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SOFT GRAVITONS AND STRUCTURE OF NULL INFINITY IN
LOGARITHMICALLY ASYMPTOTIC FLAT SPACETIME

Abstract

by

RAIKHIK DAS

SUPERVISOR: ALOK LADDHA (CHENNAI MATHEMATICAL INSTITUTE)

EXPERT: SUNEETA VARDARAJAN (IISER, PUNE)

Recent developments in soft theorems and the rise of Celestial Holography have rejuvenated the

interest in the asymptotic structure of spacetimes. Bondi, van der Burg, Metzner, and Sachs’s work

and Ashtekar’s notion of asymptotic flatness assume that the future null infinity in the conformal

metric and the physical metric is 𝐶∞. Similarly, the absence of incoming radiation requires the

past null infinity to be 𝐶∞. But this condition cannot be put on spatial infinity due to the probable

presence of isolated sources, which are represented by an important class of solutions. Despite

the lack of differentiability of spatial infinity extending to the metric, the assumption of 𝐶∞ of the

manifold along with the null infinity leads to the peeling property, given by: 𝐶𝜇𝜈𝜌𝜎 = O(Ω). But

Christodoulou and Klainerman argued that this peeling property is too restrictive and strong of a

condition that eliminates plausible physical spacetime solutions. The shortcomings of the peeling

property motivate the construction of the logarithmically asymptotic flat (LAF) spacetimes, which

gives the relation: 𝐶𝜇𝜈𝜌𝜎 = O(Ω logΩ) with Weyl tensor and its dual satisfying the relations:

𝐶𝜇𝜈𝜌𝜎𝑛
𝜇𝑛𝜌 = O(Ω) and ∗𝐶𝜇𝜈𝜌𝜎𝑛𝜇𝑛𝜌 = O(Ω) where 𝑛𝜇 = 𝑔𝜇𝜈Ω,𝜈. Upon taking this asymptotically

logarithmic flat condition differentiability structure of the infinities change. In this thesis, we

study the structure of future null infinity of asymptotically logarithmic flat (LAF) spacetime and if

peeling is violated at |𝑢 | → ∞ for massive particles, massless scalar, and massive scalar field on

the Minkowski background.
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C h a p t e r 1

INTRODUCTION

Asymptotic symmetries, soft theorems, and the memory effect have been studied separately for

years in the theoretical physics community. But recent insight into those seemingly different topics

has led us to conclude that they are closely connected and effectively equivalent. Hence, studying

one of them will lead to understanding the others. Further, recent interests in Celestial Holography

and Soft theorems have re-energized the discussion on asymptotic characteristics of spacetime.

Studying isolated systems is of particular interest in general relativity. Although there cannot be

any such system as genuinely isolated, it is reasonable to consider the spacetime at large distances

from a compact source. It is beneficial to treat spacetime at large distances as asymptotically

flat. Therefore, studying asymptotically flat (AF) spacetime is of particular interest to theoretical

physicists.

One may be interested in studying isolated charge distributions in electromagnetism in special

relativity. In this context, the fall-off rates of the charge-current density ( 𝑗𝜇) and electromagnetic

field tensor (𝐹𝜇𝜈) can be used to define the "isolated system." For example, one can take a

spatially compact charge-current source such that 𝑗𝜇 vanishes outside a timelike world tube, and

𝐹𝜇𝜈 = O(1/𝑟2) as 𝑟 → ∞ at fixed 𝑡, and 𝐹𝜇𝜈 = O(1/𝑟) as 𝑟 → ∞ along any null geodesic. The

asymptotic gauge fields (𝐴𝜇) and 𝐹𝜇𝜈 can be expanded in a multipolar form using Maxwell’s

equations. In the absence of incoming radiation, one can have a simple relation between the

multipole coefficients and the charge-current distribution.

In the attempt to derive similar results in general relativity, one encounters the problem of the

precise definition of "isolated system" not being straightforward. In this case, there is no such

background flat metric (𝜂𝜇𝜈) in terms in which one can write the fall-off rates of the curvature of

spacetime metric (𝑔𝜇𝜈). To remedy this problem, one may define spacetime to be asymptotically

flat. If there exists any coordinate system, {𝑥0, 𝑥1, 𝑥2, 𝑥3} such that 𝑔𝜇𝜈 = 𝜂𝜇𝜈 +O(1/𝑟) as 𝑟 →∞,

where 𝑟 = [(𝑥1)2 + (𝑥2)2 + (𝑥3)2]. This problem is solved by formulating asymptotic flatness.
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Asymptotic flatness defines an asymptotically flat (AF) spacetime with an appropriate boundary

represented by suitably added points at infinity.

Now with this framework, one can get multipolar moments of the gravitational wave outside

the compact spatial support in stationary cases. But there does not exist a satisfactory multipolar

expansion for gravitational waves in a non-stationary case.

There was a notion that the AF spacetimes are similar to the properties of flat spacetimes. So, the

symmetry group for AF spacetimes will be identical to the flat spacetimes, i.e., the Poincare group.

The first careful analysis of AF spacetime was carried out by Bondi, van der Burg, Metzner[1] and

Sachs[2]. They specified the asymptotic fall-off requirements and showed that the symmetry group

for AF spacetime is an infinite dimensional symmetry group called the BMS group, named after

Bondi, van der Burg, Metzner, and Sachs. Later Penrose introduced the notion of "Asymptotic

Simplcity" [3, 4] stating that the future null infinity (I+) and past null infinity (I−) are infinitely

differentiable (𝐶∞) but the timelike and spatial infinity are not smooth. Geroch [5] provided an

alternative notion of asymptotic flatness at spatial infinity (𝑖0) based on the behaviour of initial data

on the Cauchy surface at large distances. Ashtekar and Hansen combined these two notions into

one [6, 7].

1.1 Conformal infinity

We now have two problems to overcome for a useful formalism for analyzing gravitational radiation

and other aspects of the distant gravitational field due to an isolated system.

1. The concept of asymptotic flatness requires a clear definition.

2. We need a meaningful notion of how to take limits at infinity and a precise framework for

describing the mathematical entities these limits represent.

We propose a solution for problem 2. We take the Minkowski metric without any gravitational

field.

The Minkowski metric has the following form in spherical coordinates:

𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2) (1.1)
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Now, let’s introduce retarded and advanced coordinates, respectively, as the following:

𝑢 = 𝑡 − 𝑟 (1.2)

𝑣 = 𝑡 + 𝑟 (1.3)

In new coordinates (𝑢, 𝑣, 𝜃, 𝜙), the Minkowski metric components are

𝑑𝑠2 = −𝑑𝑢𝑑𝑣 + 1
4
(𝑣−𝑢)2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2) (1.4)

If we try to investigate at 𝑣 → ∞ keeping 𝑢 fixed, we may run into complications in curved

spacetime. A naive approach to solve this problem will be to express the metric in new coordinates

where 𝑉 = 1
𝑣
. Then the new metric takes the form:

𝑑𝑠2 =
1
𝑉2 𝑑𝑢𝑑𝑉 + 1

4
( 1
𝑉
−𝑢)2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2) (1.5)

Here, for 𝑣→∞, we have 𝑉 = 0, but for 𝑣 = 0, the metric blows up. So, we cannot extend the

metric to 𝑣 = 0. This is nothing but a case of choosing bad coordinates.

However, lets consider an unphysical metric 𝑔̄𝑎𝑏 where 𝑔̄𝑎𝑏 = 𝑉
2𝜂𝑎𝑏 =

1
𝑣2𝜂𝑎𝑏. 𝜂𝑎𝑏 is the

Minkowski metric. Therefore 𝑔̄𝑎𝑏 is related to 𝜂𝑎𝑏 by a conformal transformation Ω = 𝑉 . So,

the new metric 𝑔̄𝑎𝑏 can be written as

𝑑𝑠2 = 𝑑𝑢𝑑𝑉 + 1
4
(1−𝑢𝑉)2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2) (1.6)

Now, we can do our tensor analysis in the region where 𝑣→∞ as 𝑣→∞ at a finite distance,

but there are other issues with this new metric 𝑔̄𝑎𝑏. The conformal factor 𝑉 = 1
𝑣

blows up at 𝑣 = 0.

Although we have extended our metric to future null infinity (𝑣→∞ at fixed 𝑢), we cannot do that

for past null infinity (𝑢→−∞ at fixed 𝑣) or spatial infinity (𝑟 →∞ at fixed 𝑡). But all these can be

resolved if we design the metric as

𝑔̃𝑎𝑏 = Ω2𝜂𝑎𝑏 (1.7)

with Ω2 = 4(1+ 𝑣2)−1(1+𝑢2)−1.

Now, we define 𝑇, 𝑅 for Minkowski spacetime by

𝑇 = tan−1 𝑣 + tan−1𝑢

𝑅 = tan−1 𝑣− tan−1𝑢 (1.8)
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The following inequality constrains the ranges of 𝑇, 𝑅.

−𝜋 < 𝑇 +𝑅 < 𝜋 , −𝜋 < 𝑇 −𝑅 < 𝜋 , 0 ≤ 𝑅 (1.9)

The components of 𝑔̃𝑎𝑏 in the coordinates (𝑇, 𝑅, 𝜃, 𝜙) are given by

𝑑𝑠2 = −𝑑𝑇2 + 𝑑𝑅2 + sin2 𝑅(𝑑𝜃2 + sin2 𝜃𝑑𝜙2) (1.10)

This is the natural Lorentz metric on S3×R which represents Einstein’s static universe but with

the restrictions, inequalities eq.[(1.9)].

Conformal infinity consists of 𝑖+, 𝑖−, 𝑖0,I+,I−. With this, we can solve the problem[2] we

previously had.

1.2 Asymptotically Flat Spacetime

As we have introduced the conformal structure of flat spacetime, let us introduce a metric 𝑔𝜇𝜈 to

define asymptotic flatness. One can do so in two ways:

1. We can use covariant objects involving the conformal factor used for Penrose compactifica-

tion.

2. We can use an adapted coordinate system and specify fall-off conditions.

We will take the second route. We would define AF spacetime with respect to I+. This

explains the radiation zone where gravitational waves and other null waves have an impact. Bondi,

van der Burg, Metzner [1] and Sachs [2] addressed this problem in the 1960-s. They considered

a family of null hypersurfaces labeled by constant 𝑢. By construction, the normal vectors to these

hypersurfaces 𝑛𝜇 = 𝑔𝜇𝜈𝜕𝜈𝑢 are null. Therefore, 𝑔𝑢𝑢 = 0. The angular coordinates 𝑥𝐴 = (𝜃, 𝜙) ∋ the

directional derivative along the normal 𝑛𝜇 is zero, 𝑛𝜇𝜕𝜇𝑥𝐴 = 0 =⇒ 𝑔𝑢𝐴 = 0. The radial coordinate

𝑟 is selected to be the luminosity distance: 𝜕𝑟𝑑𝑒𝑡 (𝑔𝐴𝐵/𝑟2) = 0. The coordinates 𝑥𝜇 = (𝑢,𝑟, 𝑥𝐴) are

known as Bondi-Sachs coordinate system or Bondi gauge. Therefore, 𝑔𝑟𝑟 = 𝑔𝑟𝐴 = 0. The form that

the line element takes is

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 = 𝑔𝑢𝑢𝑑𝑢

2 +2𝑔𝑢𝑟𝑑𝑢𝑑𝑟 +2𝑔𝑢𝐴𝑑𝑢𝑑𝑥𝐴 +𝑔𝐴𝐵𝑑𝑥𝐴𝑑𝑥𝐵 (1.11)
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Now, we can define the notion of asymptotic flatness. One can obtain Minkowski spacetime

when 𝑟 →∞ at constant 𝑢,𝑥𝐴. The line element in retarded coordinates takes the form:

𝑑𝑠2 = −𝑑𝑢2 −2𝑑𝑢𝑑𝑟 + 𝑟2𝛾𝐴𝐵𝑑𝑥
𝐴𝑑𝑥𝐵, (1.12)

where 𝛾𝐴𝐵 is the metric on the unit 2-sphere. Therefore, one can demand

lim
𝑟→∞

𝑔𝑢𝑢 = lim
𝑟→∞

𝑔𝑢𝑟 = −1 , lim
𝑟→∞

𝑔𝑢𝐴 = 0 , lim
𝑟→∞

𝑔𝐴𝐵 = 𝑟
2𝛾𝐴𝐵 (1.13)

The boundary conditions are very restrictive. A phase space with well-defined charges must

be defined. But to keep all the physical spacetime, one cannot be too restrictive. The proposed

conditions are

𝑔𝑢𝑢 = −1+O(𝑟−1) , 𝑔𝑢𝑟 = −1+O(𝑟−2) , 𝑔𝑢𝐴 = O(𝑟0) , 𝑔𝐴𝐵 = 𝑟2𝛾𝐴𝐵 +O(𝑟). (1.14)

From the fall-off conditions in eq.[(1.14)] the class of metrics we get are:

𝑑𝑠2 = −𝑑𝑢2 −2𝑑𝑢𝑑𝑟 + 𝑟2𝛾𝐴𝐵𝑑𝑥
𝐴𝑑𝑥𝐵 (Minkowski)

+2𝑚
𝑟
𝑑𝑢2 + 𝑟𝐶𝐴𝐵𝑑𝑥𝐴𝑑𝑥𝐵 +𝐷𝐵𝐶𝐴𝐵𝑑𝑢𝑑𝑥

𝐴

1
16𝑟2𝐶𝐴𝐵𝐶

𝐴𝐵𝑑𝑢𝑑𝑟 + 1
𝑟
+ 1
𝑟
[4
3
(𝑁𝐴 +𝑢𝜕𝐴𝑚𝐵) −

1
8
𝜕𝐴 (𝐶𝐵𝐶𝐶𝐵𝐶)]𝑑𝑢𝑑𝑥𝐴

+1
4
𝛾𝐴𝐵𝐶𝐶𝐷𝐶

𝐶𝐷𝑑𝑥𝐴𝑑𝑥𝐵

+(Subleading terms) (1.15)

All the indices in eq.[(1.15)] are raised with 𝛾𝐴𝐵 and 𝛾𝐴𝐵𝐶𝐴𝐵 = 0.

𝑚(𝑢,𝑥𝐴) is the Bondi mass aspect. 𝑀 (𝑢) =
∮
𝑆2
∞
𝑑2Ω 𝑚(𝑢,𝑥𝐴) is Bondi mass. 𝐶𝐴𝐵, at the

subleading order, is traceless and symmetric. 𝑁𝐴𝐵 = 𝜕𝑢𝐶𝐴𝐵 is called Bondi news tensor. 𝑁𝐴𝑢,𝑥𝐴,

at the sub-subleading order, is called Bondi angular momentum aspect.

Now the metric in eq.[(1.15)] is not a solution for Einstein’s equations. We have to put additional

constraints to make the ansatz consistent with Einstein’s equations:

𝜕𝑢𝑚 =
1
4
𝐷𝐴𝐷𝐵𝑁𝐴𝐵 −𝑇𝑢𝑢 (1.16)

with 𝑇𝑢𝑢 =
1
8
𝑁𝐴𝐵𝑁

𝐴𝐵 +4𝜋 lim
𝑟→∞

(𝑟2𝑇𝑀𝑢𝑢 ) (1.17)
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and

𝜕𝑢𝑁𝐴 = −1
4
𝐷𝐵 (𝐷𝐵𝐷

𝐶𝐶𝐶𝐴−𝐷𝐴𝐷
𝐶𝐶𝐶𝐵) +𝑢𝜕𝐴 (𝑇𝑢𝑢 −

1
4
𝐷𝐵𝐷𝐶𝑁𝐵𝐶) −𝑇𝑢𝐴 (1.18)

with 𝑇𝑢𝐴 = 8𝜋 lim
𝑟→∞

(𝑟2𝑇𝑀𝑢𝐴) −
1
4
𝜕𝐴 (𝐶𝐵𝐶𝑁𝐵𝐶) +

1
4
𝐷𝐵 (𝐶𝐵𝐶𝑁𝐶𝐴) −

1
2
𝐶𝐴𝐵𝐷𝐶𝑁

𝐵𝐶 . (1.19)

1.3 Peeling Property

Though 𝑖0 in AF spacetimes are not smooth, the "Asymptotic Symplicity" condition and Bondi,

van der Burg, Metzner [1] and Sachs [2] approach assume no loss of differentiability at I+. For

a 𝐶∞ physical manifold, the Asymptotic Symplicity condition makes the conformal manifold 𝐶∞.

This assumption leads to the peeling property of I+: 𝐶𝜇𝜈𝜎𝛾 = O(Ω), where 𝐶𝜇𝜈𝜎𝛾 and Ω are

respectively the Weyl tensor and the conformal factor.

This model of AF spacetimes at I has provided a robust formalism for understanding gravita-

tional radiation and its effect atI+. But several studies have provided evidence that peeling property

at I+ does not hold in AF spacetimes. Scalar, electromagnetic, and gravitational field perturbation

of Schwarzschild background violates peeling property at I [8]. The gravitational radiation from

a collapsing gas cloud with Newtonian limit violates the peeling property at I. Damour has shown

that in the presence of quadrupole moment at far past with Newtonian limit in Schwarzschild back-

ground, peeling is violated at I+. Christodoulou [9] has demonstrated that in the presence of 𝑁

massive particles at far fast with the Newtonian limit in Minkowski background, peeling is violated

at I+ as 𝑢→−∞. Damour later showed that quadrupole moments at far past with Newtonian limit

violate peeling atI+ as 𝑢→−∞ on Schwarzschildian background. In Christodoulou and Damour’s

analysis, log𝑟/𝑟3 term appears in the metric, where 𝑟 is the radial distance. This log𝑟/𝑟3 term in

the metric makes the future null infinity 𝐶2 as 𝑢→−∞. Hence, the peeling is violated.

Peeling at future null infinity can also be studied from the point of view of soft theorems. In

Ashoke Sen et al.’s work [10], one can see that due to particles at far past, log𝜔 terms appear in

the analysis of soft gravitons. But in this analysis, Sen et al. use perturbative metric instead of pure

flat metric as the background. In the case of Newtonian limit and Minkowski background, one can

see the log𝜔 terms emerge only in the case of massive particles. But, Sen et al.’s analysis [10]
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demonstrates the existence of log𝜔 terms in the case of massive and massless particles. The log𝜔

terms, in the case of soft gravitons, leads us to the violation of peeling at I+. This analysis implies

the violation of peeling at I+ as 𝑢→+∞ and 𝑢→−∞.

This thesis aims to study the structure of Logarithmically Asymptotic Flat (LAF) Spacetime

at I+. Such spacetimes are not asymptotically simple, and instead of peeling, they follow partial

peeling [11]:

𝐶𝜇𝜈𝜎𝛾 = O(Ω logΩ).

We will also attempt to study different systems and check if verify if they follow or violate the

peeling property at I+ as 𝑢 → ±∞ with pure Minkowski background. We try to use Corvino’s

gluing construction to construct a metric with a𝐶2 differentiability. But we run into a few problems,

so we try to study the system with 𝑁 massive particles at far past with the Newtonian limit. Then we

analyze soft gravitons with massless scalar and massive scalar fields on the Minkowski background.

From this analysis, we try to enquire if peeling is violated in such cases.

In sec[2], we have shown the calculations and used methods in this thesis. In sec[2.1], we dis-

cussed Corvino’s gluing construction, attempting to glue manifolds with different differentiabilities

so that the future null infinity violates peeling. Then we turn to the analysis of linearized gravita-

tional wave in the case of a spatially compact source in sec[2.2]. Next, we discuss the generation

of non-artifact log terms in the metric at the future null infinity in sec[2.3]. Further, we study the

concept of partial peeling and the metric components in LAF spacetimes. Then in sec[2.5.1], we

go through some necessary mathematical tools and results needed in the further analysis in our

thesis. Sec[2.7] discusses the effects of soft gravitons on the future null infinity as 𝑢→±∞. We

show in sec[2.8] that a system with 𝑁 massive particles at far past (far future) on the 4- dimensional

Minkowski background violates peeling at I+
− (I+

+ ). We demonstrate in sec[2.9.3] that a massless

scalar field on the 4- dimensional Minkowski background does not violate peeling I+. We show

in sec[2.10.3] that a massive scalar field on the 4- dimensional Minkowski background violates

peeling at I+
± . Then we summarize the results and discuss the implications of the results in sec[3].

At last, we conclude our thesis in sec[4].
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C h a p t e r 2

METHODS AND CALCULATIONS

2.1 Corvino’s Gluing construction:

A gluing construction by Corvino demonstrated the existence of non-trivial flat scalar flat metrics

that behave like the Schwarzschild metric at large distances. This method glues an asymptotically

flat (AF) metric 𝑔 with the Schwarzschild metric on 𝐵(0,2𝑅0) \𝐵(0, 𝑅0) annulus and preserves the

condition: 𝑅(𝑔) = 0, where R(g) is Ricci scalar.

2.1.1 Creating Vacuum Spacetimes with Higher Degree of Differentiability at the Null Infinity:

One may think that a vacuum spacetime admitting conformal compactifications at null infinity

with a higher degree of differentiability structure and a global I can be created by Corvino’s

construction. The Schwarszchildian or Kerrian metrics contain hyperboloidal hypersurfaces near

𝑖0. In such cases, Friedrich’s Stability theorem can yield asymptotically simple spacetimes if the

initial data is close to Minkowski spacetime.

2.1.2 Problem in Creating Such Vacuum Spacetimes :

Suppose there is a sequence of data (𝑔𝑖,𝐾𝑖). In that case, the gluing radius in Corvino’s construction

can tend to infinity, resulting in the non-zero norm of hyperboloidal initial data for Friedrich’s

stability theorem.

2.1.3 Avoiding the Problem:

Imposing a parity condition on the initial data sets can avoid the problem. Here a slight vari-

ation of Corvino’s construction is used. An extension can be produced across the boundary

𝑆(0, 𝑅) = 𝜕𝐵(0, 𝑅) for any fixed radius 𝑅. This can be done for small initial datasets regardless

of whether they arise from the AF initial data sets. As a result, it is possible to create an asymp-
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totically simple family of infinite-dimensional vacuum spacetimes in Penrose’s notion. But this

method creates 𝐶𝑘 differentiable conformal compactification instead of 𝐶∞ differentiable confor-

mal compactification.

2.1.4 Extensions on Initial Data Sets:

Smith and Weinstein’s Method:

Suppose, we have a vacuum initial data set (𝑀,𝐾,𝑔) 1, where 𝑀 = 𝑀 ∪ 𝜕𝑀 . 𝜕𝑀 is compact

boundary of 𝑀 , with (𝐾,𝑔) extending smoothly, or in 𝐶𝑘 (𝑀) to the boundary. In such a case,

there exists an extension using the method of Smith and Weinstein [12]. But for Schwarzschildian

extension and non-trivial extrinsic curvature, it is unclear how this method can be implemented.

Corvino and Schoen’s Method:

The advantage of the results provided by Corvino and Schoen [13] is that they can obtain al-

ternative extension without the assumptions of the mean outer convex boundary and vanishing

𝐾 . The metric loses lesser differentiability in this method than in the Smith-Weinstein tech-

nique. This method gives 𝐶𝑘 extensions of 𝐶2𝑘+1 metrics, where 𝑘 ∈ Z+∪ {0}. Let’s assume that

∃(𝐾,𝑔) ∈ (𝐶𝑘+2 ×𝐶𝑘+3) (𝑀), 𝑘 ≥ 4, ∋ (𝐾,𝑔) satisfies the vacuum constraints on manifold 𝑀 with

compact boundary. Let 𝑀0 be a manifold ∋ 𝜕𝑀0 is diffeomorphic to 𝜕𝑀 and 𝑀′ be a manifold

constructed by gluing 𝑀 and 𝑀0 across 𝜕𝑀 . Let 𝑥 be any smooth function in the neighbourhood

𝒲 of 𝜕𝑀 on 𝑀′, with 𝜕𝑀 = {𝑥 = 0} and �𝑝 ∈ 𝜕𝑀 ∋ 𝑑𝑥(𝑝) = 0 and 𝑥 > 0 on 𝑀0. Now, let

𝒱 :=𝒲∩𝑀0 be diffeomorphic to 𝜕𝑀 × [0, 𝑥0], where 𝑥 is coordinate along the [0, 𝑥0] factor.

Suppose, on 𝑀0 ∃(𝐾0, 𝑔0) ∈ (𝐶𝑘+2 ×𝐶𝑘+3) (𝑀0) satisfying the vacuum constraints. (𝐾,𝑔) and

(𝐾0, 𝑔0) may not match across 𝜕𝑀 . Standard techniques extend (𝐾,𝑔) to (𝐾̂, 𝑔̂) on 𝑀0 ∋

1. (𝐾̂, 𝑔̂) ∈ 𝐶𝑘+2 ×𝐶𝑘+3

1𝐾 is (0,2)-symmetric tensor on manifold 𝑀 and is discussed in the Appendix (B.7).
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2. (𝐾̂, 𝑔̂) = (𝐾0, 𝑔0) on 𝑀0 \𝒱

3.

| |𝑔̂−𝑔0 | |𝐶𝑘+3 (𝒱) ≤ 𝐶
𝑘+3∑︁
𝑖=0

| |𝜕𝑖𝑥𝑔 |𝜕𝑀 − |𝜕𝑖𝑥𝑔0 |𝜕𝑀 |𝐶𝑘+3−𝑖 (𝜕𝑀) (2.1)

| |𝐾̂ −𝐾0 | |𝐶𝑘+2 (𝒱) ≤ 𝐶
𝑘+2∑︁
𝑖=0

| |𝜕𝑖𝑥𝐾 |𝜕𝑀 − |𝜕𝑖𝑥𝐾0 |𝜕𝑀 |𝐶𝑘+2−𝑖 (𝜕𝑀) (2.2)

4. ∀ 0 ≤ 𝑖 ≤ 𝑘 +1

| (∇̂) (𝑖)𝜌(𝐾̂, 𝑔̂) |𝑔̂ + |(∇̂) (𝑖)𝐽 (𝐾̂, 𝑔̂) |𝑔̂ ≤ 𝐶 ( | |𝑔̂−𝑔0 | |𝐶𝑘+3 (𝒱) + ||𝐾̂ −𝐾0 | |𝐶𝑘+2 (𝒱))𝑥𝑘+1−𝑖 (2.3)

𝜌 ≡ scalar constraint operator

𝐽 ≡ vector constraint operator

𝐶 is constant that may depend upon | |𝑔̂−𝑔0 | |𝐿∞ and | |𝐾̂ −𝐾0 | |𝐿∞ . The first extension is performed

under the assumptions that �(𝑌,𝑁) ∋ 𝑃∗(𝑌,𝑁) = 0 on 𝒱, where

𝑃∗(𝑌,𝑁) =

©­­­­­­­­­«

2(∇(𝑖𝑌 𝑗 ) −∇𝑙𝑌𝑙𝑔𝑖 𝑗 −𝐾𝑖 𝑗𝑁 + tr(𝐾)𝑁𝑔𝑖 𝑗

∇𝑙𝑌𝑙𝐾𝑖 𝑗 −2𝐾 𝑙(𝑖∇ 𝑗)𝑌𝑙 +𝐾𝑞𝑙 ∇𝑞𝑌
𝑙𝑔𝑖 𝑗 −Δ𝑁𝑔𝑖 𝑗 +∇𝑖∇ 𝑗𝑁

+(∇𝑝𝐾𝑙 𝑝𝑔𝑖 𝑗 −∇𝑙𝐾𝑖 𝑗 )𝑌 𝑙 −𝑁Ric(𝑔)𝑖 𝑗 +2𝑁𝐾 𝑙
𝑖
𝐾 𝑗 𝑙 −2𝑁tr(𝐾)𝐾𝑖 𝑗

ª®®®®®®®®®¬
(2.4)

Zero Kernel on 𝒱:

Indicating the existence of Killing vectors in the corresponding globally hyperbolic vacuum space-

time, non-trivial fields that fulfill 𝑃 ∗ (𝑌,𝑁) = 0 are referred to as Killing initial data (KID)

[14]. If (𝐾,𝑔) and its derivatives are sufficiently close to (𝐾0, 𝑔0) on 𝜕𝑀 up to appropriate

order as described in eq(2.1)-(2.2), ∃ vacuum initial dataset (𝐾0 + 𝛿𝐾,𝑔0 + 𝛿𝑔) ∈ (𝐶𝑘 ×𝐶𝑘 ) (𝒱) ∋

all of its derivatives up to order 𝑘 coincides with those of (𝐾,𝑔) on {0} × 𝜕𝑀 .
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The construction mentioned above provides new non-trivial extensions in the following situa-

tion:

1. (𝐾,𝑔) ∈ {(𝐾𝜆, 𝑔𝜆)}, where {(𝐾𝜆, 𝑔𝜆)} is a one parameter family of solutions of vacuum

constraint equations on 𝑀 .

2. 𝜆→ 0 =⇒ (𝐾𝜆, 𝑔𝜆) → (𝐾0 |𝑀 , 𝑔0 |𝑀) in (𝐶𝑘+2 ×𝐶𝑘+3) (𝑀)

Non-zero Kernel:

The situation gets more complicated than 2.1.4 if the kernel is non-zero or the families of metrics near

a metric have a non-zero kernel. We face such complications while trying to construct AF metrics

with a small mass. Let’s consider a case where 𝑀 ⊂
𝑠𝑢𝑏𝑚𝑎𝑛𝑖 𝑓 𝑜𝑙𝑑

𝑀′ = R3 ∋ 𝜕𝑀 is smooth ; 𝐾0 ≡

0 and 𝑔0 = Euclidean metric. The condition of 𝑀 , being a submanifold of 𝑀′, can be made

without the loss of generality in the following sense: Any 2-dimensional orientable manifold can

be embedded into R3. Hence, a tubular neighborhood can also be embedded into R3. 𝑀 can be

embedded inR3 if 𝑀 is replaced by a tubular neighbourhood (−𝑥0,0] ×𝜕𝑀 . Then, the closure of 𝑀

will have two boundaries: {−𝑥0} × 𝜕𝑀 and {0} × 𝜕𝑀 .But, we will ignore {−𝑥0} × 𝜕𝑀 . {0} × 𝜕𝑀

will be considered the outer boundary of 𝑀 seen from infinity. We will further assume that (𝑘, 𝑔)

is close to (𝐾0, 𝑔0):

| |𝑔−𝑔0 | |𝐶𝑘+3 (𝑀) + ||𝐾 −𝐾0 | |𝐶𝑘+2 (𝑀) < 𝜖 (2.5)

and that

𝑔(𝑥) = 𝑔(−𝑥) , 𝐾 (𝑥) = −𝐾 (−𝑥); (2.6)

A family of initial data, constructed via the conformal method, is referred to as parity-covariant.

One can create constructions preserving the parity-covariance, and here, we will only discuss such

extensions.

Only 𝐾̂ = 𝐾0 = 0 case is considered here for definiteness, even though the same argument

can be applied for appropriately small 𝐾-s. All of the symmetry properties of the original data
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are preserved by Corvino’s creations, which glue together "up to kernel" 𝑔̂ with standard (non-

translated) Schwarzschild metrics 𝑔𝑚, where𝑚 ∈ (−𝛿, 𝛿) with 𝛿 ≤ min(1,1/𝑅), maintaining parity-

covariance of "solutions up to kernel" (𝐾̂ + 𝛿𝐾𝑚 = 0, 𝑔̂ + 𝛿𝑔𝑚). Parity covariance implies that the

center of mass of the resulting metric is zero. So, the disappearance of the integral over 𝑅(𝑔̂+𝛿𝑔𝑚)

over𝒱 is the only challenge to the metric’s requirement to be scalar flat in the proof in Corvino[15].

Let 𝑚0 (≤ 𝐶𝜖) be the mass of (𝐾,𝑔), naively calculated using ADM integral over 𝑆(0, 𝑅).

1
16𝜋

∫
[0,𝑥0]×𝜕𝑀

𝑅(𝑔̂ + 𝛿𝑔𝑚) = 𝑚−𝑚0 +O(𝜖2) (2.7)

If the reference Schwarzschild metric 𝑔𝑚 has mass 𝑚 = 𝑚0 − 𝜖 , the RHS in eq(2.7) will be a

negative value. If 𝑚 = 𝑚0 + 𝜖 , the RHS in eq(2.7) will be positive value. Since, LHS in eq(2.7)

depends continuously on 𝑚, ∃ 𝑚 ∈ (𝑚0 − 𝜖,𝑚0 + 𝜖) ∋ LHS is zero.

If 𝐾 ≠ 0, one needs to choose a constant 0 ≤ 𝜆 ≤ 1 and put the constraint on initial data sets

such that

| ®𝑝0 |𝛿 ≤ 𝜆𝑚0 , (2.8)

where ®𝑝0 is the ADM momentum of (𝑀,𝐾,𝑔).

Theorem: Let’s assume that vacuum initial data sets (𝐾,𝑔) ∈ 𝐶 𝑙+3 ×𝐶 𝑙+4, on a compact

submanifold 𝑀 of R3, is parity-covariant, where 𝑙 ≥ 3. Suppose that ∃𝜆 ∈ [0,1] ∋ eq(2.8) is

satisfied. Let Ω be any bounded domain containing 𝑀 . Then ∃ 𝜖 > 0 ∋ if eq(2.5) holds good,

∃ a vacuum 𝐶 𝑙 ×𝐶 𝑙 extensions of (𝐾,𝑔) across the part of 𝜕𝑀 , which is homologous to large

coordinate spheres in the asymptotically flat region, with the extensions being Kerrian outside Ω.

2.1.5 Initial Data with Non-connected Trapped Surfaces ("Many Black-holes Initial Data")

The following time-symmetric initial data for a vacuum spacetime can be created using the extension

technique.
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1. ∃𝒦, a compact set ∋ 𝑔 is a Schwarzschild metric with parameter 𝑚 on the connected com-

ponent of 𝑀 \𝒦

2. On the Schwarzschild-Kruskal-Szekeres manifold, 𝑀 comprises 2𝑁 +1 such surfaces, with

the metric being Schwarzschild in the neighborhood of each corresponding 𝑆. Let 𝑆 denote

the usual minimal sphere within the time-symmetric initial data.

By gluing 2𝑁 + 1 Schwarzschild metrics, (𝑀,𝑔) is constructed. An initial data set (𝑀,𝑔)

contains 2𝑁 black holes.

Construction can be presented where one chooses two strictly positive radii 0 < 4𝑅1 < 𝑅2 <∞

and ®𝑥𝑖 ∈ Γ0(4𝑅1, 𝑅2) := 𝐵(0, 𝑅2) \𝐵(0,4𝑅1) ∀𝑖 ∈ {1,2, . . . ,2𝑁}. Then the radii 𝑟𝑖 are chosen such

that 𝐵(®𝑥𝑖,4𝑟𝑖) are disjoint are pairwise disjoint and 𝐵(®𝑥𝑖,4𝑟𝑖) ∈ Γ0(4𝑅1, 𝑅2) ∀𝑖.

Lets set Ω := Γ0(4𝑅1, 𝑅2) \ (
⋃
𝑖 𝐵(®𝑥𝑖,4𝑟𝑖)) and assume that Ω is invariant under the parity map

®𝑥→−®𝑥. Let ®𝑀 = (𝑚,𝑚0,𝑚1, . . . ,𝑚2𝑁 ) such that 2𝑚 < 2𝑅1, 2𝑚0 < 𝑅1, 2𝑚𝑖 < 𝑟𝑖 and lets construct

the metric 𝑔 ®𝑀 in the following manner.

1. Schwarzschild metric 𝑔 ®𝑀 , with mass 𝑚0, is centred at 0 on Γ0(𝑅1,2𝑅1).

2. Schwarzschild metric 𝑔 ®𝑀 , with mass 𝑚0, is centred at 0 on Γ0(3𝑅1, 𝑅2) \ (
⋃
𝑖 𝐵(®𝑥𝑖,4𝑟𝑖)).

3. The metric 𝑔 ®𝑀 interpolate between two Schwarzschild metric on Γ0(2𝑅1,3𝑅1).

4. Schwarzschild metric with mass 𝑚𝑖, is centred at ®𝑥𝑖 on Γ®𝑥𝑖 (𝑟𝑖,2𝑟𝑖) := 𝐵(®𝑥𝑖,2𝑟𝑖) \𝐵(®𝑥𝑖, 𝑟𝑖).

5. The metric interpolates between two metrics on Γ®𝑥𝑖 (2𝑟𝑖,3𝑟𝑖).

6. For 𝑖 = 1, . . . ,2𝑁 , the masses 𝑚𝑖 are chosen, and the gluings are carried out in such a way

that the resulting metric is symmetric under the parity map ®𝑥→−®𝑥.

Now, one may think of gluing manifolds with logarithmic terms to create a spacetime with a

future null infinity that has differentiability less than 3, therefore violating peeling conditions. But it
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Figure 2.1: The diagram of the construction gluing 2𝑁 +1 Schwarzschild metrics are glued together
in sec[2.1.5]

is difficult to determine if some coordinate transformation exists that can eliminate the logarithmic

terms in the metric. From this construction, it is also hard to get an intuitive picture of the physical

conditions of such a spacetime.

2.2 Gravitational Radiation from Post-Newtonian Sources and Spatial Compact Support

2.2.1 Vacuum Field Equations with Nonlinear Iteration

Einstein’s Field Equations

The famous Einstein-Hilbert action is following.

𝐼EH =
𝑐3

16𝜋𝐺

∫
d4𝑥

√−𝑔𝑅+ 𝐼mat
[
Ψ, 𝑔𝛼𝛽

]
, (2.9)

where −𝑔 ≡ det(𝑔), Ψ ≡ is the matter field, 𝑅 ≡ Ricci scalar, 𝐺 ≡ Universal gravitaional constant

and 𝑐 ≡ speed of light.

If we vary the Einstein-Hilbert action with respect to the space-time covariant metric 𝑔𝛼𝛽, we

arrive at Einstein’s field equations.

𝐸𝛼𝛽
[
𝑔, 𝜕𝑔, 𝜕2𝑔

]
=

8𝜋𝐺
𝑐4 𝑇𝛼𝛽 [Ψ, 𝑔] (2.10)
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𝐸𝛼𝛽 ≡ 𝑅𝛼𝛽− 1
2𝑅𝑔

𝛼𝛽 and𝑇𝛼𝛽 ≡ 2√−𝑔𝛿𝐼mat /𝛿𝑔𝛼𝛽 in eq(2.10) are respectively the Einstein’s curva-

ture tensor and stress-energy tensor. Among these ten equations in eq(2.10), the contracted Bianchi

Identity governs four equations. Contracted Bianchi identity gives the evolution matter system,

∇𝜇𝐸𝛼𝜇 = 0 =⇒ ∇𝜇𝑇𝛼𝜇 = 0. (2.11)

We can also vary the matter action with respect to Ψ and obtain the matter equations. The

remaining six equations in eq(2.10) place six independent constraints on the ten components of the

metric 𝑔𝛼𝛽. The rest of the four can be fixed by coordinate choice.

If we choose the harmonic coordinates or de Donder coordinates, we get

ℎ𝛼𝛽 ≡ √−𝑔𝑔𝛼𝛽 −𝜂𝛼𝛽, (2.12)

where 𝑔𝛼𝛽 is the covariant metric satisfying 𝑔𝛼𝜇𝑔𝜇𝛽 = 𝛿𝛼𝛽 and 𝜂𝛼𝛽 is the auxiliary Minkowski metric

𝜂𝛼𝛽 ≡ diag(−1,1,1,1). The harmonic coordinate condition is responsible for the rest of the four

constraints:

𝜕𝜇ℎ
𝛼𝜇 = 0 (2.13)

The formulation of our coordinate system is given a preferable Minkowskian structure by

eq(2.13), where the covariant Minkowski metric is 𝜂𝛼𝛽. It is quite convenient to examine grav-

itational waves as perturbations of space-time propagating on the constant background metric

𝜂𝛼𝛽 using the coordinate condition in eq(2.13).

Einstein’s field equations can be expressed as inhomogeneous flat d’Alembertian equations in

harmonic coordinates.

□ℎ𝛼𝛽 =
16𝜋𝐺
𝑐4 𝜏𝛼𝛽 (2.14)

where□≡□𝜂 = 𝜂𝜇𝜈𝜕𝜇𝜕𝜈. The source term 𝜏𝛼𝛽 can be interpreted as the stress-energy pseudo-tensor

(𝜏𝛼𝛽 is a Lorentz-covariant tensor) of the matter fields (i.e., described by 𝑇𝛼𝛽) and the gravitational

field (i.e., given by the gravitational source term Λ𝛼𝛽).

𝜏𝛼𝛽 = |𝑔 |𝑇𝛼𝛽 + 𝑐4

16𝜋𝐺
Λ𝛼𝛽 (2.15)
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Including all the non-linear terms, Λ𝛼𝛽 in harmonic coordinates takes the following from:

Λ𝛼𝛽 = −ℎ𝜇𝜈𝜕2
𝜇𝜈ℎ

𝛼𝛽 + 𝜕𝜇ℎ𝛼𝜈𝜕𝜈ℎ𝛽𝜇 +
1
2
𝑔𝛼𝛽𝑔𝜇𝜈𝜕𝜆ℎ

𝜇𝜏𝜕𝜏ℎ
𝜈𝜆

−𝑔𝛼𝜇𝑔𝜈𝜏𝜕𝜆ℎ𝛽𝜏𝜕𝜇ℎ𝜈𝜆 −𝑔𝛽𝜇𝑔𝜈𝜏𝜕𝜆ℎ𝛼𝜏𝜕𝜇ℎ𝜈𝜆 +𝑔𝜇𝜈𝑔𝜆𝜏𝜕𝜆ℎ𝛼𝜇𝜕𝜏ℎ𝛽𝜈

+ 1
8

(
2𝑔𝛼𝜇𝑔𝛽𝜈 −𝑔𝛼𝛽𝑔𝜇𝜈

)
(2𝑔𝜆𝜏𝑔𝜖𝜋 −𝑔𝜏𝜖𝑔𝜆𝜋) 𝜕𝜇ℎ𝜆𝜋𝜕𝜈ℎ𝜏𝜖

(2.16)

From the expression in eq(2.16), one can see that the terms are at least quadratic in gravitational

field strength. Λ𝛼𝛽 can be expressed as follows

Λ𝛼𝛽 = 𝑁𝛼𝛽 [ℎ, ℎ] +𝑀𝛼𝛽 [ℎ, ℎ, ℎ] + 𝐿𝛼𝛽 [ℎ, ℎ, ℎ, ℎ] + . . . . (2.17)

One can directly compute the various terms in eq(2.17). As an example

𝑁𝛼𝛽 =− ℎ𝜇𝜈𝜕2
𝜇𝜈ℎ

𝛼𝛽 + 1
2
𝜕𝛼ℎ𝜇𝜈𝜕

𝛽ℎ𝜇𝜈 − 1
4
𝜕𝛼ℎ𝜕𝛽ℎ+ 𝜕𝜈ℎ𝛼𝜇

(
𝜕𝜈ℎ

𝛽
𝜇 + 𝜕𝜇ℎ𝛽𝜈

)
−2𝜕 (𝛼ℎ𝜇𝜈𝜕𝜇ℎ𝛽)𝜈 +𝜂𝛼𝛽

[
−1

4
𝜕𝜏ℎ𝜇𝜈𝜕

𝜏ℎ𝜇𝜈 + 1
8
𝜕𝜇ℎ𝜕

𝜇ℎ+ 1
2
𝜕𝜇ℎ𝜈𝜏𝜕

𝜈ℎ𝜇𝜏
] (2.18)

The condition in eq(2.13) is equivalent to the matter equations of motion. The conservation of

the total pseudo-tensor 𝜏𝛼𝛽

𝜕𝜇𝜏
𝛼𝜇 = 0 ⇐⇒ ∇𝜇𝑇𝛼𝜇 = 0. (2.19)

Using the following four hypotheses, one can look for approximations to the solutions of the

field eq(2.13)-(2.14):

1. The harmonic-coordinate radial distance is 𝑟 = |x|, and the matter stress-energy tensor 𝑇𝛼𝛽 is

of spatially compact support and enclosed within some time-like world tube, say 𝑟 ⩽ 𝑎.

According to eq(2.19), the gravitational source term is divergence-free outside the source

domain when 𝑟 > 𝑎.

𝜕𝜇Λ
𝛼𝜇 = 0 ( when 𝑟 > 𝑎) (2.20)

2. 𝑇𝛼𝛽 (𝑥) ∈ 𝐶∞ (
R3) for 𝑟 ≤ 𝑎.

3. In terms of the small parameter, the source is post-Newtonian. In order to determine the

inner post-Newtonian field and the source’s outer near zone, respectively, we assume that

the approach of matching asymptotic expansions and the outer multipolar decomposition are

valid.
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4. We assume that the gravitational field was stationary before some finite instant −T in the

past, namely
𝜕

𝜕𝑡

[
ℎ𝛼𝛽 (x, 𝑡)

]
= 0 when 𝑡 ⩽ −T . (2.21)

Because the no incoming radiation criterion guarantees that the matter source is an isolated

system that doesn’t receive radiation from infinity, the fourth hypothesis is put into place. At past

null infinity, we should impose the no-incoming radiation condition.

Due to eq(2.21), the differential equation in eq(2.14) can be written as follows:

ℎ𝛼𝛽 =
16𝜋𝐺
𝑐4 □

−1
ret 𝜏

𝛼𝛽 (2.22)

where the retarded inverse d’Alembertian integral operator is(
□−1

ret 𝜏
)
(x, 𝑡) ≡ − 1

4𝜋

∭
R3

d3x′

|x−x′| 𝜏 (x
′, 𝑡 − |x−x′| /𝑐) (2.23)

Linearized vacuum equations

The linearized perturbation of the metric in Post-Minkowskian expansion can be written as

ℎ
𝛼𝛽
ext = 𝐺ℎ

𝛼𝛽

(1) +O
(
𝐺2

)
, (2.24)

where "ext" in the subscript represents the metric exterior to the compact source.

Hence, the conditions in eq(2.13),(2.14) combined with eq(2.24) gives

□ℎ𝛼𝛽(1) = 0, (2.25a)

𝜕𝜇ℎ
𝛼𝜇

(1) = 0. (2.25b)

We can use symmetric-trace-free (STF) harmonics to implement the multipolar-post-Minkowskian

(MPM) approach in order to explain the multipole expansion [16] and to search for a specific algo-

rithm for the approximation scheme [Blanchet Damour]. The retarded multipolar waves represent

the series of equations that make up the solution of (2.25).

ℎ
𝛼𝛽

(1) =
+∞∑︁
ℓ=0

𝜕𝐿

(
K𝛼𝛽

𝐿
(𝑡 − 𝑟/𝑐)
𝑟

)
, (2.26)
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where 𝑟 = |x|, and K𝛼𝛽

𝐿
≡ K𝛼𝛽

𝑖1...𝑖ℓ
∋ K𝐿 (𝑢) ∈ 𝐶∞(R), where 𝑢 ≡ 𝑡 − 𝑟/𝑐. 𝐾𝐿 (𝑢) = constant, when

𝑡 ⩽ −T . Since for a monopolar wave, □ (K𝐿 (𝑢)/𝑟) = 0.

The most general solution of eq(2.25) outside the time-like world tube enclosing the source and

stationary in the past [eq(2.21)] is

ℎ
𝛼𝛽

(1) = 𝑘
𝛼𝛽

(1) + 𝜕
𝛼𝜑

𝛽

(1) + 𝜕
𝛽𝜑𝛼(1) −𝜂

𝛼𝛽𝜕𝜇𝜑
𝜇

(1) . (2.27)

The first term depends on two symmetric trace-free (STF) tensorial multipole moments, 𝐼𝐿 (𝑢) and

𝐽𝐿 (𝑢), which are arbitrary functions of time except for conservation laws of the monopole: 𝐼 =

constant, and dipoles: 𝐼𝑖 = constant; 𝐽𝑖 = constant.

𝑘00
(1) = − 4

𝑐2

∑︁
ℓ⩾0

(−)ℓ
ℓ!

𝜕𝐿

(
1
𝑟

I𝐿 (𝑢)
)

(2.28a)

𝑘0𝑖
(1) =

4
𝑐3

∑︁
ℓ⩾1

(−)ℓ
ℓ!

{
𝜕𝐿−1

(
1
𝑟

I(1)
𝑖𝐿−1(𝑢)

)
+ ℓ

ℓ +1
𝜖𝑖𝑎𝑏𝜕𝑎𝐿−1

(
1
𝑟

J𝑏𝐿−1(𝑢)
)}
, (2.28b)

𝑘
𝑖 𝑗

(1) = − 4
𝑐4

∑︁
ℓ⩾2

(−)ℓ
ℓ!

{
𝜕𝐿−2

(
1
𝑟

I(2)
𝑖 𝑗 𝐿−2(𝑢)

)
+ 2ℓ
ℓ +1

𝜕𝑎𝐿−2

(
1
𝑟
𝜖𝑎𝑏(𝑖J

(1)
𝑗)𝑏𝐿−2(𝑢)

)}
(2.28c)

A linearized gauge transformation is represented by the other terms, with gauge vector 𝜑𝛼(1)
parametrized by four other multipole moments, say W𝐿 (𝑢),X𝐿 (𝑢),Y𝐿 (𝑢) and Z𝐿 (𝑢).

The MPM Solution

By Theorem2.2.1, One can present the most general solution of the linearized equations in the

exterior of the source as

ℎ
𝛼𝛽
ext =

+∞∑︁
𝑛=1

𝐺𝑛ℎ
𝛼𝛽

(𝑛) . (2.29)

Upon substitue the Post-Minkowskian ansatz eq(2.30) in eq(2.14), we can get

□ℎ𝛼𝛽(𝑛) = Λ
𝛼𝛽

(𝑛)
[
ℎ(1) , ℎ(2) , . . . , ℎ(𝑛−1)

]
, (22a)

𝜕𝜇ℎ
𝛼𝜇

(𝑛) = 0. (22b)
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In more details, eq(2.30) reads

□ℎ𝛼𝛽(2) = 𝑁
𝛼𝛽

[
ℎ(1) , ℎ(1)

]
, (2.31a)

□ℎ𝛼𝛽(3) = 𝑀
𝛼𝛽

[
ℎ(1) , ℎ(1) , ℎ(1)

]
+𝑁𝛼𝛽

[
ℎ(1) , ℎ(2)

]
+𝑁𝛼𝛽

[
ℎ(2) , ℎ(1)

]
, (2.31b)

□ℎ𝛼𝛽(4) = 𝐿
𝛼𝛽

[
ℎ(1) , ℎ(1) , ℎ(1) , ℎ(1)

]
+𝑀𝛼𝛽

[
ℎ(1) , ℎ(1) , ℎ(2)

]
+𝑀𝛼𝛽

[
ℎ(1) , ℎ(2) , ℎ(1)

]
+𝑀𝛼𝛽

[
ℎ(2) , ℎ(1) , ℎ(1)

]
+𝑁𝛼𝛽

[
ℎ(2) , ℎ(2)

]
+𝑁𝛼𝛽

[
ℎ(1) , ℎ(3)

]
+𝑁𝛼𝛽

[
ℎ(3) , ℎ(1)

]
, (2.31c)

...

Now, we want to expand Λ
𝛼𝛽

(𝑛) into multiple contributions, with a singularity at 𝑟 = 0, and

satisfies the d’Alembertian equation when 𝑟 > 0. We can obtain such a solution by the following

method of [17]. One can first regularize the source term Λ
𝛼𝛽

(𝑛) by multiplying it by the factor 𝑟𝐵,

where 𝑟 = |x| is the spatial radial distance and 𝐵 is a complex number, 𝐵 ∈ C. Let’s assume that

Λ
𝛼𝛽

(𝑛) is composed of multipolar pieces with maximal multipolarity ℓmax.

𝐼𝛼𝛽 (𝐵) ≡ □−1
ret

[
𝑟̃𝐵Λ

𝛼𝛽

(𝑛)

]
, (2.32)

where □−1
ret stands for the retarded integral defined by eq(2.23). For convenience, the regularizing

factor is made dimensionless by introducing some arbitrary constant length scale 𝑟0.

𝑟̃ ≡ 𝑟

𝑟0
. (2.33)

We can write the Laurent expansion of 𝐼𝛼𝛽 (𝐵) when 𝐵→ 0 in the following way.

𝐼𝛼𝛽 (𝐵) =
+∞∑︁
𝑝=𝑝0

𝜄
𝛼𝛽
𝑝 𝐵

𝑝, (2.34)
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Here, 𝑝 ∈ Z, and 𝜄𝛼𝛽𝑝 ≡ 𝜄𝛼𝛽𝑝 (x, 𝑡). When 𝑝0 ⩽ −1, there are poles; and −𝑝0, which depends on 𝑛,

referring to the maximal order of these poles. One can equate the different powers of 𝐵 by applying

the d’Alembertian onto both sides of eq(2.34) and get

𝑝0 ⩽ 𝑝 ⩽ −1 =⇒ □𝜄𝛼𝛽𝑝 = 0, (2.35a)

𝑝 ⩾ 0 =⇒ □𝜄𝛼𝛽𝑝 =
(ln𝑟)𝑝
𝑝!

Λ
𝛼𝛽

(𝑛) . (2.35b)

Hence, we get that □𝜄𝛼𝛽0 = Λ
𝛼𝛽

(𝑛) . Now, let’s say that 𝑢𝛼𝛽(𝑛) ≡ 𝜄
𝛼𝛽

0 . Therefore

𝑢
𝛼𝛽

(𝑛) = FP𝐵=0□
−1
ret

[
𝑟̃𝐵Λ

𝛼𝛽

(𝑛)

]
, (2.36a)

𝑤𝛼(𝑛) = 𝜕𝜇𝑢
𝛼𝜇

(𝑛) = FP𝐵=0□
−1
ret

[
𝐵𝑟̃𝐵

𝑛𝑖

𝑟
Λ𝛼𝑖(𝑛)

]
. (2.36b)

Now, we define 𝑣𝛼𝜇(𝑛) such that 𝜕𝜇𝑣
𝛼𝜇

(𝑛) = −𝑤𝛼(𝑛) . And then, if we pose

ℎ
𝛼𝛽

(𝑛) = 𝑢
𝛼𝛽

(𝑛) + 𝑣
𝛼𝛽

(𝑛) , (2.37)

eqs(2.30) are satisfied.

Generality of the MPM solution

The most general solution of Einstein’s field equations in the vacuum region outside an isolated

source, admitting some MPM expansions, is given by (in the harmonic coordinates)

ℎ
𝛼𝛽
𝑒𝑥𝑡 =

+∞∑︁
𝑛=1

𝐺𝑛ℎ
𝛼𝛽

(𝑛) [I𝐿 , J𝐿 , . . . ,Z𝐿] . (2.38)

It is dependent on two sets of arbitrary STF-tensorial functions of time I𝐿 (𝑢) and J𝐿 (𝑢) (satisfying

the conservation laws).

2.2.2 Structure of Near-zone and far-zone

In the near-zone (when 𝑟 → 0 ), the expansion of the post-Minkowskian exterior metric has the

following general structure:∀𝑁 ∈ N,

ℎ(𝑛) (x, 𝑡) =
∑︁

𝑛̂𝐿𝑟
𝑚 (ln𝑟)𝑝𝐹𝐿,𝑚,𝑝,𝑛 (𝑡) + 𝑜

(
𝑟𝑁

)
, (2.39)
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where 𝑚 ∈ Z, with 𝑚0 ⩽ 𝑚 ⩽ 𝑁 (and 𝑚0 becoming increasingly negative as 𝑛 grows), 𝑝 ∈ N with

𝑝 ⩽ 𝑛− 1. The functions 𝐹𝐿,𝑚,𝑝,𝑛 are multilinear functionals of the source multipole moments

I𝐿 , . . . ,Z𝐿 .

Near-Zone Expansion

If we restore the powers of 𝑐 in eq(2.39) and use the fact that 𝑟 → 𝑟
𝑐
, the structure of post-

Minkowskian expansion (𝑐→∞) is

ℎ(𝑛) (𝑐) ≃
∑︁
𝑝,𝑞∈N

(ln𝑐)𝑝
𝑐𝑞

, (2.40)

where 𝑝 ⩽ 𝑛−1 (and 𝑞 ⩾ 2 ).

Far-Zone Expansion

The structure of the far-zone expansion at future null infinity can be obtained by paralleling the

near-zone expansion’s structure. When 𝑟 →+∞ with 𝑢 = 𝑡 − 𝑟/𝑐 = constant: ∀𝑁 ∈ N

ℎ(𝑛) (x, 𝑡) =
∑︁ 𝑛̂𝐿 (ln𝑟)𝑝

𝑟 𝑘
𝐺𝐿,𝑘,𝑝,𝑛 (𝑢) +O

(
1
𝑟𝑁

)
(2.41)

where 𝑘, 𝑝 ∈ N, with 1 ⩽ 𝑘 ⩽ 𝑁 , and were, similar to the near-zone expansion, some powers of

logarithms, such that 𝑝 ⩽ 𝑛−1, appear. The studies of Bondi et al. [1], Sachs [2] and Penrose [3,

4] have shown the absence of the logarithmic terms in the metric if other coordinate systems are

chosen. Hence, logarithmic terms can be concluded to be the "artifact" terms.

2.3 Non-artifact Log Terms

For the differentiability of I+ to be finite, the perturbation to the Minkowski metric needs to have

non-artifact log𝑟 terms. The non-artifact log𝑟 terms in the metric will come due to the physical

system rather than the coordinate choice.
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2.3.1 Christodoulou’s Analysis

Christodoulou [9] demonstrated that massive particles at far past with Newtonian limit on Minkowski

background violate peeling at I+.

He showed that there exists a limit such that lim𝑢→−∞𝑢2𝑁𝜇𝜈 (𝑥) ≠ 0. We will define Ξ− =

lim𝑢→−∞𝑢2𝑁𝜇𝜈 (𝑥). We can show that

lim
𝑟→∞

𝜕𝑢 (𝑟4𝛽) = D (3)Ξ−

|𝑢 | , (2.42)

where third order differential operator on unit sphere S2 is represented by D (3) . If we integrate

eq.[(2.42)], we get

lim
𝑢→−∞

(𝑟4𝛽) (𝑢1(𝑡), 𝑡) − (𝑟4𝛽) (𝑢2(𝑡),0) ∼
∫ 𝑢2 (𝑡)

𝑢1 (𝑡)

D (3)Ξ−

|𝑢 | 𝑑𝑢 ∼ (log𝑟 − log |𝑢 |)D (3)Ξ−. (2.43)

Therefore,

lim
I+,𝑢→−∞

𝛽 = 𝐵∗ log𝑟 − log |𝑢 |
𝑟4 , (2.44)

where 𝐵∗ depends on the quadrupole distribution.

The log𝑟 terms appearing in eq.[(2.44)] is not an artifact term. Instead, it appears due to the

system considered.

2.3.2 Damour’s Analysis

Sachs [2] pointed out in his work that Bondi, Metzner, and Sachs’s work is conducted taking the

linear perturbation to the Minkowski metric into account. Their analysis results in the absence of

non-artifact log𝑟 terms. But Damour pointed out that if non-linear effects are taken into account,

non-artifact log𝑟 terms may appear in the metric. He claimed that monopole × quadrupole terms

would generate non-artifact log𝑟 terms. He demonstrated that massive particles at far past with
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Newtonian limit on a Schwarzschild background generate non-artifact log𝑟 terms in the metric at

I+ and makes the future null infinity 𝐶2, resulting in the violation of peeling at I+.

2.4 Partial Peeling

As previously discussed, instead of very strong and restrictive peeling property represented by

𝐶𝜇𝜈𝜌𝜎 = O(Ω), logarithmically asymptotic flat spacetime solutions are considered with weak or

partial peeling property [11]:

𝐶𝜇𝜈𝜌𝜎 = O(Ω ln (Ω))

with partial peeling property: 𝐶𝜇𝜈𝜌𝜎𝑛𝜇𝑛𝜌 = O(Ω) and ∗𝐶𝜇𝜈𝜌𝜎𝑛𝜇𝑛𝜌 = O(Ω), where 𝑛𝜇 = 𝑔𝜇𝜈Ω,𝜈.

2.4.1 Asymptotic Behavior due to Peeling Property

We can arrive at the peeling property upon solving the initial value problem on ℐ with the assump-

tion of ℐ being 𝐶∞. Now, we use conformal Bondi frame formalism, entailing null coordinate

system 𝑥𝛼 = (𝑢,𝑟, 𝑥𝐴), where 𝑟 is the inverse luminosity distance. The conformal factor isΩ= 𝑟 = 1
𝑟
.

𝑔01, 𝑔11 and 𝑔1𝐴 are non-vanishing contravariant components of conformal metric tensor and 𝑔𝐴𝐵

has unit determinant. So, 𝑔𝐴𝐵𝑔𝐵𝐶 = 𝛿𝐶
𝐴

implies 𝑔𝐴𝐵𝑔𝐴𝐵,1 = 0.

The boundary condition on the metric atℐ where 𝑟 = 0 becomes 𝑔11 = 𝑔11
,1 = 𝑔1𝐴 = 𝑔1𝐴

,1 = 𝑔01
,1 = 0

; 𝑔01 = 1 and 𝑔𝐴𝐵 = 𝑞𝐴𝐵, where 𝑞𝐴𝐵 is unit 2-sphere. Assuming 𝐶∞ on ℐ to imply strong peeling

property, we can arrive at the asymptotic form:

𝑔𝐴𝐵 = 𝑞𝐴𝐵 + 𝑐𝐴𝐵𝑟 + 𝑐𝐷𝐸𝑐𝐷𝐸𝑞𝐴𝐵
𝑟2

4
+𝐶0𝑟3 (2.45)

where 𝑐𝐴𝐵 is independent of 𝑟. 𝐶0 represents the generic fields in neighborhood of ℐ but at the

hypersurface where 𝑟 = constant the fields are represented by 𝐶∞.

2.4.2 Weaker Asymptotic Form

Instead of the standard asymptotic form in (2.45), let’s consider a weaker asymptotic behavior:

𝑔𝐴𝐵 = 𝑞𝐴𝐵 + 𝑐𝐴𝐵𝑟 + 𝑑𝐴𝐵𝑟2 + 𝑗𝐴𝐵𝑟3 ln𝑟 +𝐶0𝑟3 (2.46)



24

where 𝑐𝐴𝐵 and 𝑑𝐴𝐵 are independent of 𝑟. Due to unit determinant condition on 𝑔𝐴𝐵, we get

𝑞𝐴𝐵𝑑𝐴𝐵 = 𝑐
𝐴𝐵𝑐𝐴𝐵/2 and 𝑞𝐴𝐵 𝑗𝐴𝐵 = 0.

The evolution by Einstein’s equations preserves the asymptotic behavior in (2.46). Einstein’s

equations produce the following relations (2.47)-(2.51) [11, 18] in the conformal Bondi frame

formalism.

𝑔01𝑔
01
,1 = −(𝑟/8)𝑔𝐴𝐵,1 𝑔𝐴𝐵,1 (2.47)

𝑟 [𝑔𝐷𝐶𝑔01(𝑔1𝐶𝑔01),1] ,1 −2𝑔𝐷𝐶𝑔01(𝑔1𝐶𝑔01),1 = 𝑟𝐾𝐷 (2.48)

where

𝐾𝐷 = 𝑟−2(𝑟2𝑔01𝑔
01
,𝐷),1 − (𝑔𝐴𝐵,1 𝑔𝐵𝐷),𝐴 + (1/2)𝑔𝐴𝐵,1𝑔𝐴𝐵,𝐷 (2.49)

(𝑔01𝑔
11/𝑟3),1 = 𝐾/𝑟2 (2.50)

where

𝐾 = (1/2)𝑔01𝑔
𝐴𝐵𝑅𝐴𝐵 − (2/𝑟) (𝑔01𝑔

1𝐴),𝐴 (2.51)

Note: 𝑔𝐴𝐵𝑅𝐴𝐵 has neither 𝑔11 nor 𝑢-derivatives.

Upon subjecting the boundary conditions at ℐ and eq(2.46), from eq(2.47)-(2.51), we can

calculate the contravariant conformal metric components.

𝑔01 = 𝑒−2𝛽 (2.52)

where 𝛽 = −𝑟2𝑐𝐴𝐵𝑐𝐴𝐵/32+𝐶0𝑟3 ln𝑟
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𝑔1𝐴 = −(𝑟2/2)𝑐𝐴𝐵:𝐵 − (2/3)𝑟3𝑁 𝐴 + (2/3) (𝑑𝐴𝐵 − 𝑑𝑞𝐴𝐵/2):𝐵𝑟3 ln𝑟 +𝐶0𝑟4 ln𝑟 (2.53)

where 𝑁 𝐴 (𝑢,𝑥𝐴) is the angular moment aspect.

Asymptotic calculation gives the relation: 𝐾 = −1+𝐶0𝑟2 ln𝑟.

𝑔11 = 𝑟2 −2𝑀𝑟3 +𝐶0𝑟4 ln𝑟 (2.54)

where 𝑀 (𝑢,𝑥𝐴) is the mass aspect.

𝑔𝐴𝐵,0 = 𝑁𝐴𝐵𝑟 + (1/2)𝑞𝐴𝐵𝑐𝐷𝐸𝑁𝐷𝐸𝑟2 + (1/6) [2(𝑑𝐴𝐵 − 𝑑𝑞𝐴𝐵/2) − (𝑑𝐴𝐵 − 𝑑𝑞𝐴𝐵/2):𝐶
𝐶 ]𝑟3 ln𝑟 +𝐶0𝑟3

(2.55)

where 𝑁𝐴𝐵 (𝑢,𝑥𝐷) is the news tensor.

2.5 Fourier Transforms

Now, we will study soft gravitons for different systems to study the structure of null infinity with

the corresponding set-ups. For that purpose, we will be developing some necessary mathematical

tools. In this section, we will go through some useful results that we will be using in the following

sections.

2.5.1 Different Fourier Transforms

We will be working in 4-dimensional spacetime. The coordinate system we choose is Carte-

sian coordinate system, 𝑥 ≡ (𝑡, ®𝑥) ≡ (𝑥0, 𝑥1, 𝑥2, 𝑥3). We have defined different kinds of Fourier
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transformation in eq.[(2.56), (2.57), (2.58)]:

𝐹̂ (𝑘) ≡
∫
𝑑4𝑥𝑒−𝑖𝑘 ·𝑥𝐹 (𝑡, ®𝑥) (2.56)

𝐹̄ (𝑡, ®𝑘) ≡
∫
𝑑3𝑥𝑒−𝑖

®𝑘 ·®𝑥𝐹 (𝑡, ®𝑥) (2.57)

𝐹̃ (𝜔, ®𝑥) ≡
∫
𝑑𝑡𝑒−𝑖𝜔𝑡𝐹 (𝑡, ®𝑥). (2.58)

Inversely, we can also define the inverse Fourier transform as follows:

𝐹 (𝑡, ®𝑥) ≡
∫

𝑑4𝑘

(2𝜋)4 𝑒
𝑖𝑘 ·𝑥 𝐹̂ (𝑘) (2.59)

𝐹 (𝑡, ®𝑥) ≡
∫

𝑑3𝑘

(2𝜋)3 𝑒
−𝑖®𝑘 ·®𝑥 𝐹̄ (𝑡, ®𝑘) (2.60)

𝐹 (𝑡, ®𝑥) ≡
∫

𝑑𝜔

2𝜋
𝑒−𝑖𝜔𝑡 𝐹̃ (𝜔, ®𝑥). (2.61)

2.5.2 Radiative Field at Large distances

Let us assume,

□𝐹 (𝑥) = − 𝑗 (𝑥) , where □ ≡ 𝜂𝛼𝛽𝜕𝛼𝜕𝛽. (2.62)

The retarded solution of eq.[(2.62)] is given in eq.[(2.63)].

𝐹 (𝑥) = −
∫
𝑑4𝑥′𝐺𝑟 (𝑥, 𝑥′) 𝑗 (𝑥′), (2.63)

where 𝐺𝑟 (𝑥, 𝑥′) is the retarded Green’s function:

𝐺𝑟 (𝑥, 𝑥′) =
∫

𝑑𝑙4

(2𝜋)4
𝑒𝑖𝑙·(𝑥−𝑥

′)

(𝑙0 + 𝑖𝜖)2 − ®𝑙2
. (2.64)
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Using eq.[(2.58)], we get:

𝐹̃ (𝜔, ®𝑥) = −
∫
𝑑𝑡𝑒−𝑖𝜔𝑡

∫
𝑑4𝑥′

∫
𝑑𝑙4

(2𝜋)4
𝑒𝑖𝑙·(𝑥−𝑥

′)

(𝑙0 + 𝑖𝜖)2 − ®𝑙2
𝑗 (𝑥′)

= −
∫
𝑑4𝑥′

∫
𝑑𝑙4

(2𝜋)3
𝑒𝑖𝑙0𝑥

′0+𝑖®𝑙·(®𝑥− ®𝑥′)

(𝑙0 + 𝑖𝜖)2 − ®𝑙2
𝑗 (𝑥′)

∫
𝑑𝑡

2𝜋
𝑒−𝑖(𝜔−𝑙0)𝑡

= −
∫
𝑑4𝑥′

∫
𝑑𝑙3

(2𝜋)3
𝑒𝑖𝜔𝑥

′0+𝑖®𝑙·(®𝑥− ®𝑥′)

(𝜔+ 𝑖𝜖)2 − ®𝑙2
𝑗 (𝑥′)

= −
∫
𝑑4𝑥′

∫
𝑑𝑙2⊥
(2𝜋)2

𝑑𝑙∥
(2𝜋)

𝑒𝑖𝜔𝑥
′0+𝑖𝑙 ∥ | ®𝑥− ®𝑥′ |

(𝜔+ 𝑖𝜖)2 − ®𝑙2⊥− 𝑙2∥
𝑗 (𝑥′)

= 𝑖

∫
𝑑4𝑥′

∫
𝑑𝑙2⊥
(2𝜋)2

𝑒
𝑖𝜔𝑥′0+𝑖

√︃
(𝜔+𝑖𝜖)2−®𝑙2⊥ | (®𝑥− ®𝑥′) |

2
√︃
(𝜔+ 𝑖𝜖)2 − ®𝑙2⊥

𝑗 (𝑥′)

= 𝑖

∫
𝑑4𝑥′

𝑒𝑖𝜔𝑥
′0+𝑖(𝜔+𝑖𝜖) | (®𝑥− ®𝑥′) |

2(𝜔+ 𝑖𝜖)
(𝜔+ 𝑖𝜖)

2𝜋𝑖 | (®𝑥− ®𝑥′) |
𝑗 (𝑥′)

≃ 𝑒𝑖𝜔| ®𝑥 |

4𝜋 | ®𝑥 |

∫
𝑑4𝑥′𝑒−𝑖𝑘 ·𝑥

′
𝑗 (𝑥′). (2.65)

In eq.[(2.65)], we have assumed that | ®𝑥 | >> | ®𝑥′|.

We get to the third step from the second step of eq.[(2.65)], using
∫

𝑑𝑡
2𝜋 𝑒

−𝑖(𝜔−𝑙0)𝑡 = 𝛿(𝑙0 −𝜔). In

the fourth step, we have broken ®𝑙 into components parallel and perpendicular to (®𝑥− ®𝑥′), respectively

®𝑙⊥ and 𝑙∥ . Now, we can see that (𝜔+ 𝑖𝜖)2 − ®𝑙2⊥− 𝑙2∥ = 0 has two roots: ±
√︃
(𝜔+ 𝑖𝜖)2 − ®𝑙2⊥. We arrive

at the fifth step doing the contour integration. For large | (®𝑥− ®𝑥′) | in the fifth step, the exponent is a

rapidly varying function of ®𝑙⊥. So, we can integrate over ®𝑙⊥ using saddle point approximation.

Hence, under the assumption that | ®𝑥 | >> | ®𝑥′|, we can write combining eq.[(2.56)] and eq.[(2.65)],

𝐹̃ (𝜔, ®𝑥) = 𝑒
𝑖𝜔𝑟

4𝜋𝑟

∫
𝑑4𝑥′𝑒−𝑖𝑘 ·𝑥

′
𝑗 (𝑥′), (2.66)

where 𝑟 = | ®𝑥 |, 𝑛𝑖 = 𝑥𝑖
𝑟

and 𝑘 ≡ 𝜔(1, ®𝑛).

2.5.3 Late time and Early time behavior from Fourier Transform

In the analysis of soft gravitons, we will often have to handle functions 𝐹̃ (𝜔, ®𝑥) that are non-

analytic as 𝜔 → 0. Different terms in 𝐹̃ (𝜔, ®𝑥) will be proportional to 𝜔(𝜁−1) (log𝜔)𝜅, where
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𝜁, 𝜅 = {0,1,2,3, ....}. We expect lim𝜔→0 𝐹̃ (𝜔, ®𝑥) to be corresponding to lim|𝑡 |→∞𝐹 (𝑡, ®𝑥), by the

principle of Fourier transformation. Now, we wish to derive the precise correspondance between

lim𝜔→0 𝐹̃ (𝜔, ®𝑥) and lim|𝑡 |→∞𝐹 (𝑡, ®𝑥). We do all this analysis for constant ®𝑥. So, we will not display

the ®𝑥 dependence.

Case 1: 𝜁 = 𝜅 = 0

Firstly, we will analyze the singularities of the form 1
𝜔

for small 𝜔. Let us assume the function of

the form: 𝐹̃ (𝜔) =𝐶𝑒𝑖𝜔𝜙 1
𝜔
𝑓 (𝜔), where 𝐶 and 𝜙 is constant, and 𝑓 (𝜔) is an function of 𝜔, such that

𝑓 (𝜔) is smooth at 𝜔 = 0 𝑓 (0) = 1.

𝐹 (𝑡) =
∫

𝑑𝜔

2𝜋
𝑒−𝑖𝜔𝑡 𝐹̃ (𝜔) = 𝐶

∫
𝑑𝜔

2𝜋
𝑒−𝑖𝜔𝑢

1
𝜔
𝑓 (𝜔) , where 𝑢 ≡ 𝑡 −𝜙. (2.67)

Now, to the do the integration in eq.[(2.67)] around 𝜔 = 0, we use the following:

𝛿(𝜔) = − lim
𝜖→0

( 1
𝜔− 𝑖𝜖 −

1
𝜔+ 𝑖𝜖 ). (2.68)

Let us assume,

𝐹±(𝑡) =
𝐶

2𝜋

∫
𝑑𝜔𝑒−𝑖𝜔𝑢

1
𝜔± 𝑖𝜖 𝑓 (𝜔). (2.69)

From eq.[(2.68)] and eq.[(2.69)], we get:

𝐹−(𝑡) −𝐹+(𝑡) =
𝐶

2𝜋

∫
𝑑𝜔𝑒−𝑖𝜔𝑢

1
𝜔− 𝑖𝜖 𝑓 (𝜔) −

𝐶

2𝜋

∫
𝑑𝜔𝑒−𝑖𝜔𝑢

1
𝜔+ 𝑖𝜖 𝑓 (𝜔)

=
𝐶

2𝜋

∫
𝑑𝜔𝑒−𝑖𝜔𝑢𝛿(𝜔) 𝑓 (𝜔)

=
𝐶

2𝜋
(2.70)

𝐹−(𝑡) −𝐹+(𝑡) is just a constant and is of no practical use in our further calculation.
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To do the integration in eq.[(2.69)], we close the contour in the lower (upper) half plane for

positive (negative) 𝑢 and pick up the residues at the poles.

Now, we get:

𝐹+(𝑡) =
𝐶

2𝜋

∫
𝑑𝜔𝑒−𝑖𝜔𝑢

1
𝜔+ 𝑖𝜖 𝑓 (𝜔) =


𝑖𝐶 +O(𝑒−𝑢) for 𝑢 > 0

O(𝑒−𝑢) for 𝑢 < 0

𝐹−(𝑡) =
𝐶

2𝜋

∫
𝑑𝜔𝑒−𝑖𝜔𝑢

1
𝜔− 𝑖𝜖 𝑓 (𝜔) =


O(𝑒−𝑢) for 𝑢 > 0

𝑖𝐶 +O(𝑒−𝑢) for 𝑢 < 0
(2.71)

The result in eq.[(2.71)] can be summarized as following:

𝐹±(𝑡) = 𝑖𝐶𝐻 (±𝑢) +O(𝑒−𝑢) (2.72)

𝐻 (𝑢) in eq.[(2.70)] is the Heavyside Theta function defined as:

𝐻 (𝑢) =


1 if 𝑥 ≥ 0

0 if 𝑥 < 0

The O(𝑒−𝑢) contribution in eq.[(2.71)] comes from the poles of 𝑓 (𝜔). The step function 𝐻 (𝑢)

implies a jump in 𝑒𝜇𝜈 at I+ from 𝑢→−∞ to 𝑢→∞. This is called the memory effect.

Case 2: 𝜁 = 𝜅 = 1

Now, we will analyze the singularities of the form log𝜔 for small 𝜔. Let us assume the function

of the form: 𝐹̃ (𝜔) = 𝐶𝑒𝑖𝜔𝜙 (log𝜔) 𝑓 (𝜔), where 𝐶 and 𝜙 is constant, and 𝑓 (𝜔) is an function of 𝜔,

such that 𝑓 (𝜔) is smooth at 𝜔 = 0 𝑓 (0) = 1.

Now, we define:

𝐹±(𝑡) =
𝐶

2𝜋

∫
𝑑𝜔𝑒−𝑖𝜔𝑢 log (𝜔± 𝑖𝜖) 𝑓 (𝜔). (2.73)
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Therefore,

𝐹−(𝑡) −𝐹+(𝑡) =
𝐶

2𝜋

∫
𝑑𝜔𝑒−𝑖𝜔𝑢 log (𝜔− 𝑖𝜖) 𝑓 (𝜔) − 𝐶

2𝜋

∫
𝑑𝜔𝑒−𝑖𝜔𝑢 log (𝜔+ 𝑖𝜖) 𝑓 (𝜔) (2.74)

To do the calculation in eq.[(2.74)], we integrate both sides of the eq.[(2.68)].

∫
𝑑𝜔𝛿(𝜔) ∼ − lim

𝜖→0

∫
𝑑𝜔( 1

𝜔− 𝑖𝜖 −
1

𝜔+ 𝑖𝜖 )

=⇒ lim
𝜖→0

(log (𝜔+ 𝑖𝜖)) − (log (𝜔− 𝑖𝜖)) = 2𝜋𝑖𝐻 (−𝜔). (2.75)

From eq.[(2.74)] and eq.[(2.75)], we get:

𝐹+(𝑡) −𝐹−(𝑡) = 𝑖𝐶

∫
𝑑𝜔𝑒−𝑖𝜔𝑢𝐻 (−𝜔) 𝑓 (𝜔)

= 𝑖𝐶

∫ 0

−∞
𝑑𝜔𝑒−𝑖𝜔𝑢 𝑓 (𝜔)

≃ −𝐶
𝑢

, for |𝑢 | → ∞. (2.76)

We have suppresed the O(𝑒−𝑢) terms that arise due to the poles of 𝑓 (𝜔).

Therefore,

𝐹+(𝑡) =
𝐶

2𝜋

∫
𝑑𝜔𝑒−𝑖𝜔𝑢 log (𝜔+ 𝑖𝜖) 𝑓 (𝜔) =


−𝐶
𝑢

for 𝑢→∞

0 for 𝑢→−∞

𝐹−(𝑡) =
𝐶

2𝜋

∫
𝑑𝜔𝑒−𝑖𝜔𝑢 log (𝜔− 𝑖𝜖) 𝑓 (𝜔) =


0 for 𝑢→∞

𝐶
𝑢

for 𝑢→−∞
(2.77)
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Case 3: 𝜁 = 2 and 𝜅 = 1

Now, we will analyze the singularities of the form log𝜔 for small 𝜔. Let us assume the function of

the form: 𝐹̃ (𝜔) = 𝐶𝑒𝑖𝜔𝜙𝜔(log𝜔) 𝑓 (𝜔), where 𝐶 and 𝜙 is constant, and 𝑓 (𝜔) is an function of 𝜔,

such that 𝑓 (𝜔) is smooth at 𝜔 = 0 𝑓 (0) = 1.

Now, we define:

𝐹±(𝑡) =
𝐶

2𝜋

∫
𝑑𝜔𝑒−𝑖𝜔𝑢𝜔 log (𝜔± 𝑖𝜖) 𝑓 (𝜔)

=
𝑖𝐶

2𝜋
𝑑

𝑑𝑢

∫
𝑑𝜔𝑒−𝑖𝜔𝑢 log (𝜔± 𝑖𝜖) 𝑓 (𝜔). (2.78)

Using eq.[(2.77)] and eq.[(2.78)], we get:

𝐹+(𝑡) =
𝐶

2𝜋

∫
𝑑𝜔𝑒−𝑖𝜔𝑢𝜔 log (𝜔+ 𝑖𝜖) 𝑓 (𝜔) =


𝑖 𝐶
𝑢2 for 𝑢→∞

0 for 𝑢→−∞

𝐹−(𝑡) =
𝐶

2𝜋

∫
𝑑𝜔𝑒−𝑖𝜔𝑢𝜔 log (𝜔− 𝑖𝜖) 𝑓 (𝜔) =


0 for 𝑢→∞

−𝑖 𝐶
𝑢2 for 𝑢→−∞

(2.79)

Case 4: 𝜁 = 𝜅 = 2

Now, we will analyze the singularities of the form log𝜔 for small 𝜔. Let us assume the function of

the form: 𝐹̃ (𝜔) = 𝐶𝑒𝑖𝜔𝜙𝜔{(log𝜔)}2 𝑓 (𝜔), where 𝐶 and 𝜙 is constant, and 𝑓 (𝜔) is an function of

𝜔, such that 𝑓 (𝜔) is smooth at 𝜔 = 0 𝑓 (0) = 1.

Now, we define:

𝐹±(𝑡) =
𝐶

2𝜋

∫
𝑑𝜔𝑒−𝑖𝜔𝑢𝜔{log (𝜔± 𝑖𝜖)}2 𝑓 (𝜔)

=
𝑖𝐶

2𝜋
𝑑

𝑑𝑢

∫
𝑑𝜔𝑒−𝑖𝜔𝑢{log (𝜔± 𝑖𝜖)}2 𝑓 (𝜔) (2.80)
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and

𝐺 (𝑡) = 𝐶

2𝜋

∫
𝑑𝜔𝑒−𝑖𝜔𝑢𝜔{log (𝜔+ 𝑖𝜖)}{log (𝜔− 𝑖𝜖)} 𝑓 (𝜔). (2.81)

𝐹+(𝑡) =
𝐶

2𝜋

∫
𝑑𝜔𝑒−𝑖𝜔𝑢𝜔{log (𝜔+ 𝑖𝜖)}2 𝑓 (𝜔) =


−2𝑖𝐶 log |𝑢 |

𝑢2 for 𝑢→∞

0 for 𝑢→−∞

𝐹−(𝑡) =
𝐶

2𝜋

∫
𝑑𝜔𝑒−𝑖𝜔𝑢𝜔 log (𝜔− 𝑖𝜖) 𝑓 (𝜔) =


0 for 𝑢→∞

2𝑖𝐶 log |𝑢 |
𝑢2 for 𝑢→−∞

(2.82)

𝐺 (𝑡) = 𝐶

2𝜋

∫
𝑑𝜔𝑒−𝑖𝜔𝑢𝜔{log (𝜔+ 𝑖𝜖)}{log (𝜔− 𝑖𝜖)} 𝑓 (𝜔) =


−𝑖𝐶 log |𝑢 |

𝑢2 for 𝑢→∞

𝑖𝐶
log |𝑢 |
𝑢2 for 𝑢→−∞

. (2.83)

Case 5: 𝜁 = 1,2,3, ... and 𝜅 = 0

Now, we will analyze 𝜔𝑛 for small 𝜔, where 𝑛 = 0,1,2, ..... Let us assume the function of the form:

𝐹̃ (𝜔) =𝐶𝑒𝑖𝜔𝜙𝜔𝑛 𝑓 (𝜔), where 𝐶 and 𝜙 is constant, and 𝑓 (𝜔) is an function of 𝜔, such that 𝑓 (𝜔) is

smooth at 𝜔 = 0 𝑓 (0) = 1.

Now, we define:

𝐹 (𝑡) = 𝐶

2𝜋

∫
𝑑𝜔𝑒−𝑖𝜔𝑢𝜔𝑛 𝑓 (𝜔)

=
𝐶

2𝜋
(−𝑖)𝑛 𝑑

𝑛

𝑑𝑢𝑛

∫
𝑑𝜔𝑒−𝑖𝜔𝑢 𝑓 (𝜔)

= (−𝑖)𝑛 𝑑
𝑛

𝑑𝑢𝑛
{O(𝑒−𝑢)} (2.84)
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2.6 Gravitational Waves

Let us assume that we have a metric 𝑔𝜇𝜈 such that

𝑔𝜇𝜈 = 𝜂𝜇𝜈 +2ℎ𝜇𝜈, (2.85)

where 𝜂𝜇𝜈 is the Minkowski metric and ℎ𝜇𝜈 part represents the perturbation to 𝜂𝜇𝜈.

Now, we define:

𝑒𝜇𝜈 = ℎ𝜇𝜈 −
1
2
𝜂𝜇𝜈𝜂

𝛼𝛽ℎ𝛼𝛽 (2.86)

Therefore,

ℎ𝜇𝜈 = 𝑒𝜇𝜈 −
1
2
𝜂𝜇𝜈𝜂

𝛼𝛽𝑒𝛼𝛽 (2.87)

In de-Donder coordinates or harmonic coordinates, Einstein’s equations of general relativity

for 𝑔𝜇𝜈 reduces to:

□𝑒𝜇𝜈 = −8𝜋𝐺𝑇𝜇𝜈, (2.88)

where □ ≡ 𝜂𝛼𝛽𝜕𝛼𝜕𝛽 , 𝐺 is Newton’s universal constant and 𝑇𝜇𝜈 is the stress-energy tensor.

For convenience, we will work in units for which 8𝜋𝐺 = 1. Therefore, eq.[(2.88)] takes the

form:

□𝑒𝜇𝜈 (𝑥) = −𝑇𝜇𝜈 (𝑥). (2.89)

From eq.[(2.89)] and eq.[(2.66)], we get:

𝑒𝜇𝜈 (𝜔, ®𝑥) =
𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝑑4𝑥′𝑒−𝑖𝑘 ·𝑥

′
𝑇𝜇𝜈 (𝑥′), (2.90)

where 𝑟 is large distance.
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From eq.[(2.61)] and eq.[(2.90)], we get:

𝑒𝜇𝜈 (𝑡, ®𝑥) =
∫

𝑑𝜔

2𝜋
𝑒−𝑖𝜔𝑡𝑒𝜇𝜈 (𝜔, ®𝑥)

=

∫
𝑑𝜔

2𝜋
𝑒−𝑖𝜔𝑡

𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝑑4𝑥′𝑒−𝑖𝑘 ·𝑥

′
𝑇𝜇𝜈 (𝑥′)

=

∫
𝑑𝜔

2𝜋
𝑒−𝑖𝜔𝑢

4𝜋𝑟

∫
𝑑4𝑥′𝑒−𝑖𝑘 ·𝑥

′
𝑇𝜇𝜈 (𝑥′) , where 𝑢 = 𝑡 − 𝑟. (2.91)

2.7 Effect of Soft Gravitons on Future Null Infinity

From 2.5.3, we can conclude that 𝑒𝜇𝜈 (𝜔, ®𝑥) with 𝜔→ 0, corresponds to 𝑙𝑖𝑚 |𝑡 |→∞𝑇𝜇𝜈 (𝑡, ®𝑥). Hence,

soft gravitons, i.e. ℎ𝜇𝜈 with 𝜔→ 0, corresponds to 𝑙𝑖𝑚 |𝑡 |→∞𝑇𝜇𝜈 (𝑡, ®𝑥). The soft gravitons, generated

due to the contribution of lim𝑡→−∞𝑇𝜇𝜈 (𝑡, ®𝑥), influence the structure of I+ as 𝑢→−∞. Similarly,

the soft gravitons, generated due to the contribution of lim𝑡→∞𝑇𝜇𝜈 (𝑡, ®𝑥), influence the structure of

I+ as 𝑢→∞. Now, we will discuss how different terms in 𝑒𝜇𝜈 (𝜔, ®𝑥) at soft limit influences the

structure of I+.

Our main goal here is to verify if peeling is violated at null infinity. To do that, we turn

to Christodoulou’s analysis. Let us assume that 𝑁𝜇𝜈 (𝑥) is the news tensor. According to

Christodoulou’s analysis, if 𝑢2𝑁𝜇𝜈 (𝑥) has a finite non-zero limit as 𝑢 → ±∞ at I+, then the

peeling will be violated at I+ as 𝑢→±∞. Now, combined with our analysis, at due to soft limits

lim𝑢→±∞𝑢2𝜕𝑢 (𝑟𝑒𝜇𝜈 (𝑡, ®𝑥)) ≠ 0 for the violation of peeling at I+ as 𝑢→ ±∞. So for violation of

peeling, we have to show the following:

lim
𝑢→±∞

𝑢2𝜕𝑢

∫
𝑑𝜔

2𝜋
𝑒−𝑖𝜔𝑢

4𝜋

∫
𝑑4𝑥′𝑒−𝑖𝑘 ·𝑥

′
𝑇𝜇𝜈 (𝑥′) ≠ 0 (2.92)

Therefore, our work is reduced to checking if

lim
𝑢→±∞

𝑢2𝜕𝑢

∫
𝑑𝜔

2𝜋
𝑒−𝑖𝜔𝑢𝜔(𝜁−1) (log𝜔)𝜅 ≠ 0 , where𝜁, 𝜅 = {0,1,2,3, ....}. (2.93)

If such a limit as in eq.[(2.93)] exists, peeling will be violated at I+ as 𝑢→±∞.
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2.7.1 Effect of 1
𝜔

Terms at Soft Limit

If we compare eq.[(2.72)] in 2.5.3 with eq.[(2.91)], we can conclude that if there is a term that

is proportional to 1
𝜔

in 𝑒𝜇𝜈 (𝜔, ®𝑥) at the soft limit, there will be a term proportional to 𝐻 (𝑢) in

𝑒𝜇𝜈 (𝑡, ®𝑥). Here, 𝐻 (𝑢) is the Heavyside theta function. Because of the presence of this step function

in 𝑒𝜇𝜈 (𝑡, ®𝑥), there is a jump in 𝑒𝜇𝜈 (𝑡, ®𝑥) at I+ as we go from 𝑢→−∞ to 𝑢→∞.

From this, we can see how 1
𝜔

term in 𝑒𝜇𝜈 (𝜔, ®𝑥) at the soft limit is responsible for the gravitational

memory effect at I+. But for this case, the limit as in eq.[(2.93)] is 0. So, the 1
𝜔

term does not

violate the peeling.

2.7.2 Effect of log𝜔 Terms at Soft Limit

If we compare eq.[(2.72)] in 2.5.3 with eq.[(2.91)], we can conclude that if there is a term that is

proportional to 1
𝜔

in 𝑒𝜇𝜈 (𝜔, ®𝑥) at the soft limit, there will be a term proportional to 1
𝑢

in 𝑒𝜇𝜈 (𝑡, ®𝑥).

The limit in eq.[(2.93)] in this case is as following:

lim
𝑢→±∞

𝑢2𝜕𝑢

∫
𝑑𝜔

2𝜋
𝑒−𝑖𝜔𝑢 log𝜔 = lim

𝑢→±∞
𝑢2𝜕𝑢 (∓

1
𝑢
) = ±1 (2.94)

Therefore, log𝜔 term in 𝑒𝜇𝜈 (𝜔, ®𝑥) at soft limit is responsible for violation of peeling at I+ as

𝑢→±∞.

2.7.3 Effect of Other Terms at Soft Limit

Doing a similar analysis as the terms above at the soft limit for the other terms in 𝑒𝜇𝜈 (𝜔, ®𝑥), we find

out that the limit in eq.[(2.93)] is 0. Hence, they are not responsible for the violation of peeling.

2.8 Soft Gravitons for Massive Particles

Now, our goal is to verify that 𝑁 massive particles at far past and far future violate the peeling

property at the future null infinity. If we can show that lim𝑟→∞ 𝑒𝜇𝜈 (𝜔, ®𝑥) has log𝜔 terms at the

soft limit, from 2.7.2, we will be able to conclude that 𝑁 massive particles at far past and far future

violate the peeling property at I+ as 𝑢→−∞ and 𝑢→∞, respectively.
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2.8.1 Set up at Far Past

Let us consider a system of 𝑁 massive particles at past infinity, and the distance between each pair

of particles then is large. Hence, in such a system, we can assume the Newtonian limit. The 𝑖-th

particle has mass 𝑚 (𝑖) and the wordline: 𝑟𝑖 (𝜎) = ®𝑏 (𝑖) +
®𝑝 (𝑖)
𝑚 (𝑖)

𝜎, where ®𝑏 (𝑖) , ®𝑝 (𝑖) are constants, for

𝑖 ∈ {1,2,3, ......, 𝑁}.

As the system is in Newtonian limit,

®𝑎 (𝑖) = −
𝑁∑︁
𝑖≠ 𝑗

𝑗=1

𝐺𝑚 ( 𝑗)
𝑟𝑖 𝑗

𝑟𝑖 𝑗 , where ®𝑟𝑖 𝑗 = ®𝑟 (𝑖) − ®𝑟 ( 𝑗)

= −
𝑁∑︁
𝑖≠ 𝑗

𝑗=1

𝐺𝑚 ( 𝑗)

( ®𝑝 (𝑖) − ®𝑝 ( 𝑗))2𝜎2 𝑟𝑖 𝑗 , (2.95)

where®𝑎 (𝑖) is the acceleration of the 𝑖-th particle at far past. From eq.[(2.95)], we can see that the

trajectory of the 𝑖-th particle takes the following form:

®𝑟 (𝑖) (𝜎) = ®𝑏 (𝑖) +
®𝑝 (𝑖)
𝑚 (𝑖)

𝜎 + ®𝑐(𝑖) log𝜎. (2.96)

®𝑐(𝑖) can also be calculated from the correction to the trajectories and the velocity vectors with

the help of the leading term in 𝑒𝜇𝜈 (𝜔, ®𝑥).

2.8.2 Stress Energy Tensor for Massive Particles at Far Past

We will be working in de-Donder coordinates or Harmonic coordinates. In this coordinate, the

stress-energy tensor due to massive particles at far past will be as follows:

𝑇𝜇𝜈 (𝑥) =
𝑁∑︁
𝑖=1
𝑚 (𝑖)

∫
𝑑𝜎𝛿(4) (𝑥− 𝑟 (𝑖) (𝜎))

𝑑𝑟 (𝑖)𝜇 (𝜎)
𝑑𝜎

𝑑𝑟 (𝑖)𝜈 (𝜎)
𝑑𝜎

. (2.97)

2.8.3 Soft Gravitons for Massive Particles at Far Past

Now, we will calculate 𝑒𝜇𝜈 (𝜔, ®𝑥) for stress energy tensor in eq.[(2.97)].

𝑒𝜇𝜈 (𝜔, ®𝑥) =
𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝑑𝑥′4𝑒−𝑖𝑘 ·𝑥

′
𝑇𝜇𝜈 (𝑥′) (2.98)
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where 𝑘𝜇 ≡ 𝜔(1, ®𝑛) with 𝑛𝑖 = 𝑥𝑖
𝑟

.

Now, from eq.[(2.97)] and eq.[(2.98)], we get:

𝑒𝜇𝜈 (𝜔, ®𝑥)

=
𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝑑𝑥′4𝑒−𝑖𝑘 ·𝑥

′
𝑇𝜇𝜈 (𝑥′)

=
𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝑑𝑥′4𝑒−𝑖𝑘 ·𝑥

′
𝑁∑︁
𝑖=1
𝑚 (𝑖)

∫
𝑑𝜎𝛿(4) (𝑥− 𝑟 (𝑖) (𝜎))

𝑑𝑟 (𝑖)𝜇 (𝜎)
𝑑𝜎

𝑑𝑟 (𝑖)𝜈 (𝜎)
𝑑𝜎

=
𝑒𝑖𝜔𝑟

4𝜋𝑟

𝑁∑︁
𝑖=1
𝑚 (𝑖)

∫
𝑑𝜎𝑒−𝑖𝑘 ·𝑟 (𝑖) (𝜎)

𝑑𝑟 (𝑖)𝜇 (𝜎)
𝑑𝜎

𝑑𝑟 (𝑖)𝜈 (𝜎)
𝑑𝜎

=
𝑒𝑖𝜔𝑟

4𝜋𝑟

𝑁∑︁
𝑖=1
𝑚 (𝑖)

∫
𝑑𝜎𝑒

𝑖𝑘0𝜎−𝑖®𝑘 ·(®𝑏 (𝑖)+
®𝑝(𝑖)
𝑚(𝑖)

𝜎+®𝑐 (𝑖) log𝜎) 𝑑𝑟 (𝑖)𝜇 (𝜎)
𝑑𝜎

𝑑𝑟 (𝑖)𝜈 (𝜎)
𝑑𝜎

=
𝑒𝑖𝜔𝑟

4𝜋𝑟

𝑁∑︁
𝑖=1
𝑚 (𝑖)𝑒

−𝑖®𝑘 ·®𝑏 (𝑖)
∫
𝑑𝜎𝑒

𝑖𝑘0𝜎−𝑖®𝑘 ·(®𝑏 (𝑖)+
®𝑝(𝑖)
𝑚(𝑖)

𝜎+®𝑐 (𝑖) log𝜎) (
𝑝 (𝑖)𝜇
𝑚 (𝑖)

+
𝑐(𝑖)𝜇
𝜎

) (
𝑝 (𝑖)𝜇
𝑚 (𝑖)

+
𝑐(𝑖)𝜇
𝜎

)

=
𝑒𝑖𝜔𝑟

4𝜋𝑟

𝑁∑︁
𝑖=1
𝑚 (𝑖)𝑒

−𝑖®𝑘 ·®𝑏 (𝑖)
∫
𝑑𝜎𝑒

𝑖𝑘0𝜎−𝑖®𝑘 ·(®𝑏 (𝑖)+
®𝑝(𝑖)
𝑚(𝑖)

𝜎) (1− 𝑖®𝑘 · ®𝑐(𝑖) log𝜎) (
𝑝 (𝑖)𝜇
𝑚 (𝑖)

+
𝑐(𝑖)𝜇
𝜎

) (
𝑝 (𝑖)𝜇
𝑚 (𝑖)

+
𝑐(𝑖)𝜇
𝜎

)

=
𝑒𝑖𝜔𝑟

4𝜋𝑟

(
−

𝑁∑︁
𝑎=1

𝑝 (𝑎)𝜇𝑝 (𝑎)𝜈
1

𝑖𝑘 · 𝑝 (𝑎)

+ log𝜔
4𝜋

{ 𝑁∑︁
𝑎=1

𝑁∑︁
𝑎≠𝑏

𝑏=1

𝑝 (𝑎) · 𝑝 (𝑏){ 3
2 𝑝

2
(𝑎) 𝑝

2
(𝑏) − (𝑝 (𝑎) · 𝑝 (𝑏))2}

{(𝑝 (𝑎) · 𝑝 (𝑏))2 − 𝑝2
(𝑎) 𝑝

2
(𝑏)}

3
2

𝑘𝜌𝑝 (𝑎)𝜇
𝑘 · 𝑝 (𝑎)

(𝑝𝜌(𝑎) 𝑝 (𝑏)𝜈 − 𝑝 (𝑏)𝜈𝑝
𝜌

(𝑎))

+
𝑁∑︁
𝑎=1

𝑁∑︁
𝑏=1

𝑘 · 𝑝 (𝑏)
𝑘 · 𝑝 (𝑎)

𝑝 (𝑎)𝜇𝑝 (𝑎)𝜈
})

+O(1). (2.99)

In eq.[(2.99)], the leading term is proportional to 1
𝜔

, which is responsible for the memory effect,

and the subleading term is proportional to log𝜔, which leads to the violation of peeling at I+ as

𝑢→−∞.

2.8.4 Soft Gravitons for Massive Particles at Far Future

Let us consider a system of 𝑁 massive particles at future timelike infinity, and the distance between

each pair of particles then is large. Hence, in such a system, we can assume the Newtonian limit.

The 𝑖-th particle has mass 𝑚 (𝑖) and the word line: 𝑟𝑖 (𝜎) = ®𝑏′(𝑖) +
®𝑝′ (𝑖)
𝑚 (𝑖)

𝜎, where ®𝑏′(𝑖) , ®𝑝′(𝑖) are
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constants, for 𝑖 ∈ {1,2,3, ......, 𝑁}.

If we carry out the similar analysis as 2.7.1, 2.7.2 and 2.7.3 for this case we get the following

result:

𝑒𝜇𝜈 (𝜔, ®𝑥)

=
𝑒𝑖𝜔𝑟

4𝜋𝑟

(
−

𝑁∑︁
𝑎=1

𝑝′(𝑎)𝜇𝑝
′
(𝑎)𝜈

1
𝑖𝑘 · 𝑝′(𝑎)

+ log𝜔
4𝜋

{ 𝑁∑︁
𝑎=1

𝑁∑︁
𝑎≠𝑏

𝑏=1

𝑝′(𝑎) · 𝑝
′
(𝑏){

3
2 𝑝

′2
(𝑎) 𝑝

′2
(𝑏) − (𝑝′(𝑎) · 𝑝

′
(𝑏))

2}

{(𝑝′(𝑎) · 𝑝
′
(𝑏))2 − 𝑝′2(𝑎) 𝑝

′2
(𝑏)}

3
2

𝑘𝜌𝑝
′
(𝑎)𝜇

𝑘 · 𝑝′(𝑎)
(𝑝′𝜌(𝑎) 𝑝

′
(𝑏)𝜈 − 𝑝

′
(𝑏)𝜈𝑝

′𝜌)
(𝑎)

+
𝑁∑︁
𝑎=1

𝑁∑︁
𝑏=1

𝑘 · 𝑝′(𝑏)
𝑘 · 𝑝′(𝑎)

𝑝′(𝑎)𝜇𝑝
′
(𝑎)𝜈

})
+O(1). (2.100)

Similar to the far past case, in eq.[(2.100)] the leading term is proportional to 1
𝜔

, which is

responsible for the memory effect, and the subleading term is proportional to log𝜔, which leads to

the violation of peeling at I+ as 𝑢→∞.

2.9 Soft Gravitons for Massless Scalar Field

This section will verify if massless scalar fields on the Minkowski background violate the peeling

property at the future null infinity. If we can show that lim𝑟→∞ 𝑒𝜇𝜈 (𝜔, ®𝑥) has log𝜔 terms at the soft

limit, from 2.7.2, we will be able to conclude that massless scalar fields violate the peeling property

at I+ as 𝑢→−∞ and 𝑢→∞, respectively.

2.9.1 Massless Scalar Field Phase Space

The data on outgoing null geodesics can describe the massive scalar field space. The chosen

coordinates for this description are

𝑢 = 𝑡 − 𝑟 , 𝑟 . (2.101)

In the new coordinates, the line element takes the form as follows:

𝑑𝑠2 = −𝑑𝑢2 −2𝑑𝑢𝑑𝑟 + 𝑟2𝑑Ω2, (2.102)
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where 𝑑Ω2 is the unit sphere metric.

As 𝑟 →∞, the massless scalar field behaves as follows:

𝜑(𝑢,𝑟, 𝑛̂) = 𝜑
(1) (𝑢, 𝑛̂)
𝑟

+ 𝜑
(2) (𝑢, 𝑛̂)
𝑟2 +O( 1

𝑟3 ). (2.103)

2.9.2 Strees Energy Tensor for a Massless Scalar Field at Large Distances

We will treat all the tensors in de-Donder coordinates. So, let us first define:

𝜕𝜇𝑟 = 𝑛̃𝜇 , 𝜕𝜇𝑢 = −𝑛𝜇, 𝜕𝜇𝑛̂𝑖 =
1
𝑟
𝜂⊥𝜇𝑖, (2.104)

where 𝜂⊥𝜇𝜈 = 𝜂𝜇𝜈 +𝑛𝜇𝑛𝜈 −𝑛𝜇𝑛̃𝜈 −𝑛𝜈𝑛̃𝜇 with 𝑛̂𝑖 = 𝑥𝑖
𝑟

, 𝑛 = (1, ®̂𝑛) and 𝑛̃ = (0, ®̂𝑛).

For a general function 𝑓 (𝑢,𝑟, 𝑛̂),

𝜕𝜇 𝑓 (𝜏, 𝜌, 𝑛̂) = 𝜕𝜇𝑢
𝜕 𝑓

𝜕𝑢
+ 𝜕𝜇𝑟

𝜕 𝑓

𝜕𝑟
+ 1
𝑟
𝜂⊥𝜇𝑖𝜕

𝑖
⊥ 𝑓

= −𝑛𝜇
𝜕 𝑓

𝜕𝑢
+ 𝑛̃𝜇

𝜕 𝑓

𝜕𝑟
+ 1
𝑟
𝜂⊥𝜇𝑖𝜕

𝑖
⊥ 𝑓 (2.105)

The stress-energy tensor for a massless scalar field is

𝑇𝜇𝜈 (𝑥) = (𝜕𝜇𝜑𝜕𝜈𝜑) −𝜂𝜇𝜈L, (2.106)

where the Lagrangian of the massless scalar field is L = 1
2𝜕𝜇𝜑𝜕

𝜇𝜑.

The components of the stress-energy tensor for the massless scalar field as 𝑟 → ∞ take the

following form:

𝑇𝑅𝜇𝜈 (𝑥) =
𝐴(𝑢, 𝑛̂)
𝑟2 𝑛𝜇𝑛𝜈 +

𝐵(𝑢, 𝑛̂)
𝑟3 𝑛𝜇𝑛𝜈 +

𝐺 (𝑢, 𝑛̂)(𝜇𝑛𝜈)
𝑟3 +

𝐻 (𝑢, 𝑛̂)𝜇𝜈
𝑟3 +O( 1

𝑟4 ). (2.107)

2.9.3 Soft Gravitons at future null infinity due to Massless Scalar Field

𝑒𝜇𝜈 (𝜔, ®𝑥) =
𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝑑𝑥′4𝑒−𝑖𝑘 ·𝑥

′
𝑇𝜇𝜈 = 𝑒

1
𝜇𝜈 (𝜔, ®𝑥) + 𝑒2

𝜇𝜈 (𝜔, ®𝑥), (2.108)



40

where

𝑒1
𝜇𝜈 (𝜔, ®𝑥) =

𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝑟>𝑟0

𝑑𝑥′4𝑒−𝑖𝑘 ·𝑥
′
𝑇𝑅𝜇𝜈 (𝑥′)

and

𝑒2
𝜇𝜈 (𝜔, ®𝑥) =

𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝑟≤𝑟0

𝑑𝑥′4𝑒−𝑖𝑘 ·𝑥
′
𝑇𝜇𝜈 (𝑥′)

.

If we substitute eq.[(2.107)] in𝑒1
𝜇𝜈 (𝜔, ®𝑥), we get

𝑒1
𝑖 𝑗 (𝜔, ®𝑥) =

𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝑑𝑥′4𝑒−𝑖𝑘 ·𝑥

′ ( 𝐴(𝑢
′, 𝑛̂′)
𝑟′2

𝑛′𝑖𝑛
′
𝑗 +
𝐵(𝑢′, 𝑛̂′)
𝑟′3

𝑛′𝑖𝑛
′
𝑗 +
𝐺 (𝑢′, 𝑛̂′)(𝑖𝑛′𝑗)

𝑟′3
+
𝐻 (𝑢′, 𝑛̂′)𝑖 𝑗

𝑟′3
+O( 1

𝑟′4
))

=
𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝑟2𝑑𝑢′𝑑𝑟′𝑑𝑛̂′𝑒𝑖𝜔𝑢

′+𝑖𝜔𝑟 ′−𝑖𝜔®𝑛·®𝑛′𝑟 ′

( 𝐴(𝑢
′, 𝑛̂′)
𝑟′2

𝑛′𝑖𝑛
′
𝑗 +
𝐵(𝑢′, 𝑛̂′)
𝑟′3

𝑛′𝑖𝑛
′
𝑗 +
𝐺 (𝑢′, 𝑛̂′)(𝑖𝑛′𝑗)

𝑟′3
+
𝐻 (𝑢′, 𝑛̂′)𝑖 𝑗

𝑟′3
+O( 1

𝑟′4
))

=
𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝑑𝑢′𝑑𝑟′𝑑𝑛̂′𝑒𝑖𝜔𝑢

′+𝑖𝜔𝑟 ′−𝑖𝜔®𝑛·®𝑛′𝑟 ′

(𝐴(𝑢′, 𝑛̂′)𝑛′𝑖𝑛′𝑗 +
𝐵(𝑢′, 𝑛̂′)
𝑟′

𝑛′𝑖𝑛
′
𝑗 +
𝐺 (𝑢′, 𝑛̂′)(𝑖𝑛′𝑗)

𝑟′
+
𝐻 (𝑢′, 𝑛̂′)𝑖 𝑗

𝑟′
+O( 1

𝑟′2
))

=
𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝑑𝑢′𝑑𝑟′𝑑𝑛̂′𝑒𝑖𝜔𝑢

′+𝑖𝜔𝑟 ′−𝑖𝜔®𝑛·®𝑛′𝑟 ′𝐴(𝑢′, 𝑛̂′)𝑛′𝑖𝑛′𝑗

𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝑑𝑢′𝑑𝑟′𝑑𝑛̂′𝑒𝑖𝜔𝑢

′+𝑖𝜔𝑟 ′−𝑖𝜔®𝑛·®𝑛′𝑟 ′ (𝐵(𝑢
′, 𝑛̂′)
𝑟′

𝑛′𝑖𝑛
′
𝑗 +
𝐺 (𝑢′, 𝑛̂′)(𝑖𝑛′𝑗)

𝑟′
+
𝐻 (𝑢′, 𝑛̂′)𝑖 𝑗

𝑟′
)

𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝑑𝑢′𝑑𝑟′𝑑𝑛̂′𝑒𝑖𝜔𝑢

′+𝑖𝜔𝑟 ′−𝑖𝜔®𝑛·®𝑛′𝑟 ′ (O( 1
𝑟′2

)) (2.109)

We have used the following relations in the second step of eq.[(2.109)]:

𝑑𝑥′4 → 𝑟2𝑑𝑢′𝑑𝑟′𝑑𝑛̂′ , 𝑘 · 𝑥′ = −(𝜔𝑢′+𝜔𝑟′−𝜔®𝑛 · ®𝑛′𝑟′), (2.110)

where 𝑘𝜇 ≡ 𝜔(1, ®𝑛).
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Now, let us calculate the first term in the last step of eq.[(2.109)]:

𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝑑𝑢′𝑑𝑛̂′

∫ ∞

𝑟0

𝑑𝑟′𝑒𝑖𝜔𝑢
′+𝑖𝜔𝑟 ′−𝑖𝜔®𝑛·®𝑛′𝑟 ′𝐴(𝑢′, 𝑛̂′)𝑛′𝑖𝑛′𝑗

= −𝑒
𝑖𝜔𝑟

4𝜋𝑟

∫
𝑑𝑢′𝑑𝑛̂′

𝑒𝑖𝜔𝑢
′+𝑖𝜔(1−®𝑛·®𝑛′)𝑟0

𝑖𝜔(1− ®𝑛 · ®𝑛′) 𝐴(𝑢′, 𝑛̂′)𝑛′𝑖𝑛′𝑗

= 𝑖
𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝑑𝑢′𝑑𝑛̂′

1+𝜔(𝑢′+ (1− ®𝑛 · ®𝑛′)𝑟0)
𝜔(1− ®𝑛 · ®𝑛′) 𝐴(𝑢′, 𝑛̂′)𝑛′𝑖𝑛′𝑗

= 𝑖
𝑒𝑖𝜔𝑟

4𝜋𝑟
1
𝜔

∫
𝑑𝑢′𝑑𝑛̂′

1
(1− ®𝑛 · ®𝑛′) 𝐴(𝑢

′, 𝑛̂′)𝑛′𝑖𝑛′𝑗 +O(1). (2.111)

In the second step of the eq.[(2.111)], we have ignored the terms at infinity.

Now let’s calculate the second term in the last step of eq.[(2.109)].

𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝑑𝑢′𝑑𝑛̂′

∫ ∞

𝑟0

𝑑𝑟′𝑒𝑖𝜔𝑢
′+𝑖𝜔𝑟 ′−𝑖𝜔®𝑛·®𝑛′𝑟 ′ (𝐵(𝑢

′, 𝑛̂′)
𝑟′

𝑛′𝑖𝑛
′
𝑗 +
𝐺 (𝑢′, 𝑛̂′)(𝑖𝑛′𝑗)

𝑟′
+
𝐻 (𝑢′, 𝑛̂′)𝑖 𝑗

𝑟′
)

= O(1)

In eq.[(2.112)], we have used the result from eq.[(2.112)].∫ ∞

𝑟0

𝑑𝑟′
𝑒𝑖𝜔(1−®𝑛·®𝑛

′)𝑟 ′

𝑟′
𝑓 (𝑢′, 𝑛̂′)

≃
∫ 𝐿

𝑟0

𝑑𝑟′
𝑒𝑖𝜔(1−®𝑛·®𝑛

′)𝑟 ′

𝑟′
𝑓 (𝑢′, 𝑛̂′) , where we have regularized the integral and set 𝐿 >> 𝑟0

=

∫ 𝜔(1−®𝑛·®𝑛′)𝐿

𝜔(1−®𝑛·®𝑛′)𝑟0

𝑑𝑧′
𝑒𝑖𝑧

′

𝑧′
𝑓 (𝑢′, 𝑛̂′) , assume 𝑧′ = 𝜔(1− ®𝑛 · ®𝑛′)𝑟′

=

∫ 𝜔(1−®𝑛·®𝑛′)𝐿

𝜔(1−®𝑛·®𝑛′)𝑟0

𝑑𝑧′
∑∞
𝑛=0

(𝑖𝑧′)𝑛
𝑛!

𝑧′
𝑓 (𝑢′, 𝑛̂′)

= 𝑓 (𝑢′, 𝑛̂′){log 𝑧+
∞∑︁
𝑛=1

(𝑖𝑧′)𝑛
𝑛 · 𝑛!

}|𝜔(1−®𝑛·®𝑛
′)𝐿

𝜔(1−®𝑛·®𝑛′)𝑟0

≃ − 𝑓 (𝑢′, 𝑛̂′){log ( 𝐿
𝑟0
) +

∞∑︁
𝑛=1

(𝑖𝜔(1− ®𝑛 · ®𝑛′)𝑛 (𝐿𝑛− 𝑟𝑛0)
𝑛 · 𝑛!

}, (2.112)

where in the last step, we have ignored the contribution at infinity.
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The third term in the last step of eq.[(2.109)] is of no interest to us as it will result in at least

O(1) terms.

Now, we will calculate 𝑒2
𝜇𝜈 (𝜔, ®𝑥). To do so, we write

𝑘𝛼𝑒
2𝛼𝛽 (𝜔, ®𝑥) = −𝑒

𝑖𝜔𝑟

4𝜋𝑟

∫
𝑟≤𝑟0

𝑑𝑥′4
{ 𝜕

𝜕𝑥′𝛼
𝑒−𝑖𝑘 ·𝑥

′}
𝑇𝛼𝛽 (𝑥′)

=

∫
𝑑𝑛̂′

∫
𝑑𝑢′𝑟′2𝑛̂′𝛼𝑒

−𝑖𝑘 ·𝑥′𝑇𝑅𝛼𝛽 (𝑥′) |𝑟 ′=𝑟0 , (2.113)

where integration by parts was done in the second step. We have picked up the boundary term at

𝑟′ = 𝑟0 and used the conservation law: 𝜕𝛼𝑇
𝛼𝛽

𝑅
(𝑥′) = 0.

The sum of the incoming flux and outgoing momentum flux is equal. Therefore,

𝑟′2
∫
𝑑𝑛̂′

∫
𝑑𝑢′𝑛̂′𝛼𝑇

𝑅𝛼𝛽𝑥′|𝑟 ′=𝑟0 = 0. (2.114)

Using eq.[(2.114)] in eq.[(2.113)], we get

𝑘𝛼𝑒
2𝛼𝛽 (𝑥) = 𝑒𝑖𝜔𝑟

4𝜋𝑟
𝑟′2

∫
𝑑𝑛̂′

∫
𝑑𝑢′𝑛̂′𝛼𝑘 · 𝑥′𝑇𝑅𝛼𝛽 (𝑥′)

����
𝑟 ′=𝑟0

+O
(
𝜔2

)
. (2.115)

We can take the solution of eq.[(2.115)] to be

𝑒2𝛼𝛽 (𝑥) = 𝑒𝑖𝜔𝑟

4𝜋𝑟
𝑟′2

∫
𝑑𝑛̂′

∫
𝑑𝑢′𝑛̂′𝛾𝑥

′𝛼𝑇𝑅𝛾𝛽 (𝑥′)
����
𝑟 ′=𝑟0

+O(𝜔). (2.116)

But 𝑒2𝛼𝛽 (𝑥) in eq.[(2.116)] is not symmetric. To symmetrize 𝑒2𝛼𝛽 (𝑥), we use the angular momentum

conservation:

𝑟′2
∫
𝑑𝑛̂′

∫
𝑑𝑢′𝑛̂′𝛾

[
−𝑥′𝛼𝑇𝑅𝛾𝛽 (𝑥′) + 𝑥′𝛽𝑇𝑅𝛾𝛼 (𝑥′)

] ����
𝑟 ′=𝑟0

= 0. (2.117)

The symmetrized 𝑒2𝛼𝛽 (𝑥) is as following:

𝑒2𝛼𝛽 (𝑥) = 1
2
𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝑑𝑛̂′

∫
𝑑𝑢′𝑟′2𝑛̂′𝛾

[
𝑥′𝛼𝑇𝑅𝛾𝛽 (𝑥′) + 𝑥′𝛽𝑇𝑅𝛾𝛼 (𝑥′)

] ����
𝑟 ′=𝑟0

+O(𝜔). (2.118)
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In eq.[(2.118)], we can see that 𝑒2𝛼𝛽 (𝑥) = O(1). Hence, leading and subleading contribution in

lim𝑟→∞ 𝑒𝛼𝛽 (𝑥) comes from only 𝑒1𝛼𝛽 (𝑥).

From the analysis above, we can conclude that due to the absence of log𝜔 term in 𝑒𝑖 𝑗 (𝜔, ®𝑥),

peeling is not violated at I+ as 𝑢→±∞ for a system with a massless scalar field on the Minkowski

background.

2.10 Soft Gravitons for Massive Scalar Field

In this section, we will verify if massive scalar fields on the Minkowski background violate the

peeling property at the future null infinity. If we can show that lim𝑟→∞ 𝑒𝜇𝜈 (𝜔, ®𝑥) has log𝜔 terms at

the soft limit, from 2.7.2, we will be able to conclude that massive scalar fields violate the peeling

property at I+ as 𝑢→−∞ and 𝑢→∞, respectively.

2.10.1 Massive Scalar Field Phase Space

The data on a unit hyperboloid describing timelike infinity can describe the massive scalar field

space. The chosen coordinates for this description are

𝜏 =
√︁
𝑡2 − 𝑟2 , 𝜌 =

𝑟
√
𝑡2 − 𝑟2

. (2.119)

In the new coordinates, the line element takes the form as follows:

𝑑𝑠2 = −𝑑𝜏2 + 𝜏2

1+ 𝜌2 𝑑𝜌
2 + 𝜌2𝜏2𝑑Ω2, (2.120)

where 𝑑Ω2 is the unit sphere metric.

As |𝜏 | → ∞, the massive scalar field behaves as following:

𝜑(𝜏, 𝜌, 𝑛̂) = 𝜑
(1) (𝜌, 𝑛̂)
𝜏3/2 𝑒−𝑖𝑚𝜏 + 𝜑

(2) (𝜌, 𝑛̂)
𝜏5/2 𝑒−𝑖𝑚𝜏 +O( 1

𝜏7/2 ) (2.121)

𝜑∗(𝜏, 𝜌, 𝑛̂) = 𝜑
(1)∗(𝜌, 𝑛̂)
𝜏3/2 𝑒𝑖𝑚𝜏 + 𝜑

(2)∗(𝜌, 𝑛̂)
𝜏5/2 𝑒𝑖𝑚𝜏 +O( 1

𝜏7/2 ) (2.122)
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2.10.2 Strees Energy Tensor for a Massive Scalar Field

We will treat all the tensors in de-Donder coordinates. So, let us first define:

𝜕0𝜏 =

√︃
1+ 𝜌2 , 𝜕𝑖𝜏 = −𝜌𝑛𝑖 , 𝜕0𝜌 = −𝜌

√︁
1+ 𝜌2

𝜏
, 𝜕𝑖𝜌 =

1+ 𝜌2

𝜏
𝑛𝑖 , 𝜕𝜇𝑛𝑖 =

1
𝜌𝜏
𝜂⊥𝜇𝑖, (2.123)

where 𝜂⊥𝜇𝜈 = 𝜂𝜇𝜈 +𝑛𝜇𝑛𝜈 −𝑛𝜇𝑛̃𝜈 −𝑛𝜈𝑛̃𝜇 with 𝑛̂𝑖 = 𝑥𝑖
𝑟

, 𝑛 = (1, ®̂𝑛) and 𝑛̃ = (0, ®̂𝑛).

For a general function 𝑓 (𝜏, 𝜌, 𝑛̂),

𝜕𝜇 𝑓 (𝜏, 𝜌, 𝑛̂) = 𝜕𝜇𝜏
𝜕 𝑓

𝜕𝜏
+ 𝜕𝜇𝜌

𝜕 𝑓

𝜕𝜌
+ 1
𝜏𝜌
𝜂⊥𝜇𝑖𝜕

𝑖
⊥ 𝑓 (2.124)

The stress-energy tensor for a massive scalar field is

𝑇𝜇𝜈 (𝑥) = (𝜕𝜇𝜑𝜕𝜈𝜑∗ + 𝜕𝜇𝜑∗𝜕𝜈𝜑) −𝜂𝜇𝜈L (2.125)

The spatial components of stress-energy tensor for the massive scalar field as 𝜏→ −∞ takes

the following form:

𝑇𝑅𝑖 𝑗 (𝑥) =
𝐴(𝜌, 𝑛̂)
𝜏3 𝑛𝑖𝑛 𝑗 +

𝐵(𝜌, 𝑛̂)
𝜏4 𝑛𝑖𝑛 𝑗 +

𝐺 (𝜌, 𝑛̂)(𝑖𝑛 𝑗)
𝜏4 +

𝐻 (𝜌, 𝑛̂)𝑖 𝑗
𝜏4 +O( 1

𝜏5 ). (2.126)

2.10.3 Soft Gravitons at future null infinity

We want to focus on the soft limit. So, we will be concentrating on eq.[(2.127)].

lim
𝜔→0

𝑒𝑖 𝑗 (𝜔, ®𝑥) =
𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝑑𝑥′4𝑒−𝑖𝑘 ·𝑥

′
𝑇𝑅𝑖 𝑗 (𝑥′) (2.127)
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If we substitute eq.[(2.126)] in eq.[(2.127)], we get

lim
𝜔→0

𝑒𝑖 𝑗 (𝜔, ®𝑥) =
𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝑑𝑥′4𝑒𝑖𝑘 ·𝑥

′ ( 𝐴(𝜌
′, 𝑛̂′)
𝜏′3

𝑛′𝑖𝑛
′
𝑗 +
𝐵(𝜌′, 𝑛̂′)
𝜏′4

𝑛′𝑖𝑛
′
𝑗 +
𝐺 (𝜌′, 𝑛̂′)(𝑖𝑛′𝑗)

𝜏′4
+
𝐻 (𝜌′, 𝑛̂′)𝑖 𝑗

𝜏′4
+O( 1

𝜏′5
))

=
𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝜏′3𝜌′2√︁
1+ 𝜌′2

𝑑𝜏′𝑑𝜌′𝑑𝑛̂′𝑒𝑖𝜔𝜏
′ (
√

1+𝜌′2−𝜌′®𝑛· ®𝑛′)

( 𝐴(𝜌
′, 𝑛̂′)
𝜏′3

𝑛′𝑖𝑛
′
𝑗 +
𝐵(𝜌′, 𝑛̂′)
𝜏′4

𝑛′𝑖𝑛
′
𝑗 +
𝐺 (𝜌′, 𝑛̂′)(𝑖𝑛′𝑗)

𝜏′4
+
𝐻 (𝜌′, 𝑛̂′)𝑖 𝑗

𝜏′4
+O( 1

𝜏′5
))

=
𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝜌′2√︁

1+ 𝜌′2
𝑑𝜏′𝑑𝜌′𝑑𝑛̂′𝑒𝑖𝜔𝜏

′ (
√

1+𝜌′2−𝜌′®𝑛· ®𝑛′)

(𝐴(𝜌′, 𝑛̂′)𝑛′𝑖𝑛′𝑗 +
𝐵(𝜌′, 𝑛̂′)
𝜏′

𝑛′𝑖𝑛
′
𝑗 +
𝐺 (𝜌′, 𝑛̂′)(𝑖𝑛′𝑗)

𝜏′
+
𝐻 (𝜌′, 𝑛̂′)𝑖 𝑗

𝜏′
+O( 1

𝜏′2
))

=
𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝜌′2√︁

1+ 𝜌′2
𝑑𝜏′𝑑𝜌′𝑑𝑛̂′𝑒𝑖𝜔𝜏

′ (
√

1+𝜌′2−𝜌′®𝑛· ®𝑛′)𝐴(𝜌′, 𝑛̂′)𝑛′𝑖𝑛′𝑗

𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝜌′2√︁

1+ 𝜌′2
𝑑𝜏′𝑑𝜌′𝑑𝑛̂′𝑒𝑖𝜔𝜏

′ (
√

1+𝜌′2−𝜌′®𝑛· ®𝑛′) (𝐵(𝜌
′, 𝑛̂′)
𝜏′

𝑛′𝑖𝑛
′
𝑗 +
𝐺 (𝜌′, 𝑛̂′)(𝑖𝑛′𝑗)

𝜏′
+
𝐻 (𝜌′, 𝑛̂′)𝑖 𝑗

𝜏′
)

𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝜌′2√︁

1+ 𝜌′2
𝑑𝜏′𝑑𝜌′𝑑𝑛̂′𝑒𝑖𝜔𝜏

′ (
√

1+𝜌′2−𝜌′®𝑛· ®𝑛′) (O( 1
𝜏′2

)) (2.128)

We have used the following relations in the second step of eq.[(2.128)]:

𝑑𝑥′4 → 𝜌′2√︁
1+ 𝜌′2

𝑑𝜏′𝑑𝜌′𝑑𝑛̂′ , 𝑘 · 𝑥′ = −𝜔𝜏′(
√︃

1+ 𝜌′2 − 𝜌′®𝑛 · ®𝑛′), (2.129)

where 𝑘𝜇 ≡ 𝜔(1, ®𝑛).

Let us verify the behavior of I+ as 𝑢→−∞. So, we will calculate the first term in the last step

of eq.[(2.128)]2:

𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝜌′2√︁

1+ 𝜌′2
𝑑𝜌′𝑑𝑛̂′

∫ −𝜏0

−∞
𝑑𝜏′𝑒𝑖𝜔𝜏

′ (
√

1+𝜌′2−𝜌′®𝑛· ®𝑛′)𝐴(𝜌′, 𝑛̂′)𝑛′𝑖𝑛′𝑗

= −𝑒
𝑖𝜔𝑟

4𝜋𝑟

∫
𝜌′2√︁

1+ 𝜌′2
𝑑𝜌′𝑑𝑛̂′

𝑒−𝑖𝜔𝜏
′
0 (
√

1+𝜌′2−𝜌′®𝑛· ®𝑛′)

𝜔
𝐴(𝜌′, 𝑛̂′)𝑛′𝑖𝑛′𝑗

= −𝑒
𝑖𝜔𝑟

4𝜋𝑟

∫
𝜌′2√︁

1+ 𝜌′2
𝑑𝜌′𝑑𝑛̂′

1− 𝑖𝜔𝜏′0(
√︁

1+ 𝜌′2 − 𝜌′®𝑛 · ®𝑛′)
𝜔

𝐴(𝜌′, 𝑛̂′)𝑛′𝑖𝑛′𝑗

= −𝑒
𝑖𝜔𝑟

4𝜋𝑟
1
𝜔

∫
𝜌′2√︁

1+ 𝜌′2
𝑑𝜌′𝑑𝑛̂′𝐴(𝜌′, 𝑛̂′)𝑛′𝑖𝑛′𝑗 +O(1). (2.130)

2As we are interested in the structure of I+ as 𝑢→−∞, we will take −𝜏0 →−∞.
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In the second step of the eq.[(2.130)], we have ignored the terms at infinity.

Now let’s calculate the second term in the last step of eq.[(2.128)].

𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝜌′2√︁

1+ 𝜌′2
𝑑𝜌′𝑑𝑛̂′

∫
𝑑𝜏′𝑒𝑖𝜔𝜏

′ (
√

1+𝜌′2−𝜌′®𝑛· ®𝑛′) (𝐵(𝜌
′, 𝑛̂′)
𝜏′

𝑛′𝑖𝑛
′
𝑗 +
𝐺 (𝜌′, 𝑛̂′)(𝑖𝑛′𝑗)

𝜏′
+
𝐻 (𝜌′, 𝑛̂′)𝑖 𝑗

𝜏′
)

=
𝑒𝑖𝜔𝑟

4𝜋𝑟

∫
𝜌′2√︁

1+ 𝜌′2
𝑑𝜌′𝑑𝑛̂′ log {𝜔(

√︃
1+ 𝜌′2 − 𝜌′®𝑛 · ®𝑛′)}(𝐵(𝜌′, 𝑛̂′)𝑛′𝑖𝑛′𝑗 +𝐺 (𝜌′, 𝑛̂′)(𝑖𝑛′𝑗) +𝐻 (𝜌′, 𝑛̂′)𝑖 𝑗 )

=
𝑒𝑖𝜔𝑟

4𝜋𝑟
(log𝜔)

∫
𝜌′2√︁

1+ 𝜌′2
𝑑𝜌′𝑑𝑛̂′(𝐵(𝜌′, 𝑛̂′)𝑛′𝑖𝑛′𝑗 +𝐺 (𝜌′, 𝑛̂′)(𝑖𝑛′𝑗) +𝐻 (𝜌′, 𝑛̂′)𝑖 𝑗 ) +O(1) (2.131)

In eq.[(2.131)], we are only interested in the limit 𝜏→−∞. So,∫
𝑑𝜏′

𝑒𝑖𝜔𝜏
′ (
√

1+𝜌′2−𝜌′®𝑛· ®𝑛′)

𝜏′
= log {𝜔(

√︃
1+ 𝜌′2 − 𝜌′®𝑛 · ®𝑛′)}, (2.132)

where 𝜔(
√︁

1+ 𝜌′2 − 𝜌′®𝑛 · ®𝑛′) → 0. We have discussed this in Appendix[C]. Now, we can see that

(
√︁

1+ 𝜌′2 − 𝜌′®𝑛 · ®𝑛′) > 0, always. Hence, 𝜔→ 0.

The third term in the last step of eq.[(2.128)] is of no interest to us as it will result in at least

O(1) terms.

If we want to verify the behavior of I+ as 𝑢→−∞, we can take the limit of integration from

𝜏0 to ∞ while integrating over 𝑑𝜏. Here, 𝜏0 →∞. In this case, the first term in eq.[(2.128)] will be

−𝑒
𝑖𝜔𝑟

4𝜋𝑟
1
𝜔

∫
𝜌′2√︁

1+ 𝜌′2
𝑑𝜌′𝑑𝑛̂′𝐴(𝜌′, 𝑛̂′)𝑛′𝑖𝑛′𝑗 +O(1),

and the second term would be

−𝑒
𝑖𝜔𝑟

4𝜋𝑟
(log𝜔)

∫
𝜌′2√︁

1+ 𝜌′2
𝑑𝜌′𝑑𝑛̂′(𝐵(𝜌′, 𝑛̂′)𝑛′𝑖𝑛′𝑗 +𝐺 (𝜌′, 𝑛̂′)(𝑖𝑛′𝑗) +𝐻 (𝜌′, 𝑛̂′)𝑖 𝑗 ) +O(1).

From the analysis above, we can conclude that due to the presence of log𝜔 term in 𝑒𝑖 𝑗 (𝜔, ®𝑥)

for 𝜏0 →±∞, peeling is violated at I+ as 𝑢→±∞ for a system with a massive scalar field on the

Minkowski background.
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C h a p t e r 3

RESULTS AND DISCUSSION

3.1 Results

In 2.2, we see that with a compact spatial source in the Minkowski background, the gravitational

wave does not violate peeling at the future null infinity. Hence, the spacetime is asymptotically

simple, and the future null infinity is 𝐶∞.

Then we turn to the analysis of soft gravitons due to different systems on the Minkowski back-

ground to investigate the structure of the future null infinity. We show in 2.7.1 that the 1
𝜔

terms

in lim𝜔→0 𝑒𝜇𝜈 (𝜔, ®𝑥) are responsible for the memory effect at I+. We also demostrate in 2.7.2 that

the log𝜔 terms in lim𝜔→0 𝑒𝜇𝜈 (𝜔, ®𝑥) generate the terms proportional to 1
𝑢

in lim𝑟,|𝑢 |→∞ ℎ𝜇𝜈 (𝑥) at

leading order. We show in 2.3.1 how the terms proportional to 1
𝑢

in lim𝑟,|𝑢 |→∞ ℎ𝜇𝜈 (𝑥) at leading

order generate non-artifact log𝑟 terms and make the future null infinity 𝐶2. Therefore, the log𝜔

terms in lim𝜔→0 𝑒𝜇𝜈 (𝜔, ®𝑥) responsible for the violation of peeling at I+ as 𝑢→±∞ Hence, as long

as we can demonstrate the presence of the log𝜔 terms in lim𝜔→0 𝑒𝜇𝜈 (𝜔, ®𝑥) for a system, we can

conclude that peeling is violated at I+ as 𝑢→±∞ for that corresponding system.

In 2.8.3, we have shown that for 𝑁 massive particles at far past with the Newtonian limit,

𝑒𝜇𝜈 (𝜔, ®𝑥)

= −𝑒
𝑖𝜔𝑟

4𝜋𝑟

𝑁∑︁
𝑎=1

𝑝 (𝑎)𝜇𝑝 (𝑎)𝜈
1

𝑖𝑘 · 𝑝 (𝑎)

+𝑒
𝑖𝜔𝑟

4𝜋𝑟
log𝜔

4𝜋

{ 𝑁∑︁
𝑎=1

𝑁∑︁
𝑎≠𝑏

𝑏=1

𝑝 (𝑎) · 𝑝 (𝑏){ 3
2 𝑝

2
(𝑎) 𝑝

2
(𝑏) − (𝑝 (𝑎) · 𝑝 (𝑏))2}

{(𝑝 (𝑎) · 𝑝 (𝑏))2 − 𝑝2
(𝑎) 𝑝

2
(𝑏)}

3
2

𝑘𝜌𝑝 (𝑎)𝜇
𝑘 · 𝑝 (𝑎)

(𝑝𝜌(𝑎) 𝑝 (𝑏)𝜈 − 𝑝 (𝑏)𝜈𝑝
𝜌

(𝑎))

+
𝑁∑︁
𝑎=1

𝑁∑︁
𝑏=1

𝑘 · 𝑝 (𝑏)
𝑘 · 𝑝 (𝑎)

𝑝 (𝑎)𝜇𝑝 (𝑎)𝜈
}
+O(1), (3.1)
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where the leading term is proportional to 1
𝜔

, which is responsible for the memory effect, and the

subleading term is proportional to log𝜔, which leads to the violation of peeling at I+ as 𝑢→−∞.

In 2.8.4, we have shown that for 𝑁 massive particles at far future with the Newtonian limit,

𝑒𝜇𝜈 (𝜔, ®𝑥)

= −𝑒
𝑖𝜔𝑟

4𝜋𝑟

𝑁∑︁
𝑎=1

𝑝′(𝑎)𝜇𝑝
′
(𝑎)𝜈

1
𝑖𝑘 · 𝑝′(𝑎)

+𝑒
𝑖𝜔𝑟

4𝜋𝑟
log𝜔

4𝜋

{ 𝑁∑︁
𝑎=1

𝑁∑︁
𝑎≠𝑏

𝑏=1

𝑝′(𝑎) · 𝑝
′
(𝑏){

3
2 𝑝

′2
(𝑎) 𝑝

′2
(𝑏) − (𝑝′(𝑎) · 𝑝

′
(𝑏))

2}

{(𝑝′(𝑎) · 𝑝
′
(𝑏))2 − 𝑝′2(𝑎) 𝑝

′2
(𝑏)}

3
2

𝑘𝜌𝑝
′
(𝑎)𝜇

𝑘 · 𝑝′(𝑎)
(𝑝′𝜌(𝑎) 𝑝

′
(𝑏)𝜈 − 𝑝

′
(𝑏)𝜈𝑝

′𝜌)
(𝑎)

+
𝑁∑︁
𝑎=1

𝑁∑︁
𝑏=1

𝑘 · 𝑝′(𝑏)
𝑘 · 𝑝′(𝑎)

𝑝′(𝑎)𝜇𝑝
′
(𝑎)𝜈

}
+O(1), (3.2)

where the leading term is proportional to 1
𝜔

, which is responsible for the memory effect, and the

subleading term is proportional to log𝜔, which leads to the violation of peeling at I+ as 𝑢→∞.

In 2.9.3, we have shown that for a massless scalar field on 4-dimensional Minkowski background

lim
𝜔→0

𝑒𝜇𝜈 (𝜔, ®𝑥)

= 𝑖
𝑒𝑖𝜔𝑟

4𝜋𝑟
1
𝜔

∫
𝑑𝑢′𝑑𝑛̂′

1
(1− ®𝑛 · ®𝑛′) 𝐴(𝑢

′, 𝑛̂′)𝑛′𝑖𝑛′𝑗 +O(1),

where the leading term is proportional to 1
𝜔

, which is responsible for the memory effect. But there

is no term proportional to log𝜔. Hence, the peeling is not violated at I+.

In 2.10.3, we have shown that for a massive scalar field on 4-dimensional Minkowski background

lim
𝜔→0

𝑒𝜇𝜈 (𝜔, ®𝑥)

= −𝑒
𝑖𝜔𝑟

4𝜋𝑟
1
𝜔

∫
𝜌′2√︁

1+ 𝜌′2
𝑑𝜌′𝑑𝑛̂′𝐴(𝜌′, 𝑛̂′)𝑛′𝑖𝑛′𝑗

±𝑒
𝑖𝜔𝑟

4𝜋𝑟
(log𝜔)

∫
𝜌′2√︁

1+ 𝜌′2
𝑑𝜌′𝑑𝑛̂′(𝐵(𝜌′, 𝑛̂′)𝑛′𝑖𝑛′𝑗 +𝐺 (𝜌′, 𝑛̂′)(𝑖𝑛′𝑗)

+𝐻 (𝜌′, 𝑛̂′)𝑖 𝑗 ) +O(1) , at I+
∓ , (3.3)

where the leading term is proportional to 1
𝜔

, which is responsible for the memory effect, and the

subleading term is proportional to log𝜔, which leads to the violation of peeling at I+ as 𝑢→±∞.
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3.2 Discussion

We aim to construct a physical spacetime that is not asymptotically simple and violates the peeling

property at the future null infinity. For that, we need the metric at the future null infinity to be

𝐶𝑘 , where 𝑘 < 3. We attempt to create a spacetime with Corvino’s gluing construction. With

Corvino’s gluing construction, we can glue different manifolds with different differentiability as

long as the metrics and the extrinsic curvatures match at the gluing boundary of manifolds. To

understand Corvino’s gluing construction, we go through an application of the construction done

by Chrusciel and Delay [19]. Chrusciel and Delay constructed non-trivial vacuum solutions of

Einstein’s equations. They glued (2𝑁 + 1) Schwarzschild metrics to create a spacetime with 2𝑁

blackholes. Similarly, if we want to create a spacetime that is 𝐶2 at the future null infinity, we can

glue a 𝐶2 metric to some other metric. And to construct a 𝐶2 metric, we can introduce log𝑟 terms

in the metric. But the problems here in such a construction are:

1. It is very hard to interpret such manifolds physically.

2. It is very hard to detect if the log𝑟 terms can be eliminated from the metric with a coordinate

transformation.

If the log𝑟 terms can be eliminated from the metric with a coordinate transformation, we can

conclude that the log terms are not the consequence of physical conditions, rather they are just

characteristics of the coordinate choice or the "artifacts of the coordinates."

When we look into the analysis of the gravitational waves for compact spatial support, we run

into log terms in the metric while working in de-Donder coordinates or harmonic coordinates. But

Bondi, Metzner [1] and Sachs’s [2] analysis shows that such log terms do not appear in the Bondi

gauge. Hence, we can see that the log terms in the metric of linear perturbation to the Minkowski

metric in the harmonic gauge are just the "artifacts" of de-Donder coordinates.

We turn to soft graviton theorems to verify the existence of non-artifact log𝑟 terms in the metric

at the future null infinity. We demonstrate that if non-linear effects are taken into account, then



50

massive particles at far past or far future can also violate peeling at future null infinity. But we

later go on to show that even if we do not consider non-linear effects, a system with a system with

massive scalar field can violate peeling at the future null infinity. In these cases, we see that the

violation of peeling happens due to the non-artifact log𝑟 terms present in 𝑒𝜇𝜈 (𝑥). But in case of

massless scalar fields, peeling is not violated.

In our analysis, we have used the Minkowski metric as the background. But Sen et al. [10] used

the perturbation of the Minkowski metric as the background to derive the soft graviton theorem

for 𝑁-particles. The perturbation to the Minkowski metric generates log terms in the trajectories

of the particles. In our analysis, the Newtonian limit generates log terms in the trajectories of the

particles. If we look at it another way, we also consider the non-linear effect if we consider the

Newtonian limit. Sen et al. [10] show the existence of log terms even for massless particles, but

here we will only analyze the case for massive particles and move on to scalar fields in 4-dimension.

At soft limit for 𝑁-massive particles at past infinity or far future, massless scalar field and

massive scalar field on Minkowski background the terms in 𝑒𝑖 𝑗 (𝜔, ®𝑥), the leading terms in all cases

are proportional to 1
𝜔

. From the discussion in 2.7.1, we can conclude that these leading terms

generate the memory effect in all cases.

The subleading term in the case of 𝑁-massive particles at past infinity and far future and massive

scalar field is proportional to log𝜔. Because of this log𝜔 term, there exists a non-zero limit for

lim𝑢→±∞𝑢2𝑁𝜇𝜈 (𝑥) 2.7.2, where 𝑁𝜇𝜈 (𝑥) is the news tensor. Hence, these generate non-artifact log𝑟

terms in 𝑒𝑖 𝑗 (𝑥) and the metric at I+ becomes 𝐶2. Therefore, the peeling is violated at the future

null infinity, and the spacetime is not asymptotically simple for the massive particles and massive

scalar field case in our analysis.

But the subleading term in the case of a massless scalar field is of order 1. Hence, lim𝑢→±∞𝑢2𝑁𝜇𝜈 (𝑥) =

0. Therefore, the peeling is not violated at the future null infinity, and the spacetime is asymptotically

simple for a massless scalar field on the Minkowski background.
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C h a p t e r 4

CONCLUSION AND OUTLOOK

In this thesis, we try to investigate the structure of the future null infinity of asymptotically flat

spacetime. We have mainly focused on spacetimes that are not asymptotically simple and violate

Penrose’s peeling property at future null infinity. We first try to use Corvino’s gluing construction

to construct a spacetime that violates the peeling property. But upon realizing the difficulty in

recognizing if the logarithmic terms are artifacts or non-artifacts of the chosen coordinates, we turn

to the analysis of soft gravitons. From the characteristics of soft gravitons, we infer the structure of

the future null infinity as |𝑢 | → ∞ in 4-dimensional spacetimes.

We have demonstrated that the peeling is violated at I+ as 𝑢→ ±∞ for 𝑁 massive particles

at far past or far future with the Newtonian limit on Minkowski background with dimensions= 4

and the violation of peeling can be demostrated due to a similar system on Minkowski background

with dimensions> 4. Then we go on to show that peeling holds good for a massless scalar field on

4-dimensional Minkowski background. In contrast to the massless case, peeling is violated at the

future null infinity as 𝑢→±∞ for a massive scalar field on 4-dimensional Minkowski background.

In the case of massless and massive scalar fields, the analysis can be replicated for Minkowski

backgrounds with dimensions > 4. A similar calculation can also be done for other fields (e.g.,

Abelian gauge field, non-Abelian gauge field, vector fields, spinor fields, tensorial fields), and one

can analyze the behavior of I+. One can investigate the asymptotic symmetries of LAF spacetimes

and the charges corresponding to those symmetries instead of asymptotically simple spacetimes.

One can also further investigate Celestial Holography corresponding to LAF spacetimes.
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A p p e n d i x A

WEYL TENSOR

Lets assume, we have a metric 𝑔𝜇𝜈 on 𝑛-dimensional spacetime.For 𝑛 ≥ 3,

𝐶𝛼𝛽𝛾𝛿 = 𝑅𝛼𝛽𝛾𝛿 +
(𝑔𝛼𝛿𝑅𝛾𝛽 +𝑔𝛾𝛽𝑅𝛼𝛿 −𝑔𝛼𝛾𝑅𝛿𝛽 −𝑔𝛿𝛽𝑅𝛼𝛾)

(𝑛−2) +
(𝑔𝛼𝛾𝑔𝛿𝛽 −𝑔𝛼𝛿𝑔𝛾𝛽)𝑅

(𝑛−2) (𝑛−1) , (A.1)

where 𝐶𝛼𝛽𝛾𝛿 ≡ Weyl tensor, 𝑅𝛼𝛽𝛾𝛿 ≡ Riemann tensor, 𝑅𝛼𝛽 ≡ Ricci tensor and 𝑅 ≡ Ricci scalar on

metric 𝑔𝜇𝜈.

From eq.[(A.1)] we can get the following relations in eq.[(A.2)]:

𝐶𝛼𝛽𝛾𝛿 = −𝐶𝛼𝛽𝛿𝛾 = −𝐶𝛽𝛼𝛾𝛿 = 𝐶𝛾𝛿𝛼𝛽

𝐶𝛼𝛽𝛾𝛿 +𝐶𝛼𝛿𝛽𝛾 +𝐶𝛼𝛾𝛿𝛽 = 0

𝐶𝛼𝛽𝛼𝛿 = 0. (A.2)

Now if 𝑔̃𝜇𝜈 and 𝑔𝜇𝜈 are conformally related such that

𝑔̃𝜇𝜈 = Ω−2𝑔𝜇𝜈, (A.3)

then

𝐶̃𝛼𝛽𝛾𝛿 = 𝐶
𝛼
𝛽𝛾𝛿, (A.4)

where 𝐶𝛼𝛽𝛾𝛿 and 𝐶̃𝛼𝛽𝛾𝛿 are the weyl tensors on 𝑔𝜇𝜈 and 𝑔̃𝜇𝜈, respectively.

As seen in eq.[(A.4)], the conformal invariance of Weyl tensors, it is very helpful to study

conformal methods involving Weyl tensors.
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A p p e n d i x B

THE 3+1 DECOMPOSITION OF GENERAL RELATIVITY:

B.1 Submanifold:

If 𝒩 ⊆ ℳ and 𝒩 inherits a manifold structure from ℳ, 𝒩 is called a submanifold of ℳ.

B.2 Foliations of Space-time:

In our discussion, we assume the space-time (𝑀,𝑔𝜇𝜈) to be globally hyperbolic. We assume the

topology of the spacetime is R×𝑆, where 𝑆 is a three-dimensional orientable manifold.

Definition of Foliation: A space-time is called foliated by the hypersurfaces 𝑆𝑡 if the the

hypersurfaces 𝑆𝑡 are non-intersecting and 𝑀 =
⋃
𝑡∈R 𝑆𝑡 , where we have taken 𝑆𝑡 = {𝑡} × 𝑆.

B.3 Time Function:

It is often conveniently assumed that the hypersurfaces 𝑆𝑡 are the level surfaces of a scalar function

𝑡, which is interpreted as a global time function.

The covector 𝜔𝜇 = ∇𝜇𝑡 is normal to the hypersurface 𝑆𝑡 .

∇[𝜇𝜔𝜈] = ∇[𝜇∇𝜈]𝑡 = 0

Hence, 𝜔𝑎 is closed.

B.4 Lapse Function:

The lapse function 𝛼 is defined via:

𝑔𝜇𝜈𝜔𝜇𝜔𝜈 = − 1
𝛼2

.The lapse is the measure of proper time elapsed between neighboring time slices along the direction

given by the normal vector 𝜔𝜇 = 𝑔𝜇𝜈𝜔𝜈. From the definition of lapse function, we can see that 𝜔𝜇

is timelike (as 𝛼 ≠ 0 =⇒ 𝜔𝜇𝜔𝜇 < 0), hypersurfaces 𝑆𝑡 are spacelike.
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Now, if we define unit normal as 𝑛𝜇 = −𝛼𝜔𝜇, 𝑛𝜇𝑛𝜇 = −1. One may think of 𝑛𝑎 as the four-

velocity, always orthogonal to the hypersurfaces 𝑆𝑡 .

B.5 Intrinsic Metric of an Hypersurface:

The spacetime metric 𝑔𝜇𝜈 induces a three-dimensional metric ℎ𝑖 𝑗 on the hypersurfaces 𝑆𝑡 . The

relation between 𝑔𝑎𝑏 and ℎ𝑎𝑏 is given by

ℎ𝑎𝑏 ≡ 𝑔𝑎𝑏 +𝑛𝑎𝑛𝑏

. The tensor ℎ𝑎𝑏 is purely spatial. Hence, it has no component along 𝑛𝑎. This fact can be seen by

contracting ℎ𝑎𝑏 with the normal 𝑛𝑎:

𝑛𝑎ℎ𝑎𝑏 = 𝑛
𝑎𝑔𝑎𝑏 +𝑛𝑎𝑛𝑎𝑛𝑏 = 𝑛𝑏 −𝑛𝑏 = 0

The inverse 3- metric can be obtained by raising the indices.

ℎ𝑎𝑏 = 𝑔𝑎𝑏 +𝑛𝑎𝑛𝑏

The 3-metric ℎ𝑎𝑏 can project all geometric along the direction of 𝑛𝑎. ℎ𝑎𝑏 can decompose tensor in

purely spacelike part which lies on 𝑆𝑡 and purely timelike part which is normal to 𝑆𝑡 . The spatial

part of the tensor 𝑇𝑎𝑏...𝑚𝑛𝑝...𝑤 is

(𝑇⊥)𝑎𝑏...𝑚𝑛𝑝...𝑤 = (ℎ𝑎𝑎′ℎ𝑏𝑏′ . . . ℎ
𝑚
𝑚′) (ℎ𝑛

′
𝑛 ℎ

𝑝′
𝑝 . . . ℎ

𝑤′
𝑤 )𝑇𝑎′𝑏′ ...𝑚′

𝑛′𝑝′ ...𝑤′

where ℎ𝑎
𝑏
= 𝛿𝑎

𝑏
+𝑛𝑎𝑛𝑏 .

B.6 Covariant Derivatives on Hypersurfaces:

The 3-metric ℎ𝑖 𝑗 defines a unique kind of covariant derivative 𝐷𝑖. Here, 𝐷𝑎 is torsion-free and

compatible with the metric ℎ𝑎𝑏. The action of 𝐷𝑎 on (𝑚,𝑛)-rank of tensor is demonstrated below:

𝐷𝑎𝑇
𝑏1𝑏2...𝑏𝑚
𝑐1𝑐2...𝑐𝑛

= ℎ𝑑𝑎 (ℎ
𝑏1
𝑏′1
ℎ
𝑏2
𝑏′2
. . . ℎ

𝑏𝑚
𝑏′𝑚
) (ℎ𝑐

′
1
𝑐1ℎ

𝑐′2
𝑐2 . . . ℎ

𝑐′𝑛
𝑐𝑛)∇𝑑𝑇

𝑏
𝑝

1 𝑟𝑖𝑚𝑒𝑏
′
2...𝑏

′
𝑚

𝑐′1𝑐
′
2...𝑐

′
𝑛
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The covariant derivative 𝐷𝑎 for the 3-metric ℎ𝑖 𝑗 is associated with the spatial Christoffel

symbols:

𝛾
𝜇

𝜈𝜆
=

1
2
ℎ𝜇𝜌 (𝜕𝜈ℎ𝜌𝜆 + 𝜕𝜆ℎ𝜈𝜌 − 𝜕𝜌ℎ𝜈𝜆)

Now, we can associate a curvature tensor 𝑟𝑎
𝑏𝑐𝑑

to the covariant derivative 𝐷𝑎.

[𝐷𝑎, 𝐷𝑏]𝑣𝑐 = 𝑟𝑐𝑑𝑎𝑏𝑣
𝑑

Hence, 𝑟𝑐
𝑑𝑎𝑏
𝑛𝑑 = 0 .

Similarly, we can define the Ricci tensor and scalar for the metric ℎ𝑖 𝑗 as

𝑟𝑑𝑏 ≡ 𝑟𝑐𝑑𝑐𝑏 , 𝑟 ≡ ℎ𝑎𝑏𝑟𝑎𝑏

B.7 The Extrinsic Curvature:

The implications of Einstein’s equations on the hypersurfaces can be understood by decomposing

𝑅𝑎
𝑏𝑐𝑑

into spatial parts, which involves 𝑟𝑎
𝑏𝑐𝑑

. 𝑟𝑎
𝑏𝑐𝑑

measures the intrinsic curvature of the hypersur-

faces. The rest of the information is in the extrinsic curvature.

The extrinsic curvature is defined in the following way:

𝐾𝑎𝑏 ≡ −ℎ𝑐𝑎ℎ𝑑𝑏∇(𝑐𝑛𝑑) = −ℎ𝑐𝑎ℎ𝑑𝑏∇𝑐𝑛𝑑 ,

since 𝑛𝑎 is rotation free. We can see that the extrinsic curvature is (0,2)-rank symmetric tensor

and purely spatial. The extrinsic curvature can also be presented as

𝐾𝑎𝑏 = −∇𝑎𝑛𝑏 −𝑛𝑎𝑎𝑏 and𝐾

where 𝑎𝑏 = 𝑛𝑐∇𝑐𝑛𝑏.

One can define the mean extrinsic curvature as

𝐾 ≡ ℎ𝑎𝑏𝐾𝑎𝑏 .
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A p p e n d i x C

INVERSE FOURIER TRANSFORMATION OF log TERMS

When 𝜔→ 0, ∫
𝑑𝜔

2𝜋
𝑒±𝑖𝜔𝑢𝐶 log (𝜔) 𝑓 (𝜔)

= 𝐶

∫
𝑑𝜔

2𝜋
𝑒±𝑖𝜔𝑢 log (𝜔± 𝑖𝜖) 𝑓 (𝜔)

→ ∓𝐶
𝑢
, for 𝑢→±∞, (C.1)

where 𝐶 is a constant and 𝑓 (𝜔) is an arbitrary function of 𝜔.

By reverse analysis, we can say that when 𝑢→−∞,∫
𝑑𝑢𝑒±𝑖𝜔𝑢

𝐶

𝑢
→ 𝐶 log (𝜔), for 𝜔→ 0. (C.2)

Here, 𝑢 is just a dummy variable. This we can replace 𝑢 by some other variable, such as

𝜏′(
√︁

1+ 𝜌′2 − 𝜌′®𝑛 · ®𝑛′). We have done this in eq.[(2.132)].
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