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Abstract

In this thesis, volatility from di↵erent models are compared using NIFTY50 index
data. In the first half of thesis, we build our understanding of volatility and it’s
di↵erent types. Then, we move to understanding volatility clustering using autocor-
relation. To capture the e↵ect of volatility clustering we discuss univariate models
like AR, ARMA and GARCH etc. After that, we try to model volatility using Hidden
Markov Switching(HMS) model and GARCH model. To know which of the model
performs better, we forecast volatility using both the models and compare them us-
ing a true volatility indicator, India VIX index.

In the second part of my thesis, we developed a pair trading strategy for NIFTY50
and BANKNIFTY futures using the concepts of stationarity, mean-reversion and
correlation. Using HMS model to classify the market into regimes, we try to analyze
the performance of our pairs strategy in binary regimes.
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Chapter 1

Introduction

In today’s finance world, it’s really important to have a good knowledge and un-
derstanding of volatility. One can’t become a good trader, researcher, risk analyst
or any other position in the Quantitative finance world without having a clear un-
derstanding of volatility and concepts related to it. A proper understanding of this
concept can be beneficial to an extent one can’t imagine. Volatility, as the name
suggests is an indicator of risk and risk now a days is one of the booming topics
in the finance world because of COVID, recession etc. These days, there are a lot
of regulations on banks (international as well as national) and they can’t function
properly without having a good risk department. Volatility as a concept finds it’s
applications mostly that are related to risk.

Volatility can be computed in various ways. And there are di↵erent types of volatility
like Historical volatility(HV), Implied volatility(IV), beta, drawdown and realized
volatility etc. Each one has it’s own way of computation and each one indicated
volatility in a di↵erent manner. Like HV is an indicator of past volatility and is
computed using historical data of an asset. IV is computed using the price of an
option and is an indicator of future volatility. Beta indicates relative volatility with
respect to the market and is computed using linear regression. A lot of concepts
arise from volatility such as volatility smile, volatility skew and volatility clustering
etc. In this thesis, we will only study volatility clustering in deep.

Computing di↵erent types of volatility is fine but modeling it is a totally di↵er-
ent task. But before going forward one may ask, what is the need of modeling
volatility? The answer is pretty simple. If one have a volatility model, one can
make important predictions from it and use them in their strategy. So, forecasting
volatility is one of the main reasons of modeling volatility [13]. There has been a
lot of research related to volatility modeling [8] [11] [17] [19] . Engle in 1982 de-
scribed a model called Autoregressive Conditional Heteroskedasticity(ARCH) [11]
which is a univariate model that models the variance of the error as an Autore-
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gressive(AR) [18] process. This model was defined to take care of the persistence in
volatility. Generalized Autoregressive Conditional Heteroskedasticity(GARCH) [8] is
pretty much similar to ARCH with the exception that the variance of the error term
is modelled as an Autoregressive Moving Average(ARMA) process. From then a lot
of variants of ARCH and GARCH [7] have come up like EGARCH [17], IGARCH,
ARCH-M[12], T-GARCH [19] etc. Hidden Markov Switching(HMS) models were
first developed in . These models use markov chains to classify returns into di↵erent
regimes by calculating the probability of being in that volatility state. Heston [15]
[20] in 2005 developed a stochastic volatility model with the assumption of volatility
being stochastic instead of constant in Black-Scholes Model [6]. It models volatility
as a Cox-Ingersoll-Ross(CIR) [9] process.

Although, there is a good literature available on modelling volatility but there has
not been much work done in the area of comparing di↵erent types of volatility mod-
els. Hansen and Lunde in 2005 [14] did some work on comparing di↵erent models
with GARCH(1,1) and concluded that GARCH(1,1) is over performing every other
model. Amskold in 2011 [1] compared implied volatility coming from di↵erent mod-
els in his thesis. Lim in 2013 [16] compared the performance of GARCH-type models
for Malaysian markets. Zhu in 2018 [21] compared 3 types of volatility forecasting
models.

In this thesis, we will first model volatility for NIFTY50 index data using mod-
els like HMS, GARCH etc. and then compare the volatility forecasted by these
models with true volatility indicator. We start by understanding with the basics of
volatility, its di↵erent types and volatility clustering in Chapter 2. Chapter 3 deals
with how ARCH, GARCH explain volatility clustering and working of HMS models.
In Chapter 4, we look into how volatility forecasting is done using these models and
compare them graphically and statistically with true volatility indicator. Chapter 5
deals with understanding the impact of di↵erent regimes on a pairs trading strategy.
Finally we present all our findings, results and conclusions in Chapter 6.
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Chapter 2

Volatility

Figure 2.1: NIFTY daily returns from Feb 2002 to March 2022

Let us look closely at this graph and try to think why some regions are encircled
with red and some with green? Can you think of a reason why these regions are
di↵erent just by looking at this graph? Does there exist a concept that can explain
these di↵erent regions? The answers to all these questions are related to Volatility.
So, let’s begin by understanding Volatility.
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2.1 What is Volatility?

Volatility in most simple terms is a measure of risk. It is very much related to what
we all know from statistics as variance. High volatility indicates large fluctuations
in asset price during short amount of time. Therefore, high volatility implies higher
risk. Let’s try to understand this term from an example completely unrelated to
stock market.

2.1.1 Volatility and Variance

Suppose, there are 2 forward players: EH and KM (Does these initials sound
familiar?). We want to choose a forward who can give at least 2 shots on target
(more dependable or less risky) in a match. The data available to us is given below:

Figure 2.2: Shots on target in last 20 matches

12



Using the above table we calculate the following results:

Figure 2.3: Basic stats of the data

If we just look at the first 2 rows of the above table, it feels like it is better to choose
KM as our forward. But the whole point of this example is Volatility. We know
that standard deviation is defined as the deviation from the mean. So, it is expected
(with high probability) that the number of shots on target for EH will lie in the range
(2.2–0.6, 2.2 + 0.6) = (1.6,2.8). Similarly, it is expected (with high probability) that
the number of shots on target for KM will lie in the range (2.3–1.977,2.3+1.977) =
(0.323,4.277). The above calculated intervals shows that if we want a forward who
can give at least 2 shots on target, then we should go with EH because less standard
deviation (or volatility) implies lesser risk. (For football fans, are you convinced by
the above arguments and believe that EH is better forward than KM? I don’t think
you should because of the sole reason that the above data is made up and doesn’t
contain actual data for both players. Maybe we can compare EH and KM with ac-
tual data another time).

Now, coming back to the questions we asked in the start of this article and keeping in
mind the above example of 2 forwards in football, we can deduce that the red marked
regions indicate highly volatile (or variable) region because of these large deviations
from the mean zero. Similarly, the green regions indicate low volatile region because
the deviations from the mean zero are pretty small when compared to red regions.
So, one should try to avoid trading in highly volatile regions (Although, there are
some traders who secure large amounts of profit in these times) due to the risk and
unpredictability present in the market during these times. This section is taken from
a blog [5] which I wrote for AlgoAnalytics.
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2.2 Di↵erent types of Volatility

2.2.1 Historical Volatility

Historical volatility(HV) which is sometimes also known as the statistical volatility,
is calculated by computing the standard deviation using the past returns of the asset.
The name ”historical” comes from the fact that we are using past data to calculate
the volatility. One of the main drawbacks of HV is that it gives no indication of what
is going to happen in future and only takes care of what the past volatility was.

2.2.2 Implied Volatility

Implied volatility(IV), as the name suggests is forward looking. It gives an estimate
of what future volatility is going to be and is calculated using the price of an option.
IV is also used in calculating the price of an option in Black-Scholes Model.

2.2.3 Beta

Beta is a measure of relative volatility which measures how volatile an asset is com-
pared to market. By market here we mean some index like NIFTY50, BANKNIFTY
etc. Beta value for market is taken to be 1. It is calculated using Linear Regression
technique where dependent variable is Asset returns and independent variable is In-
dex returns. Slope given by the Linear Regression is our Beta. A beta value of more
than 1 is an indicator of high volatility and a beta value of less than 1 is indicator
of low volatility.

2.3 Volatility Clustering

Now that we have a basic understanding of Volatility and what it represents, let’s
jump to the new concept: Volatility Clustering.

14



Again we come back to the same graph 3.1 in which NIFTY returns are plotted.
Notice that there are periods of high volatility and low volatility. We can’t find a
period in the graph where we see fluctuations from low volatility to high volatility
or high volatility to low volatility in a short amount of time. Why do you think this
happens ? The answer lies in Volatility Clustering.

2.3.1 What is Volatility Clustering?

Volatility Clustering in most basic terms is persistence in volatility. What do
we mean by persistence in volatility? It means that there will be periods of high
volatility and periods of low volatility. Mandelbrot in his paper on “The Variation
of Certain Speculative Prices” wrote a very nice observation which can be used to
explain volatility clustering. The observation was “large changes are tend to be
followed by large changes, of either sign, and small changes are tend to be followed
by small changes.”

2.3.2 Understanding Volatility clustering through Autocor-

relation function

So, we understood volatility clustering and were able to explain it using the above
graph. But understanding it pictorially is not enough, we have to find some mathe-
matical evidence to support our observation. Let’s plot another graph.

15



Figure 2.4: Autocorrelation in squared NIFTY daily returns at di↵erent lags

What can we understand from this graph and how is it related with volatility clus-
tering ? Let’s try to note some observations.

1. It shows that cor(r2t , r2t+lg) > 0 for all lg (lags) = 1, 2, . . . , 30 where rt
represents NIFTY daily return and cor represents Pearson correlation coe�cient.

2. cor(r2t , r
2
t+lg) is significant (the value at every lag is above the light blue shaded

region) for every lag.
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Figure 2.5: Significant autocorrelation in squared NIFTY daily returns at di↵erent
lags

How does these 2 observations relate to Volatility clustering? Think of what r2t
represent. Looking at NIFTY daily return series, it can be assumed that mean
of the series is very close to zero. Then, r2t will represent variance. Now, from
the previous article we can see volatility coming in the picture. So, positive and
significant correlation in r2t & r2t+lg indicates that volatility at time t is positively
correlated with volatility at time t+lg which provides the explanation for persistence
of volatility. This section is taken from a blog [4] which I wrote for AlgoAnalytics.
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Chapter 3

Modelling Volatility

In the last articles, we have learned about volatility and volatility clustering. If we
just go back to the figure from where we started and take a look it again.

Figure 3.1: NIFTY daily returns from Feb 2002 to March 2022

Remember in the section “What is volatility?”, we said that these red encircled
regions are indicating high volatility and green regions are indicating low volatility.
Keeping this in mind let us first try to understand Hidden Markov Switching Model.

18



3.1 Hidden Markov Switching Model(HMS)

Keeping the name of the model in mind, let us first try to understand Markov
property and Markov Chain.

3.1.1 Markov Property

Markov property says that “Future is independent of the Past given the Present”
which in time sense would translate to “If we know all the information about today,
then whatever is going to happen tomorrow is not dependent on what happened
yesterday”.

P (Yt = y|Yt�1 = y1, Yt�2 = y2) = P (Yt = y|Yt�1 = y1) (3.1)

The above equation explains the Markovian property for discrete time markov chains.
Here, you saw that a stochastic variable(Yt) can take these discrete values. But at
any particular moment (time t) it can only take one of the available discrete values.
So, when a stochastic variable changes its state(value) from one to another, we come
to the realm of Markov Chains.

3.1.2 Markov Chain

Markov Chain is a stochastic process describing the transitions of a stochastic vari-
able. Consider this simple Markov Chain :

19



Figure 3.2: 2 State Discrete Time Markov Chain with it’s Transition Probability
Matrix (TPM)

The above image shows the diagram of the Markov Chain and its Transition Proba-
bility Matrix(TPM). Although from the diagram and matrix it is pretty clear what
is happening. But for more clarity, let us try to understand by an example what
these probabilities represent. Probability that the next state is 1 given the current
state is 0 is 0.3 which can also be interpreted as Probability of transitioning to state
1 from state 0. Now that we have a basic understanding of Markov Chain, let us try
to answer the question of how Markov Chains are related to volatility?

3.1.3 Markov Chains and Volatility

In the simplest case(see the red, green regions in the picture) we can say that volatil-
ity has 2 states or regimes (Low, High). So, considering volatility as a stochastic
variable, we can model volatility using Markov chains. Because of switching of
volatility between low to high or high to low, these models are sometimes known as
“Markov Switching Models”. Another thing to note is that these volatility states
can’t be directly observed and are hidden, what can be observed are the returns.
The returns are influenced by these hidden states. That’s why these models are also
called “Hidden Markov Switching Models” (HMS models).

Let’s try to understand it mathematically.

20



We all know that asset price follows Geometric Brownian motion given by:

dXt

X�
t

= µt+ �tdWt (3.2)

where Xt denotes asset price, µ drift, �t volatility and Wt represents standard Brow-
nian motion. On discretizing and using the properties of Brownian motion, we get:

ri = µ� + �t
p
�Zi (3.3)

where ri =
Si � Si�1

Si�1
, � = ti � ti�1 and Zi ⇠ N (0, 1). Since, drift µ is an indicator

of mean and in our case we know that mean is very close of zero. So, we can assume
that µ is zero.

ri = �t
p
�Zi and V ar(ri) = ��2

t (3.4)

And, �t (volatility) here is a Stochastic variable with 2 states. From the above line,
you can see that variance of return is coming out to be equal to a stochastic variable
having two states. And variance of return is an indicator of volatility, which means
that volatility has di↵erent states.

3.1.4 Implementing HMS model in Python

Now that we have an understanding of HMS models, let’s look at it’s implementation
in Python. The code for it’s implementation is attached in Appendix A. Here, we
have used MarkovRegression function from the statsmodels.api package to implement
HMS model. Now, let us look at the summary of fitted HMS model and try to make
some observations.
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Figure 3.3: Summary of the fitted HMS model

Expectation-Maximation algorithm has been used to find all the parameters. This
summary contains a lot of information but some of important things in this summary
are the transition probabilities and regime parameters which we will be using in the
next chapter to forecast volatility. This section is inspired from a blog [2] which I
wrote for AlgoAnalytics.

3.2 Autoregressive model: AR

The coming sections are a part of a blog [3] which I wrote for AlgoAnalytics. We
start our journey with some basic models understanding their motivations and draw-
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backs. First is Autoregressive(AR) model.

Autoregressive(AR) model: The main idea behind this model is that the value of the
series at time t is linearly dependent on the past values of the series(that’s why the
term Autoregressive) plus some noise. These models capture the mean-reversion &
momentum trends in stock-price dynamics. Autoregressive model (with zero mean)
of order p or AR(p) is given by:

yt =
pX

i=1

aiyt�i + ⌘t (3.5)

In the above equation, p represents the lag order, ⌘t is discrete white noise and
ai 2 R with ap 6= 0. Now, let us try to fit appropriate AR model to NIFTY daily
returns and analyze the results. The parameters of fitted AR model are calculated
by minimizing Akaike Information Criteria(AIC). For more details on AIC, please
check section 4.2.1.
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Figure 3.4: Autocorrelation graphs after fitting AR(6) model to NIFTY daily returns

24



Looking at the above figure, we note some observations:

1. The middle graph shows insignificant autocorrelation at almost all lags except
few. Insignificant autocorrelation here indicates that there is no serial correlation
(autocorrelation) present in the series.

2. Last graph provides an evidence of AR model being not able to explain volatility
clustering. Also, it is not able to explain black swan events. Black swan event is a
market event which has very very less probability of occurrence(often six standard
deviations away from the mean) and has catastrophic impact.

Next we have is Moving Average(MA) model.

3.3 Moving Average model: MA

Moving Average(MA) model: This model captures the unexpected (which are less
likely to happen) events by taking a linear combination of past values of noise.
Moving Average model(with zero mean) of order q or MA(q) is given by:

yt =
pX

i=1

bi⌘t�i + ⌘t (3.6)

In the above equation, q represents the lag order, ⌘t is discrete white noise and
bi 2 R with bq 6= 0. Now, let us try to fit appropriate MA model to NIFTY daily
returns and analyze the results. The parameters of fitted MA model are calculated
by minimizing Akaike Information Criteria(AIC).
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Figure 3.5: Autocorrelation graphs after fitting MA(10) model to NIFTY daily re-
turns
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Again, we see insignificant autocorrelation in the middle graph but in the last graph,
there is positive and significant autocorrelation in the squared residuals indicating
that this model is not able to explain volatility clustering. Next in our store is
Autoregressive Moving Average(ARMA) model.

3.4 ARMA model

ARMA model: It combines the above two models (AR(p) and MA(q)) to capture
both their properties in a single model. One important use of ARMA model is that
it usually requires less parameters than AR or MA model alone. Autoregressive
Moving Average model(with zero mean) of order (p, q) or ARMA(p, q) is given by:

yt =
pX

i=1

aiyt�i + ⌘t +
pX

i=1

bi⌘t�i (3.7)
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Figure 3.6: Autocorrelation graphs after fitting ARMA(1,2) model to NIFTY daily
returns
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The parameters of fitted ARMA model are also calculated by minimizing Akaike In-
formation Criteria(AIC). We conclude that although AR(p), MA(q) and ARMA(p, q)
are able to explain no autocorrelation in the series but none of them could capture
the volatility clustering e↵ect. So, we need another type of models that can explain
persistence in volatility. And here comes ARCH and GARCH in our picture.

3.5 ARIMA model

Before going to ARCH and GARCH, let us briefly understand the ARIMA model.
ARIMA is Autoregressive Integrated Moving Average model, a generalization of
ARMA model which are applied to non stationary data instead of stationary data.
The word integrated in ARIMA comes from the fact that this univariate time series
model can be applied to stationary as well as non-stationary data. Here, di↵erencing
is used to convert a non-stationary series into stationary series. Later, we will see
how ARIMA model becomes very handy in converting non-stationary series into
stattionary series.

3.6 ARCH model

ARCH is Autoregressive Conditional Heteroskedasticity. We are already familiar
with what autoregressive means. Then we move to Heteroskedasticity. Heteroskedas-
ticity refers to the data with di↵erent variance (or standard deviation) when moni-
tored over di↵erent time periods. Conditional Heteroskedasticity is when the varying
variance is dependent on previous time periods. We can go back to the article on
volatility clustering once and see the similarities in volatility clustering and condi-
tional heteroskedasticity. Some people call conditional heteroskedasticity, a fancy
(and statistical) term for volatility clustering. Now, let’s understand ARCH model.

ARCH model: The idea behind this is to model variance of the series as an au-
toregressive process to explain volatility clustering. Let’s try to understand it math-
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ematically.

⌘t = zt

vuutA0 +
pX

i=1

Ai⌘
2
t�i (3.8)

In the above equation, p represents the lag order, {zt} is discrete white noise with
mean 0 and variance 1, and Ai 2 R+ [ {0} with Ap 6= 0.

3.6.1 How ARCH models Volatility clustering?

To understand how ARCH models volatility clustering, we start by calculating the
variance of {⌘t}.

E(⌘t) = E
 
zt

vuutA0 +
pX

i=1

Ai⌘2t�i

!
= E(zt)E

 vuutA0 +
pX

i=1

Ai⌘2t�i

!
= 0

V ar(⌘t) = E(⌘2t )� (E(⌘t))2 = E(⌘2t ) = E
⇣
z2t (A0 +

pX

i=1

Ai⌘
2
t�i)
⌘

V ar(⌘t) = E(z2t )E
⇣
A0 +

pX

i=1

Ai⌘
2
t�i

⌘
= A0 +

pX

i=1

AiV ar(⌘t�i)

Let us try to understand the above calculations and what does it signify. In the
first line, we are calculating mean of ⌘t using the fact that mean of zt is 0 and zt &
⌘t�i are independent. Using E(⌘t) = 0, we calculate Var(⌘t) in the second and third
line. Look closely at the last line and try to think of what it represents!!! It says
that variance at time t is dependent on the previous variance terms and variance
is directly related to volatility. This is what persistence of volatility means. So,
mathematically ARCH model is able to explain volatility clustering. Now, Let us
understand GARCH and check their autocorrelation graphs as well.

3.7 GARCH

After including autoregressive process in variance, the only thing left to add is the
moving average which is the motivation for the GARCH model. GARCH model of
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order (p, q) is given by:

⌘t = zt⇣t where ⇣2t = A0 +
pX

i=1

Ai⌘
2
t�i +

qX

j=1

Bi⇣
2
t�j (3.9)

⌘t = zt

vuutA0 +
pX

i=1

Ai⌘2t�i +
qX

j=1

Bi⇣2t�j (3.10)

In the above equation, p, q represents the lag order, {zt} is discrete white noise with
mean 0 and variance 1, Ai 2 R+ [ {0} with Ap 6= 0 and Bj 2 R+ [ {0} with Bq 6= 0.
One thing should be kept in mind while fitting a GARCH model to a series that the
series should be stationary. So, there are two ways in which GARCH model can be
fitted to NIFTY daily returns. 1. First step is to check if the given series is stationary
or not using Augmented Dickey Fuller (ADF) test. If the series is stationary, then we
can directly fit appropriate GARCH model to the given series. Let us check whether
our series is stationary or not using the Augmented Dickey Fuller(ADF) test. For
more details about ADF test refer to Appendix B and [10].

Figure 3.7: Output of ADF test for NIFTY daily returns

Now that we have verified that our series is stationary, it is time to check the auto-
correlation graphs for the appropriate GARCH fitted model. For more about how
appropriate GARCH model is found please refer to section 4 of Chapter 4.
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Figure 3.8: Autocorrelation graphs after fitting GARCH(1,2) model to NIFTY daily
returns
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And finally, we are able to see insignificant autocorrelation in the squared residuals
which shows that GARCH model has taken care of volatility clustering.

2. Suppose, In the first method the series turned out to be non-stationary, then
what will we do?? This is where another variant of ARMA model known as Autore-
gressive Integrated Moving Average (ARIMA) model comes for our rescue. ARIMA
model converts non-stationary series into stationary series by di↵erencing. And then
the residuals we get from ARIMA model are stationary and thus are fitted with
appropriate GARCH model.
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Figure 3.9: Autocorrelation graphs for ARIMA(1,0,2)+GARCH(1,2) model to
NIFTY daily returns
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Chapter 4

Comparison

Now, that we have understood HMS and GARCH models let us try to compare
them. For comparison we will need a true volatility indicator. In this thesis, we are
taking NSE India VIX Index as the true volatility indicator. India VIX Index is an
implied volatility indicator based on NIFTY option prices. Historical data for India
VIX Index from March 2009 to March 2023 has been downloaded from NSE India
website. Now we have true volatility indicator in our hand, let us see how to compare
the outputs of HMS model and GARCH model with India VIX Index. First let’s
start with HMS model.

4.1 HMS model v/s India VIX Index

In the last chapter, we learned about the motivation behind HMS models, mathe-
matics behind it and their implementation in Python. In the implementation part,
we got a fitted model and now our aim is to make some predictions based on that
fitted model. So in this section, our focus shifts to forecasting probabilities using
the fitted HMS model. As we know from the previous chapter, the outputs of HMS
models are probabilities of being in di↵erent regimes. So, let’s begin by understand-
ing the intuition behind forecasting probabilities and then we will move to the math
behind it.
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4.1.1 Motivation behind volatility forecasting using HMS

model

For this, let us revisit the example of the Markov chain in section 3.1.2 of Chapter
3. To find out the next state of the stochastic variable, we need two things: Present
or Current state of variable and Transition Probabilities. If you look closely at the
summary we got 3.3, it clearly gives us the transition probabilities. All we have to
worry about is how to find the current volatility state. This is where smoothed and
predicted probabilities come into the picture. Smoothed marginal probabilities gives
the probability of volatility being in a state at time t given all the observations upto
time T. Predicted marginal probabilities gives the probability of volatility being in a
state at time t given all the observations upto time (t-1). For forecasting, smoothed
marginal probabilities are of no use because it is taking account of future data (at
time t, it is using data for time ¿ t as well) to calculate state probabilities. Whereas
predicted marginal probabilities are exactly what we needed to solve the problem of
figuring out the current volatility state.

36



Figure 4.1: Predicted and Smoothed marginal probabilities for NIFTY daily returns
from fitted HMS model

4.1.2 Math behind volatility forecasting using HMS model

Now, let’s understand the math behind volatility forecasting.
Let Xt be the stochastic variable for volatility at time t, ✓t�1 denotes all the obser-
vations(returns) upto time t� 1, �n is the volatility in state n, rt is return at time t
and pmn are transition probabilities.
We have to calculate ↵l,t+1 = Pr(Xt+1 = l|✓t) for which we start by calculating the
filtered probability nt = Pr(Xt = n|✓t) = the probability of volatility (Hidden vari-
able) being in state n at time t given all the returns (observed variable) upto time t
are known.
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The formula for nt and ↵l,t+1 are given below:

nt =

1X

m=0

pmnm,t�1⇣nt

f(rt|✓t�1)
for n = 0, 1 (4.1)

↵l,t+1 =
1X

n=0

pnlnt for l = 0, 1 (4.2)

where

⇣nt = f(rt|Xt = n, ✓t�1) =
1p
2⇡�n

e
(� r2t

2�2
n

)
(4.3)

f(rt|✓t�1) =
1X

m=0

1X

n=0

pmnm,t�1⇣nt (4.4)

pmn are transition probabilities which are known from the output of fitted model, ⇣nt
denotes the density when volatility is in state n that is calculated from 3.4, f(rt|✓t�1)
denotes the conditional density at the tth observation, �n is the volatility in state n
which is known from the output of the fitted model and m,t�1 is known from filtered
marginal probabilities as discussed above. This section is inspired from a blog [2]
which I wrote for AlgoAnalytics.

4.1.3 Graphical and Analytical results

Here, we will using a training window if size=900 data points of NIFTY daily return
and testing window of size=40 data points. What the above statement means is that
the first 900 data values will be used to calculate parameters of the fitted HMS model
that will used to forecast probabilities for the next 40 values. This is how a rolling
window is used to generate the output. Python code for HMS model and VIX index
comparison is given in Appendix C.
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Figure 4.2: How testing, training and rolling is window is used

Figure 4.3: Forecasted probabilities of next day being in High regime with VIX
closing price
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Figure 4.4: Forecasted probabilities of next day being in High regime with daily
NIFTY return

Here we see that forecasted probabilities of next day being in High regime looks very
similar to closing VIX Index price graphically. Also, forecasted probabilities of next
day being in High regime is compared with today’s VIX index closing price. Let’s
check the correlation between them.

Figure 4.5: Correlation between Forecasted probabilities of HMS model with VIX
closing price

As expected from graphs, the correlation between forecasted probabilities by HMS
model and VIX Index closing price is pretty high which is an indicator that our fitted
HMS model is able to forecast volatility correctly. Most of the times in finance world,
we are not interested in actual volatility value but rather it’s change (whether its
going to increase or decrease tomorrow). So for this, we have tried to calculate the
number of days in which one day change in VIX Index matches with one day change
in forecasted HMS probability.
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4.2 GARCH v/s VIX

In the last chapter we learned about GARCH model and how it takes of volatility
clustering into account. We can get a forecasted variance as an output of the GARCH
process which we will use to compare with VIX Index closing price. Here, in this
case forecasted variance is an indicator of implied volatility. 1 step ahead forecasted
variance will be compared with VIX Index closing price. Before the comparison, we
will have come up with a method of finding the order (p and q) of GARCH model.

4.2.1 Finding order p and q

There are many ways in which one can find the order of GARCH model like using
ACF/PACF plots, information criteria and GARCH(1,1) [14] etc. But here we will
finding the order based on information criteria. We start by finding the best fitted
ARIMA model for our series based on Akaike Information Criterion (AIC). AIC is a
measure that deals with the amount of information lost by the model. So, from the
last line it is pretty mych clear that we need AIC to be lower to get a better fitted
model. It takes number of parameters used and how good the fitted model is into
account.
The formula for calculating AIC is : AIC = 2n� 2ln(Lmax)
where n is the number of parameters estimated and Lmax is the maximum value of
the likelihood function.
Using the auto arima from pmdarima class in python, we find the best fitted ARIMA
model which will give us the order p and q. Then, we can use these p and q to fit
GARCH(p, q) on our data using arch model which finds it’s parameters by maximiz-
ing the log-likelihood function.

4.2.2 Graphical and Statistical results

Here, we will using a training window if size=900 data points of NIFTY daily return
and testing window of size=40 data points. What the above statement means is that
the first 900 data values will be used to calculate parameters of the fitted GARCH
model that will used to forecast variance for the next 40 values. Size of training
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window is chosen such that GARCH gives good results. Then a rolling window like
in 4.2 is used to generate all the outputs. Now, using forecast in python, we are able
to generate 1 step ahead forecast for all the values in testing window. Python code
for GARCH model and VIX index comparison is given in Appendix D.

Figure 4.6: 1 step ahead forecasted variance by GARCH with VIX closing price
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Figure 4.7: 1 step ahead forecasted variance by GARCH with daily nifty return

Here we see that 1 step ahead forecasted variance looks pretty much similar to closing
VIX Index price graphically. They are moving up and down around the same and
their lows and highs are also occurring at the same time. Alos, it should be noted that
1 step ahead forecasted volatility is compared with today’s VIX index closing price.
Although, results look convincing graphically but we can’t rely on them fully. So,
Let’s start by calculating some statistical parameters. We first check the correlation
between them.

Figure 4.8: Correlation between 1 step ahead forecasted variance by GARCH with
VIX closing price
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As expected from graphs, the correlation between forecasted variance by GARCH
model and VIX Index closing price is pretty high which is an indicator that our fitted
GARCH model is able to forecast volatility correctly. Most of the times in finance
world, we are not interested in actual volatility value but rather it’s change (whether
its going to increase or decrease tomorrow). So for this, we have tried to calculate
the number of days in which one day change in VIX Index matches with one day
change in forecasted GARCH variance.

4.3 HMS v/s GARCH

In the previous sections, we have compared HMS and GARCH models with the India
VIX index. In this section, we will compare HMS and GARCH models based on
their correlation with VIX index and accuracy. Accuracy is calculated by dividing
the number of days in which the change in predicted volatility matches with the
change in VIX index by total number of days.

Accuracy =

X

t

sgn(�yt)=sgn(�vt)

Total number of days

where yt is the forecasted volatility, vt is VIX index closing price and sgn is the
signum function.

Table 4.1: HMS v/s GARCH based on correlation and accuracy for testing win-
dow=40

Training
Window

Testing
Window

GARCH-VIX
Correlation

HMS-VIX
Correlation

GARCH-VIX
Accuracy

HMS-VIX
Accuracy

900 40 0.75328 0.69990 0.5667 0.5065
800 40 0.75319 0.70436 0.5708 0.4977
700 40 0.75339 0.68917 0.5673 0.4992
600 40 0.71031 0.69224 0.5681 0.4732
500 40 0.72203 0.66193 0.5655 0.4821
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Table 4.2: HMS v/s GARCH based on correlation and accuracy for testing win-
dow=20

Training
Window

Testing
Window

GARCH-VIX
Correlation

HMS-VIX
Correlation

GARCH-VIX
Accuracy

HMS-VIX
Accuracy

900 20 0.74918 0.67206 0.5666 0.5057
800 20 0.74977 0.67719 0.5710 0.4971
700 20 0.73419 0.66678 0.5678 0.4981
600 20 0.71081 0.66983 0.5675 0.4719
500 20 0.72850 0.64254 0.5640 0.4792

From the above 2 tables, We can see that there is no clear visible pattern in cor-
relation, accuracy and sizes of training & testing window. But the most important
observation from the above tables is that GARCH is over performing HMS model in
all the cases. So, according to our hypothesis and comparison basis we can conclude
that GARCH is a better model for forecasting volatility than HMS model.
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Chapter 5

E↵ect of Volatility on a trading strat-

egy

In this chapter, we will see the impact of volatility on a trading strategy. In the
first section, we start by taking a standard pair trading strategy and explaining the
details of that strategy.

5.1 Standard Strategy

This section will explain all the details of the standard strategy which will be used
to analyze the e↵ect of volatility.

5.1.1 Mathematical concepts in Pairs Trading

Pairs trading is a type of Mean-Reversion strategy that uses mathematical concepts
like correlation, stationarity and cointegration. We will understand the strategy and
all it’s mathematical concepts one by one. Let us start by looking at the picture
below:
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Figure 5.1: Series X and Series Y

What can we observe from it? Price of second stock is very much related to price
of first stock. They both are somehow moving in the same direction at almost all
times. We can capture the above observations mathematically by saying that the
prices of both the stocks are highly correlated. Let’s check this by calculating their
correlation. Formula for calculating the correlation is given below:

⇢ =
Cov(X, Y )

�X�Y

where Cov(X, Y ) is the Covariance between X and Y, �i is the standard deviation
of i 8i 2 {X, Y } and ⇢ is correlation coe�cient.

Figure 5.2: Correlation between X and Y

It turns out that our observation was correct. High Correlation between two asset-
s/stocks is an indicator that these two assets can be used as a pair for trading.
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Now, let’s calculate the spread of these 2 stocks and plot it. Formula for calcu-
lating spread is given below:

⌘t = �Nt ��Bt

where �Nt = Nt � Nt�1, �Bt = Bt � Bt�1, Nt is the price of first stock at time t,
Bt is the price of second stock at time t and ⌘t is spread at time t.

Figure 5.3: Spread series

What can be said after the looking at the spread plot? It is easy to observe from
the plot that the spread is always revolving around it’s mean or reverting back to
it’s mean. It is not diverging and is always staying in some kind of bounds. The
above observations are described mathematically using the concept of stationarity.
Before defining stationarity mathematically, let’s try to understand what stationary
means. In most simple terms, a series having a constant mean, constant variance
and no autocorrelation within itself is called a stationary series. In Statistics, the
process satisfying the above properties is called Wide Sense Stationary (WSS) pro-
cess. Mathematically, we say that a process is stationary when it’s unconditional
joint pdf remains same during time shift. To test whether a series is stationary or
not, Augmented Dickey-Fuller (ADF) test is used. For more details on ADF test
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check [10]. Now, let’s try to test whether our spread series is stationary or not using
the ADF test.

Figure 5.4: Output of ADF test

The results show that the spread series is stationary.

5.1.2 Intuition behind Pairs trading

Now that we have a basic understanding of mathematical concepts behind pairs
trading, let us see how these concepts are used in the strategy.In the previous section,
we said that high correlation is needed for a pair to be used in the strategy. But why
it so?
Consider 2 companies A and B coming from the same sector (for example Banking
sector). Then it will be valid to assume that the external parameters that can impact
the price of A and B are almost same; which means that for most of the time these
2 assets move in the same direction. Now, suppose one of the assets deviate from
its usual path (maybe because of some internal factor a↵ecting the stock price of a
company), then a trading opportunity arises. So, in that case we go long on one and
short on the other. Now suppose we had a pair having very less correlation and one
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of them deviates from it’s usual path, but in this case we can’t go short on one and
long on other because changes in one won’t a↵ect the changes in the other. That is
why, high correlation is necessary for a pair to be used in pair trading.
Again we go back to previous section where we said that spread series is coming out to
be stationary. We understood that a stationary series around it’s mean will always
revert back to its mean. This is the most important statistical property which is
exploited in pairs trading. We somehow find a series using a pair which is stationary
and then use it to generate trading signals. In our case, spread is turning out to
be stationary and we will be using it to generate entry-exit signals. The motivation
is that whenever spread deviates a lot from its mean, it gives us an opportunity
to trade because we know that it (spread) will eventually revert back to its mean.
These trading signals are generated by calculating z-score which will be explained in
the next section. Suppose we had a pair with high correlation but we were using a
non stationary series to generated signals, then there are lot of issues with it. First,
the series may not revert back to its mean and can go on deviating from its mean,
which is huge problem. Second, the mean or the variance may be varying with time.
In that case, it can happen that we have used a mean and a variance to enter the
trade but since mean or variance can vary with time, it can create issues during the
time of exiting the trade. Hence, a stationary series is essential for a pairs trading.
In the next section, we understand the implementation of this strategy.

5.1.3 Implementation of Pairs Trading

Here, we will using historical daily data of 2 most liquid indices in Indian Market:
NIFTY50 and BANKNIFTY(BNF) futures. Historical data is downloaded from NSE
India website. Near (Current) month contract data is used for our analysis from 2007
to 2023.
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Figure 5.5: NIFTY50 futures and BNF futures

Let’s start by calculating the correlation between NIFTY50 and BNF futures.

Figure 5.6: Correlation bewteen NIFTY50 futures and BNF futures

As we can see that the correlation between this pair is really high, so we can use
it as a pair. Next thing is stationarity checking. Here we check the statitonarity of
spread series. The output of the ADF test for spread is shown below:

51



Figure 5.7: ADF test output for spread series

It is clear from the output that spread series is stationary. Now, we come to the
part of how trading signals are generated. Here, we will using a training window if
size=1000 data points and testing window of size=400 data points. What the above
statement means is that the first 1000 data values will be used to calculate mean
and variance which will be used to generate signals for the next 400 values. Rolling
window similar to what is shown in the figure 4.2 is used. Python code for this pairs
trading strategy is given in Appendix E.
We should always check the stationarity of spread series for every training window
before using it to generate signals. We enter in a trade when the absolute value of
z-score for spread series calculated using the mean and variance from the training
window goes beyond 2 at any time. When z-score goes beyond 2, it is expected to
revert back to its mean and is likely to fall. So, we go short on spread or we sell
the spread. By selling the spread it means, we sell NIFTY50 and buy BNF. When
z-score becomes less than -2, it is expected to rise in the near future. So, we go long
on spread or we buy the spread. By buying the spread it means, we buy NIFTY50
and sell BNF.
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Figure 5.8: Spread training data with mean ans standard deviation intervals

This is how we go in a trade using a pairs trading strategy. Below you see the plot
of generated trading signals for spread series for training window of size 1000 and
testing window of size 400.
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Figure 5.9: Trading Signals generated using z-score

In the next section, we will see how our strategy is performing by calculating di↵erent
metrics.

5.1.4 Performance of Pairs trading

In the previous section, we learned how to generate signals using z-score. It was
mentioned that a signal will be generated when absolute value of z-score goes beyond
2. But nothing was mentioned about the exit signal. We square-o↵ a trade when
absolute value of z-score becomes less than 0.75. In sell trade we square-o↵ when
z-score falls below 0.75 and during buy trade, we exit the trade when z-score goes
beyond -0.75. Here are the performance metrics for the strategy:
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Table 5.1: Performance metrics for the Pair Trading strategy
Time Period 2007 to 2022
Stationary series used Spread
Entry and Exit criteria |z-score| > 2 & |z-score| < 0.75
Training Window 1000
Testing Window 400
Accuracy 0.5506607929515418
Total Trades 227
Gain Trades 125
Loss Trades 102
Overall profit 331680.30
Total money gained in gain trades 551818.04
Average gain on a trade 4414.54
Total money lost in loss trades 220137.75
Average loss on a trade 2158.21
Gain/Loss Ratio 2.045462583713991
Average Holding Time 1.5242
Max Holding Time 6
PnL 1.3646
Drawdown 2.78%
Annualized Return 3.7753%
Sharpe Ratio 1.209
Calmer Ratio 1.017

For calculating accuracy, we used one lot each of NIFTY50 (1 lot = 50) and BNF (1
lot = 25) futures and transactions costs including Brokerage, STT/CTT, Transaction
charges and bid-ask spread are then subtracted from the money made in the trade.
PnL is calculated by starting with an initial capital of 1 and updating initial capital
after every trade using the formula:

Initial Capital = Initial Capital

 
1 +

Money made in trade

Money invested in trade

!

where Money invested in trade = Notional value of NIFTY50 + Notional value of
BNF.
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Figure 5.10: PnL curve

It is important to mention that money invested in a futures trade is actually not
notional value but some percentage of notional value which are called margins. But
margins keep on changing with time, that’s why we are using notional values only.
This is also the reason why PnL has not increased much in a time span of 12 years.
Using the PnL curve metrics like Drawdown, Sharpe ratio and Calmer ratio are
calculated.
Now, using the PnL curve we try to see how the pairs trading strategy performs
under di↵erent regimes. First, let’s visualize it using the graph below:
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Figure 5.11: PnL curve under di↵erent regimes

From this graph, it is pretty much clear that the strategy is performing really well in
the High volatility regime. But isn’t it surprising that a strategy is making money
in highly risky times like COVID? This question remains a topic for further research
and will be studied later. Now, let’s try to calculate some performance metrics.

Table 5.2: Pair trading strategy performance metrics in High regime
Total days in High regime 232
Initial Capital 1
PnL 1.3695
Annualized Return 40.33%
Sharpe Ratio 4.128
Calmer Ratio 12.688
Drawdown 2.73%
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Table 5.3: Pair trading strategy performance metrics in Low regime
Total days in Low regime 2568
Initial Capital 1
PnL 1.3646
Annualized Return 3.072%
Sharpe Ratio 1.0212
Calmer Ratio 1.434
Drawdown 2.16%

It was clearly visible from the PnL graphs that this strategy is performing extremely
well in the High volatile region but now from tables 5.2 and 5.3, we can analyze
it’s performance metrics as well. Having such high returns with huge sharpe ratio is
pretty rare but one thing to keep in mind is that we have to wait for High volatile
regions to get good returns from this strategy. Although, the performance of our
PnL is not so bad in low regime as well like sharpe ratio, calmer ratio and drawdown
are good but the annualized returns are pretty low.
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Appendix A

Python code for HMS model imple-

mentation

1 import pandas as pd
2 import statsmodels.api as sm
3

4 nifty = pd.read_csv(’nifty_cmp.csv’,index_col=’Date’)
5 closing_price_nifty = nifty[’Close’] # Getting NIFTY Index data
6 daily_ret_nifty = closing_price_nifty.pct_change (1)
7 daily_ret_nifty = daily_ret_nifty.dropna () # Calculating daily

returns
8

9 # Fit HMS model
10 model_kns = sm.tsa.MarkovRegression(daily_ret_nifty , k_regimes =2,

trend=’n’, switching_variance=True)
11 result_kns = model_kns.fit()
12 HMS_summary = result_kns.summary ()
13 print(HMS_summary)
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Appendix B

Python code for ADF test for sta-

tionarity

1 import pandas as pd
2 from statsmodels.tsa.stattools import adfuller
3

4 nifty = pd.read_csv(’nifty_cmp.csv’,index_col=’Date’)
5 closing_price_nifty = nifty[’Close’] # Getting NIFTY Index data
6 daily_ret_nifty = closing_price_nifty.pct_change (1)
7 daily_ret_nifty = daily_ret_nifty.dropna () # Calculating daily

returns
8

9 # For checking the stationarity of returns
10 stationarity_test = adfuller(daily_ret_nifty)
11 print(’ADF Statistic: ’ + str(stationarity_test [0]))
12

13 print(’p-value: ’+ str(stationarity_test [1]))
14

15 print(’Critical Values: ’)
16

17 for key , value in stationarity_test [4]. items():
18 print(’\t%s: %.3f’ % (key ,value))
19 if stationarity_test [0] < stationarity_test [4]["5%"]:
20 print("Reject Hypothesis - Time series is Stationary")
21 else:
22 print("Failed to Reject Hypothesis - Time series is Non -

Stationary")

60



Appendix C

Python code for HMS model and

VIX index comparison

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import statsmodels.api as sm
4 import math as m
5

6

7 nifty = pd.read_csv(’nifty_cmp.csv’,index_col=’Date’)
8 closing_price_nifty = nifty[’Close’] # Getting NIFTY Index data
9 daily_ret_nifty = closing_price_nifty.pct_change (1)

10 daily_ret_nifty = daily_ret_nifty.dropna () # Calculating daily
returns

11 vix = pd.read_csv(’VIX_cdata.csv’,index_col=’Date’)
12 vix_close = vix.iloc [:,3] # Getting VIX closing price data
13

14 f = plt.figure(1,figsize =(25 ,10))
15 daily_ret_nifty.plot()
16 f.show()
17

18 tn_wndw = 900 # Training window size
19 tt_wndw = 40 # Training window size
20 # Defining series for predicted probabilities by HMS model
21 predicted_hmsm_high_probs = pd.DataFrame(data = nifty[’Open’][

tn_wndw :])
22 # Setting index for predicted probabilities by HMS model
23 predicted_hmsm_high_probs = predicted_hmsm_high_probs.set_index
24 (daily_ret_nifty.index[tn_wndw -1:])
25 i = 0
26 while i < len(daily_ret_nifty) - tn_wndw - tt_wndw:
27 mod_kns = sm.tsa.MarkovRegression(daily_ret_nifty[i:i+tn_wndw],

k_regimes=2, trend=’n’, switching_variance=True)
28 res_kns = mod_kns.fit()
29 # Filtered marginal probabilities from fitted HMS model
30 Low_var_regime_probs = res_kns.filtered_marginal_probabilities
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[0]
31 High_var_regime_probs = res_kns.filtered_marginal_probabilities

[1]
32 # Transition Probabilities from fitted HMS model
33 p00 = res_kns.regime_transition.T[0, 0, 0]
34 p01 = res_kns.regime_transition.T[0, 0, 1]
35 p10 = res_kns.regime_transition.T[0, 1, 0]
36 p11 = res_kns.regime_transition.T[0, 1, 1]
37 var0 = res_kns.params [2] # Variance of Low volatility state
38 var1 = res_kns.params [3] # Variance of High volatility state
39 ini_low_prob = Low_var_regime_probs.iloc[-1]
40 ini_high_prob = High_var_regime_probs.iloc[-1]
41 j=0
42 # Loop for forecasting probabilities for next state
43 while j<tt_wndw:
44 # density when volatility is in low state
45 nrv_low = (m.e**(-( daily_ret_nifty[j+i+tn_wndw -1]) **2/(2*

var0)))/m.sqrt (2*m.pi*var0)
46 # density when volatility is in high state
47 nrv_high = (m.e**(-( daily_ret_nifty[j+i+tn_wndw -1]) **2/(2*

var1)))/m.sqrt (2*m.pi*var1)
48 next_state_low_prob_temp = (ini_low_prob * p00 +

ini_high_prob * p10)*nrv_low
49 next_state_high_prob_temp = (ini_low_prob * p01 +

ini_high_prob * p11)*nrv_high
50 next_state_low_prob_temp1 = next_state_low_prob_temp /(

next_state_low_prob_temp+next_state_high_prob_temp)
51 next_state_high_prob_temp1 = next_state_high_prob_temp /(

next_state_low_prob_temp+next_state_high_prob_temp)
52 next_state_low_prob = next_state_low_prob_temp1 * p00 +

next_state_high_prob_temp1 * p10
53 next_state_high_prob = next_state_low_prob_temp1 * p01 +

next_state_high_prob_temp1 * p11
54 predicted_hmsm_high_probs[’Open’][j+i] =

next_state_high_prob
55 ini_low_prob = next_state_low_prob
56 ini_high_prob = next_state_high_prob
57 j = j + 1
58 i = i + tt_wndw
59

60

61 # Plotting Graphs
62 fig ,ax1 = plt.subplots(figsize =(25 ,10))
63

64 ax1.yaxis.label.set_color(’blue’)
65 predicted_hmsm_high_probs[’Open’][: -27]. plot(ax = ax1 , ylabel = ’
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Forecasted probability of the next day being in High regime ’)
66

67 ax2 = ax1.twinx()
68 ax2.yaxis.label.set_color(’red’)
69 vix_close.plot(ax = ax2 , color = ’red’, ylabel = ’VIX closing price ’

)
70 plt.show()
71

72 fig , ax3 = plt.subplots(figsize =(25 ,10))
73

74 ax3.yaxis.label.set_color(’blue’)
75 predicted_hmsm_high_probs[’Open’][: -27]. plot(ax = ax3 , ylabel = ’

Forecasted probability of the next day being in High regime ’)
76

77 ax4 = ax3.twinx()
78 ax4.yaxis.label.set_color(’green’)
79 daily_ret_nifty[tn_wndw -1: -27]. plot(ax = ax4 , color = ’green ’,

ylabel = ’NIFTY daily returns ’)
80 plt.show()
81

82 print(’Correlation bw Forecasted probabilities by HMSM model and VIX
:’ + str(predicted_hmsm_high_probs[’Open’].corr(vix_close)))

83 vix_change = vix_close.pct_change (1)
84 vix_change = vix_change.dropna ()
85 vix_change_ary = vix_change.to_numpy ()
86 pred_prob_change = predicted_hmsm_high_probs[’Open’]. pct_change (1)
87 pred_prob_change = pred_prob_change.dropna ()
88 pred_prob_change_ary = pred_prob_change.to_numpy ()
89

90 iter = 0
91 cnt = 0
92 # here 3439 is taken beacuse of available length of NIFTY daily

return
93 while iter < 3439:
94 if vix_change_ary[iter] < 0 and pred_prob_change_ary[iter] < 0:
95 cnt += 1
96 elif vix_change_ary[iter] > 0 and pred_prob_change_ary[iter] >

0:
97 cnt += 1
98 else:
99 cnt = cnt

100 iter = iter + 1
101

102 print(’The no. of days where change in VIX and change in HMSM
forecasted probability matches is:’ + str(cnt) + ’ out of ’ + str
(iter))
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Appendix D

Python code for GARCH model and

VIX index comparison

1 import pandas as pd
2 import datetime as dt
3 from arch import arch_model
4 import matplotlib.pyplot as plt
5 import pmdarima
6

7 #Get nifty prices
8 nifty = pd.read_csv(’nifty_cmp.csv’,index_col=’Date’) # Get NIFTY

index data
9 closing_price_nifty = nifty[’Close’]

10 daily_ret_nifty = closing_price_nifty.pct_change (1)
11 daily_ret_nifty = daily_ret_nifty.dropna ()
12 vix = pd.read_csv(’VIX_cdata.csv’,index_col=’Date’)
13 vix_close = vix.iloc [:,3] # Get VIX index closing price
14

15 # Defining series for predicted variance by GARCH model
16 predicted_garch_variance = pd.DataFrame ()
17 tn_wndw = 900 # Training window
18 tt_wndw = 40 # Testing window
19 d_r_n = daily_ret_nifty [:]
20 i = 0
21 while i<len(d_r_n) - tn_wndw - tt_wndw:
22 tn_set = d_r_n[i:i+tn_wndw+tt_wndw -1]
23 # Fitting best arima model by minimizing AIC
24 arima_model_fitted = pmdarima.auto_arima(tn_set)
25 # Finding Lag orders p, q from the fitted ARIMA model
26 ar_order = arima_model_fitted.order [0]
27 ma_order = arima_model_fitted.order [2]
28 # Fitting GARCH(p,q) model
29 mdl = arch_model(tn_set , vol=’GARCH’, p=max(1,ar_order),q=max(1,

ma_order))
30 # Best fitted arima model can have zero value for p or q
31 # That’s why maximum of 1 and order given by arima is taken in
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GARCH as input
32 res = mdl.fit(last_obs=tn_wndw -1)
33 model_forecast = res.forecast(horizon =1)
34 pred_var = model_forecast.variance[tn_wndw -1:]
35 predicted_garch_variance = predicted_garch_variance.append(

pred_var)
36 i=i+tt_wndw
37

38 # Plottingg graphs
39 fig ,ax1 = plt.subplots(figsize =(15 ,10))
40

41 ax1.yaxis.label.set_color(’blue’)
42 predicted_garch_variance.plot(ax = ax1 , ylabel = ’1 step ahead

forecasted variance from GARCH ’)
43

44 ax2 = ax1.twinx()
45 ax2.yaxis.label.set_color(’red’)
46 vix_close.plot(ax = ax2 , color = ’red’, ylabel = ’VIX closing price ’

)
47 plt.show()
48

49 fig , ax3 = plt.subplots(figsize =(15 ,10))
50

51 ax3.yaxis.label.set_color(’blue’)
52 predicted_garch_variance.plot(ax = ax3 , ylabel = ’1 step ahead

forecasted variance from GARCH ’)
53

54 ax4 = ax3.twinx()
55 ax4.yaxis.label.set_color(’green’)
56 daily_ret_nifty[tn_wndw -1: -27]. plot(ax = ax4 , color = ’green ’,

ylabel = ’NIFTY daily returns ’)
57 plt.show()
58

59 print(’Correlation bw Forecasted variance by GARCH and VIX:’ + str(
predicted_garch_variance[’h.1’].corr(vix_close)))

60 vix_change = vix_close.pct_change (1)
61 vix_change = vix_change.dropna ()
62 vix_change_ary = vix_change.to_numpy ()
63 pred_var_change = predicted_garch_variance.pct_change (1)
64 pred_var_change = pred_var_change.dropna ()
65 pred_var_change_series = pred_var_change.squeeze ()
66 pred_var_change_ary = pred_var_change.to_numpy ()
67

68 iter = 0
69 cnt = 0
70 # here 3439 is taken beacuse of available length of NIFTY daily
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return
71 while iter < 3439:
72 if vix_change_ary[iter] < 0 and pred_var_change_series[iter] <

0:
73 cnt += 1
74 elif vix_change_ary[iter] > 0 and pred_var_change_series[iter] >

0:
75 cnt += 1
76 else:
77 cnt = cnt
78 iter = iter + 1
79

80 print(’The no. of days where change in VIX and change in GARCH
forecasted variance matches is:’ + str(cnt) + ’ out of ’ + str(
iter))

81 acc = cnt/iter
82 print(acc)
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Appendix E

Python code for pairs trading strat-

egy

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import statsmodels.api as sm
4 from statsmodels.tsa.stattools import adfuller
5 import numpy as np
6

7 nifty50 = pd.read_csv(’NFT_F1.csv’) # Getting NIFTY futures data
8 nifty50 = nifty50.set_index(’Date’)
9 niftybank = pd.read_csv(’BNF_F1.csv’) # Getting BNF futures data

10 niftybank = niftybank.set_index(’Date’)
11 X = nifty50[’Close ’]
12 daily_ret_nifty = X.pct_change (1) # Daily NIFTY returns will be

needed for regime classification
13 Y = niftybank[’Close ’]
14

15

16 diff_nifty50 = X.diff()
17 diff_nifty50 = diff_nifty50.dropna ()
18 diff_niftybank = Y.diff()
19 diff_niftybank = diff_niftybank.dropna ()
20 spread = diff_nifty50 - diff_niftybank # Spread Calculation
21 f = plt.figure(1, figsize =(20, 10))
22 spread.plot(ylabel=’Spread ’)
23 plt.title("Spread")
24 stationarity_test_spread = adfuller(spread)
25

26 # So from now on, we will be using spread as a stock or an asset
27 spread_mean = spread.mean()
28 spread_std = spread.std()
29

30 # Plotting Spread intervals
31 f1 = plt.figure(2,figsize =(20, 10))
32 spread.plot()
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33 plt.axhline(spread_mean , color=’black’)
34 # Spread mean is very close to zero
35 plt.axhline(spread_std , color=’red’)
36 plt.axhline(-spread_std , color=’green’)
37 plt.axhline (2* spread_std , color=’brown’)
38 plt.axhline (-2* spread_std , color=’purple ’)
39 plt.legend ([’Spread ’])
40 f1.show()
41

42 # Trading Strategy
43 split = 1000 # Training window
44 spread_train = spread [: split]
45 spread_test = spread[split :]
46 stationarity_test_spread_train = adfuller(spread_train)
47 delX_train = diff_nifty50 [:split]
48 delX_test = diff_nifty50[split :]
49 delY_train = diff_niftybank [:split]
50 delY_test = diff_niftybank[split :]
51

52 f2 = plt.figure(3,figsize =(20, 10))
53 spread_train.plot()
54 plt.axhline(spread_train.mean(), color=’black’)
55 plt.axhline(spread_train.std(), color=’red’)
56 plt.axhline(-spread_train.std(), color=’green’)
57 plt.axhline (2* spread_train.std(), color=’brown’)
58 plt.axhline (-2* spread_train.std(), color=’purple ’)
59 plt.legend ([’Spread Training Data’])
60 f2.show()
61

62 spread_train_mean = spread_train.mean()
63 spread_train_std = spread_train.std()
64

65 def zsc(A,mu ,sigma):
66 zscr = (A - mu)/sigma
67 return zscr
68

69 buy = spread_test.copy()
70 sell = spread_test.copy()
71 wndw = 400 # Testing window
72 i=0
73 while i<len(spread) - split - wndw:
74 spread_train_w = spread[i:i+split]
75 spread_train_w_mu = spread_train_w.mean()
76 spread_train_w_std = spread_train_w.std()
77 spread_test_w = spread[i+split:i+wndw+split]
78 iter = 0
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79 while iter < wndw:
80 if zsc(spread_test_w[iter],spread_train_w_mu ,

spread_train_w_std) < -2:
81 sell[iter+i] = 3000
82 elif zsc(spread_test_w[iter],spread_train_w_mu ,

spread_train_w_std) > 2:
83 buy[iter+i] = -3000
84 else:
85 buy[iter+i] = -3000
86 sell[iter+i] = 3000
87 iter = iter + 1
88 i=i+wndw
89

90 # Plotting generation of trading signals
91 f3 = plt.figure(4,figsize =(20 ,10))
92 spread_test.plot()
93 buy.plot(color=’g’, linestyle=’None’, marker=’^’)
94 sell.plot(color=’r’, linestyle=’None’, marker=’^’)
95 x1 , x2, y1, y2 = plt.axis()
96 plt.axis((x1 , x2 , spread_test.min(), spread_test.max()))
97 plt.legend ([’Spread ’, ’Buy Signal ’, ’Sell Signal ’])
98 f3.show()
99

100 # Trade using a simple strategy
101 def trade(spd ,avg ,sd ,delX ,delY ,initial_cap):
102 # Simulate trading
103 # Start with no money and no positions
104 money = 0
105 countX = 0
106 countY = 0
107 actual_buy_money = 0
108 actual_sell_money = 0
109 trade_count = 0
110 gain_trade_count = 0
111 loss_trade_count = 0
112 money_gain = 0
113 money_lost = 0
114 tr_cost = 0
115 hold_time = 0
116 trade_start = 0
117 max_hold_time = 0
118 ini_cap = initial_cap
119 pnl_per_iter = np.zeros(wndw)
120 i=0
121 while i < len(spd):
122 # Sell short if the z-score is > 2
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123 if (zsc(spd[i],avg ,sd) > 2):
124 if countX != 1:
125 money = money + spd[i]
126 countX = -1
127 countY = +1
128 print(’Sell spread at index ’ + str(spd.index[i]) +

’ , since zcore is ’ + str(zsc(spd[i],avg ,sd)) )
129 actual_sell_money = (X[spd.index[i]]*50 - Y[spd.

index[i]]*25)
130 nv_X = X[spd.index[i]]*50
131 nv_Y = Y[spd.index[i]]*25
132 tr_cost = min (20 ,0.0003* nv_X) + min (20 ,0.0003* nv_Y)

+ 0.0001* nv_X + 0.00002*( nv_X + nv_Y) + 0.15*50 + 0.15*25
133 margin = nv_X + nv_Y
134 trade_start = i
135 else:
136 print(’Square off position at index ’ + str(spd.

index[i]) + ’ , since zcore is ’ + str(zsc(spd[i],avg ,sd)) )
137 actual_buy_money += (X[spd.index[i]]*50 - Y[spd.

index[i]]*25)
138 nv_X = X[spd.index[i]]*50
139 nv_Y = Y[spd.index[i]]*25
140 tr_cost += min (20 ,0.0003* nv_X) + min (20 ,0.0003* nv_Y)

+ 0.0001* nv_X + 0.00002*( nv_X + nv_Y) + 0.15*50 + 0.15*25
141 actual_buy_money = actual_buy_money - tr_cost
142 print(’Actual Money made in buy trade squared off at

’ + str(spd.index[i]) + ’ is ’ + str(actual_buy_money) )
143 trade_count += 1
144 trade_end = i
145 hold_time += trade_end - trade_start
146 max_hold_time = max(max_hold_time ,trade_end -

trade_start)
147 ini_cap = ini_cap *(1 + actual_buy_money/margin)
148 if actual_buy_money > 0:
149 gain_trade_count +=1
150 money_gain += actual_buy_money
151 else:
152 loss_trade_count +=1
153 money_lost += actual_buy_money
154 actual_buy_money = 0
155 tr_cost = 0
156 countX = 0
157 countY = 0
158 # Buy long if the z-score is < -2
159 elif (zsc(spd[i],avg ,sd) < -2):
160 if countX == -1:
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161 print(’Square off position at index ’ + str(spd.
index[i]) + ’ , since zcore is ’ + str(zsc(spd[i],avg ,sd)) )

162 actual_sell_money += -1*(X[spd.index[i]]*50 - Y[spd.
index[i]]*25)

163 nv_X = X[spd.index[i]]*50
164 nv_Y = Y[spd.index[i]]*25
165 tr_cost += min (20 ,0.0003* nv_X) + min (20 ,0.0003* nv_Y)

+ 0.0001* nv_Y + 0.00002*( nv_X + nv_Y) + 0.15*50 + 0.15*25
166 actual_sell_money = actual_sell_money - tr_cost
167 print(’Actual Money made in sell trade squared off

at ’ + str(spd.index[i]) + ’ is ’ + str(actual_sell_money) )
168 trade_count += 1
169 trade_end = i
170 hold_time += trade_end - trade_start
171 max_hold_time = max(max_hold_time ,trade_end -

trade_start)
172 ini_cap = ini_cap *(1 + actual_sell_money/margin)
173 if actual_sell_money > 0:
174 gain_trade_count +=1
175 money_gain += actual_sell_money
176 else:
177 loss_trade_count +=1
178 money_lost += actual_sell_money
179 actual_sell_money = 0
180 tr_cost = 0
181 countX = 0
182 countY = 0
183 else:
184 money = money - spd[i]
185 countX = 1
186 countY = -1
187 print(’Buy spread at index ’ + str(spd.index[i]) + ’

, since zcore is ’ + str(zsc(spd[i],avg ,sd)) )
188 actual_buy_money = -1*(X[spd.index[i]]*50 - Y[spd.

index[i]]*25)
189 nv_X = X[spd.index[i]]*50
190 nv_Y = Y[spd.index[i]]*25
191 tr_cost = min (20 ,0.0003* nv_X) + min (20 ,0.0003* nv_Y)

+ 0.0001* nv_Y + 0.00002*( nv_X + nv_Y) + 0.15*50 + 0.15*25
192 margin = nv_X + nv_Y
193 trade_start = i
194 # Clear positions if the z-score between -0.75 and 0.75
195 elif abs(zsc(spd[i],avg ,sd)) < 0.75:
196 money += delX[i]* countX + delY[i]* countY
197 if countX ==-1:
198 print(’Square off position at index ’ + str(spd.
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index[i]) + ’ , since zcore is ’ + str(zsc(spd[i],avg ,sd)) )
199 actual_sell_money += -1*(X[spd.index[i]]*50 - Y[spd.

index[i]]*25)
200 nv_X = X[spd.index[i]]*50
201 nv_Y = Y[spd.index[i]]*25
202 tr_cost += min (20 ,0.0003* nv_X) + min (20 ,0.0003* nv_Y)

+ 0.0001* nv_Y + 0.00002*( nv_X + nv_Y) + 0.15*50 + 0.15*25
203 actual_sell_money = actual_sell_money - tr_cost
204 print(’Actual Money made in sell trade squared off

at ’ + str(spd.index[i]) + ’ is ’ + str(actual_sell_money) )
205 trade_count += 1
206 trade_end = i
207 hold_time += trade_end - trade_start
208 max_hold_time = max(max_hold_time ,trade_end -

trade_start)
209 ini_cap = ini_cap *(1 + actual_sell_money/margin)
210 if actual_sell_money > 0:
211 gain_trade_count +=1
212 money_gain += actual_sell_money
213 else:
214 loss_trade_count +=1
215 money_lost += actual_sell_money
216 actual_sell_money = 0
217 tr_cost = 0
218 elif countX ==1:
219 print(’Square off position at index ’ + str(spd.

index[i]) + ’ , since zcore is ’ + str(zsc(spd[i],avg ,sd)) )
220 actual_buy_money += (X[spd.index[i]]*50 - Y[spd.

index[i]]*25)
221 nv_X = X[spd.index[i]]*50
222 nv_Y = Y[spd.index[i]]*25
223 tr_cost += min (20 ,0.0003* nv_X) + min (20 ,0.0003* nv_Y)

+ 0.0001* nv_X + 0.00002*( nv_X + nv_Y) + 0.15*50 + 0.15*25
224 actual_buy_money = actual_buy_money - tr_cost
225 print(’Actual Money made in buy trade squared off at

’ + str(spd.index[i]) + ’ is ’ + str(actual_buy_money))
226 trade_count += 1
227 trade_end = i
228 hold_time += trade_end - trade_start
229 max_hold_time = max(max_hold_time ,trade_end -

trade_start)
230 ini_cap = ini_cap *(1 + actual_buy_money/margin)
231 if actual_buy_money > 0:
232 gain_trade_count +=1
233 money_gain += actual_buy_money
234 else:
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235 loss_trade_count +=1
236 money_lost += actual_buy_money
237 actual_buy_money = 0
238 tr_cost = 0
239 countX = 0
240 countY = 0
241 pnl_per_iter[i] = ini_cap
242 i = i+1
243 return money ,trade_count ,gain_trade_count ,loss_trade_count ,

money_gain ,money_lost ,hold_time ,max_hold_time ,ini_cap ,
pnl_per_iter

244

245 final_money = 0
246 Total_trades = 0
247 Gain_trades = 0
248 Loss_trades = 0
249 Gain = 0
250 Loss = 0
251 holding_time = 0
252 max_holding_time = 0
253 initial_capital = 1
254 pnl = np.zeros (2800)
255 j=0
256 while j<len(spread) - split - wndw:
257 spread_train_w = spread[j:j+split]
258 spread_train_w_mu = spread_train_w.mean()
259 spread_train_w_std = spread_train_w.std()
260 spread_test_w = spread[j+split:j+wndw+split]
261 delX_test_w = diff_nifty50[j+split:j+wndw+split]
262 delY_test_w = diff_niftybank[j+split:j+wndw+split]
263 fm ,tt ,gt ,lt,gn,ls,ht,mht ,ic,pnlpi = trade(spread_test_w ,

spread_train_w_mu ,spread_train_w_std ,delX_test_w ,delY_test_w ,
initial_capital)

264 final_money += fm
265 Total_trades += tt
266 Gain_trades += gt
267 Loss_trades += lt
268 Gain += gn
269 Loss += ls
270 holding_time += ht
271 max_holding_time = max(mht ,max_holding_time)
272 initial_capital = ic
273 klm = 0
274 while klm < wndw:
275 pnl[j+klm] = pnlpi[klm]
276 klm += 1
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277 j=j+wndw
278 print(final_money)
279 print(’Accuracy of Pair Trading Algo is: ’ + str(Gain_trades/

Total_trades))
280 print(’Gain Loss Ratio is: ’ + str(abs((Gain*Loss_trades)/(Loss*

Gain_trades))))
281 print(’Overall Profit:’ + str(Gain + Loss))
282 pnl_s = pd.Series(pnl)
283 pnl_s.index = diff_nifty50.index[split :-3]
284 return_pnl = pnl_s.pct_change (1)
285 return_pnl = return_pnl.dropna ()
286 check_mu = return_pnl.mean()
287 check_sigma = return_pnl.std()
288 check_sr = check_mu/check_sigma *(252**0.5)
289 A_sharpe_ratio = (252**0.5)*return_pnl.mean()/return_pnl.std()
290 return_pnl_n = return_pnl[return_pnl <0]
291 check_mu1 = return_pnl_n.mean()
292 check_sigma1 = return_pnl_n.std()
293 check_sr1 = check_mu/check_sigma1 *(252**0.5)
294 A_sortino_ratio = (252**0.5)*return_pnl.mean()/return_pnl_n.std()
295

296 def max_drawdown(return_series):
297 comp_ret = (return_series +1).cumprod ()
298 # peak = comp_ret.expanding(min_periods =1).max()
299 peak = comp_ret.cummax ()
300 dd = (comp_ret/peak)-1
301 return dd.min()
302

303 max_dd = max_drawdown(return_pnl)
304 A_calmer_ratio = 252* return_pnl.mean()/abs(max_dd)
305

306 f4 = plt.figure(5,figsize =(20 ,10))
307 pnl_s.plot()
308 plt.title("PnL curve")
309 f4.show()
310

311 f5 = plt.figure(6,figsize =(20 ,10))
312 X.plot()
313 Y.plot()
314 f5.show()
315

316 # For regime classification
317 High_reg = pnl_s.copy()
318 Low_reg = pnl_s.copy()
319 mod_kns = sm.tsa.MarkovRegression(daily_ret_nifty[split:-3],

k_regimes=2, trend=’n’, switching_variance=True)
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320 res_kns = mod_kns.fit()
321 Low_var_regime_probs = res_kns.predicted_marginal_probabilities [0]
322 High_var_regime_probs = res_kns.predicted_marginal_probabilities [1]
323 i=0
324 while i <2800:
325 if Low_var_regime_probs[i] > High_var_regime_probs[i]:
326 High_reg[i] = -3
327 else:
328 Low_reg[i] = -3
329 i+=1
330

331 # PnL in different regimes
332 f6 = plt.figure(7,figsize =(20 ,10))
333 pnl_s.plot()
334 Low_reg.plot(color=’g’,linestyle = ’None’, marker=’o’)
335 High_reg.plot(color=’r’,linestyle = ’None’, marker=’o’)
336 x3 , x4, y3, y4 = plt.axis()
337 plt.axis((x3 , x4 , pnl_s.min(), pnl_s.max()))
338 plt.legend ([’PnL’, ’PnL in Low regime ’, ’PnL in High regime ’])
339 f6.show()
340

341 # Performance metrics in Low regime
342 return_pnl_low = Low_reg[Low_reg >0]. pct_change (1)
343 A_sharpe_ratio_low_reg = (252**0.5)*return_pnl_low.mean()/

return_pnl_low.std()
344 max_dd_low = max_drawdown(return_pnl_low)
345 A_calmer_ratio_low_reg = 252* return_pnl_low.mean()/abs(max_dd_low)
346

347 # Performance metrics in High regime
348 return_pnl_high = High_reg[High_reg >0]. pct_change (1)
349 A_sharpe_ratio_high_reg = (252**0.5)*return_pnl_high.mean()/

return_pnl_high.std()
350 max_dd_high = max_drawdown(return_pnl_high)
351 A_calmer_ratio_high_reg = 252* return_pnl_high.mean()/abs(max_dd_high

)
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