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Abstract

In this thesis, we study the proof of the so-called Yamabe Problem. This problem was
proposed by Yamabe in an attempt to solve the Poincaré conjecture eventually. The problem
was to prove whether, given any compact Riemannian manifold Mn(n ≥ 3), a conformal
change of metric exists such that the manifold has a constant scalar curvature. This geometric
problem reduces to proving the existence of smooth, positive solutions to a semilinear elliptic
PDE of the form

∆u+ h(x)u = λf(x)u2
∗−1 (0.0.1)

where h, f ∈ C∞(M) and f > 0. In this thesis, we study the solution to Yamabe’s problem.
This includes studying many prerequisites such as Sobolev spaces, Regularity theory for
uniformly elliptic equations, and a little Calculus of Variations. In the end, we study Lee-
Parker’s paper[7] for a solution to Yamabe’s problem.
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Introduction

The main aim of this thesis is to study the prerequisites necessary to understand the proof
of solution to the Yamabe Problem. Yamabe problem is an important example of a non-
linear PDE which has been solved. Initially, this question was posed by Yamabe[11]. In the
same paper, he also attempted a proof, which was later found to be erroneous. Finally, the
problem was solved due work of multiple authors such as Trudinger, Aubin, Hebey, Vaugon,
Schoen, and Yau.

In Chapter 1, we define various geometric prerequisites necessary to understand the rest
of the thesis. This includes definitions and properties of manifolds, Tangent spaces/bundles,
connections, Riemannian metric, etc. This chapter is a combination of concepts from [1] and
[6].

In Chapter 2, we study one of the most fundamental concepts in the study of PDEs.
We define and study properties and theorems about the Sobolev spaces on Euclidean spaces
(Rn and subdomains of Rn) and compact Riemannian manifolds. In particular, we give a
brief proof of the best Sobolev constant, which plays a critical role in solving the Yamabe
problem. [3] and [1] are the books followed for all of the proofs in this chapter.

In Chapter 3, we study the regularity theory for uniformly elliptic PDEs. [4] is the
primary reference for this chapter.

In the final chapter, we first understand the difficulty in the Yamabe problem by first
solving the subcritical case and noticing why this approach fails in the critical case due to
lack of compactness. We then prove the smoothness of the solution in both critical and
sub-critical cases. The rest of the chapter is devoted to proving the existence of a solution in
the critical case. A complete proof of this would require many more concepts, which cannot
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be completed in a year. So we assume a vital theorem known as the Positive mass theorem.
All proofs in this chapter will be found in [1],[10] and [7].

Original Contribution

This thesis has no claims on any original results by the author. It is a presentation of a
solution to the Yamabe Problem. While many survey articles are already available on this
topic, these articles assume a familiarity with Sobolev spaced and Regularity theory. In this
thesis, we provided an almost complete presentation of a solution to the Yamabe problem,
which any Mathematics student can pick up and read after knowing a minimal amount of
Functional analysis and geometry.
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Chapter 1

Preliminaries

1.1 Manifold and Differentiable Manifold

Definition 1.1. A Manifold Mn is a second countable, Hausdorff topological space such that
for any given point p in Mn, there exists an open neighborhood U of p which is homeomorphic
to Rn(or equivalently an open subset of Rn).

Definition 1.2. A chart on a manifold Mn is a pair (U, ϕ), where U is an open set of Mn

and ϕ a homeomorphism from U to an open subset of Rn.

For any point p ∈ U , components of ϕ(p) are called the local coordinates w.r.t the chart
(U, ϕ). Two charts (Uα, ϕα) and (Uβ, ϕβ) are called Ck compatible (smoothly compatible) if
the transition map ϕβ ◦ϕ−1

α : ϕα(Uα∩Uβ) → ϕβ(Uα∩Uβ) is a Ck (smooth1) diffeomorphism.

Definition 1.3. A collection (Ui, ϕi)i∈I of charts which covers Mn i.e.
⋃
i∈I Ui =Mn is called

an Atlas. An Atlas is said to be of class Ck (smooth) if any two given charts in the atlas are
Ck (smoothly) compatible.

Two atlases are said to be Ck (smoothly) compatible if there union is still a Ck (smooth)
atlas. Compatibility is an equivalence relation. An equivalence class of Ck (smooth) atlases
is called a Ck (smooth) differentiable structure.

1Here by smooth we mean C∞
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Definition 1.4. A manifold with a Ck (smooth) differentiable structure is called a Ck

differentiable (smooth) manifold.

When we say a chart on a differentiable manifold, we mean a chart belonging to an atlas
of the differentiable structure.

1.2 Tangent Space and Tangent bundle

Definition 1.5. A derivation on Mn at point p is an R-linear map X : C∞(Mn) → R
satisfying the product rule : X(fg) = f(p)X(g) +X(f)g(p)

It isn’t hard to see that the set of derivations at a point form a vector space. On Rn we
already know that any given directional derivative is a derivation, and we can also further
prove any given derivation is a directional derivative.

On an abstract manifold, we don’t have the notion of a geometric tangent plane in the
ambient space to define tangent space. Noting the isomorphism between TpΠ and space of
derivations at p that we observed in Rn we define tangent space for a manifold.

Definition 1.6. The tangent space of Mn at point p, denoted by TpM , is the space of
derivations on Mn at point p. An element of TpM is called tangent vector at p.

Definition 1.7. Let F : Wd → Mn , we define push-forward associated with F as F∗ :

TpW → TF (p)M such that F∗(X)(f) = X(f ◦ F ), where X ∈ TpW and f ∈ C∞(Mn).

Let i : Un ↪→Mn be the inclusion map, where Un is an neighborhood from the chart (U, ϕ)
with the induced differentiable manifold structure from Mn. Note that a derivation’s action
on a function depends only on the definition of the function in the neighborhood of p, using
this we can prove i∗ is an isomorphism between TpM and TpU , which itself is isomorphic to
Tϕ(p)ϕ(U) through ϕ∗. Using these two isomorphisms we can identify ∂

∂xi
|ϕ(p) which form a

basis in Tϕ(p)ϕ(U) with tangent vectors in TpM and denote this as ∂
∂xi

|p or ∂i|p.

Definition 1.8. A curve is a map γ : [a, b] →Mn. The velocity of the curve at t0 is defined
as γ̇(t0) = γ∗

d
dt
|t0 .

Before defining the tangent bundle, we define a vector bundle.
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Definition 1.9. Let E and M be smooth manifolds. A smooth surjection Π : E → M is a
smooth vector bundle of rank r if

1. For every p ∈ M , the set Ep:=Π−1(p) is a real vector space of dimension r, called the
‘fiber at p’;

2. Every point p ∈ M has an open neighborhood U such that there is a fiber–preserving
diffeomorphism ϕU : Π−1(U) → U × Rr that restricts to a linear isomorphism Ep →
{p} × Rr on each fiber.

Here E is called total space, M the base space, and the space Ep the fiber above p of the
vector bundle. We often say E is a vector bundle over M . This definition effectively says
that the total space is made of fibres which are vector spaces and locally the space E looks
like U × Rr.

Let us define the manifold TM made up of tangent spaces, called the tangent bundle of
M

TM := {(p, v)|p ∈Mn, v ∈ TpM} (1.2.1)

We still need to define the manifold structure and differentiable structure. Given any point
p̃ ∈ TM, p̃ = (p, v). p ∈Mn so ∃ neighborhood U of p in Mn and a chart (U, ϕ). Define

Ũ := {(p, v)|p ∈ U, v ∈ TpM}. (1.2.2)

Using the local coordinates from the chart, we can prove that Ũ is homeomorphic to ϕ(U)×Rn

. More precisely we give TM the topology such that these maps are homeomorphic. We
define TU to be homeomorphic to ϕ(U)× Rn using the map

ΦU : (p, v) → (ϕ(p), v1, v2, ...), (1.2.3)

where v = Σivi
∂
∂xi

. We give TM the topology generated by TU as U runs over all coordinate
open subsets2 of M . The transitions maps corresponding to these charts are smooth3 . Since
the charts U cover Mn, charts Ũ cover TM and hence form a smooth atlas. This makes TM
a smooth manifold. The projection map Π : (p, v) → p and ΦU defined previously satisfy
the conditions (1) and (2) in the definition of a vector bundle.

2that is the open sets U which have a corresponding chart (U, ϕ)
3assuming Mn is a smooth manifold
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Definition 1.10. The vector bundle Π : TM →M is called the tangent bundle.

Since TpM is a vector space, we naturally have its dual, the cotangent space denoted by
T ∗
pM , and tensor spaces T kl (TpM) = ⊗kT ∗

pM ⊗l TpM . Using these spaces, we can define
the cotangent bundle T ∗M and tensor bundle T kl M in the same fashion as we defined the
tangent bundle.

If Π : E →M is a vector bundle over M , a section of E is a map F :M → E such that
Π ◦ F = IdM , in other words F (p) ∈ Ep for all p. It is said to be a smooth section if it is
smooth as a map between manifolds. We denote the space of all smooth sections of vector
bundle by Γ(E).

A smooth vector (tensor) field is defined as a smooth section of the tangent (tensor)
bundle. We denote the space of all smooth vector fields by T (M) and the space of all
(k, l) tensor fields which is a smooth section of T kl M by T k

l (M). In addition, we denote the
covariant k-tensor fields (i.e., smooth sections of T k0M = T kM) by T k(M).

Definition 1.11. Let F : Wd →Mn. we define pull-back associated with F , denoted by F ∗,
as the dual map associated to the push-forward map. So F ∗ : T ∗

F (p)M → T ∗
pW

1.3 Riemannian Metric

In the thesis, we will follow the Einstein summation convention. As per this convention, if
an index occurs in a term, we will sum over that index. For example, if ei forms a basis of
tangent space at a point and v is a tangent there. Then

v = viei =
n∑
i=1

viei (1.3.1)

Definition 1.12. A Riemannian metric on a smooth manifold Mn is a 2-tensor field g ∈
T 2(M) , which is symmetric and positive definite.

Therefore given any X, Y ∈ TpM we have :

• g(X, Y ) = g(Y,X) and
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• g(X,X) > 0, if X ̸= 0

We would also use notation g(X, Y ) = ⟨X, Y ⟩ when the choice of the metric is clear from
the context.

The metric is uniquely determined in local coordinates if we know ⟨∂i, ∂j⟩ = gij. So when
defining a metric, it is sufficient to give gij in local coordinates.

The standard metric on Rn is given by

g = δij (1.3.2)

We can prove that on a smooth manifold, there always exists a Riemannian metric. We
first take the coordinate open sets Ui from chart (Ui, ϕi) and define a metric on Ui induced
by the metric4 on ϕi(Ui) and extend it to Mn using partitions of unity.

Definition 1.13. A smooth manifold Mn with a Riemannian metric g defined on it is called
a riemannian manifold (Mn, g).

Given a metric g, let gij = ⟨∂i, ∂j⟩ be the components of the metric matrix. Since g is
symmetric we have gij = gji. Then we define gij to be the components of the inverse matrix
of the metric matrix. Therefore gijgjk = δki . And similar to components of metric matrix we
have gij = gji

Definition 1.14. Given a riemannian manifold (Mn, g) change of metric on Mn to g̃ is called
conformal if g̃ = efg for some smooth function f .

Previously we defined the velocity of a curve on a differentiable manifold. Now on a
Riemannian manifold, because of the metric, we can define the speed of the at a point.

Definition 1.15. Let γ : [a, b] → Mn be a curve. Speed of the curve at t0 is defined as
∥γ̇(t0)∥ =

√
⟨γ̇(t0), γ̇(t0)⟩

Definition 1.16. Given a curve γ : [a, b] → Mn, length of the curve is defined as L(γ) =´ b
a
∥γ̇(t)∥dt.
4ϕi(Ui) being subset of Rn has a natural metric
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Definition 1.17. Given p, q ∈Mn, we define d(p, q) = inf(L(γ)) over all differentiable curves
γ from p to q.

The metric defined by the above function over Mn makes Mn into a metric space, and
the metric topology agrees with the original topology over the manifold. We shall always
assume theMn is complete as a metric space. Such Riemannian manifolds are called complete
manifolds.

1.4 Connection and Covariant derivative

Definition 1.18. Let Π : E →M be a smooth vector bundle. A connection in E is a map

∇ : T (M)× Γ(E) → Γ(E) (1.4.1)

written (X, Y ) → ∇XY satisfying the following properties :

1. ∇XY is C∞(Mn)-linear in X i.e.,
∇fX1+gX2Y = f∇X1Y + g∇X2Y for f, g ∈ C∞(Mn)

2. ∇XY is R-linear in Y i.e.,
∇XaY1 + bY2 = a∇XY1 + b∇XY2 for a, b ∈ R

3. ∇ satisfies the following product rule :
∇XfY = X(f)Y + f∇X(Y ) for f ∈ C∞(Mn)

and ∇XY is called covariant derivative of Y in the direction of X.

As a special case of the notion of a connection, we have linear(affine) connection over a
manifold ∇ : T (M)× T (M) → T (M) satisfying conditions (1), (2), and (3).

Definition 1.19. The n3 functions Γkij defined the following way :

∇∂i∂j = Γkij∂k (1.4.2)

are called the Christoffel symbols of ∇ w.r.t. the given local coordinates
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If X = X i∂i and Y = Y i∂ithen ∇XY in terms of Christoffel symbols is

∇XY = (XY k +X iY jΓkij)∂k (1.4.3)

A smooth vector field over curve γ : [a, b] →Mn is a smooth map from [a, b] to TM . Let
us denote the space of all smooth vector fields over curve γ by T (γ). A smooth vector field
is called extensible if it is a restriction of a smooth vector field defined in a neighborhood
the curve. We can now define covariant derivative of a vector field along a curve.

Definition 1.20. Given curve γ : [a.b] →Mn an let operatorDt : T (γ) → T (γ) be satisfying
the following properties:

1. It is R-linear , i.e. given V,W ∈ T (γ) and a, b ∈ R

Dt(aV + bW ) = aDt(V ) + bDt(W ) (1.4.4)

2. It satisfies the following product rule. Given any f ∈ C∞([a, b] and V ∈ T (γ)

Dt(fV ) = ḟV + fDt(V ) (1.4.5)

3. If V is extensible to Ṽ , then Dt(V ) = ∇γ̇(t)Ṽ

For any V ∈ T (γ) , Dt(V ) is then called the covariant derivative of V along curve γ.
Given a linear connection on Mn, it is easy to prove that Dt exists and is unique. So covariant
derivative along a curve is well-defined.

We have previously defined the velocity of a curve, now using covariant derivative, we
can define acceleration.

Definition 1.21. Given curve γ : [a, b] → Mn, acceleration of the curve , denoted by γ̈(t),
is defined as γ̈(t) = Dt(γ̇(t)), i.e., the covariant derivative of the velocity vector field.

Previously we defined a connection on a manifold, noting that we could differentiate
vector fields on Rn. Along the same line, we can also differentiate tensor fields on Rn. So
now we would like to extend the linear connection to tensor fields on manifolds.
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Definition 1.22. We can extend the notion of linear connection/covariant derivative w.r.t.
to a vector field to tensor fields in the following way :

1. For f ∈ T 0(M) , ∇X(f) = X(f)

2. ∇X preserves the type of tensor field.

3. ∇X commutes with contraction w.r.t. any pair of indices

4. ∇X(F ⊗G) = ∇XF ⊗G+ F ⊗∇XG

It can be proven that given a linear connection on a manifold, there exists a unique linear
connection on tensor fields such that it agrees with linear connection on the manifold.

Definition 1.23. We can define total covariant derivative5 of a tensor. Given (k, l)-tensor
field F , we define a (k + 1, l) tensor field ∇F called total covariant derivative defined by

∇F (Y1, . . . , Yk, X, ω1, . . . , ωl) = ∇XF (Y1, . . . , Yk, ω
1, . . . , ωl) (1.4.6)

Definition 1.24. A linear connection is said to be compatible with a metric or a metric
connection if for any given X, Y, Z ∈ T (M), we have

X⟨Y, Z⟩ = ⟨∇XY, Z⟩+ ⟨Y,∇XZ⟩ (1.4.7)

This equivalent to the condition that ∇Xg ≡ 0 for any X ∈ T (M).

Definition 1.25. The torsion of a connection is defined as the map T : T (M) × T (M) →
T (M) such that 6

T (X, Y ) = ∇XY −∇YX − [X, Y ] (1.4.8)

A connection is called torsion-free if the torsion of the connection is zero.

5Sometimes it is simply called the covariant derivative of a tensor
6[X,Y ] = XY − Y X ∈ T (M) called the Lie bracket. So that for any f ∈ C∞(Mn), [X,Y ](f) =

X(Y f)− Y (Xf)
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Suppose a connection is torsion-free. Then T (∂i, ∂j) = 0. Partial derivatives commute,
so [∂i, ∂j] = 0, and by definition of Christoffel symbols, we have,

T (∂i, ∂j) = ∇i∂j −∇j∂i = (Γkij − Γkji)∂k = 0 (1.4.9)

so
Γkij = Γkji (1.4.10)

We can also prove this is a sufficient condition for a connection to be torsion-free by
expressing the torsion in local coordinates and using the symmetry of Christoffel symbols in
i, j. We would get that the torsion is zero given any vector fields X and Y .

Definition 1.26. A connection on a Riemannian manifold is called a Riemannian connection
or Levi-Civita connection if it is torsion-free and a metric connection.

We can prove that there is a unique Levi-Civita connection with the Christoffel symbols:

Γlij =
1

2
[∂igjk + ∂jgki − ∂kgij]g

kl (1.4.11)

As an example, let us consider Rn with the standard metric and the connection D, which
we will call Euclidean connection, defined on it. Here

D∂i∂j = 0 = Γkij (1.4.12)

So the connection is torsion-free. gij = δij is constant over Rn, hence ∇Xg ≡ 0 for
any X ∈ T (M). So the connection is compatible with metric. Therefore the Euclidean
connection on Rn is a Levi-Civita connection.

1.5 Curvature

Definition 1.27. The curvature endomorphism w.r.t. a connection is a map R : T (M) ×
T (M)× T (M) → T (M) defined by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z (1.5.1)
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The curvature endomorphism is C∞(Mn)-multilinear and hence a (3, 1) tensor field called
the curvature tensor. The components Rl

ijk in local coordinate system are given by

R(∂i, ∂j)∂k = Rl
kij∂l (1.5.2)

In local coordinates since ∂i and ∂j commute we have [∂i, ∂j] = 0. Therefore,

R(∂i, ∂j)∂k = ∇i∇j∂k −∇j∇i∂k (1.5.3)

Hence we have
Rl
kij = ∂iΓ

l
jk − ∂jΓ

l
ik + ΓmjkΓ

l
im − ΓmikΓ

l
jm (1.5.4)

Now if we take Euclidean connection, we have Γkij = 0, so Rl
kij = 0. We conclude that

Rn has zero curvature tensor and consequently R(X, Y )Z = 0 for any X, Y, Z ∈ T (Rn).

Definition 1.28. Let M2 be a 2-dimensional Riemannian manifold with the Riemannian
connection, the Gaussian curvature is defined to be K = ⟨R(X, Y )Y,X⟩.

Definition 1.29. From the curvature endomorphism, we can also define 4-tensor field
defined by R(X, Y, Z, T ) = ⟨R(Z, T )Y,X⟩. In local coordinates it is

Rlkij = glmR
m
kij (1.5.5)

So we have K = R(X, Y,X, Y )

As you may have noticed, Gaussian curvature is defined only for 2-dimensional manifolds.
As a generalization for higher dimensional manifolds we have sectional curvature.

Definition 1.30. If X, Y ∈ TpM such that they are orthonormal, the sectional curvature
of the 2-dimensional subspace of TpM spanned by X and Y is defined as σ(X, Y ) =

R(X, Y,X, Y )

Tensors with 4 indices are too difficult to work with. So we have defined several other
curvatures which are easier to work with. We will define a few of them here.
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Definition 1.31. Ricci(Ric) tensor/curvature is 2-tensor defined as the contraction of the
(3, 1) Riemann curvature tensor. In terms of local coordinates we have

Rij := Rk
ikj (1.5.6)

Definition 1.32. Scalar curvature is defined as the trace of the Ricci tensor. In local
coordinates, we have

S = gijRij (1.5.7)

Definition 1.33. The Weyl tensor is defined on coordinate open sets as

Wijkl = Rijkl −
1

(n− 2)
(Rikgjl −Rilgjk +Rjlgik −Rjkgil) +

R

(n− 1)(n− 2)
(gjlgik − gjkgil)

(1.5.8)

It can be proven that the Weyl curvature is invariant under conformal maps, and it can
be shown that this is the conformally invariant part of the curvature endomorphism. So it
is clear that a locally conformally flat manifold will have Weyl curvature zero everywhere.
The Converse is also true; if Weyl curvature is zero everywhere on the manifold, then the
manifold is locally conformally flat.

1.6 Integration over Riemannian Manifolds

Denote Λk(TpM) to be the subspace of alternating tensors in T k(TpM). Therefore we have
ω(..., vi, ..., vj, ...) = −ω(..., vj, ..., vi, ...) for any ω ∈ Λk(TpM). We call it the space of exterior
k-forms. Wedge product over Λk(TpM) is defined by the expression

ω1 ∧ ω2 ∧ ... ∧ ωk(v1, .., vk) = det((ωi(vj))) (1.6.1)

Let Λk(M) denote the vector bundle of exterior k-forms over Mn. We will call a smooth
section of Λk(M) a differential k-forms and the space of differential k-forms by Ωk(M).

We now define the operator d : Ωk(M) → Ωk+1(M). For f ∈ Ω0(M) = T 0(M) we have
df ∈ Ω1(M) = T 1(M) such that df(X) = X(f) for X ∈ T (M).We will define it using its
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action in local coordinates. For ω ∈ Ωk(M) its expression in local coordinates is

ω =
∑

i1<...<ik

ωi1,...,ikdx
i1 ∧ ... ∧ dxik (1.6.2)

dω =
∑

i1<...<ik

dωi1,...,ik ∧ dxi1 ∧ ... ∧ dxik (1.6.3)

dω is called the differential of ω. The differential operator d has the following properties:

1. d(ω + η) = dω + dη

2. If ω is a differential k-form and η is an differential l-form, then
d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη

3. d(dω) = 0

4. f ∗(dω) = d(f ∗ω)

Let En define the lower half space of Rn i.e. En = {(x1, ..., xn)|x1 < 0}. And Ēn its
closure. We will now define a manifold with boundary in an analogous fashion to a manifold.

Definition 1.34. A Manifold with boundaryMn is a second countable, Hausdorff topological
space such that for any given point p in Mn, there exists a neighborhood U of p which is
homeomorphic to an open subset of Ēn.

The set points in Mn which have neighborhood homeomorphic to open set in Rn is called
interior of the manifold. The rest of the points are boundary of the manifold denoted by
∂M

Just like on a manifold, we can define a differentiable structure, tangent space etc., on a
manifold with boundary. So we will not elaborate on that.

Theorem 1.1. If Mn is an oriented (smooth) n-manifold with with boundary and ∂M is non
empty, then ∂M is a (smooth) n−1-manifold without boundary and with natural orientation
induced from Mn
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We will first define integration of differential n-form Rn and then extend it to manifolds.

Suppose ω is a compactly supported differential n-form on Rn. And U is an open set
that contains the support of the differential form. Suppose ω = fdx1 ∧ ... ∧ dx2.

ˆ
U

ω :=

ˆ
U

f (1.6.4)

That is, we are defining the integration of a differentiable n-form to be the integration of
a function which we know from standard integration theory on Rn.

Definition 1.35. Suppose ω is compactly supported differential n-form on an oriented
differentiable(smooth) manifold Mn. And (Ui, ϕi)i∈I is an atlas over Mnthat is compatible
with the orientation. (αi)i∈I be the partition of unity subordinate to the open sets Ui. And
ω = fidx

1 ∧ ... ∧ dxn w.r.t local coordinates over Ui. Then
ˆ
M

ω :=
∑
i∈I

ˆ
ϕ(Ui)

(fiαi) ◦ ϕ−1
i dx1 ∧ ... ∧ dxn (1.6.5)

We can prove that the integral does not depend on the choice of atlas or particular
partition of unity.

Let i : ∂M ↪→Mn be the natural inclusion map. If ω be a differential n− 1-form on Mn.
Then i∗ω is a differential n− 1-form over ∂M , we will identify i∗ω with ω for the following
theorem.

Theorem 1.2 (Stoke’s Theorem). Let Mn be an oriented differentiable manifold with bound-
-ary and ω a differential n − 1-form on it. Let ∂M be oriented manifold with natural
orientation induced from Mn . Then

ˆ
M

dω =

ˆ
∂M

ω (1.6.6)

Definition 1.36. Let Mn be an oriented Riemannian manifold. A an atlas compatible with
the orientation. Let (x1, ..., xn) be local coordinates w.r.t some chart in the atlas. We define
a differential n-form dη over Mn. In local coordinates, it has the following expression

dη =
√

|g|dx1 ∧ ... ∧ dxn (1.6.7)
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where |g| = |det(gij)|. We will call this the Riemannian volume form.

We can check that dη is well defined by checking that the volume form gives the same
differential form even in different local coordinates in the same neighborhood.

In Rn gradient of a function f is vector field such that ⟨gradf, vp⟩ = d
dv
f |p. This we

recognize as v(f), where v ∈ TpRn. We generalize this notion to manifolds.

Definition 1.37. For any f ∈ T 0(M), gradf ∈ T (M), such that ⟨gradf,X⟩ = df(X) =

X(f)

In local coordinates gradf = gij(∂if)∂j

We know that on Rn, grad f = ∇f . On a manifold from the definition we used, ∇f
denotes the covariant derivative7 of f , which is a 1-form. But when the context is clear that
∇f is being used as vector fields instead of a form, we will use ∇f = grad f .

We define interior multiplication of a differential k-form ω by X .This is denoted by iXω
, where iXω is a differential k − 1-form defined by iXω(V1, ..., Vk−1) = ω(X, V1, ..., Vk1)

Definition 1.38. For X ∈ T (M), divX∈ T 0(M), defined by d(iXdη) = divXdη. We call it
divergence of X.

iXdη(V1, ..., Vn−1) =
√

|g|dx1 ∧ ... ∧ dxn(X, V1, .., Vn−1) (1.6.8)

=
√

|g|(−1)i−1X idx1 ∧ ... ∧ d̂xi ∧ ... ∧ dxn(V1, ..., Vn−1) (1.6.9)

Herêmeans we are ignoring that term in the wedge product. So we have

iXdη =
√

|g|(−1)i−1X idx1 ∧ ... ∧ d̂xi ∧ ... ∧ dxn (1.6.10)

Operating d to the above equation we get that divX = 1√
|g|
∂i(
√

|g|X i) = ∂iX
i +X lΓili.

7which is also the exterior derivative
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We will now define Laplacian on manifolds. On Rn, ∆f = −div(grad(f))(or just
div(grad(f)) depending on convention). We will generalize this to manifolds.

Definition 1.39. Let f be a smooth function on Mn. ∆f := −div(grad(f)). In local
coordinates

∆f = − 1√
|g|
∂j(
√

|g|gij∂if) (1.6.11)

Let f be a compactly supported continuous function. We define integral of f over Mn as
ˆ
M

fdV =

ˆ
M

fdη (1.6.12)

Once we have defined the integral for compactly supported continuous functions, we can
extend this to all functions and define a Lesbegue integral over the Riemannian manifold.
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Chapter 2

Sobolev Spaces on Rn and closed
Riemannian manifolds

2.1 Weak Derivatives and Sobolev Spaces on Rn

Definition 2.1. Let u, v ∈ L1
loc(Ω), where Ω is an open subset of Rn. v is called αth-weak

derivative of u if for every ϕ ∈ C∞
c (Ω) we have

ˆ
Ω

uDαϕdx = (−1)|α|
ˆ
Ω

vϕdx (2.1.1)

We denote αth-weak derivative of u as Dαu = v. Here α is a multi-index. So α =

(α1, . . . , αn).

Dαu =
∂|α|u

∂α1x1 . . . ∂αnxn
(2.1.2)

We define Sobolev spaces over domains on Rn.

Definition 2.2. W k,p(Ω) = {u : Ω → R|u ∈ Lp(Ω) and if the αth-weak derivative Dαu ∈
Lp(Ω) for all α such that 0 ≤ |α| ≤ k}
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Definition 2.3. We define a norm on W k,p(Ω). Let ϕ ∈ W k,p(Ω)

∥ϕ∥Wk,p(Ω) :=
∑
|α|≤k

∥Dαϕ∥Lp(Ω) 1 ≤ p ≤ ∞ (2.1.3)

Sobolev Space W k.p(Ω) is a Banach space w.r.t. this norm.

Definition 2.4. Hk,p(Ω) := Closure of {u ∈ Ck(Ω)|∥u∥Wk,p(Ω) < ∞} w.r.t. the norm
∥ · ∥Wk,p(Ω) in W k,p(Ω), when 1 ≤ p <∞.

According to a theorem of Meyers and Serrin we have Hk,p(Ω) = W k,p(Ω), for any open
set Ω ∈ Rn.

Just like we defined W k,p(Ω) and Hk,p(Ω) we can define W k,p
0 (Ω) or Hk,p

0 (Ω).

Definition 2.5. W k,p
0 (Ω) = Hk,p

0 (Ω) := Closure of Ck
c (Ω) w.r.t the norm ∥ · ∥Wk,p(Ω) in

W k,p(Ω) when 1 ≤ p <∞. W k,∞
0 := W k,∞(Ω) ∩W k,1

0 (Ω) when p = ∞.

We will now look at some essential properties of Sobolev spaces.

1. W k,p(Ω) and W k,p
0 (Ω) are Banach spaces.

2. W k,p(Rn) = W k,p
0 (Rn).

Theorem 2.1 (Extension theorem). Assume Ω is bounded and ∂Ω is C1. Select a bounded
open set V such that U ⊂⊂ V . Then there exists a bounded linear operator

E : W 1,p(Ω) → W 1,p(Rn) (2.1.4)

such that for each u ∈ W 1,p(Ω) :

1. Eu = u a.e on Ω

2. Eu has support in V

3. ∥Eu∥W 1,p(Rn) ≤ C(p, U, V )∥u∥W 1,p(Ω)
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It is clear that W 1,p(Ω) is a subspace of Lp(Ω). We would like to know more about this
embedding. Let x and Y be two Banach spaces, such that X ⊂ Y . The inclusion map
i : X ↪→ Y is continuous if and only if there exists a constant C such that for all x ∈ X, we
have

∥x∥Y ≤ C∥x∥X . (2.1.5)

If this is true, we say that X is continuously embedded in Y . Furthermore, i is compact
if each bounded sequence in X is precompact in Y . Then we say that X is compactly
embedded in Y . We denote it by X ⊂⊂ Y.

Theorem 2.2 (Gagliardo-Nirenberg-Sobolev Inequality). Assume 1 ≤ p < n. There exists
C(p, n) such that

∥u∥Lp∗ (Rn) ≤ C(p, n)∥Du∥Lp(Rn) (2.1.6)

where 1/p∗ = 1/p− 1/n, for all C∞
c (Rn).

Using the density of C∞
c (Rn) in W 1,p(Rn) this inequality essentially establishes that

the embedding W 1,p(Rn) into Lp
∗
(Rn) is continuous. Also, now since W 1,p is naturally

continuously embedded in Lp, using the interpolation theorem gives the following.

Theorem 2.3 (Sobolev Embedding on Rn). Assume 1 ≤ p < n and u ∈ W 1,p(Rn). For
q ∈ [p, p∗] we have

∥u∥Lq(Rn) ≤ C∥u∥W 1,p(Rn) (2.1.7)

The extension theorem can now be used to prove the Sobolev embedding for bounded
domains.

Theorem 2.4 (Sobolev Embedding on bounded domains). Let Ω be a C1 bounded domain
of Rn. Assume 1 ≤ p < n and u ∈ W 1,p(Ω). For q ∈ [1, p∗] we have

∥u∥Lq(Ω) ≤ C∥u∥W 1,p(Ω) (2.1.8)

In the case of W 1,p
0 , there is a natural extension by zero. And this extension is continuous,

so we have a special Sobolev type inequality for functions in W 1,p
0 (Ω).

Theorem 2.5 (Poincaré- Sobolev Inequality). Let Ω be a bounded domain of Rn. Assume
1 ≤ p < n and u ∈ W 1,p

0 (Ω). For q ∈ [1, p∗] we have

∥u∥Lq(Ω) ≤ C∥Du∥Lp(Ω) (2.1.9)
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The following can be established by a slight variation in the proof of Gagliardo-Nirenberg
inequality.

Theorem 2.6 (Sobolev embedding for the case p = n on Rn). Assume p = n and u ∈
W 1,p(Rn). For q ∈ [n,∞) we have

∥u∥Lq(Rn) ≤ C∥u∥W 1,n(Rn) (2.1.10)

Theorem 2.7 (Sobolev Embedding on bounded domains for the case p = n). Let Ω be a
C1 bounded domain of Rn. Assume p = n and u ∈ W 1,p(Ω). For q ∈ [1,∞) we have

∥u∥Lq(Ω) ≤ C∥u∥W 1,n(Ω) (2.1.11)

We recall that the norm on Hölder space(Ck,γ(Ω̄)) is given by

∥u∥Ck,γ(Ω̄) =
∑

0≤|α|≤k

∥Dαu∥C(Ω̄) +
∑
|α|=k

[Dαu]C(Ω̄) (2.1.12)

where
[u]C(Ω̄) = sup

x,y∈Ω
x ̸=y

|u(x)− u(y)|
|x− y|γ

(2.1.13)

Remark 2.1.1. The definition of Hölder spaces changes slightly for Riemannian manifolds,
where the Riemannian distance dist(x, y) replaces |x− y|

Theorem 2.8 (Morrey’s Inequality). Assume n < p ≤ ∞. Then there exists a constant C,
depending only on p and n, such that

∥u∥C0,γ(Rn) ≤ C∥u∥W 1,p(Rn) (2.1.14)

for all u ∈ C1(Rn), where γ = 1− n/p.

Theorem 2.9 (Sobolev Embedding for bounded domains, p > n). Let Ω be a bounded
domain of Rn, and suppose ∂Ω is C1. Assume n < p ≤ ∞, and u ∈ W 1,p(Ω). Then for
γ = 1− n/p we have

∥u∥C0,γ(Ω̄) ≤ C∥u∥W 1,p(Ω). (2.1.15)

In fact, for 0 ≤ α ≤ γ, W 1,p(Ω) continuously embeds into C0,α(Ω̄).
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The General Sobolev inequalities follow from the above specific inequalities. The idea is
to use Gagliardo-Nirenberg inequality or Morrey’s inequality on high enough derivatives of
u and drop the regularity by one.

Theorem 2.10 (General Sobolev Inequalities). Let Ω be a bounded domain of Rn, with a
C1 boundary. Assume u ∈ W k,p(Ω).

1. If k < n/p, then u ∈ Lq(Ω), where 1/q = 1/p− k/n and

∥u∥Lq(Ω) ≤ C∥u∥Wk,q(Ω) (2.1.16)

2. If k > n/p, then u ∈ Ck−[np ]−1,γ(Ω̄), where

γ =


[
n
p

]
+ 1− n

p
, if n/p is not an integer

any positive number < 1, if n/p is an integer
(2.1.17)

and
∥u∥

C
k−[np ]−1,γ

(Ω̄)
≤ C∥u∥Wk,p(Ω̄). (2.1.18)

Theorem 2.11 (Rellich-Kondrakov Compactness Theorem). Assume Ω is a bounded domain
in Rn with a C1 boundary. Suppose

1. 1 ≤ p < n, then
W 1,p(Ω) ⊂⊂ Lq(Ω) (2.1.19)

for each q ∈ [1, p∗).

2. p = n, then
W 1,n(Ω) ⊂⊂ Lq(Ω) (2.1.20)

for each q ∈ [1,∞)

3. n < p, then
W 1,p(Ω) ⊂⊂ C0,α(Ω̄) (2.1.21)

for each α ∈ [0, 1− n/p)

W 1,p(Ω) is not compactly embedded in the limiting space in all the above three cases.
That is, the continuous embeddings
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1. W 1,p(Ω) ↪→ Lp
∗
(Ω) when p < n,

2. W 1,p(Ω) ↪→ L∞(Ω) when p = n,

3. W 1,p(Ω) ↪→ C0,1−n/p(Ω̄) when p > n

are not compact.

We will give the standard counterexaple for this. Consider a non zero smooth function
u compactly supported in unit ball B centered at origin. Let uλ(x) = λ

n−p
p u(λx). This

sequence of functions can be used to prove lack of compactness in all three cases. We will
discuss how this sequence contradicts compactness in the first case.

We have ∥u∥Lp(B) = ∥uλ∥Lp∗ (B). But as λ → ∞ we can check that ∥uλ∥Lp(B) → 0 and
∥uλ∥W 1,p(B) is uniformly bounded. This should imply that there is subsequence converging
to zero if the embedding is infact compact. But as we know ∥u∥Lp(B) = ∥uλ∥Lp∗ (B) > 0, the
limit cannot be zero. This contradiction implies the lack of compactness.

2.2 Sobolev Spaces on Riemannian manifold

The above theorems on Rn and bounded domains of Rn have appropriate counterparts for
Sobolev spaces on compact Riemannian manifolds. But first, we need to define Sobolev
spaces on Riemannian manifolds.

Definition 2.6. Let (Mn, g) be a smooth Riemannian manifold and ϕ ∈ Ck(Mn), where
integer k ≥ 0. We define

|∇ku|2 = ∇α1∇α2 . . .∇αku∇α1∇α2 . . .∇αk
u (2.2.1)

Notice that αi are multi indices of order 1, and we are following the Einstein summation
convention.

In particular |∇0u|2 = |u|2, |∇1u|2 = |∇u|2 = ∇νu∇νu.

∇ku will mean any kth (total) covariant derivative of u.
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Notice that on Rn

|∇ku|2 =
∑
|α|=k

|α|!
α!

|Dαu|2 (2.2.2)

We define Ck,p(Mn) := {u ∈ C∞(Mn)||∇lϕ| ∈ Lp(Mn) for integers l,k such that 0 ≤ l ≤ k

and real p ≥ 1}

We now define Sobolev spaces on Riemannian manifolds as completion of the above space
like we have Sobolev of spaces on open subsets of Rn as the closure of certain subspace of
Ck(Ω).

Definition 2.7. The Sobolev Spaces W k,p(Mn) := Completion of Ck,p(Mn) w.r.t. norm

∥u∥Hk,p =
k∑
l=0

∥∇lu∥Lp(Mn) (2.2.3)

W k,p
0 (Mn) is defined similarly as the completion of C∞

c (Mn) w.r.t. the above norm.

We can see W k,p(Mn) as subspaces of Lp(Mn). Notice that if (un) is a Cauchy sequence
in Ck,p(Mn), then it is also a Cauchy sequence in Lp(Mn). So we can define W k,p(Mn) as
completion of Ck,p(Mn) in Lp(Mn). Suppose un → u ∈ W k,p(Mn). We can define the norm
of u to agree with the above norm by defining |∇lu| = limn→∞ |∇lun|. Now we can define
∥u∥Wk,p the same way. We can check W k,p(Mn) is Banach space.

The general idea for proving these theorems on compact manifolds is to prove the
theorems on coordinate charts using the theorems on Ω ∈ Rn and combine them using
partitions of unity. Or, more specifically, given any smooth function, we split it using
partitions of unity and establish continuity or compactness for these partitioned functions.
And then prove this extends for the entire function. Morrey’s inequality has a slightly
different proof, but it still can be established by using Morrey’s inequality on Ω ∈ Rn.

We have proved the continuity of Sobolev embedding and established a Sobolev inequality.
But the inequality doesn’t have the optimal constant of inequality. This optimal inequality
turns out to be central to the Yamabe problem. For Rn, Talenti already obtained the value
of the optimal constant and the extremizers. Aubin then proved that the same constant
works as the optimal cosntant for not just Rn but all compact Riemannian manifolds. Here
we will give Aubin’s proof for the optimal constant on Rn and Sn.
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2.2.1 Aubin’s Theorem

Theorem 2.12. If 1 ≤ p < n, for all u ∈ W 1,p(Rn)(same proof works for Sobolev spaces
over Sn and Hn)

∥u∥Lp∗ (Rn) ≤ K(n, p)∥∇u∥Lp(Rn) (2.2.4)

where 1/p∗ = 1/p− 1/n and

K(n, p) =
p− 1

n− p

[
n− p

n(p− 1)

]1/p [
Γ(n+ 1)

Γ(n/p)Γ(n+ 1− n/p)ωn−1

]1/n
(2.2.5)

for 1 < p < n, and

K(n, 1) =
1

n

[
n

ωn−1

]1/n
, (2.2.6)

where Γ(n) is the Gamma function and ωn = vol(Sn).

K(n, p) is the norm of embedding W 1,p(Rn) ↪→ Lp
∗
(Rn)and it is by the functions of the

form
u(x) =

(
λ+ ∥x∥p/(p−1)

)1−n/p
(2.2.7)

where λ is a real number.

The proof involves broadly three steps

1. Approximating a bounded smooth functions by “nice” smooth functions with no dege-
-nerate critical points.

2. Symmetrize these functions radially and prove that the problem reduces to proving the
Sobolev inequality for these symmetrized functions

3. Sobolev inequality for these radially symmetric functions is essentially an inequality in
functions of one variable. This is then proved using a lemma proved by Bliss.

The complete proof is available in Aubin[1]. We will now simply state the various
propositions involved in the above three steps.

Proposition 2.2.1. Let Mn be a Riemannian manifold. Given any bounded smooth functions
f : Mn → R and ϵ > 0, there exists a smooth function g which has no degenerate critical
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points, such that |f(x) − g(x)| < ϵ for all x ∈ Mn. Furthermore, g can be chosen so that
over any given a compact set K we have |∇f −∇g| < ϵ.

A point p is a critical point of a differentiable function f if ∇f(p) = 0. A critical point is
non-degenerate if the Hessian matrix (∂i∂jf) at that point p is nonsingular. A nondegenerate
critical point is isolated. This is obvious on R. We have Hessian as the second derivative
, which is non-zero at a critical point (where derivative = 0). Since the derivative of the
derivative is non-zero, the critical point is isolated (derivative increases/decreases in the
neighborhood of the critical point). We generalize this to higher dimensions. We have Morse
lemma, which states that in the neighborhood of a nondegenerate critical point, there is a
chart on which the function is of the form f(x) = f(0)+ x21 + . . . x2k− x2k+1 − . . .− x2n. Using
this, we can prove that the nondegenerate critical points are isolated.

Proposition 2.2.2. Let f ∈ C∞
c (Mn) such that f ̸≡ 0 and suppf = K. There exists

continuous functions (fm) such that

1. fm → f in W 1,p(Mn)

2. suppfm = Km ⊂ K and ∂Km is n− 1 dimensional submanifold of Mn

3. fm is C∞ on Km

4. fm has no degenerate critical points in Km

The proof of this proposition involves taking the approximating functions in the previous
proposition and modifying them slightly so that the new functions approximate not just
uniformly but in the Sobolev norm.

Proposition 2.2.3. Let Σ be Sn, Rn or Hn. Consider a non-negative function f ∈ C∞
c (Σ)

with support K is such that ∂K is either empty or an n− 1 dimensional submanifold. Also,
suppose that f has only nondegenerate critical points on K. Choose P ∈ Σ. We will now
define g(r), a decreasing function on [0,∞). We define g(r) such that

µ({Q|g[d(P,Q)] ≥ a}) = µ({Q|f(Q) ≥ a}) = ψ(a). (2.2.8)

So
g(r) = sup{a|µ(Br(P )) ≥ ψ(a)} (2.2.9)
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Then
∥∇g∥Lp(Mn) ≤ ∥∇f∥Lp(Mn) for 1 ≤ p <∞ (2.2.10)

Proof. We perform Schwarz symmetrization on the function f . Because of how the function
f is defined, f has finitely many critical points, and we can use the co-area formula.

So we can express the Lp norm of ∇f in terms of integrals on level sets. A clever
application of Hölder’s inequality and the isoperimetric inequality gives the required result.

We can prove that g is Lipschitz continuous and hence absolutely continuous on [0,∞).

Proposition 2.2.4. Let g(r) be a decreasing function absolutely continuous on [0,∞), and
equal to zero at infinity. Then :

(ωn−1)
−1/n

(ˆ ∞

0

|g(r)|p∗rn−1dr

)1/p∗

≤ K(n, p)

(ˆ ∞

0

|g′(r)|prn−1dr

)1/p

, (2.2.11)

where K(n, p) is from Thm 2.12

The proof of this final proposition is a direct consequence of the following lemma by
Bliss. An appropriate change of variables, i.e., x = r(p−n)/(p−1), immediately gives the above
proposition.

Lemma 2.2.5 (Bliss). [2] Let p∗, p be constants such that p∗ > p > 1, and let f : [0,∞) → R,
such that f(x) ≥ 0 and

J(f) =

ˆ ∞

0

fpdx (2.2.12)

is given and finite. Then the integral

y(x) =

ˆ ∞

0

fdx (2.2.13)

is finite for all x and

I(f) =

ˆ ∞

0

yp
∗

xp∗−l
dx ≤ K̃

(ˆ ∞

0

fpdx

)p∗/p
= K̃Jp

∗/p, (2.2.14)
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where p∗/n = l = p∗/p− 1

K̃ =
1

p∗ − l − 1

[
lΓ(p∗/l)

Γ(1/l)Γ((p∗ − 1)/l)

]l
=

n− p

n(p− 1)

[
Γ(n)

Γ(n/p)Γ(n− n/p+ 1)

]p∗/n
(2.2.15)

and equality is attained for the function of the form

f =
c

(dxl + 1)(l+1)/l
=

c

(dxl + 1)n/p
(2.2.16)

or
y =

cx

(dxl + 1)1/l
(2.2.17)

In solving the Yamabe problem, the constant K(n, 2) plays the central role.
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Chapter 3

Regularity

The way we solve the Yamabe problem involves first proving the existence of a solution
and then proving that this solution is smooth. In order to prove this smoothness, we need
regularity theory. Regularity theory informs us about the regularity of a weak solution to
a PDE. Being a weak solution already gives requires the solution to exist in some Sobolev
space. For example a weak solution of ∆u = f , where f ∈ C∞

c , belongs to W 1,2(Ω). But
we can prove that this weak solution is, in fact, smooth.

3.1 L2 Regularity

3.1.1 Caccioppoli inequality

Theorem 3.1 (Caccioppoli inequality). Let u ∈ W 1,2(Ω) be a weak solution to ∆u = 0 on
Ω. That is ˆ

Ω

⟨∇u,∇φ⟩ dx = 0 ∀φ ∈ W 1,2
0 (Ω) (3.1.1)

Then for each x0 ∈ Ω, 0 < ρ < R ≤ dist(x0, ∂Ω) we have

ˆ
Bρ(x0)

|∇u|2dx ≤ c

(R− ρ)2

ˆ
BR(x0)\Bρ(x0)

|u− λ|2dx, ∀λ ∈ R (3.1.2)
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for some universal constant c.

The above inequality can be generalized for elliptic equations too.

Definition 3.1. Consider the partial differential equation over Ω

−div(A∇(u)) = f − divF, (3.1.3)

where A is a linear operator over Rn for each x ∈ Ω. This PDE is called uniformly elliptic
if

⟨Av, v⟩ ≥ λ∥v∥2 ∀v ∈ Rn (3.1.4)

for all x ∈ Ω and some constant λ > 0.

Theorem 3.2. Let u ∈ W 1,2(Ω) be a weak solution to the uniformly elliptic equation

−div(A∇(u)) = f − divF, (3.1.5)

on Ω with f, F ∈ L2(Ω) and A ∈ L∞(Ω). Then for any ball BR(x0) ⊂ Ω and 0 < ρ < R the
following Caccioppoli inequality holds:

ˆ
Bρ(x0)

|∇u|2dx ≤ c

{
1

(R− ρ)2

ˆ
BR(x0)\Bρ(x0)

|u− ξ|2dx+R2

ˆ
BR(x0)

f 2dx+

ˆ
BR(x0)

|F |2dx

}
(3.1.6)

for any ξ ∈ R and some constant c = c(λ,Λ). where

⟨Av, v⟩ ≥ λ∥v∥2 ∀v ∈ Rn and ∥A∥L∞(Ω) = Λ (3.1.7)

Proof. The idea of the proof is the same as the proof for Caccioppoli inequality for harmonic
functions. First we define a cut-off function η ∈ C∞

c (Ω) such that

1. 0 ≤ η ≤ 1

2. η ≡ 1 on Bρ(x0) and η ≡ 0 on Ω\BR(x0)
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3. |∇η| ≤ 2
R−ρ

For now let us assume f = 0. We now consider the test function φ = (u − ξ)η2. Using the
fact that u is a weak solution and uniform ellipticity, we get

λ

ˆ
BR(x0)

η2|∇u|2dx ≤−
ˆ
BR(x0)

2η⟨A∇u,∇η⟩(u− ξ)dx+

ˆ
BR(x0)

2⟨F,∇η⟩(u− ξ) +

ˆ
BR(x0)

η2⟨F,∇u⟩dx

=:(i) + (ii) + (iii)

(3.1.8)

Now using the Young’s inequality 2ab ≤ ϵa2 + b2

ϵ
and the properties of η we get

(i) ≤ ϵΛ

ˆ
BR(x0)

η2|∇u|2dx+ 4Λ

ϵ(R− ρ)2

ˆ
BR(x0)\Bρ(x0)

|u− ξ|2dx

(ii) ≤ 4

(R− ρ)2

ˆ
BR(x0)\Bρ(x0)

|u− ξ|2dx+
ˆ
BR(x0)

|F |2dx

(iii) ≤ ϵΛ

ˆ
BR(x0)

η2|∇u|2dx+ 1

4ϵΛ

ˆ
BR(x0)

|F |2dx

(3.1.9)

Choosing ϵ = λ
4Λ

and simplifying, we get the desired result. In case f ̸= 0, translate the
system to origin and consider the PDE:

−∆v =f̄ in B1(0) (3.1.10)

v =0 on ∂B1(0) (3.1.11)

Let v be a weak solution of the PDE. Now using the weak formulation with v as test function
and using Young’s inequality and Poincaré inequality we get

ˆ
B1(0)

|∇v|2dx ≤
ˆ
B1(0)

|f̄v|dx (3.1.12)

≤ Cϵ

ˆ
B1(0)

|∇v|2dx+ 1

ϵ

ˆ
B1(0)

|f̄ |2dx (3.1.13)

So we have
´
B1(0)

|∇v|2dx ≤ C
´
B1(0)

|f̄ |2dx Now making a scaling argument we get

ˆ
BR(0)

|∇v̄|2dx ≤ CR2

ˆ
BR(0)

|f̄ |2dx (3.1.14)
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Translating v̄ bacl to original system and defining F̄ as gradient of translated v̄ and going
to previous case, we get the Caccioppoli inequality.

The theorems of interior and boundary regularity depend on the following important
properties of weak derivatives. Just like how the limit of the difference quotient gives the
classical derivatives for smooth functions, these quotients also give weak derivatives. Except
limit is not a pointwise limit, but in the sense of limit in a function space.

3.1.2 Difference Quotient

Definition 3.2 (Difference Quotient). Given a function u : Ω → Rm , an integer s ∈
{1, . . . , n} and h > 0 we define the difference quotient

τh,su(x) :=
u(x+ hes)− u(x)

h
, ∀x ∈ Ωs,h := {x ∈ Ω|x+ hes ∈ Ω} (3.1.15)

where es = (0, . . . , 1, . . . , 0) ∈ Rn with 1 in s-th position.

We can easily check the following properties hold if u ∈ W 1,p(Ω)

1. τh,su(x) ∈ W 1,p(Ωs,h) for each h fixed.

2. τh,s∇u = ∇τh,su

3. If u or v is compactly supported in Ω we have
ˆ
Ω

uτh,svdx = −
ˆ
Ω

vτ−h,sudx (3.1.16)

4. Leibniz’s Rule holds

Proposition 3.1.1. Let 1 < p <∞ and Ω0 ⊂⊂ Ω. Then

1. There is constant c(n) such that, for every u ∈ W 1,p(Ω) and s = 1, . . . , n we have

∥τh,su∥Lp(Ω0) ≤ c∥∇u∥Lp(Ω), |h| < dist(Ω0, ∂Ω)

2
(3.1.17)
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2. If u ∈ Lp(Ω) and there exists L ≥ 0 such that, for every h < dist(Ω0, ∂Ω), s = 1, . . . , n

we have
∥τh,su∥Lp(Ω0) ≤ L (3.1.18)

then u ∈ W 1,p(Ω0), ∥∇u∥Lp(Ω0) ≤ L and τh,s → ∇su in Lp(Ω0) as h→ 0

3.1.3 Interior Regularity

Theorem 3.3. Let u ∈ W 1,2Ω be a weak solution of the uniformly elliptic equation

−div(A∇u) = f − divF (3.1.19)

where f ∈ L2(Ω), F ∈ W 1,2(Ω) and A is lipschitz on Ω. Then u ∈ W 2,2
loc (Ω) and for any

relatively compact subset Ω0 of Ω we have

∥D2u∥L2(Ω0) ≤ c(∥u∥L2(Ω) + ∥f∥L2(Ω) + ∥DF∥L2(Ω)) (3.1.20)

where c depends on Ω0,Ω, ellpiticity and lipschitz constants of A.

Proof. Since u is a weak solution, we have
ˆ
Ω

⟨A∇u,∇φ⟩dx =

ˆ
Ω

fφdx+

ˆ
Ω

⟨F,∇φ⟩dx, ∀φ ∈ W 1,2
0 (Ω). (3.1.21)

We once again assume f = 0. Now let us use the test function φ(x+ hes) we get
ˆ
Ω

⟨A(x+ hes)∇u(x+ hes),∇φ⟩dx =

ˆ
Ω

⟨F (x+ hes),∇φ⟩dx (3.1.22)

Subtracting the above two equations
ˆ
Ω

⟨A(x+ hes)∇τh,su,∇φ⟩dx+ ⟨τh,sA∇u,∇φ⟩dx =

ˆ
Ω

⟨τh,sF,∇φ⟩dx (3.1.23)

Notice τh,su is a solution to weak formulation of the uniformly elliptic equation on Ω0. So
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we apply Caccioppoli inequality on some B4R(x0) ⊂ Ω0

ˆ
BR(x0)

|τh,s∇u|2dx ≤ c

R2

ˆ
B2R(x0)

|τh,su|2dx+ c

ˆ
B2R(x0)

|τh,sA|2|∇u|2dx

+ c

ˆ
B2R(x0)

|τh,sF |2dx
(3.1.24)

As h → 0 the three terms are bounded (since A is lipschitz and u, F ∈ W 1,2(Ω))hence the
difference quotient is L2 implying ∇u ∈ W 1,2(BR(x0)). Taking h → 0 and Caccioppoli, we
get ˆ

BR(x0)

|D2u|2dx ≤ c1(R,L)

ˆ
B4R(x0)

|u|2dx+
ˆ
B2R(x0)

|DF |2dx (3.1.25)

where L is lipschitz constant of A. Now we can cover the domain Ω0 with finitely many such
balls to get the desired result.

For the case f ̸= 0 we take weak solution ũ of the equation −∆ũ = f and notice that
f = −divF̃ , where F̃ = ∇ũ. Now we can reduce this problem to the previous case.

Theorem 3.4. Assume that u ∈ W 1,2(Ω) is a weak solution to the unfiormly elliptic equation

−div(A∇u) = f − divF (3.1.26)

and for some integer k > 0 we have A ∈ Ck,1(Ω), f ∈ W k,2(Ω) and F ∈ W k+1,2(Ω). Then
u ∈ W k+2,2

loc (Ω) and for any relatively compact set Ω0 of Ω, we have

∥Dk+2u∥L2(Ω0) ≤ c(∥u∥L2(Ω) + ∥f∥Wk,2(Ω) + ∥DF∥Wk,2(Ω)) (3.1.27)

where c depends on Ω0,Ω and the lipschitz constant of DkA

Proof. The proof goes by induction on k. The case k = 0 is already proved in the previous
theorem. As the induction hypothesis, we assume the theorem to prove is valid for k − 1

and confirm it is true for k. Choose the test function φ = ∂ψ
∂xs

for 1 ≤ s ≤ n and some
ψ ∈ C∞

c (Ω). By integration of parts, we get

ˆ
Ω

〈
∂(A∇u)
∂xs

,∇ψ
〉
dx =

ˆ
Ω

∂f

∂xs
ψdx+

ˆ
Ω

〈
∂F

∂xs
,∇ψ

〉
dx (3.1.28)
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which becomes
ˆ
Ω

〈
A∇

(
∂u

∂xs

)
,∇ψ

〉
dx =

ˆ
Ω

∂f

∂xs
ψdx+

ˆ
Ω

〈
∂F

∂xs
− ∂A

∂xs
∇u,∇ψ

〉
dx. (3.1.29)

Consider a set Ω̃ such that Ω0 ⊂⊂ Ω̃ ⊂⊂ Ω. With this formulation it is clear that ∂u/∂xs is
weak solution to uniformly elliptic PDE with f̃ = ∂f/∂xs ∈ W k−1,2(Ω̃) and ∂F

∂xs
− ∂A

∂xs
∇u ∈

W k,2(Ω̃). From induction hypothesis we get ∂u/∂xs ∈ W k+1,2(Ω0) and hence u ∈ W k+2,2(Ω0).
The inequality also follows easily from considering the same PDE and using the induction
hypothesis.

Remark 3.1.1. From the above theorem, we can prove using the Sobolev embedding that if
A,F, f are C∞(Ω), then the weak solution is also C∞(Ω).

3.1.4 Boundary Regularity

With the assumptions of the previous theorem, we can prove that the solution is also
W k+2,2(Ω) and not just locally. That is, the regularity of the solution holds till the boundary
of the domain and not just in the interior.

Theorem 3.5. Let the hypothesis of the previous theorem be in force. In addition assume
that ∂Ω is Ck+2 and u − g ∈ W 1,2

0 (Ω) for a given g ∈ W k+2,2(Ω). Then u ∈ W k+2,2(Ω), we
have

∥Dk+2u∥L2(Ω) ≤ c(∥f∥Wk,2(Ω) + ∥DF∥Wk,2(Ω) + ∥g∥Wk+2,2(Ω)) (3.1.30)

Proof. Replacing u by u − g we see no loss of generality, so we may assume u ∈ W 1,2
0 (Ω).

The basic idea of most of the proof is already in the previous theorem. Because we want a
result applicable to all of Ω, we have some balls which intersect the boundary. We flatten
this boundary using Ck diffeomorphism. We can then redefine the coefficients of transformed
PDE so that the weak solution u transforms into a weak solution ũ of transformed PDE.
Clearly ũ ∈ W k+2,2(D̃) iff u ∈ W k+2,2(D).

In the previous proof, we translated the equation and used a differece quotient to establish
the regularity. In this, we also have a boundary, so translating PDE is not possible in the
direction normal to the boundary. So we get estimates for all partial derivatives except
∂2u/∂xn∂xn. Here we use the weak formulation to isolate ∂2u/∂xn∂xn on one side and use
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duality to get an estimate over its norm. This estimate would include on the RHS ∥u∥L2

which can again be bounded using Poincaré’s inequality. Substituting u− g in place of u we
get

∥D2(u− g)∥L2(Ω) ≤ c(∥∇(u− g)∥L2(Ω) + ∥f̃∥L2(Ω) + ∥DF̃∥L2(Ω)) (3.1.31)

i.e,
∥D2u∥L2(Ω) ≤ c(∥∇u∥L2(Ω) + ∥∇g∥W 1,2(Ω) + ∥f̃∥L2(Ω) + ∥DF̃∥L2(Ω)) (3.1.32)

Taking u−g as the test function in the weak formulation and Hölder and Poincaré inequality,
we get

λ∥∇u∥2L2(Ω) ≤
λ

2
∥∇u∥2L2(Ω) +

c

λ

(
∥F∥2L2(Ω) + ∥f∥2L2(Ω) + ∥∇g∥2L2(Ω)

)
(3.1.33)

3.2 Schauder Estimates

We will now define two spaces that are helpful in characterizing Hölder continuous functions,
namely Morrey and Companato spaces.

In the following section, we will only consider spaces with the following property: Let
Ω ⊂ Rn. There exists a constant A > 0 such that for all x0 ∈ Ω, ρ < diamΩ we have

|Bρ(x0) ∩ Ω| ≥ Aρn (3.2.1)

This property is satisfied by the smooth domains we deal with in this thesis.

Definition 3.3. Set Ω(x0, ρ) := Ω ∩ Bρ(x0) and for every 1 ≤ p < ∞, λ ≥ 0 we define the
Morrey space Lp,λ(Ω)

Lp,λ(Ω) :=

u ∈ Lp(Ω)

∣∣∣∣ sup
x0∈Ω
ρ>0

ρ−λ
ˆ
Ω(x0,ρ)

|u|pdx <∞

 (3.2.2)
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with the norm
∥u∥p

Lp,λ(Ω)
:= sup

x0∈Ω
ρ>0

ρ−λ
ˆ
Ω(x0,ρ)

|u|pdx (3.2.3)

and the Companato space Lp,λ(Ω)

Lp,λ(Ω) :=

u ∈ Lp(Ω)

∣∣∣∣ sup
x0∈Ω
ρ>0

ρ−λ
ˆ
Ω(x0,ρ)

|u− ux0,ρ|pdx <∞

 (3.2.4)

where ux0,ρ =
ffl
Ωx0,ρ

udx with the seminorm

[u]pp,λ,Ω := sup
x0∈Ω
ρ>0

ρ−λ
ˆ
Ω(x0,ρ)

|u− ux0,ρ|pdx (3.2.5)

and the norm
∥u∥Lp,λ(Ω) = [u]p,λ + ∥u∥Lp(Ω) (3.2.6)

Following are some essential properties of Campanato and Morrey spaces.

Proposition 3.2.1. For 0 ≤ λ < n we have Lp,λ(Ω) ∼= Lp,λ(Ω).

Theorem 3.6 (Campanato). For n < λ ≤ n + p and α = λ−n
p

we have Lp,λ(Ω) ∼= C0,α(Ω̄)

and the Hölder seminorm
[u]C0,α(Ω) := sup

x,y∈Ω
x ̸=y

|u(x)− u(y)|
|x− y|α

(3.2.7)

is equivalent to [u]p,λ,Ω. If λ > n+ p and u ∈ Lp,λ(Ω) then u is constant.

We will now prove specific decay estimates which are an essential tool in establishing the
Campanato estimates.

Proposition 3.2.2. Let A be a constant matrix and satisfy uniform ellipticity condition.
Then there exists a constant c(n, λ,Λ) such that any solution u ∈ W 1,2

loc (Ω) of

div(A∇u) = 0 in Ω (3.2.8)

satisfies ˆ
Bρ(x0)

|u|2dx ≤ c
( ρ
R

)n ˆ
BR(x0)

|u|2dx (3.2.9)
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and ˆ
Bρ(x0)

|u− ux0,ρ|2dx ≤ c
( ρ
R

)n+2
ˆ
BR(x0)

|u− ux0,R|2dx (3.2.10)

for arbitrary balls Bρ(x0) ⊂⊂ BR(x0) ⊂⊂ Ω. This proposition extends to all the higher partial
derivatives of u, as they also satisfy the PDE.

Proof. Both inequalities are trivial for ρ ≥ R/2. (Choose c ≥ 2n or 2n+2). So we will assume
ρ < R/2.

Let us prove the first inequality. By L2 regularity we have for k ≥ 1, u ∈ W k,2
loc (Ω) and

∥u∥Wk,2(BR/2)
≤ c(k,R, n,m, λ,Λ)∥u∥L2(BR), (3.2.11)

Thus for k large enough, we have (using the Sobolev Embedding theorem)
ˆ
Bρ(x0)

|u|2dx ≤ ωnρ
n sup
Bρ(x0)

|u|2

≤ ωnρ
n sup
BR/2(x0)

|u|2

≤ c1(n,R)ρ
n∥u∥2Wk,2(BR/2(x0))

≤ c2(R, n,m, λ,Λ)ρ
n∥u∥2L2(BR(x0))

.

(3.2.12)

A simple scaling argument (in an appropriately translated domain, notice u(Rx) is a solution
in B1(0) if u(x) is a solution in BR(0) ) proves

c2(R, n,m, λ,Λ) =
1

Rn
c(n,m, λ,Λ). (3.2.13)

The second inequality follows from the first by applying the first inequality to partial
derivatives Dsu together with Cacciopoli and Poincaré:

ˆ
Bρ(x0)

|u− ux0,ρ|2dx ≤ c1ρ
2

ˆ
Bρ(x0)

|∇u|2dx

≤ c2ρ
2
( ρ
R

)n ˆ
BR/2(x0)

|∇u|2dx

≤ c3ρ
2
( ρ
R

)n 1

R2

ˆ
BR(x0)

|u− ux0,ρ|2dx.

(3.2.14)
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Now we state a lemma that is very useful for obtaining Campanato estimates.

Lemma 3.2.3. Let ϕ : R+ → R+ be a non-negative and non-decreasing function satisfying

ϕ(ρ) ≤ A
[( ρ
R

)α
+ ϵ
]
ϕ(R) +BRβ (3.2.15)

for some A,α, β > 0, with α > β and for all 0 < ρ ≤ R ≤ R0, where R0 > 0 is given. Then
there exists constants ϵ0 + ϵ0(A,α, β) and c = c(A,α, β) such that if ϵ0 ≤ ϵ0, we have

ϕ(ρ) ≤ c

[
ϕ(R)

Rβ
+B

]
ρβ (3.2.16)

for all 0 ≤ ρ ≤ R ≤ R0.

Proof. Refer to Lemma 5.13 in [4].

Theorem 3.7 (Interior Campanato Estimates for constant coefficients). Let u ∈ W 1,2
loc (Ω)

be a solution to
div(A∇u) = − divF (3.2.17)

with A constant and satisfying uniform ellipticity. If F ∈ L2,µ
loc (Ω), 0 ≤ µ < n + 2, then

∇u ∈ L2,µ
loc (Ω), and

∥∇u∥L2,µ(K) ≤ c
(
∥∇u∥L2(Ω) + [F ]L2,µ(Ω̃)

)
, (3.2.18)

for every compact K ⊂⊂ Ω̃ ⊂⊂ Ω, with c(n,m,K, Ω̃, λ,Λ, µ)

Proof. To use the decay estimates, we split u = v + w where

div(∇v) = 0 in BR(x0) (3.2.19)

v = u on ∂BR(x0), (3.2.20)

so that we can use decay estimates over ∇v

Because we want estimates using Campanato seminorm, we will use decay estimates with
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the term |u− ux0,ρ|. So we get

ˆ
Bρ(x0)

|∇v − (∇v)x0,ρ|2dx ≤ c
( ρ
R

)n+2
ˆ
BR(x0)

|∇v − (∇v)x0,R|2dx. (3.2.21)

Using the decay estimates for the first inequality and decomposition of u repeatedly, we get

ˆ
Bρ(x0)

|∇u− (∇u)x0,ρ|2dx

=

ˆ
Bρ(x0)

|∇v − (∇v)x0,ρ +∇w − (∇w)x0,ρ|2dx

≤c1
( ρ
R

)n+2
ˆ
BR(x0)

|∇v − (∇v)x0,R|2dx+ 2

ˆ
Bρ(x0)

|∇w − (∇w)x0,ρ|2dx

≤c2
( ρ
R

)n+2
ˆ
BR(x0)

|∇u− (∇u)x0,R|2dx+ c3

ˆ
BR(x0)

|∇w − (∇w)x0,ρ|2dx

≤c2
( ρ
R

)n+2
ˆ
BR(x0)

|∇u− (∇u)x0,R|2dx+ c3

ˆ
BR(x0)

|∇w|2dx.

(3.2.22)

We will now estimate
´
BR(x0)

|∇w|2dx. Observe

ˆ
BR(x0)

⟨A∇w,∇φ⟩dx =

ˆ
BR(x0)

⟨F,∇φ⟩dx (3.2.23)

=

ˆ
BR(x0)

⟨(F − (F )x0,R),∇φ⟩dx (3.2.24)

for every φ ∈ W 1,2
0 (BR(x0)). Choose φ = w ∈ W 1,2

0 as a test function and use ellipticity. We
get

λ

ˆ
BR(x0)

|∇w|2dx ≤
ˆ
BR(x0)

⟨A∇w,∇w⟩dx

=

ˆ
BR(x0)

⟨F − (F )x0,R,∇w⟩dx

≤
(ˆ

BR(x0)

|F − (F )x0,R|2dx
) 1

2
(ˆ

BR(x0)

|∇w|2dx
) 1

2

,

(3.2.25)

thus, ˆ
BR(x0)

|∇w|2dx ≤ c3

ˆ
BR(x0)

|F − (F )x0,R|2dx ≤ [F ]2
2,λ,Ω̃

Rµ. (3.2.26)
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Using Lemma 3.2.3 with α = n+ 2 and β = µ

ϕ(ρ) ≤ c
[( ρ
R

)µ
ϕ(R) +Bρµ

]
≤ c1

[(
ρ

µ

)µ
∥∇u∥2L2(Ω) + [F ]2

2,λ,Ω̃
ρµ
]
. (3.2.27)

Now covering K with balls of radius ρ, we get the desired result 3.2.18.

We have know that Lp,λ ∼= C0,α when n < λ < n+ p. So as a corollary, we get Schauder
estimates for constant coefficient equations using the Campanato estimates.

Corollary 3.1. In addition to the hypothesis in previous theorems, let us assume that F ∈
Ck,σ(Ω̄), k ≥ 1, 0 < σ < 1, then u ∈ Ck+1,σ

loc (Ω) and

∥u∥Ck+1,σ(K) ≤ c
(
∥∇u∥L2(Ω) + ∥F∥Ck,σ(Ω̄)

)
, (3.2.28)

with c(n,K,Ω, λ,Λ, σ).

Proof. Using the L2-regularity we have u ∈ W k+1,2
loc (Ω) so we can differentiate the equation

k times. If γ is a multi-index with |γ| ≤ k, then we get

div(∇(Dγu)) = −div(DγF ). (3.2.29)

Now we can use the preceding theorem and equivalence of Campanato and Hölder spaces to
get the desired result.

Theorem 3.8 (Interior Morrey Estimates for continuous coefficinets). Let u ∈ W 1,2
loc (Ω) be

a solution to
div(A(x)∇u) = −div(F ), (3.2.30)

with A ∈ C(Ω̄) and satisfying uniform ellipticity. Then if F ∈ L2,λ
loc (Ω) for some 0 ≤ λ < n,

we have ∇u ∈ L2,λ
loc (Ω) and following estimate

∥∇u∥L2,λ(K) ≤ c
(
∥∇u∥L2(Ω̃) + ∥F∥2

L2,λ(Ω̃)

)
(3.2.31)

holds for every compact K ⊂⊂ Ω̃ ⊂⊂ Ω, where c = c(n,m, λ,Λ, K, Ω̃, ω) and ω is the
modulus of continuity of A in Ω̃:

ω(R) := sup
x,y∈Ω̃

|x−y|≤R

|A(x)− A(y)|. (3.2.32)
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Proof. In the previous proof, u was split into two functions, u = v + w, where v solves the
homogenous part, and w solves the RHS. We will do a similar split here, except v solves only
a constant homogenous equation. Fix x0 ∈ K and BR(x0) ⊂ Ω̃ and write,

div(A(x0)∇u) = −div((A(x)− A(x0))∇u+ F )

=: −div(G)
(3.2.33)

This is referred to as Korn’s freezing trick. As in the constant coefficient case, we split
u = v + w, where v solves the homogenous part. The rationale for doing the freezing is to
apply the decay estimates on v. With the same computation as in the previous theorem, we
obtain

ˆ
Bρ(x0)

|∇u|2dx ≤ c
( ρ
R

)n ˆ
BR(x0)

|∇u|2dx+ c

ˆ
BR(x0)

|∇u−∇v|2dx (3.2.34)

Now we have
ˆ
BR(x0)

|∇w|2dx ≤ c

ˆ
BR(x0)

|G|2dx

≤ c

ˆ
BR(x0)

|F |2dx+ cω(R)2
ˆ
BR(x0)

|∇u|2dx.
(3.2.35)

Combining the above two inequalities gives
ˆ
Bρ(x0)

|∇u|2dx ≤ A
{( ρ

R

)n
+ ω(R)2

}ˆ
BR(x0)

|∇u|2dx+ c1∥F∥L2,λ(Ω̃)R
λ, (3.2.36)

Lemma 3.2.3 applied with ϕ(ρ) =
´
Bρ(x0)

|∇u|2dx, α = n, β = λ and choose r ≤ R0 so that
ω(R0) is small enough yields the result.

Theorem 3.9 (Interior Schauder estimates for Hölder continuous coefficients). Let u ∈
W 1,2

loc (Ω) be a solution to
div(A∇u) = − div(F ) (3.2.37)

with A ∈ C0,σ
loc (Ω) satisfying the uniform ellipticity condition for some σ ∈ (0, 1). If F ∈

C0,σ
loc (Ω), then we have ∇u ∈ C0,σ

loc (Ω). Moreoever for every compact K ⊂⊂ Ω̃ ⊂⊂ Ω

∥∇u∥C0,σ(K) ≤ c
(
∥∇u∥L2(Ω̃) + ∥F∥C0,σ(Ω̃)

)
. (3.2.38)

c = c(K, Ω̃, λ, ∥A∥C0,σ(Ω))

44



Proof. The proof will be similar to the continuous case. We now have extra information
about the modulus of continuity, ω(R) ≤ cRσ. The Campanato theorem shows that Hölder
functions are in Campanato spaces, so we can use the decay estimates using the difference
form. We define u, v, w, and G as in the previous proof.

ˆ
Bρ(x0)

|∇u− (∇u)x0,ρ|2dx ≤c
( ρ
R

)n+2
ˆ
BR(x0)

|∇u− (∇u)x0,R|2dx

+ c

ˆ
BR(x0)

|∇w|2dx.
(3.2.39)

Using a calculation similar to the one in the constant coefficients case we get
ˆ
BR(x0)

|∇w|2dx ≤ c1

ˆ
BR(x0)

|F − Fx0,R|2dx+ c1ω(R)
2

ˆ
BR(x0)

|∇u|2dx. (3.2.40)

Using the previous theorem we get that ∇u ∈ L2,n−ϵ
loc (Ω) for every ϵ > 0. Therefore

ϕ(ρ) :=

ˆ
BR(x0)

|∇u− (∇u)x0,ρ|2dx

≤ c
( ρ
R

)n+2
ˆ
BR(x0)

|∇u− (∇u)x0,R|2dx

+ c1

ˆ
BR(x0)

|F − Fx0,R|2dx︸ ︷︷ ︸
[F ]22,n+2σR

n+2σ

+ω(R)2︸ ︷︷ ︸
c2R2σ

ˆ
BR(x0)

|∇u|2dx︸ ︷︷ ︸
c(ϵ)Rn+2σ−ϵ

≤ c
( ρ
R

)n+2

ϕ(R) +BRn+2σ−ϵ.

(3.2.41)

Which by Lemma 3.2.3 implies ∇u ∈ L2,n+2σ−ϵ
loc (Ω) ∼= C

0,σ−ϵ/2
loc (Ω). This implies ∇u is locally

bounded so ˆ
BR(x0)

|∇u|2dx ≤ ωn sup
BR(x0)

|∇u|2Rn. (3.2.42)

This gives us a better estimate

ϕ(ρ) ≤ c
( ρ
R

)n+2

ϕ(R) +BRn+2σ. (3.2.43)
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Once again, using Lemma 3.2.3 we get

ϕ(ρ) ≤ c

(
ϕ(R)

Rn+2σ
+B

)
ρn+2σ. (3.2.44)

Therefore we conclude ∇u ∈ L2,n+2σ
loc (Ω) ∼= C0,σ

loc (Ω) and the final estimate follows by covering.

Theorem 3.10 (Generalisation for higher derivatives). Assume that u ∈ W 1,2
loc (Ω) is a

solution to
div(A∇u) = f − div(F ), (3.2.45)

where k ≥ 1 and

1. A ∈ Ck
loc(Ω)(resp. C

k,σ
loc (Ω) for some 0 < σ < 1 ),

2. DkF ∈ L2,λ
loc (Ω), for some λ < n (resp. L2,λ

loc (Ω) , n ≤ λ ≤ n+ 2σ ),

3. Dk−1f ∈ L2,λ
loc (Ω), for some λ < n (resp. L2,λ

loc (Ω), n ≤ λ ≤ n+ 2σ).

Then Dk+1u ∈ L2,λ
loc (Ω) (resp. L2,λ

loc (Ω)).

In particular if A ∈ Ck,σ
loc (Ω), F ∈ Ck,σ

loc (Ω) and f ∈ Ck−1,σ
loc (Ω), then u ∈ Ck+1.σ

loc (Ω).

All the above theorems also have a corresponding boundary regularity theorem. But
for those, we need decay estimates for half-balls. The idea is again to prove the estimate
locally and then use a covering argument. We first flatten the boundary as in the case of L2

Regularity. Use half-balls to prove the estimate for domains near the boundary there and
come back to the actual domain. The computation within the proof remains similar to the
one in interior regularity.

Theorem 3.11 (Boundary regularity- Schauder estimates). Let u ∈ W 1,2(Ω) be a solution
to div(A(x)∇u) = − div(F ) in Ω

u− g ∈ W 1,2
0 (Ω)

(3.2.46)

with A ∈ Ck,σ(Ω̄) satisfying uniform ellipticity, F ∈ Ck,σ(Ω̄), g ∈ Ck+1,σ(Ω̄), σ ∈ (0, 1). Then
we have u ∈ Ck+1,σ(Ω̄) and

∥u∥Ck+1,σ(Ω̄) ≤ c(Ω, σ, λ, ∥A∥Ck,σ(Ω̄)){∥F∥Ck,σ(Ω̄) + ∥g∥Ck+1,σ(Ω̄)}, (3.2.47)
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where λ is ellipticity constant.

3.3 Lp Regularity

Definition 3.4. Let (Ω,F , µ) be a measure space and f be a measurable function. The
distribution function of f λf (t) : [0,∞) → R+

0 is defined as

λf (t) = µ({x||f(x)| > t}) (3.3.1)

Theorem 3.12 (Layer Cake Representaion). Let ν be a borel measure on [0,∞) and define

ϕ(t) = ν([0, t)). (3.3.2)

Then for any positive measurable function f on Ω we have
ˆ
Ω

ϕ(f(x))dµ(x) =

ˆ ∞

0

λf (t)dν(t) (3.3.3)

Proof.
ˆ
Ω

ϕ(f(x))dµ(x) =

ˆ
Ω

ˆ ∞

0

χ{t<f(x)}dν(t)dµ(x) =

ˆ ∞

0

ˆ
Ω

χ{t<f(x)}dµ(x)dν(t) (3.3.4)

ˆ ∞

0

ˆ
Ω

χ{t<f(x)}dµ(x)dν(t) =

ˆ ∞

0

λf (t)dν(t) (3.3.5)

As a special case of the formula, we can express the Lp norm in terms of the distribution
function. Let dν(t) = ptp−1dt so that ϕ(t) = tp. Then the Lp norm is

∥f∥pLp(Ω) =

ˆ
Ω

|f(x)|pdµ(x) =
ˆ ∞

0

ptp−1λf (t)dt (3.3.6)

Proposition 3.3.1 (Chebyshev’s Inequality). Let g ∈ L1(Ω). Then for any s > 0 we have

sλg(t) ≤ ∥g∥L1(Ω) (3.3.7)
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Proof.

sλg(t) =

ˆ
Ω

sχ{|g|>s}dµ ≤
ˆ
Ω

|g|χ{|g|>s}dµ ≤ ∥g∥L1(Ω) (3.3.8)

Taking s = tp and g = |f |p we the following

tpλf (t) ≤ ∥f∥pLp(Ω) (3.3.9)

So we get that for any f ∈ Lp(Ω)

sup
t>0

tpλf (t) <∞ (3.3.10)

The converse is not necessarily true, i.e., there exists a function with finite supremum which
is not Lp integrable. For example consider the function f = 1/|x| defined on unit ball B in
Rn. λf (t) = cnt

−n. Clearly f ∈ Lnw(B). But we can check that f ̸∈ Ln(B).

Definition 3.5. We define the weak Lp space , Lpw(Ω), as the set of functions

Lpw(Ω) :=

{
f

∣∣∣∣∥f∥Lp
w(Ω) = sup

t>0
tpλf (t) <∞

}
(3.3.11)

In the case p = ∞ we define L∞
w (Ω) := L∞(Ω)

Note that ∥f∥Lp
w(Ω) is not a norm. Given any q < p and a finite measure space Ω we have

Lp(Ω) ⊂ Lpw(Ω) ⊂ Lq(Ω) (3.3.12)

To prove Lpw(Ω) ⊆ Lq(Ω) just observe λf (t) ≤ min{|Ω|, t−p∥f∥Lp
w(Ω)} and use the layer cake

representation.

Let T be an operator that sends measurable functions to measurable functions. We say
that an operator T is Q-subadditive/quasi-linear if

|T (f + g)| ≤ Q(|T (f)|+ |T (g)|), (3.3.13)

where Q is inddependent of f and g. An operatot T is of the weak-(p,q) type if for any
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f ∈ Lp(Ω), Tf ∈ Lqw(Ω) and there a constant Ap,q such that

∥Tf∥Lq
w(Ω) ≤ Ap,q∥f∥Lp(Ω) (3.3.14)

Strong-(p,q) type on the other hand means

∥Tf∥Lq(Ω) ≤ Ap,q∥f∥Lp(Ω) (3.3.15)

Theorem 3.13 (Marcinkiewicz’s Interpolation Theorem). Let T be a Q-subadditve operator
that is both weak-(p0, p0) type and weak-(p1, p1) type for 1 ≤ p0 < p1 ≤ ∞. Then T is
strong-(p, p) type for any p such that p0 < p < p1.

To prove the Stampacchia Interpolation theorem, we need Calderon-Zygmund decomposi-
-tion theorem and John-Nirenberg lemmas I-II. We will now give proof of the decomposition
theorem and state the John-Nirenberg lemmas. The John-Nirenberg lemmas are also used
in proving that the Campanato space Lp,n ∼= BMO.

Theorem 3.14 (Calderon-Zygmund decomposition). Let Q be an n-dimensional cube in Rn

and let f be a non-negative function in L1(Q). Fix a parameter t > 0 in such a way that

 
Q

f(x)dx ≤ t. (3.3.16)

Then there exists a counatable family {Qi}i∈I of cubes in the dyadic decomposition of Q such
that

1. t <
ffl
Qi
fdx ≤ 2nt for every i ∈ I;

2. f(x) ≤ t for a.e. x ∈ Q \ ∪i∈IQi.

Proof. The plan is to divide a given cube into cubes of half the size and remove the cubes
which satisfy the first condition.

This bisection divides the cube into 2n subcubes. We will now choose the cubes which
satisfy  

P

f(x)dx > t (3.3.17)
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to belong to family {Qi}, and if the cube doesn’t satisfy this condition, we will continue
subdivision. Continuing this process infinitely, let Q := {Qi} be the family of all cubes with
an average greater than t. Suppose Qi is a cube. Then Qi came from the subdivision of
some cube Q̄i whose average is less than t. Using this, we can conclude the mass in Qi can at
most be 2nt|Qi|. So the average over Qi is between t and 2nt. So Q is the set of all subcubes
in the decomposition which satisfy the first condition.

If x ∈ Q \ ∪i∈IQi, then the average in cubes containing x as the size of the cube goes to
zero is at most t. Using the Lebesgue differentiation theorem, we get f(x) ≤ t for almost all
x.

Now we will define BMO space or the space of functions of bounded mean oscillation.

Definition 3.6 (BMO(Q0)). Let Q0 be an n-dimensional cube in Rn. We say that a function
u ∈ L1Q0 belongs to the space of functions with bounded mean oscillation BMO(Q0) if

|u|∗ := sup

 
Q

|u− uQ|dx <∞, (3.3.18)

where supremum is over all n-subcubes Q ⊂ Q0, whose sides are parallel to Q0, and uQ is
average of u over Q.

Theorem 3.15 (John-Nirenberg lemma I). There are constants c1, c2 > 0 depending only
on n, such that

|{x ∈ Q
∣∣|u(x)− uQ| > t}| ≤ c1 exp

(
−c2

t

|u|∗

)
· |Q| (3.3.19)

for all cubes Q ⊂ Q0 with sides parallel to those of Q0, all u ∈ BMO(Q0) and all t > 0.

Corollary 3.2. For every 1 ≤ p < ∞ the Campanato space Lp,n(Q0) is isomorphic to
BMO(Q0).

Proof. Using the John-Nirenberg lemma and layer-cake formula for Lp norm, we get
ˆ
Q

|u− uQ|pdx ≤p · c1
ˆ ∞

0

tp−1 exp(− c2
|u|∗

t)|Q|dt (3.3.20)

=C(n, p)|u|p∗|Q|. (3.3.21)

This proves BMO(Q0) ↪→ Lp,n(Q0). Using Jensen’s inequality we get that Lp,n(Q0) ↪→
BMO(Q0)
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Theorem 3.16 (John-Nirenberg lemma II). Let u ∈ L1(Q0) and suppose that for some
p ∈ [1,∞] we have

Kp(u) :=

(
sup

∆∈{∆}

∑
Qi∈∆

|Qi|
( 

Qi

|u− uQi
|
)p) 1

p

<∞ (3.3.22)

where {∆} denotes the collection of all finite decompositions ∆ of the cube Q0 into subcubes
Qi with sides parallel to the axes. Then the function u−uQ0 (hence also u) belongs to Lpw(Q0)

and for all t > 0

∣∣{x ∈ Q0

∣∣|u(x)− uQ0| > t
}∣∣ ≤ c(n, p)

(
Kp(u)

t

)p
. (3.3.23)

Now we can prove the Stampacchia Interpolation theorem.

Theorem 3.17 (Stampacchia Interpolation Theorem). Let 1 ≤ p <∞ and let T be a linear
operator of strong type (p,p) and bounded from L∞ into BMO, i.e.,

∥Tu∥Lp ≤ c1∥u∥Lp , for every u ∈ Lp(Q0) (3.3.24)

and
∥Tu∥∗ ≤ c2∥u∥L∞ , for every u ∈ BMO(Q0). (3.3.25)

Then T maps continuously Lq(Q0) into Lq(Q0) for all q ∈ (p,∞).

Proof. We will define a different operator T∆ and prove it is strong-(p, p) and strong-(∞,∞).
And using Marcinkiewicz’s theorem, prove T∆ is strong-(q, q). And then, use the John-
Nirenberg lemma to prove T is strong (q, q).

Let ∆ = {Qi} be some subdivision of Q0. Define

(T∆u)(x) :=

 
Qi

|Tu− (Tu)Qi
|dx, for x ∈ Qi. (3.3.26)
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Then T∆ is strong-(p, p) type

∥T∆u∥Lp(Q0)∥
p
Lp(Q0)

=
∑
Qi∈∆

|Qi|
( 

Qi

|Tu− (Tu)Qi
|dx
)p

(3.3.27)

≤
∑
Qi∈∆

ˆ
Qi

|Tu− (Tu)Qi
|pdx (3.3.28)

≤2p−1
∑
Qi∈∆

ˆ
Qi

[|Tu|p + |(Tu)Qi
|p]dx (3.3.29)

≤2p
∑
Qi∈∆

ˆ
Qi

|Tu|pdx (3.3.30)

=2p∥Tu∥pLp(Q0)
≤ c1∥u∥pLp(Q0)

. (3.3.31)

We can also prove T∆ is strong (∞,∞) type. Suppose u ∈ L∞(Q0) we have

∥T∆u∥L∞(Q0) ≤ |Tu|∗ ≤ c2∥u∥L∞(Q0). (3.3.32)

Clearly T∆ is quasi-linear, so using Marcinkiewicz’s theorem

∥T∆u∥Lr(Q0) ≤ c∥u∥Lr(Q0) (3.3.33)

for all r ∈ (p,∞). We can prove that this constant c depends only on p, r, c1 and c2.. The
(p, p) operator norm and (∞,∞) operator norms have uniform bounds depending on p, c1,

and c2, c depends on these bounds and r.

Now we can use John-Nirenberg lemma II. We have

Kr(Tu) = sup
∆∈{∆}

∥T∆u∥Lr(Q0) ≤ C∥u∥Lr(Q0) <∞, (3.3.34)

therefore Tu ∈ Lrw(Q0) and T is of weak (r, r) type for each r ∈ (p,∞). Now using
Marcinkiewicz’s theorem, T is of strong (q, q) for all q ∈ (p, r) and so for every q ∈ (p,∞).

Theorem 3.18 (Lp Regularity for constant and Hölder coefficients). Let u ∈ W 1,2(Ω) be a
weak solution of the Dirichlet problemdiv(A∇u) = div(F )

u ∈ W 1,2
0 (Ω)

(3.3.35)
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where the PDE satisfies uniform ellipticity condition and F ∈ Lp(Ω) and g ∈ W 1,p(Ω) for
some p ≥ 2. Then ∇u ∈ Lp(Ω) and

∥∇u∥Lp(Ω) ≤ c∥F∥Lp(Ω), (3.3.36)

for some constant c(Ω, p, λ, |A|)

Proof. Consider the map ∇u→ F

T : L2(Ω) → L2(Ω) (3.3.37)

This map is continuous since

λ

ˆ
Ω

|∇u|2dx ≤
ˆ
Ω

⟨A∇u,∇u⟩dx =

ˆ
Ω

⟨F,∇u⟩dx (3.3.38)(ˆ
Ω

|F |2dx
)1/2(ˆ

Ω

|∇u|2dx
)1/2

. (3.3.39)

From the Campanato estimates for constant coefficients and Hölder continuous coefficients,
we have

[∇u]L2,n ≤ c (∥∇u∥L2 + ∥F∥L2,n) (3.3.40)

|∇u|∗ ≤ c1[∇u]L2,n ≤ c2 (∥∇u∥L2 + ∥F∥L2,n) (3.3.41)

Since ∥∇u∥L2 ≤ c̄∥F∥L2 ≤ c̄∥F∥L2,n , we have

|∇u|∗ ≤ c3∥F∥L2,n ≤ c4∥F∥L∞ . (3.3.42)

This proves T is continuous from L∞ into BMO(ω).

Stamppachia’s interpolation theorem now yields the Lp regularity.

The Lp regularity theory also applies for 1 < p < 2, but the proof is different from the
above case.

Theorem 3.19 (Lp regularity for the case 1 < p < 2). Let Let u ∈ W 1,2(Ω) be a weak
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solution of the Dirichlet problemdiv(A(x)∇u) = div(F )

u ∈ W 1,2
0 (Ω)

(3.3.43)

where the PDE satisfies uniform ellipticity condition and F ∈ Lp(Ω) and g ∈ W 1,p(Ω) for
some 1 < p < 2. Then ∇u ∈ Lp(Ω) and

∥∇u∥Lp(Ω) ≤ c∥F∥Lp(Ω), (3.3.44)

for some constant c(Ω, p, λ, |A|)

Proof. The proof involves expressing Lp norm of ∇u as the norm of the linear map over it’s
dual space.

∥∇u∥Lp = sup
∥G∥

Lp′≤1

ˆ
Ω

⟨∇u,G⟩ (3.3.45)

Now we perform “Helmholtz Decompositon” such that G = A∗(x)∇φ+ G̃, where div G̃ = 0,
and φ ∈ W 1,p′

0 (Ω). We get such a decomposition by solving

− div(A∗(x)∇φ) = div(G) in Ω (3.3.46)

φ = 0 on ∂Ω (3.3.47)

and defining G̃ = G− A∗(x)∇φ. So

∥∇u∥Lp = sup
∥G∥

Lp′≤1

ˆ
Ω

⟨∇u,A∗∇φ⟩ (3.3.48)

= sup
∥G∥

Lp′≤1

ˆ
Ω

⟨A(x)∇u,∇φ⟩ (3.3.49)

≤ sup
∥G∥

Lp′≤1

∥F∥Lp∥∇φ∥Lp′ (3.3.50)

≤ sup
∥G∥

Lp′≤1

c∥G∥Lp′∥F∥Lp (3.3.51)

≤ c∥F∥Lp (3.3.52)

Note the penultimate inequality comes from using Lp′ estimates as p′ > 2.
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Chapter 4

The Yamabe Problem

4.1 The Yamabe Problem

Let us now state the Yamabe problem.

Let (Mn, g) be a compact smooth Riemannian manifold of dimension n ≥ 3 and scalar
curvature S. Does there exist a metric g′, conformal to g, such that (Mn, g

′) has a constant
scalar curvature S ′?

If we consider the conformal change g′ = u4/(n−2)g, with u ∈ C∞ and u > 0, the scalar
curvature satisfies the equation:

4(n− 1)

n− 2
∆u+ Su = S ′u(n+2)/(n−2) (4.1.1)

Let 4n−1
n−2

∆+ S = ∆conf , so the equation is now

∆confu = S ′u(n+2)/(n−2) = S ′u2
∗−1 (4.1.2)

So now the Yamabe problem is finding smooth, positive function u solving the above
PDE. Therefore, we need first to prove the existence of a solution and then the smoothness
and positivity of the solution if it exists.
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We will see that if exponent in the RHS of the PDE is q − 1, q < 2∗(subcritical) instead
of 2∗ − 1, we can prove the existence and smoothness of solution using standard analysis.
But the critical case(the Yamabe problem) is much more challenging.

But we can prove existence of solution for some compact manifolds using direct methods.
Let us define the Yamabe functional:

I(u) =

´
M
4n−1
n−2

|∇u|2dv +
´
M
Su2dv

(
´
M
u2∗dv)2/2∗

, (4.1.3)

and its infimum, called the Yamabe invariant :

µ(M) = inf
u∈W 1,2,u ̸=0

I(u) (4.1.4)

We can also easily check that the Yamabe invariant is a conformally invariant.

Theorem 4.1. [9] If u ∈ W 1,2(M) is minimizer of I(v) with ∥u∥L2∗ = 1, then u satisfies
∆confu = λu2

∗−1 for λ = µ(M).

Proof. Let φ ∈ C∞
c (M). Then

0 =
d

dϵ

∣∣
ϵ=0
I(u+ ϵφ) (4.1.5)

=

´
M
8n−1
n−2

⟨∇u,∇φ⟩+ 2Suφdv

∥u∥2
L2∗

−
2
´
M
4n−1
n−2

|∇|2 + Su2dv

∥u∥2
L2∗

´
M
u2

∗−1φdv

∥u∥2
L2∗

(4.1.6)

=
2

∥u∥2
L2∗

ˆ
M

φ

(
−4

n− 1

n− 2
+ Su− I(u)

u2
∗−1

∥u∥2∗−2
L2∗

)
(4.1.7)

Therefore u is a weak solution for the PDE with λ = I(u)/∥u∥2∗−2
L2∗ . Since u is a minimizer

we have λ = µ(M).

Notice that if S ≤ 0, substituting u = 1 we get µ(M) ≤ 0.We will now prove the existence
of solution when µ(M) ≤ 0. So that we will prove existence of solution for manifolds with
negative or zero scalar curvature.

Theorem 4.2 (Existence when µ(M) ≤ 0). ∆conf = S ′u2
∗−1 has a solution when µ(M) ≤ 0.

Proof. In order to prove existence when µ(M) ≤ 0, we will use direct methods to prove
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the existence of a minimizer of I(φ). Let E(φ) = I(φ)∥φ∥2
L2∗ . We can prove that u is

a minimizer of I(φ) iff it is a minimizer of Ē(φ) = E(φ) − µ(M)∥φ∥2
L2∗ . Now suppose

µ(M) ≤ 0. Clearly Ē(φ) ≥ 0 and let uk be a minimizing sequence of Ē(φ). Ē(uk) ≤ C

and hence ∥uk∥W 1,2(M) ≤ C, by Sobolev inequality. So we have uk ⇀ u in W 1,2 and L2∗ by
Banach-Alaglu theorem, and uk → u in L2 by Rellich-Kondrakov theorem. Since µ(M) ≤ 0

by w.l.s.c of norms we have E(u) ≤ lim inf E(uk) and so u is a minimizer.

From here on we would assume that µ(M) > 0.

Consider the manifold Sn. The stereographic projection gives us a conformal mapping
from the sphere onto Rn. In the transformed metric, we have the scalar curvature to be zero.
So the Yamabe functional is

Ĩ =
4n−1
n−2

∥∇u∥L2

∥u∥2
L2∗

(4.1.8)

The infimum of this will just be in terms of the optimal Sobolev constant K(n, 2). We have
µ(Sn) = 4n−1

n−2
/K2(n, 2). We know that this infimum is attained on Rn, which implies that

we have non-trivial solutions to Yamabe problem on the sphere, We can even construct the
extremizers without referring back to Aubin’s or Talenti’s proof. The construction is as
follows. First do a stereographic projection on to Rn. Perform a dialation by α > 0. Now
reverse the Stereographic projection. Using Rn as cover for Sn \ P , with bijection given by
stereographic projection, if we calculate the conformal factor on the sphere we get

uα(x) =

(
|x|2 + α2

α

)(2−n)/2

. (4.1.9)

This metric on sphere is a conformal diffeomorphism and it minimizes the Yamabe functional
on sphere. In fact, we have that the only metrics on sphere which minimize the Yamabe
functional are the ones which are obtained by conformal diffeomorphism.

Theorem 4.3. [7] The Yamabe functional on (Sn, ḡ) is minimized by constant multiples of
the standard multiples and its images under conformal diffeomorphisms. These are the only
metrics conformal to the standard metric on Sn that have constant scalar curvature.
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4.2 Existence and Regularity of Yamabe Problem

Theorem 4.4 (Existence in subcritical case). On a smooth Riemannian manifold Mn of
dimension n ≥ 3, let us consider the PDE

∆u+ h(x)u = λf(x)uq−1, (4.2.1)

where 2 < q < 2∗, h(x) and f(x) are C∞ functions on manifold, with f(x) everwhere strictly
positive. This PDE has a weak solution u ∈ W 1,2(Mn) for some λ.

Proof. Consider the functional

Iq(u) =

´
M
|∇u|2dv +

´
M
h(x)u2dv

(
´
M
f(x)uqdv)2/q

, (4.2.2)

where u ̸≡ 0 and 0 ≤ u ∈ W 1,2(M). Define µq = inf Iq(u).

We will prove that this infimum is attained for 2 < q < 2∗. Simple application of Hölder
inequality shows us Iq(u) is bounded below. Let ui be a minimizing sequence such that´
M
fuqidv = 1. We will prove that this minimizing sequence is bounded in W 1,2.

∥ui∥2W 1,2 = ∥ui∥2L2 + ∥∇ui∥2L2 = Iq(ui)−
ˆ
M

h(x)u2i + ∥ui∥2L2 . (4.2.3)

∥u∥2W 1,2 ≤ µq + 1 + (1 + ∥h(x)∥L∞)∥u∥2L2 (4.2.4)

∥ui∥2L2 ≤ V 1−2/q∥ui∥2L2 ≤ V 1−2/q[inf f(x)]−2/q (4.2.5)

Now we can prove there exists a function attaining the infimum such that

Iq(u) = µq and
ˆ
M

f(x)uqdv = 1 (4.2.6)

Since 2 < q < 2∗, W 1,2 is compactly embedded in Lq. So we have a subsequence such
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that ui → u in Lq and ui ⇀ u in W 1,2.

The strong convergence in Lq ensures the constraint is satisfied by the limit u. w.l.s.c. of
the norm gives us

∥u∥W 1,2 ≤ lim inf ∥ui∥W 1,2 . (4.2.7)

In addition, we also have ui → u in L2. These two combined gives us Iq(u) ≤ µq and
therefore, Iq(u) = µq.

We can verify that this minimizer is a weak solution to PDE

∆u+ h(x)u = λf(x)uq−1. (4.2.8)

Theorem 4.5 (Regularity in Subcritical case). Let u ∈ W 1,2(M) be a solution to

4(n− 1)

n− 2
∆u+ Su = S ′uq−1 (4.2.9)

where ∆ is the Laplace-Beltrami operator over the Riemannian manifold and q ∈ (2, 2∗).
Then u ∈ C∞(M).

Proof. We have proved that there exists a function u and some λ which solves the PDE
4.2.1. Choosing h and f as an appropriately we can have λ = S ′ and u to be solution of
∆confu = S ′uq−1. Choose p1 = 2∗. Since u ∈ W 1,2(M), the Sobolev embedding theorem gives
u ∈ Lp1(M). Hence f ∈ Lp1/(q−1)(M). From Lp regularity we get that u ∈ W 2,p1/(q−1)(M).
Using Sobolev embedding again, we that

u ∈ Lp2(M), where p2 =
np1

n(q − 1)− 2p2
(4.2.10)

if n(q − 1) > 2p1, or u ∈ Ls(M) for all s if n(q − 1) ≤ 2p1. Continuing this process, we get
u ∈ Ls(M) for all s. So we have u ∈ W 2,s(M) for all s. By Sobolev embedding we also get
that u ∈ C1(M), and since q > 2 we have uq−1 ∈ W 1,s(M) for all s. Using Lp regularity we
get u ∈ W 3,s(M) for all s. So u ∈ C2(M). We can now apply the maximum principle to
prove u > 0 and the smoothness also follows.
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Theorem 4.6 (Regularity in critical case). [5] Let u ∈ W 1,2(M) be a solution to

∆confu = S ′u2
∗−1 (4.2.11)

Then u ∈ C∞(M).

Proof. The proof given in the sub-critical case doesn’t work in the critical case. However,
the bootstrapping argument still works if we can prove that u ∈ Ls(M) for s > 2∗. The
function u satisfies

ˆ
M

(
4(n− 1)

n− 2
⟨∇u,∇φ⟩+ Suφ

)
dv = S ′

ˆ
M

|u|2∗−1φdv (4.2.12)

for all φ ∈ W 1,2(M). We plan to choose an appropriate test function φ.

GL(t) =

|t|2∗−1 if |t| ≤ L

2∗

2
L2∗−2|t| − 2∗−2

2
L2∗−1 if |t| > L

(4.2.13)

FL(t) =

|t|2∗/2 if |t| ≤ L

2∗

2
L(2∗−2)/2|t| − 2∗−2

2
L2∗/2 if |t| > L.

(4.2.14)

ClearlyGL(u) is uniformly Lipshitz continuous function of u and henceGL(u) ∈ W 1,2(M).
Similarly we have FL(u) ∈ W 1,2(M). Observe that G and F are zero when u ≤ 0 and that

(F ′
L(t))

2 ≤ 2∗

2
G′
L(t), (FL(t))

2 ≥ tGL(t), (4.2.15)

FL(t) ≤ t2
∗/2, GL(t) ≤ t2

∗−1. (4.2.16)

Let us now use
φ = GL(u) = GL (4.2.17)

as test function. Hence we get,

4(n− 1)

n− 2

ˆ
M

⟨∇u,∇GL⟩dv +
ˆ
M

SuGLdv = S ′
ˆ
M

u2
∗−1GLdv. (4.2.18)
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Since GL ≤ u2
∗−1 and u ∈ L2∗(M), we have∣∣∣∣ˆ

M

SuGldv

∣∣∣∣ ≤ C ′
1, and |S ′| ≤ C ′

2 (4.2.19)

so, ˆ
M

G′
L|∇u|2dv ≤ C1 + C2

ˆ
M

u2
∗−1GLdv. (4.2.20)

Using (F ′
L(t))

2 ≤ 2∗

2
G′
L(t) and tGL(t) ≤ FL(t), we get that

ˆ
M

|∇FL|2dv ≤ C1 + C2

ˆ
M

u2
∗−2F 2

Ldv. (4.2.21)

Given K > 0, let

K− = {x s.t. u(x) ≤ K}, (4.2.22)

K+ = {x s.t. u(x) ≥ K} (4.2.23)

Using Hölder’s inequality and Sobolev inequality for the embedding W 1,2(M) ↪→ L2∗(M),

ˆ
M

u2
∗−2F 2

Ldv =

ˆ
K−

u2
∗−2F 2

Ldv +

ˆ
K+

u2
∗−2F 2

Ldv (4.2.24)

≤
ˆ
K−

u2
∗−2F 2

Ldv +

(ˆ
K+

u2
∗
dv

)2/n(ˆ
K+

F 2∗

L dv

)2/2∗

(4.2.25)

≤
ˆ
K−

u2
∗−2F 2

Ldv + ϵ(K)

(ˆ
M

F 2∗

L

)2/2∗

(4.2.26)

≤
ˆ
K−

u2
∗−2F 2

Ldv + C3ϵ(K)

ˆ
M

(|∇FL|2 + F 2
L)dv (4.2.27)

where ϵ(K) = (
´
K+ u

2∗dv)2/n, C3 > 0 is a constant independent on K and L. Since
u ∈ L2∗(M),

lim
K→∞

ϵ(K) → 0. (4.2.28)
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We fix K such that C2C3ϵ(K) < 2/2∗. When L > K,

ˆ
K−

u2
∗−2F 2

Ldv ≤ K2(2∗−1)V (M). (4.2.29)

Since u ∈ L2∗(M), and since FL)(t) ≤ t2
∗/2

ˆ
M

F 2
Ldv ≤ C4. (4.2.30)

Therefore it is clear that there exists C5, C6 > 0 independent of L, and C6 < 1, such that
ˆ
M

|∇FL|2dv ≤ C5 + C6

ˆ
M

|∇FL|2dv. (4.2.31)

Hence, ˆ
M

|∇FL|2dv ≤ C5

1− C6

. (4.2.32)

This gives us that FL ∈ W 1,2(M). Using Sobolev emebedding we get FL ∈ L2∗(M) and
ˆ
M

F 2∗

L dv ≤ C7 (4.2.33)

where C7 > 0 and doesn’t depend on L. Taking L → ∞, it follows that u ∈ L(2∗)2/2(M).

Since (2∗)2/2 > 2∗ we increased the regularity.

Now we will prove a theorem that is crucial in establishing existence in the critical case.
It is also through this we will see how the optimal Sobolev constant plays a role in the
Yamabe problem.

Theorem 4.7 (Concentration-Compactness Lemma 2). Suppose um ⇀ u weakly in W 1,2(Rn)

and µm = |∇um|2dx ⇀ µ, νm = |um|2
∗
dx ⇀ ν weakly in the sense of measures where ν and

ν are bounded non-negative measures on Rn. Then we have :

1. There exists some at most countable set J , a family {xj|j ∈ J} of distinct points in
Rn, and a family {νj|j ∈ J} of positive numbers such that

ν = |u|2∗dx+
∑
j∈J

νjδxj , (4.2.34)
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where δx is the Dirac-delta mass of mass 1 concentrated at x ∈ Rn.

2. In addition, we have
µ ≥ |∇u|2dx+

∑
j∈J

µjδxj (4.2.35)

for some family {µj|j ∈ J}, µj > 0 satisfying

K̃2
(
νj
)2/2∗ ≤ µj, for all j ∈ J. (4.2.36)

where K̃ is the best Sobolev constant for inequality corresponding to the embedding W 1,2 ↪→
L2∗

∥u∥L2∗ (Rn) ≤ K̃−1∥u∥W 1,2(Rn) (4.2.37)

so that K(n, 2) = K̃−1.

Proof. Let vm = um − u ∈ W 1,2(Rn). Then vm ⇀ 0 weakly in W 1,2 and by Brezis-Lieb
lemma[8] we have that if

´
Rn |φm|2

∗ ≤ C and um → u pointwise a.e. then

ˆ
Rn

∣∣|φm|2∗ − |φ|2∗ − |φm − φ|2∗
∣∣ dx = o(1) (4.2.38)

where o(1) → 0 as m→ ∞ .Let f be any bounded continuous function. We have∣∣∣∣ˆ
Rn

f(|um|2
∗ − |u|2∗ − |um − u|2∗)dx

∣∣∣∣ ≤ sup |f |
ˆ
Rn

∣∣|um|2∗ − |u|2∗ − |um − u|2∗
∣∣ dx (4.2.39)

= o(1) (4.2.40)

So we have

ωm := νm − |u|2∗dx = (|um|2
∗ − |u|2∗)dx (4.2.41)

= |um − u|2∗dx+ o(1) = |vm|2
∗
dx+ o(1). (4.2.42)

Define λm := |∇um|2dx and assume that λm ⇀ λ, while ωm ⇀ ω = ν − |u|2∗dx weakly in
sense of measure.
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Choose ξ ∈ C∞
0 (Rn). Then
ˆ
Rn

|ξ|2∗dω = lim
m→∞

ˆ
Rn

|ξ|2∗dωm = lim
m→∞

ˆ
Rn

|vmξ|2
∗
dx (4.2.43)

≤ K̃−2∗ lim inf
m→∞

(ˆ
Rn

|∇(vmξ)|2dx
)2∗/2

(4.2.44)

≤ K̃−2∗ lim inf
m→∞

(ˆ
Rn

|ξ|2|∇vm|2dx
)2∗/2

(4.2.45)

= K̃−2∗
(ˆ

Rn

|ξ|2dλ
)2∗/2

. (4.2.46)

We arrived at the final inequality in the following way

(ˆ
Rn

|∇(vmξ)|2dx
) 1

2

≤
(ˆ

Rn

|ξ|2|∇vm|2dx
) 1

2

+

(ˆ
Rn

|vm|2|∇ξ|2dx
) 1

2

. (4.2.47)

The second term goes to zero as m→ ∞ as |∇ξ||vm| → 0 in L2.
ˆ
Rn

|∇ξ|2|vm|2dx ≤ ∥∇ξ∥L∞

ˆ
supp(ξ)

|vm|2dx. (4.2.48)

W 1,2(supp(ξ)) compactly embeds into L2(supp(ξ)) and vm ⇀ 0 in W 1,2(supp(ξ)), so it goes
to zero in L2. So finally, we have a reverse Hölder inequality:

K̃2

(ˆ
Rn

|ξ|2∗dω
)2/2∗

≤
ˆ
Rn

|ξ|2dλ (4.2.49)

holds for all ξ ∈ C∞
0 (Rn). Now let us decompose ω into diffused and atomic parts. Let

{xj|j ∈ J} be the atoms of ω and we have ω = ω0 +
∑

j∈J ν
jδxj where ω0 has no atoms.

Given any open set Ω, we can approximate the characteristic function using compactly
supported smooth functions. Using this, we get

K̃2ω(Ω)2/2
∗ ≤ λ(Ω). (4.2.50)

Let Ω be open set such that λ(Ω) ≤ K̃2 then

1 ≥ K̃−2λ(Ω) ≥ ω(Ω)2/2
∗ ≥ ω(Ω) ≥ ω0(Ω). (4.2.51)
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So ω0 is absolutely continuous w.r.t. λ. So there is an λ−L1 function f such that dω0 = fdλ.
For λ a.e. away from atoms of λ and ω we have

f(x) = lim
r→0

ω0(Br(x))

λ(Br)(x)
≤ lim

r→0
K̃−2∗λ(Br(x))

2∗/2−1 = 0. (4.2.52)

Given any radon measure we can prove it can have only countably many atoms. So there
are only countably many atoms of λ, none of which are atoms of ω0, and since f is zero λ
a.e. outside of the atoms, we get that ω0 is the identically zero measure.

So
ω = ν − |u|2∗dx =

∑
j∈J

νjδxj . (4.2.53)

For any xj choose a ξ such that ξ(xj) = 1 and ξ = 0 outside a small ball around xj. Now
using the reverse Hölder inequality 4.2.49, we get

K̃2(νj)2/2
∗ ≤ λ({xj}). (4.2.54)

That is λ ≥
∑

j∈J K̃
2(νj)2/2

∗
δxj .

We have
ˆ
Rn

ξdλ = lim
m→∞

ˆ
Rn

ξ|∇vm|2dx (4.2.55)

= lim
m→∞

ˆ
Rn

ξ(|∇u|2 + |∇um|2 − 2⟨∇u,∇um⟩)dx (4.2.56)

= −
ˆ
Rn

ξ|∇u|2dx+
ˆ
Rn

ξdµ. (4.2.57)

Hence we get
µ ≥ |∇u|2dx+

∑
j∈J

K̃2(νj)2/2
∗
δxj . (4.2.58)

Although we gave the above theorem on Rn, the same proof works on a compact closed
manifold.

Theorem 4.8 (Existence in critical case). On a smooth closed Riemannian manifold Mn of
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dimension n ≥ 3, let us consider the PDE

∆confu = S ′u2
∗−1. (4.2.59)

This PDE has a weak solution u ∈ W 1,2 if µ(M) < µ(Sn).

Proof. Let {uk} be a minimizing sequence for µ2∗(M) = µ(M). WLOG, we can assume that
∥uk∥L2∗ = 1. Upto a subsequence, we have

1. uk → u in L2(M),

2. uk ⇀ u in W 1,2(M),

3. uk ⇀ u in L2∗(M).

Let ∥u∥2∗
L2∗ = t ∈ [0, 1]. We notice that if t = 1, we have in norms and weak convergence. This

implies we have strong convergence in L2∗ . This will imply that the minimizer is attained,
and we are done. Now by Concentration- Compactness Lemma 2, we have

µ(M) = lim
k→∞

I(uk) ≥
ˆ
M

4(n− 1)

n− 2
|∇u|2 + Su2 +

4(n− 1)

n− 2
K̃2(M)

∑
j∈J

(νj)2/2
∗
. (4.2.60)

Note I(u) =
(´

M
4(n−1)
n−2

|∇u|2 + Su2dv
)
/t2/2

∗ ≥ µ(M). Now we use the fact that for all

compact manifolds Mn
4(n−1)
n−2

K̃2(M) = µ(Sn). So,

µ(M) ≥ t2/2
∗
µ(M) + µ(Sn)

∑
j∈J

(νj)2/2
∗

(4.2.61)

≥ t2/2
∗
µ(M) + µ(Sn)(1− t)2/2

∗

(∑
j∈J

νj

1− t

)2/2∗

(4.2.62)

= t2/2
∗
µ(M) + µ(Sn)(1− t)2/2

∗
(4.2.63)

Now, since µ(Sn) > µ(M) and applying Jensen’s inequality, we have

µ(M) ≥ t2/2
∗
µ(M) + µ(Sn)(1− t)2/2

∗
(4.2.64)

≥ µ(M)(t2/2
∗
+ (1− t)2/2

∗
) (4.2.65)

≥ µ(M) (4.2.66)
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This proves t is 0 or 1. It cannot be zero, as the second inequality will then be a strict one.
So t = 1.

4.3 Existence when Mn is not locally conformally flat and

n ≥ 6

Lemma 4.3.1. Suppose k > −n. Then as α → 0,

I(α) =

ˆ ϵ

0

rku2αr
n−1dr (4.3.1)

is bounded above and below by positive multiples of αk+2 if n > k + 4, αk+2 log(1/α) if
n = k + 4, and αn−2 if n < k + 4.

Proof. The subsitution σ = r/α gives

I(α) = αk+2

ˆ ϵ/α

0

σk+n−1(σ2 + 1)2−ndσ (4.3.2)

Observe that σ2 ≤ 2σ2 for σ ≥ 1, so I(α) is bounded sbove and below by positive multiples
of

αk+2

(
C +

ˆ ϵ/α

1

σk+3−ndσ

)
. (4.3.3)

The expression in parentheses is bounded if n > k+4; it is comparable to αn−k−4 if n < k+4,
and to log(1/α) if n = k + 4.

Theorem 4.9 (Conformal Normal Coordinates). Let Mn be a Riemannian manifold and
P ∈Mn. For each N ≥ 2 there is a conformal metric g on M such that

det gij = 1 +O(rN), (4.3.4)

where r = |x| in g-normal coordinates at P . In these coordinates, if N ≥ 5, the scalar
curvature of g satisfies S = O(r2) and ∆S = 1

6
|W |2 at P .

Theorem 4.10. If M has dimension n ≥ 6 and is not locally conformally flat then µ(M) <

µ(Sn).
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Proof. Let {xi} be conformal normal coordinates in a neighborhood of P ∈Mn.

Let a = 4n−1
n−2

. The functions uα satisy a∥∇uα∥2L2 = µ(Sn)∥uα∥2Lp on Rn. Choose a smooth
radial function η, such that it is supported in B2ϵ and identically 1 in Bϵ and 0 ≤ η ≤ 1

everywhere else. Consider the function φ = ηuα. Since φ is a function of r = |x| alone we
have

ˆ
Rn

a|∇φ|2dx =

ˆ
B2ϵ

(
aη2|∇uα|2 + 2aηuα⟨∇η,∇uα⟩+ au2α|∇η|2

)
dx (4.3.5)

≤
ˆ
Rn

a|∂ruα|2dx+ C

ˆ
Aϵ

(
uα|∂ruα|+ u2α

)
dx, (4.3.6)

where Aϵ denotes the annulus B2ϵ \ Bϵ. Using the expression of uα we can estimate
uα ≤ α(n−2)/2r2−n and |∂ruα| ≤ (n− 2)α(n−2)/2r1−n. Therefore for a fixed ϵ, the second term
in the integral inequality is O(αn−2) as α → 0.. As for the first term,

ˆ
Rn

a|∂ruα|2dx = µ(Sn)
(ˆ

Bϵ

u2
∗

α dx+

ˆ
Rn−\Bϵ

u2
∗

α dx

)2/2∗

(4.3.7)

≤ µ(Sn)
(ˆ

B2ϵ

φ2∗dx+

ˆ
Rn\Bϵ

αnr−2ndx

)2/2∗

(4.3.8)

= µ(Sn)
(ˆ

B2ϵ

φ2∗dx

)2/2∗

+O(αn). (4.3.9)

On a compact manifold, let φ be defined as ηuα in normal coordinates {xi} in a neighbor-
-hood of P ∈Mn, extended smoothly by zero over the manifold. Since φ is a radial function
and grr ≡ 1 in normal coordinates, we have |∇φ|2 = |∂rφ|2. Since dVg = (1 + O(r))dx in
normal coordinates, the previous calculation gives
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E(φ) =

ˆ
B2ϵ

(
a|∇φ|2 + Sφ2

)
dVg (4.3.10)

≤ (1 + Cϵ)

(
µ(Sn)∥φ∥2L2∗ + Cαn−2 + C

ˆ 2ϵ

0

ˆ
Sr
u2αr

n−1dωdr

)
. (4.3.11)

Since dVg ≡ dx in conformal normal coordinates, the term (1 + Cϵ) is absent giving

E(φ) ≤ µ(Sn)∥φ∥2L2∗ + Cαn−2 +

ˆ
B2ϵ

Sφ2dx. (4.3.12)

But now in conformal normal coordinates S = O(r2) and ∆S(P ) = 1
6
|W (P )|2, so

ˆ
B2ϵ

Sφ2dx ≤
ˆ
Bϵ

Su2αdx+ C

ˆ
Aϵ

u2αdx (4.3.13)

=

ˆ ϵ

0

ˆ
Sr

(
1

2
S,ijx

ixj +O(r3)

)
u2αdωrdr +O(αn−2) (4.3.14)

=

ˆ ϵ

0

(
−Cr2|W (P )|2 +O(r3)

)
u2αr

n−1dr = O(αn−2). (4.3.15)

Using Lemma 4.3.1 we get

E(φ) ≤

µ(Sn)∥φ∥22∗ − C|W (P )|2α4 + o(α4) if n > 6,

µ(Sn)∥φ∥22∗ − C|W (P )|2α4 log(1/α) +O(α4) if n = 6.
(4.3.16)

If Mn is not locally conformally flat, we can choose P so that |W (P )|2 > 0, and then
I(φ) < µ(Sn) for α sufficiently small and n ≥ 6. Thus µ(Mn) < µ(Sn).

4.4 Existence in rest of the cases

Lemma 4.4.1. Suppose µ(M) > 0. Then at each P ∈ M the Green function ΓP for
4n−1
n−2

∆+ S = ∆conf exists and is strictly positive.
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Using Stereographic projection from Sn to Rn, we can transfer Yamabe functional to
Rn where analysis is more straightforward. We do a similar thing by defining a generalized
stereographic projection for compact manifolds.

Definition 4.1. Suppose (Mn, g) is a compact Riemannian manifold with µ(M) > 0. For
P ∈M define the metric ĝ = G2∗−2g on M̂ =M \ {P}, where

G = (n− 2)ωnaΓP . (4.4.1)

The manifolds (M̂, g) together with the natural map σ : M \ {P} → M̂ is called the
stereographic projection of M from P .

The image manifold of a stereographic projection has a special geometric structure called
asymptotically flat.

Definition 4.2. A Riemannian manifold N with C∞ metric g is called asymptotically flat
of order τ > 0 if there exists a decompostion N = N0 ∪ N∞ (with N0 compact) and a
diffeomorphism N∞ → Rn \BR for some R > 0, satisfying:

gij = δij +O(ρ−τ ), ∂kgij = O(ρ−τ−1), ∂k∂lgij = O(ρ−τ−2), (4.4.2)

as ρ = |z| → ∞ in the coordinates {zi} induced on N∞. The coordinates {zi} are called
asymptotic coordinates.

Although it looks like the definition depends on the asymptotic coordinates, it can be
proven that the asymptotic flat structure is determined by the metric alone.

Fix a point P ∈Mn. Choose the local coordinates to be the conformal normal coordinate
system. We will explicitly describe the asymptotically flat structure of the stereographic
projection (M̂, ĝ).

Remark 4.4.1. We write f = O′(rk) to mean f = O(rk) and ∇f = O(rk−1). Similarly we
define O′′. The set of smooth functions that vanish to order k at P is denoted by Ck. Pk is
the space of homogeneous polynomials of degree k.

Lemma 4.4.2. Let G be given by 4.4.1. In conformal normal coordinates {xi} at P , G has
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an asymptotic expansion

G(x) = r2−n

(
1 +

n∑
k=4

ψk(x)

)
= c log r +O′′(1), (4.4.3)

where r = |x|, ψk ∈ Pk, and the log term appears only if n is even. The leading terms are:

1. if n = 3, 4, 5, or M is conformally flat in a neighborhood of P ,

G = r2−n + A+O′′(r) (A = constant); (4.4.4)

2. if n = 6,

G = r2−n − 1

288a
|W (P )|2 log r +O′′(1); (4.4.5)

3. if n ≥ 7,

G = r2−n
[
1 +

1

12a(n− 4)

(
r4

12(n− 6)
|W (P )|2 − S,ij(P )x

ixjr2
)]
+O′′(r7−n). (4.4.6)

Now we can prove that the asymptotically flat structure of ĝ can be derived immediately
from this lemma.

Theorem 4.11. The metric ĝ is asymptotically flat of order 1 if n = 3, order 2 if n ≥ 4,
and order n− 2 if Mn is conformally flat near P . In inverted conformal normal coordinates,
it has the expansion

ĝij(z) = γ2
∗−2(z)

(
δij +O′′(ρ−2)

)
(4.4.7)

where, in the three cases of Lemma 4.4.2

1. γ(z) = 1 + Aρ2−n +O′′(ρ1−n) (A = constant)

2. γ(z) = 1 + 1
288a

|W (P )|2ρ−4 log ρ+O′′(ρ−4);

3. γ(z) = 1 + 1
12a(n−4)

ρ−6
(

ρ2

12(n−6)
|W (P )|2 − S,ij(P )z

izj
)
+O′′(ρ−5).
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Proof. Let {xi} be conformal normal coordinates on a neighborhood U of P , and define
inverted conformal normal coordinates zi = r−2xi on U \ {P}. With ρ = |z| = r−1 we have

∂/∂zi = ρ−2
(
δij − 2ρ−2zizj

)
∂/∂xj. (4.4.8)

If we write γ = rn−2G, the components of ĝ in z-coordinates are

ĝij(z) = γ2
∗−2ρ4g(∂/∂zi, ∂/∂zj) (4.4.9)

= γ2
∗−2(δik − 2ρ−2zizk)(δjl − 2ρ−2zjzl)gkl(ρ

−2z) (4.4.10)

= γ2
∗−2
(
δij +O′′(ρ−2)

)
. (4.4.11)

If Mn is conformally flat near P , gkl ≡ δkl in conformal normal coordinates, so ĝij = γ2
∗−2δij

in that case. Noting that the expansion for G gives the corresponding expansion for γ, we
will get the desired theorem.

In the locally conformally flat case, we could define a function locally and provide a
bound on the Yamabe invariant of the manifold. But in the case of the locally conformally
flat case, the local geometry resembles that of the sphere. And on the sphere no function will
have the Yamabe functional lower than µ(Sn). That is why attempt to construct a function
locally with Yamabe quotient less than µ(Sn) will fail. In order to overcome this we need to
define a function which carries some information about the global geometry. So in this case
we define “distortion coefficient” which does exactly that for asymptotically flat manifolds.

We will now construct a test function on M̂ and express its Yamabe quotient in terms of
a number determined by the global geometry of M̂.

Fix a large radius R > 0, let ρ(z) = |z| in inverted conformal coordinates (extended to a
smooth, positive function on M̂), and let M̂∞ = {ρ > R}. Define φ on M̂ by

φ(z) =

uα(z) ρ(z) ≥ R,

uα(R) ρ(z) ≤ R,
(4.4.12)

with α ≫ R to be detremined later.
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Since φ is a function of only the radial variable ρ, the behavior of Yamabe quotient as
α → ∞ depends on the “average” behavior of the metric ĝ over large spheres. As a measure
of this average behaviour we introduce the “distortion coefficient”.

Define
h(ρ) = ω−1

ρ

ˆ
Sρ

γ(2
∗+2)/2dωρ. (4.4.13)

The expansion of γ then gives an asymptotic expansion as ρ→ ∞:

h(ρ) =

1 + (ν/k)ρ−k +O′′(ρ−k−1) if n ̸= 6,

1 + (ν/4)ρ−4 log ρ+O′′(ρ−4) if n = 6,
(4.4.14)

and therefore, since the (n− 1)-form dωρ/ωρ is homegeneous of degree zero,

a

2

ˆ
Sρ

∂ργ
dωρ
ωρ

= h′(ρ) +O(ρ−2k−1) (4.4.15)

=

−βρ−k−1 +O(ρ−k−2) if n ̸= 6,

−βρ−5 log ρ+O(ρ−5) if n = 6.
(4.4.16)

We call the constant β, defined using conformal normal coordinates, the distortion coefficient
of ĝ. Its geometric meaning at infinity is analogous to the scalar curvature at a finite point.
It is this constant which determines the values of the Yamabe quotient for large α.

Proposition 4.4.3. Let φ be defined as above. There are positive constants C and k such
that

E(φ) ≤ µ(Sn)∥φ∥2L2∗ − Cβα−k +O(α−k−1) (4.4.17)

if n ̸= 6 or M is conformally flat near P,

E(φ) ≤ µ(Sn)∥φ∥2L2∗ − Cβα−4 logα +O(α−4) (4.4.18)

if n = 6 and M is not conformally flat near P . Thus if β > 0, φ can be chosen so that the
Yamabe quotient is less than µ(Sn).

Proof. Since the scalar curvature of ĝ is zero, the energy E(φ) is

E(φ) =

ˆ
M̂

a|∇φ|2dVĝ =
ˆ
M̂∞

aĝρρ(∂ρuα)
2dVĝ =

ˆ
M̂∞

a(∂ρuα)
2γ2dz. (4.4.19)
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Letting AL denote the annulus {R ≤ ρ ≤ L} and integrating by parts using the Euclidean
Laplacian gives

ˆ
AL

a(∂ρuα)
2γ2dz

=

ˆ
AL

auα∆0uαγ
2dz −

ˆ
AL

auα∂ρuα∂ρ(γ
2)dz −

ˆ
SR∪SL

auα∂ρuαγ
2∂ρ⌋dz. (4.4.20)

Since γ is bounded , we have that the integral over SL is O(L2−n) for fixed α, and thus
vanishes as L→ ∞. Similarly, the integral over SR is O(α−n). Using Hölder’s inequality on
the first integral we get

ˆ
AL

auα∆0uαγ
2dz = 4n(n− 1)

ˆ
AL

u2
∗−2
α (uαγ)

2dz (4.4.21)

≤ 4n(n− 1)

(ˆ
AL

u2
∗

α dz

)1−2/2∗ (ˆ
AL

u2
∗

α γ
2∗dz

)2/2∗

(4.4.22)

≤ 4n(n− 1)∥uα∥2
∗−2
L2∗

(ˆ
M̂

φ2∗dVĝ

)2/2∗

(4.4.23)

= µ(Sn)∥uα∥2L2∗ . (4.4.24)

The important term is the second term in 4.4.20. After letting L→ ∞ it becomes

−
ˆ ∞

R

auα∂ρuα

ˆ
Sρ

∂ρ(γ)
2dωρdρ (4.4.25)

If n ̸= 6 or Mn is conformally flat near P ,

a

ˆ
Sρ

∂ρ(γ
2)dωρ = 4(h′(ρ) +O(ρ−2k−1))ωρ (4.4.26)

= −4(βρ−k−1 +O(ρ−k−2))ωρ. (4.4.27)

The change of variables σ = ρ/α shows that if 2− n < k < n

C−1α−k+1 ≤
ˆ ∞

R

ρ−k
(
ρ2 + α2

α

)1−n

ρn−1dρ ≤ Cα−k+1. (4.4.28)
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Thus the second term in 4.4.20 is

− 4

ˆ ∞

R

ρα−1

(
ρ2 + α2

α

)1−n (
βρ−k−1 +O(ρ−k−2)

)
ωρdr

≤ −Cβα−k +O(α−k−1). (4.4.29)

Combining the results of the above calculations, we obtain 4.4.17. If n = 6, we use the
inequality instead

C−1α−k+1

logα ≤
ˆ ∞

R

ρ−k log ρ

(
ρ2 + α2

α

)1−n

ρn−1dρ ≤ Cα−k+1 logα, (4.4.30)

and a similar analysis yields 4.4.18

The above calculation reduces the solution of the Yamabe problem in the case µ(M) > 0

to determining the sign of β. We have

µ(M) = inf
ψ∈C∞

c (M̂)

E(ψ)

∥ψ∥2
L2∗

, (4.4.31)

and so approximating our test function φ by a function ψ ∈ C∞
c ((̂M)), we find that µ(M) <

µ(Sn) if β > 0. So we proved the following theorem

Theorem 4.12. If (M, g) is a compact Riemannian manifold of dimension n ≥ 3 with
µ(M) < µ(Sn) if there is a generalized stereographic projection M̂ of M with strictly positive
distortion coefficient β.

It can be proven that this distortion coefficient β = 1
2
m(ĝ), where m(ĝ) is the so-called

ADM mass of an asymptotically flat manifold, when n < 6 or M conformally flat in the
neighborhood of the point w.r.t which we did the stereographic projection. According to the
“Positive mass theorem,” this mass is positive. Proving this theorem is beyond the scope of
this thesis, so we would assume it.

With all of these assumptions, we have that the distortion coefficient is positive; hence
we have proved the existence of solutions in the last case.
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