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Abstract

Uniform pro-p groups have been studied extensively by Lazard in his seminal paper Groupes

analytiques p-adiques (1965). Since then, many approaches have been developed to characterise

various families of pro-p groups. The techniques involve- Lie theoretic methods, purely group

theoretic methods and cohomological methods. In this project, we survey what is known

towards characterising powerful pro-p groups and Uniform pro-p groups, primarily using

Group Theoretic Methods
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Introduction

Uniform Pro-p groups are specialised family of pro-p groups that have extensive applications

in the field of p-adic Lie theory, and pro-p groups in general. A characterization of pro-p

groups was given in [DMSS] as follows. A pro-p group has finite rank if and only if it admits

a uniform open subgroup.

In this thesis, we look to understand and characterize different families of pro-p groups,

especially uniform pro-p groups and powerful pro-p groups. The first chapter will deal with

the prerequisite topics such as Powerful p-groups, Frattini subgroups, Topological which will

form essential building blocks for theory of Uniform and Powerful pro-p groups. The second

chapter then focuses on understanding the basic structure of a larger classes of profinite

groups , pro-p groups and procyclic groups. In the third chapter, we deep dive into the the

family of Powerful and Uniform pro-p groups. We look at the similarity of these groups with

abelian groups. Then We cover a significant result that Uniform groups are homeomorphic

to Zp
d, where d is the number of topological generators of the group. We then describe

the natural additive structure on a uniform group that enables it to have a free Zp module

structure. Following this, An additional bracket operation on (G,+) that gives a G a Zp-Lie

Algebra structure. We discuss various examples. In our final chapter, using the theory built

up, we begin to develop a characterization for Powerful and Uniform pro-p groups, based

from the paper by Benjamin Klopsch and Ilir Snopce [BI].

Original Contribution : This thesis is primarily a literature review of concepts and

results in the field of Powerful and Uniform pro-p groups, and using them to draw a brief

characterization of Uniform pro-p groups. A few examples and certain details in proofs have

been added to create better understanding of the topic for the reader. The contents of the

thesis largely follow [DMSS], which was the primary reading material.
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Chapter 1

Preliminaries

This chapter deals with advanced Group theory topics that would be of use in this thesis.

The contents of this chapter are mostly referred from [DF] on topics related to basic group

theory and [DMSS] for powerful p-groups and Inverse limits. Have referred to [KC] for proofs

in Topological groups.

1.1 Group Theory

In this section, we would be discussing select advanced group theoretic and topological

theories

1.1.1 Commutator Subgroups

Definition 1.1.1. Given a Group G:

• The Commutator, [a, b], of two elements a, b ∈ G is defined by

[a, b] := a−1b−1ab
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• The commutator [A.B] , of two subgroups A,B ∈ G is defined by

[A,B] := ⟨[a, b]|a ∈ A, b ∈ B⟩

where ⟨X⟩ denotes the subgroup of G generated by X, a subset of G.

Notation 1. [x, y]z := z−1[x, y]z

Notation 2. [A,B,C] := [[A,B], C]

Remark 1.1.1. The following are few basic properties of commutators. If x,y,z are elements

of G , then :

• [xy, z] = [x, z]y[y, z]

• [x, yz] = [x, z][x, y]z

• [xn, y] =
∏n

i=1[x, y]
xn−i

• [x, yn] =
∏n−1

i=0 [x, y]
yi

• If x, y ∈ G then (xy)n ≡ xnyn[y, x]n(n−1)/2(mod[[G,G], G]).

Remark 1.1.2. Hall Wiit’s Identity If x, y, z elements of normal subgroups A,B,C of

G respectively. Then:

[
x, y−1, z

]y [
y, z−1, x

]z [
z, x−1, y

]x
= 1

Proof. consider one of the commutators [x, y−1, z]y[
x, y−1, z

]y
= y−1

[[
x, y−1

]
, z
]
y

= y−1
[
x−1yxy−1, z

]
y

= y−1(yx−1y−1xz−1x−1yxy−1z)y

= x−1y−1xz−1x−1yxy−1zy

Similarly we can get expressions for other commutators and by combining all, we will get

the required result.
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Proposition 1.1.1 (3-Subgroup Lemma). If A,B,C are 3 normal subgroups of G, then

[A,B,C] ≤ [B,C,A][C,A,B]

Proof. Consider the group ⟨(a, b−1, c] | a ∈ A, b ∈ B,C ∈ C⟩ . Using the Hall Witt Identity,

we get:

[
a, b−1, c

]b [
b, c−1, a

]c [
c, a−1, b

]a
= 1[

a, b−1, c
]
= b([c, a−1, b]a)−1([b, c−1, a]c)−1b−1

= b(
[
c, a−1, b

]a
)−1(

[
b, c−1, a

]c
)−1b−1

= ((
[
c, a−1, b

]a
)−1(

[
b, c−1, a

]c
)−1)b

Since [A,B,C], [B,C,A] , [C,A,B] all are normal subgroups of G, the above result implies

any element of [A,B,C] can be expressed as a product of elements of [B,C,A] and [C,A,B]

hence the containment is achieved.

1.1.2 Frattini Subgroups

In this subsection we cover Frattini subgroups and their various useful properties.

Definition 1.1.2. Frattini Subgroup of a group G , Φ(G) is defined to be the intersection of

all maximal subgroups of G.

Remark 1.1.3. Frattini subgroups are normal, characterestic subgroups (subgroups invariant

under all group automorphisms).

Proposition 1.1.2. Φ(G) is the smallest normal subgroup N of G such that G/N is an

elementary abelian p-group(i..e A Group is said to be elementary abelian if it is abelian and

all non trivial elements have order p)

Proof. Let M be any maximal subgroup of G. Now, G/M is abelian as it is a cyclic group

of order p. This shows that G,G ≤ M for all M , which implies that [G,G] ≤ Φ(G) , hence

G/Φ(G) is abelian.

Let x ∈ G and observe G/M . Since |G/M | = p we have (xM)p ∈ M . This implies that

xp ∈M for all x ∈ G for all M . Thus, xp ∈ Φ(G) for all x ∈ G.
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Now, any element of G/Φ(G) is of the form Φ(G)x where x ∈ G. Thus, we have

(Φ(G)x)p = Φ(G)xp = Φ(G). It follows that G/Φ(G) is an elementary abelian p-group.

To show it’s the smallest such subgroup, Take any H ◁ G such that G/H is elementary

abelian.If |G/H| = pn , then:

G/H ∼=
n∏

i=1

⟨Hxi⟩

where ⟨Hxi⟩ are right cosets of G/H. Now, G/H has n-maximal subgroups Hi/H (each

being isomorphic to product of n-1 cosets).The intersection of all these maximal subgroups

is trivial, and using lattice isomorphism theorem (between subgroups of G containing H

and subgroups of G/H), we can deduce that ∩ni=1Hi = H and alson every Hi is a maximal

subgroup (as it is normal and has index p in G). Since H is an intersection of finitely many

maximal groups, Φ(G) ≤ H

Remark 1.1.4. Since G/Φ(G) is elementary abelian, If G is a finitely generated p-group,

one can deduce that G/Φ(G) ∼= F d
p . Thus the quotient gives us more information about the

generators of the group.

Proposition 1.1.3. If G is a p-group, then Φ(G) = Gp[G,G] where Gp = ⟨gp|g ∈ G⟩

Proof. Since Φ(G) contains all xp for all x ∈ G, Gp ⊆ Φ(G) and [G,G] ⊆ Φ(G) and hence

Gp[G,G] ⊆ Φ(G) To show the other way inclusion, we use the fact that G/[G,G]Gp is

elementary abelian. It is abelian as it contains [G,G] and given a non trivial element x ∈ G,
we get xp ∈ Gp. Thus from Proposition 1.1.2, we get the reverse inclusion, and hence the

result.

Frattini subgroups give a fascinating insight into the generators of a group:

Theorem 1.1.4. The frattini subgroup is equal to the set of all non generators of the group.

Remark 1.1.5. A non generator element of a Group g ∈ G is defined as follows: If G =

⟨X, g⟩ , then G = ⟨X⟩.

Proof. Let S be the set of all generators of G. Let g ∈ S. Suppose there exists atleast one

maximal proper subgroup H such that g /∈ H, then G = ⟨H, g⟩. Since g is a non generator,

G = ⟨H⟩ which is a contradiction as H < G. Thus g ∈ Φ(G) Conversely, Let g ∈ Φ(G). Let

G = ⟨X, g⟩ but G ̸= ⟨X⟩. Suppose g /∈ S. We know that ⟨X⟩ = ∩{K| ⟨X⟩ ⊆ K ⊆ G}. If
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M is a maximal proper subgroup containing ⟨X⟩, then, g ∈ M thus M ≥ ⟨X, g⟩ = G. This

shows that M is not proper subgroup of G, which is a contradiction. Thus, g ∈ S.

Proposition 1.1.5. Burnside Basis Theorem If G is a finite p-group, and X ⊆ G such

that XΦ(G) generates G/Φ(G), then X generates G.

Proof. Suppose ⟨X⟩ < G then ⟨XΦ(G)⟩ = ⟨X⟩Φ(G) ⊂ H where H is maximal proper

subgroup of G , and hence ⟨H⟩ < G/Φ(G), which is a contradiction. Hence ⟨X⟩ generates
G.

Proposition 1.1.6. Let H be the set of all automorphisms of a finite p-group G which induce

identity on G/Φ(G). Then H is a finite p-group.

Proof. It is enough to show that if α ̸= 1 ∈ H has prime order q, then q = p. Let ϕ be an

element of H of order q. Now given ϕ acts as the identity on G/Φ(G), so ϕ acts on each coset

of Φ(G). The orbits of ϕ thus are each of length either 1 or q, which tells us that Φ(G)x

contains a fixed point. Thus there is an element in each coset of Φ(G) which is invariant

under ϕ. Taking their images under the quotient map from G onto G/Φ(G), we get the

generating set of G/Φ(G). Choosing a basis of G/Φ(G) and using the previous result, we

get that G is generated by elements that are fixed by ϕ. Hence H is a finite p-group.

1.1.3 Nilpotent Groups and Central Series

In this section we discuss briefly about Nilpotent groups and Lower central series associated

with a Group.

Definition 1.1.3. A Group is said to be Nilpotent if it has a terminating lower central series

i.e, γn+1(G) = 1 for some n.

Remark 1.1.6. We would be dealing with two main variants of a lower central series in this

thesis, which are defined as follows:

1. Lower Central series For any group G the lower central series of G is defined

recursively by

γ1(G) = G, γk(G) = [γk−1(G), G]
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2. Lower p-central series For any group G the lower p-central series of G is defined

recursively by

P1(G) = G,Pk(G) = (Pk−1(G))
p [Pk−1(G), G]

Remark 1.1.7. The value of n from the definition of a nilpotent group is defined as the

nilpotency class of the group.

We now prove a fairly useful property about Nilpotent groups :

Proposition 1.1.7. If H = ⟨a1, . . . .at) is a finitely generated nilpotent group then every

element of [H,H] is equal to a product of the form [x1, a1] . . . [xd, ad] with x1, ...., xd ∈ H

Proof. By Induction on the nilpotency class c of the group, i.e, γc(H) ⊆ Z(H). If c = 1,

H becomes abelian, and the result is trivial. Thus assume c ≥ 2. From Remark 1.1.1 and

using the fact that γc(H) ⊆ Z(H), we get the following: if u ∈ γc−1(H) , then

[u, ae11 . . . aedd ] = [u, ae11 ] . . . [u, aedd ]

= [u, a1]
e1 . . . [u, ad]

ed

= [ue1 , a1] . . . . [u
ed , ad]

and if u1, . . . , ud, v1, . . . , vd ∈ γc−1(H) then:∏
[ui, ai] ·

∏
[vi, ai] =

∏
[ui, ai] [vi, ai]

=
∏

v−1i [ui, ai] vi [vi, ai]

=
∏

[uivi, ai]

From the above two computations we can say for any element w ∈ γc(H) is of the form

w = [w1, a1] . . . [wd, ad], where [wi, ai] and wi ∈ γc−1(H) . Now let g ∈ [H,H]. By induction

hypothesis we have :

g ≡ [y1, a1] . . . [yd, ad] (modγc(H))

g = [y1, a1] . . . [yd, ad]w

=
∏

[yi, ai]
∏

[wi, ai]

=
∏

[wiyi, ai]

Which gives the result.
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1.1.4 Powerful Groups

We introduce the concept

Definition 1.1.4. 1. A finite p-group G is powerful if p is odd and G/Gp is abelian, or

p = 2 and G/G4 is abelian.

2. A subgroup N of a finite p-group G is powerfully embedded in G, written N p.e. G, if

p is odd and [N,G] ≤ Np, or p = 2 and [N,G] ≤ N4.

Remark 1.1.8. G is powerful if and only if G p.e G ; N p.e G implies that N ◁ G and N

is powerful.

Remark 1.1.9. All powerful groups are solvable as given a group G powerful. We have

[G,G] ⊆ Gp which implies [Gp, Gp] ⊆ (Gp)p. Thus we can define a normal series by: γ1(G) =

G, γi(G) = γi−1(G)
p. This normal series has every quotient γi(G)/γi−1(G) abelian, and thus

is solvable.

On the other hand, all solvable groups are not powerful. For example, the Dihedral group of

8 elements , D8, is a solvable group that is not powerful as D8/(D8)
4 ∼= D8 is not abelian.

Powerful p-groups share many common structural features with Abelian groups, some of them

discussed in the below lemma:

Lemma 1. Let G be a finite p-group and K,N,W ◁ G with N ≤ W . Then :

1. If N p.e. G then NK/K p.e.G/K.

2. If p is odd and K ≤ Np, or if p = 2 and K ≤ N4, then N p.e. G if and only if N/K

p.e. G/K.

3. If N p.e. G and x ∈ G then ⟨N, x⟩ is powerful.

4. If N is not powerfully embedded in W , then there exists a normal subgroup J of G such

that given p is odd, then :

Np[N,W,W ] ≤ J < Np[N,W ] and |Np[N,W ] : J | = p

Proof. (1) follows as [NK/K,G/K] = [N,G]K/K ≤ NpK/K = (NK/K)p.
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(2). From (1) we have [NK/K,G/K] ≤ (NK/K)p. Since K ≤ Np, we can say that

[NK/K,G/K] ≤ (N/K)p. To show converse, [NK/K,G/K] = [N,G]K/K ≤ (N/K)p .

From here we get, [N,G]K ≤ Np and thus [N,G] ≤ Np.

For (3),Take H = ⟨N, x⟩. As N ◁H, we get that [H,H] = [N,H], and since N p.e in G,

we have [H,H] = [N,H] ≤ [N,G] ≤ Np ≤ Hp.

In (4), taking p to be an odd prime, Let M = Np[N,W ] > Np. Now since G is a finite

p-group and M,N are normal in G, we know there exists J ◁ G such that Np ≤ J < M

and |M : J | = p [DF]. Now M/J ∈ Z(G/J), thus, [M,G] ≤ J implying Np [N,W ] ≤
Np [N,W,W ] ≤ Np [N,W,G] ≤ J , which is our required result.

Proposition 1.1.8. Let G be a finite p- group and N ≤ G. If N p.e G, then Np p.e in G.

Proof. IfNp does not powerfully embed inG there exists a J ◁G such that (Np)p [[Np, G] , G] ≤
J and [(Np)p [Np, G] : J ] = p. Going modulo J , i.e, (Np)p = (Np)p [[Np, G] , G] = 1. This

implies [Np, G] = [N,G,G] < Z(G), and thus the map f : G→ Z(G) given by x 7−→ [n, g, x]

is a homomorphism for all n ∈ N and g ∈ G. Thus:

p−1∏
j=0

[
n, g, nj

]
=

p−1∏
j=0

[n, g, n]j = [n, g, n]p(p−1)/2

So, if y ∈ N and g ∈ G:

[yp, g] = [y, g]y
p−1

. . . [y, g]

=
0∏

j=p−1

[y, g][y, g, yj]

= [y, g]p
0∏

p−1

[y, g, yj]

= [y, g]p[y, g, y]p(p−1)/2 = 1 since [x, g, xj] ∈ Z(G)

Now [N,G]p = 1 . Using all results and removing the modulo,

[Np, G] ⊆ [N,G]p [[N,G] , N ]p

⊆ Npp [Np, G]p

⊆ Npp

10



Thus Np p.e in G.

Lower p-series of a powerful p-group have various useful and interesting properties, some of

which discussed below:

Proposition 1.1.9. Let G = (a1, . . . , ad) be a powerful p-group, and put Gi = Pi(G) for

each i.

1. Gi p.e. G , and Gi+1 = Φ(Gi) = Gp
i

2. Gi+k = Pk+1 (Gi) = Gpk

i for each k ≥ 0

3. The map x 7→ xp
k
induces a homomorphism from Gi/Gi+1 onto Gi+k/Gi+k+1, for each

i and k.

4. Every element of Gp is a pth power in G

5. Gi = Gpi−1
=

{
xp

i−1 | x ∈ G
}
=

〈
ap

i−1

1 , . . . , ap
t−1

d

〉
6. If G = ⟨a1, . . . , ad⟩ is a powerful p-group then G = ⟨a1⟩ . . . ⟨ad⟩, i.e, G is the product

of its cyclic subgroups ⟨ai⟩

Proof. (1) The base case i = 1 is trivial. Suppose if Gi p.e in G, then Gi+1 = Gp
i [G,G] = Gp

i

and Φ(Gi) = Gp
i [Gi, Gi] = Gp

i .

(2) Proceed by Induction on k. The base case k = 1 follows from (1). Suppose the

statement true up to k = n , i.e, Gi+n = Pn+1 (Gi) = Gpn

i . Now Gi+n+1 = Φ(Gi+n) =

P2(Gi+n) = P2(Pn(Gi)) = Pn+2(Gi). Also, Gi+n+1 = Φ(Gi+n) = Gp
i+n = Gpn+1

i , this proves

the case n+ 1,and thus the result follows by Induction.

(3) Let’s prove for the case k = 1, i.e,The map x 7→ xp induces a homomorphism from

Gi/Gi+1 onto Gi+1/Gi+2. Let’s take G = Gi. We go modulo G3 = P3(Gi) = Gp
2 , then

[G,G] ≤ G2 ≤ Z(G) Thus given x, y ∈ G , we get that (xy)p = xpyp[y, x]p(p−1)/2. If p odd,

then p|p(p− 1)/2, so [y, x]p(p−1)/2 ∈ Gp
2 = G3 = 1. If p = 2, then [G,G] ≤ G4 ≤ G3 = 1 and

thus we get (xy)p = xpyp and thus x 7→ xp is a homomorphism from G/G2 onto G2/G3. Now

to prove for all k, take composition of all homomorphisms from Gi/Gi+1 onto Gi+1/Gi+2 and

from Gi+1/Gi+2 to Gi+2/Gi+3 and so on to get the required result.

(4) Proceed by Induction on |G|. Let g ∈ Gp. From (3), there exists x ∈ G and y ∈ G3

such that g = xpy. Now Let H = ⟨Gp, x⟩. Then Gp p.e in G, from Lemma 1, we get that H

is powerful. Also, g ∈ Hp as y ∈ G3 = Gp
2. If H = G, G = ⟨Gp, x⟩ = ⟨Φ(G), x⟩ = ⟨x⟩ and

11



since G is a finite p-group, it follows. If H ̸= G, then by Induction we get g is a pth power

in H.

(5) We know Gi+k = Gpk

i = Gpi+k−1
. Also from (4), we know Gi = {xp|x ∈ Gi −

1} = {xpi−1 |x ∈ G}. From (3), take the map θ : G/G2 → Gi/Gi+1 given by x 7→ xp
i−1

.

Then, Gi/Gi+1 is generated by {θ(a1G2), . . . , θ(adG2)}, soGi =
〈
ap

i−1

1 , . . . , ap
i−1

d

〉
Gi+1. Since

Gi+1 = Φ(Gi) = Gp
i = Gpi−1

, we get that Gpi−1
=

〈
ap

i−1

1 , . . . , ap
i−1

d

〉
.

(6)Say Gk+1 = 1. Arguing by induction on k, we may suppose that G = ⟨a1⟩ . . . ⟨ad⟩Gk.

But Gk =
〈
ap

k−1

1 , . . . , ap
k−1

d

〉
and Gk ⊆ Z(G), and thus G = ⟨a1⟩ . . . ⟨ad⟩.

Notation 3. d(G) is defined as the minimum cardinality of a set of generators for a finite

p-group G. Thus d(G) = dimFp(G/Φ(G))

Definition 1.1.5. Rank of a finite p-group is defined by rk(G) := sup{d(H)|H ≤ G}

Proposition 1.1.10. If G is a powerful p-group and H ≤ G then d(H) ≤ d(G). In other

words if G is a powerful p-group, then rk(G) = d(G)

Proof. The proof is by induction on |G|. Let d = d(G) and put m = d (G2). Since G2 is

powerful, so by the inductive hypothesis we may suppose that the subgroup K = H ∩ G2

satisfies d(K) ≤ m. The map π : G/G2 → G2/G3 given by x 7→ xp is an epimorphism. So

we have dimFp(kerπ) + dimFp(Imπ) = dimFp(G/G2) = d(G) = d and thus dim(kerπ) =

d− dimFp(Imπ) = d− d(G2) = d−m.

Now let dim(HG2/G2) = e, i.e, HG2 = ⟨h1, . . . , he⟩G2 where h1, . . . , he ∈ H . From earlier

computations, we get dim (kerπ ∩HG2/G2) ≤ d−m and thus:

dim(π(HG2/G2)) = dim(HG2/G2)− dim(kerπ ∩HG2/G2)

≥ e− (d−m) = m− (d− e)

Since Φ(K) ≤ Kp and Φ(K) ≤ G3, the subspace of K/Φ(K) spanned by hp1, . . . , h
p
e has

dimension at least dim(π(HG2/G2)) ≥ m− (d− e). Thus we have m− (d− e) ≤ d(K) ≤ m,

and there exist elements k1, . . . , kd−e of K such that K = ⟨hp1, . . . , hpe, y1, . . . , yd−e⟩Φ(K) =

⟨hp1, . . . , hpe, y1, . . . , yd−e⟩. Therefore, H = H ∩ ⟨h1, . . . , he⟩G2 = ⟨h1, . . . , he⟩ (H ∩ G2) =

⟨h1, . . . , he⟩K = ⟨h1, . . . , he, k1, . . . , kd−e⟩. Thus d(H) ≤ d − e + e = d. This gives us that

rk(G) = sup{d(H)|H ≤ G} = d = d(G) and completes the proof.
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1.2 Topological Groups

We will be studying properties of Topological groups.

Definition 1.2.1. A topological group is a set G which is a group as well as a topological

space such that the following maps are continuous.

g 7→ g−1;G 7−→ G (g, h) 7→ gh;G×G 7−→ G

Remark 1.2.1. For each g ∈ G, the maps x 7→ xg , x 7→ gx and x 7→ x−1 are all

homeomorphisms of G.

Let’s discuss some basic properties of Topological groups:

Proposition 1.2.1. If G is a topological group, then:

1. Cosets of open subgroup of G are open.

2. Every open subgroup of G is closed.

3. G is Hausdorff if and only if {1} is a closed subset of G.

4. If N is a closed normal subgroup of a Hausdorff group G, then G/N is Hausdorff.

5. If H is a subgroup of G and if H contains a non empty open subset U of G then H is

open in G.

Proof. (1) follows as the maps x 7→ xg , x 7→ gx are all homeomorphisms, every coset of an

open subgroup is open .

For (2) we use (1) to get that the complement of every open subgroup is union of open

cosets, hence every open subgroup is closed.

(3) In Hausdorff spaces, singletons are closed. Conversely if singletons are closed, Let

h ̸= g be elements of G. Then h−1g ̸= 1. Let U be a neighbourhood of e such that

h−1g /∈ U . Since the map (x, g) 7→ x−1g is continuous, there exists a neighbourhood V of

e such that V V −1 ⊆ U . Now gV and hV are neighbourhoods of g an h respectively. And

gV ∩ hV = ∅, as if not, then there exists v1, v2 ∈ V such that gv1 = hv2. This gives us

h−1g = v2v
−1
1 ∈ V V −1 ⊆ U which is a contradiction.

(4) Consider the map π : G → G/N . This map is open, so consider the open mapping

Π : G × G → G/H × G/H given by Π(x, y) = (xH, yH), the image of the open set W =
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{(x, y) ∈ G×G|x−1y /∈ H) maps to the complement of the diagonal of G/H ×G/H (which

is given by {gH, gH|g ∈ G} ). Since the complement is open, the diagonal is a closed

subspace, and thus G/H is Hausdorff since distinct cosets of G/H can have disjoint open

neighbourhoods.

(5) H =
⋃

h∈H(Uh) and arbitrary union of open sets are open, hence H is open in G.

1.3 Inverse Systems and Inverse Limits

Definition 1.3.1. An inverse system of Groups over Λ (Λ being a directed set) is a family

of groups (Gλ)λ∈Λ with homomorphisms πλµ : Gλ → Gµ whenever λ ≥ µ , satisfying the

conditions πλµπλλ = IdGλ
and πµυ = πλυ whenever λ ≥ µ ≥ υ.

Definition 1.3.2. The Inverse limit lim←−(Gλ)λ∈Λ is a subgroup of the cartesian product∏
λ∈ΛGλ consisting of all elements (gλ) in G such that πλµ(gλ) = (gµ) whenever λ ≥ µ

Now we develop a topological group structure on an inverse system of finite groups. If Gλ

are finite groups, then by giving them discrete topology, and the
∏
Gλ the product topology,

the inverse limit G̃ becomes a topological group with the induced topology.

Going the other way, If Λ is a family of open normal subgroups of a given group

G, by ordering Λ by reverse inclusion ’⪰’ (N ⪰ M if N ≤ M) and the maps being

natural epimorphisms πNM : G/N → G/M where N ⪰ M , we get an inverse system

{(G/N)N∈Λ; πNM} for which G̃ is the inverse limit. This actually forms the profinite completion

of G.

G̃ = lim←−(G/N)N◁oG

14



Chapter 2

Profinite Groups

In this Chapter, we explain the basic theory of Profinite Groups, and later we discusss about

specialised families of Profinite Groups such as a pro-p groups, finitely generated pro-p groups

and procyclic groups. The contents of this chapter are referred from [DMSS] and certain

proofs from [DS].

2.1 Profinite Groups

Definition 2.1.1. A topological group G is profinite if it is Compact, Hausdorff and open

subgroups of G form basis for the neighbourhoods of identity.

Remark 2.1.1. The second part of the definition essentially implies any open set of a

Profinite group G that contains the identity contains an open subgroup.

The following proposition will enlist more such consequences about profinite Groups:

Proposition 2.1.1. Let G be a profinite group, then:

1. If H ≤o G, then H is closed, has finite index in G, and contains an open normal

subgroup.

2. If H ≤c G, then H is open if and only if it has finite index.

3. All normal subgroups of G intersect in identity

4. Closed subgroups of a profinite group is profinite

5. If N ◁c G, G/N with the quotient topology is a profinite group.

15



6. (a) If X ⊆ G , then X = ∩N◁oGXN

(b) If If X ≤ G, then X = ∩{K|X ≤ K ≤o G}

7. If X and Y closed subsets of G, then so are XY = {xy|x ∈ X, y ∈ Y } and Xn =

{xn|x ∈ X}

8. A sequence (gi) in G converges if and only if it is cauchy.

Let us define the notions of a convergent and cauchy sequences in a profinite group before

going into the proof:

Definition 2.1.2. A sequence (gi) is said to be convergent (to 1) if for every N ◁oG contains

all but finitely many elements of the sequence.

Definition 2.1.3. A sequence (gi) is said to be cauchy if for each N ◁o G , there exists n

such that (gi)
−1gj ∈ N for all i ≥ n, j ≥ n

Proof. (1) Take H ≤o G. Now G = ∪g∈GgH and all cosets gH are disjoint and open in

G (Translations of H with each element from G).Now, G \ H =
⋂

g∈G\H gH is a union of

open sets and thus is open which implies H is closed. Given G is compact, there exists

a finite subcover for the open cover {gH}g∈G of G , i.e, there exists g1H, . . . , gnH such

that ∩ni=1giH = G and thus finitely many cosets of H cover G, thus H has finite index in

G. To show existence of normal subgroup, take S = ∩x∈GxHx−1 ≥ H. Then, gSg−1 =

∩x∈G(gx)H(gx)−1 = ∩y∈GyHy−1 = S (where y = gx). Thus S is an open normal subgroup

contained inside H ≤o G.

(2) From(1) we know a closed subgroup which is open has finite index. Thus it remains to

show that a closed subgroup having finite index is open, Let H ≤c G such that |G : H| ≤ ∞.

Let C = {gH|g ∈ G} be the set of all left cosets of H in G. Thus ∩Ci∈C\HCi = G \ H, a

union of finitely many closed sets and hence closed. Hence H is open in G.

(3) Let K =
⋂

N◁oG
N . Assume K ̸= {1} i.e, there exists g ∈ K such that g ̸= 1. Since

G is Hausdorff, there exists an open neighbourhood U1 of 1 such that g /∈ U1. G is profinite,

hence open subgroups form neighbourhood basis around identity, thus there exists an open

subgroup contained inside U1 which contains an open normal subgroup N1. But g /∈ U1

hence g /∈ N1 and thus g /∈ ∩N◁oGN which is a contradiction to our assumption, hence⋂
N◁oG

N = 1

(4) Take H closed subgroup of G, where G is profinite. H is compact and Hausdorff is

clear as H ≤ G.If N is any open set containing the identity in H there exists an open set

M containing the identity in G, such that M ∩ H = N . Thus if we have a K ≤o G such
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that K ⊆ M , then K ∩H ≤o H and K ∩H ⊆ N . We can thus find open subgroups of H

which are contained in an open set of H containing 1, and thus open subgroups of H form

a neighbourhood basis for identity, and thus H is profinite.

(5)Let π : G → G/N be the quotient map. It is continuous, surjective. π is also an

open map Take U open in G. Since π quotient map, π(U) open in G/N if and only if

π−1(π(U)) ⊆o G. Also, π
−1(π(U)) = UN = ∪n∈NUn which is open if and only if U open in

G. Thus π(U) open in G/N if U open in G.

To show that G/N is compact , Let {Hi}i∈I be an open cover of G/N . Since π is an

open mapping, Hi open in G/N implies π−1(Hi) ⊆o G. Let x ∈ G , there exists y ∈ G/N
such that π(x) = y. Since {Hi} covers G/N , we have π(x) ∈ Hi for some i, implying

x ∈ π−1(Hi) for some i, thus π−1(Hi) forms an open cover for G. Now G is compact, if we

take any open cover {π−1(Hi)}i∈I for G, there exists a finite subcover ∪nj=1π
−1
j (Hi) = G.

So we have,π(∪nj=1π
−1
j (Hi)) = ∪nj=1π(π

−1
j (Hi)) = ∪nj=1(HiN)j = G/N which gives the finite

subcover for G/N .

To show G/N is hausdorff, If x ∈ G/N then as N is closed, xN ⊆c G. As π is an open

mapping it follows that π(G\xN) = (G/xN) \N ⊆o G/N , implying (G/N) \ {x} ⊆o G/N ,

thus {x} ⊆c G/N , implying G/N is Hausdorff.

To show open subgroups of G/N form base for neighbourhoods of 1, take K which is an

open neighbourhood of 1 in G/N . Then π−1(K) ⊆o G. Thus there exists H open subgroup

such that h ⊆ π−1(K). Thus π(H) ≤o G/M and π(H) ⊆ π(π−1(K)) = K, thus for

open neighbourhoods of 1, we can find open subgroups contained in them, which form the

neighbourhood basis of identity for G/N .

(6) (a) Given X ⊆ G. For each N ◁o G, [G : N ] < ∞ and thus there exists a finite

MN ⊆ X such that XN =
⋃

x∈X xN =
⋃

x∈MN
xN . It follows that X ⊆ XN ⊆c G for each

N ◁o G. Thus X ⊆ ∩N◁oGXN . Now let y ∈
⋂

N◁oG
XN . Then for each N there exists an

xN ∈ X such that y ∈ xNN or equivalently xN ∈ yN .As all open normal subgroups of G

form basis for neighbourhoods for identity, for every neighbourhood Uy of y. There exists

N ◁o G such that yN ⊆ Uy. Thus y ∈ X and thus X = ∩N◁oGXN .

(b) from (a), we know that XN open in G and X is intersection of open subgroups

containing X in G thus X̄ ⊇
⋂
{K | X ≤ K ≤o G} and if X ≤ G then clearly X̄ ⊆⋂

{K | X ≤ K ≤o G}, giving both way inclusion.

(7) f : G × G → G given by (x, y) 7→ xy is a continuous map and G × G is compact

(via Tychonoff’s theorem) and G is Hausdorff, thus the image f(X × Y ) = {xy|x ∈ X, y ∈
Y } = XY is closed in G. Similarly, if g1 : G → G × G . . . G given by x 7→ (x, . . . , x) and
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g2 : G×G . . . G→ G and (x, . . . , x) 7→ xn both continuous maps between Compact Hausdorff

spaces. Hence g2 ◦ g1 : G→ G is a homeomorphism(composition of 2 homeomorphisms) and

thus {xn | x ∈ X} ⊆c G whenever X ⊆c G.

(8) Every convergent sequence is cauchy. It remains to show that a cauchy sequence

converges.If {gi} is a cauchy sequence in G, for all N ◁o G, there exists n ∈ N such that

gi(gj)
−1 ∈ N. Let Cn := {gi(gj)−1|i, j ≥ n}. Enough to show that Cn = {1}. Let’s prove

by contradiction: If {gi} is a finite set and Cn ̸= 1. This implies there exists an a ̸= 1 such

that a ∈ Cn. Thus a ∈ N for all N ◁o G and since all open normal subgroups intersect in

the identity, a = 1. If {gi} is an infinite set, then it has a limit point as G is compact. Let

N ◁oG, thus any neighbourhood gN of G must contain infinitely many gi. Thus gi ∈ gN for

all i ≥ n. This implies that for j ≥ n, gi ∈ gjN = gN , thus if M is any neighbourhood of

g ∈ G, and let N ◁o G, such that N ⊆ g−1M then gi ∈ N ⊂ g−1M for all i ≥ n. Thus

Alternatively using the theory of Inverse limits developed in Section 1.3, we can derive

at another definition of a Profinite group.

Theorem 2.1.2. A profinite group G is topologically isomorphic to lim←−(G/N)N◁oG. Conversely,

Inverse limit of an inverse system of finite groups is profinite.

Proof. If G is profinite and G̃ = lim←−(G/N)N◁oG, then the map π : G −→ G̃ given by

π(g) = (gN)N◁oG is a homomorphism. π is injective as since ∩N◁oGN = 1, we have

π (g1) = π (g2)

(g1N)N◁OG = (g2N)N◁OG

(g1N1, g1N2 . . . , ·) = (g2N1, g2N2, . . .)

g−12 g1N ∈ N for all N ⇒ g−l2 g1 ∈ ∩N◁oGN = 1

g−12 g1 = 1 thus g1 = g2

To show π is surjective: Let (gNN)N∈ℵ ∈ G̃ be a finite collection of left cosets. Let M =

∩N∈ℵ(gNN) ̸= ϕ. Then, M ◁o G and gMM ⊆ gNN for all N ∈ ℵ. Thus ∩N∈ℵ(gNN) ̸= ϕ.

Since G is compact, hence has finite intersection property, and thus ∩N◁oG(gNN) ̸= ϕ. Thus

there exists g ∈ ∩N◁oG(gNN). Thus π is surjective .

Given U ⊆open G̃, U ∼=
∏

N∈ℵ UN ×
∏

N /∈ℵG/N . π−1(U) = ∩N∈ℵπ−1(UN) which is open,

thus π is continuous.

Conversely If Gλ is a system of finite groups, then by giving them discrete topology, and

the
∏
Gλ the product topology. It remains to show the inverse limit G̃ is Profinite. Now
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∏
λ∈ΛGλ is compact (Tychonoff theorem), Hausdorff, and given any open neighbourhood of

1, for a finite subset S ⊆ Λ , we can create an open subgroup GS =
∏

λ/∈S Gλ ×
∏

λ∈S{1}
which forms the neighbourhood basis for identity. Hence

∏
λ∈ΛGλ is Profinite.

It remains to show that G̃ ⊆
∏

λ∈ΛGλ is a closed group of a profinite group, hence profinite:

Let gλ ∈
∏
Gλ \ G̃. Then ∃µ ≥ ν ; µ, ν ∈ Λ such that πµν(gµ) ̸= gν Now take open

neighbourhood U(µ, ν) =
∏

λ=µ,ν 1×
∏

λ̸=µ,ν Gλ. Then gλU(µ, ν) is an open neighbourhood

of gλ in G̃, and gλU(µ, ν) ∩ G̃ = ϕ. This implies that there exists an open set in
∏
Gλ \ G̃,

hence making it open, and complement G̃ closed. Thus G is profinite.

A few examples of Profinite Groups are discussed in detail below:

Example 1. Any finite group is profinite and can be considered as the inverse limit of a

trivial Inverse system.

Example 2. The ring of p- adic integersZp = lim←−i∈I Z/p
iZ is a profinite Group.

Example 3. GLn(Zp) for n ≥ 1 is a Profinite Group.

Proof. GLn (Zp) = {a ∈Mn (Zp) | det(a) ̸≡ 0(modp)} and Mn (Zp) ∼= Zn2

p is both Hausdorff

and compact. Now, pZp is clopen(open and closed) in Zp (they form the open balls B(0, p−n)

in Zp which are defined using the p-adic metric). Thus, pMn (Zp) is also clopen in the product

topology of Mn (Zp). Now, if b = a + pk ≡ a (modp) where k ∈ Zp and a ∈ GLn (Zp)

then det(b) ≡ 0 (modp) and thus b ∈ GLn (Zp). This implies that GLn (Zp) is a finite

union of additive cosets of pMn (Zp). Therefore GLn (Zp) is clopen in Mn (Zp). Now, Γi :=

{a ∈ GLn (Zp) | a ≡ In (modpi)} will form a base for the neighbourhoods of the identity in

GLn (Zp) (are open subgroups of the form {In + piZp}). Since open subgroups of GLn (Zp)

form a basis for neighbourhoods of identity and is compact and hausdorff, it is profinite

Proposition 2.1.3. Let (Xi, ϕij) be an inverse system of non-empty compact spaces over a

directed set I. Then limXi is not empty.

Proof. Let Yj = {(xi)i ∈
∏

iXi | ϕjk (xj) = xk , j ∈ I ;k ≤ j}. Each Yj is non empty. Now

consider
∏
Xi−Yj, if (xi)i ∈

∏
Xi−Yj then there exists xk such that xk ̸= ϕjk (xj) for some

k ∈ I. Since each Xi are compact and Hausdorff
∏
Xi is compact and Hausdorff. And since

xk ̸= ϕjk (xj) are distinct points, there exists neighbourhoods U and V of ϕjk (xj) and xk

respectively such that U ∩ V = ∅. As ϕjk is continuous there exists a neighbourhood U ′ of

xj in Xj such that ϕjk (U
′) ⊆ U . Now consider W =

∏
Wi where Wi = U ′ for i = j,Wi = V

for i = k and Wi = Xi otherwise. This makes W a open neighbourhood of (xi)i. Now

if (yi)i ∈ W then ϕjk (yj) ̸= yk, since ϕjk (yj) ∈ U and yk ∈ V , but U ∩ V = ∅. Thus
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(yi)i ∈
∏
Xi − Yj, which give us that W ⊆

∏
Xi − Yj so that

∏
Xi − Yj is open, hence

Yj is closed. Since I is a poset, we observe that if j ≤ j′ then Y ′j ⊆ Yj. This observation

along with the fact that I is a directed poset gives that the collection {Yi}i∈I has the finite

intersection property. Now since
∏
Xi is compact,

⋂
i∈I Yi ̸= ∅, but lim←Xi =

⋂
i∈I Yi and

thus we are done.

Finitely Generated Profinite Groups

Remark 2.1.2. A group is said to be finitely generated if ⟨X⟩ = G where X is a finite subset

of G.

Proposition 2.1.4. Let G be a profinite group and let H be a closed subgroup:

1. Let X ⊆ H. Then X generates H topologically if and only if XN/N generates HN/N

for every N ◁0 G.

2. Let d be a positive integer. If HN/N can be generated by d elements for every N ◁oG,

then H can be generated topologically by a d -element subset.

Proof. (1) From 1-1 correspondence between subgroups of G/N and subgroups of G that

contain N , Since ⟨XN/N⟩ = HN/N for all N ◁0 G, we have ⟨XN⟩ = HN . This implies

∩N◁oGXN = ∩N◁oGHN . Since X = ∩N◁oGXN , we can conclude that ⟨X⟩ = H = H .

(2) Let YN be the set of all d-tuples of elements of G/N which generate HN/N . Given

πMN : G/M → G/N is the natural projection forM ≤ N whereM,N ◁oG then πMN(YM) ⊆
YN , thus {YN , πMN} forms an inverse system. From Proposition 2.1.3 we get that the inverse

limit of this system is non empty as G/N is compact and non empty. Thus there exists

x1, . . . xd ∈ G,such that for each N ◁o G, XN = (x1N, . . . , xdN). Now since XN , generates

HN/N for every N ◁o G, using (1) we get that {x1, . . . , xd} generates H topologically.

Proposition 2.1.5. If G is a finitely generated profinite group and m is a positive integer,

then G has only finitely many subgroups of a given index, and every open subgroup of G

contains an open topologically characterestic subgroup(subgroup invariant under all continuous

automorphisms of G).

Proof. Let G = ⟨X⟩ and X = {x1, . . . , xd}. Let H ≤o G such that |G : H| = m. If x ∈ G,
then x ∈ H if and only if xH = H. Thus H = stabG(H) = {g ∈ G|ϕ(g)(H) = H} where
ϕ : G → S|G/H| (Sm is the permutation group on m-elements). So H = ϕ−1({1}G/H) and

thus the number of possible H would be dependent on the number of choices of ϕ. Also
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ϕ(X) is generated by {ϕ(x1), . . . , ϕ(xd)}. Each xi can map to m! possible elements, and for

each ϕ we get H via the inverse image of a single point stabiliser in G/H. Thus maximum

possible number of H = m.m!d which is finite.

IfH ≤o G, then |G : α(H)| = |G : H| for each automorphism α, and α(H) is open when α

is continuous and thus the topologically characterestic subgroup S = ∩{α(H)|α ∈ Aut(G)}
is an intersection of finitely many open sets in G and thus is open in G.

Proposition 2.1.6. Every open subgroup of a finitely generated profinite group is finitely

generated.

Proof. Let ⟨X⟩ = G and |X| < ∞. WLOG assume X−1 = X(else we can assume X ′ =

X ∪X−1). Let H ≤o G and T be the transversal of right cosets of H in G and 1 ∈ T . Now,
T is finite as |G : H| < ∞. For all x ∈ X, t ∈ T , there exists s ∈ T such that Htx = Hs.

Let Y = {txs−1|t ∈ T, x ∈ X} . Let M = ⟨Y ⟩. We claim that M = H.

If a ∈ M, t ∈ T, x ∈ X then (at)x = a(txs−1)s. Now as (at)x ∈ MTX and a(txs−1)s ∈
MT implying X ⊆ MTX ⊆ MT . From here using our assumption that X = X−1 we can

say Xn ⊆ MT for all n. Hence, ∩∞i=1X
i = ⟨X⟩ ⊆ MT , M is closed and T is finite. So, we

have that MT = ∩ni=1MTi is closed. Thus ⟨X⟩ ⊆ MT and hence MT = G. It follows that

M ≤ H as Htx = Hs implies txs−1 ∈ H . Hence Y ⊆ H and hence ⟨Y ⟩ ⊆ H = H . Using

this, we finally get H = G ∩H =MT ∩H =MT ∩MH =M(T ∩H) =M{1} =M .

Frattini Subgroups

We briefly discuss about Frattini Subgroups in the context of Profinite Groups

Definition 2.1.4. The Frattini subgroup Φ(G) of a profinite group G is equal to the intersection

of all maximal proper open subgroups of G.

Remark 2.1.3. Frattini Subgroup is a closed normal subgroup of G, as it is the intersection

of arbitrarily many closed subgroups.

Remark 2.1.4. If K◁cG and K ≤ Φ(G) ,then Φ(G/K) = Φ(G)/K. It follows from the 1−1
correspondence between maximal open subgroups in G/K and the maximal open subgroups

in G, as all of them contain K by definition.

Proposition 2.1.7. Let G be a profinite group, X ⊆ G, then the following statements are

equivalent:

1. X generates G topologically
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2. X ∪ Φ(G) generates G topologically

3. XΦ(G)/Φ(G) generates G/Φ(G) topologically.

Proof. (1) =⇒ (2) : Since Φ(G) is the set of all non generators of G, we have that if

X generates G topologically then X ∪ Φ(G) generates G topologically. Also, (2) =⇒ (3)

as ⟨X⟩Φ(G)/Φ(G) = G/Φ(G). It remains to show that (3) =⇒ (1). Let K be an open

subgroup of G containing X. If K ̸= G, then K ≤ M for some maximal open proper

subgroup M of G. Thus : ⟨X⟩Φ(G)/Φ(G) ≤ M/Φ(G) ̸= G/Φ(G), which contradicts our

assumption that K ̸= G, and therefore K = G. Using X = ∩{K|X ≤ K ≤o G}, we get that
X = G. Thus (3) =⇒ (1) and proof is complete.

2.2 Pro-p Groups

Definition 2.2.1. A pro-p group is a profinite group in which every open normal subgroup

has index equal to some power of p. Alternatively, they are also defined as the inverse limit

of finite p-groups.

Index in a Profinite Group

Definition 2.2.2. Let G be a profinite group, and H be a closed subgroup of G. Let U be

the set of all open normal subgroups of G. We define the index [G : H] of H in G to be the

supernatural number |G : H| = lcm{|G/U : HU/U | | U ∈ U} = lcm{|G/U : H/H ∩U | | U ∈
U}

Proposition 2.2.1. If H and K are closed subgroups of a profinite group G, such that

K ⊆ H ⊆ G, then |G : K| = |G : H||H : K|.

Proof. If N ◁0 G then |G : NK| = |G : NH||NH : NK| = |G : NH||H : (N ∩ H)K| and
N ∩H ◁O H. Therefore |G : K| divides |G : H||H : K|. To show the converse, we use the

fact that any open subgroup of H ≤c G is of the form H ∩K where K ≤o G. Let N1 ◁0 G

and N2 ◁O H. Using the above fact, find M ◁0 G with M ∩ H ⩽ N2. Let N = M ∩ N1.

Thus, |G : N1H||H : N2K| divides |G : NH||H : (N ∩H)K| = |G : NK| for every N ◁o G.

Thus using the definition of the index |G : H| = lcm{|G : NH||N ◁o G} , we get that

|G : H||H : K| divides |G : K|, thus |G : H||H : K| = |G : K|

Proposition 2.2.2. Let G be a pro-p Group. Then:
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1. H ≤c G is also a pro-p group.

2. Let K ◁c G. Then G is a pro-p group if and only if both K and G/K are both pro-p

groups.

Proof. (1) Let N ◁o G. Then |G : N | is a p- power. |G : N | = |G : HN ||HN : N | = |G :

HN ||H : H ∩N |. Thus |H : H ∩N | is a p-power. Since any open normal subgroup of H is

of the form H ∩N where N ◁o G, we conclude H is a pro-p group.

(2) If K and G/K are both pro-p groups, then |G/K : H/K| = |G/H| where H/K ◁o G/K

is a p-power index. This gives us H open normal in G such that it’s index is a p-power.

Thus G is pro-p. Conversely if G is pro-p, we know K is pro-p. Take H/K ◁o G/K, then

|G/K : H/K| = |G : H| which gives a finite index. Also H ◁cG , thus H ◁oG and |G : H| is
a p-power. It follows that G/K is a pro-p group.

Now we look at a few non-trivial examples of pro-p groups:

Example 4. Sylow p-subgroups of any arbitrary profinite group are the maximal pro-p

subgroups, hence are pro-p.

Example 5. The ring of p-adic integers Zp = lim←−i∈I Z/p
iZ is a pro-p Group.

Example 6. GLn(Zp) for n ≥ 1 and SLn(Zp) for n ≥ 1 are not pro-p groups.

Proof. The open normal subgroups ofGLn (Zp) are of the form Γi = {g ∈ GLn (Zp) | g ≡ 1n (modpi)}.
They also are the kernel of the natural projectionGLn (Zp)→ GLn (Z/piZ) (i.e, GLn (Zp) /Γi

∼=
GLn (Z/piZ)). Since GLn (Z/piZ) is not a p-group, hence Γi are open normal subgroups in

GLn (Zp) that do not have a p-power index, and hence not a pro-p Group.

Similarly, SLn (Zp) is not also a pro-p group.

Example 7. The Principal Congruence classes of SLn(Zp) given by Γi = {g ∈ SLn(Zp)|g ≡
1n mod pi} and GLn(Zp) are pro-p Groups.

Proof. Γi are closed normal subgroups of SLn(Zp) and have finite index, as they are the

kernel of the homomorphism between SLn(Zp) and SLn(Z/piZ). Thus these Γi form open

normal subgroups of SLn(Zp). Furthermore, each of Γi for i ≥ 2 are open normal subgroups

in Γ1. We now claim that Γ1/Γi is a p- group for all i. Any element of Γ1/Γi is of the form

{(1 + pa)Γi | a ∈Mn (Zp) , a ≡ 0 (modpi)} . From here we get:

(1 + pa)p
i−1

= 1 + (pa)p
i−1

+ · · · ≡ 1 + pia
(
modpi

)
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Thus |Γ1/Γi| = pki and thus we can get from here that given any open subgroup of Γ1 has

p-power index in Γ1, and thus Γ1 is pro-p. Similarly, we can say Γi for all i ≥ 2 are also

pro-p groups.

Frattini Subgroups in Pro-p groups

Frattini Subgroups are extensively used in understanding about pro-p groups, and in finitely

generated pro-p groups:

Proposition 2.2.3. If G is a pro-p group, then

Φ(G) = Gp[G,G]

Where [G,G] is the derived group of G and Gp = ⟨gp|g ∈ G⟩

Proof. If M is a maximal proper open subgroup of G, there exists N ◁0 G with N ≤ M ,

and we can see M/N is a maximal subgroup of the finite p-group G/N , and thus |G/N :

M/N | = |G : M | = p, and M ◁o G.Thus [G,G] and Gp both are contained in M . Thus

Φ(G) =
⋂
M ≥ Gp[G,G] and since Φ(G) is closed, we have Φ(G) ≥ Gp[G,G]. To show the

other way inclusion, let Q = G/Gp[G,G]. From Proposition 2.2.2, Q is pro-p, and if N ◁0 Q

then Q/N is a finite elementary abelian p-group, Hence Φ(Q/N) = 1 = Φ(Q)/N . Thus

Φ(Q) ≤ ∩N◁oQN = 1. From this we get that Φ(G/Gp[G,G]) = Φ(G)/Gp[G,G] = 1 which

gives the reverse inclusion and concludes the proof.

Finitely Generated pro-p Groups

Proposition 2.2.4. Let G be a pro-p group. Then G is finitely generated if and only if Φ(G)

is open in G

Proof. If Φ(G) is open then G/Φ(G) is finite. Hence we can find a finite subset X of G

such that G = ⟨X⟩Φ(G), and thus G = ⟨X⟩. To show converse, suppose G = ⟨X⟩ where
|X| = d < ∞. Then If Φ(G) ≤ , N ◁0 G then G/N is an elementary abelian p-group

(from the previous proposition, we know Φ(G) kills all p-powers). Thus, G/Φ(G) ∼= Fd
p and

Φ(G) ≤ N gives us |G : N | ≤ pd, and that G/N can be generated by a d-element subset.

Choose the smallest possible N such that |G : N | ≤ pd, let it be N ′. Given N ′ ≤ N whenever

Φ(G) ≤ N ◁0 G. Thus we get Φ(G) = Φ(G) =
⋂
{N | Φ(G) ≤ N ◁0 G} = N ′. Thus N ′ is

open in G
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We define now an important family of topologically characteristic subgroups- the lower

p-series :

Definition 2.2.3. Let G be a pro-p group. The lower p- series is defined recursively as

follows: Let P1(G) = G

Pi+1(G) = Pi(G)p[Pi(G), G]

Remark 2.2.1. Note that P2(G) = Φ(G)

Lower-p series of finitely generated pro-p groups are studied extensively, as the subgroups

are all open and also form the basis for neighbourhoods of identity.

Proposition 2.2.5. Let G be a pro-p group, then:

• Pi(G/K) = Pi(G)K/K for all K ◁c G and all i.

• [Pi(G), Pj(G)] ≤ Pi+j(G) for all i and j.

• If G is finitely generated then Pi(G) is open in G for each i, and the set {Pi(G) | i ≥ 1}
is a base for the neighbourhoods of 1 in G.

Proof. (1) Let K ◁c G and proceed by Induction. Base case follows as P1(G/K) = G/K =

GK/K = Pi(G)K/K. Let us assume the statement holds true upto i, i.e, Pi(G/K) =

Pi(G)K/K, we will show it holds true for i+ 1. Then :

Pi+1(G/K) = Pi(G/K)p[Pi(G/K), G/K]

= (Pi(G)K/K)p[Pi(G/K), G/K]

= (Pi(G)K/K)p[Pi(G), G]K/K

= (Pi(G))[Pi(G), G]K/K

= Pi+1(G)K/K

Thus the result follows by Induction.

(2) WLOG proceed by Induction on j keeping i fixed. We know that [Pi(G), G] ≤ Pi+1(G) for

all i. Let n ≥ 2 and suppose inductively that [Pi(G), Pn−1(G)] ≤ Pi+n−1(G) for all i. Now we

fix m ≥ 1, and want to show that [Pi(G), Pn(G)] ≤ Pi+n(G). Since Pi+n(G) is closed we can

say Pi+n(G) =
⋂
{N | Pi+n(G) ≤ N ◁0 G}. Thus it suffices to show that [Pi(G), Pn(G)] ≤

N whenever Pi+n(G) ≤ N . Thus going modulo N , and assuming Pi+n(G) = 1, we get

Pi+n−1(G) ≤ Z(G). If g ∈ Pi(G) and x ∈ Pn−1(G) , then we get [g, xp] = [g, x]p = 1, and
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thus [Pi(G), Pn−1(G)
p] = 1. Also using the 3-subgroup lemma, we get

[Pi(G), [Pn−1(G), G]] ≤ [G, [Pi(G), Pn−1(G)]] [Pn−1(G), [G,Pi(G)

≤ [G,Pi+n−1(G)] [Pn−1(G), Pi+1(G)]

≤ Pi+n(G) = 1

Thus [Pi(G), Pn−1(G)
p[Pn−1(G), G]] = [Pi(G), Pn(G)] = 1 , and the inequality follows .

(3) G is finitely generated. Certainly P1(G) = G is finitely generated and open in G.

Let i ≥ 1 and suppose inductively that Pi(G) is finitely generated and open in G. We know

from Proposition 2.2.4, that Φ (Gi) is open in Gi. Since Φ (Pi(G)) ≤c Pi+1(G) ≤c Pi(G).

Thus |Pi(G) : Φ (Pi(G)) | = |Pi(G) : Pi+1(G)||Pi+1(G) : Φ (Pi(G)) |. Thus Pi+1(G) is closed

and has finite index in Pi(G), and hence open. Thus, {Pi(G) | i ≥ 1} forms a neighbourhood

basis for 1 of G, as if N ◁0G then G/N is a finite p-group and so Pi(G/N) = 1 for sufficiently

large i, and thus every open normal subgroup of G contains Pi(G) for some i.

Finitely Generated Pro-p Groups are of great interest due to the following major result:

Proposition 2.2.6. If G is a finitely generated pro-p group then every subgroup of finite

index in G is open.

This result requires the following lemmas

Lemma 2. If G is a pro-p group and K is a subgroup of finite index in G then |G : K| is a
power of p.

Proof. Suppose K is a subgroup of finite index, WLOG assume it is normal in G . Say

|G : K| = m = prq with p ∤ q, and Let X = {gm | g ∈ G}. Then X ⊆ K as K kills all

elements of order m in G , and X is a closed subset of G (being the image of the continuous

mapping g 7→ gm of G into G). Now let g ∈ G and N ◁o G. Then gp
e ∈ N for some

e ≥ r. By Euclid’s Lemma, there exist integers a and b such that am + bpe = pr, and

thus gp
r
= (ga)m

(
gp

e)b ∈ XN Since r is independent of N and X is closed this shows that

gp
r ∈ X ⊆ K. Thus G/K is a p-group.

Lemma 3. Proposition If G is a finitely generated pro-p group then the derived group [G,G]

is closed in G.

Proof. Let G = ⟨a1, . . . , ad⟩. Let X = {(g1, ai} . . . , {gd, ad| g1 . . . ., gd ∈ G}. Now,X is closed

in G, as it is the image of G× . . .× under the continuous map (g1, . . . , gd) 7→
∏
[gi, ai]. Let

N ◁o G, Thus G/N is nilpotent(as it is a finite p-group) and G/N = (a1N, . . . , adN). From
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Proposition 1.1.7, we have [G/N,G/N ] = XN/N , and so [G,G]N = XN , thus [G,G] ⊆
∩N◁oGXN = X = X , and we know X ⊆ [G,G] as [G,G] contains all possible commutator

products, so X = [G,G] and thus [G,G] is closed in G

Now we prove the main proposition:

Let G is a finitely generated pro- p group. Then the set G{p} = {gp | g ∈ G} is compact,

hence closed subgroup of G, as it is image of the continuous mapping g 7→ gp of G into G).

G/[G,G] is abelian, so if a, b ∈ G, then (ab)p = apbp modulo [G,G]. Thus Gp[G,G] =

G{p}[G,G], hence Gp[G,G] is closed and Φ(G) = Gp[G,G]. Since G finitely generated,

and Φ(G) is open. Now K be a proper normal subgroup of finite index in G. Assume

by Induction, Let K be open in M , whenever M is a finitely generated pro-p group with

K ≤M < G. Take M = Gp[G,G]K, now M is open in G since G/K is finite p-group , and

M has thus finite index in G, and hence is open, and therefore a finitely generated pro-p

Group.Since K open in M , we get that K open in G. From here, using the above result, we

conclude that any normal subgroup of finite index in G is open.

For any subgroup H of finite index in G, the kernel of the homomorphism ϕ : G→ S|G/H|

(given by the action ϕ(g) = gi, where gi is a coset representative of G/H that contains g) is

a normal subgroup of finite index of G that is contained within H. Thus every subgroup of

finite index in G is open.

This proposition has remarkable consequences:

Proposition 2.2.7. If G is a finitely generated pro-p group. Then Pi+1(G) = Pi(G)
p[Pi(G), G]

for each i.

Proof. Pi(G) is a finitely generated pro-p group, Φ (Pi(G)) is open in Pi(G). Thus, we get

Φ (Pi(G)) = [Pi(G), Pi(G)] (Pi(G))
p ≤ [Pi(G), G] (Pi(G))

p.

Proposition 2.2.8. Any abstract homomorphism from a finitely generated pro-p group to a

profinite group is continuous.

Proof. Let θ : G → H be the homomorphism, where G be a finitely generated pro-p group

and H be profinite group. If K ≤o H , and N = kerθ, we get that G/N ∼= θ(G), and

|G : θ−1(K)| = |G/N : θ−1(K)N/N | = |G/N : θ−1(K)/θ−1(K) ∩N | = |θ(G) : θ(θ−1(K))| ≤
|H : K|. Therefore θ−1(K) is open in G. Since K is an element of the neighbourhood basis

of 1 for H, θ is continuous.

Remark 2.2.2. The topology of a finitely generated pro-p group is determined by its Group

structure. It follows from the above proposition by replacing H with G and having θ to be

the identity map.
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2.3 Procyclic Groups

Definition 2.3.1. Let G be a pro-p Group, g ∈ G and λ ∈ Zp, then :

gλ = lim
n→∞

gλn

where (λn) is a sequence of integers with limn→∞ λn = λ

The operation of p-adic exponentiation is well defined in G as a result of the following

lemma:

Proposition 2.3.1. Let G be a pro-p group. Let g ∈ G and (ai),(bi) be two p-adically

convergent sequences converging to same limit in Zp. Then the sequences (gai) and (gbi) both

converge in G, and their limits are equal.

Proof. Let N ◁o G. Then |G/N | = pj for some j. Since (ai),(bi) are convergent p-adic

sequences, For large enough i, k we have ai ≡ ak (modpj), thus ai = ak+p
jl, so gai = gak .(gp

j
)l

thus gai ≡ gak (modN). Therefore (gai) is a Cauchy sequence in G, and converges to some

element g1 ∈ G. Similarly, the sequence
(
gbi

)
converges to some element g2 ∈ G. This

means for sufficiently large k, bk ≡ ak (modpj) , gbk ≡ g2 (modN) and gak ≡ g1 (modN)., so

g1 = gbkn−11 and g2 = gbkn−12 and thus g1g
−1
2 = gbkn′(gbk)−1 ≡ gbk−bk ≡ 1 (modN) and since

N was an arbitrary normal subgroup, we get that g1 = g2.

Proposition 2.3.2. The map ν 7→ gν defines a continuous homomorphism of f : Zp → G.

The image of Zp in the map is ⟨g⟩

Proof. it’s a group homomorphism by definition, it is continuous from Proposition 2.2.5 ,

since Zp is finitely generated pro-p group. Hence the image f(Zp) is compact and closed

subgroup of G. Also, f(Zp) contains ⟨g⟩ as Z is a dense subring of Zp. Conversely, the image

consists of limit of sequences of elements of Zp, hence contained in ⟨g⟩. Thus we have 2-way
inclusion.

Definition 2.3.2. A group G is said to be procyclic if it is topologically isomorphic to the

inverse limit of finite cyclic groups.

An important result relating pro-p groups and procyclic groups is as follows:

Proposition 2.3.3. A pro-p group G is procyclic if and only if it is either a finite cyclic

group or is topologically isomorphic to Zp
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Proof. We first show that G is topologically generated by a one element subset. Suppose G

has two distinct proper open maximal subgroupsM,N . TakeM ∩N ≥ Φ(G) ≥ Gp[G,G], so

M and N are normal subgroups of index p in G , and |G :M ∩N | = |G :M ||M :M ∩N | =
|G : M ||MN : N | = |G : M ||G : N | = p2 and G/M ∩ N is elementary abelian . This

shows us that G is not cyclic, and thus a contradiction. Therefore, any non trivial G has a

unique maximal proper open subgroup, thus has Φ(G) is open in G and G/Φ(G) is cyclic.

Hence G can be generated topologically by a single element, Now suppose f : Zp → G given

by ν 7→ gν . Using the previous result and above observation, we get that f(Zp) = G for

some g ∈ G. Let K = ker(f) , and since f is continuous, surjective and Zp/K and G both

profinite groups, we get that G is topologically isomorphic to Zp/K. If K is trivial we get G

topologically isomorphic to Zp. Since Zp is procyclic, it has a unique maximal subgroup and

hence any proper finite quotient of Zp is cyclic. Since it is either isomorphic to a procyclic

group or is a finite cyclic group, G is procyclic.
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Chapter 3

Uniformly Powerful pro-p Groups

In this chapter we study in detail about Powerful pro-p Groups, especially Uniform pro-p

Groups. The contents of this chapter are largely referred from [DMSS]

3.1 Powerful pro-p Groups

Definition 3.1.1. Let G be a pro-p group. G is said to be powerful if G/Gp is abelian when

p is odd, or G/G4 is abelian when p = 2.

Definition 3.1.2. Let G be a pro-p group. If NoG , then N is said to be powerfully embedded

in G (N p.e G) if [N,G] ≤ Np when p is odd, or [N,G] ≤ N4 when p = 2

Remark 3.1.1. From above definitions we can say G is powerful if G powerfully embeds in

itself.

Some examples of Powerful pro-p groups are as follows:

Example 8. Zp = lim←−(Z/p
nZ) is a powerful pro-p group

Example 9. Γi = {g ∈ SLn(Zp)|g ≡ 1n mod pi} Infact Γi = Γp
i−1 =

〈
gpi−1|g ∈ Γ1

〉
Proof. To show that [Γi,Γi] ≤ Γp

i . Let g, h ∈ Γi. Thus g = 1 + pia and H = 1 + pib where

a, b ∈ Mn(Zp) such that a, b ∼= 0 mod pi−1. From calculating, we get gh = hg mod pi+1

and thus [g, h] ∈ Γi+1 for all [Γi,Γi] ≤ Γi+1. Now we claim that for each i,Γi+1 = (Γi)
p =

{gp | g ∈ Γi}. To show this claim we will show that this equation

1 + pn+1a = (1 + pnx)p
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has a solution for all a ∈Mn (Zp). We proceed by Induction taking equality modulo each pi.

Now, we have

1 + pna = 1 + pn+1a+ .... ≡
(
1 + pn+1a

) (
modpn+2

)
which proves the base case. Let x1 = a, so proceeding by induction assume there exists xr

commuting with a such that

(1− pnxr)p = 1 + pn+1a+ pn+rc ≡ 1 + pn+1a
(
modpn+r

)
Where c ∈Mn(Zp) . Also let’s define: xr+1 = xr − prc. Thus we have :

(1 + pnxr+1)
p =

(
(1 + pnxr)− pn+rc

)p
≡ (1 + pnxr)

p − pn+r+1c
(
modpn+r+1

)
≡ 1 + pn+1a

(
modpn+r+1

)
Thus for all a ∈ Mn(Zp) such that a ≡ 0 mod pi−1, there exists xi ∈ Mn(Zp) such that

1 + pn+1a = (1 + pnx)p. Thus {xi} is a convergent sequence in Mn(Zp), which converges to

a limit x. Now 1+ pix is invertible and as det (1 + pix)
p
= det (1 + pi+1a) = 1, 1 + pix ∈ Γi.

Finitely generated powerful pro-p Groups have certain interesting similar properties with

abelian p-groups. The following results have direct relevance with the results proven in the

powerful p-groups section discussed in the 1st chapter:

Proposition 3.1.1. If G is a finitely generated powerful pro-p group, Gi = Pi(G). Then:

1. Every element of Gp is a pth power in G and Gp = Φ(G) is open in G(if p is odd), and

G4 = Φ(G) is open in G (if p = 2)

2. The map x 7→ xp
k
induces a homomorphism from Gi/Gi+1 onto Gi+k/Gi+k+1 for each

i and k. Pi(Gk) = Gi+k−1

3. If G = ⟨a1, ....., ad⟩ is a powerful p-group, then G = ⟨a1⟩......⟨ad⟩ i,e.., G is the product

of its procyclic subgroups ⟨ai⟩

Proof. (1) If we take any g = (gN) ∈ Gp then for each N◁oG, gN ∈ (G/N)p and hence as G/N

is a powerful p-group gN is a pth-power in G/N . Let XN := {g ∈ G/N | hp = gN}. With

respect to the natural maps πMN : G/N → G/M whenever N ≤M , we get πMN(XN) ⊆ XM

Thus, (XN , πMN)N◁oG
forms an inverse system of non empty sets. Thus, it has an non empty
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inverse limit. Hence there exists h = (hN) ∈ limN XN ⊆ G. Now hp = g and so we have

that Gp = Gp = {gp | g ∈ G}. It follows that Φ(G) = Gp ◁o G.

(2) Suppose if Gi p.e. G, then Gi+1 = Gp
i we get that Gi/G

p
i is abelian and so Gi

powerful and therefore Φ (Gi) = Gp
i = Gi+1. Also, the homomorphism x 7→ xp that maps

Gi/Gi+1 → Gi+1/Gi+2 is thus surjective. Composing these maps k times, we get that x 7→ xp
k

is a surjection from Gi/Gi+1 to Gi+k/Gi+k+1.

(3)If A = ⟨a1⟩ . . . ⟨an⟩, then A is closed. Also , we have AN/N = G/N for every N ◁o G.

And thus: A =
⋂

N◁oG
AN =

⋂
N◁oG

GN = G

3.2 Rank of a profinite Group

Definition 3.2.1. The rank of a profinite group rk(G) is defined as follows:

rk(G) = sup{d(H);H ≤c G}

Proposition 3.2.1. Given G be a profinite group, then the following definitions of rank are

equivalent:

r1 = sup {d(H) | H ≤c G}
r2 = sup {d(H) | H ≤C G and d(H) <∞}
r3 = sup {d(H) | H ≤0 G}
r4 = sup {rk(G/N) | N ◁0 G}

Proof. r2 ≤ r1 and r3 ≤ r1, as r1 contains a bigger family of subgroups. If N ◁0 G and

M/N ≤ G/N , M/N is finite and hence d(M/N) ≤ d(M) ≤ r3 and r4 ≤ r3. Since M/N

finite , there exists a finite subset X for each M,N such that M = NX. If H = ⟨X⟩ then
M = NH and thus d(M/N) = d(HN/N) ≤ d(H) ≤ r2, thus r4 ≤ r2. If H ≤c G. Then

d(HN/N) ≤ d(H) for every N ◁0G and hence d(H) = sup {d(HN/N) | N ◁0 G} ≤ r4. Thus

r1 ≤ r4. Combining all inequalities we get the equality.

Remark 3.2.1. A profinite group has finite rank if rk(G) < ∞. By definition, profinite

groups of finite rank are finitely generated.

3.3 Uniform pro-p Groups

Let Gi = Pi(G)
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Definition 3.3.1. A pro-p group is said to be Unifomrly powerful or Uniform, if it is finitely

generated , powerful and |Gi : Gi+1| = |G : G2|.

Remark 3.3.1. This implies the map fi : Gi/Gi+1 → Gi+1/Gi+2 is an isomorphism for all

i ≥ 1

Example 10. Pk(G) is uniform pro-p group for all sufficiently large k, where G is a finitely

generated powerful pro-p group. Let Gi = Pi(G), and suppose |Gi : Gi+1| = pdi. The map

x 7→ xp
i
is a surjection, and thus d1 ≥ d2 ≥ . . . ≥ di ≥ di+1 ≥ . . ., and there exists m such

that dk = dm for all k ≥ m. We also know Pi (Gk) = Gk+i−1 for all i and k and is powerful.

Thus we have Pk(G) uniform.

Remark 3.3.2. Every pro-p group that is finitely generated has a characteristic open uniform

subgroup. This is true, because if H is a characteristic open subgroup in a pro- p group G

then Pk(H) is also open and characteristic in G, and for sufficiently large k, we see Pk(H)

is a uniform subgroup from above proposition.

Example 11. Zp = lim←−(Z/p
nZ) is a uniform pro-p group.

Example 12. If Γi := {g ∈ GLn (Zp) |g ≡ Id (modpi)}, then Γ1 is a uniform pro-p group

when p is an odd prime and Γ2 when p = 2. Also Pi(G) = Γi(G) when p is an odd prime

and Pi(G) = Γi+1(G) when p = 2.

Proof. P1(G) = G = Γ1 where p is an odd prime. Going by Induction, suppose r ≥ 1

and Pr(G) = Γr. Then Pr+1(G) = Pr(G)
p[Pr(G), G] = Γr(G)

p[Γr(G), G] ≤ Γr+1 and also

Γr+1 ≤ Γp
r = Pr(G)

p. Since Γr+1 is a closed subgroup of G it follows that Pr+1(G) = Γr+1.

Thus Pi(G) = Γi(G) when p is an odd prime. Similarly, we can proceed for p = 2, using

the fact that [Γ2,Γ2] ≤ Γ4 ≤ Γ4
2. Thus, Γ1 is uniform as |Γi : Γi+1| = pd

2
is constant for all

i ≥ 1, G .

Proposition 3.3.1. Let G be a powerful finitely generated pro-p group, then the following

statements are equivalent:

1. G is uniform

2. d (Pi(G)) = d(G) for all i ≥ 1

3. d(H) = d(G) for every powerful open subgroup H of G.

Proof. Let Gi = Pi(G) for each i. Then Gi+1 = Φ(Gi), thus d (Gi) = d (Gi/Gi+1) ≤ d(G) =

d and d (Gi) ≤ d(H) ≤ d(G) = d. As H is powerful open subgroup, hence H ≥ Gi for
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some i. Since G is uniform if and only if d (Gi/Gi+1) = d (G1/G2) = d for all i , we have

d(H) = d(G) and d(Pi(G)) = d(G) and also d(H) = d(Pi(G)) for some i.

Proposition 3.3.2. A finitely generated powerful pro-p group is uniform if and only if it is

torsion free

Proof. Let G be a finitely generated powerful pro-p group, and write Gi = Pi(G) for each

i. Suppose first that G is not torsion-free. Then we claim that G contains an element x of

order p. Suppose x ∈ G has order q ∤ p. Then xq ∈ Gi for some i. Since Gp
i = Gi+1, it follows

that xq ∈ Gi for all i, and thus x = 1. Let x ∈ Gi\Gi+1. Then given 1 ̸= xGi+1 ∈ Gi/Gi+1

we have 1 = xpGi+2 ∈ Gi+1/Gi+2, so the map fi : Gi/Gi+1 → Gi+1/Gi+2 is not injective.

Thus G is not uniform, which is a contradiction.

To show the converse, suppose that G is not uniform. Then for some i, the epimorphism

fi : Gi/Gi+1 → Gi+1/Gi+2 is not injective, so there exists x2 ∈ Gi\Gi+1 such that xp2 ∈ Gi+2.

Now let’s assume, by induction that for n ≥ 2 there exists x2, . . . , xn satisfying xpj ∈ Gi+j

and xj ≡ xj−1 (modGi+j−2) for 2 < j ≤ n. Then there exists z ∈ Gi+n−1 such that zp = xpn.

Let xn+1 = z−1xn . Then, xpn+1 ∈ Gi+n+1 : if p is odd , we have [Gi+n−1, G,G] ≤ Gi+n+1 and

[Gi+n−1, G]
p ≤ Gi+n+1 and

xpn+1 =
(
z−1xn

)p ≡ z−pxpn
[
xn, z

−1]p(p−1)/2 ≡ 1 (modGi+n+1) when p is odd

From Remark 1.1.1, thus x2, . . . , xn, . . . can be constructed recursively; it is a Cauchy

sequence and therefore converges to an element x ∈ G , and then x ̸≡ 1 (modGi+1) but

xp ≡ 1 (modGi+n+1), thus x
p = 1 , thus G is not torsion free and this concludes the proof.

Definition 3.3.2. Let G be a pro-p group of finite rank. The dimension of G is given by:

dim(G) = d(H) where H is any open uniform subgroup of G.

Proposition 3.3.3. Let G be a pro-p group of finite rank and N a closed normal subgroup

of G. Then dim(G) = dim(N) + dim(G/N)

Proof. Let’s first show that if G and G/N are uniform, where N ◁c G then N is uniform:

First if x ∈ G, then xpn ∈ N , thus x ∈ N as G/N is torsion-free and thus N ∩Gp = {gp|g ∈
N} = Np. Thus N/Np ⊆ N/N ∩ Gp ⊆ G/Gp is abelian. N is finitely generated as G has

finite rank. It is also torsion free as G is torsion free(G is uniform). Thus, N is uniform

Therefore dim(G/N) = d(G/N) , dim(N) = d(N) and dim(G) = d(G) and thus reduces

to showing d(G) = d(G/N)+d(N). This directly follows from taking the map π : G→ G/N

and using rank-nullity theorem.
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Now H be an open uniform subgroup of G.Then, H/H ∩ N is powerful subgroup. We

will later prove a result that the elements of finite order of finitely generated powerful pro-p

group G form a characteristic subgroup H such that G/H is uniform(Proposition 3.4.3).

Using this result, there exists M/M ∩ N which is normal subgroup of H/H ∩ N such that

H/M is uniform.

Thus take dim(N) = d(M), dim(G) = d(H) and dim(G/N) = d(H/M) and apply the

earlier result .

The following proposition implies that Uniform pro-p groups are basically an extension

of pro-p-cyclic groups :

Proposition 3.3.4. If G is a uniform pro-p group and G = ⟨a1, ......, ad⟩ Then the mapping

(λ1, ....., λd) 7→ aλ1
1 ......a

λd
d

from Zd
p onto G is a homeomorphism

Proof. Zp and G are both compact, Hausdorff spaces and the map between them is continuous,

as it is the composition of two continuous maps, it remains to show that the map G → Zp

is a well defined bijection.

G = ⟨a1⟩ . . . ⟨ad⟩, therefore for any g ∈ G, g = aλ1
1 . . . aλd

d for some λ1, . . . , λd ∈ Zp. So we

consider the map ψ : G→ Zd
p defined by aλ1

1 . . . aλd
d 7→ (λ1, . . . , λd). We show that ψ is a well

defined bijection and that its inverse ψ−1 is the homeomorphism we require.

|G/Gk+1| = |G : Gk+1| = pkd. From Proposition 1.1.9, we getG/Gk+1 = ⟨a1Gk+1⟩ . . . ⟨adGk+1⟩.
Since Gk+1 =

{
gp

k | g ∈ G
}

for each i, |⟨aiGk+1⟩| ≤ pk, but by the above this must be an

equality. Hence each g ∈ G/Gk is equal to a product of the form aµ1

1 . . . aµd

d Gk+1 where

µ1, . . . , µd ∈
{
0, 1, . . . , pk − 1

}
are uniquely determined by g. Hence for any g ∈ G,ψ(g)

is determined uniquely modulo pk for any k, and hence ψ is a well defined bijection.

ψ−1 : Zd
p → G defined by (λ1, . . . , λd) 7→ aλ1

1 . . . aλd
d is the inverse bijection. However,

ψ−1 is merely the composition of the two maps α : Zd
p → G × G × . . . × G given by

(λ1, . . . , λd) 7→ (aλ1
1 , . . . , a

λd
d ) and β : G×G×. . .×G→ G given by (aλ1

1 , . . . , a
λd
d ) 7→ aλ1

1 . . . aλd
d .

Thus it follows that ψ is homeomorphism.

Now we detail the process of creating an additive structure for Uniform pro-p Groups

and discuss it’s interesting properties:

Additive Structure

Let G be uniform pro-p group. Let Gi = Pi(G)
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Proposition 3.3.5. Let n ∈ N. The mapping x 7→ xp
n
is a homeomorphism from G onto

Gn+1. For each k and m, it restricts to a bijection Gk → Gk+n and induces a bijection

Gk/Gk+m → Gn+k/Gn+k+m.

Proof. Let f(x) = xp
n
.We know that f (Gk) = {xp

n | x ∈ Gk} = Gn+k which implies that

f (Gk+m) = Gn+k+m .If x ≡ y (modGk+m) then x = ygk+m, thus x
pn = yp

n
gp

n

k+m and so

f(x) ≡ f(y) (modGn+k+m). Thus f induces a surjection from Gk/Gk+m onto Gn+k/Gn+k+m.

Since G is uniform, |Gk/Gk+m| = |Gn+k/Gn+k+m| hence f is a bijection. If x, y ∈ Gk and

f(x) = f(y) then f(xy−1) = 1 and thus xy−1 ≡ 1 mod Gk+m implying xy−1 ≡ (modGk,+m)

for all m. Since
⋂

mGk+m = 1, xy−1 ∈
⋂

mGk+m = 1 implying x = y and thus f is injective.

Finally f is continuous: as Gk is a compact Hausdorff space for all k. The restriction,

f |Gk
is thus a homeomorphism from Gk to Gk+n. If k = 1, we get f |G = f which is a

homeomorphism from G onto Gn+1

Remark 3.3.3. This lemma gives us that every x ∈ Gn+1 has a unique pth root in G, say

xp
−n
. Using this bijection and the uniqueness of pn-th roots, we define another structure on

the group G:

Definition 3.3.3. For x, y ∈ G, we define the additive structure + on a Uniform group G

as follows :

x+ y := lim
n→∞

x+n y

where x+n y := (xp
n
yp

n
)p

−n

This definition holds as a result of the following lemma which shows that (x, y)n is a

cauchy sequence for x, y ∈ G and n:

Lemma 4. If n > 1, x, y ∈ G, and u, v ∈ Gn then group (G,+n). Then :

• xu+n yv ≡ x+n y ≡ x+n−1 y (modGn)

• x+m y ≡ x+n y (modGn+1) for all m > n

Proof. (1)Let Pi(G) = Gi. [Gn, Gn] ≤ G2n. This implies that

xp
n

yp
n ≡

(
xp

n−1

yp
n−1

)p

[xp
n

, yp
n

]p(p−1)/2 (modG2n)

≡
(
xp

n−1

yp
n−1

)p

(modG2n)

= (x+n−1 y)
pn
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Thus,

x+n y =
(
xp

n

yp
n)p−n

≡ x+n−1 y (modGn)

And since (xu)p
n ≡ xp

n
(modG2n) and (yv)p

n ≡ yp
n
(modG2n)

xu+n yv = ((xu)p
n

yvp
n

)p
−n ≡ x+n y (modGn)

Thus we get that xu+n yv ≡ x+n y ≡ x+n−1 y (modGn)

(2). From (1) we have already proved the case where n = 1 and m > n. Let

x+m y ≡ x+k y (modGk+1)

Where m− k ≥ 2. Then:

x+m+1 y = x+m y (modGm+1)

= x+k y (modGk+1)

by using Induction hypothesis and that Gm+1 ⊆ Gk. This finishes the proof.

Remark 3.3.4. If we have x, y ∈ G and u, v ∈ Gn ,then x + y ≡ x +n y (modGn+1) and

xu+ yv ≡ x+ y (modGn)

Proposition 3.3.6. The set G with the operation + in an abelian group, with identity

element 1 and inversion given by x 7→ x−1

Proof. For each n, x +n 1 = (xp
n
)p

−n
= x and similarly x +n x

−1 = 1. Hence, by taking

limits we get x + 1 = x and x + x−1 = 1. To verify the associative law, let x, y, z ∈ G and

let n > 1. We know x+ y = x+n y(modGn+1), thus

(x+ y) + z ≡ (x+n y) + z (modGn+1)

≡ (x+n y) +n z (modGn+1)

Similarly, x+ (y + z) ≡ x+n (y +n z) (mod Gn+1). Since the operation +n is associative, it

follows that

(x+ y) + z ≡ x+ (y + z) (modGn+1)

The choice of n is arbitrary hence + is associative.

We know that
[
xp

n
, yp

n
] ∈ [Gn+1, Gn+1] ≤ G2n+2 . Thus xp

n
yp

n ≡ (xy)p
n
(modG2n+2) ≡

yp
n
xp

n
(modG2n+2). Taking pn-th roots , we get that x +n y ≡ y +n x (modGn+2). Thus
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x+ y ≡ y + x (modGn+1) , as this holds for arbitrary n the result follows.

Notation 4. ’Additive’ notation for the group operations in (G,+) is as follows :

0+ = 1, (−x)+ = x−1 , (x − y)+ = x + (−y)+ = x + y−1, (mx)+ = x + . . . + x (m times)

when m is positive and (−mx)+ = |m|x−1.

Lemma 5. Let x, y ∈ G. Then:

1. If xy = yx then x+ y = xy.

2. For each integer m, mx = xm.

3. For each n ≥ 1, pn−1G = Gn

4. If x, y ∈ Gn then x+ y ≡ xy (modGn+1).

Proof. (1) x+n y = (xp
n
yp

n
)p

(−n) = ((xy)p
n
)p

−n
= xy for any n thus x+ y = xy.

(2) Take m > 0, then x+n x = x2 for all n, thus x+ x = x2 . If (m− 1)x = xm−1, then

from (1) , we get mx = (m − 1)x + x = xm−1x = xm . For negative m, we get the result

using the fact that −x = x−1.

(3) Using the proposition 3.3.5 , we get that for all x ∈ G, we get that pn−1x = xp
n−1 ∈ Gn,

and since pn-th roots are unique, we get the reverse inclusion.

(4) Using proposition 3.3.5 , For x, y in Gn, we have

(xy)p
n ≡ xp

n

yp
n

[y, x]p(p−1)/2 ≡ xp
n

yp
n

(modG2n+1)

Using pn-th roots, we get

xy = x+n y(modGn+1)

and thus x+ y = xy(modGn+1)

Proposition 3.3.7. Given G a uniform pro-p group with the additive structure +:

1. For each n, Gn is an additive subgroup of G

2. The additive cosets of Gn in G are the same as the multiplicative cosets of Gn in G.

3. The identity map Gn/Gn+1 → Gn/Gn+1 is an isomorphism of the additive group

Gn/Gn+1 onto the multiplicative group Gn/Gn+1, and the index of Gn in the additive

group (G,+) is equal to |G : Gn|
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Proof. (1) Gn = pn−1G is an additive subgroup of (G,+).

(2) let x ∈ G, y ∈ Gn. Then from Lemma 4, we have

x+ y = x+ 1 · y ≡ x+ 1 = x (modGn)

xy − x = xy + (−x) ≡ x+ (−x) = 0 (modGn) ,

Thus xy−x ∈ Gn and xy ∈ x+Gn. Thus xGn ⊆ x+Gn This shows that the additive cosets

modulo Gn are the same as the multiplicative cosets.

(3): From (2), we get G/Gn is the the same quotient set whether we consider the

additive group (G,+) or the multiplicative group G. Hence the index of Gn is same across

operations and the identity map is a bijection between the additive group Gn/Gn+1 and the

multiplicative group Gn/Gn+1, hence an isomorphism.

Proposition 3.3.8. Given the original topology of G, (G,+) is a uniform pro-p group of

dimension d = d(G). Moreover any set of topological generators for G is a set of topological

generators for (G,+).

Proof. G is a Topological group as it is Compact Hausdorff space with two continuous maps

x 7→ x−1 and (x, y) 7→ x + y (from lemma 4). Since Gn is a subgroup of p-power index in

(G,+), the family {Gn}n∈N forms a base for neighbourhoods of 0(G,+) = 1, implying that

(G,+) is a pro-p group. It is also powerful as it is abelian. From Proposition 3.3.7, we get

that |Gn : Gn+1| = pd for all n, and thus (G,+) is a uniform pro-p group of dimension d.

If X is a topological generating set for G, then G/G2 = ⟨X⟩G2/G2 (as multiplicative

groups). From 3.3.7, we get that the additive group G/G2 is identical to the multiplicative

group, so we have (G,+)/G2 = ⟨X⟩+ +G2/G2, where ⟨X⟩+ denotes the additive subgroup

generated by X. Thus (G,+) = ⟨X⟩++G2. Since G2 = pG is the Frattini subgroup of (G,+)

, we get that (G,+) = ⟨X⟩+ and thus X is a topological generating set for (G,+).

Proposition 3.3.9. Let G be a uniform pro-p group of dimension d, and let {a1, . . . , ad} be
a topological generating set for G. Then, with the operations defined above, (G,+) is a free

Zp-module on the basis {a1, . . . , ad}

Proof. The set {a1, . . . , ad} generates the uniform pro- p group (G,+) topologically, and

d(G,+) = d. : Using the Proposition 3.3.4, we get the map between (G,+) and Zd
p given by

the map :

(λ1, . . . , λd) 7→ (λ1a1, . . . , λdad)
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is a homeomorphism. This shows that each element of (G,+) has a unique expression of the

form

a = λ1a1 + · · ·+ λdad

with λ1, . . . , λd ∈ Zp (for x ∈ G and λ ∈ Zp, we have xλ = λx. This implies that the set

{a1, . . . , ad} forms the basis for (G,+) and thus (G,+) is a free Zp-module.

The additive structure on a uniform pro-p group G thus gives rise to a free Zp-module.

Following propositions are interesting results that have quite a few applications.

Proposition 3.3.10. Let G be a uniform pro-p group of dimension n. Then the action of

Aut(G) on G is Zp-linear with respect to the Zp-module structure on (G,+).

Proof. Let α ∈ Aut(G). The map α is continuous(it is a map between 2 finitely generated

pro-p groups). Thus For each n, since pn-th roots are unique, Given x, y ∈ G,

α(x+n y) = α((xp
n

yp
n

)p−n) = (α(xp
n

yp
n

)p−n) = (α(xp
n

)α(yp
n

))p
−n

= α(x) +n α(y)

. It follows that α(x+ y) = α(x) + α(y).

Similarly for λ ∈ Zp we would get α(λx) = λα(x). (Use Lemma 5). And thus we get

that the action of Aut(G) is Zp-linear.

Remark 3.3.5. Hence Aut(G) may be identified with a subgroup of GLn (Zp) ,

Proposition 3.3.11. Let G be a pro-p group of finite rank and dimension d. Then there is

an exact sequence

1→ Ze
p → G→ GLd (Zp)× F

for some e ≤ d and some finite p-group F .

Proof. Let G have a uniform open normal subgroup H and A = Z(H). Then A is closed in

H, is torsion-free(as H is torsion free), and is abelian pro-p group with rk(A) ≤ rk(H) = d.

It follows that A ∼= Ze
p for some e ≤ d . Now for each g ∈ G. Let f denote the

automorphism ofH induced by conjugation with g, i.e, f(h) = ghg−1. We have a homomorphism

θ : G→ Aut(H)×G/H given by

θ(g) = (f, gH)

. Clearly ker(θ) = {g ∈ G| θ(g) = (idH , H)} = A as ghg−1 = h implies g ∈ Z(H) and

gH = H if and only if g ∈ H. Thus we have an exact sequence

1→ Ze
p

ι−→ G
θ−→ Aut(G/H)×G/H
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. Using the previous proposition(3.3.10), we can extend the current exact sequence to get

the desired exact sequence.

1→ Ze
p

ι−→ G
θ−→ GLd (Zp)× F

3.3.1 Lie Algebras

Since all free-Zp of a given rank are isomorphic, a lot of information on the structure of a

uniform group G is left unknown by just giving the addition operation. In this section we

define yet another operation- the bracket operation that will help us find more information.

Let G be a uniform pro-p group of rank d, and let Gi = Pi(G) for each i.

Definition 3.3.4. The bracket operation (, ) for a uniform pro-p group G For x, y ∈ G and

n ∈ N, is defined as

(x, y) = lim
n→∞

(x, y)n

where (x, y)n =
[
xp

n
, yp

n]p−2n

The above definition holds as a result of the following lemma which shows that (x, y)n is

a cauchy sequence.

Lemma 6. If n > 1, x, y ∈ G and a, b ∈ Gn, then

(xa, yb)n ≡ (x, y)n ≡ (x, y)n−1 (modGn+1)

and for all m > n

(x, y)m ≡ (x, y)n (modGn+2)

Proof. [G2n, Gn+1] ≤ G3n+1, and using Lemma 4, we get:

(xa, yb)n ≡ (x, y)n (modGn+1) .

Now if m ∈ Gi and k ∈ Gj, then from Remark 1.1.1, and the fact that [Gi, Gj] ≤ Gi+j, we

have

[mp, k] ≡ [m, k]p (modG2i+j)
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and [m, kp] ≡ [m, k]p (modGi+2j). Taking m = xp
n
and k = yp

n−1
this gives

[
xp

n

, yp
n] ≡ [

xp
n

, yp
n−1

]p
(modG3n+1)

Taking a = xp
n−1

and b = yp
n−1

gives[
xp

n

, yp
n−1

]
≡

[
xp

n−1

, yp
n−1

]p
(modG3n)

Thus we have [
xp

n

, yp
n] ≡ [

xp
n−1

, yp
n−1

]p
(modG3n+1)

≡
[
xp

n−1

, yp
n−1

]p2
(modG3n+1)

= (x, y)p
2n

n−1.

Extracting p2n-th roots

(x, y)n ≡ (x, y)n−1 (modGn+1) .

The bracket operation combined with the additive structure gives rise to a Zp-Lie Algebra

structure (G,+, (, ))

Proposition 3.3.12. With the operation (, ) , the Zp module (G,+) becomes a Lie algebra

over Zp :

Proof. The proof is quite elaborate. An outline of this proof is discussed in the exercises of

Chapter 4 of [DMSS].

Remark 3.3.6. Given (G,+, (, )) a uniform pro-p group with it’s associated Lie algebra and .

For x and y ∈ G, we have log(xy) = Φ(log x, log y) where Φ(U, V ) is the Campbell-Hausdorff

formula. Under certain conditions, xy can be recovered from the Lie Algebra structure of

(G,+), and thus captures more structural information about the Group.

Proposition 3.3.13. Let H be a uniform closed subgroup of G, and let N ◁cG be such that

G/N is uniform. Then:

1. the inclusion map H → G is a monomorphism of Lie algebras (H,+, (), )→ (G,+, ()).

Moreover, H is a sub-algebra of the Lie algebra (G,+, ())

2. N is uniform

3. N is an ideal in the Zp -Lie algebra (G,+, (), ) ; and the additive cosets of N in G

are the same as the multiplicative cosets, so (G/N,+, (, )) = (G,+, ())/(N,+, (, )) .
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The natural epimorphism π : G → G/N is an epimorphism of Zp-Lie algebras from

(G,+, (, )) onto (G/N,+, (, )) .

Proof. (1) As H is a subgroup, it gets the subspace topology from G. Hence H is a Lie

Subalgebra of the Lie algebra (G,+, ()).

(2) Have already proved this result in Proposition 3.3.3 .

(3) Now let x, y ∈ G and put zn = x +n y. Then π(zn)
pn = π(xp

n
)π(yp

n
), so in G/N we

have π(x)+nπ(y) = π(zn). It follows by continuity that π(x)+π(y) = limn→∞ π(zn)
= π(limn→∞ zn) =

π(x + y). Similarly π respects bracket operation and the operation of Zp. Thus π is a Lie

algebra homomorphism . Since N is the kernel of π it follows that N is an ideal in (G,+, ())

. Finally, for x, y ∈ G we have

x+N = y +N ⇔ x− y ∈ N ⇔ π(x− y) = 0⇔ π(x) = π(y)⇔ xN = yN,

which shows that (G,+)/(N,+) = G/N . This concludes the proof.

3.4 Automorphism Groups

In this section, the description of the topology of an automorphism group of a profinite

group, specifically in the case of a finitely generated profinite/pro-p group. We then use the

results to get some important results pertaining to the structure of a powerful pro-p group.

For a profinite group G, Aut(G) denotes the group of all topological automorphisms of

G. The group Aut(G) has a natural topology, the ’congruence topology’: a base for the

neighbourhoods of 1 is given by the subgroups

Γ(N) = {γ ∈ Aut(G) | [G, γ] ⊆ N}

as N runs over the open normal subgroups of G

Notation 5. [G, γ] := {[g, γ]|g ∈ G, γ ∈ Aut(G)} , where [g, γ] = {g−1γ(g)|g ∈ G} for all

γ ∈ Aut(G)

Proposition 3.4.1. The Automorphism Group of a finitely generated profinite group is a

profinite group.
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Proof. If K ◁ G is invariant under an automorphism ψ of G , i.e,ψ(K) = K. Then ψ

induces an automorphism ψ̃ : G/K → G/K given by the map ψ̃(gK) := ψ(g)K. If K is

a characterestic subgroup then ψ(K) = K for all ψ ∈ Aut(G), then it induces a map from

δ : Aut(G)→ Aut(G/K) given by δ(ψ) = ψ̃.

SinceG is a finitely generated Profinite Group, every open subgroup contains a topologically

open characterstic subgroup. Thus it implies that G has a neighbourhood basis of identity

consisting of characterestic subgroups.

Given the basis of neighbourhoods of 1 for Aut(G) : Γ(N) = {γ ∈ Aut(G) | [G, γ] ⊆ N}.
We can infer that if γ ∈ Γ(N) then γ̃ = 1.

The map between Aut(G) and Aut(G/N) is thus a group homomorphism, and infact the

kernel is given by Γ(N), the set of all maps that in G that induce trivial map on G/N . Thus

we get

Aut(G)/Γ(N) ∼= Aut(G/N)

Using the theory developed in section 1.3, We can create an inverse system of Aut(G)

using the open normal subgroups Γ(N) of Aut(G) where N ◁o G. This implies

lim←−(Aut(G)/Γ(N)) ∼= lim←−(Aut(G/N)) ∼= Aut(lim←−(G/N))

And since G is profinite , we know G ∼= lim←−(G/N) thus

lim←−(Aut(G)/Γ(N)) ∼= Aut(G)

giving the profinite topology to Aut(G).

Proposition 3.4.2. If G is a finitely generated pro-p group, then Γ(Φ(G)) is a pro-p group.

Proof. Let Gn = Pn(G) for each n. The family (Gn) is a base for the neighbourhoods of 1 in

G, and consists of characteristic subgroups; also G2 = Φ(G) . It follows that the subgroups

Γ (Gn) , n ≥ 2, are normal in Γ (G2) = Γ(Φ(G)), and form a base for the neighbourhoods

of 1 in Γ (G2). Now let n ≥ 2, and consider the action Γ (G2) /Γ (Gn) on G/Gn given by:

γ(Gn) · g(Gn) = γ(α(gGn)) where α ∈ Gn. This action is faithful, furthermore is trivial

on G/G2 = G/Φ(G) = G/Gn/Φ(G)/Gn = G/Gn/Φ(G/Gn) . Thus Γ (G2) /Γ (Gn) induces

identity on G/G2 which implies that Γ (G2) /Γ (Gn) is a p-group for all n. Thus Γ(Φ(G)) is

a pro-p group.

These results helps us in understanding a very useful result in Powerful pro-p groups.

Proposition 3.4.3. Let G be a finitely generated powerful pro-p group. Then the elements
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of finite order in G form a characteristic subgroup T of G. Also T is a powerful finite p-group

and G/T is uniform.

The result requires the following lemma. Let Gi = Pi(G)

Lemma 7. Let G be a uniform pro-p group, and for each i let Li be the group of all

automorphisms of G which induce the identity on G/Gi. Then Γ2 is torsion-free if p is

odd, Γ3 is torsion-free if p = 2.

Proof. From the Proposition 3.4.2, we get that for each i > 2,Γ2/Γi is a finite p-group. The

map x 7→ xp
j−1

induces bijections from G/G2 onto Gj/Gj+1 and from G/G3 onto Gj/Gj+2,

from Proposition 3.3.5 . Thus Γ2 acts trivially on Gj/Gj+1 and that Γ3 acts trivially on

Gj/Gj+2, for each j. Since
⋂∞

i=2 Γi = 1, any element of finite order in Γ2 must have p-power

order. Thus it will suffice to show that Γ2 (or Γ3 if p = 2 ) has no elements of order p.

Now let γ satisfy γp = 1, where γ ∈ Γ2 (and γ ∈ Γ3 if p = 2 ) and suppose that for some

i we have [G, γ] ⊆ Gi. Then for g ∈ G we have

1 = [g, γp]

= [g, γ][g, γ]γ . . . [g, γ]γ
p−1

≡ [g, γ]p
[
g, γ, γp(p−1)/2

]
(modGi+2) ,

because [g, γ, γn] ∈ Gi+1 for each n, and Gi+2 contains both [Gi+1, G] and [Gi+1, ⟨γ⟩]
If p is odd then γp(p−1)/2 = 1, while if p = 2 and γ ∈ Γ3 then [g, γ, γ] ∈ [Gi,Γ3] ⊆ Gi+2.

In either case, therefore, we may infer that [g, γ]p ∈ Gi+2, and hence, [g, γ] ∈ Gi+1. Thus

[G, γ] ⊆ Gi+1 whenever [G, γ] ⊆ Gi.

Thus it follows by induction that [G, γ] ⊆
⋂∞

i=1Gi = 1. So γ = 1 as required.

Now we prove the main proposition:

Proof. Given G is finitely generated powerful pro-p. Then for some m,Gm is uniform. Put

K = CG (Gm). Then Z(K) ≥ Gm∩K, so K/Z(K) ≤ K/Gm∩K ≤ G/Gm is a finite p-group.

This implies that K is nilpotent, and so the elements of finite order in K form a subgroup

M , say. Then M ◁G and K/M is torsion-free.

Now G/K acts on the uniform group Gm by conjugation (i.e, : gk · gm = ggmg
−1K). This

action is faithful. Given G is powerful, Gm p.e. G (i.e, [Gm, G] ≤ (Gm)
p), and thus if we

take the action of G/K on Gm/Φ (Gm) (where i = 2 if p is odd, i = 3 if p = 2), the action

is trivial. Thus from the above lemma, we can say that G/K is torsion free.
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Thus all elements of finite order in G lie inM . Also,M is a finite p-group asM ∩Gm = 1

and M is powerful as given

[M,M ] ≤M ∩ [G,G] ≤M ∩Gp = {gp|g ∈ G} ⊆Mp

if p is odd and M ∩ [G,G] ⊆ G4. Thus, G/M is torsion free, and is Uniform. This concludes

the proof.
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Chapter 4

Characterization of Uniform and

Powerful Pro-p Groups

In this chapter, we will summarize all our understandings of Powerful and Uniformly powerful

pro-p groups and draw up a characterization of Uniform Pro-p groups and then proceed to

look at different families of Uniform Pro-p and powerful pro-p groups. Lastly, we conclude

with a brief introduction to the characterization of Uniform pro-p groups as described in

[BI]. The contents of this chapter are mostly referred from [DMSS] , [BI], [DS], [NP].

Characterization of Uniform and Powerful pro-p Groups

Uniform pro-p groups are torsion-free, and thus no finite p-group is Uniform. Being homeomorphic

to Zp
d, Uniform groups are basic extensions of pro-cyclic groups. It also adopts an additive

structure under which it’s an abelian group and a free Zp module. A bracket structure on

this free Zp module gives us a Zp Lie-Algebra structure on a Uniform pro-p group.

Various different families of Uniform and Powerful pro-p groups are listed below:

• Zp is a fundamental example for a Uniform pro-p group.

• Γ1 := {g ∈ GLn (Zp) |g ≡ Id (modp)} is a uniform pro-p group where Γi form the

congruence classes of subgroups of GLn (Zp) , or SLn (Zp).

• Given G a finitely generated powerful pro-p group, we have Pk(G) to be a uniform

pro-p group for sufficiently large enough k. Additionally, every finitely generated pro-p

group contains a open characteristic uniform pro-p subgroup.
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• [PA] Saturable pro-p groups : A pro-p group is said to be saturable if it admits a

certain valuation map. Every uniform pro-p group is said to be saturable, though the

converse is not entirely true.

• [LM] All subgroups of a modular p-group are powerful p-groups.

Just-Infinite Groups

In this section, we look at a very interesting family of subgroups- the Just infinite Groups,

and some interesting properties of Just-infinite groups. The results discussed in this section

are mainly referred from [BI] and [BK]

Definition 4.0.1. A group G is said to be Just-infinite if it is infinite and every non trivial

normal subgroup of G has finite index in G

Remark 4.0.1. Any profinite group G of finite rank possesses a maximal finite normal

subgroup, which is denoted as the periodic radical Π(G) of the group.[BK]

Some interesting properties of Just Infinite Groups are detailed below:

Proposition 4.0.1. Let G be a finitely generated infinite group. Then G can be mapped

onto a just infinite group.

Proof. Let N denote the set of normal subgroups of infinite index in G. We show that every

ascending chain in N has an upper bound in N . Let {Hα} be such a chain of infinite index

normal subgroups in G, and put H =
⋃

αHα. Suppose that H has finite index in G, hence

H is open in G. Since G is finitely generated, so is H. But, H coincides with Hβ for some

β, which implies the index of H in G is infinite, a contradiction. Thus H has infinite index

in G and so H ∈ N . By Zorn’s lemma there exists a maximal element M ∈ N . If H/M is

a non-trivial normal subgroup of G/M then, as M is maximal, |G/M : H/M | = |G : H| is
finite . Thus G/M is just infinite.

Proposition 4.0.2. If G is a solvable pro-p group of finite rank, Let N ◁c G such that

H = G/N is a just infinite group. If Π(G) = 1 then Π(H) = 1 and Π(N) = 1.

Proof. G is pro-p group of finite rank, solvable, Π(G) = 1, d(G) = d = dim(G). We claim

that Π(N) = 1 and Π(G/N) = 1 where N ◁ G such that G/N is Just infinite. Π(N) is

finite by definition. As |gΠ(N)g−1| = |Π(N)| as there exist a bijection between Π(N) and

gΠ(N)g−1 . Hence cardinalities are equal and gΠ(N)g−1 is finite normal subset of G.
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Thus M =
⋃

g∈G gΠ(N)g−1 is a union of finite sets. We claim that M is also a finite

normal subset of G. First note that M is normal since Π(N) is normal. As it contains the

union, M =
⋃

g∈G gΠ(N)g−1 is a finite normal subset of G. Therefore, M generates a finite

normal subgroup N of G that contains Π(N) i.e, there exists N ◁ G st Π(N) ⊆ Π(G) . But

Π(G) = 1, thus Π(N) = 1.

(b) Suppose there exists M/N finite normal subgroup such that Π(G/N) = M/N ̸= 1.

Now, |M : N | < ∞. Since G/N is Just infinite |G/N | = ∞ and for any non trivial

M/N ◁ G/N we have |G/N :M/N | = |G :M | ≤ ∞. Thus, we get

|G : N | = |G :M ||M : N | <∞

Which is a contradiction. Hence Π(G/N) = 1.

4.1 Characterization of Uniform Pro-p Groups

In this section, we delve into current research trends in the areas of Uniform pro-p Groups

and it’s characterization, The following conjecture from the paper ”Characterization of Uni-

form pro-p Groups” by Benjamin Klopsch and Ilir Snopce(2012) [BI] will be the main focus

of this section.

Conjecture: Let G be a torsion-free pro-p group of finite rank. Then G is uniform if

and only if its minimal number of generators is equal to the dimension of G as a p-adic

manifold, i.e., d(G) = dim(G). In particular, the statement is true whenever G is solvable

or p = dim(G).

Now we know that if G is uniform then d(G) = dim(G). Thus, we aim at getting partial

results of the converse in this paper.

Proposition 4.1.1. Suppose that p ≥ 5 and let G be a solvable pro-p group of finite rank

such that Π(G) = 1. If d(G) = dim(G) then G is uniform.

Proof. Suppose that d(G) = dim(G). We need to prove that G is powerful and torsion-free.If

G = 1 it is trivial. Hence suppose that G ̸= 1.

Suppose G is powerful, then by Proposition 3.4.3, we know that elements of finite order

form a characteristic subgroup M of G. Since Π(G) = 1, we have that M = 1, and thus G

is torsion free. Hence it is enough to show that G is powerful.

Now let G ≥ 1. Let N ◁ G such that H = G/N is just-infinite. From Proposition 4.0.2,

we get that Π(N) = Π(G/N) = 1.

51



Also in [BK],using theorem 1.3, we get that rkp(G) = dim(G), where p is a prime,

rk(G) ≤ sup{rkl(G)|l prime} , and rkp(G) = sup{dl(H)|H ≤o G}. From here we can

conclude that d(G) < dim(G). Applying it to N and H = G/N we get that d(N) < dim(N)

and d(H) < dim(H). Thus, we get:

dim(G) = d(G) ≤ d(H) + d(N) ≤ dim(H) + dim(N) = dim(G)

Thus d(H) = dim(H) and d(N) = dim(N). Since dim(N) < dim(G), it follows by

induction that N is powerful. We observe that in order to show that G is powerful it suffices

to show that H is powerful: if H is powerful then

|G : Gp| =| G : GpN ||N : N ∩Gp|
≤ |H : Hp||N : Np |
= pd(H)+d(N)

= pdim(H)+dim(N) = pdim(G) = pd(G)

= |G : Gp[G,G]| ≤ |G : Gp|

and we obtain [G,G] ≤ Gp.

Thus assume H = G/N is just-infinite. Since G solvable, H is also solvable, and thus

there exists an abelian N ◁o H. Now, let d = d(H) = dim(H) and choose an open normal

subgroup B � H such that B ∼= Zd
p. Let A := CH(B) � H, the centraliser of B in H, and

Z(A) be the centre of A. Now,Z(A) ≥ B ∩A .Thus |A : Z(A)| ≤ |A : A∩B| ≤ |A : B| <∞,

from which it follows that [A,A] is finite by Schur’s theorem. Since H is just-infinite ,

|H : [A,A]| ≤ ∞ which implies that [A,A] = 1 .Hence A is abelian and self-centralising in

H. Since Π(H) = 1, we conclude that A is torsion-free. The group H̄ := H/A is finite and

acts faithfully on A ∼= Zd
p. Thus we obtain an embedding H̄ ↪→ GL(A) ∼= GLd (Zp). If H̄ is

trivial then H = A is abelian, hence powerful.

In the scenario where H̄ ̸= 1, H̄ ̸= 1, and C = ⟨x⟩A being a subgroup of H such that

C̄ := C/A = ⟨x̄⟩ is cyclic group of order p and contained in the centre Z(H̄) of H̄, we infer

that from the paper [HR], there are three indecomposable types of ZpC̄-modules which are

free and of finite rank as Zp-modules:

1. The trivial module I = Zp of Zp-dimension 1.

2. The module J = ZpC̄/(Φ(x̄)) of Zp-dimension p−1, where Φ(X) = 1+ X+ . . .+Xp−1

denotes the pth cyclotomic polynomial,
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3. the free module K = ZpC̄ of Zp-dimension p.

Given that A is a pro-p group of finite rank, we proceed computations as mentioned in

[BI] (I am working on a detailed proof currently for this portion) , to get that d(G) < dim(G),

which will be a contradiction to our assumption that G was powerful. Thus G is powerful

and it concludes the proof.

Conclusion

In this thesis, the primarily goal was to understand the basic structure and draw up a

characterization of different families of powerful and uniformly powerful pro-p groups. We

started first with the basic understanding of a profinite and pro-p groups. Then we covered

some advanced group theoretic techniques required to understand powerful and uniform

pro-p groups.

Then we move on to a detailed structural study of Uniform pro-p groups, including the

development of an additive structure and the bracket operation. Finally, we try to build up a

characterization of Uniform pro-p groups using results from the paper by Benjamin Klopsch

and Ilir Snopce [BI].
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