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Abstract 
 

The microbiome has been associated with maintaining normal human homeostasis 

and physiological functions. Numerous studies indicate that the gut microbiome and 

its related metabolites influence pulmonary immune homeostasis and lung physiology, 

and conversely, local respiratory tract processes are involved in the distal modulation 

of gut mucosal immune system. Additionally, the gut dysbiosis is associated with 

outcomes of radiation therapy for lung cancer and complications associated with 

radiotherapy such as radiation-induced pneumonitis and radiation fibrosis. The 

causation behind these associations is poorly understood and still speculative, 

although emerging experimental evidence indicates that the crosstalk of the gut 

microbiome and the lungs is primarily mediated through metabolism-related 

genotoxicity, defective immunosurveillance, and systemic inflammation. This 

bidirectional communication channel between the gut and the lung immune system is 

referred to as the gut-lung axis. Understanding this phenomenon in humans has been 

a challenge due to practical and ethical concerns associated with human 

experimentation. Computational models have recently been used to tackle this 

challenge, providing researchers with new tools to study immuno-oncology related 

problems. We aim to develop a Quantitative Systems Pharmacology (QSP) model that 

incorporates detailed mechanisms for important immune interactions along the gut-

lung axis. The model comprises three compartments (gut, lungs, and blood) and the 

relevant cellular pathways, including replication, migration, and apoptosis of various 

immune cell types and production, transportation, and degradation of cytokines and 

inflammatory biomarkers. The model allows testing new hypotheses to understand the 

gut microbiome’s influence on radiotherapy and radiation pneumonitis. Using 

parameter perturbation to simulate the response of inflammatory biomarkers, the 

model captured the biological heterogeneity associated with the onset and dynamics 

of radiation pneumonitis. With additional experimental validation, the model can 

enable researchers to examine the complex microbiome-associated immune 

responses and how the dysregulation of these processes may contribute to the 

pathobiology of the disease. 
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1. Introduction 
 

This introductory chapter first gives an overview of the biological concepts behind the 

‘gut-lung axis.’ Subsequently, the chapter describes the motivation for this thesis and 

finishes with the aim and objectives of the thesis. 

1.1. Gut Microbiome 
 

The gastrointestinal (GI) tract is a host to a highly complex microbial ecosystem, 

comprising approximately 1014 bacteria, viruses and archaea of more than 1,000 

species (Lv et al., 2019). This collective genome of the microorganisms living in the 

gut is called as the gut microbiome. The microbial communities in the gut microbiome 

coexist with the host in a mutually beneficial symbiotic relationship. While the microbes 

benefit from a nutrient-rich, protective, and stable environment from the host, in return, 

they play a critical role in performing and maintaining a considerable number of the 

host’s physiological functions, including host metabolism (Fabbiano et al., 2018), brain 

function (Rogers et al., 2016), and host immunity (Valdes et al., 2018). An emerging 

area of great interest is understanding the effect of the gut microbiome on local and 

systemic immune homeostasis. Dysbiosis of the gut microbiome is associated locally 

with various gastrointestinal diseases such as inflammatory bowel disease (Glassner 

et al., 2020) and colorectal cancer (Wong and Yu, 2019), but also systematically with 

other diseases such as obesity (Valdes et al., 2018), diabetics mellitus (Zhang et al., 

2021), acquired immunodeficiency syndrome (Kehrmann et al., 2019), SARS-CoV-2 

(Reinold et al., 2021, 2022), lung cancer (Liu et al., 2020) and neuroinflammatory 

conditions like multiple sclerosis, Alzheimer’s and Parkinson’s diseases (Rutsch et al., 

2020). 

1.2. Lung Cancer and Radiation Therapy 
 

Lung cancer is a type of cancer characterised by uncontrolled cell growth in the lung 

tissues. It is one of the most commonly diagnosed forms of cancer, with an incidence 

rate of 11.4% of total cancer cases (Sung et al., 2021). Despite the recent advances 

in diagnosis and treatment, patients’ overall survival is still poor, and thus, lung cancer 

has remained by far the leading cause of cancer death in 2020 in both sexes, with a 

mortality rate of about 18.0% and an estimated 1.8 million deaths worldwide (Sung et 

al., 2021). Although there are a variety of treatment options for lung cancer, including 
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chemotherapy, radiotherapy, and immunotherapy, which are selected depending on 

the patient’s TNM stage and individual health circumstances, the majority of patients 

are diagnosed at an advanced stage and are left with few limited treatment options 

leading to a high mortality rate (Thai et al., 2021). Therefore, there is a growing 

demand and interest in understanding the mechanisms of carcinogenesis and cancer 

progression and to explore new treatment strategies and therapeutics for this disease. 

One particular interest is in radiation therapy (or radiotherapy); more than 60% of all 

cancer patients receive radiotherapy during the course of their disease (Tyldesley et 

al., 2001). However, not all patients benefit from this treatment: some respond poorly 

to such therapy due to factors such as intrinsic radio-resistance and tumour-promoting 

mutations which adversely affect the response of tumour cells to radiotherapy 

(Baumann et al., 2016; Herbst et al., 2018), while others develop acute and late tissue 

toxicity such as radiation-induced pneumonitis and radiation fibrosis after the 

treatment which can be caused by excessive immune system activation (Jarzebska et 

al., 2021). Although there have been technological improvements in delivering the 

radiation dose more accurately to the tumour, it is still inevitable that some normal lung 

tissue adjacent to the tumour will also be exposed to ionising radiation during the 

treatment. This exposure to ionising radiation causes death and damage of resident 

lung epithelial and endothelial cells, resulting in activation of damage-associated 

responses, which includes increased production of cytokines and growth factors and 

increased recruitment of immune cells in the damaged microenvironment (Wirsdörfer 

and Jendrossek, 2016). If this pro-inflammatory response is too excessive, patients 

may develop clinical symptoms of pneumonitis, mostly at 3 to 12 weeks after the 

radiation therapy (Graves et al., 2010). This emergence of chronic inflammation after 

radiation therapy is called radiation-induced pneumonitis, and this can result in 

hypoxia, fibroblasts recruitment and activation in the environment and excessive 

deposits of extracellular matrix in the lung tissue, eventually leading to lung fibrosis in 

the late phase of the radiation-induced lung injury (Jarzebska et al., 2021). The current 

primary strategy to minimise radiation-induced pulmonary fibrosis is to lower the 

radiation dose delivered, which may lead to decreased treatment efficacy (Schaue et 

al., 2015).  
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1.3. Gut-Lung Axis 
 

Numerous studies have indicated that the microbiome have associations with 

pulmonary physiology and homeostasis (Gopalakrishnan et al., 2018; Zhuang et al., 

2019), and a growing consensus suggests that the GI tract and the lungs share a 

mucosal immune system regulating various processes in both organs (Rooks and 

Garrett, 2016). This presence of a bidirectional communication channel between the 

gut and the lung mucosal immune system is referred to as the ‘gut-lung axis’ (Budden 

et al., 2016), as shown in Figure 1. Emerging experimental evidence suggests that the 

gut microbiome and its related metabolites influence the pulmonary immune 

homeostasis and physiology of the lungs through this vital, bidirectional cross-talk (Liu 

et al., 2020), and gut dysbiosis is associated with carcinogenesis, progression, and 

outcome of anticancer therapy of lung cancer through metabolism-related genotoxicity, 

defective immunosurveillance and systemic inflammation (Liu et al., 2021). 

Conversely, impaired lung function caused due to external triggers such as cigarette 

smoking, antibiotic treatment, and chronic lung diseases such as asthma, chronic 

respiratory infections (like drug-resistant Staphylococcus aureus pneumonia) and 

chronic obstructive pulmonary disease is associated with patient’s susceptibility to 

developing inflammatory bowel disease (IBD) or irritable bowel syndrome (Keely et 

al., 2012; Rutten et al., 2014; Budden et al., 2016).   

Although the mechanisms through which this cross-talk between the gut and the lungs 

influence the occurrence and progression of lung cancer are not completely known, 

the speculation is that the gut microbiome can promote systemic inflammation or 

cause immune and metabolic dysregulation, which can provide favourable 

environments for carcinogenesis and progression of cancer (Zhuang et al., 2019; Liu 

et al., 2020; Martins et al., 2021). Pulmonary inflammatory balance can also be 

influenced by gut microbiome-associated metabolites. For example, recent research 

has identified some metabolites, such as short-chain fatty acids (SCFA) (Rutting et al., 

2019) and bile acid (Flynn et al., 2020), with potential influences on inflammatory 

processes. These observations suggest that the gut microbiome can be used both in 

diagnosis by identifying potential biomarkers of lung carcinogenesis (Zheng et al., 

2020), and in the prevention and treatment of lung cancer through the alteration of 

microbiome composition (Liu et al., 2020). 
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Figure 1: Schematic explaining the processes involved in the ‘Gut-Lung Axis’. A healthy gut 

microbiome can cause both local and systemic immune modulation through bacterial structural ligands 

(such as lipopolysaccharides and peptidoglycans) or secreted microbial metabolites (such as SCFA and 

bile acid). These immune modulations can cause better pulmonary outcomes such as infection 

clearance and healthy pulmonary immune homeostasis. However, gut microbiome dysbiosis can cause 

dysfunctional immune modulation, which leads to poor pulmonary outcomes. The triggers for the gut 

microbiome dysbiosis can originate from the gastrointestinal tract (like antibiotics and infections) or the 

respiratory tract like cigarette smoking or pulmonary diseases. (Figure taken from Budden et al., 2016).   

1.4. Gut-Lung Axis in the context of Radiation Therapy  
 

The dysfunction of the gut-lung axis can be triggered by external stimuli such as 

infections and cigarette smoking (Budden et al., 2016). Radiation therapy could also 

potentially trigger a dysfunction of this system as radiation-induced pulmonary tissue 

damage can cause acute and chronic local immune modulation that can develop to 

radiation-induced pulmonary pneumonitis and fibrosis. Studies show that gut 

microbiota composition changes in response to radiotherapy and its associated toxicity 

(Uribe-Herranz et al., 2020). Radiation-induced damage from pelvic radiotherapy is 

shown to cause an increase in pro-inflammatory cytokines such as IL-1β, IL-2, IL-6, 

and IL-8 (Indaram et al., 2000) and cause dysbiosis of the gut microbiome (Gerassy-

Vainberg et al., 2017). So, it is hypothesised that radiation therapy can cause a 

disruption in the composition of the gut microbiome, which may alter an individual 

patient’s immune response to the tumour, thereby affecting tumour growth and the 

efficacy of cancer therapy; additionally, the alteration in the gut microbiome caused 

due to the radiotherapy can affect the systemic immune system activity, thus promoting 
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acute and chronic inflammation leading to the pathogenesis of radiation pneumonitis 

and fibrosis, and affecting patient’s susceptibility to GI and pulmonary infections.   

To test out the hypothesis, the experimental project examining the cross-talk between 

host’s gastrointestinal and pulmonary processes in response to radiation-induced lung 

toxicity is currently being carried out jointly by Prof Dr Verena Jendrossek (Molecular 

Cell Biology at the Institute of Cell Biology - Tumour Research at the University 

Hospital Essen) and Prof Dr Astrid Westendorf (Infection Immunology at the Institute 

for Medical Microbiology at the University Hospital Essen) under the framework of 

Deutsche Forschungsgemeinschaft (DFG) funded GRK2762 project. They use 

established C57BL/6 mouse models to determine dynamic changes in the immune 

responses in gut and lungs along with the changes in the composition and diversity of 

the host microbiota after thoracic radiation. Their collected data includes fresh faecal 

pellets, lung tissue, and bronchoalveolar lavage fluid (BALF) before t0 and t1, t4, t10, 

t21, t84, and t168 days after treatment, the level of bacterial metabolites (e.g., short-chain 

fatty acids) over time and immune cell phenotyping (innate and adaptive immune cell 

repertoire and subtypes, cytokine/chemokine profile) of the mice. 

1.5. Computational Modelling to Understand the Gut-Lung Axis  
 

Despite all the cavities in our understanding of the bidirectional communication 

between the gut microbiome and the lung immune processes (Liu et al., 2020; Schluter 

et al., 2020), the accumulated knowledge of the previous studies on gut-lung 

interactions gives us an interesting picture with a reasonable resolution of the major 

routes of communications over the gut-lung axis (Liu et al., 2021). For example, 

several local and systemic mechanisms have already been identified to play a role in 

the regulatory function of the gastrointestinal microbiome on lung inflammation and 

immunity (Gallacher and Kotecha, 2016). However, the complexity of the 

interconnected network of the numerous players in this phenomenon makes 

hypothesis testing very challenging. Finding reliable biomarkers for diagnosis or 

promising targets for therapy requires extensive studies in all different conditions of 

human patients, an objective that cannot be easily achieved merely by experimental 

studies due to several restrictions. This challenge is particularly pronounced in human 

studies because of practical and ethical concerns associated with human 

experimentation (De Jong and Maina, 2010). 
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Recently, mathematical and computational models have been utilised to address this 

challenge, providing researchers with novel tools to study and understand immuno-

oncology-related problems. They do so by dissecting their complexity and 

quantitatively testing biological hypotheses under fully controlled conditions with 

negligible cost regarding time, resources, and animal lives (Metzcar et al., 2019). 

These models enable researchers to examine the relationships between complex 

regulatory processes and how disruptions of these biological processes may 

contribute to the pathophysiology of the disease. Mechanistic mathematical models 

can serve as in silico virtual experiments that give us the ability to understand the 

dynamics of both the innate and adaptive immune responses at different biological 

scales ranging from molecular to tissue levels (Eftimie et al., 2016). These models also 

enable us to simulate and study heterogeneous multi-scale mechanisms that are 

involved in cancer development and progression (Valentinuzzi and Jeraj, 2020). So, 

computational models can help bridge the present gap and provide mechanistic 

insights into the ‘gut-lung axis’, which can then be experimentally challenged and 

verified. 

Using continuous compartmental models based on ordinary differential equations to 

model tumour-immune system dynamics have a long history (ed. JA Adam, and N 

Bellomo, 1997). Over the years, several modelling approaches are developed for 

understanding immuno-oncology related systems, such as pharmacodynamic 

/pharmacokinetic (PD/PK) models, evolutionary game theory models, agent-based 

models, spatial-temporal models, and boolean (logic-based) models (Sancho-Araiz et 

al., 2021). Recently, Quantitative Systems Pharmacology (QSP) models have become 

an essential component in modelling for immuno-oncology applications such as 

treatment and drug development (Leil and Ermakov, 2015; Sové et al., 2020). These 

models allow the construction and simulation of large-scale compartmental models of 

the human immune response (Rogers et al., 2021a) and understand the 

pharmacokinetic and pharmacodynamic perspectives of different drug treatment 

strategies (Rogers et al., 2021b). For example, QSP models have been used to study 

hemodynamics by modelling cardiovascular and renal function (Helmlinger et al., 

2019a), to simulate neoadjuvant PD-1 inhibition in non-small cell lung cancer 

(Jafarnejad et al., 2019), and to predict clinical responses to novel combined 

immunotherapy in breast cancer (Wang et al., 2019). 
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1.6. Introduction to Quantitative Systems Pharmacology (QSP) 
Modelling  

 

Quantitative systems pharmacology (QSP) modelling is a modelling approach which 

initially emerged in pharmaceutical industries as a response to the need for more 

quantitative approaches to drug discovery and development and to study the 

relationship between a drug of interest, its potential target, and its interaction with the 

biological system (Visser et al., 2014). This style of modelling integrates ideas from a 

wide range of disciplines, including pharmacology, systems biology, mathematics, 

biochemistry, and computer science, with the goal of developing quantitative models 

that can help to understand and predict the behaviour of complex biological systems 

(Leil and Ermakov, 2015). Though initially used to address questions in the fields of 

pharmacology and drug development, QSP modelling approaches are increasingly 

being used in basic and translational research, for example in the study of nutritional 

and metabolic diseases such as type-2 diabetes mellitus, neurological diseases such 

as Alzheimer’s disease, immuno-oncology and immunotherapy (Aghamiri et al., 2021).  

QSP models can integrate and incorporate data from various sources, such as 

pharmacokinetic, pharmacodynamic, and disease physiology data, to create a 

comprehensive mechanistic and quantitative understanding of the various interactions 

in the biological system. This, along with increased computational capacity and better 

modelling and parallelisation methodologies, allows us to get a more accurate and 

realistic representation of the biological system, which can lead to better predictions 

and hypothesis testing (Sorger et al., 2011). QSP models also have the feasibility to 

use experimental/clinical cohort sample data to generate virtual populations which 

reproduce the population statistics and represent the biological heterogeneity found in 

real-world populations (Allen et al., 2016). Virtual populations can be a powerful tool 

for generating and testing new hypotheses as they allow one to test them in silico in a 

large and diverse population without the need for extensive and expensive 

experimental studies. This allows the researchers to directly validate the results in 

experimental settings and/or clinical trials with a complementary approach, thus saving 

time and resources in the process (Visser et al., 2014). Additionally, QSP models have 

the flexibility to be constructed modularly, which allows for the easy incorporation of 

new mechanisms and new modules/compartments and modification of the existing 

interactions in the model (Knight-Schrijver et al., 2016).  
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However, these models are not without their limitations. One of their main constraints 

is the complexity of the model and underlying assumptions made, which can lead to 

issues in parameter identifiability and overparameterisation of the model (Stein and 

Looby, 2018; Sher et al., 2022). QSP models also face validation challenges requiring 

large datasets to validate the model, which may not be available at the time of 

validation or can be inaccessible at certain biological scales (Aghamiri et al., 2021). 

These models often tend to have a limited scope of applicability to a particular disease 

or drug setting, which can limit the model’s applicability to other biological systems or 

disease conditions (Peterson and Riggs, 2015). Moreover, given their recent 

emergence, there is no standardisation for the file format, which makes inter-

compatibility between computational platforms difficult, limiting its transparency, 

transferability and reusability within the modelling community (Ermakov et al., 2019). 

Therefore, QSP models require careful consideration and validation to ensure their 

applicability, accuracy, and reliability to the biological system in question.  

The typical process of developing a QSP model involves three main steps (Leil and 

Bertz, 2014):  

(i) Model Scope which involves defining the objectives and mechanistic pathways 

representing all biological and pharmacological processes involved 

(ii) Model Development which includes mathematical descriptions of the biological 

pathways, standardisation of input data, parameter estimation and simulation analysis 

(iii) Model Qualification which includes integrating data from target populations to 

generate virtual populations and utilising them to generate new hypotheses based on 

end goals (for example, drug development from pharmacological perspective) 

Figure 2 explains the general workflow in the development of QSP models. The core 

elements in this workflow are as follows: formulating the biological problem that is 

being addressed, translating the biological knowledge and experimental data into a 

set of mathematical equations that describe the behaviour of the system, parameter 

estimation to calibrate the developed model, simulating the model under different 

conditions in order to represent the healthy and the diseased state and validating the 

model by comparing its predictions from the simulations to experimental data that was 

not used in the parameter estimation process (Leil and Bertz, 2014; Helmlinger et al., 
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2019b; Niarakis and Helikar, 2021). Once a model is validated, one can explore the 

impact of known variability and uncertainty of the estimated parameters of the model 

to generate “ensembles of parameterisations,” otherwise called virtual populations 

(Allen et al., 2016). This is a usually a very time-consuming process to finally get the 

validated model which is useful, interpretable, and informative to testing biological 

hypotheses, suggesting targets or biomarkers and ultimately generating a model with 

translational value. 

 

Figure 2: Steps involved in the QSP modelling. The development of the QSP model involves model 

formulation, parameterisation, model validation and virtual population generation, after which the model 

is used for its intended applications (Figure adapted from Dai et al., 2021).    

1.7. Quantitative Systems Pharmacology (QSP) model of the Gut-
Lung Axis  

 

Modelling microbiome-associated immune response in the gut-lung axis is highly 

complex because this phenomenon involves the interplay among various cell types 

including innate and adaptive immune cells, as well as endotoxins, cytokines, and 

microbial metabolites that are released into the systemic circulation. The complexity 

of immune interactions along the gut-lung axis makes the development of a 
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computational model of the ‘gut-lung axis’ system challenging. Additionally, issues 

such as variability observed in experimental measurements, the diversity and errors 

associated with analytical techniques used to generate those measurements, 

quantitatively integrating the measurements into the model and accounting for the 

heterogeneity in the response of the biological population, and most importantly, our 

limited understanding of the interactions between different immune system 

components in the gut-lung axis make modelling this system even more challenging. 

QSP modelling is a potential approach that can be used to quantitatively and 

dynamically understand this system to study the complex interactions between the gut 

microbiome, the immune system, and the respiratory epithelium. By incorporating the 

existing mechanistic knowledge of immune interactions along the gut-lung axis and 

integrating with measurements from multiple types of data such as flow-cytometry, 

ELISA, RNA sequencing and faecal metabolomics datasets, one can use QSP models 

to elucidate the underlying immunological mechanisms that contribute to the 

bidirectional communication channel between the GI tract and the lungs. The 

experimental data generated from the GRK2762 project can be used for the 

parameterisation and validation of the QSP model of the gut-lung axis. The validated 

model can be used to generate and test new hypotheses, identify new biomarkers, 

study the effects of various interventions, including radiation therapy, and predict the 

response of an individual to such interventions.   

1.8. Hypothesis 
 

The hypothesis of the project is that a computational model, upon validation, can 

reliably be used to accurately simulate the immune dynamics along the gut-lung axis 

and quantitatively test biological hypotheses. The model will enable studying the 

system from two perspectives: how cancer therapy impacts the gut microbiota 

composition and how changes in the microbiome can affect tumour growth and the 

effectiveness of the cancer treatments. The model can help to understand how 

perturbations in the system from the healthy state (such as radiation therapy in lungs 

and sustained chronic inflammation in gut) can disrupt the local and systemic immune 

homeostasis, which in turn can affect the efficacy of the cancer therapy including 

radiotherapy, and the patient’s susceptibility to developing complications from the 

treatments such as radiation pneumonitis, pulmonary fibrosis and bacterial infections.  
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1.9. Aim   
 

The aim of this project is to create a computational QSP model that incorporates 

detailed mechanisms of both innate and adaptive immunological interactions along the 

‘gut-lung axis’ to investigate the above-mentioned hypothesis. 

1.10. Objectives   
 

The main objective of the project for the Master’s thesis is to develop a general QSP 

model of immune interactions along the ‘gut-lung axis.’ The initial focus to concentrate 

on the immune interactions and exclude the gut microbial interactions and bacterial 

metabolites dynamics is decided based on the time and scope of the project. The sub-

objectives include: 

1) To develop and validate the gut compartment 

a) To develop a model of immune interactions between major lymphoid and 

myeloid immune cells and their associated cytokines in the gut compartment 

b) To validate the model with experimental data 

c) To explore the model’s applicability in the context of Inflammatory Bowel 

Disease (IBD) 
 

2) To develop and validate the lung compartment 

a) To develop a model of immune interactions between major lymphoid and 

myeloid immune cells and their associated cytokines in the lung compartment 

b) To include the radiation dynamics of epithelial cells and damage-associated 

immune mechanisms in the model 

c) To validate the model with experimental data 

d) To explore the model’s applicability in the context of radiation pneumonitis 

 

3) To develop and validate the ‘gut-lung axis’ (GLA) model 

a) To combine the individual compartments to establish the final GLA model  

b) To revalidate the model with experimental data 
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2. Methods and Materials 
 

This chapter is divided into two sections: computational and experimental methods 

used in the project with their respective descriptions in each section. 

2.1. Computational Methods 
 

2.1.1. Model Formulation  
 

The QSP model for this project was based upon significant adaptions of prior models 

of inflammatory bowel disease (Rogers et al., 2021a) for the gut compartment and 

SARS-CoV-2 for the lung compartment (Dai et al., 2021). The overall simplified 

representation of the ‘gut-lung axis’ model showing the major compartments and 

interactions between them is shown in  

Figure 3. The final gut-lung axis (GLA) model was built using MATLAB R2022a 

(MathWorks) and consists of 3 compartments, 76 state variables (species) and 533 

parameters. The model structure includes the gut compartment, the lung compartment 

and the systemic circulation compartment (also referred to as blood compartment). It 

is to be noted that a single biological entity can be counted up to three different species 

in the model to differentiate its presence in each compartment. For example, cytokine 

interleukin 6 (IL-6) is considered to be three species in the model: Gut_IL6, Blood_IL6 

and Lung_IL6. The exhaustive list of all the state variables, the parameters and their 

description are provided in Table 7 & Table 8 in Appendix 1.  

 

 

 
 

Figure 3: The simplified diagram of the QSP model of the ‘gut-lung axis.’ The final model consists 

of three compartments: Gut, Lung, and Blood (also referred as systemic circulation in later sections, 

used interchangeably) and their interactions between the compartments. The model also includes 

species such as immune cells and cytokines in each compartment.  
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The QSP model, which is deterministic in nature, is structured as a system of ordinary 

differential equations (ODEs) which is of the form as shown below: 
 

𝑑𝑥𝑖
𝑑𝑡

=∑𝑅𝑖𝑗(�⃗�). 𝑥𝑗
𝑗

 

 

Here in the equation, for the state variable 𝑥𝑖, its differentiation with respect to time 𝑡 

is the summation of the rates contributed by all state variables in the model to state 

variable 𝑥𝑖. �⃗� denotes the vector of the model state variables and 𝑅𝑖𝑗 denotes the 

velocity fluxes (or rates) contributed by 𝑥𝑗 to the state variable 𝑥𝑖. 𝑅𝑖𝑗 is a function of 

the vector �⃗� and indicates the overall mechanistic structure of the model.    

The final GLA model is composed of several individual but interconnected species 

such as lymphoid cells (T cells including helper T cells and cytotoxic T cells), myeloid 

cells (macrophages, dendritic cells, and neutrophils), and cytokines (such as 

interleukins and growth factors). The ODE equations that model the interaction 

between immune cells and cytokines were mainly adapted from the IBD model 

(Rogers et al., 2021a), which includes relevant cellular pathways, including replication, 

differentiation, migration, and apoptosis of various immune cell types and production, 

transportation, and degradation of cytokines.  

As an example, the following ODE equation describes the dynamics of transforming 

growth factor beta (TGF-β) in the gut compartment:  
 

 
 

where,   
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These terms further expand as follows: 

 

The dynamics of TGF-β in the gut compartment are determined by the four fluxes: 

production rate of TGF-β by immune cells, transportation rates between the gut and 

blood compartments and the degradation rate of TGF-β. In the model, we assume that 

the TGF-β is produced at a basal rate and immune cells, T helper 17 cells (Th17), 

Regulatory T cells (Treg), and alternatively activated macrophages (M2) contribute to 

the production rate of TGF-β in the gut compartment of the model. TGF-β can also 

enter into the gut from the blood compartment and vice versa. Additionally, the model 

considers that TGF-β gets degraded in the gut compartment at a linear rate.   

The immune dynamics in both gut and lung compartments can be broadly classified 

into two categories: pro- and anti-inflammatory immune interactions, which keep each 

other in balance in the healthy state of the model. The detailed explanations of these 

immune interactions are described in the gut compartment of the ‘Results’ chapter.    

The lung compartment also includes the dynamics of radiation-induced damage, which 

were added to the GLA model to understand the impact of radiation on pulmonary 

immune and systemic immune homeostasis. The model considers the dynamics of 

pulmonary alveolar epithelial cells and the corresponding radiation and cytokine-

associated damage responses. The details of the mechanisms are discussed in the 

lung compartment of the ‘Results’ chapter.  

Additionally, we also included the production, transportation, and degradation of C-

reactive protein (CRP) and Surfactant protein D (SPD) in the final model as two 

endpoint biomarkers. CRP is a marker of the systemic inflammation state of the host 

(Capelozzi et al., 2017), and in the model, we consider that IL-6 induces the production 

of CRP in the liver and gets released into the systemic circulation from the liver. SPD 

is an indicator of alveolar cell damage and a useful marker of radiation-induced lung 

injury (Śliwińska-Mossoń et al., 2020), and it is produced when damaged cells get 

cleared in the model.    
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2.1.2. Model Evaluation  
 

Once each compartment was finalised, the steady-state results obtained from the 

simulation of the model were compared with the experimental data in different disease 

settings. For the gut compartment, the comparison was made in the context of 

inflammatory bowel disease (IBD) with in-house data from the collaborators as well as 

data used by the authors (Rogers et al., 2021a). For the lung compartment, this 

comparison was made in the context of radiation pneumonitis with data generated by 

experimental collaborators. Since the model parameters have not been parameterised 

for mice data, this comparison was a qualitative comparison between experimental 

mice data and simulation results. 

2.1.3. Parameter Sensitivity Analysis  
 

We performed a local sensitivity analysis of the steady-state results on the parameters 

of the gut and lung compartments of the model. Sensitivity analysis is a type of analysis 

that determines how the target state variables are affected by changes in the 

parameters and other input variables in the model (Hoops et al., 2016). It is an 

assessment of the sensitivity of a mathematical model to its modelling assumptions, 

and it is routinely performed to understand the impact of a parameter on the variable 

of interest in complex computational models. The sensitivity coefficient for each 

parameter for a particular state variable is calculated by the following equation: 

 

Here, in the equation, 𝑆𝐶𝑝 denotes the sensitivity coefficient of parameter 𝑝, 𝑚𝑒𝑎𝑛𝑠𝑖𝑚 

denotes the mean of all perturbed simulations and 𝑝𝑛 and 𝑦𝑛 denote the value of 

parameter 𝑝 and steady-state value of state variable 𝑦 at nominal (unperturbed) 

simulation respectively. The parameter 𝑝 is perturbed by a small 𝜕𝑝 and the resultant 

change in the steady-state value of the state variable 𝑦 is used to calculate the 

sensitivity coefficient of that parameter with respect to the state variable (IntiQuan 

GmbH, 2022). The mathematical principles behind performing sensitivity analysis to 

explore uncertainty in parameters are described in Saltelli et al., 2007. The sensitivity 

analysis was performed using IQR Tools package version 99.0.0 in R (Version 4.1.3). 
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2.2. Experimental Methods 
 

This section discusses the experimental methods used during the training internship 

at Dr Jendrossek’s lab to generate flow cytometric measurements of the immune cell 

populations in control mice.       

2.2.1. Mice  
 

Wild-type C57BL/6JOlaHsd mice used for the experiments were bred and housed 

under specific pathogen‐free conditions in the animal facility laboratory of the Institute 

of Cell Biology (Tumour Research) at the University Hospital Essen. The mice were 

humanely euthanised using carbon dioxide (CO2), and efforts were made to minimise 

suffering. All procedures involving mice were approved by the local animal welfare 

committee (State Agency for Nature, Environment and Consumer Protection (LANUV), 

Regierungspräsidium Düsseldorf, North Rhine-Westphalia, Germany) and were 

performed in accordance with the guidelines mandated by the University Hospital 

Essen, and the recommendations of the Gesellschaft für Versuchstierkunde (GV-

SOLAS) and Federation of European Laboratory Animal Science Association 

(FELASA).    

2.2.2. Isolation of Blood and Serum 
 

An incision was made in the mice using a scalpel in the linea alba from the pelvis to 

the rib cage. The vena cava caudalis was exposed and punctured with a needle 

(Dispomed) attached to a 1 ml Tuberculin syringe (Becton Dickinson) at the branching 

point of the vein with the open side of the needle facing up. The blood was gently taken 

without collapsing the vein and transferred into an EDTA collection tube (Sarstedt). 

The tubes were centrifuged for 5 min at 3000 rpm and supernatant (serum) was 

collected. The cell pellet was transferred to 15 ml Falcon containing 2 ml Ammonium-

Chloride-Potassium (ACK) (Table 1) buffer and kept on ice for approximately 1 min to 

perform erythrocyte lysis until the colour disappeared, upon which 8 ml of Dulbecco’s 

Modified Eagle Medium (DMEM) (Invitrogen, 41966029) was added. The blood cells 

were centrifuged for 5 min at 1500 rpm and kept at 4°C, and the supernatant was 

discarded. The cell pellet was carefully resuspended in DMEM medium. 
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Components Amount 
Ammonium chloride (Merck) 8.29 g 

Potassium bicarbonate (Roth) 1.00 g 

0.5 M EDTA (Invitrogen) 200 µL 

Table 1: Composition of ACK Buffer (for 1 L, pH 7.2 - 7.4) 

2.2.3. Isolation of Lung Cells 
 

The peritoneum was opened and the thoracic cavity was accessed by removing the 

diaphragm. Using a 10 ml syringe, 4 ml phosphate buffer saline (PBS) solution 

(Thermofisher Scientific) was injected into the right ventricle of the heart until the lungs 

turn white in colour. Lungs were isolated from the mice by using scalpels and the lung 

lobes were rigorously minced. The tissue suspension was transferred to 50 ml Falcon 

tubes containing 5 ml of 1% Collagenase D (Roche Life Science, 11088866001) in 

PBS solution. The cell suspension was incubated in a water bath at 37°C for 40 min, 

vertexing every 15 min. After the collagenase digestion, 20 µl of 0.5M 

ethylenediaminetetraacetic acid (EDTA) (Invitrogen, 8043.2) was added and the 

Falcon tubes were incubated in the water bath for 5 minutes. After incubation, the lung 

cell suspension was transferred and sequentially filtered through a 70 μm cell strainer 

(VWR) and 30 μm cell strainer (Sysmex) placed on top of another Falcon tube and 

flushed with PBS. The cells were centrifuged for 5 min at 1500 rpm kept at 4°C, and 

the supernatant was discharged. The cells were resuspended in 1 ml ACK buffer and 

kept on ice for 1 min. To stop further lysis, 14 ml of Dulbecco’s Modified Eagle Medium 

(DMEM) (Invitrogen, 41966029) was added. The cells were centrifuged for 5 min at 

1500 rpm kept at 4°C, and the supernatant was discarded. The cells were 

resuspended using 5 ml DMEM and kept on ice for flow cytometric (FACS) staining.  

2.2.4. Isolation of Spleen Cells 
 

Spleen was harvested from the peritoneum of the mice. The spleen placed upon a 70 

μm cell strainer underneath a petri dish (Greiner Bio-One) and slowly injected with 2ml 

of ACK buffer into the spleen. The spleen was then passed through the 70 μm cell 

strainer and 3 ml of DMEM medium was used to wash the spleen on the cell strainer. 

The cells were then pipetted from the petri dish and filtered through a 30 μm cell 

strainer placed on top of 15 ml Falcon tube. The cells were centrifuged for 5 min at 

1500 rpm kept at 4°C, and the supernatant was discarded. The cell pellet was carefully 

resuspended using 5 ml DMEM medium. 
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2.2.5. Isolation of Cells from Lymph Nodes 
 

The superficial cervical lymph nodes were isolated from mice and transferred to a petri 

dish containing 4 ml DMEM. The lymph nodes were lacerated apart using tweezers 

and the cells released can be observed as white cloud around lymph nodes. The 

remaining tissue was discarded and the medium was transferred to a 15 ml Falcon 

tube. The cells were centrifuged for 5 min at 1500 rpm kept at 4°C, and the pellet was 

resuspended in 5 ml DMEM.  

2.2.6. Flow Cytometric Staining 
 

The cell suspensions from blood, lungs, spleen, and lymph nodes were added to 96-

well plate with each well containing 50-100 μl of the cell suspension to have 

approximately 106 cells per well. The plate was centrifuged for 5 mins at 1500 rpm at 

4°C and the supernatant was discarded. The plate was vortexed to break the pellet 

and 100 μl of the antibody mixture cocktail (Table 5) and fixable viability dye, eFluor780 

(APC-Cy7) (ThermoFisher Scientific, 65-0865-18) was added per well. The 96-well 

plate was incubated in dark for 10 minutes at 4°C. After the incubation, 100 µl FACS 

Buffer (Table 2) was added per well and centrifuged for 5 min at 1500 rpm.  

For surface staining, after this step, 100 µl of 1% paraformaldehyde (Roth, 0335.2) in 

FACS buffer was added to fix the cells. For intracellular staining, the wells were 

washed with PBS and 100 µl Fix-Perm-Solution (Table 3) was added per well and 

incubated in dark for 1.5 hours at 4°C or 40 min in room temperature for the 

permeabilisation of the cell membrane. The cells were washed with 100 µl Perm-Buffer 

(Table 4) and centrifuged for 5 mins at 1500 rpm. The supernatant was discarded and 

the cell plate was vortexed. The intracellular antibody mixture was added to the well 

and incubated in dark for 30 mins at 4°C. The wells were washed with 100 µl Perm-

Buffer and the supernatant was discarded after centrifugation. The cell pellet was 

resuspended in 100 µl of FACS buffer.     
 

Components Amount 
PBS 50 ml 

Fetal Bovine Serum (FBS) (Sigma Aldrich) 250 µL 

0.5 M EDTA 200 µL 
 

Table 2: Composition of FACS Buffer (for 50 ml) 
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Components Dilution Ratio 

Cytofix/Cytoperm (Becton Dickinson) 1 

BD Perm/Wash (Becton Dickinson) 4 
 

Table 3: Composition of Fix-Perm-Solution 

 

Components Dilution Ratio 

BD Perm/Wash  1 

dH2O 10 
 

Table 4: Composition of Perm-Buffer 

 

Antibody Name Dilution Animal Host Catalog No. Source 
PerCP/Cy5.5anti-mouse CD11b 1:400 Rat IgG2b,k 101227 BioLegend 

APC anti-mouse CD11c 1:400 Armenian Hamster IgG 117309 BioLegend 
APC Anti-mouse MHC Class II (8I-A/I-E) 1:1000 Rat IgG2b,k 17-5321 eBioscience 

Pacific blue anti-mouse CD45 1:333 Rat IgG2b,k 103126 BioLegend 
APC anti-mouse CD3 1:100 Armenian Hamster IgG 100312 BioLegend 

PE-Cy7 anti-mouse F4/80 1:200 Rat IgG2a,k 123113 BioLegend 
PE anti-mouse/human CD45R/B220 1:800 Rat IgG2a,k 103208 BioLegend 

FITC anti-mouse CD8a 1:200 Rat IgG2a,k 11-0081 eBioscience 
PE/Cy7 anti-mouse CD25 1:100 Rat IgG1 102016 BioLegend 

Pacific Blue Rat anti-Mouse CD4 1:800 Rat (DA) IgG2a,k 558107 BD 
BV510 Rat Anti-Mouse CD335 (NKp46)  Rat IgG2a,k 563455 BD 

APC anti mouse Ly-6G 1:1000 Rat IgG2a, κ 127614 BioLegend 
Brilliant Violet 605 anti-mouse Ly6C  Rat IgG2c,k 128035 BioLegend 

Brilliant Violent 650 anti-mouse CD45  Rat IgG2b,k 103151 BioLegend 
PE anti-mouse CD86 1:600 Rat IgG2a,k 105008 BioLegend 

 

Table 5: List of antibodies used for flow cytometric straining 
 

 

 

Different myeloid cells and lymphocytes and their subtypes bind to different cell 

surface markers. When using a multi-colour flow cytometer, it is important that the 

peaks of emission spectrum of the fluorophores minimally overlap with each other so 

that the detected signals are discriminable with a proper compensation. By analysing 

their in-silico excitation and emission spectrum using BD Fluorescence Spectrum 

Analyzer webtool (Spectral Viewer, 2023) to ensure minimal overlap, the antibodies 

for the cell surface markers corresponding to the immune subtypes of interest were 
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selected. Figure 4 shows the in-silico analysis done using the BD Spectrum Analyser 

webtool for the flow cytometric staining for lymphocytes. Additionally, in the staining 

panel, the antibodies’ specificity during the experiments was controlled using isotype 

controls, which are used to examine for levels of unspecific binding between the 

antibodies and cells in the sample of interest. The gating strategy for the different 

immune cell populations is discussed in the ‘Results’ section.  
 

 

Figure 4: Emission and Excitation spectrums of fluorophores used in lymphocytes staining. The 

fluorophores of antibodies used for the lymphocytes staining are chosen based on ensuring minimal 

overlap of peaks of emission spectrum of those fluorescent probes. The violet, cyan, yellow and red 

solid lines in the plots indicates the four lasers (405 nm, 488 nm, 561 nm and 638 nm laser respectively) 

used to excite the fluorophores.  It is to be noted that BV650 and APC signals can be distinguished with 

proper compensation. Plot generated from the Beckman Coulter in-built webtool, Spectral Viewer, 2023.  

 

After the staining, the cells were analysed with BD CytoFLEX Flow Cytometer 

(Beckman Coulter, S V4-B2-Y4-R3). The data was evaluated using CytExpert 

Acquisition and Analysis Software Version 2.3 (Beckman Coulter) and visualised using 

Prism 7.0c (GraphPad Software). 
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3. Results 
 

This chapter is divided into three sections: Gut Model, Lung Model and Gut-Lung Axis 

Model. This is done to emphasise the flow of the modular build of each compartment 

during the course of the thesis and the results associated with each compartment. The 

first two sections focus on the immune interactions in detail within each of their 

respective compartments and their application in different disease settings. The final 

section discusses the processes involved in the amalgamation of the compartments, 

and the overall picture of the model and its associated implications. 

3.1. Gut Compartment 
 

3.1.1. Formulation of Gut model 
 

The QSP model of the gut compartment is adapted from the inflammatory bowel 

disease (IBD) model (Rogers et al., 2021a). The authors developed a comprehensive 

IBD model with an extensive network of immune interactions between CD4+ helper T 

cells and their subpopulations (Th1, Th2, Th17 and Treg), M1 and M2 macrophages, 

effector and tolerogenic dendritic cells (DCs), natural killer (NK) cells, neutrophils and 

their associated cytokines. This model was built using the SimBiology toolbox in 

MATLAB, which was incompatible with our platform. So, the ODE equations were 

recoded to be compatible with the base packages in MATLAB.  

The gut model developed has two compartments: Gut and Blood compartments. The 

model has 46 species and 336 parameters describing the interactions between the 

adaptive and innate immune cell populations and cytokines, as well as the dynamics 

of the CRP (Figure 5). The model parameters were directly taken from the IBD model 

as the authors estimated and validated them using data from human clinical trials 

(Rogers et al., 2021a). The model also has the flexibility to simulate the model in the 

diseased mode, i.e., the two subtypes of inflammatory bowel disease: Crohn’s disease 

(CD) and ulcerative colitis (UC). The difference between healthy mode (referred to as 

healthy volunteers (HV) in the model) and the two diseased mode (CD and UC) is the 

basal production rates of certain immune cells and cytokines in the system (see Table 

9 in Appendix 2). The remaining parameters barring these 24 basal production rates 

remain constant between the HV, CD and UC modes.
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Figure 5: Overview of the mechanistic structure of the Gut compartment. The gut compartment has the major lymphoid and myeloid immune cell, and cytokine interactions. 
The immune processes in the gut happen in the lamina propria and there is a migration of immune cells and cytokines between the gut and blood. Hepatic CRP production and 
its systemic circulation serves as an indicator of inflammation. The solid black arrows indicate the reaction such as production, differentiation or transportation of species, 
whereas the dotted lines indicate that the species has a positive (green) or negative (red) influence on the reaction. Cytokines in green and red indicates that it has a positive 
or negative impact on the reaction respectively. Figure created with BioRender.com
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The gut model includes the major immune interaction networks, which are based on 

existing literature knowledge. Immune cells produce distinct cytokines particular to 

them, and the cytokines present in the system determine the cell differentiation rates 

(Fig. 4).  Naïve helper T cells (Th0) get recruited into the gut and get differentiated into 

Th1, Th2, Th17 and regulatory T cells (Treg) based on the cytokine profile which can 

preferentially activate or inhibit certain helper T cell subpopulations. Similarly, naïve 

macrophages and DCs can differentiate into their respective subpopulations based on 

the cytokine levels present in the system. The differentiated T cell and macrophage 

populations can change their phenotype (subtype), that is, the cells in one subtype 

can differentiate into other subtypes; in other words, differentiated helper T cells and 

macrophages are phenotypically plastic (Geginat et al., 2014; Bercovici et al., 2019). 

The model considers this phenotypic plasticity of the helper T cell and macrophage 

subpopulations, which can help to create more accurate immune dynamics. The 

cytokines produced by the immune subpopulations play a significant role in 

determining the inflammatory balance between the pro-inflammatory and anti-

inflammatory components of the immune system in the gut.  

When the balance is disturbed by perturbations in the system, for example, resulting 

in higher levels of pro-inflammatory cytokines such as Tumour Necrosis Factor alpha 

(TNFα) and Interferon gamma (IFNγ), this can lead to an increase in the proliferation 

of pro-inflammatory immune cells such as M1 macrophages, Th1 cells, effector DCs 

(eDC), and activated neutrophils (Act_Neu), which in turn produces pro-inflammatory 

cytokines, effectively creating positive feedback loops in the system. The anti-

inflammatory immune components such as Treg cells, M2 macrophages and 

tolerogenic DCs (tDC) produce responses that dampen this positive feedback loop, 

thus effectively creating negative feedback loops in the system. The ability to return 

back to the initial immune homeostatic state depends on the strength of these 

feedback loops, which can be modified in the model through the manipulation of the 

parameters. This allows the model to create and simulate different disease modes by 

manipulating certain parameter values which has a significant impact on key immune 

pathways determining the immunological balance between the pro- and anti- 

inflammatory processes.         
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3.1.2. Simulation of Gut Model  
 

The gut model is simulated until the state variables reach the steady state. We 

examined the dynamics of the simulations of the gut model for the immune cell 

populations and cytokines (see Figure 23 in Appendix 3). The model has the flexibility 

to be simulated in the default healthy mode (HV) and two diseased modes (CD and 

UC). Figure 6 shows the dynamics of CRP in the blood compartment, Th1 and Treg 

cells, TNFα and TGFβ in the gut compartment for the three modes of the model. The 

steady-states of Th1 and Treg cells, TNFα and TGFβ in the gut compartment indicates 

the lamina propria is inflamed in the CD and UC model modes compared to the healthy 

mode; this is also supported by CRP dynamics which indicates there is a systemic 

inflammation in case of CD and UC, which is observed in patients with Crohn’s disease 

and ulcerative colitis in the clinical setting (Fagan et al., 1982).          
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Figure 6: Time Evolution of species in HV, CD and UC modes of the gut model. The dynamics of 

the simulation of the HV, CD and UC modes of the model for CRP levels in blood (a), helper T cells 1 

(b), regulatory T cells (c), TNFα (d) and TGFβ (e) levels in gut reveals higher immune activity with 

increased inflammation in the CD and UC modes of the model.  

 

The model was then simulated for the entire virtual population (Vpop), which was 

estimated by the authors, to reassess and confirm the conclusions from the paper 

(Rogers et al., 2021a). We simulated for all 357 virtual patients in the Vpop for all three 

model modes and the steady state values of the simulation for CRP and activated 

neutrophils in Gut (Gut_Neu_act) are shown in Figure 7. It is to be noted that we define 

virtual patient in this thesis as a set of model parameters, and we define a Virtual 

population as a collection of such parameter sets (virtual patients). Higher activated 

neutrophil population is indicator of tissue inflammation as they contribute to reactive 

oxygen species (ROS) level in the microenvironment, which leads to activation of 

redox-sensitive inflammatory pathways and increased epithelial barrier damage (Biasi 

et al., 2013). Sustained excessive neutrophil activation is commonly observed in IBD, 

promoting chronic inflammation and impairment of epithelial barrier function (Wéra et 

al., 2016). Additionally, calprotectin, whose levels are elevated in faeces of IBD 

patients, is a cytosolic protein mainly found in neutrophils, and its presence in faeces 

is an indicator of neutrophil migration and activation in the GI tissue due to 

inflammation (Erbayrak et al., 2009).  

From the figure below (Figure 7), elevated levels of CRP in UC and CD indicates 

higher systemic inflammation compared to the HV mode and increased activated 

neutrophil population in CD and UC in comparison to HV suggests gut inflammation 
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and epithelial tissue damage. This observation is concurrent with the existing literature 

where CRP and faecal calprotectin (surrogate for neutrophil levels) correlates IBD 

disease activity (Moniuszko et al., 2013). 
 

  
 

 
 

Figure 7: Steady state values of CRP in blood and activated neutrophils in gut for the HV, CD 
and UC modes of the Gut model. The steady state values of Crohn’s disease (CD) and ulcerative 

colitis (UC) diseased virtual patients is significantly different (p-value < 2.2e-16, Kruskal-Wallis’s test) 

compared to healthy volunteers (HV) for both Blood CRP (a) and activated gut neutrophils (b). The bars 

represent the upper and lower quartiles and the solid line indicates the median.  



39 
 

3.1.3. Sensitivity Analysis of Gut Model  
 

We performed a sensitivity analysis on CRP and activated neutrophils in the gut 

(Gut_Neu_act) to identify the key mechanisms and interactions that affect their levels 

in the gut. Figure 8 shows the top 25 parameters that have high sensitivity coefficients, 

which are obtained from the results of the sensitivity analysis of CRP and Gut_Neu_act 

respectively. The description of these parameters can be found in Appendix 4 (Table 

10 and Table 11). The most sensitive parameters that affect the C-reactive protein 

(CRP) and gut activated neutrophils levels, which in turn affect the overall immune 

homeostasis and systemic inflammatory level of the host, are mainly related to IL-6, 

TNFα, IL-17, neutrophil production, transportation and degradation, the degradation 

of Th cells and macrophages pathways. These pathways give a mechanistic insight to 

the influence of gut microenvironment on the systemic immune homeostasis. These 

observations match with the conclusions made with the IBD model, thus giving an 

additional verification (Rogers et al., 2021a).  

 

 



40 
 

 

 

 

Figure 8: Sensitivity Analysis of CRP in blood and activated gut neutrophils. The sensitivity 

analysis of CRP in blood (a) and activated neutrophils in gut (b) indicates parameters that associate 

with IL-6, TNFα, IL-17 pathways as well as pathways affecting production and recruitment of naïve T 

cells, macrophages, and neutrophils into the gut compartment. The absolute values of the sensitivity 

coefficient of the parameters are plotted. The colours, red and green, indicates that the parameter has 

a positive or negative sensitivity coefficient respectively, meaning, a positive valued perturbation in the 

parameter leads to an increase (green) or decrease (red) in the steady state value of the species 

compared to the unperturbed parameter simulation of the model.   
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3.1.4. Preliminary Evaluation of Gut Model  
 

The gut model is evaluated with experimental data generated by the collaborators’ 

groups to give a preliminary qualitative understanding of the model. The HV mode of 

the model is compared with control mice data generated from the Infection 

Immunology lab. The IBD model developed by Rogers et al., has also published the 

parameter values of the Virtual Population, which are validated by the authors with 

data from the literature as well as their in-house experimental data (Rogers et al., 

2021a).    

The Virtual Population (Vpop) data from Rogers et al., model is used in the simulations 

of the HV mode of the Gut model and compared with cytokine measurements and 

immune cell populations from control mice data, as shown in Figure 9. This preliminary 

qualitative analysis enabled us to give a precursory understanding of which model 

species can be evaluated with experimental data, and to what extent the current 

parameters (parameterised using human clinical data by the authors) fits the mice data 

and future strategy for model parameterisation using mice data. From Figure 9, though 

experimental and simulated values of certain species such as Treg, IL6 and TNFα 

have ranges and median lines overlapping with each other, for other species such as 

IL17 and IL10, the experimental and simulated values do not overlap with each other. 

This preliminary qualitative analysis indicates the model has to be reparametrised to 

fit with experimental data from mice as originally the model parameters for the Vpop, 

which are taken from the IBD model (Rogers et al., 2021a), were parametrised on 

human data from clinical settings.      
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Figure 9: Comparison of steady-state values of species from HV mode of the Gut model with 
experimental data. The simulated values of the HV mode of the Gut model using the Vpop dataset are 

compared with flow cytometric and ELISA data from control mice samples for regulatory T cells (a), IL6 

(b), TNFα (c), IL17 (d), and IL10 (e) in the gut. The simulated data category in the box plots represents 

the steady state values of the species indicated in the plots from the HV mode of the model. Comparing 

the model simulation with experimental data, the steady state value of species from model simulation 

using parameter values from in the IBD model match with certain species, although many other species 

do not lie within the ranges of the simulated species values, indicating the model needs to be 

reparametrised using mice data. For the subplot (a), the percentage of Treg cell population in the total 

helper T cell population, which includes Th0, Th1, Th2, Th17 and Treg species, was used to generate 

the box plot for the simulated data category. The bars represent the upper and lower quartiles and the 

solid line indicates the median. The experimental data used for the analysis is from the Infection 

Immunology group (headed by Prof Dr Astrid Westendorf) at the Institute for Medical Microbiology at 

the University Hospital Essen.  
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3.2. Lung Compartment 
 

3.2.1. Formulation of Lung Model  
 

The QSP model of the lung compartment was adapted from both the inflammatory 

bowel disease (IBD) model (Rogers et al., 2021a) and the SARS-CoV-2 model (Dai et 

al., 2021). The immune cell and cytokine interactions for the lung compartment were 

adapted from the Rogers et al., model and the pulmonary alveolar epithelial cell 

interactions and its associated damage response mechanisms were adapted from Dai 

et al., model. The event of radiation and its corresponding immune dynamics were 

later added into the model. The ODE equations were written in base MATLAB to be 

compatible with the gut compartment of the model. The resultant lung model has two 

compartments: Lung and Blood compartments. The model has 49 state species and 

231 parameters. Figure 10 shows the mechanistic overview of the lung model with 

simplified immune dynamics and radiation interactions.  

The immune interactions between the immune cells and the cytokines are similar to 

the interactions modelled in the gut compartment (Figure 5). The lung model couples 

the interactions of the pulmonary alveolar type 1 and 2 epithelial cells (AT1 and AT2 

cells respectively) with the immune components, including pro-inflammatory and anti-

inflammatory species. The model also includes the dynamics of the systemic 

inflammatory marker, C-Reactive protein (CRP), and the alveolar cell damage marker, 

Surfactant protein D (SPD), which helps to evaluate and compare the model with 

literature. The lung model also incorporates the dynamics of radiation induced damage 

mechanisms as well as cytokine-associated damage mechanisms, and inflammatory 

responses associated with the clearance (cell death) of irradiated and damaged cells. 

The detailed explanation of the damage-associated pathways are as follows: the 

model consists of healthy alveolar AT1 and AT2 epithelial cells, which upon radiation, 

become irradiated cells. These irradiated cells release damage-associated molecular 

patterns (DAMPs) into the alveolar space, which damages healthy cells and initiates 

pro-inflammatory signalling pathways. The healthy cells can also become damaged 

cells as the result of pro-inflammatory cytokines released by the corresponding 

immune cells. The damaged and the irradiated cells elicit an inflammatory response 

mainly dominated by release of pro-inflammatory cytokines (such as IL1, IL6, type 1 

interferons and TNFα) into the system when undergoing inflammatory cell death. 
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Figure 10: Overview of the mechanistic structure of the Lung compartment. The lung 

compartment has two major components: the immune interactions, whose simplified mechanics are 

shown here, has the pro-inflammatory innate and adaptive immune cells along with its corresponding 

cytokines creating a positive feedback loop and the anti-inflammatory immune cells and cytokines which 

create a negative feedback loop (for detailed pathways, refer Figure 5); and the alveolar cell 

interactions, which includes irradiated cells arising from healthy AT1 and AT2 cells upon radiation and 

damaged cells produced from healthy cells via radiation-induced and cytokine-associated damage 

mechanisms. The model incorporates the interaction between the two major model components through 

inflammatory cell death of irradiated and damaged cells, and pro-inflammatory cytokines-associated 

immune damage creating another positive feedback loop in the system. The model also considers the 

dynamics of two clinical biomarkers: CRP, a systemic inflammatory marker, modelled as IL-6 induced 

hepatic production and degradation, and SPD, an indicator of alveolar cell damage and a marker of 

radiation-induced pneumonitis, modelled as the leakage side-product of damaged and irradiated 

alveolar cells. The solid black arrows indicate the individual reaction, whereas the coloured dotted lines 

has a positive (green) or negative (red) influence on the reaction. The black dotted lines for the clinical 

biomarkers represent the production (indirect) of them. Species in green and red indicates that it has a 

positive or negative impact on the reaction respectively. Figure created with BioRender.com 
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3.2.2. Simulation of Lung Model  
 

After the formulation, the lung model is simulated, and the ODE simulation settings 

are set appropriately to ensure that the state variables reach the steady state. The 

dynamics of the alveolar cell and immune cell populations, and cytokines in the model 

are examined and are shown in Figure 24 in Appendix 5. The radiation event is 

modelled into the lung compartment and the event is triggered after the system 

reaches the steady state. Figure 12 shows the dynamics of irradiated cells, damage-

associated molecular patterns (DAMPs) and damaged cells as well as immune cell 

populations and cytokines in lung compartment, and CRP in blood compartment.  

Upon the event of radiation, there is an increase in the irradiated cell population which 

results in acute inflammation in the lung compartment, which can be inferred by 

examining the dynamics of CRP and pro-inflammatory cells and cytokines such as M1, 

Th1 cells and TNFα. In addition to the cytokine-associated damage caused by pro-

inflammatory cytokines, the DAMPs produced by irradiated cells cause an increase in 

damaged AT1 and AT2 cell populations, which further increases inflammation in the 

system. The anti-inflammatory species such as Treg cells and TGFβ get activated in 

response to the acute inflammation and starts damping the pro-inflammatory 

interactions. This anti-inflammatory response results in pro-inflammatory responses to 

peak and starts reducing, which results in anti-inflammatory responses peaking and 

decreasing their response to maintain the balance between both of these responses, 

thus ensuring the system is brought back to its original state. The model also captures 

the qualitative dynamics, such as time lags between the peaks of pro-inflammatory 

and anti-inflammatory species. However, the model needs to be validated for 

quantitative inferences and conclusions.      
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Figure 11: Time Evolution of species in the lung model upon radiation. The model is simulated 

until the species reaches the steady state, upon which, at time t = 0, the radiation event is initiated. This 

results in the irradiated cell population (a) to increase, which results in the production of DAMPs (b). 

The DAMPs cause healthy cells to become damaged AT1 and AT2 cells (c, blue and red respectively), 

which activates the pro-inflammatory species such as M1 cells (d, blue) and TNFα (e, blue), which 

results in inflammation locally and systemically, indicated by CRP (f, blue), as well as leads to increase 

in pro-inflammatory cytokine-associated damage, indicated by SPD (f, red). The anti-inflammatory 

components in the system, such as Treg cells (d, red) and TGFβ (e, red), contribute to the reduction of 

inflammation in the lungs which brings the system back to its original steady-state values. This can be 

noted by the time lag between the peaks of pro-inflammatory components (M1 and TNFα) and anti-

inflammatory components (Treg and TGFβ) respectively. It is to be noted that the dynamics of damaged 

AT1 and AT2 cells are similar and their population graphs overlap with each other. Also, to be noted that 

the units of CRP and SPD are different even though they are shown in the same numerical y-axis.    
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3.2.3. Sensitivity Analysis of the Lung Model  
 

In order to identify parameters in the key pathways that affect the biomarkers in the 

lung model, a sensitivity analysis of CRP and SPD was performed, and the top 20 

parameters and their corresponding sensitivity coefficients were reported (Figure 12, 

a and b). Additionally, we also performed a sensitivity analysis on damaged alveolar 

cells to identify mechanisms that played an important role in determining the damage 

responses in the lung model (Figure 12, c). The description of the sensitive parameters 

is given in Table 12 to Table 14 in Appendix 6. From the analysis of these species, we 

identified pathways that are known in literature and have a direct effect on the 

dynamics of the species. For example, parameters that correspond to the IL6 

production and degradation have a significant impact on the CRP levels, as it directly 

affects the rate of production of CRP. However, we identified parameters that have an 

indirect impact on the output of the species, which is of interest to us; for instance, 

parameters that relate to the sensitivity of inflammatory cell death for IL6, IL1b, IFNγ 

and TNFα pathways were identified to be of interest in the sensitivity analysis of SPD 

and damaged AT2 cells, and these parameters, when changed, show differential 

dynamics and outcomes when the model is simulated even if the rest of the 

parameters are left unmodified.   
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Figure 12: Sensitivity Analysis of CRP, SPD and damaged AT2 cells in the Lung model. The 

sensitivity analysis of CRP in blood (a) identifies sensitive parameters mainly related to the IL6 pathway 

along with parameters that relate to the production, transportation, and degradation of CRP. The 
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sensitivity analysis of SPD in blood (b) and damaged AT2 cells in lungs (c) reveals parameters of interest 

that relate to inflammatory cell death (k_damage_IFNg, k_damage_IL6, k_damage_IL1b and 

k_damage_TNFa). The absolute values of the sensitivity coefficient of the parameters are plotted. The 

colours, red and green, indicate that the parameter has a positive or negative sensitive coefficient, 

respectively.   

 

3.2.4. Simulation of the Diseased Mode of the Lung Model  
 

The parameters identified from the sensitivity analysis of SPD in blood and damaged 

alveolar type-2 epithelial cells (AT2) in lungs were increased by a factor of 10, retaining 

the original values of the other parameters and the resultant lung model is simulated. 

The steady-state dynamics of the state variables of the simulation were similar to that 

of the original simulation, where all parameter values were kept unchanged. However, 

upon the event of radiation, there were differential species dynamics observed 

between the model’s two modes, as shown in Figure 13. The species dynamics of the 

unmodified model (hereafter referred to as the normal mode or normal virtual patient 

in the thesis) returned back to the original levels, indicating a return back to the normal 

state. However, the dynamics of the modified model (hereafter referred to as radiation 

sensitive virtual patient or simply, sensitive virtual patient in the thesis), whose 

parameters correspond to the cell’s sensitivity to cytokine-associated damage, 

remains elevated and doesn’t return back to the normal levels, indicating the onset of 

chronic inflammation upon radiation, which resembles patients susceptible to 

developing radiation-induced pneumonitis after radiotherapy, which usually observed 

between 3 and 12 weeks (Graves et al., 2010). This is supported by the increased 

levels of CRP and SPD in blood compared to the normal mode of the model, 

suggesting systemic inflammation and higher pulmonary alveolar damage, which are 

characteristics of radiation pneumonitis (Schaue et al., 2015).    

The differential simulation dynamics of the normal and the radiation sensitive virtual 

patients lead to the conclusion that even though both of these patients are healthy and 

do not show any signs of inflammation and alveolar damage pre-radiation, the 

radiation sensitive virtual patient develops chronic inflammation and increased 

damage responses post-radiation compared to the normal virtual patient, thus 

suggesting that the radiation sensitive virtual patient is susceptible to developing 

radiation pneumonitis after radiation. This can provide a mechanistic explanation of 
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the heterogeneity observed in populations developing complications such as 

pneumonitis after radiotherapy.    

  

 



51 
 

 

Figure 13: Time Evolution of species in the normal and radiation sensitive mode of the lung 
model upon radiation. The two modes of the lung model, normal (blue) and radiation sensitive (red) 

virtual patient, were simulated until they reach steady state. The radiation event is initiated at t = 0, and 

the two modes of the model were simulated for 180 days. Upon radiation, the damaged AT2 cells (a) 

for the sensitive patient remains higher than the normal patient even though the irradiated cell 

population for the sensitive patient (b.1) and the normal patient (b.2) declines and becomes zero, 

indicating the damaged AT2 cells are produced through cytokine-associated damage processes. The 

virtual patient has a higher inflammation and alveolar damage responses than normal patient, 

suggested by CRP (c) and SPD (d) in blood. This increased inflammation and alveolar damage is 

mediated through imbalance between pro-inflammatory and anti-inflammatory processes. The pro-

inflammatory components such as helper type 1 T cells (e), M1 macrophages (f) and TNFα (g) are 

excessive in radiation sensitive patient in comparison to the normal patient, thus contributing to the 

chronic inflammation in the radiation sensitive patient. The anti-inflammatory species such as TGFβ (h) 

are also higher in virtual patient compared to the normal patient, but they aren’t able to dampen the pro-

inflammatory processes in the virtual patient and bring the system back to the original normal state as 

observed in the normal patient.   
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3.2.5. Flow Cytometric Data of Immune Populations from Mice  
 

Various immune cell populations including major myeloid cells and lymphocytes in 

different tissues were measured using flow cytometry. The optimal gating strategy for 

the acquisition of the major immune cells and their subtypes in the lungs, spleen, blood 

and lymph nodes were chosen, and the description of the chosen gating strategies for 

myeloid cells, alveolar/interstitial macrophages, lymphocytes and dendritic cells are 

reported in Figure 14 to Figure 17 respectively.  

 

 

Figure 14: Gating Strategy for myeloid cells. All the acquired events in the instrument were gated 

based on the FSC-A and SSC-A and debris was excluded. Living cells were selected based on their 

negative stain for the fixable viability dye. The immune cells were selected based on the expression of 

CD45 marker. These cells were gated based on Ly6G expression and cells that were positive for Ly6G 

marker were considered to be neutrophils. The cells that were negative for Ly6G were further gated 

based on F4/80 and Ly6C expression. The cells that were positive for the expression of F4/80 were 

classified as macrophages and cells that are Ly6C positive were considered as monocyte cells. 
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Figure 15: Gating Strategy for alveolar and interstitial macrophages. After the initial gating based 

on forward scatter (FSC-A) and side scatter (SSC-A) to exclude debris, living cells were selected based 

on the exclusion of the dead cells through the FvD staining. Cells that were positive for CD45 were 

considered to be as cells with hematopoietic origin, and this population was further gated based on the 

expression of F4/80 and CD11c markers. The cells that were positive for F4/80 and negative for CD11c 

were selected, and these cells which are CD11b positive were considered as interstitial macrophages. 

The other population that was positive for both F4/80 and CD11c were considered as alveolar 

macrophages. 
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Figure 16: Gating Strategy for Lymphocytes. All events recorded on the flow cytometer were gated 

on the FSC-A and SSC-A, and living cells were selected based on their negative stain for FvD 

(eFluor780). Cells with hematopoietic origin were gated based on the CD45+ expression from the living 

cells. From the immune cell population, cells that were positive for CD3 were considered to be T cells, 

and cytotoxic and helper T cells were selected by gated from the T cell population based on their CD8 

and CD4 expression respectively. Immune cells that were not T cells were further gated into B cells and 

NK cells based on the B220 and Nkp46 expression.     
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Figure 17: Gating Strategy for Dendritic Cells (DCs). The cellular events were gated based on their 

characteristic forward scatter (FSC-A) and side scatter (SSC-A) plot and this population was gated on 

the expression of CD11c marker. Cells that were positive for CD11c expression were then gated based 

on CD11b and MHC-II marker expressions. Cells that both positive for CD11b and MHC-II markers were 

considered as dendritic cells. This DC cell population was further gated based on CD86 expression to 

identify mature DC cells.   

 

The flow cytometric data collected from the lungs, spleen, blood and lymph nodes of 

three control mice, and the average immune cell population for all the mice samples 

is reported in Table 6. The individual cell count data for each mouse and their 

corresponding calculations are described in Table 15 in Appendix 7. This data is 

merged with the experimental data provided by Jendrossek’s lab from previous and 

ongoing projects.     
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Organ Cell Type Average percentage of cell type in 
total immune population  

Lungs T cells 20.09123384 
Lungs Cytotoxic T cells 7.098509688 
Lungs B cells 41.14852614 
Lungs NK cells 0.262301605 
Lungs Neutrophils 14.52179225 
Lungs Monocytes 7.982348146 
Lungs Total Macrophages 19.49375433 
Lungs Alveolar Macrophages 11.61278644 
Lungs Interstitial Macrophages 15.33663491 
Blood T cells 12.92067565 
Blood Cytotoxic T cells 6.083434797 
Blood Helper T cells 4.949494563 
Blood B cells 24.08700398 
Blood NK cells 0.485328553 
Spleen T cells 38.71010656 
Spleen Cytotoxic T cells 16.93919305 
Spleen Helper T cells 16.17360597 
Spleen B cells 49.38912646 
Spleen NK cells 0.057256651 
Spleen Dendritic Cells 3.71319298 

Lymph Nodes T cells 51.48301425 
Lymph Nodes Cytotoxic T cells 24.46496919 
Lymph Nodes Helper T cells 22.09624425 
Lymph Nodes B cells 38.96490316 
Lymph Nodes NK cells 0.015948945 
Lymph Nodes Dendritic Cells 2.591262319 

 

Table 6: Summary of flow cytometric measurements of different immune cell populations from 
mice. The table shows the average percentage of immune cell type, including major lymphocytes and 

myeloid cell lineages, in the total immune cell population in different tissues such as lungs, blood, spleen 

and lymph nodes. The numbers reported in the above table are the mean of all mice samples and the 

detailed calculations of individual samples are outlined in Table 15 in Appendix 7.  

 

The results from the flow cytometric measurements, along with additional data from 

the collaborator’s group (Prof Dr Verena Jendrossek) will be used to evaluate the lung 

model. Currently, the lung model does not have a virtual population, so evaluating the 

present model with one simulated data point against the experimental data does not 

bear investigation. So, the evaluation of the lung model needs to be performed in the 

future to ensure accuracy, reliability and, more importantly, the validity of the results 

generated from the model. 
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3.3. Gut-Lung Axis (GLA) Model 
 

3.3.1. Formulation of the GLA Model  

The modularity of the Gut and the Lung model, which are developed separately, 

enables the models to be combined to form the final Gut-Lung Axis (GLA) model. The 

gut-lung axis model is implemented by combining the gut and the lung compartments, 

allowing for the inter-compartmental migration of species through the blood 

compartment. The ODE equations relating to the transportation of immune species 

such as cytokines between the blood compartment and the gut and lung 

compartments were included in the model. The final GLA model consists of 76 state 

variables and 533 parameters, which is described in Table 7 and Table 8 in Appendix 

1, respectively. Figure 18 gives the overall picture of the compartments present in the 

model and the major processes happening in the final GLA model.    

 

 

Figure 18: Simplified overview of the mechanistic structure of the Gut-Lung Axis model. The final 

Gut-Lung Axis (GLA) model has three compartments: Gut, Blood and Lung compartments. The Gut and 

the Lung compartments include the major immune interactions including both pro-inflammatory and 

anti-inflammatory processes. The Lung compartment additionally has interactions related to alveolar 

damage processes induced by irradiation as well as pro-inflammatory cytokines-associated damage 

processes. The immune cells and the cytokines get transported between the Gut and the Lung 

compartments through the Blood compartment. The model also has biomarkers, CRP and SPD, 

dynamics (not shown in the figure). The solid black arrows indicate the reaction such as the production 

or transportation of species, whereas the coloured dotted lines indicate that the species has a positive 

(green) or negative (red) influence on the reaction. For detailed information on the individual processes 

happening in each compartment, refer to Figure 5 and Figure 10 for the interactions in the Gut and the 

Lung compartments, respectively. Figure created with BioRender.com    
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3.3.2. Simulation of the GLA Model  
 

The GLA model is simulated until all species reach their steady state upon which the 

radiation event is introduced. The model is simulated for both normal and radiation 

sensitive virtual patient modes as described in Figure 13, essentially the parameters 

that varied between the normal and the radiation sensitive virtual patient (i.e., 

parameters relating to inflammatory cell death, which are k_damage_IFNg, 

k_damage_IL6, k_damage_IL1b and k_damage_TNFa) are changed by a factor of 

eight for the radiation sensitive patient, which is chosen based on parameter 

perturbation as seen in Figure 22. The dynamics of the TNFα and TGFβ upon the 

event of radiation are recorded and plotted as shown in Figure 19. The dynamics of 

the species in the lung compartment are similar to the individual lung model (Figure 

13). However, a perturbation in the lung, i.e., changes in the species dynamics of the 

lung compartment, caused as the result of radiation event, propagates to the other 

compartment and is reflected in the blood and the gut compartments. This indicates 

the radiation event has a systemic effect on the model resulting in the changes in the 

species dynamics in the blood and gut compartment. The impact on the immune 

processes in the gut compartment is much higher when the virtual patient develops 

radiation pneumonitis, as seen in Figure 19. The immunological modulation in the gut, 

as the result of developing radiation pneumonitis in lungs, and the emerging 

inflammation in the gut can potentially have an impact on the gut microbiome 

composition and functionality, which needs to be investigated.    
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Figure 19: Time Evolution of TNFα and TGFβ in different compartments for the normal and 
radiation sensitive mode of the GLA model upon radiation. The GLA model is simulated for the two 

modes in the lung compartment, the normal (blue) and the radiation sensitive (red) virtual patient. The 

radiation event is initiated at time t = 0 after the species in the model reaches the steady state. The 

dynamics of the pro-inflammatory cytokine, TNFα, and anti-inflammatory cytokine, TGFβ, in the lung 

compartment (a and b respectively) are similar to the Lung model, and in the normal mode of the model, 

the cytokines return back to the original levels, whereas in the sensitive mode of the model, there is 

chronic inflammation in the system and the virtual patient displays the pathobiology of radiation 

pneumonitis. The impact of the radiation event is seen for TNFα and TGFβ in the blood compartment 

(c and d respectively) as well as the gut compartment (e and f respectively), indicating the systemic 

immune modulation happening in the GLA model upon radiation. In the normal virtual patient, the 

immune dynamics return to the original levels in the blood and the gut compartments, whereas there is 

a chronic inflammation in the gut compartment for the radiation sensitive virtual patient.        
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3.3.3. Sensitivity Analysis of the GLA Model  
 

A sensitivity analysis on CRP and SPD was performed against the parameters of the 

model to identify the key mechanisms and interactions that affect their levels in the 

blood. Figure 20 shows the top 25 sensitive parameters that affect the steady state 

values of CRP and SPD levels in the blood. The description of these parameters is 

listed in Table 16 and Table 17 in Appendix 8. From the figure and the tables, we can 

conclude that the parameters that affect the CRP levels are related to IL-6, TNFα and 

IL-17 pathways as well as recruitment and differentiation rates of naïve T cells and 

macrophages in the gut compartment, which is similar to the conclusions of the 

sensitivity analysis of CRP in the Gut model (Figure 8). The sensitivity analysis of SPD 

in the GLA model reveals sensitive parameters that relate to the sensitivity of 

inflammatory cell death for IL6, IL1b, IFNγ and TNFα pathways, which is also similar 

to the results obtained from the Lung model (Figure 12). In addition to those 

parameters, we can also observe gut parameters that relate to the production and 

degradation of TNFα, IL6 and naïve macrophages and T cells having an impact on the 

steady state levels of SPD, which is produced in the lung compartment in response to 

alveolar damage. This implies that specific immune mechanisms in the gut have a 

crucial effect on the pulmonary alveolar damage-associated pathways.       
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Figure 20: Sensitivity Analysis of CRP and SPD in the GLA model.  The sensitivity analysis of Blood 

CRP (a) mainly indicates sensitive parameters relating to pathways that determine the production, 

transportation, and degradation of IL6, TNFα and IL17 as well as recruitment, differentiation and 

degeneration of T cells and macrophages. The sensitivity analysis of Blood SPD (b) relates to 

parameters that affect the pulmonary alveolar sensitivity to the inflammatory cell death caused by pro-

inflammatory cytokines; moreover, additional gut parameters that relate to the production and 

degradation of TNFα, IL6 and naïve macrophages and T cells in the gut compartment are also reported 

as sensitive parameters in the analysis, hinting at the indirect effects of immune interactions in the gut 

on the SPD level in the blood, which is a marker of alveolar damage and primarily produced in the lung 

compartment as the result of activation of epithelial damage responses. The colours, red and green, 

indicate that the parameter has a positive or negative sensitive coefficient, respectively. 

3.3.4. Simulation of the Sustained Gut Inflammation of the GLA 
Model  

 

The sensitivity analysis of Blood SPD reveals the indirect effects of gut immune 

pathways on the damage-associated interactions in the lung compartments. Given that 

the gut compartment has the flexibility to be simulated in two modes: healthy mode 

(HV) and sustained gut inflammation (CD or UC mode), we decided to study the impact 

of sustained gut inflammation on the dynamics of radiation event and subsequent 

development of pneumonitis in the GLA model.  
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The GLA model is simulated in four parameter combinations: normal virtual patient 

(who is not susceptible to developing radiation pneumonitis) and radiation sensitive 

virtual patient with a normal and healthy gut environment (HV patient), and normal and 

radiation sensitive virtual patient with a chronically inflamed gut environment (CD 

patient). The parameters relating to inflammatory cell death that varied between the 

normal and the radiation sensitive virtual patient are changed by a factor of five for the 

sensitive patient, which is chosen based on parameter perturbation as seen in Figure 

22. The event of radiation is initiated after the model is simulated until all species reach 

a steady state. The dynamics of species such as biomarkers, immune cells and 

cytokines in the GLA model under the four modes mentioned above are shown in 

Figure 21.     

From Figure 21, the virtual patient who has CD, resulting in sustained gut inflammation 

and develops radiation pneumonitis after radiation (purple) has the highest systemic 

inflammation (Figure 21 - a) and further increase in inflammation in the gut (Figure 21 

– d and e) and lungs (Figure 21 – h to k), even though there is minimal increase in 

pulmonary damage responses (Figure 21 – b and c) compared to a radiation sensitive 

patient with healthy gut (red), and potentially increasing the burden of both diseases. 

The radiation has a high impact on the virtual patient who has CD but is not susceptible 

to developing radiation pneumonitis (yellow) who initially has increased systemic 

inflammation (Figure 21 - a) and elevated pro-inflammatory cytokines (Figure 21 – d, 

f and h) but over time when the damage responses in the lungs become normal (Figure 

21 – b and c), these processes come back to normal; essentially this dynamics can be 

inferred as potentially causing a higher acute burden on gut compared to the same 

patient before radiation.   

Looking from the direction of the gut to lung axis, having a sustained gut inflammation, 

regardless of whether normal or radiation sensitive patient, increases the inflammatory 

status of the lungs (Figure 21 - h to k), and this has inter-compartmental effects on the 

cytokine-associated damage responses (Figure 21 – b and c); however, this inter-

compartmental interaction is observed to be small. It is to be noted that since the 

combined gut-lung axis model is still not parametrised and validated, the rates of 

transportation of species between compartments may vary, which can potentially 

affect the strength of these inter-compartmental interactions.  
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Figure 21: Time Evolution of species in the normal and radiation sensitive mode of the GLA 
model with normal or sustained gut inflammation upon radiation. The four modes of the GLA 

model, normal and radiation (RT) sensitive virtual patient with a normal gut environment (red and blue 

respectively) and with a CD mode which has sustained gut inflammation (yellow and purple 

respectively), are simulated, and the species dynamics is plotted upon radiation event, which is 
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introduced at time t=0. The CRP in the blood (a) indicates that the CD mode with RT-sensitive patient 

has the highest systemic inflammation among all the simulation modes, potentially alleviating both 

diseases. The dynamics of SPD (b) and damaged AT2 cells (c) indicate that their dynamics are primarily 

dictated by the parameters affecting pulmonary epithelial cytokine-associated damage and 

inflammatory cell death sensitivity. However, having sustained gut inflammation has a slight yet 

observable increase in these species values compared to a patient having a normal uninflamed gut. 

The dynamics of TNFα and TGFβ in the gut compartment (d and e respectively), blood compartment (f 

and g respectively) and the lung compartment (h and i respectively) show the differential dynamics 

between these cytokines in different compartments. The differential dynamics also can be observed in 

immune cell populations, such as Th1 cells (j) and Treg cells (k) in the lung compartment. These results 

show the two axes of bidirectional communication between the gut and the lungs, with inflammation in 

the lungs and/or the gut caused due to radiation and CD, respectively, having a consequential inter-

compartmental effect. The strength of these effects determines the overall dynamics of immune 

responses in each compartment, essentially determining the onset and progression of the diseased 

mode of the virtual patient. 

3.3.5. Effect of the Sustained Gut Inflammation on the Sensitivity 
Factor of Inflammatory Cell Death in Lung  

 

For the normal and the radiation sensitive virtual patient of the GLA model, all 

parameters except four are kept unchanged between the two modes of the model. The 

parameters relating to inflammatory cell death (i.e., k_damage_IFNg, k_damage_IL6, 

k_damage_IL1b and k_damage_TNFa) are changed between the two modes of the 

models. These four parameters are multiplied by a factor in the radiation sensitive 

virtual patient. If the factor is 1, it corresponds to the normal virtual patient. The model 

is simulated by changing this factor, starting from one (corresponding to the normal 

virtual patient) and incremented by one, and the steady state values for a species 

(here, in this case, Blood CRP) are calculated and plotted as shown in Figure 22. The 

model is also simulated using CD virtual patient’s parameter values to simulate 

sustained gut inflammation and the corresponding plot is also generated. 

The factor chosen to simulate the model is determined by the maximum value for 

which the steady-state value of the CRP remains (almost) the same as the steady-

state value for the normal virtual patient. The biological reasoning for this criterion is 

that the radiation sensitive patient, before radiation, should show similar dynamics as 

the normal patient. Based on this criterion, the factor of 8 is chosen for radiation 

sensitive patient with healthy uninflamed gut environment and 5 for radiation sensitive 

patient with sustained gut inflammation (CD). It is to be noted that when the model is 
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compared to healthy and sustained inflamed gut modes, the lowest of the factors (in 

this case, five) is chosen for both modes.  

From Figure 22, the difference in the maximum value of the sensitivity factor in normal 

and CD virtual patient indicates that the virtual patient with a sustained inflammation 

in the gut has a lower tolerance to cytokine-associated damage compared to a normal 

virtual patient. In other words, the gut inflammation in the CD virtual patient has a 

systemic effect which propagates to the lung compartment; this propagation influences 

parameters relating to inflammatory cell death in the lungs which in turn affects the 

virtual patient’s sensitivity to radiation event and its subsequent immune dynamics. 

This can be biologically interpreted as those patients with chronic gut inflammation (in 

the case of Ulcerative colitis or Crohn’s disease) are much more susceptible to 

developing radiation-induced pneumonitis in the lungs upon radiation treatment 

compared to patients with a healthy gut.     
 

 
 

Figure 22: Steady-state value of CRP for different factor values of radiation sensitive virtual 
patient with healthy and inflamed gut environment. The model is simulated for two modes, normal 

(HV) gut and inflamed (CD) gut environment, to determine the factor to multiply the four parameters 

relating to inflammatory cell death for the radiation sensitive virtual patient. The factor is chosen as the 

maximum value for which the steady-state value of the CRP remains similar to that of the steady-state 

value of CRP for the normal patient (factor = 1). Based on this criterion, 8 and 5 are the factors chosen 

to represent the radiation sensitive virtual patient for HV and CD modes of the GLA model respectively. 
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4. Discussion 
 

The project was commenced with the aim to create a computational QSP model that 

incorporates detailed mechanisms for immunological interactions along the ‘gut-lung 

axis,’ with the intention that the model will potentially enable us to better understand 

and characterise the dynamics of the systemic biological processes at play, which will 

allow us to identify potential biomarkers and suggest novel therapeutic approaches to 

lung cancer. Given the flexibility of building the individual compartments modularly, the 

gut and the lung compartments were modelled and tested separately, upon which they 

are combined to form the final Gut-Lung Axis (GLA) model. The combined model also 

has accounted for the radiation-mediated immune responses, intending to understand 

how immune interactions in the ‘gut-lung axis’ can affect the outcome and dynamics 

of radiation-induced pneumonitis. 

The sensitivity analysis was used to identify the major pathways that regulate the 

dynamics of the model state variables. This analysis primarily identified sensitive 

parameters that are involved in key biological mechanisms which are compatible with 

the well-grounded literature knowledge, an instance being the impact of IL6 pathways 

on CRP levels in blood identified from sensitivity analysis of CRP is known and 

established in the literature (Eklund, 2009). However, the sensitivity analysis also 

identifies indirect and/or hidden effects of key mechanisms affecting the dynamics of 

the species under investigation. For example, the initial sensitivity analysis (Figure 12) 

revealed that changing certain parameters in the lung compartment led to differential 

dynamics of immune cells and cytokines upon the event of radiation, thus indicating 

the existence of crucial parameters resulting in a virtual patient being sensitive to 

radiation therapy and developing radiation-induced pneumonitis. This analysis gives 

us preliminary mechanistic insight into the influential mechanisms in the gut and lung 

compartments on systemic immune homeostasis. 

The combined model captures the dynamics of perturbations in the lung (radiation 

event) and gut (sustained inflammation) and its effects along the ‘gut-lung axis.’ The 

GLA model also encapsulates inter-compartmental interactions, where the 

perturbations in the gut or lung are not entirely isolated within their respective 

compartments, but get cascaded (or propagated) into the other compartment through 

systemic interactions at play, which can be observed in Figure 21. We can also see 
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these inter-compartmental interactions be involved in determining the final steady-

state values of the species in the model; for example, the sensitivity analysis of SPD 

in Figure 20 shows sensitive parameters that relate to specific gut immune processes 

affecting the levels of SPD in blood, indicating their indirect involvement in damage-

associated responses in the alveolar epithelial cells (AT1 and AT2) in the lung 

compartment.   

From understanding the dynamics of the final GLA model under perturbations, we 

could capture the bidirectional communication channel between the gut and the lung 

compartment through immunological interactions, which was one of the primary aims 

in developing the model for the thesis. We could observe that upon radiation and the 

onset of radiation-induced pneumonitis in the model, there is an increase in systemic 

inflammation (indicated through CRP dynamics) as well as an increase in pro-

inflammatory cytokines and immune cell species in the gut compartment, as seen in 

Figure 19, which can be inferred as inflammation in the gut compartment caused due 

to radiation. This immune modulation in the gut can potentially affect the gut 

microbiome dynamics, such as changes in the composition of microbial species and 

microbial metabolites resulting in functionality changes of the gut microbiome, which 

can be investigated with the addition of microbiome interactions in the model in the 

future. Additionally, changes in microbial metabolites due to functional changes in the 

gut microbiome can lead to inflammation in the gut, which can have an inter-

compartmental effect on the lung compartment, potentially affecting radiation 

pneumonitis dynamics in the lungs, which can be computationally tested using the 

model.  

We also observed that the inflammation status of the gut compartment could affect the 

lung immune dynamics upon radiation (Figure 21), and this effect can be further 

enhanced with the addition of gut microbiota processes. This can also help us test 

hypotheses such as how modifying the gut microbiome, which increases the resilience 

of gut immunological processes to inflammatory perturbations by either strengthening 

anti-inflammatory feedback loops or weakening pro-inflammatory feedback loops, can 

have a positive effect in maintaining a healthy lung immune homeostasis and 

potentially reducing the susceptibility to develop radiation pneumonitis upon radiation 

treatment. This model, upon a thorough parameterisation and validation, will give us a 

preliminary insight into the potential mechanisms and players that govern the outcome 
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of radiotherapy, and how these can be exploited to develop new biomarkers to 

determine the eligibility criteria for radiotherapy and potential gut microbiota 

therapeutic strategies (such as faecal microbiota transplantation) to improve the 

outcomes of cancer treatments.   

The preliminary model developed has given some mechanistic insights into how the 

immune processes in the gut and lungs can have an effect on systemic immune 

homeostasis. This influence at the systemic level can have subsequent effects on the 

gastrointestinal and pulmonary microbiome, which needs to be investigated. The 

mechanistic pathways that correspond to the microbiome and its related metabolites 

need to be included in the model to understand the influence of the microbiome on the 

‘gut-lung axis.’ For example, it is known that pro-inflammatory markers, like IL-1β, IL-

6, and IL-8 in the lungs are stimulated by bile acid (Liu et al., 2020), while microbial 

short-chain fatty acids (SCFAs) show anti-inflammatory properties by regulating 

several leukocyte functions, including the production of cytokines, including TNFα, IL-

2, IL-6 and IL-10 (Vinolo et al., 2011; Rutting et al., 2019). 

To incorporate these mechanisms into the model, we have to include new microbial-

associated species and their corresponding pathways in the model. The model will 

then help us examine how gut microbiota, directly or indirectly through its metabolites 

and its subsequent effects on the immune components, actively regulates 

inflammation through its microbial-cytokine regulatory interactions, both locally and 

systemically. An additional line of investigation is to model gut dysbiosis, which causes 

damage to the intestinal mucosal barrier, leading to invading gut bacteria and 

metabolites affecting the host’s immune homeostasis locally and systematically. The 

updated model can be additionally used to understand the dynamics of radiation 

fibrosis and the effect of the gut microbiota on the pathogenesis of radiation 

pneumonitis and fibrosis.  

In order to fully incorporate the systemic immune interactions associated with the gut 

microbiome, new compartments, such as bone marrow, needs to be added to the 

model. For instance, in an attempt to integrate the dynamics of SCFAs in the ‘gut-lung 

axis,’ the model needs to account for the increased differentiation of macrophages and 

DC progenitor cells into Ly6c negative monocytes in the bone marrow in response to 

SCFA in blood, which in turn differentiate into alternatively activated macrophages 
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(M2) in the lungs, which has the capacity to reduce inflammation and repair damaged 

tissue by regulating the effects brought on by infiltrating neutrophils (Trompette et al., 

2018). Dysbiosis of gut microbiota leads to weakened anti-inflammatory effects by 

SCFA, and thus, chronic systemic inflammation can form a microenvironment prone 

to the occurrence and development of radiation therapy associated complications, 

including radiation-induced pneumonitis, which can be simulated and tested using the 

updated model.  

The gut compartment of the final GLA model developed during the thesis was 

qualitatively evaluated (Figure 9), but the model needs to be quantitively validated and 

parameterised for all compartments to fit the experimental data from murine samples. 

The parameters used in the model were parameterised by the authors of the IBD and 

SARS-Cov-2 models (Dai et al., 2021; Rogers et al., 2021a) using clinical and 

experimental data from human patients. The data that we will receive from DFG funded 

GRK2762 project will be from mice samples, which necessitates the 

reparameterisation of the combined model with murine data. The model will be 

parameterised and validated based on in-house data from the GRK2762 project as 

well as from published literature data (Rutting et al., 2019; Flynn et al., 2020).  

For this purpose of parameterisation, one of the potential candidates is the Stepwise 

IIV algorithm (a parameter estimation algorithm) which is an in-built tool available in 

the IQR Tools package. This algorithm is a brute force method which estimates 

parameters for complex models with precision based on available data. The 

advantages of using this algorithm over other parameter estimation tools (such as 

NONMEM and MONOLIX) are faster convergence to the value through symbolic 

derivation of sensitivities and swift exploration of global parameter space, which 

quickens finding estimations to larger scale QSP problems such as ours.  

A major limitation in this project is that the results shown in this thesis are generated 

from a single virtual patient which does not explain the biological heterogeneity seen 

in the experimental data as a single virtual patient cannot capture the variability and 

diversity that is present in the real patient population. A single virtual patient may not 

be representative of the broader population, and may not accurately reflect the range 

of responses that can be expected in real patients. To overcome this limitation, we can 

create a “Virtual Population” that captures the heterogeneity seen in the patient 
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population. Parameter sweeping methods (such as Latin hypercube sampling and 

Monte Carlo simulations) enables generating a plausible population to fit physiological 

values of cell population numbers and cytokines levels (Allen et al., 2016). This can 

be done by exporting each individual parameter estimate from experimental data as 

'Virtual Subjects'. From this, we can also generate a virtual patient population by 

sampling from the estimated population distributions. After generating a virtual patient 

population, we can simulate the model from this virtual population which can help in 

addressing concerns with the biological variability seen in the experimental data. 

Moreover, there is a need to check the global robustness of the model through 

parameter sensitivity analysis. By contrasting the simulation results from the model 

with the experimental levels observed in the patient population, the applicability and 

robustness of the model need to be assessed. The validated model can potentially be 

used for testing biological hypotheses and suggesting predictive biomarkers. The 

same approach can potentially be applied to identify novel treatment strategies and 

combination therapies through virtual clinical trials. This can help to modulate 

knowledge from basic sciences into translational approaches, which can be tested in 

clinical settings, saving costs regarding time, resources, and animal lives. 
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6. Appendix 
 

6.1. Appendix 1: List of State Variables and Parameters for ‘Gut-
Lung Axis’ Model 

 

Table 7 and Table 8 contains the list of state variables (species) and parameters in the 

final ‘Gut-Lung Axis’ model respectively. 
 

Species Description Compartment Units 
Gut_Th0 Naïve T helper cells Gut cells 
Gut_Th1 T helper 1 cells Gut cells 
Gut_Th2 T helper 2 cells Gut cells 
Gut_Th17 T helper 17 cells Gut cells 
Gut_Treg T regulatory cells Gut cells 
Gut_IL4 Interleukin 4 Gut picomole 
Gut_IL10 Interleukin 10 Gut picomole 
Gut_TGFb Transforming growth factor beta 1 Gut picomole 
Gut_M1 Classically activated macrophages Gut cells 
Gut_eDC Effector dendritic cells Gut cells 
Gut_IL12 Interleukin 12 Gut picomole 
Gut_IFNg Interferon gamma Gut picomole 
Gut_TL1A TNF like ligand A Gut picomole 
Gut_IL2 Interleukin 2 Gut picomole 
Gut_IL21 Interleukin 21 Gut picomole 
Gut_IL23 Interleukin 23 Gut picomole 
Gut_IL6 Interleukin 6 Gut picomole 
Gut_IL17 Interleukin 17 Gut picomole 
Gut_tDC Tolerogenic dendritic cells Gut cells 
Gut_M2 Alternatively activated macrophages Gut cells 
Gut_M0 Resting macrophages Gut cells 
Gut_GMCSF Granulocyte-macrophage colony-stimulating factor Gut picomole 
Gut_TNFa Tumour Necrosis Factor alpha Gut picomole 
Gut_IL13 Interleukin 13 Gut picomole 
Gut_iDC Immature dendritic cells Gut cells 
Gut_NK1 Natural Killer 1 cells Gut cells 
Gut_NKT Natural Killer T cells Gut cells 
Gut_IL5 Interleukin 5 Gut picomole 
Gut_IL15 Interleukin 15 Gut picomole 
Gut_IL18 Interleukin 18 Gut picomole 
Gut_NK Natural Killer cells Gut cells 
Gut_NK2 Natural Killer 2 cells Gut cells 
Gut_IL22 Interleukin 22 Gut picomole 
Gut_Neu Neutrophils Gut cells 
Gut_IL8 Interleukin 8 Gut picomole 
Gut_Neu_act Activated neutrophils Gut cells 
Blood_IL6 Interleukin 6 Blood picomole 
Blood_CRP C-Reactive Protein Blood picomole 
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Blood_Neu Neutrophils Blood picomole 
Blood_IL8 Interleukin 8 Blood picomole 
Blood_IL17 Interleukin 17 Blood picomole 
Blood_IL12 Interleukin 12 Blood picomole 
Blood_TGFb Transforming growth factor beta 1 Blood picomole 
Blood_TNFa Tumour Necrosis Factor alpha Blood picomole 
Blood_IL1b Interleukin 1 beta Blood picomole 
Blood_IFNb Interferon beta Blood picomole 
Blood_IFNg Interferon gamma Blood picomole 
Blood_IL2 Interleukin 2 Blood picomole 
Blood_IL10 Interleukin 10 Blood picomole 
Blood_GMCSF Granulocyte-macrophage colony-stimulating factor Blood picomole 
Liver_IL6 Interleukin 6 Liver picomole 
Liver_CRPExtracellular C-Reactive Protein Extracellular Liver picomole 
V Damage-associated molecular patterns Lungs molecules 
AT1 Pulmonary alveolar type I cells Lungs cells 
AT2 Pulmonary alveolar type II cells Lungs cells 
I Irradiated cells Lungs cells 
dAT1 Damaged AT1 cells Lungs cells 
dAT2 Damaged AT2 cells Lungs cells 
pDC Pulmonary dendritic cells Lungs cells 
M1 Classically activated macrophages Lungs cells 
N Neutrophils Lungs cells 
Th1 T helper 1 cells Lungs cells 
Th17 T helper 17 cells Lungs cells 
CTL Cytotoxic T cells Lungs cells 
Treg T regulatory cells Lungs cells 
TNFa Tumour Necrosis Factor alpha Lungs picomole 
IL6 Interleukin 6 Lungs picomole 
IL1b Interleukin 1 beta Lungs picomole 
IFNb Interferon beta Lungs picomole 
IFNg Interferon gamma Lungs picomole 
IL2 Interleukin 2 Lungs picomole 
IL12 Interleukin 12 Lungs picomole 
IL17 Interleukin 17 Lungs picomole 
IL10 Interleukin 10 Lungs picomole 
TGFb Transforming growth factor beta 1 Lungs picomole 
GMCSF Granulocyte-macrophage colony-stimulating factor Lungs picomole 
SPD Surfactant protein D Lungs picomole 

 

Table 7: List of all state variables (species) in the GLA model 
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Parameter Description Value 
k1_1 Adjustment, IL4 on Th0 to Th1 differentiation 0.0353 
k2_1 Adjustment, IL10 on Th0 to Th1 differentiation 0.062 
k3_1 Adjustment, TGFb on Th0 to Th1 differentiation 0.0011 
k4_1 Half-sat, IL12 on Th0 to Th1 differentiation 0.000249 
k5_1 Half-sat, IFNg on Th0 to Th1 differentiation 0.0154 
k6_1 Half-sat, TL1A on Th0 to Th1 differentiation 0.227 
kbasal_1 Basal Th0 to Th1 differentiation rate  0.123 
vf_1 Rate of Th0 to Th1 differentiation 0.222 
k1_2 Adjustment, IFNg on Th0 to Th2 differentiation 0.0734 
k2_2 Adjustment, IL10 on Th0 to Th2 differentiation 0.0445 
k3_2 Adjustment, TGFb on Th0 to Th2 differentiation 0.005373 
k4_2 Half-sat, IL4 on Th0 to Th2 differentiation 0.0001169 
kbasal_2 Basal Th0 to Th2 differentiation rate  0.0212 
vf_2 Rate of Th0 to Th2 differentiation 0.217 
k1_3 Adjustment, IL4 on Th0 to Th17 differentiation 0.0085 
k2_3 Adjustment, IL2 on Th0 to Th17 differentiation 0.0086 
k3_3 Adjustment, IFNg on Th0 to Th17 differentiation 0.00885 
k4_3 Half-sat, IL6 on Th0 to Th17 differentiation 0.0007 
k5_3 Half-sat, TGFb on Th0 to Th17 differentiation 0.316653 
k6_3 Half-sat, TL1A on Th0 to Th17 differentiation 0.342739 
k7_3 Half-sat, IL23 on Th0 to Th17 differentiation 0.000695 
k8_3 Half-sat, IL21 on Th0 to Th17 differentiation 0.0373 
kbasal_3 BasalTh0 to Th17 differentiation rate  0.016 
vf_3 Rate of Th0 to Th17 differentiation 0.173 
k1_4 Adjustment, IL17 on Th0 to Treg differentiation 0.123 
k2_4 Adjustment, IL23 on Th0 to Treg differentiation 0.107 
k3_4 Adjustment, IL6 on Th0 to Treg differentiation 0.113 
k4_4 Half-sat, IL2 on Th0 to Treg differentiation 0.0000297 
k5_4 Half-sat, TGFb on Th0 to Treg differentiation 0.016 
k6_4 Half-sat, tDC on Th0 to Treg differentiation 45603 
kbasal_4 Basal Th0 to Treg differentiation rate  0.07 
vf_4 Rate of Th0 to Treg differentiation 0.2 
k1_5 Half-sat, eDC on Th0 Transport rate to gut 12365 
kbasal_Th0 Basal production rate of Th0 1.21 
vf_5 Rate of Th0 Production 0.56 
kdeg_Th0 Degradation rate of Th0 0.4711 
kdeg_Th1 Degradation rate of Th1 0.315 
kdeg_Th2 Degradation rate of Th2 0.2695 
kdeg_Th17 Degradation rate of Th17 0.5187 
kdeg_Treg Degradation rate of Treg 0.355 
k1_11 Half-sat, Treg on Th17 to Treg differentiation 82697 
k2_11 Half-sat, tDC on Th17 to Treg differentiation 129996 
k3_11 Half-sat, M2 on Th17 to Treg differentiation 84770 
kbasal_11 Basal rate of Th17 to Treg differentiation 0.1 
vf_11 Rate of Th17 to Treg differentiation 0.11 
k2_12 Half-sat, eDC on Treg to Th17 differentiation 120674 
k3_12 Half-sat, M1 on Treg to Th17 differentiation 107612 
k4_12 Half-sat, Th1 on Treg to Th17 differentiation 103804 
kbasal_12 Basal rate of Treg to Th17 differentiation 0.1 
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vf_12 Rate of Treg to Th17 differentiation 0.08 
k1_12 Half-sat, Th17 on Treg to Th17 differentiation 112162 
k1_17 Recruitment of M0 induced by eDC 0.325 
k2_17 Recruitment of M0 induced by activated Macrophages 0.325 
kbasal_M0 Basal recruitment of M0 2500 
k1_18 Half-sat, eDC on M0 to M1 activation 99088 
k2_18 Half-sat, Th1 on M0 to M1 activation 511349 
kbasal_18 Basal activation of M0 to M1 0.01 
vf_18 Rate of activation of M0 to M1 0.01 
k3_18 Half-sat, Th17 on M0 to M1 activation 154009 
k4_18 Half-sat, TNFa on M0 to M1 activation 0.05292 
k5_18 Half-sat, IFNg on M0 to M1 activation 0.02646 
k6_18 Half-sat, GMCSF on M0 to M1 activation 0.00938 
k1_19 Half-sat, tDC on M0 to M2 activation 159088 
k2_19 Half-sat, Treg on M0 to M2 activation 231319 
k3_19 Half-sat, IL4 on M0 to M2 activation 0.00245 
k4_19 Half-sat, IL13 on M0 to M2 activation 0.002549 
k5_19 Half-sat, IL10 on M0 to M2 activation 0.0017 
k6_19 Half-sat, TGFb on M0 to M2 activation 0.21 
kbasal_19 Basal activation of M0 to M2 0.007 
vf_19 Rate of activation of M0 to M2 0.009 
k1_20 Half-sat, tDC on M1 to M2 activation 109023 
k2_20 Half-sat, Treg on M1 to M2 activation 69961 
k3_20 Half-sat, M2 on M1 to M2 activation 142177 
kbasal_20 Basal activation of M1 to M2 0.44 
vf_20 Rate of activation of M1 to M2 0.323 
k1_21 Half-sat, Th1 on M2 to M1 activation 98653 
k2_21 Half-sat, M1 on M2 to M1 activation 132039 
k3_21 Half-sat, eDC on M2 to M1 activation 129288 
k4_21 Half-sat, Th17 on M2 to M1 activation 122968 
kbasal_21 Basal activation of M2 to M1 1.21 
vf_21 Rate of activation of M2 to M1 0.1 
k1_25 Half-sat, eDC on iDC recruitment 24124 
kbasal_iDC Basal recruitment of iDC 1.4 
vf_25 Rate of iDC recruitment 1 
k2_25 Half-sat, M1 on iDC recruitment 32174 
k1_26 Half-sat, IL10 on iDC activation to tDC 0.000431 
kbasal_26 Basal rate of iDC activation to tDC 0.0123 
k1_27 Half-max inhibition, IL10 on iDC activation to eDC 0.00153 
k2_27 Half-max inhibition, TNFa on iDC activation to eDC 0.0528 
k3_27 Half-max inhibition, IFNg on iDC activation to eDC 0.0176 
k4_27 Half-max inhibition, IL6 on iDC activation to eDC 0.0023 
kbasal_27 Basal rate of iDC activation to eDC 0.01 
vf_27 Rate of iDC activation to eDC 0.023 
vf_26 Rate of iDC activation to tDC 0.066 
k2_31 IL12 production by M1 6.18E-09 
kbasal_IL12 Basal production of IL12 0.0000171 
k1_33 IFNg production by eDC 4.34E-08 
k2_33 IFNg production by Th1 0.000000123 
k3_33 IFNg production by NK1 0.000000488 
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kbasal_IFNg Basal production of IFNg 0.000149966 
k1_31 IL12 production by eDC 4.98E-09 
k1_35 IL2 production by eDC 0.000000056 
k2_35 IL2 production by Th1 0.000000002 
kbasal_IL2 Basal production of IL2 0.0000368 
fi12 Adjustment, IL4 on activated M1 2.49 
k3_31 IL12 production by M0 3.36E-11 
w_17 Weight of M1 and M2 recruitment of M0 0.13 
k2_5 Half-sat, M1 on Treg differentiation 18900 
k1_63 Half-sat, M1 on Th0 proliferation 12045 
vf_63 Rate of Th0 proliferation 0.49 
k1_37 IL6 production by eDC 1.97E-09 
k2_37 IL6 production by Th17 4.46E-09 
k3_37 IL6 production by M1 5.17E-10 
k4_37 IL6 production by Neu_act 3.87E-11 
kbasal_IL6 Basal production of IL6 0.002 
k1_39 IL23 production by eDC 0.000000065 
k2_39 IL23 production by M1 0.00000031 
k3_39 IL23 production by Neu_act 6.85E-11 
kbasal_IL23 Basal production of IL23 0.0000226 
k1_41 IL21 production by Th17 0.0000005 
k2_41 IL21 production by NKT 0.00000011 
kbasal_IL21 Basal IL21 production 0.0000551 
k1_43 TGFb production by Th17 0.000000742 
k2_43 TGFb production by Treg 0.000000715 
k3_43 TGFb production by NKT 0.000000224 
k4_43 TGFb production by M2 0.000000477 
kbasal_TGFb Basal production of TGFb 0.00381 
k1_45 IL10 production by Treg 1.91E-09 
k2_45 IL10 production by NKT 0.000000004 
kbasal_IL10 Basal production of IL10 0.0000515 
k1_47 TL1A production by Th1 0.000000562 
k2_47 TL1A production by eDC 0.000000462 
kbasal_TL1A Basal production of TL1A 0.047 
k1_49 IL13 production by Th2 4.79E-09 
k2_49 IL13 production by NKT 4.61E-09 
kbasal_IL13 Basal production of IL13 0.0000757 
k1_51 IL17 production by Th17 0.000000105 
k2_51 IL17 production by NKT 3.45E-09 
kbasal_IL17 Basal production of IL17 0.0000921 
k1_53 IL5 production by Th2 6.22E-09 
k2_53 IL5 production by NKT 6.6E-10 
kbasal_IL5 Basal production of IL5 0.0000204 
k1_55 IL4 production by Th2 1.07E-08 
k2_55 IL4 production by NKT 1.76E-09 
kbasal_IL4 Basal IL4 production 0.0000322 
k1_57 IL15 production by M2 1.28E-08 
kbasal_IL15 Basal IL15 production 0.0000348 
k3_55 IL4 production by Th0 9.8E-11 
k3_45 IL10 production by tDC 3.72E-09 
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k4_45 IL10 production by M2 2.33E-09 
k4_20 Half-sat, IL10 on M1 to M2 activation 0.005536 
c72 Half-sat, IL10 on M2 production of IL10 0.002084 
ci72 Adjustment, IFNg on IL10 effect on M2 production of IL10 0.0477 
k1_68 Adjustment, TGFb on Th17 differentiation to Th1 1.729 
k2_68 Half-sat, IL12 on Th17 differentiation to Th1 0.0000163 
kbasal_68 Basal differentiation of Th17 to Th1 0.1 
vf_68 Rate of differentiation of Th17 to Th1 0.1 
k1_69 Half-sat, IL4 on Th17 differentiation to Th2 0.0000588 
kbasal_69 Basal differentiation of Th17 to Th2 0.1 
vf_69 Rate of differentiation of Th17 to Th2 0.1 
k1_70 Half-sat, IL12 on Treg differentiation to Th1 0.000346 
kbasal_70 Basal differentiation of Treg to Th1 0.1 
vf_70 Rate of differentiation of Treg to Th1 0.1 
kbasal_NK Basal production of NK 10250 
vf_72 Rate of NK to NK1 differentiation 0.0014 
k1_72 Half-sat, IL15 on NK to NK1 differentiation  0.000385 
kbasal_72 Basal NK to NK1 differentiation  0.5 
k1_73 Half-sat, IL23 on NK to NK2 differentiation  0.0005 
kbasal_73 Basal NK to NK2 differentiation  0.3 
vf_73 Rate of NK to NK2 differentiation 0.0008 
kdeg_IL22 Degradation of IL22 2.45 
k1_74 IL22 production by NK2 0.00000203 
kbasal_IL22 Basal production of IL22 0.0000583 
k1_76 Half-sat, IL12 on NKT production 0.000495 
k2_76 Half-sat, IL18 on NKT production 0.001435 
k3_76 Half-sat, eDC on NKT production 11015 
kbasal_NKT Basal NKT production 0.763 
vf_76 Rate of NKT production 0.962 
k2_64 Half-sat, Treg on Th1 proliferation 134103 
vf_64 Rate of Th1 proliferation 0.001 
k2_65 Half-sat, Treg on Th2 proliferation 10063 
vf_65 Rate of Th2 proliferation 0.000863 
vf_66 Rate of Th17 proliferation 0.000948 
k2_67 Half-sat, tDC on Treg proliferation 73114 
k3_67 Half-sat, GMCSF on Treg proliferation 0.00166 
vf_67 Rate of Treg proliferation 0.000707 
kdeg_eDC Degradation rate of eDC 0.025 
k1_67 Half-Sat, IL2 effect on Treg proliferation  0.00205 
kdeg_TNFa Degradation rate of TNFa 3.16 
kdeg_TL1A Degradation rate of TL1A 3.61 
k1_65 Half-Sat, IL2 effect on Th2 proliferation  0.0000635 
k1_66 Half-Sat, IL2 effect on Th17 proliferation  0.0000608 
k1_64 Half-Sat, IL2 effect on Th1 proliferation  0.0000608 
kdeg_TGFb Degradation rate of TGFb 1.9 
kdeg_tDC Degradation rate of tDC 0.0118 
kbasal_Treg Basal production rate of Treg 0.125 
kbasal_Th2 Basal production rate of Th2 0.09 
kbasal_Th17 Basal production rate of Th17 0.128 
kbasal_Th1 Basal production rate of Th1 0.1 
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kdeg_NKT Basal production rate of NKT 0.0588 
kdeg_NK2 Basal production rate of NK2 0.0674 
kdeg_NK1 Basal production rate of NK1 0.0342 
kdeg_NK Basal production rate of NK 0.051774 
kdeg_M2 Degradation rate of M2 0.067 
kdeg_M1 Degradation rate of M1 0.075 
kdeg_M0 Degradation rate of M0 0.044 
kdeg_IL6 Degradation rate of IL6 35 
kdeg_IL5 Degradation rate of IL5 3.003 
kdeg_IL4 Degradation rate of IL4 3.95 
kdeg_IL23 Degradation rate of IL23 2.17 
kdeg_IL21 Degradation rate of IL21 1.913 
kdeg_IL2 Degradation rate of IL2 1.89 
kdeg_IL18 Degradation rate of IL18 1.98 
kdeg_IL17 Degradation rate of IL17 2.11 
kdeg_IL15 Degradation rate of IL15 2.5 
kdeg_IL13 Degradation rate of IL13 2.73 
kdeg_IL12 Degradation rate of IL12 1.22 
kdeg_IL10 Degradation rate of IL10 3.59 
kdeg_IFNg Degradation rate of IFNg 4.26 
kbasal_IL18 Basal production rate of IL18 0.0000613 
kbasal_TNFa Basal production rate of TNFa 0.0028 
k1_61 TNFa production by M1 0.00000031 
k2_61 TNFa production by M2 5.64E-08 
k3_61 TNFa production by Th1 4.12E-08 
k1_59 IL18 production by M1 0.0000014 
k2_59 IL18 production by eDC 0.00000163 
kbasal_IL8 Basal production of IL8 0.00086 
kdeg_IL8 Degradation of IL8 3.07 
k1_83 IL8 production by M1 1.07E-09 
k2_83 IL8 production by Neu_act 4.29E-10 
k1_85 GMCSF production by Th1 9.77E-10 
k2_85 GMCSF production by Th2 1.15E-09 
k3_85 GMCSF production by Th17 1.27E-08 
k4_85 GMCSF production by M1 1.09E-08 
k5_85 GMCSF production by M2 1.1E-09 
kbasal_GMCSF Basal production of GMCSF 0.00007949 
kdeg_GMCSF Degradation of GMCSF 1.24 
Th0_blood_constant Amount of Th0 available to move to the gut 121802 
iDC_blood_constant Amount of iDC available to move to the gut 310.5 
NKT_constant NKT production constant 1886 
k5_45 IL10 production by NK1 3.16E-08 
k4_55 IL4 production by NK2 6.49E-11 
k3_k5 IL5 production by NK2 4.17E-10 
k3_49 IL13 production by NK2 1.47E-08 
KmProtSyn Half-sat, IL6 on CRP production 0.0055 
VmProtSynth Rate of CRP production  163132 
KmCalprotectin Half-sat, Neu_Total on Calprotectin 7614680 
VmCalprotectin Rate of Calprotectin production 414 
k5_37 Half-sat, TNFa on IL6 production 0.0112 
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kdeg_CRP Degradation of CRP 0.618 
kbasal_Neu Basal production of Neu in Blood 7935430 
kdeg_Neu Degradation of Neu 3.3 
kIL12_bloodtogut Transport rate of IL12 from blood to gut 0 
kIL12_guttoblood Transport rate of IL12 from gut to blood 0.055 
kIL17_bloodtogut Transport rate of IL17 from blood to gut 0 
kIL17_tissuetoblood Transport rate of IL17 from gut to blood 1.31 
kIL8_bloodtogut Transport rate of IL8 from blood to gut 0 
kIL8_guttoblood Transport rate of IL8 from gut to blood 0.057 
kTGFb_bloodtogut Transport rate of TGFb from blood to gut 0 
kTGFb_guttoblood Transport rate of TGFb from gut to blood 0.88 
k1_115 Half-sat, IFNg on activation of Neu  0.087 
k2_115 Half-sat, TNFa on activation of Neu  0.051 
kbasal_94 Basal transport of Neu from Blood to Gut 0.012 
k3_115 Half-sat, GMCSF on activation of Neu  0.0047 
vf_94 Rate of transport of Neu from Blood to Gut 0.4 
k2_94 Half-sat, IL8 on transport of Neu from Blood to Gut 0.000563 
kbasal_CRP Basal level of CRP production  0.469 
kCRP_LivertoBlood Transport rate of CRP from liver to blood 0.884406 
kCRP_BloodtoLiver Transport rate of CRP from blood to liver 0.909 
kCRPSecretion Secretion of CRP from liver hepatocytes 0.475 
kIL6_livertoblood Transport rate of IL6 from liver to blood 0.693 
kIL6_guttoblood Transport rate of IL6 from gut to blood  0.009 
kIL6_bloodtogut Transport rate of IL6 from blood to gut  0 
kIL6_bloodtoliver Transport rate of IL6 from blood to liver 20.3 
kbasal_IL8_b Basal rate of IL8 production in the blood 0.003168 
kTNFa_guttoblood Transport rate of TNFa from gut to blood 0.0455 
kTNFa_bloodtogut Transport rate of TNFa from blood to gut 0 
kbasal_TNFa_b Basal rate of TNFa production in the blood 0.00577 
kbasal_IL6_b Basal rate of IL6 production in the blood 0.008 
kbasal_TGFb_b Basal rate of TGFb production in the blood 0.1655 
kbasal_IL12_b Basal rate of IL12 production in the blood 0.000286 
kbasal_IL17_b Basal rate of IL17 production in the blood 0.002335 
kbasal_115 Basal activation of Neu 0.1 
vf_115 Rate of Neu activation  0.9433 
k4_115 Half-sat, IL8 on activation of Neu  0.037 
k1_77 Half-sat, IL17 on Neu production in blood 0.01 
k2_77 Half-sat, GMCSF on Neu production in blood 0.000821 
kmax_IL6_b Maximum IL6 production rate in the blood 0.0232 
k1_94 Half-sat, TNFa on transport of Neu from Blood to Gut 0.086 
k_IL6_neu Half-sat, IL6 on Neu degradation rate in Gut 0.000914 
Imax_Neu_deg Max inhibition of IL6 on Neu degradation rate in Gut 0.5 
kdeg_iDC Degradation of iDC 0.019 
kneu_guttoblood Transport rate of Neu from gut to blood 0.185 
k3_51 Half-sat, IL23 on Th17 production of IL17 0.0000514 
k6_85 Half-sat, IL23 on Th17 production of GMCSF 0.00648 
k2_74 IL22 production by Th17 0.00000027 
k3_74 Half-sat, IL23 on Th17 production of IL22 0.003725 
k6_37 Half-sat, IL17 on IL6 production 0.01 
k7_85 Half-sat, IL17 on GMCSF production 0.000875 
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k7_37 Half-sat, IL23 on Th17 production of IL6 0.00126 
k3_41 Half-sat, IL23 on Th17 production of IL21 0.000808 
k_IL17_Th17 Basal rate of IL17 production by Th17 0.125 
k_IL22_Th17 Basal rate of IL22 production by Th18 0.108 
k4_33 Half-sat, IL12 on NK1 production of IFNg 0.001285 
k_IFNg_NK1 Basal rate of IL12 production by NK1 0.0858 
k_IL21_Th17 Basal rate of IL21 production by Th17 cells 0.16 
k_GMCSF_IL23 Basal rate of GMCSF production by Th17 cells  0.075 
k4_51 Half-sat, IL23 on NKT production of IL17 0.0000594 
k_IL17_NKT Basal rate of IL17 by NKT cells 0.097 
gamma_IL8 Basal weight of IL8 production  0.008716 
k1_114 Half-sat, M1 on TNFa production in the blood 19282 
k2_114 Half-sat, M2 on TNFa production in the blood 173591 
k3_114 Half-sat, Th1 on TNFa production in the blood 255758 
k4_61 Half-sat, IL17 on TNFa production  0.00678 
k8_85 Half-sat, TNFa on GMCSF production 0.012 
k3_83 Half-sat, IL17 on IL8 production  0.011 
k4_83 Half-sat, TNFa on IL8 production 0.011 
gamma_TNFa Basal weight of TNFa production  0.129 
k_epidam Half-sat, IL17 effect on Epthelial Damage 0.00025 
gamma_TGFb Basal weight of TGFb production  0.1 
k1_107 Half-sat, Th17 on TGFb production in the blood 100000 
k2_107 Half-sat, Treg on TGFb production in the blood 100000 
k3_107 Half-sat, NKT on TGFb production in the blood 150000 
k4_107 Half-sat, M2 on TGFb production in the blood 150000 
gamma_IL12 Basal weight of IL12 production  0.1 
k1_104 Half-sat, eDC on IL12 production in the blood 150000 
k2_104 Half-sat, M1 on IL12 production in the blood 150000 
k3_104 Half-sat, M0 on IL12 production in the blood 15000 
gamma_IL17 Basal weight of IL17 production  1 
gamma_damage Rate effect of epithelial damage on activation of M0 and iDC 10 
alpha_damage_par Coefficient of Damage  0 
A_V Rate of production of DAMPs 0.8 
k_int Rate of damage by DAMPs 4.73E-12 
km_int_IFNb IC50 for anti-damage effect of Type I IFN 36 
b_V Clearance rate of DAMPs 0.00555 
k_V_innate Irradiated cell clearance by phagocytic immune cells  1E-11 
mu_AT2 Rate constant for basal regeneration of AT2 0.000267417 
k_ROS_AT2 Rate constant for ROS-induced damage of healthy cells 0.00000032 
km_ROS_AT2 IC50 for ROS-induced damage of healthy cells 50000000000 
k_AT1_AT2 Rate constant for basal differentiation of AT2 to AT1 0.000106967 
km_AT1_AT2 Half-sat for differentiation of AT2 to AT1 0.9 

k_IFNb_kill Rate constant for induction of CD8+ irradiated cell clearance 
by Type I IFN 1.1 

k_kill Rate constant for irradiated cell clearance by CD8+ cell 
clearance 1.84E-09 

km_kill IC50 for induction of CD8+ iradiated cell clearance by Type I 
IFN 500000 

b_AT2 Death rate for AT2 cells 0.00016045 
b_I Death rate for irradiated cells 0.015 
mu_AT1 Rate constant for regerenation for AT1 cells (options) 0 



88 
 

k_ROS_AT1 Rate constant for ROS-induced damage of healthy AT1 cells 1 
km_ROS_AT1 EC50 for ROS-induced damage of healthy AT1 cells 1 
b_AT1 Death rate for AT1 cells 0.00016045 
b_dAT1 Death rate for damaged AT1 cells 0.05 
k_damage_TNFa Rate constant for TNF-⍺ induced damage 0.01 
km_damage_TNFa IC50 for TNF-⍺ induced damage 319334.4 
k_damage_IL6 Rate constant for IL-6 induced damage 0.01 
km_damage_IL6 IC50 for IL-6 induced damage 11592 
k_damage_IL1b Rate constant for IL-1β induced damage 0.01 
km_damage_IL1b IC50 for IL-1β induced damage 1727404.56 
k_damage_IFNg Rate constant for IFN𝞬 induced damage 0.01 
km_damage_IFNg IC50 for IFN𝞬 induced damage 53222.4 
k_damage_cyt Rate constant overall cytokine damage 0.05 
k_mu_AT2 Rate constant for threshold regeneration of AT2 30 
k_diff_AT1 Rate constant for threshold differentiation of AT2 to AT1 30 
a_DC Rate constant for production of mature dendritic cells 115000000 
kbasal_DC Basal activation of dendritic cells 0 
b_DC Death rate for mature dendiritic cells 0.001041667 
k_DC_TNFa Rate constant for maturation of dendritic cells by TNF-⍺ 10 
km_DC_TNFa EC50 for maturation of dendritic cells by TNF-⍺ 3193.344 
k_DC_IFNg Rate constant for maturation of dendritic cells by IFN𝞬 10 
km_DC_IFNg EC50 for maturation of dendritic cells by IFN𝞬 1064.448 
k_DC_IL6 Rate constant for maturation of dendritic cells by IL-6 10 
km_DC_IL6 EC50 for maturation of dendritic cells by IL-6 139.104 
km_DC_IL10 IC50 for inhibition of DC activation by IL-10 46.2672 
a_M1 Rate constant for activation of macrophages  400000000 
kbasal_M1 Rate constant for basal activation of macrophages  0 
k_v Rate constant for innate immune activation by DAMPs 0.3 
k_I Rate constant for innate immune activation by irradiated cells 0.03 
k_dAT Rate constant for innate immune activation by damaged cells  0.3 
km_v EC50 for innate immune activation by DAMPs 5E+11 
km_I EC50 for innate immune activation by iradiated cell 5000000000 
km_dAT EC50 for innate immune activation by damaged cells 5000000000 
k_M1_IL6 Rate constant for macrophage activation by IL-6 10 
km_M1_IL6 EC50 for macrophage activation by IL-6 139.104 
b_M1 Death rate of activated macrophages 0.002791667 
k_M1_TNFa Rate constant for macrophage activation by TNF 10 
km_M1_TNFa EC50 for macrophage activation by TNF 3200.6016 
k_M1_GMCSF Rate constant for macrophage activation by GM-CSF 10 
km_M1_GMCSF EC50 for macrophage activation by GM-CSF 567.3024 
k_M1_IFNg Rate constant for macrophage activation by IFN 10 
km_M1_IFNg EC50 for macrophage activation by IFN 800.1504 
km_M1_IL10 IC50 for inhibition of macrophage activation by IL-0 167.40864 
kbasal_N Basal recruitment of activated neutrophils 0 
a_N Rate constant for activation of neutrophils 79354300000 
k_N_IFNg Rate constant for neutrophil activation by IFN 10 
km_N_IFNg EC50 for neutrophil activation by IFN 53222.4 
k_N_TNFa Rate constant for neutrophil activation by TNF 0.1 
km_N_TNFa EC50 for neutrophil activation by TNF 5261.76 
k_N_GMCSF Rate constant for neutrophil activation by GM-CSF 1 
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km_N_GMCSF EC50 for neutrophil activation by GM-CSF 725.76 
k_N_IL17c Rate constant for neutrophil recruitment by IL-17 10 
km_N_IL17c EC50 for neutrophil recruitment by IL-17 2237.76 
b_N Death rate of activated neutrophils 0.618003353 
a_Th1 Rate constant for activation of Th1 cells 0.02 
b_Th1 Death rate for activated Th1 cells 0.019629167 
k_Th1_IL2 Rate constant for activation of by Th1 cells by IL-2 1.5 
K_Th1_IL12 EC50 for activation of Th1 cells by IL-2 0.501984 

k_Th1_IL12IL2 Rate constant for induction of IL-2 activity for activation of 
Th1 cells by IL-12 2 

K_Th1_IL12IL2 EC50 for activation of Th1 cells by IL-12 7.52976 
K_Th1_IL10 IC50 for inhibition of activated Th1 cells by IL-10 32516.12903 
K_Th1_TGFb IC50 for inhibition for activated Th1 cells by TGF 1832727.273 
k_Th1_IFNg Rate constant for activation of Th1 cells by IFN 1 
K_IFNg_Th1 EC50 for activation of Th1 cells by IFN 931.392 
K_Th1_IL6 EC50 for inhibition of Th1 activation by IL-6 267610.6195 

k_Th1_Th17 Rate constant for differentiation of activated Th17 cells to Th1 
cells 0.01 

K_Th1_Th17 EC50 for differentiation of activated Th17 cells to Th1 cells 0.0328608 

k_Th1_Treg Rate constant for differentiation of activated Treg cells to Th1 
cells 0.005 

K_Th1_Treg EC50 for differentiation of activated Treg cells to Th1 cells 20.92608 
a_Th17 Rate constant for activation of Th17 cells  0.0346 
b_Th17 Death rate of activated Th17 cells 0.0216125 
k_Th17_TGFb Rate constant for activation of Th17 cells by TGF 4 
K_Th17_TGFb EC50 for activation of Th17 cells by TGF 638.372448 
K_Th17_IL2 IC50 for inhibition of Th17 activation by IL-2 7032558.14 
K_Th17_IFNg IC50 for inhibition of Th17 activation by IFN 6833898.305 
K_Th17_IL10 IC50 for inhibition of Th17 activation by IL-10 1359101.124 
k_Th17_IL6 Rate constant for Th17 activation by IL-6 1 
km_Th17_IL6 EC50 for Th17 activation by IL-6 42.336 
k_Th17_IL1b Rate constant for Th17 activation by IL-1 1 
km_Th17_IL1b EC50 for Th17 activation by IL-1 20728.85472 
a_CTL Rate constant for CTL activation 0.0007215 
b_CTL Death rate of activated CTL  0.00245 
k_CTL_IL2 Rate constant for CTL activation by IL-2 3 
K_CTL_IL12 EC50 for CTL activation by IL-12 7.52976 
k_CTL_IL12IL2 Rate constant for CTL activation by IL-12 4 
K_CTL_IL12IL2 EC50 for CTL activation by IL-12  7.52976 
K_CTL_IL10 IC50 for inhibition of CTL activation by IL-10 32516.12903 
K_CTL_TGFb IC50 for inhibition of CTL activation by TGF 1832727.273 
K_CTL_IL6 IC50 for inibition of CTL activation by IL-5 535221.2389 
k_CTL_IFNg Rate constant for CTL activation by IFN 1 
K_CTL_IFNg EC50 for CTL activation by IFN 931.392 

kmax_MHC1 Rate constant for Type I interferon & MHC-1 induced 
activation of CTL 1 

km_MHC1_IFNb EC50 for Type I interferon & MHC-1 induced activation of 
CTL 5 

a_Treg Rate constant for Treg activation 0.02 
b_Treg Death of activated Treg cells 0.014791667 
k_Treg_IL2 Rate constant for Treg activation by IL-2 1 
K_Treg_IL2 EC50 for Treg activation by IL-2 1.796256 
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K_Treg_IL17 IC50 constant for Treg inhibition by IL-17 491707.3171 
K_Treg_IL6 IC50 constant for Treg inhibition by IL-6 535221.2389 
k_Treg_TGFb Rate constant for Treg activation by TGF 1 
K_Treg_TGFb EC50 for Treg activation by TGF 32.256 
kbasal_SPD Basal SP-D production rate 40 

a_SPD Rate constant for SP-D production by damaged and irritated 
alveolar cells 5.00E-07 

b_SPD Clearance rate of SP-D 0.069315 
a_tnf Basal induction Rate of TNF 0.012975984 
a_tnf_at1 Production rate of TNF by damaged AT1 cells 0.00014 
a_tnf_i Production rate of TNF by irradiated AT2 cells 0.000056 
a_tnf_at2 Production rate of TNF by damaged AT2 cells 0.00014 
a_tnf_m1 Production rate of TNF by activated macrophages 0.000042 
a_tnf_th1 Production of TNF by activated Th1 cells 1.13E-09 
a_tnf_th17 Production of TNF by activated Th17 cells 1.13E-09 
b_tnf Clearance rate of TNF 3.16 
a_il6 Basal induction rate of IL-6 0.00056448 
b_il6 Clearance rate of IL-6 0.044 
a_il6_at1 Production rate of IL-6 by damaged AT1 cells 0.00000312 
a_il6_i Production rate of IL-6 by irradiated AT2 cells 0.00000125 
a_il6_at2 Production rate of IL-6 by damaged AT2 cells 0.00000312 
a_il6_m1 Production rate of IL-6 by activated macrophages 0.00000145 
a_il6_th17 Production of IL-6 by activated Th17 cells 0.00000125 
a_il6_neu Production of IL-6 by activated neutrophils 0.000000108 
a_ifng Basal induction rate of IFN 0.126979181 
b_ifng Clearance rate of IFN 3.59 
a_ifng_dc Production of IFN by mature dendritic cells 2.17E-09 
a_ifng_th1 Production of IFN by activated Th1 cells 0.000000615 
a_ifng_ctl Production of IFN by activated CTL 0.0000293 
a_ifnb Basal induction of Type I IFN 0.031744795 
b_ifnb Clearance rate of Type I IFN 3.59 
a_ifnb_at1 Production of Type I IFN by damaged AT1 cells 0.00004 
a_ifnb_i Production of Type I IFN by irradiated AT2 cells 0.00007 
a_ifnb_d Production of Type I IFN by damaged cells 0.0001 
a_ifnb_dc Production of Type I IFN by mature dendritic cells 0.00007 
a_il2_dc Production of IL-2 by mature dendritic cells 0.000000056 
a_il2_th1 Production of IL-2 by activated Th1 cells 0.00000002 
b_il2 Clearance rate of IL-2 1.913 
a_il2 Basal induction rate of IL-2 25.96608 
a_il12_m1 Production rate of IL-2 by activated macrophages 6.18E-08 
a_il12_dc Production rate of IL-2 by mature dendritic cells 4.98E-08 
b_il12 Clearance rate of IL-12 2.73 
a_il12 Basal induction of IL-12 48.26304 
a_il17_th17 Production rate of IL-17 by activated Th17 cells 0.0000105 
a_il17_ctl Production rate of IL-17 by activated CTL 3.45E-09 
b_il17 Clearance rate of IL-17 0.0825 
a_il17 Basal induction rate of IL-17 0.12997152 
a_il10_treg Production rate of IL-10 by Treg cells 0.0000115 
b_il10 Clearance rate of IL-10 by Treg cells 1.22 
a_il10 Basal induction rate of IL-10  0.272538 
a_tgfb_th17 Production rate of TGF by activated Th17 cells 0.00000742 
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a_tgfb_treg Production rate of TGF by activated Treg cells 0.00000715 
b_tgfb Clearance rate of TGF 1.9 
a_tgfb Basal induction rate of TGF 2.1506688 
a_gmcsf_m1 Production rate of GM-CSF by activated macrophages 0.00000127 
a_gmcsf_th1 Production rate of GM-CSF by activated Th1 cells 4.29E-08 
a_gmcsf_th17 Production ratio of GM-CSF by activated Th17 cells 0.000000115 
b_gmcsf Clearance rate of GM-CSF 1 
a_gmcsf Basal induction of GM-CSF 15.5232 
a_il1b Basal induction rate of IL-1 0.084672 
b_il1b Clearance rate of IL-1 0.088 
a_il1b_at1 Production rate of IL-1 by damaged AT1 cells 5.17E-10 
a_il1b_i Production rate of IL-1 by irradiated AT1 cells 2.07E-09 
a_il1b_at2 Production rate of IL-1 by damaged AT2 cells 5.17E-09 
a_il1b_m1 Production rate of IL-1 by activated macrophages 2.07E-08 
a_il1b_dc Production rate of IL-1 by mature dendritic cells 0 
kbasal_ROS Basal Production rate of reactive oxygen species (ROS) 0 
b_ROS Clearance rate of ROS 0 
basal_tnfa Basal Production rate of TNF 24 
basalil6 Basal Production rate of IL-6 40 
basalil1 Basal Production rate of IL-1 5.714285714 
basalifng Basal Production rate of IL-1 20 
basalifnb Basal Production of Type I IFN 8 
basalil2 Basal Production rate of IL-2 4 
basalil12 Basal Production of IL-12 1.2 
basalil10 Basal Production rate of IL-10  10 
basaltgfb Basal Production rate of TGF 1 
basalgmcsf Basal Production of GM-CSF 4 
ktr_TNFa Transport rate of TNF from lung to blood compartment 0.1 
ktr_IL6 Transport rate of IL-6 from lung to blood compartment 0.1 
ktr_IL1b Transport rate of IL-1 from lung to blood compartment 0.1 
ktr_IFNb Transport rate of Type I IFN from lung to blood compartment 0.1 
ktr_IFNg Transport rate of IFN from lung to blood compartment 0.1 
ktr_IL2 Transport rate of IL-2 from lung to blood compartment 0.2 
ktr_IL12 Transport rate of IL-12 from lung to blood compartment 0.1 
ktr_IL17 Transport rate of IL-17 from lung to blood compartment 0.1 
ktr_IL10 Transport rate of IL-10 from lung to blood compartment 0.1 
ktr_TGFb Transport rate of TGF from lung to blood compartment 0.1 
ktr_GMCSF Transport rate of GM-CSF from lung to blood compartment 0.1 
Gut Volume of Gut Compartment 933 
Lung Volume of Lung Compartment 2016 
Blood Volume of Blood Compartment 4500 
Liver Volume of Liver Compartment 1660 

 

Table 8: List of all parameters in GLA model 
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6.2. Appendix 2: List of Weighted Parameters for CD and UC modes 
of the Gut model 

 

Table 9 contains the list of parameters that vary between HV, CD and UC modes of 

the Gut model and their corresponding weights. The weights are multiplied with the 

original parameter value (Table 2) and the model is simulated with the new parameter 

values. 
 

Parameter Description CD weight UC weight 
kbasal_Th0 basal production/transport of Th0 cells 1.3232 1.2815 
kbasal_iDC basal rate of production of iDC 0.70816 1.0587 
kbasal_IL12 basal production of IL12 12.03 10.161 
kbasal_IFNg basal production of IFNg 1.477 2.3055 
kbasal_IL2 basal production of IL2 0.40747 0.62802 
kbasal_IL6 basal production of IL6 38.865 45.653 
kbasal_IL23 basal production of IL23 2.761 1.7523 
kbasal_IL21 basal production of IL21 1.4232 1.4249 
kbasal_TGFb basal production of TGFb 1.5605 1.2589 
kbasal_IL10 basal production of IL10 1.9374 1.4905 
kbasal_TL1A basal production of TL1a 1.5048 1.4516 
kbasal_IL13 basal production of IL13 1.2563 1.1232 
kbasal_IL17 basal production of IL17 1.6542 0.76111 
kbasal_IL5 basal production of IL5 0.76665 1.3089 
kbasal_IL4 basal production of IL4 0.81628 0.56996 
kbasal_IL15 basal production of IL15 3.1125 0.95477 
kbasal_IL18 basal production of IL18 0.82712 0.86236 
kbasal_TNFa basal production of TNFa 51.606 15.752 
kbasal_NK basal production/transport of NK cells 0.65321 0.88643 
kbasal_IL22 basal production of IL22 3.7278 86.925 
kbasal_NKT basal production of NKT 0.81046 0.48696 
kbasal_Neu basal production of Neu 1.3929 0.7581 
kbasal_IL8 basal production of IL8 6.1081 5.08 
kbasal_GMCSF base production of GMCSF 0.79432 0.98607 

 

Table 9: List of weighted parameters for CD and UC modes of the Gut model 
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6.3. Appendix 3: Simulation of Gut Model 
 

Figure 23 shows the dynamics of the simulations of the gut model for the immune cell 

populations and cytokines.  

 

 

Figure 23: Time Evolution of immune cell population and cytokines for the Gut model. The 

dynamics of the simulation of gut model for helper T cell subpopulations (a), macrophage 

subpopulations (b), dendritic cell (DC) subpopulations and cytokines (d) indicate that the model reaches 

steady state at the end of the simulation.  
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6.4. Appendix 4: Sensitivity Analysis of Gut Model 
 

Table 10 and Table 11 shows the description of parameters identified in the sensitivity 

analysis of state variables Blood_CRP and Gut_Neu_act in the Gut model 

respectively. 

 

Parameter Description 
kdeg_IL6 Degradation rate of IL6 

kmax_IL6_b Maximum IL6 production rate in the blood 
KmProtSyn Half-sat, IL6 on CRP production 

kIL6_bloodtoliver Transport rate of IL6 from blood to liver 
kdeg_IL17 Degradation rate of IL17 

kbasal_IL17_b Basal rate of IL17 production in the blood 
k6_37 Half-sat, IL17 on IL6 production 

VmProtSynth Rate of CRP production 
kCRP_LivertoBlood Transport rate of CRP from liver to blood 

kdeg_TNFa Degradation rate of TNFa 
k5_37 Half-sat, TNFa on IL6 production 

gamma_IL17 Basal weight of IL17 production 
kbasal_TNFa_b Basal rate of TNFa production in the blood 

kCRP_BloodtoLiver Transport rate of CRP from blood to liver 
vf_5 Rate of Th0 Production 

Th0_blood_constant Amount of Th0 available to move to the gut 
kdeg_M0 Degradation rate of M0 

kbasal_Th0 Basal production rate of Th0 
kdeg_CRP Degradation of CRP 
kbasal_M0 Basal recruitment of M0 
kdeg_M2 Degradation rate of M2 
kdeg_Th1 Degradation rate of Th1 

vf_19 Rate of activation of M0 to M2 
kdeg_Th0 Degradation rate of Th0 

vf_21 Rate of activation of M2 to M1 
 

Table 10: Description of the top 25 sensitive parameters from the sensitivity analysis of CRP in blood 
of the Gut model 
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Parameter Description 
kdeg_Neu Degradation of Neu 

vf_5 Rate of Th0 Production 
Th0_blood_constant Amount of Th0 available to move to the gut 

kbasal_Th0 Basal production rate of Th0 
kbasal_Neu Basal production of Neu in Blood 

vf_94 Rate of transport of Neu from Blood to Gut 
vf_115 Rate of Neu activation 

kdeg_M0 Degradation rate of M0 
kdeg_Th0 Degradation rate of Th0 
kbasal_M0 Basal recruitment of M0 
kdeg_Th1 Degradation rate of Th1 
kdeg_M2 Degradation rate of M2 

k2_94 Half-sat, IL8 on transport of Neu from Blood to Gut 
kbasal_IL8 Basal production of IL8 

vf_19 Rate of activation of M0 to M2 
vf_21 Rate of activation of M2 to M1 

kbasal_115 Basal activation of Neu 
vf_20 Rate of activation of M1 to M2 

kdeg_Th17 Degradation rate of Th17 
vf_1 Rate of Th0 to Th1 differentiation 

kdeg_IL8 Degradation of IL8 
kdeg_M1 Degradation rate of M1 
kbasal_21 Basal activation of M2 to M1 

kdeg_TNFa Degradation rate of TNFa 
vf_18 Rate of activation of M0 to M1 

 

Table 11: Description of the top 25 sensitive parameters from the sensitivity analysis of gut activated 
neutrophils of the Gut model 
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6.5. Appendix 5: Simulation of Lung Model 
 

Figure 24 shows the dynamics of the simulations of the lung model for the pulmonary 

alveolar and immune cell populations, and cytokines. 

 

Figure 24: Time Evolution of pulmonary alveolar population, immune cell population and 
cytokines for the Lung model. The dynamics of the simulation of lung model for healthy AT1 and AT2 

cells (a, blue and red respectively), damaged AT1 and AT2 cells (b, blue and red respectively), T cell 

subpopulations (c) and cytokines (d) indicate that the model reaches steady state at the end of the 

simulation.  
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6.6. Appendix 6: Sensitivity Analysis of Lung Model 
 

Table 12, Table 13 and Table 14 shows the description of parameters identified in the 

sensitivity analysis of state variables Blood_CRP, Blood_SPD and dAT2 in the Lung 

model respectively. 

 

Parameter Description 
kbasal_CRP Basal level of CRP production 
kdeg_CRP Degradation of CRP 

b_il6 Clearance rate of IL-6 
kCRP_BloodtoLiver Transport rate of CRP from blood to liver 

a_il6 Basal induction rate of IL-6 
k_livercrp Secretion of CRP from liver hepatocytes 

kCRP_LivertoBlood Transport rate of CRP from liver to blood 
basalil6 Basal Production rate of IL-6 
ktr_IL6 Transport rate of IL-6 from alveolar to plasma compartment 

mu_AT2 Rate constant for basal regeneration of AT2 
k_damage_cyt Rate constant overall cytokine damage 

b_dAT1 Death rate for damaged AT1 cells 
k_dAT Rate constant for innate immune activation by damaged cells 

km_dAT EC50 for innate immune activation by damaged cells 
a_M1 Rate constant for activation of macrophages 
a_ifng Basal induction rate of IFN 

k_damage_IFNg Rate constant for IFN𝞬 induced damage 
km_damage_IFNg IC50 for IFN𝞬 induced damage 

 

Table 12: Description of the top 20 sensitive parameters from the sensitivity analysis of CRP in blood 
of the Lung model 

 

Parameter Description 
mu_AT2 Rate constant for basal regeneration of AT2 

k_damage_cyt Rate constant overall cytokine damage 
b_dAT1 Death rate for damaged AT1 cells 
a_SPD Basal induction rate of SPD 
ktr_SPD Transport rate of SPD from alveolar to plasma compartment 
a_ifng Basal induction rate of IFN 

k_damage_IFNg Rate constant for IFN𝞬 induced damage 
km_damage_IFNg IC50 for IFN𝞬 induced damage 

k_damage_IL6 Rate constant for IL-6 induced damage 
a_il6 Basal induction rate of IL-6 

basalil6 Basal Production rate of IL-6 
km_damage_IL6 IC50 for IL-6 induced damage 

b_ifng Clearance rate of IFN 
basalifng Basal Production rate of IFN𝞬 
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ktr_IL6 Transport rate of IL-6 from alveolar to plasma compartment 
b_il6 Clearance rate of IL-6 
a_il1b Basal induction of IL-1β 

k_damage_IL1b Rate constant for IL-1β induced damage 
basalil1 Basal Production rate of IL-1 

km_damage_IL1b IC50 for IL-1β induced damage 
 

Table 13: Description of the top 20 sensitive parameters from the sensitivity analysis of SPD in blood 
of the Lung model 

 

Parameter Description 
mu_AT2 Rate constant for basal regeneration of AT2 

k_damage_cyt Rate constant overall cytokine damage 
b_dAT1 Death rate for damaged AT1 cells 
a_ifng Basal induction rate of IFN 

k_damage_IFNg Rate constant for IFN𝞬 induced damage 
km_damage_IFNg IC50 for IFN𝞬 induced damage 
km_damage_IL6 IC50 for IL-6 induced damage 

a_il6 Basal induction rate of IL-6 
basalil6 Basal Production rate of IL-6 

km_damage_IL6 IC50 for IL-6 induced damage 
b_ifng Clearance rate of IFN 

basalifng Basal Production rate of IFN𝞬 
km_AT1_AT2 Half-sat for differentiation of AT2 to AT1 

ktr_IL6 Transport rate of IL-6 from alveolar to plasma compartment 
b_il6 Clearance rate of IL-6 
a_il1b Basal induction of IL-1β 

k_damage_IL1b Rate constant for IL-1β induced damage 
basalil1 Basal Production rate of IL-1 

km_damage_IL1b IC50 for IL-1β induced damage 
k_dAT Rate constant for innate immune activation by damaged cells 

 

Table 14: Description of the top 20 sensitive parameters from the sensitivity analysis of damaged 
alveolar AT2 cells of the Lung model 
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6.7. Appendix 7: Flow Cytometric Data of Immune Populations from 
Mice 
 

Table 15 describes the immune cell counts from the individual mice samples and the 

corresponding calculations.  

Mice ID Organ Cell Type Count 
Recorded 

Total  
Immune 
Counts 

Percentage Average 
Percentage 

Mice 1 Lungs T cells 7118 30418 23.4 
20.09 Mice 2 Lungs T cells 4951 33277 14.88 

Mice 3 Lungs T cells 8258 37545 21.99 
Mice 1 Lungs Cytotoxic T cells 2106 30418 6.92 

7.1 Mice 2 Lungs Cytotoxic T cells 1333 33277 4.01 
Mice 3 Lungs Cytotoxic T cells 3892 37545 10.37 
Mice 1 Lungs B cells 10751 30418 35.34 

41.15 Mice 2 Lungs B cells 15287 33277 45.94 
Mice 3 Lungs B cells 15830 37545 42.16 
Mice 1 Lungs NK cells 81 30418 0.27 

0.26 Mice 2 Lungs NK cells 66 33277 0.2 
Mice 3 Lungs NK cells 121 37545 0.32 
Mice 1 Lungs Neutrophils 9820 61459 15.98 

14.52 Mice 2 Lungs Neutrophils 12430 79703 15.6 
Mice 3 Lungs Neutrophils 8531 71140 11.99 
Mice 1 Lungs Monocytes 7021 61459 11.42 

7.98 Mice 2 Lungs Monocytes 4077 79703 5.12 
Mice 3 Lungs Monocytes 5270 71140 7.41 
Mice 1 Lungs Total Macrophages 13682 61459 22.26 

19.49 Mice 2 Lungs Total Macrophages 13893 79703 17.43 
Mice 3 Lungs Total Macrophages 13366 71140 18.79 
Mice 1 Lungs Alveolar Macrophages 4157 48414 8.59 

11.61 Mice 2 Lungs Alveolar Macrophages 6299 50000 12.6 
Mice 3 Lungs Alveolar Macrophages 6827 50000 13.65 
Mice 1 Lungs Interstitial Macrophages 8210 48414 16.96 

15.34 Mice 2 Lungs Interstitial Macrophages 8292 50000 16.58 
Mice 3 Lungs Interstitial Macrophages 6234 50000 12.47 
Mice 1 Blood T cells 7427 48848 15.2 

12.92 Mice 2 Blood T cells 6887 65070 10.58 
Mice 3 Blood T cells 6826 52614 12.97 
Mice 1 Blood Cytotoxic T cells 4383 48848 8.97 

6.08 Mice 2 Blood Cytotoxic T cells 2694 65070 4.14 
Mice 3 Blood Cytotoxic T cells 2703 52614 5.14 
Mice 1 Blood Helper T cells 1977 48848 4.05 

4.95 Mice 2 Blood Helper T cells 3354 65070 5.15 
Mice 3 Blood Helper T cells 2971 52614 5.65 
Mice 1 Blood B cells 10742 48848 21.99 

24.09 Mice 2 Blood B cells 14558 65070 22.37 
Mice 3 Blood B cells 14678 52614 27.9 

 
       



100 
 

Mice 1 Blood NK cells 239 48848 0.49 
0.49 Mice 2 Blood NK cells 143 65070 0.22 

Mice 3 Blood NK cells 393 52614 0.75 
Mice 1 Spleen T cells 13306 35824 37.14 

38.71 Mice 2 Spleen T cells 16169 39859 40.57 
Mice 3 Spleen T cells 15974 41575 38.42 
Mice 1 Spleen Cytotoxic T cells 6771 35824 18.9 

16.94 Mice 2 Spleen Cytotoxic T cells 6746 39859 16.92 
Mice 3 Spleen Cytotoxic T cells 6233 41575 14.99 
Mice 1 Spleen Helper T cells 4468 35824 12.47 

16.17 Mice 2 Spleen Helper T cells 7137 39859 17.91 
Mice 3 Spleen Helper T cells 7543 41575 18.14 
Mice 1 Spleen B cells 17831 35824 49.77 

49.39 Mice 2 Spleen B cells 18747 39859 47.03 
Mice 3 Spleen B cells 21353 41575 51.36 
Mice 1 Spleen NK cells 37 35824 0.1 

0.06 Mice 2 Spleen NK cells 11 39859 0.03 
Mice 3 Spleen NK cells 17 41575 0.04 
Mice 1 Spleen Dendritic Cells 1660 38535 4.31 

3.71 Mice 2 Spleen Dendritic Cells 1436 36452 3.94 
Mice 3 Spleen Dendritic Cells 1114 38515 2.89 
Mice 1 Lymph Nodes T cells 11180 25217 44.34 

51.48 Mice 2 Lymph Nodes T cells 16239 30334 53.53 
Mice 3 Lymph Nodes T cells 19081 33724 56.58 
Mice 1 Lymph Nodes Cytotoxic T cells 6034 25217 23.93 

24.47 Mice 2 Lymph Nodes Cytotoxic T cells 6560 30334 21.63 
Mice 3 Lymph Nodes Cytotoxic T cells 9389 33724 27.84 
Mice 1 Lymph Nodes Helper T cells 4011 25217 15.91 

22.1 Mice 2 Lymph Nodes Helper T cells 7902 30334 26.05 
Mice 3 Lymph Nodes Helper T cells 8206 33724 24.33 
Mice 1 Lymph Nodes B cells 9576 25217 37.97 

38.96 Mice 2 Lymph Nodes B cells 12206 30334 40.24 
Mice 3 Lymph Nodes B cells 13045 33724 38.68 
Mice 1 Lymph Nodes NK cells 6 25217 0.02 

0.01 Mice 2 Lymph Nodes NK cells 1 30334 0.003 
Mice 3 Lymph Nodes NK cells 7 33724 0.02 
Mice 1 Lymph Nodes Dendritic Cells 1285 42550 3.02 

2.59 Mice 2 Lymph Nodes Dendritic Cells 1412 42982 3.29 
Mice 3 Lymph Nodes Dendritic Cells 657 44733 1.47 

 

Table 15: Calculations of immune cell population in different tissues of the individual mice 
samples.  The table shows the immune cell type recorded by the flow cytometer present in the tissue 

sample of the corresponding mice ID. The averages shown in the above table are rounded off to the 

nearest two-digit decimals.  
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6.8. Appendix 8: Sensitivity Analysis of Gut-Lung Axis Model 
 

Table 16 and Table 17 shows the description of parameters identified in the sensitivity 

analysis of state variables Blood_CRP and Blood_SPD in the Gut-Lung Axis model 

respectively. 

 

Parameter Description 
kdeg_IL6 Degradation rate of IL6 

KmProtSyn Half-sat, IL6 on CRP production 
kmax_IL6_b Maximum IL6 production rate in the blood 

kIL6_bloodtoliver Transport rate of IL6 from blood to liver 
kdeg_M0 Degradation rate of M0 

k5_37 Half-sat, TNFa on IL6 production 
k2_17 Recruitment of M0 induced by activated Macrophages 

Th0_blood_constant Amount of Th0 available to move to the gut 
kCRP_LivertoBlood Transport rate of CRP from liver to blood 

vf_5 Rate of Th0 Production 
kbasal_TNFa_b Basal rate of TNFa production in the blood 

kdeg_M2 Degradation rate of M2 
VmProtSynth Rate of CRP production 

kCRP_LivertoBlood Transport rate of CRP from liver to blood 
kdeg_TNFa Degradation rate of TNFa 
kdeg_Th1 Degradation rate of Th1 

vf_21 Rate of activation of M2 to M1 
vf_20 Rate of activation of M1 to M2 

kdeg_M1 Degradation rate of M1 
kbasal_Th0 Basal production rate of Th0 

vf_19 Rate of activation of M0 to M2 
vf_18 Rate of activation of M0 to M1 

kCRP_BloodtoLiver Transport rate of CRP from blood to liver 
kbasal_M0 Basal recruitment of M0 

kbasal_IL17_b Basal rate of IL17 production in the blood 
k6_37 Half-sat, IL17 on IL6 production 

 

Table 16: Description of the top 25 sensitive parameters from the sensitivity analysis of CRP in blood 
of the Gut-Lung Axis model 

 

Parameter Description 
mu_AT2 Rate constant for basal regeneration of AT2 
b_SPD Clearance rate of SPD 

k_damage_cyt Rate constant overall cytokine damage 
b_dAT1 Death rate for damaged AT1 cells 
a_SPD Basal induction rate of SPD 

k_damage_IL6 Rate constant for IL-6 induced damage 
km_damage_IL6 IC50 for IL-6 induced damage 
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kmax_IL6_b Maximum IL6 production rate in the blood 
a_il1b Basal induction of IL-1β 

k_damage_IL1b Rate constant for IL-1β induced damage 
km_damage_IL1b IC50 for IL-1β induced damage 

a_il6 Basal induction rate of IL-6 
basalil6 Basal Production rate of IL-6 
b_ifng Clearance rate of IFN 

basalifng Basal Production rate of IFN𝞬 
kdeg_M0 Degradation rate of M0 
kdeg_IL6 Degradation rate of IL6 

k2_17 Recruitment of M0 induced by activated Macrophages 
k5_37 Half-sat, TNFa on IL6 production 
b_il6 Clearance rate of IL-6 

Th0_blood_constant Amount of Th0 available to move to the gut 
vf_5 Rate of Th0 Production 

kbasal_TNFa_b Basal rate of TNFa production in the blood 
kdeg_M2 Degradation rate of M2 

kdeg_TNFa Degradation rate of TNFa 
 

Table 17: Description of the top 25 sensitive parameters from the sensitivity analysis of SPD in blood 
of the Gut-Lung Axis model 

   

 

 


