable structure.

'Here by smooth we mean C'>



Definition 1.4. A manifold with a C* (smooth) differentiable structure is called a C*

differentiable (smooth) manifold.

When we say a chart on a differentiable manifold, we mean a chart belonging to an atlas

of the differentiable structure.

1.2 Tangent Space and Tangent bundle

Definition 1.5. A derivation on M, at point p is an R-linear map X : C>*(M,) — R
satisfying the product rule : X(fg) = f(p)X(9) + X(f)g(p)

It isn’t hard to see that the set of derivations at a point form a vector space. On R" we
already know that any given directional derivative is a derivation, and we can also further

prove any given derivation is a directional derivative.

On an abstract manifold, we don’t have the notion of a geometric tangent plane in the
ambient space to define tangent space. Noting the isomorphism between 7T,II and space of

derivations at p that we observed in R" we define tangent space for a manifold.

Definition 1.6. The tangent space of M, at point p, denoted by T,M, is the space of

derivations on M,, at point p. An element of T,,M is called tangent vector at p.

Definition 1.7. Let F' : Wy — M, , we define push-forward associated with F' as Fj :
T,W — TpyyM such that Fi.(X)(f) = X(f o F), where X € T,W and f € C®(M,).

Let i : U, < M, be the inclusion map, where U, is an neighborhood from the chart (U, ¢)
with the induced differentiable manifold structure from M,,. Note that a derivation’s action
on a function depends only on the definition of the function in the neighborhood of p, using
this we can prove i, is an isomorphism between 7,,M and 7,,U, which itself is isomorphic to
Typ@(U) through ¢,. Using these two isomorphisms we can identify %|¢(p) which form a
basis in T, ¢(U) with tangent vectors in T,M and denote this as a%i\p or O;p.

Definition 1.8. A curve is a map v : [a,b] — M,. The velocity of the curve at ¢, is defined
as y(to) = 7*%|t0'

Before defining the tangent bundle, we define a vector bundle.
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Definition 1.9. Let E and M be smooth manifolds. A smooth surjection Il : £ — M is a

smooth vector bundle of rank r if

1. For every p € M, the set E,:=II"'(p) is a real vector space of dimension r, called the
‘fiber at p’;

2. Every point p € M has an open neighborhood U such that there is a fiber—preserving
diffeomorphism ¢y : II7H(U) — U x R” that restricts to a linear isomorphism E, —
{p} x R" on each fiber.

Here E is called total space, M the base space, and the space E, the fiber above p of the
vector bundle. We often say E is a vector bundle over M. This definition effectively says
that the total space is made of fibres which are vector spaces and locally the space E looks
like U x R".

Let us define the manifold 7'M made up of tangent spaces, called the tangent bundle of
M
TM = {(p,v)|lp € M,,veT,M} (1.2.1)

We still need to define the manifold structure and differentiable structure. Given any point
pETM,p= (p,v). p€ M, so I neighborhood U of p in M,, and a chart (U, ¢). Define

U := {(p,v)|p € U,v € T,M}. (1.2.2)

Using the local coordinates from the chart, we can prove that U is homeomorphic to ¢(U) x R”
. More precisely we give T'M the topology such that these maps are homeomorphic. We
define TU to be homeomorphic to ¢(U) x R™ using the map

Oy (p,v) = (P(p),v1, 02, ...), (1.2.3)

where v = Eiviaizi' We give T'M the topology generated by TU as U runs over all coordinate
open subsets? of M. The transitions maps corresponding to these charts are smooth? . Since
the charts U cover M, charts U cover TM and hence form a smooth atlas. This makes T'M
a smooth manifold. The projection map II : (p,v) — p and Py defined previously satisfy
the conditions (1) and (2) in the definition of a vector bundle.

2that is the open sets U which have a corresponding chart (U, ¢)
3assuming M, is a smooth manifold



Definition 1.10. The vector bundle IT : TM — M is called the tangent bundle.

Since T, M is a vector space, we naturally have its dual, the cotangent space denoted by
Ty M, and tensor spaces THT,M) = ®kT;‘M ®! T,M. Using these spaces, we can define
the cotangent bundle T*M and tensor bundle T M in the same fashion as we defined the
tangent bundle.

IfIT: E — M is a vector bundle over M , a section of F is a map F': M — FE such that
Il o F' = Idy; , in other words F(p) € E, for all p. It is said to be a smooth section if it is

smooth as a map between manifolds. We denote the space of all smooth sections of vector
bundle by I'(E).

A smooth vector (tensor) field is defined as a smooth section of the tangent (tensor)
bundle. We denote the space of all smooth vector fields by T (M) and the space of all
(k, 1) tensor fields which is a smooth section of T* M by T*(M). In addition, we denote the
covariant k-tensor fields (i.e., smooth sections of T¥ M = T*M) by T*(M).

Definition 1.11. Let F': W; — M,,. we define pull-back associated with F', denoted by F™*,
as the dual map associated to the push-forward map. So F™ : Tl’;(p)]\/[ = ;W

1.3 Riemannian Metric

In the thesis, we will follow the Einstein summation convention. As per this convention, if
an index occurs in a term, we will sum over that index. For example, if e; forms a basis of

tangent space at a point and v is a tangent there. Then
n
v="1'e; = szei (1.3.1)
i=1

Definition 1.12. A Riemannian metric on a smooth manifold M, is a 2-tensor field g €

T2(M) , which is symmetric and positive definite.

Therefore given any X,Y € T,M we have :

e g(X,Y)=g(Y,X) and



o g(X,X)>0,if X #£0

We would also use notation g(X,Y) = (X,Y) when the choice of the metric is clear from

the context.

The metric is uniquely determined in local coordinates if we know (0;, 9;) = ¢;;. So when

defining a metric, it is sufficient to give g;; in local coordinates.

The standard metric on R" is given by

g = 0y (1.3.2)

We can prove that on a smooth manifold, there always exists a Riemannian metric. We
first take the coordinate open sets U; from chart (U, ¢;) and define a metric on U; induced

by the metrict on ¢;(U;) and extend it to M, using partitions of unity.

Definition 1.13. A smooth manifold M,, with a Riemannian metric g defined on it is called

a riemannian manifold (M, g).

Given a metric g, let g;; = (0;,0;) be the components of the metric matrix. Since g is
symmetric we have g;; = g;;. Then we define g to be the components of the inverse matrix
of the metric matrix. Therefore g;;gF = §F. And similar to components of metric matrix we

have g9 = ¢’

Definition 1.14. Given a riemannian manifold (M,,, g) change of metric on M, to g is called

conformal if § = e/ g for some smooth function f.

Previously we defined the velocity of a curve on a differentiable manifold. Now on a

Riemannian manifold, because of the metric, we can define the speed of the at a point.

Definition 1.15. Let v : [a,b] — M, be a curve. Speed of the curve at ¢, is defined as
17 (o)l = /(3 (t), 7 (t0))

Definition 1.16. Given a curve 7 : [a,b] — M,, length of the curve is defined as L(vy) =
byl
Jo I3 @)dt.

19;(U;) being subset of R™ has a natural metric




Definition 1.17. Given p, ¢ € M,,, we define d(p, ¢) = inf(L(y)) over all differentiable curves
~ from p to q.

The metric defined by the above function over M,, makes M, into a metric space, and
the metric topology agrees with the original topology over the manifold. We shall always
assume the M, is complete as a metric space. Such Riemannian manifolds are called complete

manifolds.

1.4 Connection and Covariant derivative

Definition 1.18. Let Il : £ — M be a smooth vector bundle. A connection in E is a map

V:T(M) x D(E) — ['(E) (1.4.1)

written (X,Y) — VxY satisfying the following properties :
1. VxY is C*°(M,)-linear in X i.e.,
VfX1+gX2Y = fVle +9Vx,Y for f,g € COO(Mn)

2. VxY is R-linear in Y i.e.,
VxaY; +bYs =aVxY; + bV Y, for a,b € R

3. V satisfies the following product rule :
VxfY = X(f)Y + [Vx(Y) for f € C%(M,)

and VxY is called covariant derivative of Y in the direction of X.

As a special case of the notion of a connection, we have linear(affine) connection over a

manifold V : T(M) x T (M) — T (M) satisfying conditions (1), (2), and (3).

Definition 1.19. The n?® functions Ffj defined the following way :
V,0; = T0n (1.4.2)

are called the Christoffel symbols of V w.r.t. the given local coordinates
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If X = X%0; and Y = Y9;then VY in terms of Christoffel symbols is

VxY = (XY* 4+ X'YITE) 0k (1.4.3)

A smooth vector field over curve v : [a,b] — M, is a smooth map from [a, b] to T M. Let
us denote the space of all smooth vector fields over curve v by 7 (). A smooth vector field
is called extensible if it is a restriction of a smooth vector field defined in a neighborhood

the curve. We can now define covariant derivative of a vector field along a curve.
Definition 1.20. Given curve 7 : [a.b] — M,, an let operator D, : T (v) — T () be satisfying

the following properties:

1. Tt is R-linear , i.e. given VW € T(vy) and a,b € R

Dy(aV + W) = aDy(V) + bD,(W) (1.4.4)

2. It satisfies the following product rule. Given any f € C*([a,b] and V € T(7)

Dy(fV) = fV + fDy(V) (1.4.5)

3. If V is extensible to V, then Dy(V) = ViV

For any V' € T(vy) , Di(V) is then called the covariant derivative of V' along curve ~.
Given a linear connection on M,,, it is easy to prove that D, exists and is unique. So covariant

derivative along a curve is well-defined.

We have previously defined the velocity of a curve, now using covariant derivative, we

can define acceleration.

Definition 1.21. Given curve 7 : [a,b] — M,, acceleration of the curve , denoted by 7(t),
is defined as 4(t) = Dy(%(t)), i.e., the covariant derivative of the velocity vector field.

Previously we defined a connection on a manifold, noting that we could differentiate
vector fields on R™. Along the same line, we can also differentiate tensor fields on R". So

now we would like to extend the linear connection to tensor fields on manifolds.



Definition 1.22. We can extend the notion of linear connection/covariant derivative w.r.t.

to a vector field to tensor fields in the following way :

L. For f € T°(M) , Vx(f) = X(f)
2. Vx preserves the type of tensor field.
3. Vx commutes with contraction w.r.t. any pair of indices

1. Vx(F®G) =VxF®G+F®VxG

It can be proven that given a linear connection on a manifold, there exists a unique linear

connection on tensor fields such that it agrees with linear connection on the manifold.

Definition 1.23. We can define total covariant derivative® of a tensor. Given (k,[)-tensor
field F', we define a (k + 1,1) tensor field VI called total covariant derivative defined by

VEY, .. Y, X,wh oo ) =V F(Yq,. .., Y, Wty wh) (1.4.6)

Definition 1.24. A linear connection is said to be compatible with a metric or a metric

connection if for any given X,Y, Z € T(M), we have

X(Y,Z) = (VyY, Z) + (Y,VxZ) (1.4.7)

This equivalent to the condition that Vyxg =0 for any X € T (M).

Definition 1.25. The torsion of a connection is defined as the map T': T(M) x T(M) —
T (M) such that ©
T(X,)Y)=VxY —-VyX —[X,Y] (1.4.8)

A connection is called torsion-free if the torsion of the connection is zero.

5Sometimes it is simply called the covariant derivative of a tensor
6[X,Y] = XY —YX € T(M) called the Lie bracket. So that for any f € C*(M,), [X,Y](f) =
X(Y[f)-Y(Xf)

10



Suppose a connection is torsion-free. Then 7(0;,0;) = 0. Partial derivatives commute,

so [0;,0;] = 0, and by definition of Christoffel symbols, we have,
T(0;,0;) = Vi0; — V;0; = (T, = T%)8), = 0 (1.4.9)

SO
k _ Tk
Iy =15 (1.4.10)

We can also prove this is a sufficient condition for a connection to be torsion-free by
expressing the torsion in local coordinates and using the symmetry of Christoffel symbols in

1,7. We would get that the torsion is zero given any vector fields X and Y.

Definition 1.26. A connection on a Riemannian manifold is called a Riemannian connection

or Levi-Civita connection if it is torsion-free and a metric connection.

We can prove that there is a unique Levi-Civita connection with the Christoffel symbols:

1
Ty = 51095 + 998 — Orgilg"™ (1.4.11)

As an example, let us consider R™ with the standard metric and the connection D, which

we will call Euclidean connection, defined on it. Here
Dy,0; =0 =T}, (1.4.12)
So the connection is torsion-free. g¢;; = 0;; is constant over R", hence Vxg = 0 for

any X € T(M). So the connection is compatible with metric. Therefore the Euclidean

connection on R" is a Levi-Civita connection.

1.5 Curvature

Definition 1.27. The curvature endomorphism w.r.t. a connection is a map R : T (M) X
T(M)x T(M)— T(M) defined by

R(X,Y)Z =VxVyZ - VyVxZ - Vixy|Z (1.5.1)

11



The curvature endomorphism is C*°(M,,)-multilinear and hence a (3, 1) tensor field called

the curvature tensor. The components Rﬁjk in local coordinate system are given by

R(0;,0;)0k = Ry,;;0, (1.5.2)

In local coordinates since 0; and 0; commute we have [0;, 9;] = 0. Therefore,

R(0;,0j)0k = ViV ;0 — V; V0 (1.5.3)

Hence we have
Ry = Ol — 0,0 + ThT, — ThTY, (1.5.4)
Now if we take Euclidean connection, we have Ffj =0, so Rﬁm- = 0. We conclude that

R™ has zero curvature tensor and consequently R(X,Y)Z =0 for any X,Y, Z € T(R").

Definition 1.28. Let M, be a 2-dimensional Riemannian manifold with the Riemannian
connection, the Gaussian curvature is defined to be K = (R(X, Y)Y, X).

Definition 1.29. From the curvature endomorphism, we can also define 4-tensor field
defined by R(X,Y,Z,T) = (R(Z,T)Y, X). In local coordinates it is

le:ij = glmRZZL‘j (155)
So we have K = R(X,Y, X|Y)
As you may have noticed, Gaussian curvature is defined only for 2-dimensional manifolds.

As a generalization for higher dimensional manifolds we have sectional curvature.

Definition 1.30. If X,Y € T,M such that they are orthonormal, the sectional curvature
of the 2-dimensional subspace of T,M spanned by X and Y is defined as o(X,Y) =
R(X,Y, X,Y)

Tensors with 4 indices are too difficult to work with. So we have defined several other

curvatures which are easier to work with. We will define a few of them here.

12



Definition 1.31. Ricci(Ric) tensor/curvature is 2-tensor defined as the contraction of the
(3,1) Riemann curvature tensor. In terms of local coordinates we have
Definition 1.32. Scalar curvature is defined as the trace of the Ricci tensor. In local

coordinates, we have

Definition 1.33. The Weyl tensor is defined on coordinate open sets as

(n— 1)}21 —92) (9j19ik — gixgin)

(1.5.8)

Wijkr = Rijr —

1
(n — 2) (Rikgjl - Rilgjk + legik — Rjkgil) +

It can be proven that the Weyl curvature is invariant under conformal maps, and it can
be shown that this is the conformally invariant part of the curvature endomorphism. So it
is clear that a locally conformally flat manifold will have Weyl curvature zero everywhere.
The Converse is also true; if Weyl curvature is zero everywhere on the manifold, then the

manifold is locally conformally flat.

1.6 Integration over Riemannian Manifolds

Denote A*(T,M) to be the subspace of alternating tensors in T%(7,M). Therefore we have
W(eaoy Viy ey Uy o) = =W (oo, V), o0y 05, ...) for any w € A¥(T,M). We call it the space of exterior
k-forms. Wedge product over A¥(T,M) is defined by the expression

wi Awa A Awg(v1, ., vg) = det((wi(v)))) (1.6.1)
Let A*(M) denote the vector bundle of exterior k-forms over M, We will call a smooth
section of A*(M) a differential k-forms and the space of differential k-forms by QF(M).

We now define the operator d : Q%(M) — QL (M). For f € Q°(M) = T°(M) we have
df € QY(M) = TY(M) such that df (X) = X(f) for X € T(M).We will define it using its

13



action in local coordinates. For w € QF(M) its expression in local coordinates is

W= Z Wiy oindT™ A A d2' (1.6.2)
11 <...<lp
do= Y dw . g Ndz" A Adz* (1.6.3)
11 <...<ik

dw is called the differential of w. The differential operator d has the following properties:

1. dlw+mn) =dw+dn

2. If w is a differential k-form and 7 is an differential /[-form, then
dwAn)=dwAn+(—1)fwAdny

3. d(dw) =0

4. f*(dw) = d(f'w)

Let E™ define the lower half space of R® i.e. E" = {(x!,...,2")|2! < 0}. And E" its
closure. We will now define a manifold with boundary in an analogous fashion to a manifold.

Definition 1.34. A Manifold with boundary M,, is a second countable, Hausdorff topological
space such that for any given point p in M, there exists a neighborhood U of p which is

homeomorphic to an open subset of E™.

The set points in M,, which have neighborhood homeomorphic to open set in R" is called

interior of the manifold. The rest of the points are boundary of the manifold denoted by
oM

Just like on a manifold, we can define a differentiable structure, tangent space etc., on a
manifold with boundary. So we will not elaborate on that.

Theorem 1.1. If M,, is an oriented (smooth) n-manifold with with boundary and OM is non

empty, then OM is a (smooth) n— 1-manifold without boundary and with natural orientation

induced from M,

14



We will first define integration of differential n-form R™ and then extend it to manifolds.

Suppose w is a compactly supported differential n-form on R™. And U is an open set

that contains the support of the differential form. Suppose w = fda' A ... A da?.

/Uw::/Uf (1.6.4)

That is, we are defining the integration of a differentiable n-form to be the integration of

a function which we know from standard integration theory on R™.

Definition 1.35. Suppose w is compactly supported differential n-form on an oriented
differentiable(smooth) manifold M,,. And (U;, ¢;)icr is an atlas over M,that is compatible
with the orientation. (o;);e; be the partition of unity subordinate to the open sets U;. And

w = fidx' A ... A dz"™ w.r.t local coordinates over U;. Then

W= Z/ | (fiow)) o @5 tdat A ... A da™ (1.6.5)

We can prove that the integral does not depend on the choice of atlas or particular

partition of unity.

Let ¢ : OM — M, be the natural inclusion map. If w be a differential n — 1-form on M,,.
Then i*w is a differential n — 1-form over OM, we will identify i*w with w for the following

theorem.

Theorem 1.2 (Stoke’s Theorem). Let M, be an oriented differentiable manifold with bound-

-ary and w a differential n — 1-form on it. Let OM be oriented manifold with natural

/de:/aMw (1.6.6)

Definition 1.36. Let M,, be an oriented Riemannian manifold. A an atlas compatible with

orientation induced from M, . Then

the orientation. Let (z!,...,2™) be local coordinates w.r.t some chart in the atlas. We define

a differential n-form dn over M,,. In local coordinates, it has the following expression

dn = +/|gldz' A ... A dz™ (1.6.7)
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where |g| = |det(g;;)|. We will call this the Riemannian volume form.

We can check that dn is well defined by checking that the volume form gives the same

differential form even in different local coordinates in the same neighborhood.

In R™ gradient of a function f is vector field such that (gradf,v,) = < f|,. This we

recognize as v(f), where v € T,R". We generalize this notion to manifolds.

Definition 1.37. For any f € T°(M), gradf € T(M), such that (gradf, X) = df(X) =
X(f)

In local coordinates gradf = ¢" (9, f)0;
We know that on R”, grad f = Vf. On a manifold from the definition we used, V f

denotes the covariant derivative” of f, which is a 1-form. But when the context is clear that

V f is being used as vector fields instead of a form, we will use V f = grad f.

We define interior multiplication of a differential k-form w by X .This is denoted by ixw
, where ixw is a differential £ — 1-form defined by ixw(V1, ..., Vi_1) = w(X, V4, ..., Vi)

Definition 1.38. For X € T(M), divXe T°(M), defined by d(ixdn) = divXdn. We call it

divergence of X.

ixdn(Vi, ..., Vo_1) = V/|gldz* A ... A da™(X, V4, ., Vi) (1.6.8)
= V]gl(=1) X dzt A o Adzi A Adz™ (V4 ..., Vily) (1.6.9)

Here " means we are ignoring that term in the wedge product. So we have

ixdy = \/|g|(=1) 1 Xda A . Adai A A da” (1.6.10)

Operating d to the above equation we get that divX = ——a;(1/]g|X?) = 8; X" + X'T"%..

Vgl

“which is also the exterior derivative
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We will now define Laplacian on manifolds. On R", Af = —div(grad(f))(or just

div(grad(f)) depending on convention). We will generalize this to manifolds.

Definition 1.39. Let f be a smooth function on M,. Af := —div(grad(f)). In local

coordinates

Af = ———0,(\/Iglg"0:f) (1.6.11)

Vol

Let f be a compactly supported continuous function. We define integral of f over M, as

/Mdez/Mfdn (1.6.12)

Once we have defined the integral for compactly supported continuous functions, we can

extend this to all functions and define a Lesbegue integral over the Riemannian manifold.
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Chapter 2

Sobolev Spaces on R" and closed

Riemannian manifolds

2.1 Weak Derivatives and Sobolev Spaces on R"

Definition 2.1. Let u,v € L},.(Q2), where Q is an open subset of R™. v is called a'"-weak

derivative of u if for every ¢ € C2°(€2) we have

/uDa(ﬁdm:(—l)al/vqbdx (2.1.1)
Q Q
We denote a''-weak derivative of u as D = v. Here « is a multi-index. So o =
(Oél,...,Oén). o
aa
Do = ¢ (2.1.2)

0Mxy...0%x,

We define Sobolev spaces over domains on R”.

Definition 2.2. W*?(Q) = {u : Q — Rju € LP(Q) and if the a'-weak derivative D% €
LP(Q) for all & such that 0 < |a] < k}
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Definition 2.3. We define a norm on W"?(Q). Let ¢ € W"P(Q)

¢llwes) == Y 1D@llr@) 1<p<oo (2.1.3)

| <k

Sobolev Space W#P(Q) is a Banach space w.r.t. this norm.
Definition 2.4. H*?(Q) := Closure of {u € C*(Q)|[|ullwrri < oo} wr.t. the norm
|- [[wrsg) in WEP(Q), when 1 < p < co.

According to a theorem of Meyers and Serrin we have H*?(Q2) = WH?(Q), for any open
set 2 € R™.

Just like we defined W*?(Q) and H*?(Q) we can define WJ?(Q) or Hy?().
Definition 2.5. WJ?(Q) = HP(Q) := Closure of C*(Q) w.r.t the norm | - | wrr) in
Wh2(Q) when 1 < p < co. W™ := Wh>(Q) N W (Q) when p = co.

We will now look at some essential properties of Sobolev spaces.

1. W5?(Q) and W}P(Q) are Banach spaces.
2. Whe(R") = WiP(R™).

Theorem 2.1 (Extension theorem). Assume Q is bounded and 9 is C*. Select a bounded
open set V' such that U CC V. Then there exists a bounded linear operator

E:Wh(Q) - WP (R") (2.1.4)

such that for each u € WP(Q) :

1. Eu=wu a.e on ()
2. Eu has support in V
8. |Bullwrowny < Clp, U, V) ||ullwis@)
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It is clear that W1?(Q) is a subspace of L?(€)). We would like to know more about this
embedding. Let x and Y be two Banach spaces, such that X C Y. The inclusion map
1: X — Y is continuous if and only if there exists a constant C' such that for all z € X, we

have
Izlly < Cllz|x- (2.1.5)

If this is true, we say that X is continuously embedded in Y. Furthermore, ¢ is compact
if each bounded sequence in X is precompact in Y. Then we say that X is compactly
embedded in Y. We denote it by X CC Y.

Theorem 2.2 (Gagliardo-Nirenberg-Sobolev Inequality). Assume 1 < p < n. There exists
C(p,n) such that
||u||LP*(1R") < C(p, n)”DuHLP(Rn) (2.1.6)

where 1/p* = 1/p —1/n, for all C*(R™).

Using the density of C°(R") in W!'?(R"™) this inequality essentially establishes that
the embedding W?(R") into LP (R™) is continuous. Also, now since W1? is naturally

continuously embedded in L”, using the interpolation theorem gives the following.

Theorem 2.3 (Sobolev Embedding on R"). Assume 1 < p < n and u € W"P(R"). For
q € [p,p*] we have
1wl La@ny < Cllullwir@n (2.1.7)

The extension theorem can now be used to prove the Sobolev embedding for bounded

domains.

Theorem 2.4 (Sobolev Embedding on bounded domains). Let Q be a C' bounded domain
of R". Assume 1 <p<n andu € WH(Q). For q € [1,p*] we have

[ullLa() < Cllullwir) (2.1.8)

1 . . . . . .
In the case of W, there is a natural extension by zero. And this extension is continuous,

so we have a special Sobolev type inequality for functions in VVO1 P(Q).

Theorem 2.5 (Poincaré- Sobolev Inequality). Let Q be a bounded domain of R™. Assume
1<p<nandue Wy"(Q). Forqe [l,p*] we have

ullza) < C||Dul| oo (2.1.9)

21



The following can be established by a slight variation in the proof of Gagliardo-Nirenberg

inequality.

Theorem 2.6 (Sobolev embedding for the case p = n on R"). Assume p = n and u €
WLP(R"). For q € [n,00) we have

|wllLarny < Cllullwrngn (2.1.10)

Theorem 2.7 (Sobolev Embedding on bounded domains for the case p = n). Let Q be a
C' bounded domain of R™. Assume p =n and u € WHP(Q2). For q € [1,00) we have

ul|Lago) < CHUHWL"(Q) (2.1.11)

We recall that the norm on Holder space(C*7(2)) is given by

lulloro@y = Y ID%ullo@ + > [D*ule) (2.1.12)
0<]al<k jal=k
where ju(z) — u(y)
u(w) — uly
Ul = SUp ————— 2.1.13
[ ]C(Q) W;PQ \x—yh ( )
a£y

Remark 2.1.1. The definition of Hélder spaces changes slightly for Riemannian manifolds,

where the Riemannian distance dist(x,y) replaces |z — y|

Theorem 2.8 (Morrey’s Inequality). Assume n < p < co. Then there exists a constant C,
depending only on p and n, such that

[ullcor@ny < Cllullwremn (2.1.14)
for all u € C*(R"), where v =1—n/p.

Theorem 2.9 (Sobolev Embedding for bounded domains, p > n). Let Q be a bounded
domain of R", and suppose O is C*. Assume n < p < oo, and u € WP(Q). Then for
v=1—mn/p we have

ullcor@y < Cllullwir@)- (2.1.15)

In fact, for 0 < a <, WH(Q) continuously embeds into C%%(Q).
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The General Sobolev inequalities follow from the above specific inequalities. The idea is
to use Gagliardo-Nirenberg inequality or Morrey’s inequality on high enough derivatives of

u and drop the regularity by one.

Theorem 2.10 (General Sobolev Inequalities). Let Q be a bounded domain of R™, with a
Ct boundary. Assume u € WHP(Q).

1. If k <n/p, then u € L1(Q), where 1/qg=1/p —k/n and

[ull Loy < Cllullweao (2.1.16)

2. If k >n/p, then u € C’ki[%]fl’v(ﬂ), where

2l 4+1—2"4fn/pis not an integer
v = [p] P / (2.1.17)

any positive number < 1,if n/p is an integer

and
n < P(Q) 2118
||UHCk [p] 11“1(—) CHUHVVk ( ) ( )

Theorem 2.11 (Rellich-Kondrakov Compactness Theorem). Assume 2 is a bounded domain

in R™ with a C' boundary. Suppose

1. 1 <p<n, then

WP(Q) cc LYQ) (2.1.19)
for each q € [1,p*).
2. p=n, then
Wwhn(Q) cc LYQ) (2.1.20)
for each q € [1,00)
3. n <p, then
W (Q) cc C"(Q) (2.1.21)

for each a € [0,1 —n/p)

W1P(Q) is not compactly embedded in the limiting space in all the above three cases.

That is, the continuous embeddings
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L. WtP(Q) < LP" (Q) when p < n,
2. WiP(Q) — L>*(Q) when p = n,

3. WhP(Q) — C%1=/P(Q) when p > n

are not compact.

We will give the standard counterexaple for this. Consider a non zero smooth function
u compactly supported in unit ball B centered at origin. Let uy(x) = )\%u(/\x). This
sequence of functions can be used to prove lack of compactness in all three cases. We will

discuss how this sequence contradicts compactness in the first case.

We have [|u|zr3y = |Juall o (5)- But as A — oo we can check that [uxl/z»5) — 0 and
|ux||w1p(p) is uniformly bounded. This should imply that there is subsequence converging
to zero if the embedding is infact compact. But as we know ||u||rs»(5) = ||uall (5 > 0, the

limit cannot be zero. This contradiction implies the lack of compactness.

2.2 Sobolev Spaces on Riemannian manifold

The above theorems on R"™ and bounded domains of R™ have appropriate counterparts for
Sobolev spaces on compact Riemannian manifolds. But first, we need to define Sobolev

spaces on Riemannian manifolds.

Definition 2.6. Let (M,,g) be a smooth Riemannian manifold and ¢ € C*(M,), where
integer k£ > 0. We define

[VFu|? = VIV*2 . VUV 0, Ve, .. Vi, U (2.2.1)

Notice that «; are multi indices of order 1, and we are following the Einstein summation

convention.
In particular |Vou|? = |u)?, |V!u|* = |Vu|? = VYuV,u.
V¥ will mean any kth (total) covariant derivative of u.
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Notice that on R™ all
all,
VEu? = ) D ul? (2.2.2)

la|=k

We define C*?(M,,) := {u € C(M,)||V'¢| € LP(M,) for integers I,k such that 0 <1 < k
and real p > 1}

We now define Sobolev spaces on Riemannian manifolds as completion of the above space
like we have Sobolev of spaces on open subsets of R™ as the closure of certain subspace of
Ck ().

Definition 2.7. The Sobolev Spaces W*?(M,,) := Completion of C*?(M,) w.r.t. norm

k
[ull e = Z IV ul| Lo (a1, (2.2.3)
1=0

WP (M,) is defined similarly as the completion of C°(M,,) w.r.t. the above norm.

We can see W*P(M,,) as subspaces of LP(M,). Notice that if (u,) is a Cauchy sequence
in Ck?P(M,,), then it is also a Cauchy sequence in LP(M,). So we can define W*?(M,,) as
completion of C*?(M,,) in LP(M,). Suppose u,, — u € W*P(M,). We can define the norm
of u to agree with the above norm by defining |Viu| = lim, .o |V'u,|. Now we can define

||yr» the same way. We can check W#?(M,,) is Banach space.

The general idea for proving these theorems on compact manifolds is to prove the
theorems on coordinate charts using the theorems on {2 € R"™ and combine them using
partitions of unity. Or, more specifically, given any smooth function, we split it using
partitions of unity and establish continuity or compactness for these partitioned functions.
And then prove this extends for the entire function. Morrey’s inequality has a slightly
different proof, but it still can be established by using Morrey’s inequality on §2 € R".

We have proved the continuity of Sobolev embedding and established a Sobolev inequality.
But the inequality doesn’t have the optimal constant of inequality. This optimal inequality
turns out to be central to the Yamabe problem. For R", Talenti already obtained the value
of the optimal constant and the extremizers. Aubin then proved that the same constant
works as the optimal cosntant for not just R™ but all compact Riemannian manifolds. Here

we will give Aubin’s proof for the optimal constant on R"™ and S".
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2.2.1 Aubin’s Theorem

Theorem 2.12. If 1 < p < n, for all u € WHP(R™) (same proof works for Sobolev spaces
over S™ and H")

HUHLP*(R“) < K(n,p)||Vul|r@n) (2.2.4)

where 1/p* =1/p—1/n and

-1 _ 1/p T 1 1/n
K(n,p) =" { i ] { (n+1) (2.2.5)
n—p|n(p-—1) Cin/p)T(n+1—n/p)wn—1
for1 <p<mn, and
1 n 1/n

K(n,1) =~ 2.2.6
mn=1 =] (2:26)

where I'(n) is the Gamma function and w, = vol(S").

K(n,p) is the norm of embedding WP(R™) — LP"(R™)and it is by the functions of the
form
u(z) = (A+ |zfp/e-0)' (2.2.7)

where X\ is a real number.
The proof involves broadly three steps
1. Approximating a bounded smooth functions by “nice” smooth functions with no dege-

-nerate critical points.

2. Symmetrize these functions radially and prove that the problem reduces to proving the

Sobolev inequality for these symmetrized functions

3. Sobolev inequality for these radially symmetric functions is essentially an inequality in

functions of one variable. This is then proved using a lemma proved by Bliss.
The complete proof is available in Aubin|[l]. We will now simply state the various
propositions involved in the above three steps.

Proposition 2.2.1. Let M,, be a Riemannian manifold. Given any bounded smooth functions

f: M, — R and € > 0, there exists a smooth function g which has no degenerate critical
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points, such that |f(z) — g(x)| < € for all x € M,. Furthermore, g can be chosen so that

over any given a compact set K we have |V f —Vg| < e.

A point p is a critical point of a differentiable function f if Vf(p) = 0. A critical point is
non-degenerate if the Hessian matrix (09;0; f) at that point p is nonsingular. A nondegenerate
critical point is isolated. This is obvious on R. We have Hessian as the second derivative
, which is non-zero at a critical point (where derivative = 0). Since the derivative of the
derivative is non-zero, the critical point is isolated (derivative increases/decreases in the
neighborhood of the critical point). We generalize this to higher dimensions. We have Morse
lemma, which states that in the neighborhood of a nondegenerate critical point, there is a
chart on which the function is of the form f(z) = f(0)+ a5 +...27 —a7,, —... — 2. Using

this, we can prove that the nondegenerate critical points are isolated.
Proposition 2.2.2. Let f € C>®(M,) such that f % 0 and suppf = K. There exists
continuous functions (f,) such that

1 fo— fin WYP(M,)

2. suppfm = K, C K and 0K, is n — 1 dimensional submanifold of M,

3. fm is C* on K,

4. fm has no degenerate critical points in K,,

The proof of this proposition involves taking the approximating functions in the previous
proposition and modifying them slightly so that the new functions approximate not just

uniformly but in the Sobolev norm.

Proposition 2.2.3. Let ¥ be S", R" or H". Consider a non-negative function f € C(%)
with support K is such that OK 1is either empty or an n — 1 dimensional submanifold. Also,
suppose that f has only nondegenerate critical points on K. Choose P € Y. We will now
define g(r), a decreasing function on [0,00). We define g(r) such that

p{Qlgld(P, Q)] = a}) = p({QIf(Q) = a}) = ¢¥(a). (2.2.8)

So
g(r) = sup{a|u(B.(P)) = ¥(a)} (2.:2.9)
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Then
||Vg||Lp(Mn) S ||Vf||Lp(Mn) fO?“ 1 S p <00 (2.2.10)

Proof. We perform Schwarz symmetrization on the function f. Because of how the function

f is defined, f has finitely many critical points, and we can use the co-area formula.

So we can express the LP norm of Vf in terms of integrals on level sets. A clever
application of Holder’s inequality and the isoperimetric inequality gives the required result.
O

We can prove that g is Lipschitz continuous and hence absolutely continuous on [0, o).

Proposition 2.2.4. Let g(r) be a decreasing function absolutely continuous on [0,00), and

equal to zero at infinity. Then :

) (1ot

where K(n,p) is from Thm 2.12

X 1/p* oo 1/p
P r”_ldr) < K(n,p) (/ |g’(7‘)|p7’”_1dr> : (2.2.11)
0

The proof of this final proposition is a direct consequence of the following lemma by
Bliss. An appropriate change of variables, i.e., x = r®=/(=1_immediately gives the above

proposition.

Lemma 2.2.5 (Bliss). [2] Let p*, p be constants such that p* > p > 1, and let f : [0,00) = R,
such that f(x) >0 and

J(f) = /0 " frda (2.2.12)

s given and finite. Then the integral

y(x) = /Ooo fdx (2.2.13)

is finite for all x and

> yp* i o p*/p ng *
I(f) = / —dr < K (/ fpdx) = KJr'/P, (2.2.14)
0 0




where p*/n=1=p*/p—1

X l . p*/n
7 1 lF(p /l) :| _ n—p |: F(n) (2'2'15)
pr=1=1PA/D0((pr=1/D)]  nlp—=1) [T(n/p)l(n—n/p+1)
and equality is attained for the function of the form
c c
= = 2.2.1
I = G s o = (@l 1y (2:2.16)
or
“ (2.2.17)

y= (dal + 1)1

In solving the Yamabe problem, the constant K (n,2) plays the central role.
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Chapter 3
Regularity

The way we solve the Yamabe problem involves first proving the existence of a solution
and then proving that this solution is smooth. In order to prove this smoothness, we need
regularity theory. Regularity theory informs us about the regularity of a weak solution to
a PDE. Being a weak solution already gives requires the solution to exist in some Sobolev
space. For example a weak solution of Au = f , where f € C°, belongs to W2(2). But

we can prove that this weak solution is, in fact, smooth.

3.1 L? Regularity

3.1.1 Caccioppoli inequality

Theorem 3.1 (Caccioppoli inequality). Let u € W12(Q) be a weak solution to Au =0 on
Q. That is
/ (Vu,Vo)dr =0 VYo e W,?(Q) (3.1.1)
Q

Then for each xy € 2,0 < p < R < dist(xg, 052) we have

&
Vuldz < —/ = APdz, VAER (3.1.2)
/B (R—p)? Br(20)\Bp(z0)

p(zo)
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for some universal constant c.

The above inequality can be generalized for elliptic equations too.

Definition 3.1. Consider the partial differential equation over €2
—div(AV(u)) = f — divF, (3.1.3)

where A is a linear operator over R" for each x € (2. This PDE is called uniformly elliptic
if

(Av,v) > Al Vv eR" (3.1.4)

for all z € Q and some constant A > 0.

Theorem 3.2. Let u € Wh2(Q) be a weak solution to the uniformly elliptic equation
—div(AV(u)) = f — divF, (3.1.5)

on Q with f,F € L*(Q) and A € L=(Q). Then for any ball Br(zo) C Q and 0 < p < R the
following Caccioppoli inequality holds:

1
/ |Vul?dz < c —2/ lu — &]Pdx + RQ/ fidx +/ |F|*dx
B, (z0) (R =0)? JBr(ao)\By (o) Br(x0) Br(z0)
(3.1.6)

for any £ € R and some constant ¢ = ¢(\, A). where

(Av,v) > Mv]|? Vv €R" and || Allz=@) = A (3.1.7)

Proof. The idea of the proof is the same as the proof for Caccioppoli inequality for harmonic

functions. First we define a cut-off function n € C2°(2) such that

1.0<n<1
2. n=1on B,(zp) and n = 0 on Q\Bg(zo)
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3. |Vl < 75

For now let us assume f = 0. We now consider the test function ¢ = (u — &)n?. Using the

fact that u is a weak solution and uniform ellipticity, we get

)\/ n?|Vul|?dr < — / 2n{AVu, Vn)(u — &)dx+
Br(zo) Br(zo)

Br(zo)

[ arviw-g+ [ prvesn 619
Br(o)

=:(2) + (d1) + (231)
Now using the Young’s inequality 2ab < ea® + % and the properties of n we get

4\

(1) < eA/ 772|Vu|2dx + —/ lu — §|2dx
B (o) (R = p)? J Buteo)\By(z0)
4

(i) < —/ lu — &|2dw +/ |F|*dx 3.1.9
(R - /))2 Br(20)\B,(z0) Br(z0) ( )

1
(i11) < eA 0 |Vul|*dr + — |F|*dx
Br(zo) el Br(zo)

Choosing € = ﬁ and simplifying, we get the desired result. In case f # 0, translate the

system to origin and consider the PDE:

—Av=f in B;(0) (3.1.10)
v=0 on dB;(0) (3.1.11)

Let v be a weak solution of the PDE. Now using the weak formulation with v as test function

and using Young’s inequality and Poincaré inequality we get

/ \Vv|2dx§/ | Foldz (3.1.12)
B1(0) B1(0)

1 _
< Ce/ |Vo|?dx + —/ |f|?dx (3.1.13)
B1(0) € JB1(0)

So we have [, © (Vo2 dx < CfBl(o) | f|?dz Now making a scaling argument we get

/ |Vo|*dx gORQ/ |f|?dx (3.1.14)
Br(0)

Br(0)
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Translating © bacl to original system and defining F as gradient of translated v and going

to previous case, we get the Caccioppoli inequality. O

The theorems of interior and boundary regularity depend on the following important
properties of weak derivatives. Just like how the limit of the difference quotient gives the
classical derivatives for smooth functions, these quotients also give weak derivatives. Except

limit is not a pointwise limit, but in the sense of limit in a function space.

3.1.2 Difference Quotient
Definition 3.2 (Difference Quotient). Given a function u : € — R™ | an integer s €
{1,...,n} and h > 0 we define the difference quotient

u(x + hes) — u(x)
5 ;

Thsu(z) == Vo € Qgp = {x € Qlz + hes € Q} (3.1.15)

where e; = (0,...,1,...,0) € R” with 1 in s-th position.
We can easily check the following properties hold if u € WP (Q)

L. 7 su(z) € WhHP(Qy ) for each h fixed.
2. Th,SVu == V’T}LSU

3. If u or v is compactly supported in €2 we have

/uThﬁvda:: —/UT_h7sudI (3.1.16)
Q Q

4. Leibniz’s Rule holds

Proposition 3.1.1. Let 1 < p < 0o and 2y CC ). Then

1. There is constant c(n) such that, for every u € WP(Q) and s = 1,...,n we have

dist(Q, 09)

5 (3.1.17)

Ihstll e (o) < cllVulle),  [h] <
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2. If u € LP(Q) and there exists L > 0 such that, for every h < dist(2,08), s=1,...,n
we have
| Th,s®|| Lr(0g) < L (3.1.18)

then u € WHP(Qo), |[Vullre,) < L and 7,5 — Vu in LP(Qy) as h — 0

3.1.3 Interior Regularity

Theorem 3.3. Let u € WH2Q be a weak solution of the uniformly elliptic equation
—div(AVu) = f — divF (3.1.19)

where f € L*(Q), F € WY(Q) and A is lipschitz on Q. Then u € W22(Q) and for any

relatively compact subset Qy of 0 we have
1D?ul| 2(00) < elllullzz) + | fllz2@) + I1DF | r20)) (3.1.20)

where ¢ depends on Q, 2, ellpiticity and lipschitz constants of A.

Proof. Since u is a weak solution, we have

/<Avu, Vo)dr = / fc,odx+/(F, V)dz, Yo e W,3(Q). (3.1.21)
Q Q Q

We once again assume f = 0. Now let us use the test function ¢(x + he,) we get

/ (A + hes)Vu(z + hey), Voyda — / (Fz + he,), Vo) dz (3.1.22)
Q Q

Subtracting the above two equations

/(A(a: + hes)V 1 su, Vo)dr + (1, s AVu, Vo)dr = /(Th,SF, V)dx (3.1.23)
Q Q

Notice 73, su is a solution to weak formulation of the uniformly elliptic equation on €. So
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we apply Caccioppoli inequality on some Byg(xo) C Qo

/ |7.sVul*dr < — |7 sul?dx + c/ |7 s AP | Vul*dz
Br(o) R Bar(20) Bar(20)

+ c/ 7o F|*dx
Bagr(wo)

As h — 0 the three terms are bounded (since A is lipschitz and u, F' € W2(Q2))hence the
difference quotient is L? implying Vu € W4?(Bg(z)). Taking h — 0 and Caccioppoli, we

/ |D2uf2dz < er(R, L)/ |u|2dx+/ \DF2dz (3.1.25)
Br(zo) Bygr(o) Bag(zo0)

where L is lipschitz constant of A. Now we can cover the domain 2y with finitely many such

(3.1.24)

get

balls to get the desired result.
For the case f # 0 we take weak solution @ of the equation —Au = f and notice that

f = —divF, where F' = Vii. Now we can reduce this problem to the previous case. n

Theorem 3.4. Assume that u € W'2(Q) is a weak solution to the unfiormly elliptic equation
—div(AVu) = f — divF (3.1.26)

and for some integer k > 0 we have A € C*1(Q), f € WF2(Q) and F € W*t12(Q). Then
e Witz 2(Q) and for any relatively compact set Qy of 2, we have

loc
D5 2ul| 2 (p) < e(llullz2) + [ fllwre@) + IDF[lwrae) (3.1.27)

where ¢ depends on Qg, Q and the lipschitz constant of DF A

Proof. The proof goes by induction on k. The case k = 0 is already proved in the previous
theorem. As the induction hypothesis, we assume the theorem to prove is valid for k — 1
and confirm it is true for k. Choose the test function ¢ = %’ for 1 < s < n and some

1 € C(Q). By integration of parts, we get

/Q<a(§—:ZU) V¢> /aiwd +/ <2—£7V¢> dx (3.1.28)
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which becomes

ou B of oF 0A
/Q<AV <8x5) ,V@/J> dr = /Q axswdx—l— /Q <83:S — astu,Vw> dx. (3.1.29)

Consider a set  such that Qo CC Q cc Q. With this formulation it is clear that Ou/dx is
weak solution to uniformly elliptic PDE with f = df/dz, € W* 12(Q) and g—fs - g—fsVu €
W*2(Q)). From induction hypothesis we get u/dx, € W t12(Qq) and hence u € WH22(Q).

The inequality also follows easily from considering the same PDE and using the induction

hypothesis. O]

Remark 3.1.1. From the above theorem, we can prove using the Sobolev embedding that if
A F, f are C*(Q), then the weak solution is also C*>(€2).

3.1.4 Boundary Regularity

With the assumptions of the previous theorem, we can prove that the solution is also
WH*+22(Q)) and not just locally. That is, the regularity of the solution holds till the boundary

of the domain and not just in the interior.

Theorem 3.5. Let the hypothesis of the previous theorem be in force. In addition assume
that 092 is C**2 and u — g € Wy*(Q) for a given g € W*22(Q). Then u € W 22(Q), we
have

||Dk+2UHL2(Q) < c([[fllwra@) + I1DFlwra@) + l9llwrrez) (3.1.30)

Proof. Replacing u by u — g we see no loss of generality, so we may assume u € T/VO1 2(Q)
The basic idea of most of the proof is already in the previous theorem. Because we want a
result applicable to all of €2, we have some balls which intersect the boundary. We flatten
this boundary using C* diffeomorphism. We can then redefine the coefficients of transformed

PDE so that the weak solution u transforms into a weak solution @ of transformed PDE.
Clearly @ € W*22(D) iff u € W*22(D).

In the previous proof, we translated the equation and used a differece quotient to establish
the regularity. In this, we also have a boundary, so translating PDE is not possible in the
direction normal to the boundary. So we get estimates for all partial derivatives except

0?u/0x,0x,. Here we use the weak formulation to isolate 9%*u/dx, 0z, on one side and use
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duality to get an estimate over its norm. This estimate would include on the RHS ||ul| 2
which can again be bounded using Poincaré’s inequality. Substituting u — ¢ in place of u we

get

1D%(u = g)ll ey < eIV (= 2@ + Il + | DEl12(0) (3.1.31)

ie,
I1D?ull2@) < ([ Vull 2@ + Vallwrz) + 1l 2@ + I DF |2 @) (3.1.32)

Taking u— g as the test function in the weak formulation and Holder and Poincaré inequality,

we get

A c
M VullZ2iq) < §HVUH%2(Q) 3 <HFH%2(Q) + 1 Iz + HV9”%2(9)> (3.1.33)

]

3.2 Schauder Estimates

We will now define two spaces that are helpful in characterizing Holder continuous functions,

namely Morrey and Companato spaces.

In the following section, we will only consider spaces with the following property: Let
) C R™. There exists a constant A > 0 such that for all zy € 2, p < diamf) we have

B, (o) N Q| > Ap" (3.2.1)

This property is satisfied by the smooth domains we deal with in this thesis.

Definition 3.3. Set Q(xz, p) := QN B,(x) and for every 1 < p < oo, A > 0 we define the
Morrey space LP*(Q)

LPAQ) = u € LP(Q)

sup p_k/ |ulPdz < oo (3.2.2)
Q(zo0,p)

o€
p>0
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with the norm

[ull7p () == sup ,0_)‘/ \ulPdx (3.2.3)
x;))>€52 Q(wo,p)
and the Companato space LP*(Q)
LPNQ) == { u € LP(Q)| sup ,0_)‘/ [u — Uy, ,p|Pdx < 00 (3.2.4)
$f§)>€(§2 Q(wo,p)

where u,, , = sza _udz with the seminorm

[ul} g = sup p~ / [ — g [Pl (3.2.5)
ISy Q(z0,p)
p>0
and the norm
[ullzori@) = [ulpa + llull o) (3.2.6)

Following are some essential properties of Campanato and Morrey spaces.
Proposition 3.2.1. For 0 < A\ < n we have LPA(Q)) = LPA(Q).

Theorem 3.6 (Campanato). Forn < A <n+p and a = ’\p%" we have LPA(Q) = C%¥(Q)

and the Holder seminorm

ju(z) = u(y)|
a(Q) 1= —_ 3.2.7
[u] o Q) xS;;EPQ z — y|o ( )
TFY

is equivalent to [ulpna. If A\ >n+p and u € LPA(Q) then u is constant.

We will now prove specific decay estimates which are an essential tool in establishing the

Campanato estimates.

Proposition 3.2.2. Let A be a constant matriz and satisfy uniform ellipticity condition.
Then there ezists a constant c(n, A, \) such that any solution u € Wl’Q(Q) of

loc

div(AVu) =0 in Q (3.2.8)

/ lu*dz < c (ﬁ)n/ lu|?dx (3.2.9)
By(z0) R/ Bp(ao)
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and »
/ U — Uy | *dz < c <%> / U — gy g|*dz (3.2.10)
By (o) Br(zo)

for arbitrary balls B,(x9) CC Br(xg) CC Q. This proposition extends to all the higher partial
deriwatives of u, as they also satisfy the PDE.

Proof. Both inequalities are trivial for p > R/2. (Choose ¢ > 2" or 2"2). So we will assume
p<R/2.

Let us prove the first inequality. By L? regularity we have for k > 1,u € WEIZCZ(Q) and
||u||Wk’2(BR/2) S C(l{?, R, n,m, )\, A)HUHL2(BR)7 (3211)

Thus for k large enough, we have (using the Sobolev Embedding theorem)

/ lu|?dr < w,p™ sup |ul?
By (o)

By (o)

< w,p" sup \u]Q
Brya(zo) (3.2.12)

< e1(n, R)p"[ullfyr (s, o)

< ca(R,n,m, A, M) [ull 225 (o))

A simple scaling argument (in an appropriately translated domain, notice u(Rx) is a solution

in B;(0) if u(z) is a solution in Bg(0) ) proves
1
ca(R,n,m, N\, \) = ﬁc(n,m, A A). (3.2.13)

The second inequality follows from the first by applying the first inequality to partial

derivatives Dgu together with Cacciopoli and Poincaré:

/ U — Uy, ,|Pda < cpo/ |Vul*dz
Bp(xO) BP(IO)

< eop” (ﬁ) / |Vul*dx (3.2.14)
R Bpry2(zo)
2 (P\" 1 2
< csp <§) @/BR(%) |t — tugy,p|"dr.
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Now we state a lemma that is very useful for obtaining Campanato estimates.

Lemma 3.2.3. Let ¢ : RT — R be a non-negative and non-decreasing function satisfying
é(p) < A [(%) + e] &(R) + BR" (3.2.15)

for some A, a, 8 >0, with o > 3 and for all 0 < p < R < Ry, where Ry > 0 is given. Then

there exists constants €y + €o(A, a, f) and ¢ = ¢(A, «, 5) such that if €y < €, we have

o(p) < c {% + B] o’ (3.2.16)

forall 0 < p < R < Ry.

Proof. Refer to Lemma 5.13 in [4]. O

Theorem 3.7 (Interior Campanato Estimates for constant coefficients). Let u € W12(Q)

be a solution to
div(AVu) = —div F (3.2.17)

with A constant and satisfying uniform ellipticity. If F € E?(;‘CL(Q),O < pu < n+2, then
Vu € LH(Q), and

loc

IVullcanaey < ¢ (IVullza + (Flouey ) (3:2.18)

for every compact K CC Q CC Q, with c(n,m, K, Q. A, 1)

Proof. To use the decay estimates, we split © = v + w where

div(Vo) =0 in Bg(zo) (3.2.19)
v=u on dBg(xg), (3.2.20)

so that we can use decay estimates over Vv
Because we want estimates using Campanato seminorm, we will use decay estimates with
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the term |u — uy, ,|. So we get

9 p n+2 9
[ Ve VonPdr<e(2) [ Vo (Vo afe
Bp(aio) BR(xO)

(3.2.21)

Using the decay estimates for the first inequality and decomposition of u repeatedly, we get

/ [V — (V) | da
Bp(xo)

:/ VU — (V0)ap + Vo — (V) ,*d
Bp(xO)

n+2
< (B)7 [ Voo (VohaPdo a2 [ [Vw - (Tul,fde
R Br(zo) B,(

z0)

P2 2 2
<cy <—> |Vu — (V) gl dr + c3 |Vw — (Vw)y, | "dz
R B (o) B

r(zo0)

n+2
<cy <£> / |Vu — (V) gy p|?dx + 03/ |Vw|*da.
R Br(=o) B

r(z0)
We will now estimate [, . [Vw[*dz. Observe

/ (AVw,V)dx :/ (F,V)dx
Br(zo)

Br(zo)

- /B A= (), Vs

(3.2.22)

(3.2.23)

(3.2.24)

for every ¢ € W, *(Bg(zo)). Choose ¢ = w € W, as a test function and use ellipticity. We

get
)\/ IVw|*dx S/ (AVw, Vw)dz
Br(zo) Br(zo)
— [ P~ (P Vu)a
Br(zo)
3 3
< (/ |F — (F)x073|2dx) (/ |Vw|2dx> ,
Br(z0) Br(z0)
thus,

/ [Vwldz < 03/ |F' = (F)go,rl*dx < [F];, o R".
Br(zo) -

Br(zo)
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Using Lemma 3.2.3 with a =n+2and = p

olp) < c[(£) ¢(R) + Bp| < [(g) IVula) + [F1a, 00" | (3:2.27)

Now covering K with balls of radius p, we get the desired result 3.2.18. O]

We have know that £P* =2 C%* when n < A < n + p. So as a corollary, we get Schauder

estimates for constant coefficient equations using the Campanato estimates.

Corollary 3.1. In addition to the hypothesis in previous theorems, let us assume that F' €
CFo(Q),k>1,0 <o <1, then u € CE7(Q) and

loc

lullowssomy < ¢ (IVullz2@ + IFlloxe) (3.2.28)

with ¢(n, K, Q, A\ A, o).

Proof. Using the L2-regularity we have u € VV{;ZF”(Q) so we can differentiate the equation

k times. If v is a multi-index with |y| < k, then we get
div(V(Dyu)) = —div(D,F). (3.2.29)

Now we can use the preceding theorem and equivalence of Campanato and Hélder spaces to
get the desired result. O

Theorem 3.8 (Interior Morrey Estimates for continuous coefficinets). Let u € W,2*(Q) be

a solution to

div(A(z)Vu) = —div(F), (3.2.30)

with A € C(Q) and satisfying uniform ellipticity. Then if F € LQ’A(Q) for some 0 < X\ < n,

loc
2.\
we have Vu € L))

(Q) and following estimate
IVallzaag) < e (IVull ) + 1FIEar ) (3.2.31)

holds for every compact K CC Q cc Q, where ¢ = c(n,m, A\, A, K,Q,w) and w s the

modulus of continuity of A in Q:

w(R) := sup [|A(z)— A(y)|. (3.2.32)



Proof. In the previous proof, u was split into two functions, u = v + w, where v solves the
homogenous part, and w solves the RHS. We will do a similar split here, except v solves only

a constant homogenous equation. Fix zg € K and Bg(zg) C Q and write,

div(A(xg)Vu) = —div((A(z) — A(zo))Vu + F)

. (3.2.33)

This is referred to as Korn’s freezing trick. As in the constant coefficient case, we split
u = v + w, where v solves the homogenous part. The rationale for doing the freezing is to
apply the decay estimates on v. With the same computation as in the previous theorem, we

obtain

/ \Vul?dz < c <ﬁ>"/ \Vul?dz + c/ Vu — Vol2dz (3.2.34)
B, (z0) R Br(zo) Br(zo)

Now we have

/ |Vw|2dr < c/ |G|?dx
Br(zo) Br(zo)

(3.2.35)
< c/ |F|*dx + cw(R)Q/ |Vul*dz.
Br(zo) Br(zo)
Combining the above two inequalities gives
/ Vs < A{(2) +w(R)2}/ Vulde + e | Flp@ R, (3230
Bp(xo) BR(CCO)

Lemma 3.2.3 applied with ¢(p) = pr(mO) |Vul?dz,c = n, 8 = X and choose r < Ry so that
w(Rp) is small enough yields the result. O

Theorem 3.9 (Interior Schauder estimates for Holder continuous coefficients). Let u €
W.22(Q) be a solution to

loc

div(AVu) = — div(F) (3.2.37)

with A € CY7(Q) satisfying the uniform ellipticity condition for some o € (0,1). If F €

loc

CYo(Q), then we have Vu € CY7(Q). Moreoever for every compact K CC Q CC

loc loc
IVulloseme) < ¢ (IVull @y + 1 Fllcon) - (3:2.38)
C = C(K, Q, )\, HAHCO,U(Q))
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Proof. The proof will be similar to the continuous case. We now have extra information
about the modulus of continuity, w(R) < ¢R’. The Campanato theorem shows that Holder
functions are in Campanato spaces, so we can use the decay estimates using the difference

form. We define u, v, w, and G as in the previous proof.

n+2
/ [V~ (V) Pz <c (2) / IV — (V) P de
By (x0) R Br(zo)

(3.2.39)
+ c/ |Vw|*dx.
Br(zo)
Using a calculation similar to the one in the constant coefficients case we get
/ |Vw|*dr < 01/ |F — F,, gl*dz + clw(R)Q/ |Vul*dz. (3.2.40)
Br(zo) Br(xo) Br(zo)

2,n—e
loc

Using the previous theorem we get that Vu € L (Q) for every € > 0. Therefore

o) = [ Vu (Vo s
Br(zo)

n+2
<c <£> / (Vu — (V) r|*dx
Br(zo)

R
+c / |F — F,, pl*dz +w(R)2/ Vul?dz (3.2.41)
Br(zo) ~—~— By (o)
~ ~" 4 CQRQG ~ .,
[F]g,n+20R”+2" c(e)Rn+20—c

< (%)M 6(R) + BR"? .

Which by Lemma 3.2.3 implies Vu € £2"7%¢(Q) 22 ¢277/*(Q). This implies Vu is locally

loc — “loc
bounded so
/ |Vul*dz < w, sup |Vul*R" (3.2.42)
Br(zo)

Br(zo)

This gives us a better estimate

é(p) < ¢ (%)"+2 &(R) + BR™ (3.2.43)
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Once again, using Lemma 3.2.3 we get

¢(R) nt20
d(p) <c (Rn% + B | p"?. (3.2.44)
Therefore we conclude Vu € £2727(Q) = C27(Q) and the final estimate follows by covering.
[l

Theorem 3.10 (Generalisation for higher derivatives). Assume that u € W,L2(Q) is a

loc

solution to

div(AVu) = f — div(F), (3.2.45)

where k > 1 and

1. AeCF (Q)(resp. C°(Q) for some 0 <o <1 ),

loc loc

2. DFF € L)), for some X < n (resp. L2XQ) , n<A<n+20 ),

loc loc

8. DF-1f € LPNQ), for some X < n (resp. L22(Q),n < X< n+20).

loc loc

Then D*t'u € LPNQ) (resp. L3)(Q)).

loc loc

In particular if A € CE7(Q), F € CF7(Q) and f € CE1(Q), then u € CHo(Q),

All the above theorems also have a corresponding boundary regularity theorem. But
for those, we need decay estimates for half-balls. The idea is again to prove the estimate
locally and then use a covering argument. We first flatten the boundary as in the case of L?
Regularity. Use half-balls to prove the estimate for domains near the boundary there and
come back to the actual domain. The computation within the proof remains similar to the

one in interior regularity.

Theorem 3.11 (Boundary regularity- Schauder estimates). Let u € W12(Q) be a solution

to
div(A(z)Vu) = —div(F)  inQ (3.2.46)
u—ge Wow(Q)

with A € C*°(Q) satisfying uniform ellipticity, F € C*°(Q), g € C*¥*19(Q),0 € (0,1). Then
we have u € C*19(Q) and

HUHCHLU(Q) <c(Q, 0, HAHCW(Q)){HFHCW(Q) + HQHC’HLU(Q)}? (3.2.47)
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where X is ellipticity constant.

3.3 LP Regularity

Definition 3.4. Let (2, F, ) be a measure space and f be a measurable function. The
distribution function of f A;(t) : [0,00) — R is defined as

Ar(t) = p({zllf ()] > t}) (3.3.1)

Theorem 3.12 (Layer Cake Representaion). Let v be a borel measure on [0,00) and define
o(t) = v([0,1)). (33.2)

Then for any positive measurable function f on Q) we have

[ ott@ndnte) = [ a0t (33

Proof.
[ otta@nin = [ [ xecrndrttidnte) = [ [ xcrnduiinty) (334
/0 h /Q Vit oy i) du(t) = /0 T (Bdvt) (3.3.5)
]

As a special case of the formula, we can express the LP norm in terms of the distribution
function. Let dv(t) = ptP~'dt so that ¢(t) = t*. Then the L? norm is

iy = [ )P dute) = [ttt (3.3
Proposition 3.3.1 (Chebyshev’s Inequality). Let g € L*(2). Then for any s > 0 we have
sAg(t) < llgllzr @) (3.3.7)
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Proof.
sAg(t) = /QSX{g|>s}dﬂ S/Q|!J|X{|g|>s}du < llgllzr @) (3.3.8)

Taking s = t? and g = |f|" we the following

) < 1 e (33.9)
So we get that for any f € LP(Q)
supt?A¢(t) < oo (3.3.10)
>0

The converse is not necessarily true, i.e., there exists a function with finite supremum which
is not L? integrable. For example consider the function f = 1/|x| defined on unit ball B in
R"™. A¢(t) = cot™™. Clearly f € L7 (B). But we can check that f ¢ L"(B).

Definition 3.5. We define the weak L? space , LP (), as the set of functions

2260 = { ]z = supr,(0) < oo} (33.11)

In the case p = oo we define L°(Q2) := L>(Q)

Note that || f|| 5 ) is not a norm. Given any ¢ < p and a finite measure space €2 we have
LP(Q) C LP(Q) C LY(Q) (3.3.12)

To prove LE (€2) C L(Q) just observe A\y(t) < min{|Q[, 7P|/ f|| 1z )} and use the layer cake

representation.

Let T be an operator that sends measurable functions to measurable functions. We say

that an operator 7' is @Q-subadditive/quasi-linear if

T(f+9)l <QUTHI+IT(9)D), (3.3.13)
where ) is inddependent of f and g. An operatot T is of the weak-(p,q) type if for any
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feLr(Q), Tfe LL(Q) and there a constant A, , such that

1T fll22,0) < Apgll fllzr (€2) (3.3.14)

Strong-(p,q) type on the other hand means

I T fllza) < Apgll fllze(52) (3.3.15)

Theorem 3.13 (Marcinkiewicz’s Interpolation Theorem). Let T be a QQ-subadditve operator
that is both weak-(py,po) type and weak-(p1,p1) type for 1 < py < p; < oo. Then T is
strong-(p, p) type for any p such that py < p < p;.

To prove the Stampacchia Interpolation theorem, we need Calderon-Zygmund decomposi-
-tion theorem and John-Nirenberg lemmas I-II. We will now give proof of the decomposition
theorem and state the John-Nirenberg lemmas. The John-Nirenberg lemmas are also used

in proving that the Campanato space £P" = BMO.

Theorem 3.14 (Calderon-Zygmund decomposition). Let @) be an n-dimensional cube in R"

and let f be a non-negative function in L'(Q). Fiz a parameter t > 0 in such a way that

][ flz)dr <t. (3.3.16)
Q

Then there ezists a counatable family {Q;}icr of cubes in the dyadic decomposition of QQ such
that

1. t< fQi fdx < 2™t for every i € I;

2. f(z) <t forae x€Q\ UpcsQ;.

Proof. The plan is to divide a given cube into cubes of half the size and remove the cubes

which satisfy the first condition.

This bisection divides the cube into 2" subcubes. We will now choose the cubes which

satisfy

][ Fa)de > t (3.3.17)
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to belong to family {Q;}, and if the cube doesn’t satisfy this condition, we will continue
subdivision. Continuing this process infinitely, let Q := {@Q;} be the family of all cubes with
an average greater than t. Suppose ); is a cube. Then (); came from the subdivision of
some cube @; whose average is less than ¢. Using this, we can conclude the mass in Q; can at
most be 2"t|Q);|. So the average over ); is between ¢ and 2"t. So Q is the set of all subcubes

in the decomposition which satisfy the first condition.

If x € Q\ UiesQ;, then the average in cubes containing z as the size of the cube goes to
zero is at most t. Using the Lebesgue differentiation theorem, we get f(z) <t for almost all
x. []

Now we will define BMO space or the space of functions of bounded mean oscillation.

Definition 3.6 (BMO(Qy)). Let Qo be an n-dimensional cube in R”. We say that a function
u € L'Q belongs to the space of functions with bounded mean oscillation BMO(Qy) if

lul, = sup][ |u — ugldr < oo, (3.3.18)
Q

where supremum is over all n-subcubes ) C @y, whose sides are parallel to @)y, and ug is

average of u over Q.

Theorem 3.15 (John-Nirenberg lemma I). There are constants ci,co > 0 depending only

on n, such that

{z € Q|lu(z) — ug| >t} < c1exp (—@ﬁ) -1Q)| (3.3.19)

for all cubes Q C Qg with sides parallel to those of Qq, all u € BMO(Qy) and all t > 0.

Corollary 3.2. For every 1 < p < oo the Campanato space LP"(Qq) is isomorphic to
BMO(Qo)-

Proof. Using the John-Nirenberg lemma and layer-cake formula for LP norm, we get

/ lu — ug|Pdx Sp-cl/ P! exp(— = t)|Q|dt (3.3.20)
Q 0

Jul.

—C(n, p)lulIQ (3.3.21)

This proves BMO(Qy) — L£P"(Qo). Using Jensen’s inequality we get that L£P"(Qg) —
BMO(Qo) O
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Theorem 3.16 (John-Nirenberg lemma II). Let uw € L'(Qo) and suppose that for some

)p); < o0 (3.3.22)

where {A} denotes the collection of all finite decompositions A of the cube Qg into subcubes

p € [1,00] we have

Kp(u) := < sup > |Qil (]é u—ug,

Ae{A} Qieh

Qi with sides parallel to the axes. Then the function u—ug, (hence also u) belongs to LE (Qo)
and for all t > 0

[{z € Qo|lu(z) — ug,| > t}| < c(n,p) (KPT(u)> : (3.3.23)

Now we can prove the Stampacchia Interpolation theorem.

Theorem 3.17 (Stampacchia Interpolation Theorem). Let 1 < p < oo and let T' be a linear
operator of strong type (p,p) and bounded from L into BMO, i.e.,

|Tul|rr < cr||ullre, for every u € LP(Qy) (3.3.24)

and
| Tul|s < col|ul|ze, for every u € BMO(Qy). (3.3.25)

Then T maps continuously L1(Qo) into LI(Qy) for all ¢ € (p,0).

Proof. We will define a different operator Tx and prove it is strong-(p, p) and strong- (oo, 00).
And using Marcinkiewicz’s theorem, prove Ta is strong-(¢q,q). And then, use the John-

Nirenberg lemma to prove T is strong (g, q).

Let A = {Q;} be some subdivision of @)y. Define

(Taw)(z) := Tu — (Tu)g,|dx, for x € Q;. (3.3.26)
Qi
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Then Tx is strong-(p, p) type

p
ITaulsran oy = 32 14 (f, 175 (T ir) (33.27)

QiEA

<Y |Tu— (Tw)o, [Pda (3.3.28)
Qi€A

<2p12 |+ (e Py (3320

QieA
<) / | TulPdx (3.3.30)
Qi€A
_2p”TUHLP(QO < ClHUHiP(QO)' (3331)

We can also prove Tx is strong (oo, 00) type. Suppose u € L>(Q)g) we have
[Taullzo@o) < [Tuls < coflullzee(Qo)- (3.3.32)
Clearly Ta is quasi-linear, so using Marcinkiewicz’s theorem
1 Taullzr@o) < cllullr o) (3.3.33)

for all r € (p,00). We can prove that this constant ¢ depends only on p,r,c; and ¢y.. The
(p,p) operator norm and (0o, 00) operator norms have uniform bounds depending on p, ¢y,

and ¢y, ¢ depends on these bounds and r.

Now we can use John-Nirenberg lemma II. We have

Ko(Tu) = s [Tsulirian < Clelzrian < o (3.3.34)
Ac{A

therefore Tu € L7 (Qo) and T is of weak (r,r) type for each r € (p,00). Now using

Marcinkiewicz’s theorem, T is of strong (¢, q) for all ¢ € (p,r) and so for every ¢ € (p,00). O

Theorem 3.18 (L” Regularity for constant and Holder coefficients). Let u € W12(Q) be a

weak solution of the Dirichlet problem

div(AVu) = div(F')

., (3.3.35)
ue Wy (Q)
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where the PDE satisfies uniform ellipticity condition and F € LP(Q) and g € WP(Q) for
some p > 2. Then Vu € LP(Q) and

IVullzri) < el Fllr(e), (3.3.36)

for some constant c¢(§2,p, A, |A|)

Proof. Consider the map Vu — F
T : L*(Q) — L*(Q) (3.3.37)

This map is continuous since

/!Vu]Qd:c < /(AVu Vu)dr = /(F Vu)dzx (3.3.38)

( / 7| dx) ( / IVl dx) . (3.3.39)

From the Campanato estimates for constant coefficients and Hoélder continuous coefficients,

we have
[VU]Ez,n <c (HVUHLQ + ||F”L2n) (3340)

[Vul, < a[Vuleen < o ([[Vul[rz + || F| c2n) (3.3.41)

Since ||Vul|z2 < ¢||F||r2 < ¢||F|| g2, we have

V|, < 3| Fllgen < | F e (3.3.42)

This proves T is continuous from L* into BMO(w).
Stamppachia’s interpolation theorem now yields the LP regularity. O]
The LP regularity theory also applies for 1 < p < 2, but the proof is different from the
above case.
Theorem 3.19 (L” regularity for the case 1 < p < 2). Let Let u € W'(Q) be a weak
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solution of the Dirichlet problem

div(A(z)Vu) = div(F)

0 (3.3.43)
ue Wy (Q)

where the PDE satisfies uniform ellipticity condition and F € LP(Q) and g € W'P(Q) for
some 1 <p < 2. Then Vu € LP(Q2) and

|Vullze) < cf|[F |l v, (3.3.44)

for some constant c(2,p, A, |A|)

Proof. The proof involves expressing LP norm of Vu as the norm of the linear map over it’s

dual space.
IVulls = sup / (Vu,G) (3.3.45)
Q

IG1| <1

Now we perform “Helmholtz Decompositon” such that G = A*(2)Ve + G, where divG = 0,
and ¢ € W,* /(Q) We get such a decomposition by solving

—div(A*(z)Vy) = div(G) in Q (3.3.46)
p=0 on 2 (3.3.47)

and defining G = G — A*(z)Vp. So

IVullr = sup / (Vu, AV ) (3.3.48)
iGl, <1 Ja
= sup /(A(:C)Vu, V) (3.3.49)
Gl <1 /0
< sup  [|Fzel[Veoll L (3.3.50)
1G], pr <1
< sup |G| F] e (3.3.51)
1G], <1
< || F|| e (3.3.52)
Note the penultimate inequality comes from using L? estimates as p’ > 2. O
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Chapter 4

The Yamabe Problem

4.1 The Yamabe Problem

Let us now state the Yamabe problem.

Let (M, g) be a compact smooth Riemannian manifold of dimension n > 3 and scalar
curvature S. Does there exist a metric ¢/, conformal to g, such that (M, ¢’) has a constant

scalar curvature S’?

If we consider the conformal change ¢’ = u* (™ 2g, with u € C™ and u > 0, the scalar

curvature satisfies the equation:

4(n—1)

P Au + Su = S'u2/(n=2) (4.1.1)

Let 42—:;A + S = Acont, S0 the equation is now

Aconttt = S'u"HD/ (=2 — g1 2" -1 (4.1.2)

So now the Yamabe problem is finding smooth, positive function u solving the above
PDE. Therefore, we need first to prove the existence of a solution and then the smoothness

and positivity of the solution if it exists.
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We will see that if exponent in the RHS of the PDE is ¢ — 1, ¢ < 2*(subcritical) instead
of 2* — 1, we can prove the existence and smoothness of solution using standard analysis.

But the critical case(the Yamabe problem) is much more challenging.

But we can prove existence of solution for some compact manifolds using direct methods.

Let us define the Yamabe functional:

A= 1 Vul?dv + [,, Su?dv
(u) = "
N fM u?* dv)/? ’

(4.1.3)

and its infimum, called the Yamabe invariant :

w(M)=inf  I(u) (4.1.4)

ueW12 u£0
We can also easily check that the Yamabe invariant is a conformally invariant.

Theorem 4.1. [9] If u € WY2(M) is minimizer of 1(v) with ||u||2- = 1, then u satisfies
Aconttt = M 71 for X = p(M).

Proof. Let ¢ € C(M). Then

O:i{g ol (u+ep) (4.1.5)
fM8" L(Vu, Vo) + 2Supdv 2fM4” B2V + SuPdv [ u® tedy (4.16)
[ul?.. Jul?.. el
2 n—1 u? 1
- [ /Mgp <_4m + Su— J(U)W> (4.1.7)
Therefore u is a weak solution for the PDE with A = I(u)/||u||i*2_2 Since u is a minimizer
we have A = pu(M). O

Notice that if S < 0, substituting v = 1 we get (M) < 0. We will now prove the existence
of solution when p(M) < 0. So that we will prove existence of solution for manifolds with

negative or zero scalar curvature.

Theorem 4.2 (Existence when p(M) < 0). Acont = S'u* ~1 has a solution when pu(M) < 0.

Proof. In order to prove existence when pu(M) < 0, we will use direct methods to prove
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the existence of a minimizer of I(p). Let E(p) = I(¢)|[¢||3,-. We can prove that u is
a minimizer of I(y) iff it is a minimizer of E(p) = E(p) — u(M)||¢||?,-. Now suppose
w(M) < 0. Clearly E(p) > 0 and let uj, be a minimizing sequence of E(y). E(u) < C
and hence [Jug|lwr2r) < C, by Sobolev inequality. So we have uy — w in W2 and L* by
Banach-Alaglu theorem, and u, — u in L? by Rellich-Kondrakov theorem. Since pu(M) < 0

by w.ls.c of norms we have E(u) < liminf E(u;) and so u is a minimizer. O

From here on we would assume that (M) > 0.

Consider the manifold S™. The stereographic projection gives us a conformal mapping
from the sphere onto R™. In the transformed metric, we have the scalar curvature to be zero.
So the Yamabe functional is
42—:% ||VU|| L2

I=
ol

(4.1.8)
The infimum of this will just be in terms of the optimal Sobolev constant K (n,2). We have
p(S™) = 42=1/K?(n,2). We know that this infimum is attained on R™, which implies that
we have non-trivial solutions to Yamabe problem on the sphere, We can even construct the
extremizers without referring back to Aubin’s or Talenti’s proof. The construction is as
follows. First do a stereographic projection on to R". Perform a dialation by a > 0. Now
reverse the Stereographic projection. Using R™ as cover for S" \ P, with bijection given by

stereographic projection, if we calculate the conformal factor on the sphere we get

Ua(z) = (M)(Hm. (4.1.9)

(07

This metric on sphere is a conformal diffeomorphism and it minimizes the Yamabe functional
on sphere. In fact, we have that the only metrics on sphere which minimize the Yamabe

functional are the ones which are obtained by conformal diffeomorphism.

Theorem 4.3. [7] The Yamabe functional on (S™,g) is minimized by constant multiples of
the standard multiples and its images under conformal diffeomorphisms. These are the only

metrics conformal to the standard metric on S™ that have constant scalar curvature.

57



4.2 Existence and Regularity of Yamabe Problem

Theorem 4.4 (Existence in subcritical case). On a smooth Riemannian manifold M, of

dimension n > 3, let us consider the PDE
Au+ h(z)u = Af(x)u?, (4.2.1)

where 2 < q < 2%, h(z) and f(z) are C™ functions on manifold, with f(x) everwhere strictly
positive. This PDE has a weak solution u € WY2(M,) for some \.

Proof. Consider the functional

_ S IVulPdv + [, h(z)u*dv
([5y f(@)utdv)?/a ’

where u # 0 and 0 < u € WH?(M). Define p, = inf I,(u).

I,(u) (4.2.2)

We will prove that this infimum is attained for 2 < ¢ < 2*. Simple application of Hélder
inequality shows us [,(u) is bounded below. Let u; be a minimizing sequence such that

[y fuidv =1. We will prove that this minimizing sequence is bounded in W2,

luillfyre = [luillZ> + [Vl 22 = I(us) — /Mh(ﬂf)%2 + [l |72 (4.2.3)
[ulliyre < g+ 1+ (14 [[A() ]| z) full7 (4.2.4)
lusll 7 < V2|72 < VI f ()] (4.2.5)

Now we can prove there exists a function attaining the infimum such that

I,(u) = p, and /Mf(x)uqdv =1 (4.2.6)

Since 2 < ¢ < 2*, W'? is compactly embedded in L. So we have a subsequence such
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that u; — v in L9 and u; — u in W12,

The strong convergence in L¢ ensures the constraint is satisfied by the limit . w.l.s.c. of
the norm gives us
|lullwre < liminf |Ju;]|ype. (4.2.7)

In addition, we also have u; — u in L?. These two combined gives us I,(u) < p, and

therefore, I,(u) = pi,.

We can verify that this minimizer is a weak solution to PDE

Au+ h(z)u = Af(x)u?". (4.2.8)

Theorem 4.5 (Regularity in Subcritical case). Let u € WH2(M) be a solution to

4(n—1)

n —

Au+ Su = Su?? (4.2.9)

where A is the Laplace-Beltrami operator over the Riemannian manifold and q € (2,2%).
Then u e C*(M).

Proof. We have proved that there exists a function v and some A which solves the PDE
4.2.1. Choosing h and f as an appropriately we can have A = S’ and u to be solution of
Aconttt = S'u?t. Choose p; = 2*. Since u € W?(M), the Sobolev embedding theorem gives
u € LP*(M). Hence f € LPY/(@=Y(M). From LP regularity we get that u € W2r1/(a=D()f).
Using Sobolev embedding again, we that

np1
n(qg—1) —2ps

u € LP?(M), where py = (4.2.10)
if n(q—1) > 2py, or u € L*(M) for all s if n(q — 1) < 2p;. Continuing this process, we get
u € L¥(M) for all s. So we have u € W?*(M) for all s. By Sobolev embedding we also get
that u € CY(M), and since ¢ > 2 we have u4~! € W1(M) for all s. Using L regularity we
get u € W3*(M) for all s. So u € C*(M). We can now apply the maximum principle to

prove u > 0 and the smoothness also follows. O
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Theorem 4.6 (Regularity in critical case). [5] Let u € WY2(M) be a solution to
Aconstt = S'u? 1 (4.2.11)

Then u € C*(M).

Proof. The proof given in the sub-critical case doesn’t work in the critical case. However,
the bootstrapping argument still works if we can prove that u € L*(M) for s > 2*. The

function u satisfies

/ (%(Vm V) + Sugp) dv = S’/ lu|* ~todv (4.2.12)
M M

for all p € WH2(M). We plan to choose an appropriate test function ¢.

)21 if [t| <L
Guty=4 0 (4.2.13)

|t]2"/2 if [t| < L
=< _ L (4.2.14)
ZLE D2 — 22122 if |t| > L.

Clearly G (u) is uniformly Lipshitz continuous function of v and hence Gr,(u) € Wh2?(M).
Similarly we have F(u) € W'2(M). Observe that G and F are zero when u < 0 and that

(L0 < ZCL0, (Fu)? > 1), (4.2.15)
Fr(t) <t*/2, Gpt) <t* L (4.2.16)

Let us now use
p=Gr(u) =Gg (4.2.17)

as test function. Hence we get,

4(n—1)

/(VU,VGL>dU+/ SuGLdv:S’/ w? T1Gdv. (4.2.18)
n—2 Ju M M
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Since G < u¥ ' and u € LQ*(M), we have

‘/ SUGldU
M

/ L VulPdv < Oy + C’g/ u? 1Gdv. (4.2.20)
M M

< (i, and |5 < Cf (4.2.19)

SO,

Using (Fy(t))? < 2G,(t) and tG(t) < Fi(t), we get that

/ \VEL|*dv < Oy + 02/ u? T2 Fidv. (4.2.21)
M M
Given K > 0, let
K™ ={x st u(x) < K}, (4.2.22)
Kt ={xst. ulx) > K} (4.2.23)

Using Holder’s inequality and Sobolev inequality for the embedding W12(M) — L? (M),

/ 2*—2FL /
2/n 2/2*
/ u? T2 Fidv + ( / u2*dv) ( / Ff*dv> (4.2.25)
K- K+ K+

u? 2F§du+/ u? T Fidv (4.2.24)
K+

?

<
2/2*
g/ uw? T2 FRdv + e(K) (/ Fg) (4.2.26)
K- M
g/ w? T2 FEdv + Cse(K )/ (|VFL)? + F?)dv (4.2.27)
M

where €(K) = ([, u* dv)*", C3 > 0 is a constant independent on K and L. Since
ue L¥ (M),
lim €(K) — 0. (4.2.28)

K—oo
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We fix K such that CyCs¢(K) < 2/2*. When L > K,

/ u? PRy < K22 DV (M), (4.2.29)

Since u € L* (M), and since F)(t) < t2°/2
/ Fidv < Cy. (4.2.30)
M
Therefore it is clear that there exists C5, Cs > 0 independent of L, and Cg < 1, such that
/ \VFL2dv < Cs + Cﬁ/ |V EL|*dv. (4.2.31)
M M

Hence,

/M IV EL2dv < - 050 : (4.2.32)

- Y6

This gives us that Fy, € W12(M). Using Sobolev emebedding we get Fy, € L?" (M) and
/ F¥dv < Cy (4.2.33)
M

where C7 > 0 and doesn’t depend on L. Taking L — oo, it follows that u € LZ)*/2(M).
Since (2*)?/2 > 2* we increased the regularity. O

Now we will prove a theorem that is crucial in establishing existence in the critical case.
It is also through this we will see how the optimal Sobolev constant plays a role in the

Yamabe problem.

Theorem 4.7 (Concentration-Compactness Lemma 2). Suppose u,, — u weakly in W*(R™)
and fly, = |V, 2de — u, vy = Jun|* do — v weakly in the sense of measures where v and

v are bounded non-negative measures on R™. Then we have :

1. There exists some at most countable set J, a family {x’|j € J} of distinct points in

R", and a family {V’|j € J} of positive numbers such that

v=[udr+Y 175, (4.2.34)

jeJ
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where 0, 1s the Dirac-delta mass of mass 1 concentrated at x € R™.

2. In addition, we have
p > | Vul*dr + Z 178, (4.2.35)

jeJ
for some family {4%|j € J}, 1/ > 0 satisfying

K? (Vj)z/z* <u’, foralljelJ (4.2.36)

where K is the best Sobolev constant for inequality corresponding to the embedding W2 —»
L*
Jull p2# gey < K H|ullwr2ggn) (4.2.37)

so that K(n,2) = K.

Proof. Let v,, = uy, —u € WH(R™). Then v,, — 0 weakly in W'? and by Brezis-Lieb

lemmal8] we have that if [5, |¢n|>” < C and u,, — u pointwise a.e. then

[ Nl ~1¢
Rn

where o(1) — 0 as m — oo .Let f be any bounded continuous function. We have

' pm — ¥ | dz = o(1) (4.2.38)

FUuml® = |u)* — [ty — u|* )dz| <sup|f] [ = [ul* = Jum — u|* | dz (4.2.39)
R" R"
=o(1) (4.2.40)
So we have
W = Uy — |u|? dz = (Jum|* — |u|*)dx (4.2.41)
= |t — ul|* dx + o(1) = |vp,|* dx + o(1). (4.2.42)
Define A\, := |Vu,,|?dr and assume that \,, — X, while w,, — w = v — |u|* dz weakly in

sense of measure.
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Choose ¢ € Cg°(R™). Then

€]* dw = lim €)% dw,, = lim lomé|* da (4.2.43)
R® m—00 Jpn m—00 Jpn
- 2% /2
< K™% lim inf( ]V(vm§)|2dx) (4.2.44)
m—00 R™
~ 2% /2
< K% liminf < yg|2yvvm|2d:c> (4.2.45)
m—r00 R™

2% /2
K7 </ \§|2d>\) . (4.2.46)

We arrived at the final inequality in the following way

< |V(vm£)\2dx)2 < ( \5]2\Wm|2dx)2 + ( |vm|2\V£\2dx)2. (4.2.47)
R™ R™ R™

The second term goes to zero as m — oo as |VE||v,,| — 0 in L2
VEL I e < [Vl [ ol (4.2.48)
R supp(€)

Wh2(supp(€)) compactly embeds into L?(supp(€)) and v, — 0 in W2?(supp(€)), so it goes

to zero in L?. So finally, we have a reverse Holder inequality:

~ 2/2
K? ( |§]2*dw> < [ |€Pax (4.2.49)
R™ R™

holds for all £ € C§°(R™). Now let us decompose w into diffused and atomic parts. Let

{27]j € J} be the atoms of w and we have w = wy + >, ; /6,5 where wy has no atoms.

Given any open set ), we can approximate the characteristic function using compactly

supported smooth functions. Using this, we get
K20(Q)¥? < \Q). (4.2.50)
Let Q be open set such that A(Q) < K? then

1> K72MQ) > w()¥? > w() > w(Q). (4.2.51)
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So wy is absolutely continuous w.r.t. A. So there is an A— L' function f such that dwy = fdA\.

For A\ a.e. away from atoms of A and w we have

f(z) = lim &T(gf < lim K2 A(B, (2))*/*7 = 0. (4.2.52)

<3
l
=]
>
—
Sy
<
N

Given any radon measure we can prove it can have only countably many atoms. So there
are only countably many atoms of A\, none of which are atoms of wy, and since f is zero A

a.e. outside of the atoms, we get that wy is the identically zero measure.

So

Ydr =) 16, (4.2.53)

jedJ

w=v-—|u

For any 27 choose a ¢ such that £(27) = 1 and £ = 0 outside a small ball around z7. Now

using the reverse Holder inequality 4.2.49, we get

K22 < \({a7}). (4.2.54)
That is A>3, K225,
We have
/ Ed\ = lim [ &|Vu,|*dx (4.2.55)
n m—00 Rn
= lim [ &(|Vu]® 4 |Vun|* — 2(Vu, Vu,))dz (4.2.56)
m—00 Jpn
=— | &VulPdz+ | &dp. (4.2.57)
R R
Hence we get
p> Vulde + Y K*(17)% 6, (4.2.58)
JjeJ
O

Although we gave the above theorem on R", the same proof works on a compact closed

manifold.

Theorem 4.8 (Existence in critical case). On a smooth closed Riemannian manifold M, of
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dimension n > 3, let us consider the PDFE
Aottt = S'u? L. (4.2.59)

This PDE has a weak solution u € W42 if p(M) < u(S™).

Proof. Let {u;} be a minimizing sequence for o« (M) = p(M). WLOG, we can assume that
|uk |2+ = 1. Upto a subsequence, we have

1. up — uin L*(M),

2. w, — uin WhH3(M),

3. up — uin L¥ (M).

[0, 1]. We notice that if ¢ = 1, we have in norms and weak convergence. This
implies we have strong convergence in L? . This will imply that the minimizer is attained,

and we are done. Now by Concentration- Compactness Lemma 2, we have

p(M) = lim I(uk)Z/MM\V ? 4 Su® +uf<2(M)Z(uj)2/2*. (4.2.60)

k—s00 n — 2 ,
Jj€J

Note I(u) = ( o 4(: 21 |Vul|? +Su2dv) Jt2%" > p(M). Now we use the fact that for all

compact manifolds M, =D K2(M) = pu(S"). So,

p(M) > 27 (M) + p(S™) Y () (4.2.61)
JjeJ
i 2/2*
> 122 (M) 4 u(S™)(1 — )2 (Z 1’/_ t) (4.2.62)
=22 (M) + p(S™)(1 — ) (4.2.63)

Now, since p(S™) > (M) and applying Jensen’s inequality, we have

p(M) > tm*u(M) + (ST (1 — 1) (4.2.64)
p(M)(t* + (1 — 1)) (4.2.65)
(M) (4.2.66)
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This proves t is 0 or 1. It cannot be zero, as the second inequality will then be a strict one.
Sot=1. ]

4.3 Existence when ), is not locally conformally flat and

n>>06

Lemma 4.3.1. Suppose k > —n. Then as a — 0,
I(a) = / rEu et dr (4.3.1)
0

is bounded above and below by positive multiples of o2 if n > k + 4, o**?log(1/a) if
n=k+4, and " ? ifn <k +4.

Proof. The subsitution o = r/«a gives
e/a
I(a) = at+? / 1 (g2 1 12 g (4.3.2)
0

Observe that 0 < 202 for o > 1, so I(a) is bounded shove and below by positive multiples

of
€/
o t? (C + / ak+3—"da> . (4.3.3)
1

The expression in parentheses is bounded if n > k+4; it is comparable to " *~* if n < k+4,
and to log(1/a) if n =k + 4. O

Theorem 4.9 (Conformal Normal Coordinates). Let M, be a Riemannian manifold and
P e M,. For each N > 2 there is a conformal metric g on M such that

det gi;; = 1+ O(rY), (4.3.4)

where r = |x| in g-normal coordinates at P. In these coordinates, if N > 5, the scalar
curvature of g satisfies S = O(r?) and AS = ;|W|* at P.

Theorem 4.10. If M has dimension n > 6 and is not locally conformally flat then u(M) <
©(S").

67



Proof. Let {z'} be conformal normal coordinates in a neighborhood of P € M,,.

Let a = 42=. The functions u, satisy a||Vug||7. = u(S™)||ua||7» on R™. Choose a smooth
radial function 7, such that it is supported in B and identically 1 in B, and 0 < n < 1
everywhere else. Consider the function ¢ = nu,. Since @ is a function of r = |x| alone we

have

/ alV|*dx = / (an’|Vua|” + 2anua(Vn, Vus) + aul|Vn|?) dz (4.3.5)
n BZe

< / alOyug|?dx + C’/ (ua|8rua| + ui) dx, (4.3.6)
n A€

where A, denotes the annulus By \ B.. Using the expression of u, we can estimate
Uy < a2 and |O,u,| < (n —2)a=2/2p1=" . Therefore for a fixed ¢, the second term

in the integral inequality is O(a™"?) as a — 0.. As for the first term,

2/2*
/ alO,uq|*dz = pu(S™) (/ u? da +/ u?;dx) (4.3.7)
n Be R”*\Bg

2/2*
< u(S") (/ ©? da +/ oz”r_%dx) (4.3.8)
B R"\ B

2/2*
= n(S™) </ ngdx) + O(a™). (4.3.9)
Bae
On a compact manifold, let ¢ be defined as nu, in normal coordinates {z'} in a neighbor-
-hood of P € M,,, extended smoothly by zero over the manifold. Since ¢ is a radial function

and ¢" = 1 in normal coordinates, we have |Vp|* = [9,¢|?. Since dV, = (1 + O(r))dz in

normal coordinates, the previous calculation gives
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E(p) = /B (al V] + S¢?) dV, (4.3.10)

2¢
< (14 Ce) (/L(S”)H@H%Q +Ca™ 2 + C/ / uir”_ldwdr) : (4.3.11)
0 r

Since dV,, = dx in conformal normal coordinates, the term (1 + Ce) is absent giving

E(p) < w(SM|lel72x + Ca”? +/ S?dx. (4.3.12)

Bae

But now in conformal normal coordinates S = O(r?) and AS(P) = :|W(P)|?, so

/326 Sp'de </ Su; d$+0/ uld (4.3.13)
[ [ (st 00 )t 0 s
= [[ o+ o) s = o) (43,15

Using Lemma 4.3.1 we get

(o) < w(S™)||ell3e — CIW(P)[2at + o(at) if n > 6, (4.3.16)
w(S™)||pll2- — CIW (P)[2Patlog(1/a) + O(a*) if n = 6.

If M, is not locally conformally flat, we can choose P so that |W(P)|> > 0, and then
I(p) < u(S™) for a sufficiently small and n > 6. Thus p(M,) < u(S"). O

4.4 Existence in rest of the cases

Lemma 4.4.1. Suppose u(M) > 0. Then at each P € M the Green function T'p for
42—:;A + 5 = Aconr exists and is strictly positive.
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Using Stereographic projection from S™ to R", we can transfer Yamabe functional to
R"™ where analysis is more straightforward. We do a similar thing by defining a generalized

stereographic projection for compact manifolds.

Definition 4.1. Suppose (M, g) is a compact Riemannian manifold with u(M) > 0. For
P € M define the metric § = G2 ~2g on M = M \ {P}, where

G = (n — 2)wyal'p. (4.4.1)

The manifolds (M,g) together with the natural map o : M \ {P} — M is called the

stereographic projection of M from P.

The image manifold of a stereographic projection has a special geometric structure called

asymptotically flat.

Definition 4.2. A Riemannian manifold N with C* metric g is called asymptotically flat
of order 7 > 0 if there exists a decompostion N = Ny U N, (with Ny compact) and a
diffeomorphism N, — R"™\ Bg for some R > 0, satisfying:

Gi; =0i; +O(p™7), Ohgiy =O0(p™ ™Y, OhOgij = O(p ™72, (4.4.2)

as p = |z| — oo in the coordinates {z'} induced on N,. The coordinates {z'} are called

asymptotic coordinates.

Although it looks like the definition depends on the asymptotic coordinates, it can be

proven that the asymptotic flat structure is determined by the metric alone.

Fix a point P € M,,. Choose the local coordinates to be the conformal normal coordinate
system. We will explicitly describe the asymptotically flat structure of the stereographic
projection (M, g).

Remark 4.4.1. We write f = O'(r*) to mean f = O(r*) and Vf = O(r*1). Similarly we
define O". The set of smooth functions that vanish to order k at P is denoted by Cj. Py is

the space of homogeneous polynomials of degree k.

Lemma 4.4.2. Let G be given by 4.4.1. In conformal normal coordinates {x'} at P, G has
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an asymptotic expansion

G(z) =r*" (1 + Z wk(x)> =clogr + 0"(1), (4.4.3)

where r = |x|, Yy € Py, and the log term appears only if n is even. The leading terms are:

1. ifn=3,4,5, or M is conformally flat in a neighborhood of P,

G=r""4+A+0"(r) (A= constant); (4.4.4)

G=r""— 5550 ——|W(P)|*logr + O"(1); (4.4.5)

G = [1 + o0 (; — <12 (:_ 6) (W (P)? - S,ij(P)$iij2)]

+O0"(r"™™). (4.4.6)

Now we can prove that the asymptotically flat structure of g can be derived immediately

from this lemma.

Theorem 4.11. The metric g is asymptotically flat of order 1 if n = 3, order 2 if n > 4,
and order n — 2 if M, is conformally flat near P. In inverted conformal normal coordinates,

it has the expansion
Gij(2) = 72*_2(2’) (5ij + O”(p_z)) (4.4.7)
where, in the three cases of Lemma 4.4.2
1 ~v(z) =14 Ap* "+ O0"(p'™™) (A = constant)
2. v(z) = 288(1‘W( )‘2p_4 log p + O"(p_4);

5. 9(2) = 1+ gy ® (sl W (P)? = 8.5(P)227) + 0" (5).
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Proof. Let {z'} be conformal normal coordinates on a neighborhood U of P, and define

inverted conformal normal coordinates 2* = r=2z% on U \ {P}. With p = |z| = r~1 we have

002" = p~? (65 — 2p22'27) 907 (4.4.8)

If we write v = 7" 2@, the components of § in z-coordinates are

Gij(2) =" 2p"g(0/02",0/977) (4.4.9)
=72 2O — 207222 (65 — 2p7 220 g (p 2 2) (4.4.10)
=72 (6, +0"(p7?) . (4.4.11)

If M, is conformally flat near P, g = d; in conformal normal coordinates, so g;; = 72**25@-
in that case. Noting that the expansion for G gives the corresponding expansion for v, we

will get the desired theorem.

In the locally conformally flat case, we could define a function locally and provide a
bound on the Yamabe invariant of the manifold. But in the case of the locally conformally
flat case, the local geometry resembles that of the sphere. And on the sphere no function will
have the Yamabe functional lower than p(S™). That is why attempt to construct a function
locally with Yamabe quotient less than p(S™) will fail. In order to overcome this we need to
define a function which carries some information about the global geometry. So in this case

we define “distortion coefficient” which does exactly that for asymptotically flat manifolds.

We will now construct a test function on M and express its Yamabe quotient in terms of

a number determined by the global geometry of M.
Fix a large radius R > 0, let p(z) = |2| in inverted conformal coordinates (extended to a

smooth, positive function on M), and let M, = {p > R}. Define ¢ on M by

ua(z)  p(2) 2 ? (4.4.12)

with a > R to be detremined later.
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Since ¢ is a function of only the radial variable p, the behavior of Yamabe quotient as
a — oo depends on the “average” behavior of the metric g over large spheres. As a measure

of this average behaviour we introduce the “distortion coefficient”.

Define
h(p) = wp_l/ FFHD2qy,,. (4.4.13)
S

P

The expansion of v then gives an asymptotic expansion as p — oc:

1+ k —k + O —k—1 if 67
h(p) = (v/k)p (™) 1 n # (1.4.14)
L+ (v/4)p~tlogp+O"(p™) if n =6,

and therefore, since the (n — 1)-form dw,/w, is homegeneous of degree zero,

a dw

5 / dpy—" = h(p) + O(p~*™) (4.4.15)
2Js, Wp

—Bp "+ O0(p ) ifn#6,

_ (4.4.16)
—BpSlogp+ O(p~) if n = 6.

We call the constant 3, defined using conformal normal coordinates, the distortion coefficient
of g. Its geometric meaning at infinity is analogous to the scalar curvature at a finite point.

It is this constant which determines the values of the Yamabe quotient for large a.

Proposition 4.4.3. Let ¢ be defined as above. There are positive constants C' and k such
that
E(p) < p(SM||g|2r — CBa™ + O(a™ ) (4.4.17)

if n # 6 or M is conformally flat near P,
E(p) < u(S")|¢l}2 — CBa*loga+ O(a™) (4.4.18)

if n==6 and M is not conformally flat near P. Thus if B > 0, ¢ can be chosen so that the
Yamabe quotient is less than p(S™).

Proof. Since the scalar curvature of § is zero, the energy E(yp) is

E(p) :/ @\VSD‘ZGM;:/ agpp(apua)QdV@:/ a(O,uq )y dz. (4.4.19)
M Moo Moo
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Letting Ay, denote the annulus { R < p < L} and integrating by parts using the Euclidean

Laplacian gives

/ a(Opus )y dz
Ar

:/ auaAoua’dez—/ auaﬁpuaﬁp(ny)dz—/ auaﬁpuanyGpjdz. (4.4.20)
AL AL

SRrRUSL

Since v is bounded , we have that the integral over Sy, is O(L*™") for fixed «, and thus
vanishes as L — oo. Similarly, the integral over Sk is O(a™™). Using Holder’s inequality on

the first integral we get

/ auaAgugyidz = 4n(n — 1)/ u 2 (ugy)?dz (4.4.21)
Ap, Ar

1-2/2* 2/2*
<dn(n—1) (/ uidz) (/ ui*ﬁy?dz> (4.4.22)
AL AL
2/2*
T ( / A goz*d%) (4.4.23)
nr

— (8" a2+ (4.4.24)

<An(n —1)||uq

The important term is the second term in 4.4.20. After letting L — oo it becomes

R

—/ auaﬁpua/ 0,(v)*dw,dp (4.4.25)
Sp

If n # 6 or M, is conformally flat near P,

@ [ 00, = 401 + 07 ) (4.4.26)

= —4(Bp "+ 0(p7"))w,. (4.4.27)

The change of variables 0 = p/a shows that if 2—n <k <n

1 kel (Pt o n—1 kt1
C < P P dp < Ca . (4.4.28)
R

- o
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Thus the second term in 4.4.20 is

00 2 2\ 1l—n
_ 4/ paL <P +a ) (Bp_k_l . O(p—k—2)) wydr

R o

< —CBaF+ 0> 1), (4.4.29)

Combining the results of the above calculations, we obtain 4.4.17. If n = 6, we use the

inequality instead

—k+1 > k p2 + Oé2 1=n k
C e loga < / p "logp ( > p"tdp < Ca loga, (4.4.30)
R (6]
and a similar analysis yields 4.4.18 [

The above calculation reduces the solution of the Yamabe problem in the case u(M) > 0

to determining the sign of 5. We have

w(M) = inf

A (4.4.31)
wecz () |97 .-

~

and so approximating our test function ¢ by a function ¢» € C°((M)), we find that u(M) <
u(S™) if B > 0. So we proved the following theorem

Theorem 4.12. If (M,g) is a compact Riemannian manifold of dimension n > 3 with
(M) < u(S™) if there is a generalized stereographic projection M of M with strictly positive

distortion coefficient .

It can be proven that this distortion coefficient 8 = 1m(g), where m(g) is the so-called
ADM mass of an asymptotically flat manifold, when n < 6 or M conformally flat in the
neighborhood of the point w.r.t which we did the stereographic projection. According to the
“Positive mass theorem,” this mass is positive. Proving this theorem is beyond the scope of

this thesis, so we would assume it.

With all of these assumptions, we have that the distortion coefficient is positive; hence

we have proved the existence of solutions in the last case.
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