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Abstract

This master’s thesis investigates the excitation and correlation dynamics of a one-dimensional
chain of Rydberg atoms with van der Waals interactions, utilizing two numerical methods: discrete
truncated Wigner approximation (dTWA) and artificial neural networks (ANN). Specifically, the
total number of excitations, the long-time average number of excitations, the maximum number of
excitations, and second-order half-chain Rényi entanglement entropy is analyzed over time.

The research findings show that, for intermediate timescales and smaller interaction strengths,
the 1st-order dTWA is effective in capturing the excitation dynamics. However, due to the numer-
ical instability of the 2nd-order dTWA equations, this thesis proposes an approach to handle the
instabilities by identifying and eliminating the terms causing the divergence in the 2-point corre-
lation equations of motion. This method has resulted in delayed divergence and improved results
compared to the 1st-order dTWA.

Additionally, this thesis demonstrates that the ANN approach provides a reliable method to
capture the excitation dynamics and 2nd-order Renyi entanglement entropy, achieving better re-
sults with an increase in the number of parameters.

This thesis suggests further exploration of other neural network architectures for studying this
system and the inclusion of higher-order dTWA to address the instability issue in the 2-point cor-
relation equation of motion. Overall, these numerical methods could facilitate the development
of theoretical and numerical tools for benchmarking and improving the performance of Rydberg
quantum simulators. Therefore, this master’s thesis highlights the potential of dTWA and ANN as
powerful numerical methods for studying Rydberg quantum simulators.
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4.2.2 Results for Half-chain 2nd-order Rényi entanglement entropy . . . . . . . 47

5 Conclusion 53

Bibliography 55

xvi



Chapter 1

Introduction

Quantum many-body physics studies the properties and phenomena that take place in ensembles

of interacting particles. With intersections with not only condensed matter but also nuclear and

high-energy physics, this is a broad area of physics with much potential for applications. Despite

decades of research, there are still many experimental phenomena in quantum many-body physics

that lack a satisfactory theoretical explanation. One of the biggest challenges in this field is the

curse of dimensionality, as the size of the Hilbert space grows exponentially with an increase in

the number of particles, making it difficult to derive macroscopic properties from microscopic

laws.

Exact methods can only handle systems with a small number of particles, and classical com-

puters are unable to exactly compute the dynamics of large quantum many-body systems. To over-

come this issue, researchers have developed various approximate numerical methods. However,

the complexity of quantum many-body systems increases dramatically with the number of parti-

cles, making efficient simulation a daunting task. Entanglement is one of the many approaches

used to describe the complexity of quantum many-body systems [1]. However, despite being a

well-known concept, its precise role in hindering the efficient classical simulation of many-body

systems is still being investigated. Various quantifications of entanglement have been developed to
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measure this quantum resource, but a complete understanding of its impact on classical simulations

is yet to be achieved.

One approach to studying quantum many-body systems suggested by Feynman involved build-

ing a computer based on quantum mechanics, or essentially constructing a synthetic quantum sys-

tem on which models can be implemented and solved, which could not be done in other ways [2].

These synthetic quantum systems are quantum simulators. In a quantum simulator, there is a high

degree of control over the particles and highly tunable interactions [3]. As quantum simulators us-

ing Rydberg atoms [4–11], trapped ions [12–14], polar molecules [15] and magnetic atoms [16,17]

have become increasingly important in the study of complex quantum systems, the need for accu-

rate numerical methods to analyze the behaviour of large-scale systems has become crucial. These

numerical methods are necessary to ensure that the quantum simulators are performing as intended

and accurately simulating the target system. Without such methods, it would be difficult to validate

the results obtained from the simulators and gain insights into the properties of the target systems.

Many common approximation methods are based on tensor-network states, the most common

of which is the time-dependent density matrix renormalisation group (t-DMRG), which is based

on expressing the quantum states in terms of matrix product states [18–23]. This is based on the

observation that the entire Hilbert space is not required to simulate the dynamics, and the Hilbert

space can essentially be reduced now. The challenge is to find those relevant states that have a

significant probability. DMRG involves truncating the density matrix at a certain order, known

as the bond dimension. By increasing the bond dimension, the accuracy of the results can be

improved, with convergence being reached at a certain bond dimension [24]. However, DMRG is

limited to one-dimensional systems, and as the degree of entanglement in a system increases, the

bond dimension required to achieve convergence grows exponentially with the size of the system.

This makes it challenging to apply DMRG to larger systems with high degrees of entanglement.

This has led to the development of phase-space-based methods like discrete truncated Wigner

approximation, where classical equations of motion are applied to initial states that are sampled

from a phase space [25]. dTWA [26–30] has shown promising and well-matching results while
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being used to simulate various systems [31–34]. Phenomena such as many-body localisation and

thermalisation have also been studied using dTWA [35]. Another method being studied recently

are the methods based on machine learning [36] where the wave function is considered approxi-

mately using a parameterisation, and these parameters are suitably chosen to efficiently represent

the wave function. An Artificial neural network is used to efficiently represent the wave function,

and reinforcement learning is then used to learn the parameters and get the dynamics of the system.

ANNs have previously been used to efficiently get not only the ground state but also the dynamics

of spin systems [37–43].

This thesis aims to investigate the applicability and limitations of two numerical methods,

dTWA and ANN, in studying the excitation dynamics as well as entanglement in a chain of Ry-

dberg atoms. Chapter (2) provides an introduction to Rydberg systems. Chapter (3) explains the

dTWA method, while chapter (3.2) focuses on using neural networks to simulate quantum many-

body systems. Chapter (4) presents and discusses the obtained results, and chapter (5) concludes

the thesis.
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Chapter 2

Rydberg Quantum simulator

A quantum simulator is a device that is designed to mimic and study the behaviour of quantum

systems that are too complex to be simulated on classical computers. Quantum simulators are

often based on physical systems that can be controlled and manipulated in a precise and controlled

manner, such as atoms, ions, or superconducting circuits [5].

With experimental developments in the manipulation of individual quantum entities like atoms,

molecules, ions etc, and advancements in cooling of atoms to the ultra-cold regime to nano-Kelvin

temperatures [5], programmable quantum simulation with tunable parameters of a Hamiltonian

has become a reality. In particular, the trapping of atoms in optical lattices [44–48] has led to

individually controllable neutral ultracold atoms in traps at a distance of several micrometres. This

development, combined with the power of tunable lasers capable of strongly coupling the ground

state and the Rydberg state, has led to the development of Rydberg quantum simulators.

The Rydberg state [49] is a state with a really high principle quantum number n. This high n

leads to a much longer lifetime (µ n3) than the low-lying states, which proves very advantageous.

Another advantage is the strong interactions which are long-range and can be up to orders of a few

micrometres. This strong interaction leads to the process of Rydberg blockade mechanism [50,51],

which has made possible, the implementation of quantum gates [52,53], since, the excitation of one
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atom to the Rydberg state prohibits the excitation of any other atom within a radius and this leads to

the conditional excitation of an atom given the state of another atom. The theoretical description of

this system has led to a natural map to spin systems, and this makes Rydberg quantum simulators

an ideal bed for studying many-body spin systems.

In recent years, there has been significant progress in simulating many-body physics using

quantum simulators, which have led to several important experimental advancements in condensed

matter physics and quantum chemistry. Non-trivial quantum systems with a complexity level at

which it becomes difficult or impossible to calculate the spin dynamics have been simulated using

quantum simulators. These include coherent spin models, many-body motional dynamics, and

driven-dissipative systems. Given below are some phenomena which have been studied using

Rydberg quantum simulators [54].

Many-body localization: In these experiments, researchers use Rydberg atoms to simulate the

behaviour of strongly interacting quantum particles in disordered systems. The goal is to under-

stand the phenomenon of many-body localization, where a quantum system fails to thermalize and

retains a memory of its initial conditions. Several experiments have observed many-body local-

ization in Rydberg atom-based systems, including studies of quasiperiodic potentials, disordered

potentials, and random field Ising models [55].

Quantum magnetism: In these experiments, researchers use Rydberg atoms to simulate the

behaviour of spin systems, such as the Ising model and the Heisenberg model. By studying the

dynamics and correlations of these systems, researchers can gain insights into the behaviour of real

materials and systems, such as spin glasses and superconductors. Some recent experiments have

demonstrated the simulation of long-range magnetic interactions using Rydberg atoms [56, 57].

Quantum phase transitions: In these experiments, researchers have used Rydberg quantum

simulators to study the quantum dynamics across a phase transition and observed the formation

of Rydberg crystals and different quantum phases that happen due to the phenomena of Rydberg

blockade by adiabatically varying the detuning. These experiments have been done on a 1D array
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of 51 qubits as well as a 2D lattice of 256 qubits [6, 58, 59].

Quantum simulators are also theorised to be capable of simulating the behaviour of gauge

fields, which are essential to understanding the behaviour of elementary particles in high-energy

physics. With such high potential, benchmarking quantum simulators becomes a very crucial task.

So, in this chapter, we will first look at the phenomenon of Rydberg blockade, then followed by a

description of the Hamiltonian and finally, we see how it can easily be mapped to a spin system.

2.1 Rydberg blockade mechanism

The Rydberg blockade mechanism is a phenomenon where the simultaneous excitation of two

atoms within a radius is forbidden due to the strong interactions between atoms that are excited to

a Rydberg state. When we have 2 atoms separated by a distance R where the ground state |gi and

a specific Rydberg state |ri of each atom are coherently coupled using a resonant laser field with a

Rabi frequency W, the state |rri is shifted in energy by C6/R6 due to the van der Waals interaction.

The Rydberg blockade radius is given by

Rb =

✓
C6

}W

◆1/6
(2.1)

And when the blockade condition R << Rb is satisfied, then the state |rri is out of resonance and

is forbidden. This leads to Rabi oscillations between the ground state |ggi and the entangled state

(|gri+ |rgi)/
p

2, with a coupling
p

2W.

When a group of N atoms is confined within a blockade volume, only one Rydberg excitation is

allowed at most. This results in a collective Rabi oscillation with an increased frequency of
p

NW

between the collective ground state, represented by |gg..gi, and the entangled state, represented by

|ggg..ri..gi, where a single Rydberg excitation is distributed among all the atoms. However, if the

system exceeds the blockade radius, multiple Rydberg atoms can be excited, but their positions
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will be heavily dependent on the blockade restriction. This can lead to interesting phenomena like

dynamical crystallisation.

Figure 2.1: (a) shows the ground and Rydberg state of a single atom coupled by a laser W. (b)
diagrammatically shows the Rydberg blockade mechanism and the out-of-resonance of the |rri
state due to the van der Waal interaction. (c) shows 2 Rydberg excitations and their blockade
radius in a 2D array of atoms. This figure is taken from [5]

2.2 System description and mapping to spin systems

We consider N atoms as described in the previous section, each with a ground state |gi and a

Rydberg state |ri coupled by a laser W and detuned by D. The interactions are van der Waal

interactions, and they occur when two atoms are in the Rydberg state and are given by Vi j =C6/R6
i j.

The Hamiltonian of such a system is given by [58],

H

} =
W
2 Â

i
(|giihri|+ |riihgi|)�DÂ

i
ni +Â

i< j
Vi jnin j (2.2)
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We set the detuning D = 0 and study the on-resonant case by initializing the system in a product

state with all the atoms in the ground state [60]

|Y0i= ’
i
|gii (2.3)

A quantum quench is then performed with dynamics governed by the Hamiltonian H 2.2. The

time evolution of state at time t is given by,

|Y(t)i= e�iH t |Y0i (2.4)

To study the dynamics of our Hamiltonian, we map the Hamiltonian to that of a spin system.

The states |gi and |ri are mapped to the eigenstates of the Sz operator, |#i and |"i respectively.

We do this by replacing ni with (1+s z
i )

2 .

H =
W
2 Â

i
s x

i +Â
i< j

Vi j

4
(1+s z

i +s z
j +s z

i s z
j )

=
W
2 Â

i
s x

i +Â
i

Â
j 6=i

Vi j

4
s z

i +Â
i< j

Vi j

4
s z

i s z
j �

DN
2

+Â
i< j

Vi j

4

(2.5)

On removing the constants, we are left with

H =
W
2 Â

i
s x

i +Â
i

Â
j 6=i

Vi j

4
s z

i +Â
i< j

Vi j

4
s z

i s z
j (2.6)

We will now use this Hamiltonian and the numerical methods of discrete truncated Wigner ap-

proximation and artificial neural networks to study the excitation dynamics as well as entanglement

growth in the system.
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Chapter 3

Numerical Methods

In this chapter, we will describe the numerical methods used to simulate the dynamics of the

quantum many-body Rydberg system. We will first describe the phase space methods of discrete

truncated Wigner approximation followed by the machine learning approach of artificial neural

networks

3.1 Discrete Truncated Wigner Approximation

The discrete truncated Wigner approximation (dTWA) is a semi-classical phase space method of

studying quantum dynamics of many-body spin systems of arbitrary dimensions. It makes use of

the Wigner-Weyl transform [61, 62] to map the dynamics in the Hilbert space to the dynamics in

classical phase space [63]. dTWA goes a step further compared to the mean-field approximations

since it incorporates the quantum uncertainty in the initial state by sampling from the Wigner

function for the initial state [26]. Then each initial condition is evolved using classical equations

of motion and averaged over the initial condition to get the expectation values of the observables.

Here, the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy is used to get the classical

equations of motion [64]. The BBGKY hierarchy is used because it provides the advantage of
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being able to include arbitrary n-point correlations in the equations of motion.

Motivation for considering phase-space representation of quantum mechan-

ics

The Wigner function and Weyl transform provide an alternative framework for understanding

quantum mechanics that is equivalent to the standard Schrödinger picture. In the conventional

formulation of quantum mechanics, the wave function is used to represent the quantum state, and

from it, one can obtain the probability distribution in the position and momentum basis. However,

it is valuable to visualize the probability distribution in both position and momentum variables

simultaneously. The Wigner function achieves this, but it is not a conventional probability distri-

bution due to the inability to find a positive probability distribution everywhere, and it is therefore

referred to as a quasi-probability distribution.

Consider the expectation value of an observable Ô in the standard representation of quantum

mechanics. It is given by

⌦
Ô
↵
= Tr[Ôr]
= Â

v
Â
v’
hv| Ô |v’icvc⇤v’

(3.1)

Where the density matrix is given by the basis states |vi weighted by the coefficient cv. This

form is similar to calculating the expectation value of an observable in statistical physics. This

motivates us to consider a statistical description of quantum mechanics. Wigner, in 1932, aimed

to find the quantum corrections to classical statistical mechanics where the Boltzmann factors

contained energy expressed in terms of x and p and constructed the Wigner function as a quasi-

probability distribution in both x and p. The Heisenberg uncertainty principle places constraints

on the distribution, and the Wigner function cannot have any arbitrary value.

Since expectation values of observables have been a motivation for us to consider this alternate
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formulation of quantum mechanics, we will see how we can reproduce the expectation values of

physical observables using the Wigner function in the following section.

3.1.1 Continuous phase space representation

The expectation value of physical observables can be found using the Wigner function and the Weyl

transform. The Weyl transform is critical to the phase-space representation of quantum mechanics,

it maps any observable in the Hilbert space to a function in the classical phase-space.

Given an operator Ŵ(x̂, p̂), the Weyl transform of this operator ( denoted by subscript w) is

given by

Ww(x, p) =
Z

dx0
⌧

x� x0

2

����Ŵ(x̂, p̂)
����x+

x0

2

�
exp
✓

ipx0

}

◆
(3.2)

The Wigner function is the Weyl transform of the density matrix and is given by

W (x, p) =
Z

dx0
⌧

x� x0

2

���� r̂
����x+

x0

2

�
exp
✓

ipx0

}

◆
(3.3)

One interesting property of the Weyl transform is that

Tr[ÂB̂] =
1
h

Z Z
AwBw dx d p (3.4)

Using this property, if we calculate the expectation value of any observable, we have

⌦
Â
↵
= Tr[r̂Â]

=
1
h

Z Z
W (x, p)Aw dx d p

(3.5)

We see that this has a form similar to the expectation value in statistical physics, and the Wigner

function plays the role of the probability distribution function.

13



It is useful later while generalizing the phase space formalism to discrete phase space to invert

equation 3.3 and write the density matrix in terms of the Wigner function as

r̂ =
Z

dx
Z

d p W (x, p) ˆA (x, p) (3.6)

Here, ˆA (x, p) is known as the phase point operator. These are a set of hermitian operators which

are defined for every point in the phase space.

We can also express the Wigner function in terms of the density matrix and the phase point

operator as

W (x, p) =
1

2p}Tr
⇣

r̂ ˆA (x, p)
⌘

(3.7)

An important property of the phase point operator is that Tr
h

ˆA (x, p)
i
= 1, which will prove

useful to us later. We now move on to describe quantum dynamics in the continuous phase space.

Quantum dynamics in continuous phase space

If we consider dynamics in a classical system, given a Hamiltonian H , the dynamics of phase

space points can be given by Hamilton’s equations of motion

dx
dt

= {x,H };
d p
dt

= {p,H } (3.8)

where {a,b}=�aLb are the Poisson brackets and L is the symplectic operator.

These classical equations of motion determine a unique trajectory, along with the initial con-

ditions. In cases where there is uncertainty in the initial condition, the observable of interest

is averaged over the probability distribution of the initial conditions, denoted by Wcl(x0, p0) and

Acl(x, p, t) is the classical observable. The average is given by

hAcl(x, p, t)i=
Z Z

dx0 d p0 Wcl(x0, p0)Acl(x(t), p(t), t) (3.9)
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However, in quantum mechanics, the uncertainty principle prevents us from exactly determining

the position and momentum of a particle. We can instead use the Wigner function of the initial

density matrix as the probability distribution in the quantum case. By considering this, we can

write the equation

⌦
Â(x̂, p̂)

↵
⇡
Z Z

dx0 d p0 W (x0, p0)Aw(x(t), p(t), t) (3.10)

to approximate the expectation value of the observable. Here, Aw(x(t), p(t), t) and W (x0, p0)

represent the Wigner function and the quantum observable, respectively.

Let us see if this is a valid extrapolation to make from the classical to the quantum case. We

know that the dynamics in the Hilbert space is given by the von Neumann equation,

i}∂ r̂
∂ t

=
h
Ĥ , r̂

i
(3.11)

To express this using Weyl symbols in the classical phase space, we need an expression for the

commutator of two Weyl symbols Aw,Bw. This is given as,

CAw,Bw = i}{Aw,Bw}MB (3.12)

The von Neumann equation in the phase space now becomes

Ẇ = {HW,W }MB (3.13)

Here we use the Moyal bracket given by

{a,b}MB =�2
}asin


}
2

L
�

b (3.14)

L is the symplectic operator.
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If } is small, we can expand sin in } to get

sin

}
2

L
�
=

}
2

L+O(}3) (3.15)

Then the Moyal bracket is
{a,b}MB = {a,b}+O(}2) (3.16)

We see that in the classical limit, the Moyal bracket reduces to the Poisson bracket, and the Wigner

function reduces to the classical probability distribution, and our expression 3.10 is valid.

We have not considered higher powers of } in our above discussion, and this is where the

truncation in the truncated Wigner approximation comes from, and the equations can be expanded

to higher powers of } as well.

3.1.2 Discrete phase space representation

The formalism that we discussed in the previous section can only be applied for continuous degrees

of freedom, and so W K Wootters generalised the Wigner function formalism to apply to systems

having a finite number of orthogonal states in a discrete Hilbert space [65, 66]

In this thesis, we will, in particular, discuss the discrete phase space formalism for a system of

spin 1/2 particles. For a single spin 1/2 particle, its quantum phase space can be represented by a

real-valued finite field spanned by 4 points in a 2⇥2 phase space. Each point represents a state in

phase space and is represented as a two-dimensional vector ↵= (a1,a2) where a1,a2 2 {0,1}.

In this formulation, as in the continuous case, we define a phase point operator for each point

in the phase space given by,

ˆA↵ =
1
2
⇥
Î +(�1)a2sx +(�1)a1+a2sy +(�1)a1sz

⇤

=
1
2
⇥
Î + ra ·�

⇤ (3.17)
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Where � = (sx,sy,sz) and ra = ((�1)a2 ,(�1)a1+a2 ,(�1)a1)

Analogous to eqn. 3.7, we then have the discrete Wigner function given by,

Wa =
1
2

Tr
h
r̂ ˆAa

i
(3.18)

The Wigner function is the Weyl symbol of the density operator and generalising on eqn. 3.18,

we can define the Weyl symbol of any observable Ŵ as

Ww =
1
2

Tr
h
Ŵ ˆAa

i
(3.19)

Up until now, we had discussed the phase space representation of a single spin 1/2 particle

represented by a 2⇥ 2 phase space. Now for a system of N spin half particles, their phase space

can be represented as a tensor product of the phase space of the individual particles. For a product

state, the phase point operator is given as

ˆA↵ = ˆA↵1 ⌦ ˆA↵2 ⌦ ˆA↵3 ⌦ .....⌦ ˆA↵N (3.20)

where ↵ = (↵1,↵2,↵3, ...,↵N) and ↵i is the 2⇥ 2 phase space of the ith particle. Analogous to

eqn. 3.6, we can write the density matrix as a linear combination of the Wigner function and the

phase point operator,
r̂ = Â

a
W↵ ˆA↵ (3.21)

The expectation value of any observable can be taken using the density matrix in this form as

⌦
Â
↵
= Tr[Âr̂]

= Â
↵

W↵Tr
h
Â ˆA↵

i

= Â
↵

W↵A↵

(3.22)

This expression is similar to eqn. 3.5 in the continuous case with the Wigner function as the PDF.
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Quantum Dynamics in the discrete phase space

In the case of the continuous phase space, we looked at the time evolution of the Wigner function

and got the time evolution of the system. But, another approach would be to evolve the density

matrix by keeping the Wigner function constant and evolving the phase point operator from eqn.

3.21 in the Schrodinger picture using the time evolution operator. This approach will prove useful

to us since we will see that we can include arbitrary n-point correlations in this method.

If r̂0 is our density matrix at our initial condition, we have

r̂0 = Â
↵

W↵ ˆA↵ (3.23)

For a product state, we can write the Wigner function as the product of the Wigner functions of the

individual particles. Now, using eqn. 3.20, we have

r̂0 = Â
↵

N

’
i=1

W↵i
ˆA↵1 ⌦ ˆA↵2 ⌦ .....⌦ ˆA↵N (3.24)

We can then write the density matrix at time t as

r̂(t) = Â
↵

N

’
i=1

W↵i
ˆA a1...aN
1...N (t) (3.25)

Here, ˆA a1...aN
1...N (t) is the time-dependent phase point operator given by applying unitary time-

evolution operators

ˆA a1...aN
1...N (t) =U(t) ˆAa1 ⌦ ˆAa2 ⌦ .....⌦ ˆAaN U†(t) (3.26)

Where, U(t) = exp(�iH t) is the time evolution operator with a general Hamiltonian with on-site

interaction Hi and pair-wise interaction term Hi j

H = Â
i

Hi +Â
i< j

Hi j (3.27)
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The equations of motion for the phase point operators ˆA a1...aN
1...N (t) are given by the von Neu-

mann equation

i
∂
∂ t

ˆA a1...aN
1...N (t) =

h
H , ˆA a1...aN

1...N

i
(3.28)

This differential equation cannot be solved exactly, so we make use of reduced phase point

operators like the reduced density matrix. Since the trace of the phase point operator is 1, it acts

like a quasi-density matrix even though it is not positive definite.

ˆA a1...aN
i = Tr⇤i

ˆA a1...aN
1...N , ˆA a1...aN

i j = Tr⇤i�j
ˆA a1...aN
1...N (3.29)

where Tr⇤i denotes a partial trace over all the indices except i.

Using these reduced phase point operators, we can get the equations of motion by writing the

BBGKY hierarchy of equations for the reduced phase point operators just like how they are written

for the reduced density matrices.

We write the BBGKY hierarchy of equations in terms of the correlations Ci j using the cluster

expansion [67] for the phase point operator ˆA a1...aN
1...N given by

ˆAi j = ˆAi ˆA j + Ĉi j

ˆAi jk = ˆAi ˆA j ˆAk + Ĉ jk ˆAi + Ĉik ˆA j + ....+ Ĉi jk
(3.30)

and similarly for higher orders.

Here we have dropped the superscript a1...aN and the terms ˆA1, ˆA2, ..., ˆAN correspond to the

uncorrelated parts of ˆA a1...aN
1...N , and the terms Ĉi j, Ĉi jk... correspond to the correlations that arise

due interactions.
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The first two equations of the BBGKY hierarchy in terms of these operators as:

i
∂
∂ t

ˆAi = [Hi, ˆAi]+Â
k 6=i

Tr[Hik, Ĉik + ˆAi ˆAk]

i
∂
∂ t

Ĉi j = [Hi +H j +H H
i�j

+H H
j⇤i
, Ĉi j]+ [Hi j, Ĉi j + ˆAi ˆA j]+ Â

k 6=i, j
(Trk[Hik, ˆAiĈ jk]+Trk[H jk, ˆA jĈ jk])

� ˆAiTri[Hi j, Ĉi j + ˆAi ˆA j]� ˆA jTr j[Hi j, Ĉi j + ˆAi ˆA j]+ Â
k 6=i, j

(Trk[Hik, Ĉi jk]+Trk[H jk, Ĉi jk])

(3.31)

where H H
i�j

is a Hartree operator or Mean-field operator given by:

H H
i�j

= Â
k 6=i, j

Trk(HikÂk) (3.32)

We can write similar equations for higher orders as well.

If we ignore all the correlations, we are left with only the first equation in eqn. 3.31 and we

have the 1st order dTWA equation, if we consider only 2 point correlations and ignore the higher

order equations, we have the 2nd order dTWA, and in this thesis, we have only considered the 1st

order and 2nd order dTWA.

For a spin system, we can write the reduced phase point operator and 2-point correlation in the

Pauli basis as

ˆAi =
1
2
(I +ai ·�) (3.33)

Ĉi j =
1
4 Â

µ,n2{x,y,z}
cµn

i j s µ
i sn

j (3.34)

Using these equations in the BBGKY hierarchy equations of motion 3.31 for the time evolution

of our Hamiltonian 2.6 from 2 gives us,
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ȧµ
i =Â

d

"
W
2

ad
i 2µxd + Â

i
Â
j 6=i

Vi j

4
ad

i 2µzd +
⇣

Gz
i a

d
i +Gzd

i

⌘
2µzd

#

(3.35)

1
2
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(3.36)

where

Gz
i =Â

k 6=i

Vik

4
az

k , Gzd
i = Â

k 6=i

Vik

4
czd

ki

Gz
i�j
= Â

k 6=i, j

Vik

4
az

k , Gnz
i j = Â

k 6=i, j

Vik

4
cnz

jk

We calculate the time evolution of the phase point operator by evolving the above equations,

and we get the initial conditions of aµ
i and cµn

i j

aµ
i =Tr

⇣
s µ

i
ˆA a1....aN
1....N (0)

⌘
(3.37)

cµn
i j =Tr

⇣
s µ

i sn
j

ˆA a1....aN
1....N (0)

⌘
�aµ

i an
j (3.38)

We start with a product state and cµn
i j = 0.

After calculating the phase point operator for every time t, we can calculate the expectation

value of one spin and two spin functions by using

⌦
s µ

i
↵
(t) =Tr

�
s µ

i r̂(t)
�
= Â

a
WaTr

⇣
s µ

i
ˆA a1....aN
1....N (t)

⌘
= Â

a
Waaµ

i (t) (3.39)
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Similarly,

⌦
s µ

i sn
j
↵
(t) =Tr

�
s µ

i sn
j r̂(t)

�
= Â

a
WaTr

⇣
s µ

i sn
j

ˆA a1....aN
1....N (t)

⌘
= Â

a
Wa
⇣

cµn
i j (t)+aµ

i (t)a
n
j (t)
⌘

(3.40)

For a very large system size, we will use the Monte Carlo procedure instead of calculating these

summations exactly. So We sample Ns phase-space points a from the probability distribution Wa .

The expectation values then become,

⌦
s µ

i
↵
(t)⇡ 1

Ns
Â

a2S
aµ

i (t)

⌦
s µ

i sn
j
↵
(t)⇡ 1

Ns
Â

a2S

⇣
cµn

i j (t)+aµ
i (t)a

n
j (t)
⌘ (3.41)

where S is the sample-space, and Ns is the total number of elements in S.

Summary

1. Sample phase points a from the probability distribution ’N
i Wai =

1
2N Tr

⇣
r0 ˆA a1a2...aN

1...N (0)
⌘

of the initial density matrix r0

2. Calculate the initial conditions of aµ
i and cµn

i j using eqn. 3.37.

3. Time evolve the coefficients of the reduced phase point operator and 2-point correlations

using eqns. 3.35 and 3.36.

4. Calculate the expectation values of one-spin and two-spin functions using 3.41
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3.2 Artificial Neural Networks

In quantum many-body physics, exact solutions to problems are often unattainable due to the ex-

ponential number of amplitudes that must be stored when solving the Schrodinger equation. This

challenge becomes even more pronounced as the size of the system increases. As a result, simulat-

ing non-equilibrium time evolution numerically and efficiently is crucial. While well-established

methods exist for systems with area law entanglement growth, such as tensor networks and den-

sity matrix renormalisation group, they may not be effective for simulating higher dimensional or

strongly correlated systems. To address this issue, physicists are exploring machine learning tech-

niques to efficiently simulate these complex systems by encoding the quantum many-body state in

an artificial neural network (ANN) [36–38, 68].

3.2.1 Neural Quantum State

Consider a spin system of size L. One can then represent quantum many-body wave function Y(S)

for a spin configuration S = (s1,s2, ......,sL) as

|Yi= Â
S

Y(S) |Si (3.42)

Instead of relying on a stored value for Y(S), we adopt a strategy where we generate Y(S) on

the fly using a versatile variational wave function that is defined by parameters a =(a1,a2, ......,aM)

with M much less than L. Consequently, we can approximate Y(S) with Y(a,S). The expectation

value of any Observable Â is then given by

⌦
Â
↵
= Â

S
|Y(a,S)|2

⌦
S|Â|Y(a)

↵

hS|Y(a)i (3.43)

Efficient computation of the expectation value can be achieved by utilizing Monte Carlo sam-

pling, where the probability distribution is represented by |Y(a,S)|2. A significant advantage of
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this method is the absence of a sign problem.

Artificial neural networks (ANNs) have the potential to serve as highly adaptable variation

wave functions due to their ability to work as universal function approximators. This means that a

properly-sized ANN can be utilized to represent any quantum many-body wave function, allowing

for effective convergence testing of simulation results through manipulation of network size as

a control parameter. Additionally, the use of the gradient backpropagation algorithm facilitates

efficient numerical treatment of this class of variational wave functions. The Artificial Neural

Networks (ANNs) utilized to represent quantum many-body systems can be referred to as Neural

Quantum States.

Various types of artificial neural networks, such as Convolutional Neural Networks (CNNs) and

Recurrent Neural Networks (RNNs), have been utilized in the study of quantum dynamics. How-

ever, for the purpose of this thesis, we will focus exclusively on the Restricted Boltzmann Machine

(RBM). It is worth noting that ANNs encode the logarithm of the wave function amplitudes rather

than the amplitudes themselves. This is because storing large wavefunction amplitudes in their

original form can be computationally challenging, whereas the logarithm of these coefficients can

be more easily represented. Additionally, utilizing the logarithm in the backpropagation algorithm

can facilitate numerical stability and prevent issues with vanishing gradients, making training the

ANN more effective.

Restricted Boltzmann Machine as neural quantum state

The Restricted Boltzmann Machine (RBM) is a type of neural network consisting of two layers, a

visible layer and a hidden layer. The visible layer is comprised of neurons representing the spin

configuration S in our case, while the hidden layer consists of hidden neurons.

To generate a quantum many-body wave function, the RBM takes the spin configuration S as

input and applies a dense function to it, with the logcosh activation function utilized to produce

24



the output. Specifically, this process involves computing the dot product of the visible and hidden

layers’ weights and biases, followed by the application of the activation function to generate the

RBM’s output.

The wave function of the quantum many-body system for a given spin configuration S can

be represented using the RBM as Y(S,W ), where W = (~b,~W ) represents the RBM’s biases and

weights. In particular, the logarithm of the wave function can be written as:

log(Y(S,W )) =
M

Â
j=1

logcosh

 
b j +

L

Â
i=1

Wi jsi

!
(3.44)

Here, M represents the number of hidden neurons in the RBM, and L represents the number

of visible neurons, i.e., the spin configuration S. The biases b j and weights Wi j are optimized

through machine learning techniques in order to accurately represent the quantum many-body

wave function. The RBM’s ability to capture the correlations between the spins in the system is

determined by the values of these biases and weights, making their optimization a critical aspect

of using RBMs as neural quantum states.
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Figure 3.1: Schematic representation of an RBM with N = 8 visible units and M = 16 hidden units.
Here every neuron in the visible layer is connected to every neuron in the hidden layer [60]

3.2.2 Training of neural quantum states

To train or optimize neural quantum states for dynamically changing quantum many-body states,

we minimize the distance between time-evolved wave functions e�iHdt |Y(a)i and |Y(a + ȧdt)i

using the Fubini-Study metric. This metric captures the distance between two quantum states,

taking into account their phases as well as magnitudes.

By minimizing the distance between the time-evolved wave functions, we can effectively learn

the time-dependent parameters a(t) of the neural quantum state, which in turn can be used to
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accurately represent the time-evolving quantum many-body states. This approach gives rise to a

time-dependent variational principle (TDVP), which provides a powerful framework for studying

dynamic quantum systems using neural networks.

3.2.3 Time-dependent Variational Principle

Consider the distance between |fi = e�iHdt |Y(a)i and |yi = |Y(a + ȧdt)i in the Fubini-Study

metric.

D(|yi , |fi)2 = arccos

 s
hy|fihf |yi
hy|yihf |fi

!2

(3.45)

We take dt very small, up to the first order, we can write

hS|yi= hS|(1� i dt H) |Y(a)i= (1� i dt Eloc(S)) Y(S,a) (3.46)

hS|fi= hS|Y(a)i+ dt ȧk
∂
∂k

hS|Y(a)i= (1+ dt ȧkOk(S)) Y(S,a) (3.47)

where Eloc is the local Energy given by Eloc(S) =
hS|H|Y(a)i
hS|Y(a)i and Ok’s are the gradients of the

network given by Ok =
∂
∂k log(Y(S,a)). Here we considered only up to the first order because

second-order terms would cancel in the calculation.

Keeping only up to the second order in dt and using the expansion arccos
�p

1+ x
�2

= x+

O(x2), we finally get

D(|yi , |fi)2 = dt2(ȧ⇤
k Skk0 ȧ 0

k �F⇤
k ȧk �Fkȧ⇤

k +Var(H)) (3.48)

where Skk0 is the covariance matrix and Fk is the generalised force vector and are defined as:

Skk0 = hOkO⇤
k0 i� hOkihO⇤

k0 i (3.49)

Fk =�i(hElocO⇤
ki�hElocihO⇤

ki) (3.50)
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Minimizing D(|yi , |fi)2 with respect to ȧk gives the TDVP equation

Skk0ȧk0 = Fk (3.51)

To train the model, we compute S�1
kk0 Fk using gradients Ok and the local energy Eloc using the

Monte-Carlo sampling and solve the differential equation using the adaptive Heun scheme [38].

3.2.4 Summary

1. Initialization of neural network parameters:

The network can be initialised with random weights chosen from a uniform distribution.

Then a ground state search is done where the network parameters are trained to get the

ground state of a Hamiltonian whose ground state is the required initial condition (Hgs). The

network parameters are evolved to minimise the energy

E(a) = Â
S
|Y(S,a)|2

⌦
S|Hgs|Y(a)

↵

hS|Y(a)i

This is done until the variance of the energy is less than a cutoff and at this point, we get the

network parameters which best represents the neural network. In certain cases, the neural

network parameters for the initial state can also be found analytically.

2. Sampling using Monte-Carlo:

Markov chain Monte Carlo is performed using the Metropolis-Hasting algorithm with a

single spin flip in every step to sample from |Y(S)|2.

3. Measure the observables:

Now that |Y(S)|2 has been sampled from, we calculate the expectation value of the observ-

ables Ô by using

hY(a)| Ô |Y(a)i= Â
S
|Y(S,a)|2

⌦
S|Ô|Y(a)

↵

hS|Y(a)i (3.52)
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4. Update parameters using TDVP equation:

We update the parameters of the network using the TDVP equation

Skk0ȧk0 = Fk (3.53)

The adaptive Heun scheme is used for solving the differential equation.

5. Step 2 to step 4 is repeated until the maximum time is reached.
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Chapter 4

Results and Discussion

Now that we have discussed the numerical methods of dTWA and ANN, we will discuss the results

obtained by applying these methods to a one-dimensional array of Rydberg atoms. We will com-

pare the results obtained with those from exact diagonalisation and look at how well these methods

work as well as their limitations. We will look at the excitation dynamics as well as the growth of

entanglement entropy with time.

4.1 Results of the Excitation Dynamics

We study the dynamics of the total number of excitation Ne given by

Ne(t) =
N

Â
i=1

hY(t)|ni |Y(t)i (4.1)

We also look at the maximum number of excitations during the time evolution of the system and

also at the long time average of the total number of excitations

Ne = lim
T!•

1
T

Z T

0
Ne(t) (4.2)
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4.1.1 Results from Exact Diagonalisation

Figure 4.1: Excitation dynamics of an array of 10 atoms for different values of C6 using Exact
diagonalisation. In panel (a), we consider C6 = 0.2W. In panel (b), we consider C6 = 1W, and in
panel (c), we take C6 = 3W.

Figure 4.1 shows the total number of excitations as a function of time for three different interaction

strengths. We observe that the maximum number of excitations reduces as the interaction strength

increases, and the oscillations also get smaller. This indicated the phenomena of the Rydberg
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blockade discussed in chapter 2.

In figure 4.2, the plot of the maximum number of excitations as well as the average number of

excitations as a function of interaction strength also clearly shows us the phenomenon of Rydberg

blockade. We observe that the mean number of excitations has a kink near C6 = 1, this is because,

at that interaction strength, the blockade effects are felt at the nearest neighbour.

Figure 4.2: Maximum and the average number of total excitations as a function of interaction
strengths (C6) in an array of 10 atoms using Exact diagonalisation. In panel (a), we have the
maximum number of excitations vs C6. In panel (b), we have the average number of excitations vs
C6.
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4.1.2 Results from dTWA

To get the excitation dynamics and time evolution using dTWA, we must first conduct a Monte

Carlo sampling from the phase space of points.

Our initial state is r0 = ’i |giihgi|= ’i |#iih#i|, which when written in terms of Pauli matrices

gives us

r0 =
N

’
i

�
Î �s z

i
�
/2 (4.3)

From the expression for the phase point operator,

ˆA↵ =
1
2
⇥
Î + ra ·�

⇤
(4.4)

We need to pick from the ra corresponding to our initial condition since, according to eqn. 3.41,

the expectation value of the single spin operator is given by the average of ai

ra is given by ra = ((�1)a2 ,(�1)a1+a2 ,(�1)a1), and we pick the initial conditions corre-

sponding to ↵= (1,0),(1,1) which gives us

r(1,0) = (1,�1,�1) r(1,1) = (�1,1,�1)

Since the phase point operator is not uniquely defined, we can define the density matrix in the

following manner

r̂0 = Â
a

Wa Âa = Â
a

Wa
1
2

⇣
ˆAa + Â 0a

⌘
(4.5)

where Â 0 is defined using the following r’

r’(0,0) = (1,�1,1), r’(0,1) = (�1,1,1), r’(1,0) = (1,1,�1), r’(1,1) = (�1,1,�1) (4.6)

and Âa is given by

r̃(0,0) = (1,0,1), r̃(0,1) = (�1,0,1), r̃(1,0) = (1,0,�1), r̃(1,1) = (�1,0,�1) (4.7)
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The above sampling scheme ignores fluctuations in the y-component of the three vectors. We can

include them by including the following three vectors:

r̃0(0,0) = (0,1,1), r̃0(0,1) = (0,�1,1), r̃0(1,0) = (0,1,�1), r̃0(1,1) = (0,�1,�1) (4.8)

So, finally, we sample from r̃a and r̃0a and sample from

{(1,0,�1),(�1,0,�1),(0,1,�1),(0,�1,�1)}

Below, we present the results of the total number of excitations as a function of time using the

1st-order dTWA as well as the 2nd-order dTWA. The 2nd-order dTWA equations are numerically

unstable, and this numerical instability is an inherent property of the differential equation, and the

point of divergence does not depend on the size of the timestep.

In the equations of motion from eqn. 3.36, we were able to isolate the parts of the equation

which are causing the divergence. We rewrite the equation for clarity.
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We have observed that the main instability in the equation of motion for the 2-point correlation

comes from T4 and T6, and by removing these terms from the equations of motion, for smaller

interaction strengths, we were able to delay the time of divergence and also improve the results

compared to 1st order dTWA, as is evident in figure (4.4). This becomes more difficult for stronger

interactions, this is because the terms removed depend on the interaction strength, and these terms

become more and more important at later times and larger interaction strengths.
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Figure 4.3: Excitation dynamics of an array of 10 atoms for different values of C6 using 1st order
and 2nd order dTWA and compared with exact results. In panel (a), we consider C6 = 0.2W. In
panel (b), we consider C6 = 0.5W, in panel (c), we take C6 = 1W and (d) we have C6 = 3W.
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Figure 4.4: Maximum and the average number of total excitations as a function of interaction
strengths (C6) in an array of 10 atoms using 1st order dTWA and 2nd order dTWA compared with
exact results. In panel (a), we have the maximum number of excitations vs C6. In panel (b), we
have the average number of excitations vs C6.

We have also plotted the maximum number of excitations as well as the mean number of

excitation using 1st and 2nd-order dTWA in figure 4.5. We can see that the 2nd-order dTWA is

capturing the mean slightly better than the 1st-order dTWA at small interaction strengths.

38



4.1.3 Results from ANN

Figure 4.5: Excitation dynamics of an array of 10 atoms for different values of C6 using ANN
for a different number of hidden units and compared with exact results. In panel (a), we consider
C6 = 0.2W. In panel (b), we consider C6 = 0.5W, in panel (c), we take C6 = 1W and (d) we have
C6 = 3W.
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We look at the excitation dynamics of the 1D array of Rydberg atoms using neural networks, RBM

in particular, with two different networks.

If N are the number of visible units in the input layer, which is equal to the number of spins

considered, and M is the number of hidden units in the 2nd layer, we define g as a quantitative

measure of the size of our network, it is defined as the ratio of the number of hidden units to the

number of visible units
g = M/N

. Our initial condition is r0 = ’i |giihgi| = ’i |#iih#i| But if we consider the system in the Sz

basis, the covariance matrix S will be zero, and we cannot evolve the system. Hence we make a

rotation around the Y axis where Sz ! Sx, Sx !�Sz. Now in this Sx basis, we are able to choose

an analytical initial condition where in the wavefunction using RBM,

log(Y(S,W )) =
M

Â
j=1

logcosh

 
b j +

L

Â
i=1

Wi jsi

!
(4.13)

We can choose the biases and weights to be zero, which then represents our initial condition.

In figure 4.5, we have the total number of excitations as a function of time for 2 different

network sizes compared with the exact results. Like the universal approximation theorem says, we

can approximate any complex function using an ANN provided we have a sufficient number of

parameters, and so we can observe that on increasing the number of parameters by increasing the

number of hidden units, the results have improved.
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Figure 4.6: Maximum and the average number of total excitations as a function of interaction
strengths (C6) in an array of 10 atoms using ANN for 2 different hidden numbers of units compared
with the exact results. In panel (a), we have the maximum number of excitations vs C6. In panel
(b), we have the average number of excitations vs C6.

Comparison of excitation dynamics results with different ANN architectures

Here, we look at two different other networks. Both networks have the same number of hidden

units as the visible units. In one network, we connect each visible unit to its corresponding unit

and the nearest neighbours in the hidden layer. In the other network, we connect the visible unit

with its corresponding unit in the hidden layer as well as its nearest neighbours and next-nearest

neighbours in the hidden layer.
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Figure 4.7: Maximum and the average number of total excitations as a function of interaction
strengths (C6) in an array of 10 atoms using ANN for 2 different architectures compared with the
exact results. In panel (a), we have the maximum number of excitations vs C6. In panel (b), we
have the average number of excitations vs C6.

In figure 4.7 (b), we see that for smaller interactions, the nearest neighbour network gives

results that match better with the exact result, but for larger interactions beyond C6 = 1W, we

see that the network incorporating the nearest neighbour as well as the next nearest neighbour

connections matches better with the exact results. This is expected since as the interaction gets

stronger, the next nearest neighbour connections start becoming important, and this kind of gives

us an idea that even though the hidden units are not directly spins, they capture and learn the

relation between the spins.

42



Energy while using ANN
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Figure 4.8: Expectation value of the energy during the unitary time evolution. In panel (a), we
have C6 = 0.2W. In panel (b), we have C6 = 1W, and panel (c) has C6 = 3W.

In figure 4.8, we plot the expectation value of the energy as a function of time. We see that

throughout the time evolution, the energy is constant up to the 4th decimal place, and the change

is really small. This implies that the error in the dynamics is not a numerical error but due to the

neural network not being completely able to represent the wave function.
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4.2 Results of Entanglement Entropy dynamics

Entanglement is a valuable quantum resource for quantum information processing. It is one of the

most important quantities to measure to verify that quantum simulators are performing as desired,

as it provides signatures of a wide range of phenomena such as quantum criticality, topological

phases, thermalization dynamics, and many-body localization. Moreover, large amounts of en-

tanglement generation between different parts of the quantum system are necessary for quantum

simulators and computers to provide an advantage over their classical counterparts. It can be quan-

tified in many ways, such as the entanglement of creation, the entanglement of distillation and von

Neumann entropy [69].

One important quantification of entanglement is entanglement entropy. Entanglement entropy

has proven indispensable in the understanding of numerical methods and understanding how ca-

pable they are in describing quantum many-body states. A very interesting and important finding

is the area law scaling of the entanglement entropy in 1D systems. This means that the scaling

of the entropy is linear in the boundary area of the subsystem in question. One of the reasons

the area law of entanglement entropy is important is because it gives an idea about how well or

how easy it is for a numerical method is able to capture the properties of the quantum many-body

system. In the case of DMRG, the scaling of entanglement specifies how well a given state can

be approximated by a matrix-product state. And hence, in this thesis, we calculate the 2nd-order

Rényi entanglement entropy using the numerical methods of dTWA and ANN.

Rényi a-entropy is a generalisation of the von Neumann entropy and reduces to the latter as a

tends to 1. The Rényi a-entropy of a sub-system A is given by,

S(a) =
1

NA

1
1�a

log(Tr([r̂A]
a)) (4.14)

Where NA is the number of particles in the subsystem and r̂A is the reduced density matrix of

subsystem A. When the entropy of subsystem A is greater than the entropy of the entire system

SA(a) > S(a), there is bipartite entanglement between the subsystem and the rest of the system.
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Below, we calculate the 2nd-order Rényi entanglement entropy using the numerical methods of

dTWA and ANN.

4.2.1 dTWA approach to Rényi entropy

We calculate the Rényi entropy as done in [70]. Since the density operator can be expressed in

terms of the Wigner function and the phase point operator, the Rényi entropy can also be expressed

using the Wigner function. If the whole system is separated into subsystems A and B in real space,

the 2nd-order Rényi entanglement entropy for subsystem A is given by

S(2)A (t)⌘� 1
NA

log
�
Tr{[r̂A(t)]2}

�
(4.15)

where r̂A(t) is the reduced density matrix of subsystem A and is given by the partial trace over

B
r̂A(t) = TrBr̂(t) (4.16)

Using the phase point operator and the discrete Wigner function, the density matrix can be

written as
r̂(t) = Â

a
Wa(0)Âa(t) (4.17)

In the first-order BBGKY hierarchy equation, we approximate the phase point operator as

Âa(t) =
M

’
i=1

Âi(t,a) (4.18)

Then the reduced density matrix for A in terms of the Wigner function is

r̂A(t) = TrB

⇢
Â
a

Wa(0)Âa(t)
�

= Â
a

Wa(0)’
i2A

Âi(t,a)
(4.19)
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To calculate the Rényi entropy we need to calculate Tr{[r̂A(t)]2},

Tr[r̂A(t)]2 = Tr

 

Â
a,a 0
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"
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Using 4.15 and 4.20 we can write the the 2nd-order Rényi entropy as

S(2)A (t) =� 1
NA

log

"

Â
a,a 0

Wa(0)Wa 0(0)’
i2A

1
2

 
I +Â

µ
aµ

i (t)a
0µ
i (t)

!#
(4.21)

where ai(0) = rai and a0i(0) = ra 0
i
.

Here, ai(t) and a0i(t) are the classical spins evolved using the 1st order equation in the BBGKY

hierarchy. The initial conditions, rai and ra 0
i

are sampled using sampling IV, and these two separate

trajectories are evolved independently and the ensemble average of ’i2A
1
2

⇣
I +Âµ aµ

i (t)a
0µ
i (t)

⌘

is taken to then calculate the Rényi entropy using 4.21

The Monte Carlo sampling causes a constant shift in the value of the Rényi entropy, which we

correct for by dividing by Tr{[r̂A(0)]2}

To calculate the 2nd order Rényi entanglement entropy using ANN, we use 4.15 where we get

the reduced density matrix rA from the neural quantum states using QuTiP [71] [72]
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4.2.2 Results for Half-chain 2nd-order Rényi entanglement entropy

Figure 4.9: Half-chain Rényi entanglement entropy as a function of Wt using ANN and dTWA and
compared with the exact dynamics for 4 atoms for different values of C6. In panel (a), we consider
C6 = 0.2W and in panel (b), we consider C6 = 1W and in panel (c), we take C6 = 3W.
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Figure 4.10: Half-chain Rényi entanglement entropy as a function of Wt using ANN and dTWA
and compared with the exact dynamics for 6 atoms for different values of C6. In panel (a), we
consider C6 = 0.2W and in panel (b), we consider C6 = 1W and in panel (c), we take C6 = 3W.
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Figure 4.11: Half-chain Rényi entanglement entropy as a function of Wt using ANN and dTWA
and compared with the exact dynamics for 10 atoms for different values of C6. In panel (a), we
consider C6 = 0.2W and in panel (b), we consider C6 = 1W and in panel (c), we take C6 = 3W.

We see that ANN is able to capture the entanglement growth very well, and it matches perfectly

with the exact results for smaller system sizes of N = 4 and N = 6 but does not do so well in case

of N = 10. In the case of dTWA, since it is an approximation and the expression for the density

matrix in 4.16 it is not able to capture the growth in entanglement exactly, but we can observe that

it is able to capture the qualitative features of the entanglement entropy and the features like the

bumps very well for small interaction strengths.
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Comparison of half-chain Rényi entanglement entropy with different ANN architectures

Figure 4.12: Half-chain Rényi entanglement entropy as a function of Wt using ANN for two dif-
ferent networks for different values of C6 for 10 atoms. In panel (a), we consider C6 = 0.2W and
in panel (b), we consider C6 = 1W and in panel (c), we take C6 = 3W.

In figure 4.12, we consider two different networks similar to 4.7 where we consider the same

number of visible and hidden units, and in one network, we link the unit in the visible unit with

the corresponding unit in the hidden layer along with the neighbouring units in the hidden layer.
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In the other network, we link the unit in the visible unit with the corresponding unit in the hidden

layer along with the neighbours and next-nearest neighbours in the hidden layer. We see that for

C6 = 0.2W, all the networks capture the entropy pretty well. For C6 = 1W, the nearest neighbour

network works the best, and for higher still, interaction strength of C6 = 3W, all to all connections

of the RBM work the best. So essentially, increasing the connections to the nearest and nearest

neighbour interactions works better as we increase the interaction strength.

A note on the purity in dTWA

In dTWA, we construct the density matrix using the phase point operator and the discrete Wigner

function given by r(t) = Âa Wa ˆAa . The purity of the density matrix gives us a quantitative

measure of whether the state is pure or mixed and is given by

P(t) = Tr[r2] (4.22)

If |ii are the orthogonal basis states, a pure state is given by |yi= Âi ci |ii and the density matrix of

this state is given by rp = |yihy|. A mixed state given by rm = Âi |yiihyi| is a statistical mixture

of pure states and cannot be written as the out product of any single state.

Figure 4.13: Purity of the density matrix as a function of Wt using dTWA for different values of
C6 for 4 atoms. In panel (a), we consider C6 = 0.2W and in panel (b), we consider C6 = 1W and in
panel (c), we take C6 = 3W.
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Figure 4.14: Purity of the density matrix as a function of Wt using dTWA for different values of
C6 for 6 atoms. In panel (a), we consider C6 = 0.2W and in panel (b), we consider C6 = 1W and in
panel (c), we take C6 = 3W.

In figure 4.13 and 4.14, we have plotted the purity as a function of time for N = 4 and N = 6

using the 1st order dTWA. We see that the purity is not maintained as a function of time since

our density matrix is an approximation since we assume that the phase point operator is the tensor

product of the individual phase point operator of each atom ˆA↵1 ⌦ ˆA↵2 ⌦ .....⌦ ˆA↵N and hence,

the purity deteriorates and is not maintained. We also see that the purity deteriorates more as we in-

crease the interaction strength, this is probably because as the interaction increases, the correlation

increases and the approximation that the phase point operator is the tensor product does not hold.

We also observe that even though the purity deteriorates, dTWA is able to capture the excitation

dynamics pretty well.
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Chapter 5

Conclusion

In conclusion, we have studied the excitation and correlation dynamics of a chain of Rydberg atoms

having van de Waal type of interaction using the numerical methods of discrete truncated Wigner

approximation and artificial neural networks. We have looked at the total number of excitations as

a function of time, along with the maximum number of excitations reached at any point and the

mean number of excitations. We have also looked at the growth of the half-chain entanglement

entropy.

We have observed that in the case of dTWA, the 1st-order dTWA is able to capture the ex-

citation dynamics fairly well for intermediate timescales and smaller interaction strengths. On

including the correlations and using the 2nd-order dTWA, we have observed that the equations are

inherently numerically unstable, as is also observed by others. We have tried to rectify this issue by

figuring out the terms in the equation of motion of the 2-point correlations that were causing this

instability and have eliminated them to observe that even though the divergence still occurs, for

small interaction strengths, we are able to delay the divergence significantly and also provide an

improvement from the 1st order dTWA. We have also looked at the 2nd-order Renyi entanglement

entropy using 1st-order dTWA, and we observe that due to the dTWA being an approximation,

it captures the growth of entanglement entropy only for a small system and for small interaction
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strengths. We have also looked at the purity of the density matrix, and on account of dTWA being

an approximation, the purity of the state is not maintained, yet it is able to capture the dynamics

pretty well.

In the case of Artificial neural networks, we have observed that it is able to capture the excita-

tion dynamics for the total number of excitations as well as the average number of excitations well,

we see an improvement in the results as we increase the number of parameters used. We have also

calculated the 2nd-order renyi entanglement entropy using ANN. We observe that for system size

N = 4 and N = 6, ANN captures the entanglement growth perfectly. But, for N = 10, we see that

for larger interaction strengths, it is not able to capture the entanglement entropy that well. We also

looked at two other networks and looked at the regimes in which those networks work better. We

plot the expectation value of the energy and see that during the unitary time evolution, the energy

remains fairly constant.

In conclusion, with the fast-paced developments in Rydberg quantum simulators, theoretical

and numerical tools to study and benchmark with the Rydberg quantum simulators are needed to

be developed. In this thesis, we look at the numerical methods of discrete truncated Wigner ap-

proximation and Artificial neural networks and apply them to a one-dimensional chain of Rydberg

atoms with van der Waal interactions. We have tested the range of validity of the numerical meth-

ods, and in the case of the numerically unstable 2nd-order dTWA, we have identified the terms

causing the divergences and delayed the diverges and improved the results in the case of small

interactions.

Further work can be done in exploring other neural network architectures to study this system

and also in including higher order dTWA and see if this solves the instability in the equation of

motion of the 2-point correlation.
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Phys. Rev. A, 93:022324, Feb 2016.

[70] Masaya Kunimi, Kazuma Nagao, Shimpei Goto, and Ippei Danshita. Performance evaluation

of the discrete truncated wigner approximation for quench dynamics of quantum spin systems

with long-range interactions. Phys. Rev. Res., 3:013060, Jan 2021.

[71] J.R. Johansson, P.D. Nation, and Franco Nori. Qutip 2: A python framework for the dynamics

of open quantum systems. Computer Physics Communications, 184(4):1234–1240, 2013.

[72] J.R. Johansson, P.D. Nation, and Franco Nori. Qutip: An open-source python framework for

the dynamics of open quantum systems. Computer Physics Communications, 183(8):1760–

1772, 2012.

62


	Abstract
	List of Figures
	Introduction
	Rydberg Quantum simulator
	Rydberg blockade mechanism
	System description and mapping to spin systems

	Numerical Methods
	Discrete Truncated Wigner Approximation
	Continuous phase space representation
	Discrete phase space representation

	Artificial Neural Networks
	Neural Quantum State
	Training of neural quantum states
	Time-dependent Variational Principle
	Summary


	Results and Discussion
	Results of the Excitation Dynamics
	Results from Exact Diagonalisation
	Results from dTWA
	Results from ANN

	Results of Entanglement Entropy dynamics
	dTWA approach to Rényi entropy
	Results for Half-chain 2nd-order Rényi entanglement entropy


	Conclusion
	Bibliography

