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Abstract

Modelling the systemic risk of the ever-growing global financial market has garnered signifi-

cant interest since multiple worldwide crises showed that contagion of financial distress could

occur on a system-wide scale. In this thesis, We study the phenomenon of extreme depen-

dence, also known as financial contagion, in which extreme events in financial time series

data move together and propagate distress. To model the interconnected relationships of a

large market, where the dimension is high, we employ network-based methods. In particular,

we construct an original framework based on the theory of generalized linear models to de-

tect contagion by quantifying the amount of co-movement of extreme events. We employ the

LASSO to perform a simultaneous estimation of the links of a specific instrument to the rest

of the market. Finally, we use the estimates to represent the market as a network and derive

summary statistics that illustrate relevant facets of the underlying complex network, such

as the mean connectivity of the network. We test the validity of this method by comparing

the time series of these summary statistics against known crisis periods.
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Chapter 1

Introduction

Network modelling has been widely employed in financial mathematics in recent years to

study the properties arising from the interconnectedness of markets, as network based meth-

ods provide a straightforward way to describe the numerous pairwise relationships occurring

within a financial market [1]. We are particularly interested in the network modelling of

extreme dependence of financial time series, as the phenomenon of extreme dependence is a

proxy for financial contagion. This is in contrast to the correlation of time series which may

be inflated due to co-movement during tranquil periods. We seek to extend the method of

Residual and Recurrence Times developed in [2] in order to address the system-wide nature

of contagion and provide a direct path to estimate and interpret connection strength between

financial entities by employing generalized linear models, particularly when the dimension

is high. We analyse various network summary statistics and see how they correlate with

known crisis periods. This gives insight into how the network representation of markets

changes during periods of financial distress and hence forms an alternate characterization of

contagion, which could enhance the assessment of systemic risk and prediction of crises.

1.1 Motivation

The rise of globalization and the advent of the Internet have made financial markets around

the world more interconnected than ever before. Prices of financial entities respond to infor-

mation gathered from all over the globe and change in the scale of nanoseconds. However,
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catastrophic events such as the 2008 US Subprime Crisis have demonstrated that this in-

terconnectedness can lead to transmission of financial shock across continents and induce

crisis periods that reflect in the time series data of a multitude of financial entities. This

exhibition of interdependence is termed ‘financial contagion’.

Consequently, much interest has been shown for understanding and measuring the systemic

risk associated with financial contagion. It became important to identify highly intercon-

nected entities, since these entities pose a higher risk to the entire system owing to the

multiple possible channels of contagion [3]. A natural structure of interest in such a system

where many co-moving quantities are interconnected is a network of these said quantities.

Networks provide an intuitive way of visualizing the many relationships between these quan-

tities, as well as providing a clear and direct way of quantifying the overall connectivity of the

system of financial institutions, and identifying channels of contagion. We can subsequently

derive summary network measures as proxies for systemic risk.

One can imagine how the information of a ‘crisis’ spreads throughout markets in a sim-

ple way: market participants react to ‘extreme events’ in the time series of affected financial

entities by making trades that cause further ‘extreme events’ to occur in related entities.

A simple and somewhat naive method to assess the connections between institutions and

entities is to consider the statistical correlation of the time series of these entities. Indeed,

studies have found increased correlations between developed markets after crashes [4] [5]

[6]. However, simple correlation values could be high even during non-crisis periods where

extreme events do not move together.

Therefore, we would like to consider ‘extreme dependence’ and study the interdependence

and transmission of these extreme events taken separately. Extreme dependence is of interest

because it is a more unambiguous indication of the contagion of crises. as we see abnormal

events occurring and then being transmitted, as expected in a crisis [2].

1.2 Survey of Literature

The study of the application of graph theoretic techniques to analyse financial data was

pioneered by Mantegna in 1999 [7], in a paper where he demonstrated that the Pearson’s
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correlation between stock returns in the Dow-Jones Industrial Average captured information

about the ‘hierarchy’ of stocks. The research in the recent decades has been mainly focused

on this theme of extracting relevant economic information from network representations of a

financial markets. These network-based methods have been extended to entities like stocks,

currencies and debt instruments [8] [9].

The broad themes of the recent theoretical literature of network modelling of financial data

pertain to the construction of statistically robust hypothesis testing and using system-wide

measures for estimation of connections, along with quantitative characterization of the prop-

erties of these networks. In [3], the authors establish a sound, system-wide framework for the

statistical testing of hypothesis of relationships between entities. This approach is based on

VAR modelling and Granger causality [10], which are widely used in literature [11] [12] [13]

[14] [15]. This is combined with the use of generalized linear models to obtain quantititative

estimates of links in the network. Unlike correlation based networks [8] [16] [17] found in

earlier literature, causality based graphs can be directed and hence are more appropriate for

detecting relationships in financial data. To address systemic risk, new theoretical formula-

tions such as conditional Value-at-Risk [18], contagion mapping [19] and systemic expected

shortfall [20] have been developed. To explicitly encourage sparsity in the generated complex

networks, a variety of subset selection strategies are employed in literature, however their

stability in the high dimensional setting is questionable [21]. Shrinkage methods such as

ridge regression and LASSO are found to be more robust, and provide consistent estimates

[22] [23]. Theoretical formalisation of the space of network representations that allow us to

compare to assign a geometric nature to this space have also been developed [24].

On the empirical frontiers in literature, we find an ever-increasing methods for estimating the

linkages between financial series. In addition to stock price data [2] [3], volatility [14] [25] and

bank data [12] [26] [27] are commonly used to build networks and analyse co-dependencies of

entities. Generally, authors prefer to use weekly data instead of daily closing prices to insu-

late against spillover effects [28] [2], and then segregate the data according to geography [13]

[29]. Granger causality along with autoregressive vector modelling is again quite popular,

due to its simplicity and ease of interpretation [30] [13] [14]. Other approaches to achieve

the same use partial correlation [31], copula estimation [28] and statistical co-integration

[30]. The data used in literature is interspersed with known crisis periods, most prominently

featuring the 2008 global financial crisis [12] [14] [32] [33].
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The generated complex networks found in literature form a considerable variety. For in-

stance, both directed [13] [14] and undirected [30] [28] networks are abundant. The weights

of the links are omitted when the primary purpose of network modelling is to uncover clus-

ters and identify highly connected nodes [30] [13]. To filter out the most important financial

relationships in a generated network, the most common strategies used are to extract the

minimal spanning tree (MST) [7], or some variation thereof. Recently, planar maximally

filtered graphs (PMFG) [13] have been employed for this purpose. The set of network char-

acteristics under analysis is diverse: average degree [3], clustering [28], sparsity [14], and

betweenness centrality [30] are some standard network characteristics analysed in literature

due to ease of interpretation and because they help in identification of nodes most pertinent

to the transmission of financial stock.

1.3 Original Contribution

In this thesis, we review the method of Recurrence and Residual Times (RRT) [2] for test-

ing extreme dependence in financial data and assess the model, based on trends in current

literature. While the RRT is able to establish evidence of directed contagion in bivariate

time series, i.e., pairwise relationships, we find that it has notable limitations which prevent

accurate system-wide estimation of the relationships in financial data.

Our contribution to literature is detailed as follows: based on these limitations, we modify

the method and introduce a new system-wide, regression-based method for network mod-

elling. We develop the theoretical framework and use it to analyse the network characteristics

of two datasets of global index data. Both of these datasets contain the infamous 2008-09

financial crisis, a period of intense global contagion across the globe, and hence serve as a

good test of the new method.

4



Chapter 2

Preliminaries

All definitions follow standard conventions in modern literature.

Definition 2.0.1. Network

A directed, weighted network or graph is a set G = (V,E,W ) where V is the set of vertices

or nodes, E = {eij = (vi, vj) : vi, vj ∈ V, i ̸= j} is the set of ordered pairs of edges or links,

and W is the set of weights such that wij is the weight of the directed edge (vi, vj).

Definition 2.0.2. Adjacency Matrix of Network

The adjacency matrix A for a weighted, directed network with n nodes and with no loops (i.e.

no edges from a node to itself), is a square n× n matrix such that the (i, j)-th entry

Aij =

wij if i ̸= j

0 if i = j

where wij ∈ R is the weight of the directed edge from node i and node j. While it is symmetric

for undirected networks, it may not be for directed ones.

Definition 2.0.3. Degree of a node

The average in-degree din,i of a node i in a directed graph G is defined as

din,i = card({eji : j ∈ V, j ̸= i})
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Similarly, the out-degree dout,i of a node i in a directed graph G is defined as

dout,i = card({eij : j ∈ V, j ̸= i})

Definition 2.0.4. Average degree of a network

In case of an undirected network, the average degree is simply given by degree sum divided

by the total number of nodes.

d̄ =

∑
i∈V

di

n
=

2e

n

where n is the total number of nodes and e is the total number of edges.

The average in-degree d̄in of a directed graph G is defined as

d̄in =

∑
i∈V

din,i

n
=

e

n

where n is the total number of nodes. The average out-degree can be defined similarly, and

is equal to the average in-degree, as each edge contributes equally to both the in-degree sum

and the out-degree sum. The average degree for an directed graph is thus

¯ddirect =
2e

n

The average degree of a network represents the level of connectivity in it, and describes how

many channels are available, on average, for information to be propagated in the network.

Definition 2.0.5. Clustering coefficient

The local clustering coefficient for directed graphs is defined as

Ci =
|{ejk : vj, vk ∈ Ni, ejk ∈ E}|

ki (ki − 1)

where ki is the number of vertices, |Ni|, in the neighbourhood, Ni, of a vertex. The neigh-

bourhood Ni for a vertex vi is defined as the set of its immediately connected nodes:

Ni = {vj : eij ∈ E ∨ eji ∈ E} .
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The network average clustering coefficient is defined as:

C̄ =
1

n

n∑
i=1

Ci

The clustering coefficient is a measure of how crowded or dense the graph is.

Definition 2.0.6. Transitivity

Transitivity, also known as global clustering coefficient, is defined as the ratio of the trian-

gles and the connected triples in the network. It is computed by taking the local clustering

coefficient for each node i and weighing it by a factor ki(ki − 1), where ki is the number

of neighbours of node i. Compared to the network average clustering coefficient, it places a

higher weight on nodes with high degree.

Definition 2.0.7. Average Shortest Path

A directed path between two nodes in a digraph is a sequence of edges leading from one node

to the other in a certain direction (from source to sink). The weight of a path is defined as

the sum of the weights of its edges.

The average shortest path of a network is defined as the average of the length of all shortest

paths in the networks. This can be weighted as well, in which case it is called weighted aver-

age shortest path. The average shortest path can be thought of as a measure of how quickly

information can travel through the network.

Definition 2.0.8. Betweenness Centrality

The normalized betweenness centrality of node i can be defined as BCi

BCi =

∑n
j

∑n
k gjk(i)/gjk

N2 − 3N + 2
, j ̸= k ̸= i, j < k

where gjk(i) is the number of shortest paths between vertex j and vertex k that pass vertex i,

and gjk is the total number of shortest paths between vertex j and vertex k.

Betweenness centrality assigns a numerical importance to the transmission ability of each

node and allows us to filter out the most important nodes for transmission of shock in the

network.

Definition 2.0.9. Extreme Event

For a given time series Xt, an extreme event is defined to be an event above or below a
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chosen threshold. A common way of choosing this threshold is by using percentile of the

empirical distribution of Xt. For example, an upper threshold might be the 95th percentile,

and similarly, a lower threshold may be chosen to be the 5th percentile.

Definition 2.0.10. Recurrence Time

The recurrence time Vj is defined simply as the time lag from one extreme event to the next

one in a given time series Y .

Definition 2.0.11. Raw Residual Time

The time lag between an extreme event in series Y and the next extreme event in series X

is defined to be the Raw Residual time and denoted as Zk. We can formalize this definition

by writing:

Zk =
N∑
i=1

Ui −
k∑

j=1

Vj + 1,

where Ui are the recurrence times for X, Vj are the recurrence times for Y , and N =

arg min
n

{∑n
i=1 Ui −

∑k
j=1 Vj ≥ 0

}
.

The “+1” on the right hand side of the definition means that if two extreme events occur at

the same time, we consider the transmission time to be 1 by convention.

Definition 2.0.12. Residual Time

For target series X given another series Y , the sequence of residual times, denoted by {Wk},
is constructed by taking the sequence of Raw Residual times {Zk} and then eliminating the

overlaps. Mathematically, {Wk} = {Zk} \{Zk′ : Zk′ + Vk′ = Zk′−1}
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Chapter 3

Methods

In this chapter, we review the RRT method method for testing financial contagion between

financial time series. We then build upon the method to create an original method for

modelling the underlying network of inter-dependencies in financial data.

We are interested in modelling the relationships between the various pairs of financial

entities in a given market as a complex network, in which these entities are represented as

nodes. Specifically, we want to establish a weighted edge between two nodes if the extreme

events in the associated time series data (e.g. log-returns series, volatility series, etc.) have

co-movement that cannot be explained by pure chance. The methods discussed in this

chapter represent two attempts at obtaining a complex network that represents the state

of a financial market based on the movements and interactions of extreme events occurring

within it.

3.1 The RRT Method

The RRT method provides a novel way of detecting periods of time when extreme events

move together in bivariate time series by comparing the distributions of recurrence and

residual times between the two given series [2]. Specifically, the hypothesis for directed

contagion between these two time series is statistically tested by the RRT Method. We shall

first discuss the RRT Method in detail before motivating a modified version of it, wherein we
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use the idea of residual times of a series with respect to another influencing the recurrence

times of that series to formulate a regression based framework for network construction.

3.1.1 Details of the Method

We begin by noting definitions of residual and recurrence times (see Definitions 2.0.10, 2.0.11,

2.0.12). The basic idea is as follows: we consider the bivariate time series consisting of two

components, time series Xt and Yt, both of which belong to a larger set of time series {Si}.
We filter the extreme events associated with these two series using a chosen percentile value,

which leads us to two new sequences of extreme events. The residual and recurrence times

are then computed for the sequences of extreme events. If there is no contagion to series Xt

from the series Yt, then the distribution of recurrence times of extreme events of Xt will be

the same as the residual times of the extreme events of Xt with respect to Yt. Intuitively,

this can be interpreted as asserting that the extreme events in Yt have no influence on the

occurrence of the extreme events in Xt, and hence the respective distributions are uncoupled.

Similarly, contagion in the other direction, i.e., from series Xt to the series Yt can also be

tested.

The algorithm implementing this idea uses a permutation test to compare the distribu-

tions of recurrence and residual times. Under the null hypothesis of no contagion, we would

expect these distributions to be the same. The raw residual times and recurrence times are

clubbed into one single set from which two subsets are randomly drawn. The corresponding

residual time is computed, which then allows us to calculate a test statistic. When the

previous steps are iterated over, we obtain the distribution of the test statistic. Finally, the

p-value of this test statistic is computed and can be used to straightforwardly quantify the

amount of directed contagion.

3.1.2 Network Generation using the RRT Method

To generate a weighted network representation of a financial market using the RRT Method,

we must first decide upon the process of assigning a weight to the edge drawn between two

nodes. In his seminal paper, Mantegna used the Pearson correlation ρij to define a “distance”

dij between two nodes vi and vj, and showed that this choice of “distance” defines a metric
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on the network [7]. The distance between two nodes effectively acts as the weight to the

edge drawn between these two nodes. The exact formula used is:

dij = 2
√
1− ρij (3.1)

This distance function is an illuminating choice of edge weight. We first note that for any

two time series, ρij ∈ [−1, 1], which implies that dij ∈ [0, 2
√
2], guaranteeing that the dis-

tance between any two nodes dij ≥ 0, with 0 being the case where the two time series are

completely correlated, i.e. they are the same time series up to scale and location transforma-

tions. Secondly, it can be easily seen that the distance function is a decreasing function of

the correlation coefficient in the interval [−1, 1]. This essential property ensures that nodes

with higher correlation are placed near each other in the network and thus, a set of highly

correlated nodes will form a close cluster in the network.

The natural and naive choice of edge weight would be to simply consider the p-value of

the test statistic from the RRT Method, since a low p-value (for example, if p < 0.001)

corresponds to a high degree of extreme dependence and would lead to clustering in the

network by placing strong dependent entities close. The complex network thus generated

represents the state of the market in terms of contagion.

Therefore, the formula for constructing the required directed adjacency matrix is:

Aij =

wij = 2
√

1− Pij , if i ̸= j

0 , if i = j
(3.2)

where Pij is the p-value of the test statistic measuring directed contagion from the node j

to the node i. The major drawback of this choice of edge weight is that it would lead to the

creation of a dense graph, with all possible edges being drawn. A simple method to introduce

sparsity in the network would be to consider a statistical significance level α, which can be

used as a cut-off value to filter out weak and unimportant relationships in the data. The

network thus constructed can be further refined by filtering out insignificant relationships

among the nodes by extracting an underlying graph structure, like the minimal spanning

tree (MST) or the planar maximally filtered graph (PMFG).

When this network generation algorithm is repeated over a sliding window that moves along
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the dataset, it produces a time varying complex network. Consider one such network N⊔,

with the set of nodes {vi} and the edge set {ei}. We can now compute the time series of

network characteristics, like average degree or the clustering coefficient (Definitions 2.0.4,

2.0.5). These new time series provide insight on the state of the network over a period and

help in the identification of system-wide crisis periods. For example, the average degree of

the network, which intuitively represents the average connectivity in a network, would be

expected to rise during crisis periods when contagion is widespread.

Additionally, important nodes that contribute most to contagion can be identified trivially:

the most connected nodes. Furthermore, using the betweenness centrality (Definition 2.0.8)

can help identify nodes that participate in pathways for contagion and serve as a propagator

of financial distress.

3.2 The Regression based RRT Method

The RRT method locates time periods where extreme events move together and is thus

able to identify crisis periods based on the distribution of the recurrence and residual times

of extreme events that are dispersed throughout a set of given time series. However, this

approach is has a few limitations which we seek to address. The modifications suggested by

the existence of these limitations leads up towards a regression based method for analyzing

the time series data of financial markets. We then explain the mathematical model underlying

the method, and finally, its implementation.

3.2.1 Motivation for a Modified RRT Method

We first begin by noting the most prominent drawbacks of the RRT Method:

1. Pairwise estimation vs System-wide estimation: The accurate estimation of

edge weights in complex networks is crucial for various applications such as predicting

contagion, identifying influential nodes, and understanding network dynamics. The
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RRT method compares distributions to assign a weight to the edge drawn between two

nodes. This has two drawbacks: first, it demands n2 estimations corresponding to all

the n2 possible edges in a network with n nodes, which incurs significant computational

costs. Secondly, it is vulnerable to spurious correlations which might creep into the

estimates, which will produce a detrimental effect on their accuracy. To illustrate,

consider a set of three time series of stock prices. Let us call them A,B and C. If

the true network is such that the value of C drives both A and B, i.e. C is strongly

linked to both A and B, then significant correlation will be found in the latter two if

pairwise estimation is performed. However, the truth is that they are weakly linked

and show spurious correlation due to being driven by the same underlying stock, C.

Therefore, we are prompted to employ a system-wide estimation strategy which will

avoid these problems by simultaneous estimation of all the edge weights in a complex

network in a given window of time. This amounts to going from the bivariate estimation

scheme of the RRT Method to the multivariate regime. This is achieved by modelling

the phenomenon of contagion using generalized linear models to estimate the edge

weights.

2. Sparsity and the small world network: The assumption of sparsity in a complex

network that depicts real world relationships is based on empirical observations [34].

The structure of complex networks that depict real-world relationships often follows

the small-world network paradigm, with a scale-free distribution of degrees given by

a power law of the form Pdeg(x) = c · x−α, where α is a scaling parameter and c is

the constant of normalization [35] [36]. This might be because networks in the real

world grow by preferential linkage. To account for this assumption of sparsity, we

need to select a subset of all possible edges which would convey the most important

relationships in the network, meaning that the number of edges in the final estimated

network, denoted by e, should be much smaller than n2.

3. Interpretation of edge weights: In the case of the RRT Method, edges are assigned

weights equal to a p-value made from comparing distributions, which is harder to in-

terpret. On the other hand, regression coefficients as edge weights have a very straight-

forward interpretation: they represent the strength and direction of influence that one

entity will have on the other, in some scale. This can be quantified by analysing the

specific model used for estimation. For example, logistic regression coefficients have

the interpretation of representing the change in log-odds of success associated with a
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unit increase for each predictor.

These limitations inspire us to move towards a system-wide regression based approach for

modelling relationships in financial data. To accommodate for the assumption of sparsity

and to move towards a system-wide scheme of estimation, we compute all the coefficients

associated with each node simultaneously and also select a subset of predictors. This is

achieved by employing the LASSO (Least Absolute Shrinkage and Selection Operator) [37].

3.2.2 Modelling Approach

The Setup

We start by describing the setup of the model. We are given a set of n time series {Si},
i = 1, 2, . . . , n, all of which describe the movement of a certain quantity of interest (return

of assets, trading volume, volatility, etc.) for financial entities (stocks, derivatives, etc.) in

a financial market. The task is to construct a network model of the market from these time

series based on the relative quantities of extreme dependence between the n entities.

The most natural quantity to consider is the spot price of a financial instrument, but this is

not always the case. For example, in the case where the financial entity is a stock in a share

market, whose price at time t is denoted by Pt, then a basic quantity is the log-return r(t)

of the asset, defined as:

r(t) = log
Pt

Pt−1

(3.3)

The log-return series is widely studied in mathematical finance instead of the spot price

series, as it presents certain advantages. Firstly, the log-returns are additive, hence the

log-returns for time period t = ti to t = tf can be computed simply:

r(tf ) =

t=tf∑
t=ti

r(t) = log
Ptf

Pti

(3.4)

Secondly, a common assumption for prices is that they are distributed log-normally, which

leads to a normal distribution for the log-returns. Motivated by these reasons, we consider

the log-returns of prices in our statistical analysis of data, in which case the set of time series
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{Si} represents the log-returns of n assets in a market over time. However, we emphasize

that this setup is general and that the set {Si} could represent quantities like volatility or

trading volume.

Since we are interested in extreme dependence, we filter out the extreme events (Definition

2.0.9) and also note their time of occurrence for each series Si. The pairs (Sj(texceed), texceed)

of extreme values and their time of occurrence enable the computation of recurrence and

residual times for a chosen index j with respect to any other index j′.

Let Y be a chosen series from the set of n time series of equal length {Si}, i = 1, 2, . . . , n.

Let the recurrence times of the extreme events of Y be given by the sequence {Yk}. The

length of this sequence depends on the chosen percentile threshold; lowering the threshold

lengthens the sequence. For each extreme event in Y , we have one corresponding recurrence

time Yi (Definition 2.0.10).

Let us denote the time length of the series Y by T , and the chosen threshold for extreme

events as ρ ∈ (0, 1). To illustrate, consider an example where ρ = 0.05. This corresponds to

a percentile value of 5%ile, and implies that only the bottom 5% of points by magnitude are

considered to be extreme events. On the other hand, if we wish to analyse the movements of

extreme events in the other other direction, i.e., the top 5%ile of points, we choose ρ = 0.95.

In general, when ρ > 0.5, then it represents an upper threshold and vice versa when ρ < 0.5.

The number of extreme events ℓ ∈ N in each series in the set {Si}, i = 1, 2, . . . , n is thus

ℓ = min{ρ× T, (1− ρ)× T} (3.5)

This formula also provides the length of the sequence {Yk} as each extreme event has exactly

one corresponding recurrence time.

Model Assumptions

To apply linear regression to the data, we first need to make an assumption about the

nature of the relationship of recurrence and residual times for a given series. Let us begin by
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considering a simple case first. We start with a single time series, say Xt which takes values

in R. To define extreme events, we choose a fixed lower threshold given ρ ∈ (0, 1), using

which we can compute the recurrence times for Xt. Let {Ui} be the sequence of recurrence

times thus obtained. We can easily see that this sequence follows a Geometric distribution

with the parameter (1− ρ) by computing the probability mass function of Ui ∈ N:

P(Ui = u) = (1− ρ)u−1 · ρ (3.6)

This follows from the fact that an extreme event will be observed at a rate of ρ in case of

upper thresholds. This allows us to interpret (1-ρ) as a probability of success in the classical

setup for a Geometric distribution, where we seek the distribution of the number of failures

before the first success in a series of Bernoulli trials. In the case of a fixed upper threshold,

the analysis is the same with the success probability replaced by ρ instead of (1− ρ).

We have now established that the recurrence times will follow a Geometric distribution:

Ui ∼ Geom(1− ρ) ∀i

This distribution has is supported on the the set of possible values u that the recurrence

time Ui can take, and clearly this set is N, the set of natural numbers.

Returning back to the original setup, we have the time series Y and its recurrence times

{Yi}. Consider an extreme event that occurs at time t0 in Y , and let its recurrence time be

Yt0 . Our goal is to quantify the strength of co-movement of the extreme events in Y with

respect to the extreme events in the remaining n− 1 time series in the set {Si} − Y . To do

so, we introduce a modification in the definition of residual time from Definition 2.0.12.

Definition 3.2.1. Backward Looking Residual Time

The sequence of residual times, denoted by {Wk}, for series X given another series Y is the

time lag between an extreme event in X and the closest extreme event that occurred previously

in Y .

In simpler terms, the Backward Looking Residual Times are effectively recurrence times

of an extreme event in Y , except that they do not measure the time lag between extreme

events within Y itself, but from the closest past extreme events in the other n− 1 series.
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We now have a complete setup for the application of linear regression. Our key assump-

tion is that the recurrence times Yi of Y can be modelled as a linear combination of some

parameters and of the residual times with respect to the other series.

The response is the set of recurrence times {Yi}, and the predictors are the backward residual

times: for each of the ℓ recurrence times Yi, we have a vector xi = (1, xi1, xi2, . . . , xi,n−1) of

residual times from the remaining series in the set {Si}, i = 1, 2, . . . , n. This can be inter-

preted as determining which financial entities are the strongest indicators of the occurrence

of extreme events in the series Y , which in turn determines which entities have extreme

events that move with those of Y .

We are now ready to state our assumptions:

1. We assume that the recurrence times of the extreme events can be modelled as a

random variable Yi which takes in yi ∈ N, being drawn from Geometric distributions

with a mean µ ∈ [0,∞).

2. We assume that the residual times of an extreme event in series i from another time

series can be modelled as a random variable Xij which takes values xij ∈ N.

3. We assume that a linear predictor of residual times Xij ∀ j is statistically correlated

to a function of the mean of this distribution.

4. We assume that the underlying network of connections within the financial market is

sparse.

Simple Linear Model

The simple linear model can be summarized mathematically as:

Yi = β0 + β1xi1 + · · ·+ βn−1xi,n−1 + εi = x⊤
i β + εi, i = 1, . . . , ℓ (3.7)

where β = (β0, β1, β2, . . . , βn−1) is the vector of coefficients, each encoding the dependence of

Yi on the n− 1 remaining time series, and εi is the associated normally distributed random

error such that E(εi) = 0 ∀ i.
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We can stack these ℓ equations and convert them into compact matrix notation as follows:

Yℓ×1 = Xℓ×(n−1)β(n−1)×1 + ϵℓ×1 (3.8)

where, Y is the response, X is the design matrix, β is the vector of coefficients and finally,

ϵ is the ℓ-dimensional random error with zero mean and constant variance, i.e.

E(ϵ) = 0, Cov(ϵ) = σ2Iℓ

Suppressing the subscripts, we have:

Y = Xβ + ε,

where

y =


y1

y2
...

yℓ

 (3.9)

X =


x⊤
1

x⊤
2
...

x⊤
ℓ

 =


1 x11 · · · x1,n−1

1 x21 · · · x2,n−1

...
...

. . .
...

1 xℓ1 · · · xℓ,n−1

 (3.10)

β =


β0

β1

β2

...

βn−1

 , ε =


ε1

ε2
...

εℓ

 (3.11)

Finally, we can write

E(Y|X) = Xβ (3.12)
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since the expectation of the errors is zero.

Limitations of the Simple Linear Model

However, this model of simple linear regression is inappropriate for estimation of the strength

of relationships between these time series. Note that in linear regression, the linear predictor

for the i-th response ηi =

k=(n−1)∑
k=0

βkxik and the response itself vary over the set of real num-

bers R, whereas in this setup, Yi ∈ N, due to which E(Yi|X) ∈ (0,∞) ̸= R. Additionally,

the distribution of the recurrence times Yi is Geometric, which is not compatible with a

linear-response model, which requires that the response have normal distributions with con-

stant variance. The model implies that the predictors influence the mean of the distribution

µ = E(Y|X) by means of shock transmission. By design, a linear-response model demands

that a constant change in the inputs will cause a constant change in the response. But, for

a Geometric response, we would expect a change in predictors to reflect non-linearly in the

response (a unit change in the predictors might cause an exponential change in the response).

This problem carries over to the assumptions regarding the random errors, which might not

hold for a Geometric response.

Therefore, we are prompted to change the model of regression to account for the non-

linear nature of the problem. To model a linear relationship between the response and

the predictors, given the Geometric nature of the response, we look towards the framework

of Generalized Linear Models (GLMs).

3.2.3 Generalized Linear Regression Model for RRT

The central assumption of our model is that, in case of extreme dependence, the expectation

of the i-the recurrence time of Y in the sequence {Yk} is dependent linearly on the n − 1

backward residual times of its associated extreme event with respect to the other n− 1 time

series. We now know that this assumption is not adequate since the distribution of the re-

sponse is Geometric, due to which the response takes discrete values from the set of natural

numbers N, which implies that its mean will always be positive.
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In Generalized Linear Models, the response is allowed to take values from a distribution

that belongs to the exponential family. The mean of this distribution, µ, is linked to the

predictors by a link function g(·):

E(Y | X) = µ = g−1(Xβ) (3.13)

By applying the function g(·) on both sides, we obtain

=⇒ g(µ) = Xβ = η (3.14)

where η is the linear predictor.

The matrix η = Xβ is called the linear predictor. In this new setup, while a constant

change in the predictors produces a constant change in the function g(µ), the effect on µ

is not restricted to be linear. Moreover, we can map the range of the mean of the response

to R with an appropriate choice for the link g(·), which now makes the model suitable for

ordinary linear regression.

Calculating the Link Function

To derive the link function, we begin by considering the theory of GLMs with a fresh setup.

We follow McCullagh’s book on the subject [38] to analyse the GLM with Geometric re-

sponse.

Once again we start with the response vector Y = (y1, y2, . . . yn). Do note that n here

is different from the rest of the chapter, where it is instead replaced by ℓ since n is reserved

for the total number of time series in the financial system. Each component yi ∈ N of Y will

have an distribution from the exponential family, and hence the mean µi ∈ [1,∞). We can

write the probability density function of Y in the general form as follows:

fY (y; θ, ϕ) = exp

{
yθ − b(θ)

a(ϕ)
+ c(y, ϕ)

}
(3.15)
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where, θ is the natural parameter, ϕ is the dispersion parameter, and a(·), b(·), and c(·) are
some functions that take specific forms depending on the distribution.

Next, we compute the log-likelihood for this distribution. Since the logarithm is a strictly

increasing function over the reals, maximizing likelihood is the same as maximizing log-

likelihood. Additionally, the distributions from the exponential family are logarithmically

concave, which makes maximum likelihood estimation convenient. The likelihood function

is given by:

L(θ, ϕ; y) = fY (y; θ, ϕ) (3.16)

l(θ, ϕ; y) = lnL(θ, ϕ; y) = yθ − b(θ)

a(ϕ)
+ c(y, ϕ) (3.17)

Next, let us consider the score function, which is the defined as the gradient of the log-

likelihood with respect to the parameter vector:

s(θ) ≡ ∂ lnL(θ)
∂θ

=
∂

∂θ

{
yθ − b(θ)

a(ϕ)
+ c(y, ϕ)

}
(3.18)

The expectation of the score conditional to the parameter θ can be evaluated simply:

E(s | θ) =
∫
X
f(x; θ, ϕ)

∂

∂θ
lnL(θ, ϕ;x)dx (3.19)

=

∫
X
f(x; θ, ϕ)

1

f(x; θ, ϕ)

∂f(x; θ, ϕ)

∂θ
dx (3.20)

=

∫
X

∂f(x; θ, ϕ)

∂θ
dx (3.21)

where X denotes the sample space for the distribution. We can now use the Leibniz rule

to interchange the integral and differential operations, if we assume certain regularity con-

ditions. The expression simplifies to:

E(s | θ) = ∂

∂θ

∫
X
f(x; θ.ϕ)dx =

∂

∂θ
(1) = 0 (3.22)

This leads us to the convenient relation that

E
(
∂l

∂θ

)
= 0 (3.23)
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Let us apply this to Equation 3.17. We have,

∂l

∂θ
=

y − b′(θ)

a(ϕ)
(3.24)

where b′(θ) ≡ d

dθ
b(θ). Using Equation 3.23, and noting that b′(θ) and a(ϕ) do not transform

under expectation, we can write:

0 = E
(
∂l

∂θ

)
= E

(
y − b′(θ)

a(ϕ)

)
=

µ− b′(θ)

a(ϕ)
(3.25)

Finally, we obtain the key result pertaining to the relationship between the mean µ of the

distribution of Y and the natural parameter θ:

E(Y ) = µ = b′(θ) (3.26)

Equation 3.26 gives us a template to find the link between the natural parameter and the

mean of the distribution from the form of the distribution for any distribution in the expo-

nential family. We can now identify the canonical link g(·). Since the link function relates

the natural parameter to the mean, we must have:

θ = g(µ) (3.27)

By comparing Equation 3.26 with Equation 3.14, we finally obtain:

θ = g(µ) = g(b′(θ)) (3.28)

Applying g−1(·) on both sides leads to

g−1(θ) = b′(θ) (3.29)

Therefore, the canonical link can be identified as g−1 = b′. This concludes the derivation. ■

Now, we return to our original setup. We have Yi as the response; it is the recurrence

time which follows a Geometric distribution. Let the parameter of this distribution be pi.

Hence, Yi will have a probability mass function given by

P(Yi = y) = (1− pi)
y−1 · pi (3.30)
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Taking the natural logarithm on both sides of the equation gives:

ln(P(Yi = y)) = (y − 1) ln(1− pi) + ln(pi) = y ln(1− pi)− (ln(1− pi)− ln(pi)) (3.31)

Comparing this with Equation 3.17 results in the following identification:

θ = ln(1− pi) (3.32)

c(·) = 0 (3.33)

a(ϕ) = 1 (3.34)

b(θ) = ln(1− pi)− ln(pi) (3.35)

For the Geometric distribution, we can easily compute the mean µi = E(Yi) of the distribu-

tion:

E(Yi) =
∞∑
k=1

k · pi(1− pi)
k−1

=⇒ E(Yi) = pi

∞∑
k=1

k · (1− pi)
k−1

=⇒ E(Yi) = pi

(
− d

dpi

∞∑
k=1

(1− pi)
k

)

Since the success probability pi ∈ (0, 1), the geometric sum converges to
1− pi
pi

=⇒ E(Yi) = pi

(
− d

dpi

1− pi
pi

)
=⇒ E(Yi) = pi

(
d

dpi

(
1− 1

pi

))
= pi

(
1

p2i

)
This gives us

E(Yi) =
1

pi
= µi (3.36)

Combining this result with the identification that θ = ln(1− pi), we obtain:

θ = ln

(
1− 1

µi

)
(3.37)
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This leads to the final identification for the canonical link function g(·):

g(µ) = ln

(
1− 1

µ

)
(3.38)

Remark Notice that while µi ∈ [1,∞), the link function is undefined for the point µ = 1.

This is because an observed response of 1 is telling the model that extreme events happen

next to each other, and provides the estimate of success probability p̂i = 1, which implies

that the rate of extreme events is infinite.

The Final Model

Armed with the link function, we can finally state the model for a generalized linear regression

of the data in terms of three components:

1. We have the response Y, with components Yi which represent the ith recurrence time

of the time series Y . Furthermore, the mean of the distribution is µi = E(Yi).

2. We have the matrix of linear predictors η, formed by multiplying the design matrix

with the coefficient vector: η = Xβ

3. The link g(·) such that g(µ) = η. For each component of the mean µ, this evaluates

to g(µi) = ln

(
1− 1

µi

)
.

Thus, we have the final model:

g(Yℓ×1) = Xℓ×(n−1)β(n−1)×1 + ϵℓ×1 (3.39)

where, as before, Y is the response, X is the design matrix, β is the vector of coefficients

and finally, ϵ is the ℓ-dimensional random error with zero mean and constant variance

Interpretation of Regression Coefficients

We have built our model to detect the strength of contagion from a series j to a target series

i. In case contagion truly exists between these two series, it would imply the co-movement of
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extreme events. This will be reflected in smaller residual times being associated with smaller

recurrence times by means of the estimated coefficient β̂j. Therefore, the expected effect

that an increase in the predictor Xj (the residual time) will have on the response Yi (the

recurrence time) is that it would make it longer.

Let us begin with a simple analysis to illustrate. We begin by explicitly writing the predicted

success probability of the underlying Bernoulli trials that generate the distribution of the

recurrence time Yi, p̂i, as a function of the linear predictor, η̂i =
n−1∑
k=0

xikβ̂k, calculated from

data:

p̂i = 1− exp (η̂i) (3.40)

This follows from the fact that the observed response yi is the estimate for the mean of the

distribution µi, which gives the success probability of the through Equation 3.36. The mean

and the linear predictor are connected to each other via the link function, given by Equation

3.37.

If we assume that η̂i is small enough so that η̂2i << η̂i, we can further simplify by ignoring

the higher order terms in the Taylor expansion of the exponential function:

p̂i = 1− exp (η̂i) (3.41)

=⇒ p̂i = 1−
(
1 + η̂i +

η̂2i
2!

+ · · ·
)

(3.42)

=⇒ p̂i ≈ −η̂i (3.43)

Now, let us analyse what happens if there occurs a change ∆xij in the value xij of the

predictor Xij. The change in the linear predictor, ∆η̂i will be

η̂i +∆η̂i = β̂0 + β̂1 · xi1 + . . .+ β̂j · xij + β̂j ·∆xij + . . .+ β̂n−1xi,(n−1) (3.44)

=⇒ ∆η̂i = β̂j ·∆xij (3.45)

But from Equation 3.43 that the change in the estimated success probability ∆p̂i can also

be written as

∆p̂i ≈ −∆η̂i (3.46)
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So finally, we can conclude that a change of unit value in the predictor would cause a change

in the estimated success probability ∆p̂i as given by

∆p̂i ≈ −β̂j ·∆xij (3.47)

This analysis establishes the interpretation of the estimated coefficients: for a series j and

target series i, the estimated coefficient β̂j is the decrease in the predicted success probability

p̂i that will be caused by a unit change in the predictor Xij. Ultimately, it means that if the

sign of β̂j is positive, we associate a decrease in the predictor to a decrease in the expected

response Yi. Thus, a highly positive estimate of the coefficient corresponds to a stronger

case of contagion between the extreme events of the series i and j, while a negative estimate

would imply the opposite. This motivates us to interpret the estimated coefficients as a

measure of the “signal strength” of contagion between i and j.

3.2.4 Details of Implementation

To implement this GLM for network construction, we process the given n time series to

obtain the sequences of extreme events for each series, and then compute the recurrence and

residual times for each extreme event.

We iterate through each element of the set of given time series {SN}, N = 1, 2, . . . , n. Let Sk

be the time series under consideration in the current iteration. Then, the ℓ recurrence times

of Sk form the response vector. This response is transformed element-wise by applying the

link g(s) = ln

(
1− 1

s

)
, since the observed value of the recurrence time Ŝm is the estimate for

the mean of the underlying distribution µ̂m. As remarked earlier, if the observed response

yi = 1, then we replace it the a value slightly more than 1 to avoid getting ln 0. Using

Equation 3.39, we run a regression and estimate the coefficient vector for the j-th series, and

call it βk. This vector has the dimensions (n− 1)× 1.
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Estimation Strategy

To compute the vector of coefficients βk, we might use Ordinary Least Squares (OLS) esti-

mation. The OLS performs estimation by minimizing an objective function H(β):

H(β) =
ℓ∑

i=1

∣∣∣∣∣yi −
n−1∑
j=1

Xijβj

∣∣∣∣∣
2

= ∥y −Xβ∥2. (3.48)

The estimate β̂ for the coefficients is thus:

β̂ = arg min
β

H(β), (3.49)

However, the use of OLS presents a few problems. In the high dimensional setting, where

ℓ < n−1, OLS fails as it requires the design matrix X to be full rank. Secondly, it will most

likely produce non-zero estimates for all coefficients, thereby linking a series i to all other

n− 1 series. This will lead to the linkage of node i to all other n− 1 nodes in the network,

producing a dense network with n2 edges, which is undesirable since we were motivated by

the sparse nature of networks that represent the real world.

These problems are mitigated by abandoning the OLS scheme in favour of the LASSO

(Least Absolute Shrinkage and Selection Operator) [37]. The LASSO solves the following

problem:

min
β∈Rn−1

{
∥y −Xβ∥22

}
subject to ∥β∥1≤ t, (3.50)

where t is a specified parameter that controls the amount of regularizaion, and ∥u∥p=(∑N
i=1 |ui|p

)1/p
refers to the ℓp norm. For added clarity, we can rewrite 3.50 in the La-

grangian form by transferring the constraint to inside the bracket, as follows:

min
β∈Rn−1

{
1

ℓ
∥y −Xβ∥22 + λ∥β∥1

}
(3.51)

where ℓ is the number of samples. The optimal value for λ is found by varying it and choos-

ing the value which produces the estimate with the least Mean Squared Error (MSE).

The LASSO encourages sparsity in the network by virtue of the constraint it places on

the ℓ1 of the coeffiecient estimate vector. This forces the weaker relations to go to zero,
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while extracting the strongest links in the network. Additionally, the LASSO is robust even

when the dimension is high, i.e., in the case where ℓ < n−1. LASSO also enables estimation

of the model with a notably smaller number of time points than the conventional approach

of OLS, given that the underlying network is approximately sparse (which, if you recall, is

one of our assumptions).

Hypothesis Testing

To construct a network based on the relationship between extreme events between time se-

ries, the basic hypothesis that we have to test has the following scheme: (null hypothesis)

H0 : there is no contagion from series Si to the series Sj vs. (alternate hypothesis) H1 : there

exists no contagion from series Si to the series Sj.

Based on the GLM model, we can construct the hypothesis testing procedure for contagion

from series Si to the series Sj by consider the estimated coefficient β̂ij: (null hypothesis)

H0 : β̂ij < 0 vs. (alternate hypothesis) H1 : β̂ij > 0.

Notice that instead of the null hypothesis being H0 : β̂ij = 0, its is H0 : β̂ij < 0. The

reason for this is that our model will provide a positive estimate for the existence of con-

tagion, as a positive coefficient implies that the occurrence of extreme events is correlated

in the two series under consideration. A negative estimate for the coefficient, however, will

not imply contagion. It has the interpretation that an occurrence of extreme events in one

series leads to stabilization in the target series, i.e., the movement of extreme events is anti-

correlated.

The p-values for the coefficient estimates are provided by the statistical estimation soft-

ware used, which in our case would be the glmnet [39] package.

3.2.5 Network Generation using the Modified RRT Method

We are now interested in constructing the weighted, directed adjacency matrix A with di-

mensions n × n for the network of financial instruments. Let i and j be two nodes of this

network. Recalling Definition 2.0.2, we see that the (i, j)-th element of the adjacency matrix
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is of the form.

Aij =

wij if i ̸= j

0 if i = j

where wij is the weight assigned to the edge from j to i.

The existence of negative estimates for the coefficients β̂ij means that we cannot inter-

pret the edge weights as distances, since distances cannot be negative. Using a function to

transform the weights to positive values (for example, the exponential) on the weights is also

ineffective, since it will map zero to one, which will make the generated network possess full

connectivity, disobeying the key assumption sparsity. Hence, we proceed with the natural

and naive choice of edge weight by simply assigning the value of the estimated coefficient to

the edge between nodes i and j:

wij = β̂ij

Thus, the adjacency matrix A is defined case-wise as:

Aij =

β̂ij , if i ̸= j

0 , if i = j
(3.52)

We summarise the implementation in Algorithm 1 below:

Algorithm 1: Building a Network with the Modified RRT Method

Input : Data, windowLen, step, percentile
Output: adjacency matrix A

1 tolNum = floor((length(Data)-windowLen)/step)
2 ℓ = percentile*windowLen
3 for i in 1 to tolNum
4 do
5 | Compute exceedance times for set of time series {Xk}t in a window
6 | Compute recurrence and residual times for each time series Xk using exceedances
7 | Transform the response yi of each slice of 3D array with link function g(·)
8 | Perform LASSO on transformed response and n− 1 predictors of length ℓ

9 | Use coefficients β̂ij as edge weights in matrix A and set diagonal to zero

10 end
11 return adjacency matrix A representing a weighted, directed network

29



30



Chapter 4

Analysis

In this section, we use the RRT and the modified RRT methods developed in the previous

chapter to analyse two sets of financial data from global market systems. We process the

raw time series of index data to compute log-returns. Using these set of log-returns series,

we produce quantitative estimates of the inter-dependencies in financial markets. This in-

formation is then employed to draw a network representation of the market, generated by

a taking a sliding window along the financial time series data. We then determine whether

these constructed networks encapsulate observable properties, such as connectivity (given

by the average degree) and transitivity (given by the clustering coefficient), of the time-

varying complex network that underlies the market. We compute the time series of network

characteristics of the generated networks, and compare it against known crisis periods. The

analysis was done in the statistical software R, using the packages igraph [40], and glmnet

[39]. The visualizations were generated by using the package ggplot2 [41].

4.1 Data Description

Let us begin by describing the datasets used. Both datasets contain index data, which is

used to compute log-returns, based on which extreme events are filtered. Using a sliding

window, we generate a time varying network.
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4.1.1 Dataset 1

Dataset 1 comprises of the time series of stock indices for 17 different economies, namely

Argentina, Brazil, Chile, Colombia, Mexico, Peru, China, India, Indonesia, Korea, Malaysia,

Philippines, Taiwan, Thailand, USA, and Japan. These MSCI indices were acquired from

Datastream in US dollars and are recorded on a weekly basis. The period under study spans

from January 1993 to December 2011, during which we have a total of 992 observations for

each of the 16 time series. By using weekly data, we aim to minimize the potential issue of

non-synchronous data to some extent. Weekly data also provides mitigation against spillover

effects.

4.1.2 Dataset 2

A selection was made of closing time index data from 33 major stock markets across Asia,

America, Europe, and Oceania, covering the period from May 3, 2004, to June 30, 2017, to

construct dataset 2. The data was recorded on a daily basis. [13]

4.2 Network Characteristics using the Modified RRT

A time-varying network is generated using LASSO on the residual and recurrence times with

the ℓ1 penalty parameter set at λ = 1. This means that the optimization problem for the

regression coefficients becomes:

min
β∈Rn−1

{
1

ℓ
∥y −Xβ∥22 + ∥β∥1

}
The optimal choice of λ based on mean squared error was found to be in in the interval

(1.2, 1.6) in experiments, however, we choose λ = 1 to encourage more links being drawn per

node as the optimal choice produced fewer edges than desired.

We compute the time series of four network characteristics of the time-varying complex

network and heatmaps for indegree and outdegree for each node from data. We use average

degree per node (Definition 2.0.4) and a new indicator, the mean signal strength per node,
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based on the interpretation of the estimated coefficients in the regression as ‘signal strengths’

between two nodes. It is defined as:

Definition 4.2.1. Mean Signal Strength Per Node of a Network

For a directed, weighted network, the mean signal strength is defined as the sum of all weights

in the network. We can calculate this by summing over all the elements of the adjacency

matrix and then dividing by the number of nodes: A:

d̄net =

n∑
i,j=1

Aij

n

where n is the total number of nodes and e is the total number of edges. The mean signal

strength of a network can be interpreted as representing the net movement of extreme events

in a network.

Known crisis periods are highlighted in the graphs: dark grey for the 1997-1998 Asian

Crisis, light grey for the DotCom Crash 2000-2002 and finally, red for the 2007-2008 US

Subprime Crisis.

In this subsection, we consider the results of experiments on Dataset 1. We inspect the time

series of three network characteristics and the behaviour of specific nodes via heatmaps, as

described below:

1. Average degree per node (blue graphs), which is a measure of the connectivity of the

network. (Definition 2.0.4)

2. Mean signal strength per node (green graphs), which is the sum of all entries of the

adjacency matrix and represents the net movement of extreme events. (Definition

4.2.1)

3. Transitivity (pink graphs), which is a quantifier of the amount of clustering among

nodes in the network, with the salient feature of highly connected nodes being weighted

heavily as compared to nodes with low degree. (Definition 2.0.6)

4. The heatmaps are useful in the identification of distress propagating sources and

system stabilizing sinks. We present two heatmaps, one for indegree and the other
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for outdegree. A high indegree or outdegree imply greater promience in spreading

contagion.

4.3 Effect of Varying Parameters

4.3.1 Effect of Step Size

We observe that increasing the step size provides a smoothing effect on graph of the time

series of network characteristics, however, it does not change the qualitative nature of the

plot. This is illustrated in Figure 4.1 by contrasting various network characteristics computed

with different step sizes.
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(a) Window: 100 weeks, Step: 4 weeks (b) Window: 100 weeks, Step: 1 week

(c) Window: 100 weeks, Step: 4 weeks (d) Window: 100 weeks, Step: 1 week

(e) Window: 100 weeks, Step: 4 weeks (f) Window: 100 weeks, Step: 1 week

Figure 4.1: Effect of changing step size for selected network characteristics, from Dataset 1.
All graphs are for the bottom 15 %ile of points and the penalty parameter has been set to
λ = 1.
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4.3.2 Effect of Window Length

Figure 4.2 showcases the effect of changing step sizes for average degree and the mean signal

strength in Dataset 1. We can observe a trade-off effect while changing the size of window

length. A larger window means more data for the model to crunch, but the amount of data

relevant to contagion is lesser. On the other hand, a smaller window will give the model

data that is concentrated around events of interest, but consequently, there is lesser data

that actually captures the event.
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(a) Window: 100 weeks, Step: 4 week (b) Window: 100 weeks, Step: 4 weeks

(c) Window: 200 weeks, Step: 4 weeks (d) Window: 200 weeks, Step: 4 weeks

(e) Window: 300 weeks, Step: 4 weeks (f) Window: 300 weeks, Step: 4 weeks

Figure 4.2: Effect of changing the window on selected network characteristics, for the bottom
15 %ile of points from Dataset 1 with a step of 4 weeks with penalty λ = 1.
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4.3.3 Effect of Changing Penalty Parameter λ

For λ = 0, the LASSO reduces to Ordinary Least Squares (OLS) estimation, and hence,

the generated networks have n2 − n edges for n nodes. The value of λ can be used to force

sparsity in the network: higher the penalty, higher the sparsity. For values of λ which are

significantly greater than the optimal value, the shrinkage of the coefficient vector is extreme

enough to force the network to have zero nodes.

We can observe this progressive effect on the average degree and the mean signal strength

for Dataset 1 in Figure 4.3. As the value of λ increases, the mean value of the network

characteristics over the dataset fall. In Fig 4.3g, we notice that the average degree per node

goes down to zero for multiple time windows.

Hence, there is a trade-off effect in play here as well. Larger values of the penalty pa-

rameter generated networks with no significant relationships, but values that are too small

lead to spurious correlations creeping into the estimates due to random error and produce a

dense network.
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(a) λ = 0.5 (b) λ = 0.5

(c) λ = 1 (d) λ = 1

(e) λ = 1.5 (f) λ = 1.5

(g) λ = 2 (h) λ = 2

Figure 4.3: Effect of changing the penalty parameter λ on selected network characteristics,
for the bottom 15 %ile of points from Dataset 1 with a window of 200 weeks and a step of
1 week.
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We now present a visual illustration of the same effect in Figure 4.4. We consider the

bottom 15 %ile of points in Dataset 1, taking a window of 200 weeks and a step of 4

weeks (which is approximately a month), and draw the network for the last iteration of the

algorithm, corresponding to the time window around 2011. The sparsity in the generated

networks increases with the value of λ, until finally, in Fig 4.4d, only one links is drawn in

the network.

(a) λ = 0 (b) λ = 1

(c) λ = 1.5 (d) λ = 2

Figure 4.4: Network representation of the effect of using LASSO for coefficient estimation
on Dataset 1, with a window of 200 weeks and a step of 4 weeks, for the bottom 15 %ile of
points.

4.3.4 Optimal Choice of Parameters

From the various numerical experiments that were undertaken, the optimal values of the

parameters were found to be as follows:
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� Window Length The ideal window length for both datasets was found to be 200

units. A smaller window size leads to fewer data points for the estimation, whereas a

larger size glosses over events of interest.

� Step Size The step size does not have a sizeable impact on the qualitative nature

of the generated plots. We choose the step size to be close to a month (4 weeks for

Dataset 1 and 20 days for Dataset 2).

� Penalty Parameter For the penalty parameter, cross-validation showed that for most

experiments, the lowest mean squared error was achieved at values around 1. Hence,

we choose λ = 1 as the standard penalty parameter for all experiments.
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4.4 Results for Dataset 1

4.4.1 Network Characteristics

Average Degree

Figure 4.5 showcases the average degree per node for Dataset 1. We choose a step size of 4

weeks, which approximately corresponds to a month in real time. In Figure 4.6, we set the

window to 200 weeks and the step to 4 weeks, and vary the percentile threshold for selecting

extreme events.

We can observe that this graph shows varying behaviour across all three marked crisis peri-

ods. One consistent feature is that the plot reaches a minima in or very nearly around the

red region, which represents the 2008 US Subpriime Crisis. In both Figure 4.5a and Figure

4.5b, the light grey area shows a prominent dip in the value of connectivity.

In Figure 4.6, we can observe the effect of changing the percentile threshold. The presence

of the minimum in the red region is preserved, and, the qualitative features remain mostly

similar. We do notice that the value of the absolute minimum shrinks with an increase in

the percentile value.

(a) Window: 100 weeks, Step: 4 weeks (b) Window: 200 weeks, Step: 4 weeks

Figure 4.5: Average Degree per node for Dataset 1 for the bottom 15 %ile of points, over a
step size of 4 weeks and different window lengths.
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(a) Threshold: 15 %ile (b) Threshold: 10 %ile

Figure 4.6: Average Degree per node for Dataset 1 for a window of 200 weeks and step of 4
weeks, over different percentile values for the threshold of extreme events.

Mean Signal Strength

The mean signal strength, obtained by summing over all entries of the adjacency matrix of

a generated network, gives a sense of the direction of net movement in the network. Figure

4.7 gives a sense shows the time series of mean signal strength per node for two experimental

configurations. With a resolution of 100 weeks, we can see that the plot shows prominent

dips around crisis period in Figure 4.7a, but the same cannot be observed in 4.7b, possiibly

due to the larger window size.

Figure 4.8 shows the behaviour of meann signal strength as we increae the percentile thresh-

old. The dipping behaviour of the plots, specifically in the red region, is more pronounced

as we increase the percentile value. This could be due to more precise estimation of links

when we select a larger number of points for the regression by increasing the threshold.
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(a) Window: 100 weeks, Step: 4 weeks (b) Window: 200 weeks, Step: 4 weeks

Figure 4.7: Mean Signal Strength per node for Dataset 1 for the bottom 15 %ile of points,
over a step size of 4 weeks and different window lengths.

(a) Threshold: 15 %ile (b) Threshold: 10 %ile

Figure 4.8: Mean Signal Strength per node for Dataset 1 for a window of 200 weeks and step
of 4 weeks, over different percentile values for the threshold of extreme events.

Transitivity

The behaviour of the time series transitivity exhibits high variance, but maintains the dip-

ping feature seenn in the previous network characteristics. In Figure 4.9a, the plot reaches

local minima during crisis periods. A sharp, prominent dip can be seen in the red area in

Figure 4.9b.

44



The effect of changing percentile values (Fig 4.10) is less clear in the case of transitivity.

This may be due to the large window length of 300 weeks, which correponds to 6 years.

(a) Window: 100 weeks, Step: 4 weeks (b) Window: 200 weeks, Step: 4 weeks

Figure 4.9: Transitivity for Dataset 1 for the bottom 15 %ile of points, over a step size of 4
weeks and different window lengths.

(a) Threshold: 5 %ile (b) Threshold: 10 %ile

Figure 4.10: Transitivity for Dataset 1 for a window of 200 weeks and step of 4 weeks, over
different percentile values for the threshold of extreme events.
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Heatmaps

Heatmaps are useful for simultaneously visualising the time series of specific properties for

all nodes in a network. Figure 4.11 depicts the time evolution of indegree and outdegree for

the nodes of the generated network. Darker patches imply a low value of indegree/outdegree.

(a) Threshold: 15 %ile (b) Threshold: 15 %ile

(c) Threshold: 10 %ile (d) Threshold: 10 %ile

Figure 4.11: Heatmaps of Indegree and Outdegree for Dataset 1, corresponding to the ex-
periments in Fig 4.6. We use a window of 200 weeks and a step of 4 weeks.
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4.5 Results for Dataset 2

4.5.1 Network Characteristics

Average Degree

Figure 4.12 shows the average degree per node evolving in time in Dataset 2. We see that

the graph reaches its minimum during the highlighted crisis period. Furthermore, within

the red region, sandiwched between two dips is a steep increase in the connectivity of the

generated networks.

In Figure 4.13, we see the effect of changing the percentile threshold on the average de-

gree. Since the data is recorded daily, it is highly resolved and this provides an ample

number of points for estimation of links. Due to this, the qualititive features of the graphs

do not change over the panel. We still observe deep dips around the crisis period, along with

a transient peak within the crisis period.

(a) Window: 100 days, Step: 20 days (b) Window: 200 days, Step: 20 days

Figure 4.12: Average Degree per node for Dataset 2 for the bottom 15 %ile of points, over
a step size of 20 days and different window lengths.
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(a) Threshold: 15 %ile (b) Threshold: 10 %ile

Figure 4.13: Average Degree per node for Dataset 2 for a window of 200 days and step of 20
days, over different percentile values for the bottom threshold of extreme events.

Mean Signal Strength

The behaviour of mean signal strength on Dataset 2 is especially interesting. The highlighted

crisis period shows a sharp, prominent dip in Figures 4.14a and 4.15. The crisis period is

easily discernible compared to the plots for average degree. This implies that the mean

signal strength displays more information pertaining to the behaviour of the entire system

and hence, is a better marker for systemic contagion as compared to average degree.
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(a) Window: 100 days, Step: 20 days (b) Window: 200 days, Step: 20 days

Figure 4.14: Mean Signal Strength per node for Dataset 2 for the bottom 15 %ile of points,
over a step size of 20 days and different window lengths.

Wehn we look at the effect of changing the percentile values for mean signal strength in

Figure 4.15, we observe that all the plots exhibit a sharp dip during the crisis period, but

as the percentile threshold increases, more variation is seen in the plots. In fact, Figure ??

resembled the plot for average degree. This may be due to 0.15 being too low a barrier to

successfully capture extreme events.

(a) Threshold: 15 %ile (b) Threshold: 10 %ile

Figure 4.15: Mean Signal Strength per node for Dataset 2 for a window of 200 days and step
of 20 days, over different percentile values for the bottom threshold of extreme events.
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Transitivity

Once again, we observe that transitivity shows higher variance compared to the other network

indicators. Similar to the case with Dataset 1, the dips are located around the highlighted

crisis period.

(a) Window: 100 days, Step: 20 days (b) Window: 200 days, Step: 20 days

Figure 4.16: Transitivity for Dataset 2 for the bottom 15 %ile of points, over a step size of
20 days and different window lengths.

(a) Threshold: 15 %ile (b) Threshold: 10 %ile

Figure 4.17: Transitivity for Dataset 2 for a window of 200 days and step of 20 days, over
different percentile values for the bottom threshold of extreme events.
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Heatmaps

(a) Threshold: 15 %ile (b) Threshold: 15 %ile

(c) Threshold: 10 %ile (d) Threshold: 10 %ile

Figure 4.18: Heatmaps of Indegree and Outdegree for Dataset 2, corresponding to the ex-
periments in Fig 4.13. We use a window of 200 days and a step of 5 days.
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Chapter 5

Conclusion

In this thesis, we developed a new method for detection and quantification of extreme de-

pendence in financial markets. Using this model, we were able to generate a network repre-

sentation of the market system from two datasets depicting the global financial market. We

then compute summary statistics for the network, as these are proxies for the state of the

system. In particular, we analyse the time series of average degree and net weighted degree

for the data. We attempt to validate the method by using known crisis periods as a bench-

mark and assessing if these summary statistics show anomalous behaviour during these times.

The selected network indicators exhibited deep dips during crisis periods, especially in mean

signal strength. This appears to be contrary to the interpretation of the estimated coeffi-

cients, as we expect the coefficients to increase in numerical value during crisis periods. This

behaviour was observed in the connectivity of the graphs as well.

A plausible interpretation that reconciles the observations with the theory could be related

to the fact that the model presented in this thesis looks specifically at the lower tail depen-

dence. While the net correlation goes up during crisis periods, the lower tail dependence

might not necessarily go up as well. In terms of macroeconomics, these observations may

imply that extreme events on the lower side of the distribution cease moving together during

the middle of the crisis period, but resume this behaviour as the crisis starts to fade, leading

to an initial dip and then a rise in the network indicators.
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The mean signal strength was found to be a better indicator of contagion as compared

to the average degree and the transitivity of the network consistently across different exper-

iments. A possible interpretation of this trend is that the mean signal strength encapsulates

relevant information about the state of the system and is thus a better marker of financial

contagion.

Future directions for this work could include but aren’t limited to:

1. Modelling with fewer assumptions and looking for extensions beyond the domain of

generalized linear models.

2. Using more powerful statistical estimation tools like Elastic Net instead of LASSO to

better tackle the problem of high dimensionality.

3. Using volatility series as opposed to index data to detect the transmission of extreme

volatility and study volatility clustering.

4. Constructing a framework for determining market health and assessing system risk

using network characteristics.

The author would like to conclude this thesis with a fairly common, but maybe the most

important aphorism in statistics:

All models are wrong, but some are useful. ■■■
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