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Abstract

In this thesis, we study quantum information scrambling in the Bose Hubbard model on two

dimensional honeycomb lattices. Using Krylov subspace methods, we compute Out-of-time

Ordered Correlators (OTOCs) and other information theoretic measures for our model and

we find that the system is quantum chaotic at strong couplings. The scrambling dynamics

are sensitive to the surroundings of the two local sites chosen for the OTOC and also display

an interesting Gaussian to near-exponential behavior similar to that of the decoherence

function. We present a master equation by considering a subsystem of the lattice as an open

system and leave the exact numerical solution to the master equation for future reference.

We also make attempts to relate the quantum work distribution and quantum coherence

with information scrambling.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

Information Scrambling refers to spreading of quantum information and e↵ective loss of local

initial information in quantum many body systems. Here, the system becomes memoryless

and insensitive to its initial conditions. It seems like an inconsistent idea because of the fact

that these are closed quantum systems which obey unitary evolution. It so happens that an

initially localised information spreads throughout the system and appears in the non-local

degrees of freedom. Information scrambling can be measured using various quantities such as

the Out-of-time Ordered Correlator, entanglement entropy, mutual information, tripartite

mutual information, dynamics of local observables and others. The notion of scrambling

appears in a lot of areas of physics such as thermalization, black hole information para-

dox,quantum chaos and so on [9, 30, 3, 7, 20, 8, 23] Information scrambling has been verified

experimentally in superconducting quantum processors[33, 15] and in actual quantum sys-

tems such as trapped ions and cold atoms [24, 6, 16]

In the context of the famous information paradox, the black hole is treated as a uni-

tary circuit. Alice encodes an initial state within this setup and this information scrambles

throughout the quantum circuit.Bob can then decode Alice’s initial state and such decod-

ing protocols are inspired from ideas on teleportation through a wormhole [15, 31, 2]. The

holographic principle connects certain quantum field theories to gravity theories in one ex-

tra dimension [17] Using this holographic duality, a great deal of understanding about the
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quantum nature of black holes has been achieved by studying the properties of their dual

strongly interacting quantum systems such as the Sachdev-Ye-Kitaev(SYK) model which is

a system of interacting Majorana fermions. [13, 18]

One of the widely used measures of scrambling is the OTOC which has been studied in this

thesis. This quantity cannot distinguish between information scrambling and decoherence

[31] The external noise in an experimental setup and decoherence from interacting with the

environment also lead to the decay of OTOCs even in the absence of scrambling dynamics.

The interplay between scrambling and decoherence was also recently explored using mutual

information of open systems. [25]

In this work, we study information scrambling in the Bose Hubbard model on graphene

like lattices. It was shown that electrons in graphene exhibit quantum phases which are

described by black hole in the dual theory of AdS [4]. The Bose-Hubbard model is known

to be dual to gravity theory in AdS [5]. It also shows quantum chaos: exponential decay of

the OTOC in one dimensional lattices, eigenvalue spacing distributions, eigenvalue thermal-

ization hypothesis and other such measures [19, 22]. Here, we explore the scrambling e↵ects

in Bose Hubbard model in two dimensional graphene geometries using exact diagonalization

techniques and build an open system framework to understand scrambling in unitary models

as decoherence of information from localised sites treated as open system. This thesis is

presented in four broad parts.

1. The first part consists of the next four sections where we introduce the Out-of-time

Ordered Correlator (OTOC) as a measure for information scrambling and discuss about

other related information theoretic measures as well. In this part, we also introduce

the Bose Hubbard Hamiltonian and its interesting non-equilibrium properties. Then,

we briefly talk about the honeycomb lattice and its linear dispersion relation.

2. The second part consists of the subsequent four sections, taking ideas from decoherence

theory, we discuss how the OTOC can be described as a convolution of the Gaussian

and the exponential function. Then we present results for OTOCs of our model of

interest and introduce the idea of looking at the Bose-Hubbard model as an open

quantum system.

3. The third part consists of the next two sections where we explore the thermodynam-

ics of information scrambling. We connect from scrambling, work distribution and
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quantum coherence.

4. In the final part, we conclude and present ideas for future work.

1.2 OTOCs as indicators of scrambling

One of the widely used quantities to probe scrambling is Out of Time Ordered Correlators

(OTOCs). Consider a system described by a Hamtiltonian H and an initial state | i. Given

two operators W and V , the OTOC is given by

h |W+(t)V +W (t)V | i (1.1)

where O(t) = eiHtOe�iHt is time evolved operator in Heisenberg picture. This is related to

the commutator between W and V as

h[W (t), V ]2i = 2(1�Re[hW+(t)V +W (t)V i]) (1.2)

.

Sometimes, eq(1.2) is used as the definition of OTOC. If eq(1.1) shows a decay, then

using eq(1.2), we would observe growth of the OTOC.

Consider a spin chain where W and V are operators at di↵erent sites in the chain.

Initially at t=0, both the operators commute with each other. At later times, the time

evolved operator starts getting contributions from operators at other sites in the chain and

after a time proportional to the spatial separation of two sites, W(t) and V do not commute

with each other. The operator W can be thought of as a perturbation which is evolved

forward and backward in time and idea is to see what happens when you apply V before

and after this perturbation. This idea is presented in figure 1.1 below. In this context of

spin chains, imagine that we take two initial orthogonal states and look at the expectation

value of some local operator, it can distinguish between the two states. For chaotic systems,

after the thermalization time, the expectation value becomes the same for the operator in

both the states. It is said that information is scrambled or lost in a manner that it cannot

be recovered using local measurements on the system. In such a case, information is found
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Figure 1.1: Understanding OTOC from an operator growth perspective

to spread ballistically. The speed of this ballistic information propagation is called butterfly

velocity vB and can be measures using OTOCs which behave as e�L(t�x/vB) where �L is

called the Lyapunov exponent (usually for systems with finite temperature). There exists a

universal bound for the Lyapunov exponent of the form �L  2⇡kBT/~. Very interestingly,

it was shown that black holes saturate this bound in the context of AdS/CFT.

While the OTOC is a state dependent quantity, one can also talk about state independent

operator norms of commutators. The Lieb-Robinson bounds provides an upper bound to

the size of commutators of local operators. For the operators W(r,t) and V(r’,0) ,

k[W (r, t), V (r0)]k  CkWkkV ke�(t�
|r�r0|
vLR

)
(1.3)

where vLR is known an the Lieb-Robinson velocity and acts as speed of light in these many

body systems. This can be derived just based on the fact that Hamiltonian of the system

is local and does not take into account the detailed nature of the interactions present in the

Hamiltonian. Notice that if |r�r0| << vLRt, then the commutator is vanishingly small. It has

also been shown that the butterfly velocity (extracted from OTOCs) vB is a state dependent

Lieb-Robinson veloctiy [21]. For general quantum system with short range interactions that

thermalize, correlations can only spread within this light cone given by the Lieb-Robinson

bound. There are however, systems where this bound is rather loose and information either

propagtes slower or shows some sort of periodic revivals. For example, it is known that

localization is possible for many-body systems in the presence of a disorder: this is known

as Many-Body Localization(MBL). In this case, one finds a logarithmic light cone instead

using OTOCs [10]. Another example in which information spreads di↵erently from the ones
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Figure 1.2: Ilustration of Scrambling for various types of thermalisations[32]

mentioned above is quantum many-body scarred systems: here one finds a linear light cone

but with periodic revivals inside light cone whenever the the initial state belongs to the

subspace of scarred states [32]. These various classes are shown in Fig1.2

Another tool that is used as a diagnostic for quantum chaotic systems is the Loschmidt

Echo (LE) which is given by

M(t) =
��h | eiH0tei(H0+V )t | i

��2 (1.4)

This can be understood as starting with an initial state | i, evolving it with the Hamiltonian

of the system H0 and then evolving the same initial state with some added perturbation V

and finally looking at the overlap between the two time evolved states. The idea behind

studying this quantity is that small perturbations may result in drastic changes in the dy-

namics of the system, reminiscent of the butterfly e↵ect. For systems with the general

Hamiltonian structure H = HA +HB + �
P

k
V k

A
⌦ V k

B
, it was shown that the Haar-averaged

OTOC can be written in the form of a Loschmidt Echo [28]. More precisely,

F�(t) =

Z
dAdBF�(t) =

1

N2

X

↵,↵0=1

����
1

dB
Tr
�
ei(HB+V↵)te�i(HB+V↵0 )t

 ����
2

(1.5)

where V↵ = �
P

k
±V k

B
is a linear combination of the bath interaction operators and

F�(t) = hA†(t)B†A(t)Bi� (1.6)

As we will eventually see, through the course of this thesis, that this way of looking at

OTOCs will help us understand the nature of information scrambling in two dimensional

quantum systems.
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1.3 Other measures of information scrambling

In this section, we will look at various measures of scrambling other than OTOCs and how

they are related to OTOCs.

1. Mutual Information Consider a system S which is divided into two partitions A and

B. The mutual information of such a setup is given by

I(A : B) = SA + SB � SAB (1.7)

where SA/B is the Von-Neumann entropy of the reduced subsystems (A/B). In [26],

the Haar-averaged bipartite OTOC was shown to be upper bounded by the the mutual

information over bi partitions.

1� F�(t)  I(A : B)(t) (1.8)

Since, in the context of information scrambling, 1�F�(t) is a monotonically increasing

function of time, Eq(1.8) is a rigorous relationship which tells us mutual information

also grows in time. This has thermodynamics implications and will be discussed in a

little detail in one of the later sections

2. Tripartite Mutual Information Let A,B,C be three subregions of the lattice. Then the

TMI is defined as:

I3(A : B : C) = I2(A : B) + I2(A : C)� I2(A : BC) (1.9)

TMI is negative when I2(A : B)+I2(A : C)  I2(A : BC). In other words, information

about A in BC combined is greater than sum of information about A in B and C

separately. In the context of many-body systems, we start with a reference state (say a

qubit) and a many body system (say a finite spin chain). Initially, the reference qubit

is entangled with one of the sites in the lattice. The system then evolves unitarily

and with the help of TMI, we observe how information is scrambled across the many

body system. It characterizes the delocalization of quantum information. In [11], they

discuss the behaviour of TMI for variety of systems such as non-integrable spin chains,

MBL systems, SYK model. Their work shows that quantum information scrambling

is a di↵erent idea than that of conventional quantum chaos.
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These information theoretic measures have the advantage that they are independent of the

choice of operators unlike the OTOC, where a Haar-average is necessary to make operator

independent statements. In general, it’s not very trivial to compute. In the rest of the thesis,

we use these measures to quantify scrambling.

1.4 Bose Hubbard Model and Honeycomb Lattice

In this thesis, we study information scrambling using the Bose-Hubbard model. The Hamil-

tonian is given by:

H = �J
X

<i,j>

(a†
i
aj + a†

j
ai) +

U

2

X

i

ni(ni � 1) (1.10)

where J is the nearest neighbour hopping coe�cient, U is the on-site potential, ai(a
†
I
) is the

annihilation (creation) operator at site i in the lattice and ni = a†
i
ai is the number of bosons

at site i in the lattice. Here < i, j > means the sum runs over nearest neighbours only.

The Bose-Hubbard model shows a second order quantum phase transition for a critical

value of U/J. when U ⌧ J the hopping term dominates and this is called the superfluid

phase. The bosons can hop around easily and form a Bose-Einstein condensate. For U � J

, the potential term dominates, the bosons have to pay a large cost to condense into a single

site and thus they tend to be localized at their respective sites in the lattice. This phase

is known as the Mott-insulator phase. The Bose-Hubbard model is known to be quantum

chaotic at large values of U/J or towards the right side of the critical point into the Mott

phase [22].The Bose-Hubbard model has a well-defined classical limit for fixed number of

sites L and increasing particle number N. In this limit, it is equivalent to the Discrete Non

linear Schrodinger equation (DNLS).

It has been shown [19] that the measures for classical chaos and measures for quantum

chaos in general agree with each other. Figure 1.4, where in each heatmap, a measure of

chaoticity is plotted against interaction parameter (proportional to U) and relative energy.

In the grayscale heatmap, intensity is proportional to the chaoticity- the lighter the region,

the more chaotic it is. In [19], it was shown that despite being a non-integrable model,

L=3 and to some extent L=4, is not a strongly chaotic model but rather mixed chaos (this
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Figure 1.3: Phase diagram of Bose Hubbard model [22]

Figure 1.4: Classical and Quantum chaos indicator for the Bose Hubbard model[19]

will not be discussed in detail). The important point is that in our study, we consider the

Bose-Hubbard model, with large enough sites so that it is strongly chaotic.

In [22], a modified form of OTOC for the Bose Hubbard model is computed. It is believed

that a (2+1) dimensional BH model at quantum critical regime is dual to a four dimensional

gravity model in anti-de Sitter space. In accordance, [22] conjectures that the Lyapunov

exponent extracted from the expoential decay of the OTOC at finite temperature attains a

maximum around the quantum critical region. However, the authors only show this for a

one-dimensional model. In our study, we present one of the first studies of OTOC in the

BHM for two dimensional geometries and explore their interesting behaviours.

The BHM is in general a very interesting model because of its non-equilirbium properties.

Because it is non-integrable and its hilbert space grows exponentially with system size, it

becomes increasingly di�cult to perform numerical simulations using exact diagonalization
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Figure 1.5: Decay of correlations with distance when U =40J [14]

techniques and performing complicated techniques like DMRG and tensor networks are out

of scope of this thesis; might be explored in a later work.

In a very interesting paper [14], the authors quenched the BHM from a superfluid to

Mott insulator. They explore whether, under such a quench, the two point correlations

bear memory of the initial conditions or are independent of them. They find that inspite

of the non-integrability of the model, when the final quench value of U is much larger

than the hopping coe�cient J, the decay of correlations with distance is slower than the

corresponding thermal correlations and even slower than the correlations in the ground state

in the final point. In contrast to this behaviour, when final value of U is comparable to

the superfluid transition (U  6J), the correlations match with that of the corresponding

thermal correlations and decay faster than the ground state correlations.

These results from the paper are shown here in fig 1.5 and fig 1.6. If one neglects the

quasi-particles interaction in the BHM, then the Hamiltonian can be diagonalised using a
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Figure 1.6: Decay of correlations with distance when U =4J [14]

Bogoliubov transformation so that H =
P

k,↵ !k�
†
↵,k�↵,k where �†

↵,k is the creation operator

for quasi-particle of the Mott insulator. Now, thermalization occurs due to the presence

of quartic process. But since this term is a number conserving quantity, such a process is

possible only when the energy is conserved. Deep into the Mott insulator regime, the energy

gap � is greater than half the quasi-particle bandwidth which then implies that the e↵ects

of thermalization due to the quartic process is negligible when U>>J. Whereas, near the

critical point when UJ, the quartic interaction has prominent contribution which leads to

thermalization. This is what we see the in the plots above. In one of the appendices, we show

how to diagonalize the Bose Hubbard model on a hyper-cubic lattice under weak coupling.

In our study, we consider the BHM on a honeycomb lattice. Below, we discuss some

interesting properties due to the lattice geometry. For simplicity, let us consider a tight-

binding model of electrons with just nearest neighbour hopping terms for graphene whose

Hamiltonian is given by:

H = �t
X

hiji

(a†
i
bjb

†
j
ai) (1.11)

where i(j) refers to sites in the sublattice A(B) in the graphene lattice and a, b are fermionic

14



annihilation operators. This can be rewritten as:

H = �t
X

i2A

X

�

(a†
i
bi+� + b†

i+�ai) (1.12)

where � is the position vector for nearest neighbours and hence in this case, the summation

runs over �1, �2, �3. Using a Fourier transformation, we can rewrite the operators in position

space as

a†
i
=

1p
N/2

X

p

eip.ria†
k

(1.13)

Substituting this into Eq 1.12 and after some algebraic manipulations, we obtain the following

form of the Hamiltonian

H =
X

p

 †h(p) (1.14)

where  † = (a†p, b
†
p) and

h(p) = �t

 
0 �p

�⇤
p 0

!
(1.15)

is the matrix representation of the Hamiltonian and �p =
P

�
eip.�. The energy of such a

system is given by the eigenvalues of Eq 1.15

E±(p) = ±t

s

1 + 4 cos

✓
3

2
pxa

◆
cos

✓
3

2
pya

◆
+ 4 cos2(

p
3

2
pya) (1.16)

Eq 1.16 tells us that there are two energy bands given by E+ and E�. These are plotted

in Fig 1.7. Unlike the band gap for a square lattice, these bands are not gapped and touch

each other at certain P points in the momentum space; the points are known as Dirac points.

In this p space, we look at the behavior of dispersion relation near the Dirac points.

Consider the relative momentum k = p-P where P refers to the Dirac point. About P, the

Hamiltonian is then given by :

h(P+k) = vF

 
0 kx + iky

kx � iky 0

!
(1.17)
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Figure 1.7: Energy band gaps for graphene

where vF / 3t/2. In terms of Pauli matrices, we can rewrite it as:

h(P+k) = vF (kx�x � qky�y) (1.18)

This is nothing but the 2D massless Dirac Hamiltonian which describes free relativistic

fermions and here the e↵ective speed of light is given by vF = 3at
2 . Then, it can be easily

shown that the energy bands are given by:

E±(p) / |p| (1.19)

In summary, in this chapter, we have explored interesting properties of the Bose Hubbard

model and the Honeycomb lattice separately. In our study, we study information scrambling

dynamics of the Bose Hubbard model on a honeycomb lattice using OTOCs.
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Chapter 2

Scrambling, Decoherence and Results

2.1 OTOC as a convolution function

In this section, we discuss how the decoherence function in an open system can be described

using a convolution of Gaussian and exponential function and how the same function can be

used to describe OTOCs as well [29]. When an isolated quantum system S is kept in contact

with an environment E , quantum information from S flows into E which causes decoherence.

Usually, decoherence is presumed to decay exponentially, this is not always the case. Now,

consider a single spin interacting with a general environment and the Hamiltonian for the

SE is given by:

H = ��z ⌦HI +HE (2.1)

where �z is the Pauli operator and the HI,E acts on E . We assume that the composite system

starts out in a product state

⇢SE(0) = ⇢S ⌦ ⇢E (2.2)

Let’s suppose the spin system starts in an initial state | S(0)i = a |0i+b |1i and ⇢E starts in en

energy eigenstate |ni. The decoherence factor in such a setup is given by r(t) = ⇢12(t)/(ab⇤).

This can be rewritten in the following manner:

r(t) = hn| eiHE te(�iHE t+�HP ) |ni (2.3)
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where HP is an e↵ective perturbation proportional to HI . Let the eigenstates of the per-

turbed Hamiltonian HE + �HP be Ek with eigenstates given by |ki =
P

n
Ck

n
|ni. In this

case, the decoherence factor becomes :

r(t) = eiEnt
X

k

e�iEkt
��Ck

n

��2 = eiEnt

Z
dEe�iEtF (E,En)⌘(E) (2.4)

where F (E,En) = |Ck
n
|2 is essentially the overlap between the perturbed and unperturbed

energy eigenstates averaged over the perturbed states and ⌘(E) is the global spectral den-

sity function. For Hamiltonian with few body interactions, spectral densities are given by

Gaussian distributions. It was also shown that the overlap F (E,En) can be approximated

as Lorrentzian distribution and hence the decoherence factor, upto an overall oscillation can

be written as a Fourier transform of the product of the Lorentzian overlap and the Gaussian

spectral density.

r(t) / e�⌧ t/2 ⇤ e��2
t
2
/2 /

X

±
e±⌧ t/2 Erfc(

⌧/2± �2tp
2�

) (2.5)

where * denotes convolution, � is the bandwidth (standard deviation) of the spectral density

distribution, ⌧ is the width of the overlap function and Erfc is the error function. When

⌧ � �, the expression reduces to exponential decay and when ⌧ < �, the above expression

reduces to a Gaussian decay. Although derived in the context of system which is described by

Eq (2.1), it was shown in [29] that this description of the decoherence function is applicable

to other non-trivial systems as well.

As mentioned before, in [28], it was shown that the Haar-averaged OTOC can be written

as a Loschmidt Echo (Eq 1.5). Note that in the above derivation of the deocherence factor

as a convolution function, the most important step is to be able to write the decoherence

factor as an imperfect echo loop or in a form similar to Loschmidt Echo which is also possible

for OTOCs. Hence, it is natural to think that the OTOC is also in general described by a

convolution function given by:

OTOC = Ae
�⌧t
2 Erfc(

⌧/2� �2tp
2�

) + Be
⌧t
2 Erfc(

⌧/2 + �2tp
2�

) (2.6)

where A,B are some constants which have been introduced by hand. In the next section,

we will see that Eq 2.6 is indeed a suitable description for scrambling dynamics of the Bose
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Hubbard lattice.

2.2 Results

We use Krylov subspace methods to compute OTOCs for this model. In one of the appen-

dices, we mention the theory of these methods used in numerics.

In Fig 2.1 and Fig 2.2, we show the OTOC for the one dimensional Bose-Hubbard with

L=6 sites and N=6 bosons with periodic boundary conditions in two di↵erent phases charac-

terised by the value U/J. The geometry is same as one hexagon. As the OTOC, in general, is

a complex quantity, here we choose to plot the absolute value of the OTOC. Note that, even

if we choose to plot only the real part, the behavior will be the same with some slight change

in the visible magnitude, because in all the data obtained, the imaginary part is negligible.

The sites chosen for the operators are any two nearest neighbours. Since, it’s a 1D ring with

6 sites, any pair of nearest neighbours would have the same OTOC.

We observe that for U ⌧ J (Fig 2.1), the OTOC shows large recurrences and there

is no exponential or dast decay , which is the chracterisitc for chaotic systems or systems

with fast scrambling. On the other hand, for U � J (Fig 2.2), the OTOC decays rapidly

and oscillates about some small mean value. As, we will see, these oscillations are due

to the small size of the 1 hex lattice. The contrasting rapid decay of the OTOC implies

that information scrambles very fast as the system enters into the Mott insulator phase and

becomes chaotic as compared to its behaviour in the Superfluid phase where it doesnot show

any chaotic behaviour where U ⌧ J . Hence, we find that Out-of-Time Ordered Correlators

are able to distinguish between the two phases of the Bose-Hubbard model. However, it is

not possible to characterize both the phases with the help of OTOC since quantities like

Lyapunov exponent and Butterfly velocity (which we will compute for U � J) are clearly

not defined for the Superfluid phase.

In Fig 2.3, |OTOC| for various values of U/J are shown. We find that starting from the

superfluid phase, as we keep on increasing U/J, the system goes more to the right side of

the quantum critical point and it starts decaying faster.

Next, we plot the change in mutual information for the Bose-Hubbard as a function of
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Figure 2.1: |ha1(t)†a†2a1(t)a2i | for the one dimensional Bose Hubbard model with N=6,
L=6 for U/J =0.25, | i = |1, 1, 1, 1, 1, 1i

Figure 2.2: |ha1(t)†a†2a1(t)a2i | for the one dimensional Bose Hubbard model with N=6,
L=6 for U/J=4, | i = |1, 1, 1, 1, 1, 1i

20



Figure 2.3: |ha1(t)†a†2a1(t)a2i| for the one dimensional Bose Hubbard model with N=6, L=6
for a range of coupling strengths
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Figure 2.4: Change in mutual information for the one dimensional Bose Hubbard model with
N=6, L=6 �I(A : B) over equal partitions A and B for U/J=4

time in Fig 2.4, which as mentioned before is also an indicator of information scrambling.

We divide the 1 hex lattice into equal partition with subsystem A containing the first 3

sites and subsystem B containing the rest of the 3 sites. Starting with the initial state

| i = |1, 1, 1, 1, 1, 1i, we compute �I(A : B) = I(A : B)(t)� I(A : B)(0) = I(A : B)(t). We

observe a rapid initial growth followed by oscillations about some mean value.

To verify Eq 1.8, we plot the change in 1�Re{OTOC} and �I(A : B) at early times in

Fig 2.5. It is interesting to see that the inequality in Eq 1.8 is obeyed even without taking

the Haar-average. This tells us that there is a high probability that OTOC formed from any

two randomly chosen operators shows behavior similar to the Haar averaged OTOC. Thus,

it saves us from the trouble of explicitly computing the Haar measure for our system in order

to observe scrambling behavior. It was shown in [1] that a related version of the OTOC ,

when Haar averaged, probes the ground state entanglement and hence should be able to

detect quantum phase transitions. We find clear evidence for this statement as mentioned

above.

Next, we compute the Tripartite Mutual Information (TMI) for the Bose Hubbard model.
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Figure 2.5: Comparison between change in OTOC and change in Mutual Information for
the one dimensional Bose Hubbard model with N=6, L=6

In this setup, we take a reference boson and entangle it with one of the bosons in the lattice.

The bosons in the lattice evolve via the usual Bose Hubbard Hamiltonian. Subsystem A

consists of just the single reference boson whose initial state does not change with time.

The 6 site lattice, which is the one hexagon setup here, is divided into three subsystems:

B containing the one site which is entangled with subsystem A, C containing the next 2

sites, D containing the last 3 sites. The initial state considered here is : | i = (|0i
A
⌦

|1i
B
+ |1i

A
⌦ |0i

B
) |1, 1, 1, 1, 1i

CD
. The expression for TMI is given by : I3(A : B : C) =

SA+SB+SC�(SAB+SAC+SBC)+(SABC = SD) since we the initial state | i is a pure state.
Note that one cannot take only two partitions of the lattice which evolves via Bose Hubbard

Hamiltonian because that would lead to I3(A : B : C) = 0 as the terms cancel because of

symmetry of the Von-Neumann entropy. The behaviour of TMI is shown in Fig 2.6.

In summary, we have verified signatures of quantum information scrambling using OTOCs,

Bi-partite Mutual information and Tripartite Mutual information in the Bose-Hubbard

model when the system is on the right hand side of the quantum critical point towards

the Mott Insulator phase.
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Figure 2.6: Tripartite Mutual Information I3(A : B : C) for the one dimensional Bose
Hubbard model with N=6, L=6 where A is a reference boson and B,C are partitions of the
6 site lattice
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Figure 2.7: Configuration of two dimensional hex lattices for case 1 where OTOCs for all
hex lattices match

Now, we increase the size of the hexagonal lattices and compute OTOCs for two di-

mensional lattices with two hexagons and three hexagons respectively. We also consider

two possible geometrical arrangement of the three hexagonal lattice. In the following three

di↵erent cases are mentioned which reveal interesting behvaior of the OTOCs.

2.2.1 All OTOCs agree

In Fig 2.7 above, we show three di↵erent configurations for the hex lattices with the yellow

dots representing the two sites over which local operators are defined for the OTOCs. Fig 2.8

shows plots forthe OTOC for the 1 hex, 2 hex and 3 hex lattices. The initial state considered

here is | i = |1, 1, 1, 1, 1, 1i The OTOC is in general a complex number, here we show the

modulus of the OTOC.

We find that for all the three lattices, the initial decay of the OTOC is exactly the same

but they di↵er in their long time behavior. We also see that the oscillations , which followed

after the rapid decay, in the case of 1 hex lattice is due to its small size since OTOCs for 2

hex and 3 hex do not show any such oscillations and just decay to zero.
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Figure 2.8: Behavior of OTOCs for the case ( Fig (2.7) ) when all OTOCs agree for the
initial state | i = |1, 1, 1, 1, 1i

2.2.2 Strip Configuration

In Fig 2.9, we show the strip configuration for the three lattices. It is named so, because to

increase the size of the lattice, hexagons are stacked right next to each other in a horizontal

fashion. Fig 2.10 shows the plot of OTOCs vs time for the initial state | i = |1, 1, 1, 1, 1, 1i.

We find that in this arrangement, the neighbourhood around the sites considered is

di↵erent in contrast to the previous case where the neighbourhood was same for all three

lattices. The OTOCs clearly di↵er from each other for di↵erent lattices. The data fits for

these are shown in Fig 2.11,2.12,2.13. For the case of 1 hex and 2 hex, the OTOC shows a

clear Gaussian decay. For 3 hex, it fits best to both the convolution function and Gaussian

decay but at the same time it’s very close to the exponential decay.

Later, using the fitting parameters obtained, we show that one gets a negative scrambling

velocity for the Gaussian decay and hence the convolution function is the best description

for the OTOC in the 3 hex case.
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Figure 2.9: Strip Configuration for the two dimensional hex lattices

Figure 2.10: Behavior of OTOCs for the strip configuration ( Fig (2.9) ) for the initial state
| i = |1, 1, 1, 1, 1i
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1 hex (strip/flake)

lo
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|
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C
|
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0.5

Time
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data
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Figure 2.11: Data fit for OTOC of 1 hex strip configuration ( Fig (2.10) )

2 hex (strip)

lo
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Figure 2.12: Data fit for OTOC of 2 hex strip configuration ( Fig (2.10) )
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3 hex(Strip)
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Γ = 0.750565874521321 +/- 89.3593006850243

σ  = 1.13812953578977 +/- 13.47322032355

Figure 2.13: Data fit for OTOC of 3 hex strip configuration ( Fig (2.10) )

2.2.3 Flake Configuration

This is the second possible arrangement of three hexagons in a lattice. The configuration

is shown in Fig 2.14. The OTOCs di↵er for di↵erent lattices and the plots for OTOCs and

their data fits are shown below in Fig 2.15 and Fig 2.16,2.17 respectively. Here, we find

that the OTOC is best fit to both convolution and Gaussian decay but is very close to the

exponential decay as well. The scrambling velocities obtained in both these cases is negative

and hence the convolution function best describes the scrambling behavior in both 2 hex and

3 hex lattices. The 1 hex case here is the same as that of the strip configuration and hence

not discussed again.
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Figure 2.14: Flake configuration for two dimensional hex lattices

Figure 2.15: Behavior of OTOCs for the flake configuration ( Fig (2.14) ) for the initial state
| i = |1, 1, 1, 1, 1i
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2 hex (flake)
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Figure 2.16: Data fit for OTOC of 2 hex flake configuration ( Fig (2.15) )

3 hex(flake)
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Figure 2.17: Data fit for OTOC of 3 hex flake configuration ( Fig (2.15) )
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Now, we try to quantify the initial decays of the OTOCs for all three hex lattices, extract

the exponent of the decay and their respective scrambling velocity.

1. Gaussian decay:

OTOC = e�(t�
|x|
v )2 (2.7)

Taking log on both sides, we can write:

log(OTOC) = �(t� |x|/v)2 (2.8)

= �t2 � 2�|x|t
v

+
�|x|2

v2

= at2 + bt+ c

where � = a , v = �2�|x|
b

2. Exponential Decay:

OTOC = e�(t�
|x|
v ) (2.9)

Taking log on both sides, we can write:

log(OTOC) = �(t� |x|
v
) (2.10)

= �t� �|x|
v

= at+ b

where � = a , v = ��|x|
b

The exponent of decay (�) and velocity(v) extracted from the OTOCs (Which is also dis-

cussed above) are presented in the tables 2.1,2.2 below.

Under the ’fit type’ column, the text marked green refers to the function that fits best

to the data. However, there are cases where Gaussian is a better fit than the exponential

but the velocity extracted using Gaussian gives rise to a negative velocity (marked in red)

and hence exponential becomes a better choice. As can be seen from the fit plots, these are

exactly the cases where the Gaussian behavior of the OTOC starts to converge towards the

exponential decay and is better described by the convolution function.
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geometry lattice fit type � v

a)strip 1 hex Gaussian -26.310 14.754
exponential -5.619 13.299

b)strip 2 hex Gaussian -16.352 16.389
exponential -16.351 8.194

c)strip 3 hex Gaussian -3.072 -9.591
exponential -3.734 12.551

Table 2.1: Parameters for strip configuration

geometry lattice fit type � v

a)flake 2 hex Gaussian -2.536 -9.848
exponential -3.024 12.218

b)flake 3 hex Gaussian -2.330 -9.481
exponential -3.003 11.205

Table 2.2: Parameters for flake configuration

Next, we also present the data for parameters of the convolution function in Eq (2.6) in

the Tables 2.3,2.4 below.

We find that when ⌧ ⌧ �, OTOC is well described using a Gaussian decay function

whereas as soon as ⌧ > �, the OTOC is better described by the convolution function and

starts converging to an exponential decay which we do not observe in our 3 hex models. To

see the complete transition from Gaussian to exponential, larger lattices need to be explored

which are beyond the scope of Krylov subspace methods used here.

In summary, we have shown using numerical techniques that the OTOC for a Bose

Hubbard model on a honeycomb lattice hints at a Gaussian to exponential decay transition

which can be described using a convolution of both the decay functions. We also observe

that in these two dimensional systems, the behavior of the OTOC strongly depends upon

the neighbourhood of the sites chosen for local operators. Also, this way of looking at

lattice configuration ⌧ � ⌧

�

a) 1 hex strip 1.822 0.122 14.934
b) 2 hex strip 1.707 0.163 10.472
c) 3 hex strip 0.751 1.138 0.660

Table 2.3: Convolution parameters for strip configuration
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lattice configuration ⌧ � ⌧

�

a) 1 hex flake 1.822 0.122 14.934
b) 2 hex flake 0.495 0.875 0.566
c) 3 hex flake 0.667 0.954 0.699

Table 2.4: Convolution parameters for flake configuration

OTOC implies that information scrambling which describes how localised information gets

delocalized over the degrees of freedom of a quantum many body system can be equivalently

thought of as considering one or two sites as the system, rest of the sites as the bath and

decoherence between system and environment this way becomes information scrambling

within the unitary quantum system. To understand this more concretely, we present a

master equation considering a subsystem of the Bose Hubbard lattice as our system and rest

as our bath and then try to compute the decoherence function explicitly.

2.3 Bose Hubbard model as an open system

Let us begin by reviewing the derivation of master equation for open quantum systems.

Consider the full system + environment described by the total Hamiltonian

H = HS +HB +HI (2.11)

where HS and HB describe the free Hamiltonian of the system and bath respectively. HI

is the Hamiltonian describing the interaction between system and bath. After applying the

usual Born-Markov approximations, we arrive at the following Markovian quantum master

equation:
d

dt
⇢S(t) = �

Z 1

�1
ds trB[HI(t), [HI(t� s), ⇢S(t)⌦ ⇢B]] (2.12)

Next, we decompose the interaction Hamiltonian as follows:

HI =
X

↵

A↵ ⌦ B↵ (2.13)

Assuming that HS has a discrete spectrum, we define the projection operator projecting into
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the eigenvalue ✏ as ⇧(✏). Then, we can also define

A↵(!) =
X

✏0�✏=!

⇧(✏)A↵⇧(✏
0) (2.14)

The sum in the above expression is over all possible energy eigenvalues ✏0 and ✏. Using the

above definition, it is straightforward to show

[HS, A↵(!)] = �!A↵(!) (2.15)

As a consequence, the operators in the interaction picture becomes:

eiHStA↵(!)e
�iHSt = e�i!tA↵(!) (2.16)

Hence, the interaction picture interaction Hamiltonian can be written as:

HI(t) =
X

↵,!

e�i!tA↵(!)⌦ B↵(t) (2.17)

where B↵(t) = eihBtB↵e�iHBt. Now substituting Eq (2.17) into Eq (2.12), we get

d

dt
⇢S(t) =

X

!,!0

X

↵,�

ei(!
0�!)t�↵�(!)(A�(!)⇢S(t)A

†
↵
(!0)� A†

↵
(!0)A�(!)⇢S(t)) + h.c (2.18)

where

�↵�(!) =

Z 1

0

dsei!shB†
↵
(t)B�(t� s)i (2.19)

Additionally, if we assume that [HB, ⇢B] = 0, then we find that the bath correlation functions

become homogeneous in time

hB†
↵
B�(t� s)i = hB†

↵
(s)B�(0)i (2.20)

Now, we perform the secular approximation or the rotating wave approximation where we
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neglect all the terms where !0 6= ! and only keep terms with !0 = !. Then we have

d

dt
⇢S(t) =

X

!

X

↵,�

�↵�(!)(A�(!)⇢S(t)A
†
↵
(!)� A†

↵
(!)A�(!)⇢S(t)) + h.c (2.21)

In literature, the Fourier transform of bath correlation functions into real and imaginary

parts as follows:

�↵�(!) =
1

2
�↵�(!) + iS↵�(!) (2.22)

�↵�(!) = �↵�(!)� �⇤
�↵
(!) =

Z 1

�1
dsei!shB†

↵
(s)B�(0)i (2.23)

With all of the above definitions, we can finally write the following master equation

d

dt
⇢S(t) = �i[HLS, ⇢S(t)] +D(⇢S(t)) (2.24)

where we have defined the Lamb shift Hamiltonian as

HLS =
X

!

X

↵�

S↵�(!)A
†
↵
(!)A�(!) (2.25)

and the Dissipator is defined as:

D(⇢S) =
X

!

X

↵�

�↵�(!)(A�(!)⇢SA
†
↵
(!)� 1

2
{A†

↵
(!)A�(!), ⇢S}) (2.26)

With all the tools required at hand, we now try to rewrite the Bose Hubbard Hamiltonian in

Eq(1.10) in the form of Eq(2.11). Denote the site in the lattice which we consider as system

by S. Then the system Hamiltonian is given by:

HS =
U

2
nS(nS � 1) (2.27)

The Hamiltonian for the bath is

HB = �J
X

hi 6=S,ji

(a†
i
aj + a†

j
ai) +

U

2

X

i 6=S

ni(ni � 1) (2.28)
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And the interaction Hamiltonian between the system and bath is :

HI = �J
X

S,j

(a†
S
aj + a†

j
aS) (2.29)

To understand this better, let’s consider the situation where S has three nearest neighbours

on the lattice : S + 1, S + 2, S + 3. Then explicitly writing the interaction Hamiltonian

HI = �J(a†
S
⌦ (aS+1 + aS+2 + aS+3) + aS ⌦ (a†

S+1 + a†
S+2 + a†

S+3)) (2.30)

= �J(a†
S
⌦ BS,1 + a†

S
⌦ BS,2) (2.31)

where BS,1 = aS+1 + aS+2 + aS+3 and BS,2 = a†
S+1 + a†

S+2 + a†
S+3 = B†

S,1. These will be the

bath operators which will contribute to the bath correlation functions defined in Eq(2.23).

The Lindblad operators can be chosen to be aS and a†
S
.

But for the Bose Hubbard Hamiltonian, some assumptions are not satisfied which are

needed to write a Lindblad master equation (2.24). These are listed below

1. Secular Approximation The Lindblad operators aS and a†
S
do not satisfy Eq(2.15) and

as a consequence Eq(2.16) does not hold either. Note that because of Eq(2.16), we

were able to get ei(!
0�!)t in Eq (2.18) which then allowed us to perform the secular

approximation. Without it, it is not at all trivial to carry out this approximation. It

is also important to note that it is because of the quartic term in the potential that

we are not able to satisfy (2.15),(2.16); had it been a simple harmonic oscillator, this

would not have been the case and we would be able to write the master equation in

Lindblad form.

2. Further Consequences One of the good things about Lindblad master equation is that

starting from an equation involving integrating elements of density matrix, we finally

have an equation that just involves integrating just a correlation function. This is

because usually Eq(2.15) is satisfied; that allows us to bring the dependence of the

time variable s out of the system’s operator expressions and transfer it to the bath

operators which are then traced over and become a number. The fact that Eq(2.15)

does not get satisfied means none of this can be done and the time dependence of s

stays within.

3. Time Dependence If secular approximation is performed, then it removes the time
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dependence t from the RHS of the di↵erential equation except for the system’s time

dependent density matrix for which we are solving.

4. Born-Markov approximation This will never be satisfied for the finite size systems.

The important part is that the time scales of what we define as system and bath

might not be well separated to perform the Markov approximation. But to perform

numerical simulation, we might have to do it anyway and hope that it does not a↵ect

our predictions.

Nevertheless, none of this prevents us from writing a Master equation considering one

or few of the sites in the lattice as our system and rest as bath and also compute the bath

correlation functions.

For this purpose, we do not project the interaction picture operators onto the system’s

eigenergies, that is we don’t do Eq (2.14). The only reason such a projection was used is

because if we find suitably projected operators which obey the commutation relation (2.15),

it helps for the cases mentioned above. In their absence, we can write the following master

equation

d

dt
⇢S(t) =

Z 1

0

ds
X

↵,�

�↵�(t, s)(A�(t� s)⇢S(t)A
†
↵
(, t)� A†

↵
(t)A�(t� s)⇢S(t)) + h.c (2.32)

where

�↵�(t, s) = hB†
↵
(t)B�(t� s)i (2.33)

where to be more precise about the conditions satisfied by Bose Hubbard, we should have

replaced the upper limit of the integral from1 to t. But that might make the computation of

the di↵erential equation even harder. We use Eq (2.32) to numerically solve the di↵erential

equation and integrate over all time dependent elements of the density matrix to get the

RHS.

Next, we divide the whole lattice into system, containing the same two sites as in the

OTOCs, and bath with the rest of the sites. If we go by the dynamics of Bose Hubbard, the

number of bosons in both the sites of the system can be anything from 0 to N where N is

the number of bosons in the full SE . This is because even if the bath has no bosons left,
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the system can decay due to quantum fluctuations of the bath. The only issue is that if the

number of bosons in the bath NB vary immensely at di↵erent times, the bath operators in

the correlation function (2.33) will evolve using di↵erent Hamiltonians in the sense that the

sizes of the Hamiltonian matrix used in the numerics will be di↵erent at di↵erent times and

hence need to be keep tracked of. What we can do instead is we keep the Nb same at all

times and we allow for some minimal excitations within the system. We essentially set the

rule, that if Na number of bosons leak into the system from the bath , we do not consider

any change in the dynamics of the bath when it comes to computing (2.33) and we evolve

it with the number of bosons it had to begin with. Consequently, we only allow Na number

of bosons to be distributed between the two sites. For example, if Na = 2, then the possible

states for S are {|1, 0i , |0, 1i , |1, 1i , |2, 0i , |0, 2i}. That way even if we are integrating all

elements of the density matrix with time to solve Eq (2.32), we would only have to do it for

small size matrices.

In the study of OTOCs, we find that for the 2 hex case, the OTOCs di↵er for the strip and

flake configurations. While in the case of a strip, the OTOC is better described by a Gaussian

decay, for the case of a flake, the OTOC starts to converge towards the exponential decay

and is better described by the convolution function. It would be great if we find the same

behavior for decoherence function of the two configurations as well. This would essentially

mean that because of the orientation of interaction sites for particular sites in the lattice,

we get di↵erent behaviors of the decoherence function and hence would also explain the

dynamics of the OTOCs as well.

Note that we would need to compute the bath correlation functions numerically for our

e↵ective open system. For the 2 hex lattice configurations, we remove the nodes for system

sites from the hexagonal graph and compute two point correlation function corresponding

to bath operators from the interaction Hamiltonian on this modified. The results are shown

in Fig (2.18) and Fig (2.18) below. The plots are labelled by the jump process, whose

parameters are specific system operators, associated with the corresponding bath correlation

functions. While these by themselves do not help us with the physics of the problem at

hand, we need them to solve the master equation (2.32). The exact numerical solution is

left for future work.
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Figure 2.18: Bath correlation functions for strip configuration
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Figure 2.19: Bath correlation functions for flake configuration
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Chapter 3

Thermodynamics of Scrambling and

Concluding Remarks

3.1 Work distribution, Coherence and Scrambling

In this section, we briefly describe quantum work and the entropy of quantum work. Further,

we also mention a few attempts made as a part of the thesis to relate information scrambling,

OTOCs and work done in quantum systems ; hence try to make some progress towards the

thermodynamic interpretation of quantum information scrambling.

In quantum mechanics, work is defined using the two point measurement approach. This

is described as follows. Consider a quantum system initially described by the density matrix

⇢. At the beginning of the protocol, the Hamiltonian is given byH(0) =
P

n
E0

n
|n0i hn0|. The

system is then evolved using the work protocol using the unitary U such that at the end of the

process, the state of the system evolves to ⇢(t) = U⇢U † and the final Hamiltonian is given by

H(t) =
P

m
Et

m
|mti hmt|. In such a scenario, the two point measurement involves making

two projective measurements at beginning and end of the work protocol. The di↵erence

between the initial and final measurements is defined as work done during the process.

Clearly, the work defined this way is described using a probability distribution given as
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follows:

P (W ) =
X

n,m

pnpmt|n0�W,Et
m�E0

n
(3.1)

where pn = hn0| ⇢ |nii is the probability of getting |n0i in the first measurement and pn|m =��hmt|U |n0i2
�� is the probability of getting |mfi in the second measurement given that one

has already got |nii in the first measurement i.e the transition probability. The work defined

this way also obeys results from stochastic thermodynamics such as the Jarzynski equality

which is given by

he��W i = e���F (3.2)

where F is the free energy. Note that even if Eq (3.2) looks the same as the classical

Jarzynski equality, quantum work is very di↵erent from its classical counterpart. There is no

hermitian operator whose eigenvalues match with the classical values of work. The reason for

this is that the Hamiltonian does not commute with itself at various times: [H(0), H(t)] 6= 0.

Usually, the moments or cummulants of work are used to study work distribution in quantum

systems. In a recent work[12], the authors looked at the entropy of probability distribution

describing quantum work, HW given by:

HW = �
X

W

P (W ) lnP (W ) (3.3)

The authors further showed that the entropy of work distribution obeys the following bound

HW  2S(⇢) + C(⇢) (3.4)

where ⇢ =
P

n
hn0| ⇢ |n0i |n0i hn0| is the initial density matrix of the system dephased in

the basis of initial Hamiltonian H(0) and S(⇢) = � tr ⇢ ln ⇢ is the Von-Neumann entropy .

The relative entropy of coherence(REC) of a state � in the basis
��m0

t

↵
= U † |mti is given by:

C(�) = S(Dt(�))� S(�) � 0 (3.5)

where Dt(�) =
⌦
m

0
t

�� �
��m0

t

↵ ��m0
t

↵ ⌦
m

0
t

�� is the state � dephased in the basis
��m0

t

↵
. In what

follows below, we have made an attempt to further bound the entropy of work. To do this,

let us start by rewriting the Dt(�) in Eq (3.4) using its definition mentioned above.
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Dt(⇢) =
X

m

D
m

0

t

��� ⇢
���m

0

t

E ���m
0

t

ED
m

0

t

��� (3.6)

=
X

m

hmt|U⇢U † |mti
���m

0

t

ED
m

0

t

��� (3.7)

=
X

m

hmt| ⇢(t) |mti
���m

0

t

ED
m

0

t

��� (3.8)

=
X

m

⇢(t)mt,mt

���m
0

t

ED
m

0

t

��� (3.9)

where we have used the definition of
��m0

t

↵
above and ⇢(t)mt,mt = hmt| ⇢(t) |mti. Since

entropy remains unchanged under a unitary transformation, we can write:

S(Dt)(⇢) = S(
X

m

⇢(t)mt,mt

���m
0

t

ED
m

0

t

���) (3.10)

= S(
X

m

⇢(t)mt,mtU
† |mti hmt|U) (3.11)

= S(
X

m

⇢(t)mt,mt |mti hmt|) (3.12)

Keeping in mind the basis in which the Hamiltonian of the system is diagonal at di↵erent

times of the work protocol, we can define:

⇢ =
X

n

hn0| ⇢ |n0i |n0i hn0| = ⇢diag(0) (3.13)

⇢diag(t) =
X

m

hmt| ⇢(t) |mti |mti hmt| = ⇢(t)mt,mt |mti hmt| (3.14)

Now, notice that ⇢(t) contains more information than ⇢(t). Since ⇢(t) is already dephased

in the initial basis of Hi, we can write using Eq (3.14)

S(⇢diag(t))  S(
X

m

⇢(t)mt,mt |mti hmt|) = S(Dt(⇢)) (3.15)
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Finally, we can write the change in relative entropy of coherence during the work protocol

as:

�C = S(⇢diag(t))� S(⇢(t))� (S(⇢diag(0))� S(⇢(0))) (3.16)

 S(Dt(⇢))� S(⇢(t))� (S(⇢)� S(⇢(0))) (3.17)

= S(Dt(⇢))� S(⇢)� (S(⇢(t))� S(⇢(0))) (3.18)

Hence,

�C  C(⇢)��S (3.19)

3.2 Mutual Information, Scrambling and Open sys-

tems

In this section, we briefly mention how bipartite mutual information can be used to describe

information scrambling in open systems.

In most parts of this thesis, OTOCs have been used to study and characterize informa-

tion scrambling. However, one major drawback with using these quantities is that the choice

of operators in the OTOC is somewhat ambiguous and arbitrary. One has to take aver-

ages over operator space in order to make mathematically precise statements. Performing

these averages can turn out to be technically di�cult. Also, it might be di�cult to distin-

guish between information scrambling and decoherence using OTOCs. Hence in [25], it was

proposed that mutual information be used to study scrambling in open systems. Here, we

briefly mention some of their results and ideas. Consider a closed quantum system S, here
the mutual information between two partitions of the system A and B is given by:

I(A : B) = SA + SB � SAB (3.20)

where Si✏{A,B} = � tr
P

i
⇢i ln ⇢i is the Von-Neumann entropy. When the dynamics(in this

context, the scrambling dynamics) is unitary, the change in mutual information is given by:

�I = I(t)� I(0) = �SA +�SB (3.21)
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Now, we consider the setup for an open system where the system S interacts with an envi-

ronment E . We assume that the the initial state of the composite system SE is given by the

product state ⇢0 = ⇢S(0) ⌦ ⇢Eeq where ⇢Eeq = e��H/Z is the thermal Gibbs state at inverse

temperature �. In such a case, Eq (3.21) is not valid anymore since the dynamics of S is no

longer unitary and the change in mutual information becomes:

�I = �SA +�SB ��SS (3.22)

One of the main results from [25] is the following equation:

I(S : E) +�Sex +D(⇢E ||⇢eqE ) = �SS (3.23)

where

�Sex = tr{(⇢E � ⇢eqE ) ln ⇢eqE } = �hQi (3.24)

Eq (3.24) is the heat exchanged between S and E and

D(⇢E ||⇢eqE ) = tr{⇢E ln ⇢E}� tr{⇢E ln ⇢eqE } (3.25)

Eq (3.25) is the Kullback-Leibler divergence. Eq (3.23) tells us that the deviation from

unitary scrambling dynamics comes from three factors: the correlations between S and E ,
heat exchanged between S and E and the deviation of E from thermal equilibrium.

In [25], they also come up with a statement for second law of thermodynamics for scram-

bling. We describe it here.

Here, we perform two point projective measurements on the system and environment at

time t = 0 and t = ⌧ . Then we define the following observables.

!µ⌫

S = ln(pµS)� ln(p⌫S) (3.26)

where µ and ⌫ are the outcomes of the initial and final projective measurements. Simi-

larly, for E , we define

!mn

E = ln(pmE )� ln(pnE) (3.27)
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Then the following statement holds

h!Si+ h!Ei = �I(S : E) +�C(S) (3.28)

where C is the relative entropy of coherence as introduced in the previous section in the

context of entropy of work distributions. It is interesting to see the Relative entropy of Co-

herence (REC) appear both in the context of information scrambling and work distribution.

Eq (3.19) derived above was an attempt to connect the change in the REC to the REC

of the dephased initial density matrix which sets a bound on the entropy of work. These

ideas can be explored further to get a better thermodynamic understanding of information

scrambling.
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Chapter 4

Conclusion

In this thesis, we have understood the scrambling behavior in a two dimensional quantum

system. We started with showing that the one dimensional Bose-Hubbard model becomes

quantum chaotic as we increase the coupling strength to take the system towards the right

hand side of the quantum critical point into the Mott insulator phase. This result using

OTOC is verified additionally with Mutual Information and Tripartite Mutual Information.

Then, we move into two dimensional hexagonal geometries where the behavior of the

OTOC is greatly influenced by the neighbourhood of the two local sites which are chosen

for operators in the expression for OTOC. We consider two di↵erent configurations which

we call strip and flake configurations. A Gaussian to near-exponential transition is observed

as we increase the size of the lattice as well as in the case when we move from a strip to hex

arrangement of the hexagons.

Using the fact that both the Haar-averaged OTOC and decoherence function can be

written in the form of a Loschmidt Echo, we argue as well as verify using numerics that

the OTOC from the Bose-Hubbard model on honeycomb lattices can be described using a

convolution of Gaussian and exponential function and thus reduces to a Gaussian or expo-

nential decay in certain limits of a relevant coupling strength. During the near-exponential

transition, the OTOC shows the convolution behaviour. We believe that the scrambling

dynamics will fully transition into exponential decays with further increase in size but this

needs to be verified using more sophisticated method of numerics.
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Next, we have looked at Bose Hubbard system as an open quantum system by considering

few of the sites in the lattice as the system and rest of the sites as bath. It is shown that

such a setup does not satisfy the conditions for it be written down as a Lindblad master

equation. We then present a suitable master integral-di↵erential master equation which can

be solved to obtain the decoherence function. We built the framework for the configuration

and leave the results for future work. The hope is that we recover the same Gaussian to

exponential transition behavior with the decoherence function.

Then, we briefly discussed quantum work distribution and a newly introduced concept

called entropy of work which is bounded by the Relative Entropy of Coherence(REC) of the

system. It is shown that this REC is related to change in REC mentioned in the context

of scrambling of system connected to a bath. The characteristic work function itself can be

written as a Loschmidt echo function. All of these results hint towards a connection between

information scrambling and work done quantum systems which needs to be explored in detail.

A good starting point would be to compute work distribution for our two dimensional Bose

Hubbard lattices using the numerical tools we already have. We also leave this for future

work.

In summary, we have shown with concrete numerical evidence that the scrambling dy-

namics in the unitary Bose-Hubbard model shows features of decoherence function of an

open quantum system. This is the idea that the way information scrambles or spreads from

a localised site in the lattice to the rest of the lattice can be equivalently thought of as the

way information decoheres from a quantum system into its connected bath. Of course, as

mentioned above, this claim needs to be further verified by computing the decoherence func-

tion for the Bose-Hubbard model. We have also presented some interesting future directions

of ’work’ for a consistent thermodynamic interpretation of information scrambling.
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Appendix A

Exponential of Matrix using Krylov

subspace methods

The most time consuming part of the numerics we did to compute OTOC was to find the

exponential of a matrix which is not diagonal in the conventional basis known to us. This is

required to find out the time evolution operator which appears every time we evolve opera-

tors in the Heisenberg picture in the expression for OTOC. Since the size of Hilbert space for

the Bose-Hubbard model scales exponentially with increase in number of sites, it becomes

increasingly di�cult and expensive to directly exponentiate the matrices. A number of

methods are used to e�ciently compute the exponential of a matrix and they include Krylov

subspace methods . Pade approximation, the Chebyshev polynomials and other methods.

Here, we use Krylov subspace methods in our work to setup a package in Julia that calculates

the Out-of-Time Correlator for a given initial state of the system.

Given a matrix A and vector v , the Krylov subspace is given by:

Km(A, v) = span{v, Av,A2v, ...., Am�1v}

where m is an integer. The orthogonal basis of this subspace Km(A, v) becomes the coloumns

of a matrix Vm = [v1, ..., vm] which is then a nxm matrix. Vm is computed using Arnoldi
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iteration and satisfies the following decomposition:

AVm = Vm+1Hm+1,m (A.1)

where Hm+1,m is the known as the upper Hessenberg. Here, the entries of the matrix hi,j

are non-zero only if i  j + 1. Let Hm,m denote the matrix formed by the first m rows of

Hm+1,m . Then , we can write Eq (A.1) as :

AVm = VmHm,m + vm+1hm+1,me
T

m
(A.2)

em = [0, ...0, 1]T 2 Rm . Eq (A.2) tells us that if you take any vector Vm from the Krylov

subspace and multiply it with the matrix A , then we end up with a vector from the same

subspace in addition to another term which is a multiple of the next basis vector in Krylov

subspace vm+1. Clearly, for this method to work, we would like the second term of Eq (A.2)

to be small for some m.

Now, we intend to compute the action of the time evolution operator on a certain initial

state. That is, we would like to compute y(t) = exp(�tA)v for a given v 2 Rn. Once the basis

for Krylov subspace and upper Hessenberg are found, we have the following approximation

for y(t):

y(t) = exp(�tA)v = exp(�tA)(Vm�e1) (A.3)

⇡ ym(t) = Vmexp(�tHn,m)�e1 = um(t) (A.4)

where � = ||v||. Computing ym(t) is much more a↵ordable than y(t) when m << n . The

iteration goes on based on the control defined over the following quantity:

rm(t) = �Aym(t)� y
0

m
(t) (A.5)

It is easy to see that

||rm(t)|| = |hm+1,me
T

m
um(t)| (A.6)

It might be the case that ||rm(t)|| ⇡ 0 for some specific points t only. So, ideally, one would

like to compute something like the L2 norm
R

t

0 ||rm(s)||
2ds .
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Appendix B

Bogoliubov transformation and the

Bose-Hubbard Hamiltonian

Here, we show how the Bose-Hubbard model can be diagonalized only in certain limits of

the coupling which is why we had to use Krylov subspace methods to compute the time

evolution operator [27].

We start with the Bose-Hubbard Hamiltonian:

H = �J
X

hi,ji

a†
i
aj +

U

2

X

i

ni(ni � 1) (B.1)

= �J
X

hi,ji

a†
i
aj +

U

2

X

i

a†
i
ai(a

†
i
ai � 1)

= �J
X

hi,ji

a†
i
aj +

U

2

X

i

a†
i
a†
i
aiai

Fourier transforming the operators using

ai =
1p
N

X

k

ake
�ik.xi (B.2)
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We can rewrite the Hamiltonian (B.1) for a hypercubic lattice of d dimensions as :

H = �
X

k

(2J
dX

l=1

cos akl)a
†
k
ak +

U

2

1

N

X

k1,k2,k3,k4

a†
k1
a†
k2
ak3ak4�k1+k2,k3+k4 (B.3)

Note that the condition �k1+k2,k3+k4 implies that the corresponding term in the Hamilto-

nian is energy-conserving. The delta condition implies that k1+k2 = k3+k4. This condition

can be rewritten as a bunch of other conditions as follows

1. k1 + k2 = 0 and k3 + k4 = 0

2. k1 = 0 = k2 = k3 = k4

3. k1 = k3(k2 = k4 = 0)

4. k1 + (k2 = 0) = k3 + k4

5. k1 + k2 = k3 + k4

If we restrict ourselves to zero temperature or near-zero temperature, then it’s fair to

assume that the number of bosons with zero momentum N0 becomes macroscopically large.

Then, we can write a0 ⇡ a†0 ⇡ N0. Using this, we rewrite the Fourier space Bose-Hubbard

Hamiltonian as:

H = (�2J
dX

l=1

cos a(kl = 0))a†0a0 �
X

k 6=0

(2J
dX

l=1

cos akl)a
†
k
ak (B.4)

+
U

2

1

N
a†0a

†
0a0a0 (Using condition 2) +

U

2

1

N

X

k 6=0

a†
k
a†�k

a0a0 (Using condition 1)

+
U

2

1

N

X

k 6=0

a†0a
†
0aka�k (Using condition 1) +

U

2

1

N

X

k 6=0

a†
k
a†0aka0 (Using condition 3)

+
U

2

1

N

X

k1,k2 6=0

a†
k1
a†�k1

ak2a�k2 (Using condition 1)

We now invoke the weak coupling approximation where we only retain terms which are

upto second order in ak/a
†
k
, this is when U < J . This is why we did not consider Condition
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4 and 5 while expanding the Hamiltonian in Eq (B.4) and using the same logic, we also

choose to ignore the last term in Eq (B.4). Now substituting a0 ⇡ a†0 ⇡ N0 and after a little

rearrangement, we get

H =
U

2
(n0 � 2dJ)N0 �

X

k 6=0

(
U

2
n0 � 2J

dX

l=1

cos akl)a
†
k
ak +

U

2
n0

X

k 6=0

(a†
k
a†�k

+ aka�k) (B.5)

Renaming a few terms, we arrive at the Hamiltonian

H =
U

2
(n0 � 2dJ)N0 �

X

k 6=0

Aka
†
k
ak +

U

2
n0

X

k 6=0

(a†
k
a†�k

+ aka�k) (B.6)

where

Ak =
U

2
n0 � 2J

dX

l=1

cos akl (B.7)

and n0 = N0/N is the particle density with zero momentum. Clearly, Eq (B.6) is in the form

where we can apply the Bogoliubov transformation which results in the following diagonalized

Hamiltonian

H = (
Un0

2
� 2dJ)N0 +

1

2

X

k 6=0

(Ek � Ak) +
X

k 6=0

Ekb
†
k
bk (B.8)

where

Ek =
q
A2

k
� (Un0)2 (B.9)

and

u2
k
=

1

2
(
Ak

Ek

� 1), v2
k
=

1

2
(
Ak

Ek

+ 1) (B.10)

Hence, the new Hamiltonian (B.8) is diagonal in the Bogoliubov transformed operators

bk, b
†
k
. But this was only possible under the condition that U < J . This means even when

the coupling strength is weak, we have to throw away high order energy-conserving terms

to diagonalize the Hamiltonian analytically. Hence, this analytic approach is not optimal

to explore the Bose Hubbard model at the coupling strengths considered in this thesis to

compute the OTOC because in the strong coupling limit, as also mentioned in the section on

Bose-Hubbard model, it is these higher order quartic interaction terms that are responsible

for thermalization in Bose-Hubbard model and in this very limit, we find the system to be

quantum chaotic and the OTOC is characterised by a Gaussian to exponential transition.
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