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Abstract
We study the measurement process of a quantum system at Planck time resolution using trace

dynamics. When a quantum system interacts with a classical apparatus the combined system is
macroscopic and the non-unitarity in the trace dynamics equations become important. In quantum
mechanics we have a unitary and deterministic evolution of the wavefunction and therefore super-
positions are preserved with time. However, in trace dynamics since non-unitarity is important,
we investigate the non-unitary and deterministic evolution of a quantum system. To gain insights
into this different kind of evolution, we consider a simple two-level qubit system. The motivation
for pursuing this study was trace dynamics formulation in which quantum theory comes out as an
emergent phenomena. We present, in this thesis, an overview of standard quantum formalism, the
measurement problem, spontaneous collapse models and trace dynamics.
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Chapter 1

Introduction

And here he had the idea. An idea that could only be had with the unfettered radi-

calism of the young. The idea that would transform physics in its entirety—together

with whole of science and our very conception of the world. An idea, I believe, that

humanity has not yet fully absorbed.

Carlo Rovelli
while describing Heisenberg’s discovery of matrix mechanics

in Helgoland, 2021[1]

In the summer of 1925, when he was working late in the night on an isolated island called Hel-
goland, Heisenberg laid the mathematical foundations of quantum theory. Since then, quantum
theory has flauntingly passed every test of experiments. It is known for the explanation of black-
body spectrum, the photoelectric effect, molecular orbital theory in chemistry, spectrum emitted
by atoms, quantum electrodynamics, developments in standard model, nanotechnology, applica-
tions in condensed matter physics such as semi- and super- conductors, quantum information and
quantum computation. It has wide applications and gives highly precise predictions. Yet, as I write
this in the summer of 2023—almost one hundred years later—the meaning of quantum theory is
not very clear[2]. It faces serious conceptual problems which are still being debated[3, 4, 5].

What causes physicists and philosophers to think that there is something wrong with quantum
theory despite its exceptional performance in experiments? In this thesis, we discuss one of the
major issues with quantum mechanics called the measurement problem. Before doing so, in Chap-
ter 2 we will first review the standard formalism of quantum theory with an example of a two-level
qubit system. We will particularly stress on the two different kinds of dynamical evolution present
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in this standard formalism. Next, in Chapter 3, we discuss the problems with this standard for-
mulation and how it gives rise to the problem of measurement. Again, we use the same two level
system to illustrate the problem. Then, in the coming Chapter 4, we present the basic features of
spontaneous collapse models which provide a potential solution to the measurement problem. The
Ghirardi-Rimini-Weber model is presented with some examples to illustrate essential properties
of collapse models in general. The QMUPL and the CSL models are briefly discussed along with
the qubit example. Collapse models are solely based on experimental data and do not make as-
sumptions about underlying mechanisms i.e. these models are phenomenological. Therefore, it
interesting to study the underlying physical theories or mechanisms which could give a complete
understanding of the physical processes that give rise to the behavior of collapse models. Trace
dynamics is an example of such a theory and we briefly review the Chapter 5. Finally, we move on
to the question addressed in this thesis which was motivated from the trace dynamics formalism.
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Chapter 2

Time Evolution In Standard Quantum
Mechanics

In this chapter we discuss the time evolution in the standard formalism of quantum mechanics.
We illustrate the two contrasting dynamics with an example of a qubit and ask some fundamental
questions that are raised due to the peculiar nature of the dynamics.

2.1 Dynamics

Quantum theory as we know it[6] is mainly based on two dynamical postulates. The first postu-
late describes the behaviour of of an isolated quantum system S. Whereas, the second postulate
describes the behaviour of the quantum system S when a measurement is performed on it.

1. Isolated evolution: The state vector |ψ⟩, in a Hilbert space H , of an isolated quantum
system evolves according to the Schrödinger equation

ih̄
d |ψ⟩

dt
= Ĥ |ψ⟩ (2.1)

or in the density matrix formulation, according to the von-Neumann equation

dρ

dt
=− i

h̄
[Ĥ,ρ] (2.2)

where Ĥ is the Hamiltonian of the system S.

2. Measurement: When a macroscopic measurement device M, is brought in contact to mea-
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sure an observable A, which is a Hermitian operator with spectral density A = ∑k λk |k⟩⟨k|
the state |ψ⟩ of the system collapses randomly to one of the eigenstates of A, say |k⟩

|ψ⟩ → |ψk⟩=
⟨k|ψ⟩√

pk
|k⟩ ρ → ρk =

|k⟩⟨k|ρ|k⟩⟨k|
pk

(2.3)

where {|k⟩}’s are the eigenstates of A, {λk}’s are the eigenvalues and are outcomes of the
measurement. The probability that the outcome of the measurement is λk is given by the
Born rule

pk = ⟨ψ|k⟩⟨k|ψ⟩= | ⟨ψ|k⟩ |2 = Tr [ρ |k⟩⟨k|] (2.4)

Let us consider an illustrative example which we will frequently encounter in this thesis. Con-
sider the Hamiltonian of a qubit (which is a simplified version of an atom and can be manipulated
with precision controls in laboratories[7])

H = h̄ωσx = h̄ω

0 1

1 0

 (2.5)

this Hamiltonian has two eigenstates |+⟩= 1√
2

1

1

 and |−⟩= 1√
2

 1

−1

 with eigenvalues λ+ =

h̄ω and λ− =−h̄ω respectively.

Isolated evolution: Given the initial state |ψ(0)⟩, to solve the Schrödinger equation (2.1), we
write the time evolved state in the basis of eigenstates (eigenbasis) {|+⟩ , |−⟩} of H

|ψ(t)⟩= c+(t) |+⟩+ c−(t) |−⟩ (2.6)

and then solve for the coefficients c+(t) and c−(t) to get

|ψ(t)⟩= e−iωtc+(0) |+⟩+ eiωtc−(0) |−⟩ (2.7)

where c+ = ⟨ψ(0)|+⟩ and c− = ⟨ψ(0)|−⟩. The Hamiltonian (2.5) has an effect of rotating the
Bloch vector(a vector connecting origin and a point inside or on the Bloch sphere, see Fig. 2.1)
about the axis which is aligned with the eigenvectors |±⟩.
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Measurement: If we choose to measure the energy of this qubit, the observable is H = λ+ |+⟩⟨+|+
λ− |−⟩⟨−| = h̄ω |+⟩⟨+|− h̄ω |−⟩⟨−|. The state (2.7) will collapse to one of the eigenstates |+⟩
or |−⟩ with probabilities p+ = | ⟨ψ(0)|+⟩ |2 and p− = | ⟨ψ(0)|−⟩ |2 respectively.

Figure 2.1: The figure on the left shows the trajectory of the Bloch vector given an initial state
|ψ(0)⟩ (shown in red) and the Hamiltonian H = h̄ωσx. Under the Schrödinger evolution (2.1), the
vector rotates about the vx-axis. On the right, is the Bloch vector just after measurement of the
observable H (shown in red).

Keeping this example in mind, we shall now discuss some key features of the two kinds of time
evolutions we just demonstrated. The Schrödinger time evolution can be described using a time
evolution operator U . Using this operator, we can relate the two states |ψ(0)⟩ and |ψ(t)⟩ as

|ψ(t)⟩=U(t,0) |ψ(0)⟩ (2.8)

We demand that this operator obey the following properties for certain reasons.

1. The operator U(t, t0) is linear.
The states |ψ(0)⟩ and |ψ(t)⟩ belong to a vector space. We do not want to make things com-
plicated unless necessary and linear operators on a vector space are the simplest to define.
The superposition of two states is also a valid state of the quantum system.

2. The operator U(t, t0) is unitary.
We need to preserve the normalization of the state vector during the evolution. This ensures
that the sum of probabilities of measurement outcomes is one. The unitarity also ensures
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that the expectation values of observables are well defined. In our example, the length of the
Bloch vector remains conserved during the entire evolution.

3. Composition property U(t2, t1)U(t1, t0) =U(t2, t0)

Time evolution from t0 to some intermediate time t1 and then from t1 to t2 should be phys-
ically equivalent to an evolution from t0 directly to t2. In fact, due to this property, the
operators U(t) form a continuous unitary group and the Hamiltonian is the generator of this
group leading to a unitary time evolution. As seen in the example, the trajectories of the
evolution are continuous.

To sum up, the Schrödinger evolution is a deterministic, linear and unitary evolution.

The time evolution of the wavefunction during measurement is however not as transparent. We
can, nevertheless, infer some properties of this ‘collapse evolution’ using our example. Observe
the following points (refer to Fig. 2.1).

1. Whether the qubit collapses to |+⟩ or |−⟩ is not determined beforehand. We can only assign
probability of occurrence to each of the outcomes. This implies the collapse evolution should
involve probabilities in some manner or the other.

2. Before measurement, the superposition of two states |+⟩ and |−⟩ is preserved due to linear-
ity. After measurement, this superposition is destroyed and the qubit is present in one of the
states. Since superposition is destroyed, the collapse evolution must be non-linear.

3. Unitarity also implies that the entire evolution before the measurement is time reversible.
However, after measurement the final state cannot be reverse time-evolved to the original
state (also, there is no trajectory which shows how the initial state evolves towards one of
the eigenstates). Therefore the collapse evolution must also be non-unitary.

As we see, the Schrödinger evolution and the collapse evolution demonstrate contrasting prop-
erties. One is linear, deterministic and unitary while the other is non-linear, non-unitary and in-
volves probabilities. This formulation of quantum mechanics—as a fundamental theory of na-
ture—raises a number of questions. Some of them are

1. Why do we need to treat macroscopic measurement devices with drastically different laws?

2. Shouldn’t the classical behaviour of measurement devices be derived using fundamental laws
rather than defining it?
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3. Where is the fine line, if at all, between the definitions of a microscopic and a macroscopic
system?

4. Why do probabilities arise during measurements?

5. If we treat the measurement device M and the quantum system S using the same deterministic
laws of Schrödinger why do we not observe the macroscopic superpositions experimentally?

6. What is the rate of the wavefunction collapse? Is it instantaneous?

7. How does a system transition from quantum to classical?

We shall elaborate more on these questions in the following chapters.
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Chapter 3

The Quantum Measurement Problem

What goes wrong if we ignore the collapse postulate and treat the process of measurement as a mere
quantum mechanical interaction between the measurement device M and the quantum system S?
We get results which are experimentally false. We will largely follow arguments by Norsen[8], for
more general treatment see [9]

3.1 Descriptions of the systems S and M

For the microscopic system S, we will consider the same qubit (or an atom) system example given
in section 2.1. The Hilbert space of the system is C2 and the Hamiltonian is H = h̄ωσx and has two
possible energy states. Given the initial state of the system |ψ(0)⟩ the time-evolved state under H

is given by (2.7)
|ψ(t)⟩= e−iωtc+(0) |+⟩+ eiωtc−(0) |−⟩

with c+ = ⟨ψ(0)|+⟩ and c− = ⟨ψ(0)|−⟩
We have a macroscopic measurement device M, which measures the energy of the system S.

This device has a pointer of mass M0 (∼ 1024; macroscopically large). We are going to treat
this device quantum mechanically; by describing it using a wavefunction. Therefore, the Hilbert
space for this system is HM = a set of continuously differentiable and square integrable complex
functions, which contains functions φ(x, t), where x denotes position of the pointer. We will treat
the pointer as a free particle with a Gaussian wavefunction. At t = 0 this wavefunction is give by

φ(x,0) = Ae−x2/2σ2
(3.1)

where A is the normalization constant, σ is the standard deviation which is a small quantity here
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so that the φ(x,0) is sharply peaked at x = 0, the initial position of the pointer.

The Hamiltonian for the pointer is

Hdevice =− h̄2

2M0

∂ 2

∂x2 (3.2)

The combined Hilbert space for the S+M system is C2⊗HM. Initial wavefunction of the total
system is then given by1

|Ψ(0)⟩= |ψ(0)⟩ |φ(x,0)⟩ (3.3)

This wavefunction will evolve under the total Hamiltonian given by

Ĥtotal = Ĥ + Ĥdevice + Ĥinteraction (3.4)

We are treating measurement as an interaction between two systems M and S and therefore
we need to include the interaction Hamiltonian which couples the two systems. Otherwise, both
systems will evolve independently. The choice of the interaction Hamiltonian depends on the
characteristic property of the measurement device—the pointer must move in accordance with the
eigenvalues of the observable, or else our device is of no use. To ‘generate’ displacements in the
position of the pointer, we take Hinteraction proportional to the momentum operator p̂x (generator
of position). These displacements are not arbitrary but we want them proportional to the eigen-
values of the observable. So, Hinteraction can be taken to be proportional to the desired observable.
Therefore, we consider the following

Ĥinteraction = γÂp̂x (3.5)

here γ is the strength of the interaction. In our case, we want to measure the energy of the particle,
so Â = Ĥ. The interaction Hamiltonian becomes

Ĥinteraction =−ih̄γĤ
∂

∂x
(3.6)

The dynamical equation for the evolution of the combined wavefunction |Ψ(t)⟩ is the Schrödinger
equation

ih̄
∂ |Ψ(t)⟩

∂ t
=
[
Ĥ + Ĥdevice + Ĥinteraction

]
|Ψ(t)⟩ (3.7)

1Here we are abusing the notation. Instead of denoting f (x) = ⟨x| f ⟩, we are directly writing the functional form in
braket notation | f (x)⟩. This is just to reflect the fact that the functions f (x) are ‘vectors’ (and therefore, states) in the
Hilbert space HM .
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Let us consider the initial state |+⟩ |φ(0)⟩. The qubit is in the eigenstate of the observable H.
Solving the above equation we get the

|Ψ(t)⟩= e−iωt |+⟩
∣∣∣A(t)e−(x−γ h̄ωt)2/2σ(t)2

〉
(3.8)

the normalization factor A becomes A/
√

k and the spread σ slightly increases to become kσ where
k = 1+ ih̄t

M0σ
. Similarly, one can write the evolved state when the initial state is |−⟩ |φ(0)⟩.

This is what was needed. After some interaction-time t, the position of the pointer has moved
to the right or left depending on the eigenvalue ±h̄ω and thus measuring it. So it when the initial
state of the particle is the eigenstate of the observable, it is possible to describe the measurement
process using the usual Schrödinger dynamics and not using any additional collapse postulate. But
then, what is the problem?

Now suppose the initial wavefunction of the particle is a superposition of the eigenstates |±⟩
and the pointer has the same wavefunction as in the previous case then the combined initial wave-
function is

|Ψ(0)⟩= (c1 |+⟩+ c2 |−⟩) |φ(x,0)⟩ (3.9)

The Schrödinger equation (3.7) is linear and so the final solution will be the superposition of
the solutions obtained by solving for individual terms. We have already solved the problem for
individual terms, now we just have to sum them up. So we have,

|Ψ(t)⟩= e−iωtc1(t) |+⟩
∣∣∣A(t)e−(x−γ h̄ωt)2/2σ(t)2

〉
+ eiωtc2(t) |−⟩

∣∣∣A(t)e−(x+γ h̄ωt)2/2σ(t)2
〉

(3.10)

This equation is of the form

|Ψ(t)⟩= c1(t)
∣∣∣∣qubit in
state +

〉∣∣∣∣pointer at
poisition +h̄ω

〉
+ c2(t)

∣∣∣∣qubit in
state −

〉∣∣∣∣pointer at
poisition −h̄ω

〉
(3.11)

which is an entangled superposition. The density matrix ρ = |Ψ⟩⟨Ψ| of such a state has cross or
interference terms.

This is where the problem lies. The above equation simply states that when quantum system S

is in a superposition, the macroscopic pointer M is also in a superposition pointing at all possible
measurement outcomes at same time. This is contrary to our observation that in any single run of
such an experiment we only get one definite outcome; we either see the cat dead or alive but not
both!
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3.2 The meaning of it all?

What we did was the following: we discarded the collapse postulate and said that ‘everything
is quantum’ and so there are no physical processes which don’t obey the Schrödinger equation.
So we treated the measurement as no other ‘special’ process (which needs additional structure of
collapse in usual QM) but using the Schrödinger equation. We discussed a very specific modeling
of the measurement device, however, other models lead to the same conclusions. For brief review
see[10].

Treating the measurement process as a quantum mechanical interaction—doesn’t matter which
model you use—leads to a peculiar feature: the combined state of the system and device is an
entangled superposition state of the form (3.11). The measurement outcomes are not definite and
it predicts interference of macroscopic objects. This is a reflection of the fact that the Schrödinger
equation is linear and unitary. In the standard formalism of quantum mechanics, a pure state (like
equation (3.11)) corresponds to the an ensemble whose members are identically prepared and are
indistinguishable. However, if we actually did perform the measurement in the laboratory, we do
get single and unique outcome in every run of the experiment contradicting the indistinguishability
of the ensemble. Yes, the frequencies are correctly predicted by the coefficients when the experi-
ment is run many times, though it is not very clear what happens in an individual run. Logically
then, it is then meaningless to talk about probabilities/frequencies of different outcomes given that
theory does not predict any of the individual outcomes. In the words of Wigner[11], “The pro-
cess of measurements cannot be described by the equations of quantum mechanics because their
existence is in contradiction with its principles”.

One can conclude the following from the above discussion

1. That we need to discard the hypothesis that ‘everything is quantum’ and there exists special
processes which don’t obey Schrödinger equation but need an entirely different treatment.
OR

2. That the measurement process does indeed obey SE and that everything is indeed quantum
but we need to interpret correctly the meaning of equation(3.11); what does smearing of
pointer really mean?

Most of the interpretations of quantum mechanics[12] revolve around the above two points;
either they try to interpret what does a cat both dead and alive mean or they are finding different
methods to explain such special processes of measurement. In the next chapter, we shall see an
interpretation which modifies the Schrödinger evolution by adding certain correction terms.
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Chapter 4

Spontaneous Collapse Models

4.1 What qualifies as a collapse model?

Collapse model[13] is a class of dynamical models satisfying certain assumptions which not only
solve the measurement problem but also have a clear ontology of what is actually going on. These
models are phenomenological and unify the Schrödinger evolution and wavefunction collapse dy-
namics. As we saw in the previous chapter that linearity and unitarity of the Schrödinger equation
are responsible for the measurement problem. We will then need to drop one or both of these
assumptions to solve the problem.

To make a working collapse model we then need to have, in contrast with the standard formu-
lation (section 2.1), the following three characteristics in the dynamics

1. Non-linearity
We need to suppress the macroscopic linear superpositions. To achieve this we need the
dynamics to be non-linear. This also makes the dynamics non-unitary.

2. Stochasticity
To explain the Born rule (2.4) and the emergence of probabilities, we need stochasticity.
Moreover, this is a very strong requirement in order to avoid superluminal signalling. We
discuss the reasoning for this below.

3. Amplification mechanism
We want to suppress macroscopic superpositions but we don’t want to do that at microscopic
level because that would contradict already established empirical evidences of quantum the-
ory at the microscopic scale. Therefore, we need to have some mechanism which ensures
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that in the microscopic limit collapse models agree with Schrödinger dynamics but also sup-
presses superpositions in the macroscopic limit to agree with classical Newtonian dynamics
(See Fig. 4.1)

The collapse models are therefore stochastic, non-linear, and non-unitary.

Effect of NL, ST and NU

microscopic mesoscopic macroscopic

negligible effect;

dynamics coincides with

Schrödinger evolution

strong effect;

dynamics coincides

with classical mechanics

Amplification
Mechanism

Figure 4.1: Amplification mechanism showing effect of Non-linear (NL), Stochastic (ST) and Non-
unitary (NU) terms. The strength of these terms decreases in the microscopic limit and increases
in the macroscopic limit.

Before we move on to discuss the specific models, we will comment on two technicalities. The
first concerns the reduction of the off-diagonal terms in the density matrix and the second concerns
stochasticity as a requirement for no faster-than-light communication[14]. We need to understand
the first to appreciate the second.

Consider a homogenous ensemble of N macroscopic systems in a state which is a superposition
of two orthogonal states |0⟩ and |1⟩ (similar to equation (3.11)). Which can be written in two
formats—state vector and density matrix

|ψ⟩= 1√
2
(|0⟩+ |1⟩) ρ =

1
2

1 1

1 1

 (4.1)

With regards to the three conditions mentioned above, we want to suppress the macroscopic su-
perpostions. If we aim to evolve this density matrix ρ to another matrix ρred, by allowing the
off-diagonal terms to decay we get

ρred =
1
2

1 0

0 1

 (4.2)
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but since the mapping of density matrix to state vectors is not one-to-one, the matrix ρred could
correspond to the superposed state

N/2 systems in state
1√
2
(|0⟩+ |1⟩) and N/2 systems in state

1√
2
(|0⟩− |1⟩) (4.3)

instead of the required non-superposed state with the same density matrix ρred

N/2 systems in state |0⟩ and N/2 systems in state |1⟩ (4.4)

The modifications as described above should be done in the Schrödinger equation (2.1) itself and
not in the density matrix von-Neumann equation (2.2) to ensure we end up in the required non-
superposed state.

Gisin and Polchinski independently showed to prevent superluminal signaling under some evo-
lution ρ(t) = E [ρ(0)], any two equivalent density matrices must remain equivalent under the evo-
lution E [15, 16]. This can be understood intuitively (for details see[17]) by considering a Bell type
Alice-Bob scenario. Consider two arbitrary but equivalent ensembles ρ =∑i |ψi⟩⟨ψi|=∑i |φi⟩⟨φi|.
Alice and Bob are arbitrary far from each other and share the ensemble of states

|shared⟩= ∑
i
|ψi⟩⊗ |vi⟩= ∑

i
|φi⟩⊗ |wi⟩ (4.5)

where |vi⟩ and |wi⟩ are mutually orthogonal basis for Bob’s Hilbert space (such a shared state can
be prepared for any choice of arbitrary but equivalent ensembles {|ψi⟩} and {|φi⟩} (see Appendix B
in [18] for the proof). Suppose we have an evolution of a kind that initially {|ψi(0)⟩} ≡ {|φi(0)⟩}
(equivalent) but after some time {|ψi(t)⟩} ̸≡ {|φi(t)⟩} (not equivalent). Now if Bob chooses to
measure the shared state in the basis |vi⟩, due to collapse Alice gets ensemble |ψi⟩. If Bob chooses
measure the shared state in the basis |wi⟩, Alice gets ensemble |φi⟩. Then according to the as-
sumption, ensembles |ψi⟩ and |φi⟩ which were previously equivalent would not remain so after
some time. This would allow Alice to distinguish between the ensembles and thereby know the
basis used by Bob (who is at arbitrary distance from Alice) for measurement, causing FTL com-
munication. Therefore, in order to avoid superluminal signaling given some evolution, equivalent
mixtures must remain equivalent under that evolution.

Now, for the case of collapse models we need the evolution to be non-linear. Consider a
deterministic and non-linear evolution E

|ψ(t)⟩= E [|ψ(0)⟩] (4.6)
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which maps pure states to pure states. Consider similar to above two equivalent mixtures {|ψi⟩}
and {|φi⟩} at t = 0. If the time evolved mixtures are equivalent for all times t > 0, then accord-
ing to Davies’ theorem[19] the evolution must be linear and unitary. Which contradicts our initial
assumption that the evolution is non-linear. Therefore, the evolved mixtures must be inequiva-
lent. Hence, a deterministic and non-linear evolution leads to superluminal signaling. Since we
demand non-linear evolution in collapse models, owing to this result of Gisin, we must also have
the evolution to be stochastic to avoid superluminal signaling.

4.2 Uniqueness of the collapse dynamics

In the previous section we saw that for the model to be a collapse model, we need to add non-linear
and stochastic terms to the usual dynamics. However, the constraints discussed, along with norm
preservation, allow only a unique form of the equation[20]. That is, given a process

dψt = A(ψt)dt +
N

∑
k=1

Bk(ψt)dWk,t (4.7)

what form of A and B, which are general non-linear operators, would generate a Lindblad type
dynamics for ρt = E [|ψt⟩⟨ψt |]?

Theorem: The above process for ψt leads to Lindblad type dynamics if and only if N ≥ n and
the operators are of the form

A(ψt) = iH0 −
1
2

N

∑
k=1

(
L†

kLk −2lk,tLk + |lk,t |2
)

(4.8)

Bk(ψk) = Lk − lk,t (4.9)

where Lk’s are linearly independent operators called collapse operators and lk,t = 1
2

〈
ψt

∣∣∣L†
k +Lk

∣∣∣ψt

〉
The Lindblad equation for the corresponding density operator ρt = E [|ψt⟩⟨ψt |] is given by

dρt

dt
=−i[H0,ρt ]+

n

∑
k=1

(
LkρtL

†
k −

1
2
{L†

kLk,ρt}
)

(4.10)

Note that N is the number of terms in the summation of equation (4.9) and n is the number of
terms in the summation of equation (4.10). See [20] for the details of the proof. As a special case,
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when the collapse operators Lk are hermitian, L†
k = Lk, the process (4.7) becomes

dψt =

[
−iHdt − 1

2

N

∑
k=1

(Lk − lk,t)2dt +
N

∑
k=1

(Lk − lk,t)dWk,t

]
ψt (4.11)

with lk,t = ⟨Lk⟩= ⟨ψt |Lk|ψt⟩

4.3 Some collapse models

In the spontaneous collapse models, the wave function collapse occurs spontaneously, like a natural
phenomenon, and the presence of an observer is not necessary. We first describe the Ghirardi-
Rimini-Weber model in some detail which is the simplest of all and captures the essential ideas of
collapse models. Then we quickly discuss the QMUPL, the CSL spontaneous collapse models and
give an example of a two level system.

4.3.1 GRW model

In the GRW model[21, 8], the wavefunction of a single quantum particle evolves according to
Schrödinger equation and then spontaneously localizes at some random position. This can be mod-
eled as a Poisson process. Suppose X is the random variable where X = Number of localizations.
Then P(X = k) = λ ke−λ

k! where λ ≡ λGRW = average number of localizations per unit time. τ =

1/λ = average waiting time. This value of λGRW is postulated to be about 10−16s−1. So the av-
erage waiting time is 3×108 years. Therefore for a single particle, spontaneous localizations are
rare (about once in 300 million years). The wavefunction doesn’t collapse during measurement as
in the standard theory. No observer is involved in GRW theory. The collapse of the wavefunction
is spontaneous; it is a natural phenomenon. And so λ , defined above, is a constant of nature (like
h̄) involved in this natural phenomenon. Position is fundamental in this theory; collapse occurs
in position basis. This is because any measurement device displays the outcome using a pointer
(or positional distribution of LEDs for that matter). So any other physical quantity is treated as
contextual.

We define the following Gaussian function

Lr(x) =
1

(2πr2
c)

1/4 e−(x−r)2/4r2
c (4.12)

with
∫ |Lr(x)|2dx = 1. The value of rc is postulated to be around 10−7m which is small compared
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to macroscopic scale but large compared to atomic scales.

Let t0 be the time of collapse, ti be the time just before collapse and t f be the time just after col-
lapse. For the time between two collapses, the wavefunction evolves according to the Schrödinger
equation. The wavefunction just after the collapse is given by

ψ(x, t f ) =
Lr(x)ψ(x, ti)√∫ |Lr(x)ψ(x, ti)|2dx

(4.13)

where N(r) =
√∫ |Lr(x)ψ(x, ti)|2dx is the normalization. So Lr(x) reshapes the wavefunction

in such a way that it gets localized at the position r. This position r is randomly selected with
probability distribution given by

P(r) =
∫

|Lr(x)ψ(x, ti)|2dx (4.14)

Given the postulated values of λGRW and rc the amplification mechanism mentioned above can
be derived along with Born rule and wavepacket reduction.

For treating multiple particles, we have two cases. First when the particles are not entangled
and second when they are entangled. Consider two particles which are not entangled with a wave-
function given by

ψ(x1,x2, ti) = χ(x1, ti)φ(x2, ti) (4.15)

Which of the two particles suffers first localization is purely random in addition to when and
where to localize. Let’s suppose that particle 1 localizes first. Then the probability density that it
localizes at point r is

P(r) =
∫

|Lr(x1)ψ(x1,x2, ti)|2dx1dx2

Then the combined wavefunction just after collapse is given by

ψ(x1,x2, t f ) =
Lr(x2)χ(x1, ti)√

P(r)
φ(x2, ti) (4.16)

Thus, if the particles are initially not entangled, then after spontaneous collapse they remain
so. The localization of one does not affect the other particle.

Now consider the case when two particles are entangled with the wavefunction given by

ψ(x1,x2, ti) =
1√
2
(δ (x1 −a)δ (x2 +a)+δ (x1 +a)δ (x2 −a)) (4.17)
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Doing similar analysis we get the final wavefunction after the collapse as

ψ(x1,x2, t f ) = δ (x1 −a)δ (x2 +a) (4.18)

which shows that if one of the entangled particle localizes spontaneously then the other particle
has to forcibly also get localized. Localization of one affects other entangled particle.

Consequently, if there are N(∼ 1024) entangled particles, all of them would spontaneously
localize with the effective rate given by NλGRW or with an average time (1/NλGRW) merely of the
order of nano seconds. Therefore, macroscopic superpositions are suppressed very quickly.

4.3.2 The QMUPL model

The Quantum Mechanics with Universal Position Localization (QMUPL) model has same axioms
has a GRW but here the dynamics is described by a stochastic differential equation.

dψt =

[
− i

h̄
Hdt − λ

2
(q−⟨q⟩t)

2dt +
√

λ (q−⟨q⟩t)dWt

]
ψt (4.19)

where q is the position operator and ⟨q⟩t = ⟨ψt |q|ψt⟩. This model explicitly displays the modi-
fication terms to the Schrödinger equation. The first term on the RHS is the usual deterministic
Schrödinger evolution, the second term is the deterministic nonlinear term and the third term is a
stochastic noise term with dWt as the standard Weiner process. Here λ is called collapse constant
and determines the strength of stochastic and nonlinear terms. This collapse constant is propor-
tional to the mass of the particle λ = m

m0
λ0 with λ0 = 10−2m−2s−1 and m0 is the reference mass

usually taken to be mass of a nucleon. Drawback of this model is that it is valid only for distin-
guishable particles.

4.3.3 The CSL model

The GRW and the QMUPL models have discrete time evolution, the noise field depends only
on time and not on space and are valid for only distinguishable particles. To overcome these
difficulties we have a more advanced model called continuous spontaneous localization(CSL). In
this model the time evolution is continuous, the noise term depends on space as well as time, and
it includes identical particles as well. The dynamics is described by the following equation which
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is quite similar to the QMUPL equation

dψt =

[
− i

h̄
Hdt − Γ

2m2
0

∫
dx[M(x)−⟨M(x)⟩t ]

2dt +

√
Γ

m0

∫
dx[M(x)−⟨M(x)⟩t ]dWt(x)

]
ψt

(4.20)
Γ is a positive coupling constant which determines the strength of collapse process. M(x) is called
the smeared mass density operator given by

M(x) = ∑
i

miNi(x), Ni(x) =
∫

dyg(y−x)ψ†
i (y)ψi(y) (4.21)

ψ
†
i (y), ψi(y) are creation and annihilation operators of particle type i in space point y. These

operators allow for inclusion of identical particles. The smearing function given by

g(x) =
1

(
√

2πrc)3
e−x2/2r2

c (4.22)

As an example of the CSL model, we will consider our good-old two level system qubit system.
We consider the same Hamiltonian (2.5) H0 = h̄ωσx. We wish to measure σz observable of the
system and so choose one collapse operator L = σz. Then the CSL equation for this system is

d |ψt⟩=
[
−iωσxdt − Γ

2
(σz −⟨σz⟩t)

2dt +
√

Γ(σz −⟨σz⟩t)dWt

]
|ψt⟩ (4.23)

for the details of the analysis, see[22]. We have reproduced their results in Fig 4.2 below.

4.4 Experimental tests

Since spontaneous collapse occur according to the time and length scales determined by λ and
rc, these models predict data slightly differently than the standard quantum theory. This makes
spontaneous collapse models experimentally testable. Numerous experiments are being carried
out to observe deviations from quantum theory[23].

These experiments can be classified into two categories: interferometric and non-interferometric.
Interferometric experiments are a direct test of the validity of the superposition principle. In these
experiments, a spatial superposition is prepared and is allowed to interfere. Then interference pat-
tern is measured. If the fringes are observed, the superposition principle is valid for that system,
else it is not. These experiments are difficult to control as superpositions may break down due to
environmental noise.
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Figure 4.2: A two level system showing one realization of the CSL stochastic differential equa-
tion. On left side we have Γ = 0.05s−1 which is small and takes some time for the system to
reach the eigenstate. On the right we have Γ = 10s−1, which drives the system to one of the
eigenstates(here|0⟩) fairly quickly. The figure on the right also illustrates the fact that in CSL
models, the system does not stay in the eigenstate after collapse; it fluctuates around the state and
jumps to the other state after some time. Results computationally reproduced from [22].

Non-interferometric experiments look for deviations from usual quantum theory due to the
white noise term Wt(x) in the collapse equation. These experiments do not depend on the prepa-
ration of a superposition state and therefore are more helpful. Suppose a particle evolves in some
potential, then due to the noise term, the dynamics is stochastic. Due to the random acceleration
of this particle, some effects such as violation of energy conservation is seen. Such signatures are
being detected in non-interferometric experiments. See Fig. 4.3
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Figure 4.3: A phase diagram of the parameters λ and rc (discussed in section 4.3.1). This figure
shows values of these two parameters which are ruled out by various non-interferometric exper-
iments. These include cantilever-based experiments, gravitational wave experiments from detec-
tors AURIGA, LISA Pathfinder and LIGO, optomechanical systems, spontaneous X-ray emission
tests, phonon excitation experiments, heating rate of Neptune and cold-atom experiments. Differ-
ent colours indicate different experiments. The light grey region shows the values excluded from
the theoretical requirement of the amplification mechanism (that macroscopic superpositions can-
not exist for long time). White color shows the region which remains to be tested.[23] Reproduced
with permission from Springer Nature

The spontaneous collapse models which were discussed are phenomenological models and the
modification of the dynamics seems ad-hoc. What is the theoretical understanding of these models
that could explain, for example, the origin of random noise? Are there any strong theoretical
reasons for this stochastic modifications of quantum mechanics? In other words, could the collapse
dynamics be derived from some ‘first principles’?
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Chapter 5

Trace Dynamics

Trace dynamics forms the basis of the ‘first principles’ that we commented on at the end of the
previous chapter. Considering the history of physics, most theories eventually replaced by their
higher order correct theories. Quantum theory might be no exception. Moreover, the ad-hoc quan-
tization procedure, the measurement problem, problems in unification of quantum with gravity, the
cosmological constant problem only add to the motivation and to the belief that quantum theory
might be a very good approximation to a deeper theory. The recent important result[24] makes
this belief even stronger. In this chapter we attempt to summarize the spirit of trace dynamics with
the help of an example of harmonic oscillator. Complete details can be seen in Adler’s book[25]
which unfortunately is the only reference and demands a lot of blood, sweat and tears. For a brief
review see[26].

In classical Lagrangian and Hamiltonian dynamics, the dynamics is on a phase space with the
phase space coordinates being generalized coordinates qi and their conjugate momenta pi. These
phase space coordinates commute. Trace dynamics formalism is analogous to classical Lagrangian
or Hamiltonian dynamics with a fundamental difference: They phase space coordinates, the de-
grees of freedom, are matrices and they are noncommutative in general. It is assumed that these
commutation relations of these degrees of freedom are arbitrary; that is they are not necessarily the
usual commutation relations ([q, p] = ih̄). The usual commutation relations in fact emerge from the
statistical mechanics of this matrix dynamics. The trace dynamics formalism can be understood in
a sequence of three steps. Step 1 Classical Dynamics, Step 2 Statistical Thermodynamics, Step 3
Statistical Fluctuations.
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5.1 Degrees of freedom and concept of trace derivative

The fundamental degrees of freedom are matrices with Grassmann numbers as matrix elements.
These matrices do not commute in general. If θi and θ j are two Grassmann numbers then they
satisfy θiθ j + θ jθi = 0 and θ 2

i = θ 2
j = 0. This property divides the degrees of freedom into two

disjoint sectors of Bosonic sector containing even grade elements and Fermionic sector containing
odd grade elements.

Consider a harmonic oscillator with the generalised coordinate q and momentum p. In trace
dynamics, these phase space variables are matrices. The commutation relation between these
variables is not specified and is taken to be arbitrary. However, the eigenvalues of these matrices
are the values of the classical dynamical variables obtained through extremization of the action.
To develop a action principle with matrix degrees of freedom, we need the concept of variation of
a polynomial with respect to a matrix called trace derivative.

Trace derivative Consider a polynomial P which is made out of non commuting matrix vari-
ables. The trace of the matrix P is a complex number. Then derivative of this complex number
P ≡ TrP with respect to matrix variable O can be defined by varying and then cyclically permuting
such that in each term the factor δO is on the right.

δP = Tr
δP
δO

δO (5.1)

Note that we will take O as bosonic or fermionic but not mixed and we construct P such that it is
always an even grade.

5.2 Hamiltonian dynamics of matrix variables

Using trace derivative we construct a Lagrangian and Hamiltonian dynamics of Grassmann valued
matrices. The equations for the action, the Lagrangian and the Hamiltonian look similar to the
ones in classical mechanics.

TrS =
∫

dτ TrL ;
δTrL
δqr

− d
dτ

δTrL
q̇r

= 0 (5.2)

TrH = Tr
[
∑
r

prq̇r −L
]

;
δTrH
δqr

=−ṗr
δTrH
δ pr

= εrq̇r (5.3)

where εr =±1 depending on whether qr and pr are bosonic or fermionic.
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The Hamiltonian in the theory have a global unitary invariance (qi →U†qiU , pi →U† piU) and
so there exist a unique non trivial conserved charge called the Adler-Millard charge.

C̃ = ∑
i∈B

[qi, pi]− ∑
i∈F

{qi, pi} (5.4)

the commutator sum is over bosonic(B) and anticommutator sum is over fermionic(F) degrees of
freedom. C̃ plays a vital role in the emergence of the usual commutation relations.

In our example of harmonic oscillator, the Hamiltonian, Hamilton’s equations and the Adler-
Millard charge are

TrH = Tr
[

p2

2m
+

1
2

kq2
]

;
δTrH

δq
= kq =−ṗ

δTrH
δ p

=
p
m

= q̇ ; C̃ = [q, p] (5.5)

here we assume that q and p are bosonic, therefore ε = 1 and the anticommutator is zero.

We will now do a change of variables by transforming q and p into their self-adjoint and
anti-self-adjoint parts q = qs + qas and p = ps + pas. This is needed so that we can derive the
Schrödinger equation. The self-adjoint and anti-self-adjoint components of the trace Hamiltonian
are

TrHs = Tr
[
(ps)2

2m
+

1
2

k(qs)2 +
(pas)2

2m
+

1
2

k(qas)2
]

(5.6)

TrHas = Tr
[

2ps pas

2m
+

2kqsqas

2

]
(5.7)

The self-adjoint and anti-self-adjoint components of the trace Adler-Millard charge are

C̃as = [qs, ps]+ [qas, pas] ; C̃s = [qs, pas]+ [qas, ps] (5.8)

An important point to note that the Hamilton’s equations in trace dynamics is in general non-
unitary. The Hamilton’s equations for the harmonic oscillator example cannot be written in the
form i[G,q] or i[G, p] for any generator G. Therefore the dynamics is non-unitary.

5.3 Statistical Thermodynamics

We then formulate a statistical mechanics of these degrees of freedom by constructing a canonical
ensemble with constraints determined by the conserved quantities such as the trace Hamiltonian,
Adler-Millard charge and a quantity called fermion number. We coarse-grain the previous dynam-
ics over many Plank times and quantum theory emerges in the thermodynamic equilibrium. This
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can be done only if the TrHas and C̃s are negligible. Then Adler-Millard charge is equipartitioned
and since C̃ is anti-self-adjoint, its canonical average can be written in the form

⟨C̃⟩AV = ie f f h̄ (5.9)

where ie f f = i diag(1,−1,1,−1, . . . ,1,−1). These commutation relations are obtained for statisti-
cally averaged dynamical variables. Heisenberg equations of motion and the Schrodinger equation
can also be derived

[qr e f f , pr e f f ] = ie f f h̄ r ∈ B (5.10)

{qr e f f , pr e f f }= ie f f h̄ r ∈ F (5.11)

h̄ẋr e f f = ie f f [He f f ,xr e f f ] (5.12)

where e f f denotes the coarse-grained effective variables.
In our example, we neglect TrHas and C̃s. The Adler-Millard charge is equipartitioned over the

two degrees of freedom with the equipartitioned value equal to ie f f h̄. This gives the commutation
relations [qs, ps] = ie f f h̄ and [qas, pas] = ie f f h̄. These effective variables obey Heisenberg equations
of motions. Using the commutation relations, we can now write in the position representation and
thus obtain the Schrödinger equation.

Statistical Fluctuations In trace dynamics, the anti-self-adjoint component of the trace Hamil-
tonian becomes significant due to entanglement of many degrees of freedom[27]. Due to this,
superposition states decay rapidly leading to spontaneous collapse. Since the anti-self-adjoint com-
ponent of the trace Hamiltonian has become significant, the dynamics is now again non-unitary and
deterministic. Taking motivation from this fact, we have modelled a deterministic and non-unitary
dynamics to see its effect on superposition of states. This should ideally give the collapse models
after coarse-graining,
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Chapter 6

Model of A Two-level System

6.1 Description of the model

We aim to understand the deterministic, non-unitary and norm preserving evolution of wavefun-
tion. The norm preservation is neither an ad hoc imposition in our model nor the result of the
”probabilistic interpretation” of quantum theory. Rather, the norm preservation is asserted from
the octonion thoery developed by Prof. TP Singh. Accordingly, we model our system by consid-
ering a general Hamiltonian of the form

H = H0 + iγA (6.1)

where H†
0 = H0, A† = A, i =

√
−1 and γ is the coupling constant, a real free parameter which

couples H0 and A. Then, the total Hamiltonian H is not self-adjoint. Such Hamiltonians would
give rise to a non-unitary evolution. The physical meanings of H0, A and γ are discussed in the
later sections. The anti-selfadjoint part (iA) of the total Hamiltonian is of particular interest in the
context of trace dynamics/octonionic theory. The non-unitary evolution does not preserve norm
of the state vector |φ⟩, in general. Therefore, we impose norm preservation by hand. However,
note that even though the norm preservation appears an ad-hoc treatment, it can be reasoned using
octonionic theory as mentioned earlier.

Let |φ⟩ be a state which follows the evolution given by (1) without any imposition of the norm
preservation. Then defining other state |ψ⟩ = |φ⟩√

⟨φ ||φ⟩ and imposing norm preservation, we get a

27



modified Schrödinger equation

d |ψ⟩
dt

= [−iH0 + γ (A−⟨A⟩)] |ψ⟩ (6.2)

where ⟨A⟩= ⟨ψ|A|ψ⟩. The first term is the usual Schrödinger evolution. The second term gives the
modified dynamics which is non-unitary. The peculiar form of the second term A−⟨A⟩ is essential
for norm preservation; proof of which is straightforward. In the density matrix formulation the
evolution equation becomes

dρ

dt
=−i[H0,ρ]+ γ{A,ρ}−2γTr(ρA)ρ (6.3)

where, ρ = |ψ⟩⟨ψ| and, [., .] and {., .} have the usual meaning of commutator and anticommutator.

For a two-level qubit system, H0, ρ , A are 2×2 self-adjoint matrices. We choose to write these
matrices in the eigenbasis of A. Without loss of generality, λ0, λ1 ∈ R are eigenvalues of A such
that λ0 > λ1. Note that we exclude the case of degeneracy (λ0 = λ1), the reasoning for which will
be clear when we discuss the physical meaning of A. The matrices in the mentioned basis are then
given as

H0 =

 a0 b0r + ib0i

b0r − ib0i d0

 ρ =
1
2

1+ z x− iy

x+ iy 1− z

 A=

λ0 0

0 λ1

 (6.4)

where x, y, z are three components of the Bloch vector v⃗ = (x,y,z) and a0, b0r, b0i, d0 are real
numbers. Using equation (6.3) for the matrices in equation (6.4) we get the evolution equation for
the three components of the Bloch vector.

ẋ =−(a0 −d0)y−2b0iz− γ(λ0 −λ1)xz (6.5)

ẏ = (a0 −d0)x−2b0rz− γ(λ0 −λ1)yz (6.6)

ż = 2b0ix+2b0ry− γ(λ0 −λ1)(z2 −1) (6.7)

6.2 Results

These results provide an answer to the question we asked at the beginning: How does the state of

the system evolve under a deterministic, non unitary, and norm-preserving evolution? For strong
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coupling between H0 and A, the system tends to the eigenstates of A. When γ ≫ 1 or γ ≪−1 the
differential equations (6.5), (6.6), (6.7) become

ẋ =−γ(λ0 −λ1)xz

ẏ =−γ(λ0 −λ1)yz

ż =−γ(λ0 −λ1)(z2 −1)

The solution for the z-component is

z =
1− exp(−2γ(λ0 −λ1)t)
1+ exp(−2γ(λ0 −λ1)t)

(6.8)

For γ ≫ 1, z → 1 and ẋ = −γ(λ0 −λ1)x, ẏ = −γ(λ0 −λ1)y which imply x,y → 0. For γ ≪ −1,
z →−1 and similarly x,y → 0. Therefore for the case of strong coupling (γ ≫ 1 or γ ≪−1) the
system tends to the eigenstates |0⟩ or |1⟩ of A in finite time. The system is driven to to the states |0⟩
or |1⟩ depending on the sign of γ . For positive γ , the system is driven to to |0⟩ whereas for negative
γ it is driven to |1⟩. This result is valid irrespective of the initial state if the system. Numerical
evaluation performed (See Fig. 6.1) for a special case using Runge-Kutta method are shown in the
Bloch sphere representation figure. The trajectories show the evolution of the state with time for
different values of γ .
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Figure 6.1: The figure shows numerical evolution of the state vector under the Hamiltonian H =
σx+ iγσz. Different values of γ were considered. For large values of γ it is seen that the state vector
converges to the eigenstate of σz (here |0⟩). When gamma is negative, the vector will converge to
the other eigenstate |1⟩. The plots on the left show the values of |c1|2(solid) and |c2|2(dashed)
which in the colloquial sense are the probabilities of finding the state in |0⟩ and |1⟩ respectively.

6.3 Interpretation and Discussion

This project is tiny part of a large research program carried out by Prof. T P Singh. This program
seeks to unify quantum theory and gravity using a theoretical formulation of octonionic theory.
For a recent review of the program see[28]. This formulation is based on trace dynamics in which
quantum theory is emergent from more fundamental dynamics. To understand our results, we need
this context of trace dynamics. We first discuss the concept of time in this formulation.

6.3.1 Connes Time

We treat quantum mechanics on classical spacetime. Doing this we assume that quantum system
can coexist with classical spacetime. This is a problem for the following reason. In the Schrödinger
equation, time is treated as a parameter. But this time is a part of the 4D spacetime manifold
whose geometry depends on the classical bodies. These objects are fundamentally quantum and
obey Schrödinger equation. But that is what we started with. We need to remove the classical
spacetime manifold and treat time differently. In trace dynamics, there is natural time parameter τ ,
which is conjugate to the Adler-Millard charge. This time parameter is not the coordinate time (t)
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in special relativity. This parameter τ called Connes time is a feature of Connes’ non-commutative
geometry[29]. This Connes time is measured in the units of Planck time τp. All the evolution
considered in trace dynamics is with respect to this Connes time parameter.

6.3.2 Time of arrival

Naively, time of arrival is the time —in terms of Connes time—before which the system and envi-
ronment start interacting (Refer to Fig. 6.2). In trace dynamics(TD), quantum mechanics is derived
by averaging over smaller Planck time intervals and is a thermodynamic equilibrium of trace dy-
namics. That is, according to trace dynamics observations of quantum mechanics are over a coarse-
grained time scale. When a quantum system arrives at a measuring apparatus the time of arrival is
also observed over a coarse-grained scale. In quantum mechanics, therefore, this time of arrival is
not important and we get a random distribution of outcome over many measurements. However in
trace dynamics, which provides a more accurate description of the measurement process, time of
arrival is important. Depending on the time of arrival, different measurement outcomes are possi-
ble. When quantum system interacts with a classical apparatus, the Hamiltonian of the combined
system becomes of the form (6.1); the imaginary part becomes increases and becomes significant.
Depending on the time of arrival, this macroscopic system at Planck scale resolution will be in
different microstates (according to coarse-grained QM, since it is a thermodynamics equilibrium
of TD, all these microstates are equivalent). Since within a Planck time, the measuring system
is changing very rapidly due to large number of degrees of freedom, it is important to know the
time of arrival up to Planck time to determine the further outcomes of the measurement. We there-
fore propose that γ is function of time of arrival which decides whether the imaginary part of the
Hamiltonian is switched on with positive or negative γ .

6.3.3 Coarse-graining

We make an ansatz for coarse-graining the time of arrival, γ →
√

ΓW (t), where W (t) is the Weiner
process. Taking norm-preservation into consideration, we obtain the following map which give the
correct CSL differential equation.

m(X) =
√

ΓXW (t)−Γ
(
X2 −

〈
X2〉) (6.9)

where, X = A−⟨A⟩ and Γ is the CSL parameter.
Because of the coarse-graining, the non-linear deterministic equation becomes stochastic and

thus avoids superluminal signalling[15] in the emergent theory.
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Figure 6.2: The figure shows a schematic Stern-Gerlach measurement at two different time scales.
The figure above is the coarse-grained view which is obtained by averaging over many Plank time
(τp) intervals. The figure on the bottom is a fine-grained view which is resolved more than Planck
scale. Two qubits are prepared in an identical state |+⟩. This is a macroscopic state according
to trace dynamics. Therefore, it cannot be much resolved in the coarse-grained view and the out-
comes appear random. However at higher resolution, the qubits are in a different trace dynamical
microstates and hence have different times of arrival, τ1 and τ2 (in terms of Connes time). We pro-
pose that the coupling in (6.1) depends on these times of arrival and decide whether γ is positive
or negative thereby giving different outcomes.

6.3.4 Conclusion and future prospects

We have developed a toy model for gaining insights into how trace dynamics could explain collapse
models. In this model, the evolution is deterministic and non-unitary but norm-preserving. The
Hamiltonian of this system is not Hermitian but has an anti-self-adjoint part A which is responsible
for non-unitary evolution. We have coupled the original Hamiltonian H0 to with a coupling γ . It
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is observed that for large value of γ the state vector is always driven to the eigenvectors of A in a
finite time. This forms the major part of our results. This result is straightforward to generalize
to any Hermitian operator A with all unique eigenvalues. The model does not work when there is
degeneracy in A’s spectrum. This is because as seen in equation (6.5) if λ0 = λ1, the differential
equations reduce to as if A = 0.

This toy model, as discussed previously, makes a tiny contribution to a larger research program
on unification. It gives insights into how a measurement process might actually work using time
of arrival and coarse-graining concept. Of course, the model is not perfect and the following
improvements are required and are a part of future work.

1. The time of arrival concept is not precisely defined. We will need a precise definition of this
time to make certain calculations possible.

2. On a philosophical note, since coarse-graining plays an important role here (it is not present
in any interpretation of QM), it would be interesting to check its implications on the nature
of observation and the observer.

3. Considering the implications of these results, this toy model would help in actual derivation
of collapse models from the fundamental Lagrangian developed in[27].

4. The map (6.9) is just an ansatz, a rigorous derivation of coarse-graining needs to be done
from first principles of trace dynamics. Upon attempting to do this, we realised that this is a
difficult task and would need a significant time.

5. Doing the above derivation will also help in understanding the origin, and more importantly
the spectrum, of the noise that drives collapse models.

6. This derivation of spectrum of noise would help in directing or steering the experiments
carried out to test collapse models; the experimentalists would know what to look for.

Thus, this toy model is of importance to the future of collapse models and of quantum theory.

33



34



Bibliography

[1] C. Rovelli, Helgoland: Making Sense of the Quantum Revolution. Riverhead Books, 2021.

[2] S. Weinberg, “The trouble with quantum mechanics,” The New York Review of Books, vol. 19,
pp. 1–7, 2017.

[3] N. D. Mermin, “There is no quantum measurement problem,” Physics Today, vol. 75, no. 6,
pp. 62–63, 2022.

[4] S. M. Carroll, “Addressing the quantum measurement problem,” Phys. Today, vol. 75, pp.
62–64, 2022.

[5] D. G. T. N. D. M. S. C. Gregory N. Derry, Art Hobson, “Physics today volume 75, issue 11,
november 2022,” Phys. Today.

[6] J. von Neumann, Mathematical Foundations of Quantum Mechanics. Princeton University
Press, 1955.

[7] D. Pile, “Controlling quantum bits,” Nature Photonics, vol. 4, no. 8, pp. 578–578, 2010.

[8] T. Norsen, Foundations of Quantum Mechanics. Springer Cham, 2017.

[9] R. Omnès, The Interpretation of Quantum Mechanics, 1st ed. Princeton University Press,
1994.

[10] D. Home, Conceptual Foundations of Quantum Physics: An Overview from Modern Perspec-
tives, 1st ed. Springer New York, NY, 2013.

[11] E. Wigner, “The nonrelativistic nature of the present quantum mechanical measurement the-
ory,” Part I: Particles and Fields. Part II: Foundations of Quantum Mechanics, pp. 567–571,
1997.

[12] P. J. Lewis, “Interpretations of quantum mechanics,” The Internet Encyclopedia of Philoso-
phy.

[13] A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, “Models of wave-function
collapse, underlying theories, and experimental tests,” Rev. Mod. Phys., vol. 85, pp. 471–527,
Apr 2013. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.85.471

35

https://link.aps.org/doi/10.1103/RevModPhys.85.471


[14] A. Bassi and G. Ghirardi, “Dynamical reduction models,” Physics Reports, vol. 379, no. 5,
pp. 257–426, 2003. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0370157303001030

[15] N. Gisin and M. Rigo, “Relevant and irrelevant nonlinear schrodinger equations,” Journal
of Physics A: Mathematical and General, vol. 28, no. 24, p. 7375, dec 1995. [Online].
Available: https://dx.doi.org/10.1088/0305-4470/28/24/030

[16] J. Polchinski, “Weinberg’s nonlinear quantum mechanics and the einstein-podolsky-rosen
paradox,” Physical Review Letters, vol. 66, no. 4, p. 397, 1991.

[17] A. Bassi and K. Hejazi, “No-faster-than-light-signaling implies linear evolution. a re-
derivation,” European Journal of Physics, vol. 36, no. 5, p. 055027, aug 2015. [Online].
Available: https://dx.doi.org/10.1088/0143-0807/36/5/055027

[18] ——, “No-faster-than-light-signaling implies linear evolution. a re-derivation,” 2015 (arXiv).

[19] E. B. Davies, Quantum theory of open systems. Academic Press, London, 1976.
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