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Abstract

This thesis o↵ers an in-depth investigation of Data Envelopment Analysis
(DEA) models, encompassing classical DEA, inverse DEA, and stochas-
tic DEA. The objective is to develop and apply inverse DEA models in
the context of stochastic data. The research commences with a com-
prehensive introduction to classical DEA models, such as CCR, BCC,
Additive, and SBM models. Subsequently, the study delves into inverse
DEA and its application through a case study involving 15 hypothetical
retail stores.

Further, the thesis presents stochastic DEA models that account for data
uncertainty and illustrates their practicality in real-world situations, as
demonstrated by a case involving 20 bank branches. The primary contri-
bution of this research lies in the analysis of the 15 hypothetical stores for
budgeting and planning purposes, as well as the development of novel in-
verse DEA models that integrate stochastic data. This approach expands
the applicability of DEA models in uncertain environments, assuming a
symmetric error structure.

For practical application and replication purposes, Python code imple-
mentations for each DEA model are provided in the Appendix. The
proposed models hold potential for further research within dynamic and
network DEA frameworks and have practical applications across various
industries.
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0.1 Notations

DMUj: j = 1, 2, ...n Number of Decision-Making units

PPS Production Possibility Set (Technology Set)

DMUj the jth DMU

DMUo the DMU under consideration (Target DMU) for evaluation

X = (xij) 2 Rm⇥n Input vector matrix

Y = (xij) 2 Rs⇥n Output vector matrix

xj = (x1j, . . . , xmj) the input vector of DMUj

xo = (x1o, . . . , xm0) the input vector of target DMUo

yj = (y1j, . . . , ysj) the output vector of DMUj

yo = (y1o, . . . , yso) the output vector of target DMUo

v = (u1, . . . , us) the vector of output weights

u = (v1, . . . , vm) the vector of input weights

CRS Constant Return-to-scale

VRS Variable Return-to-Scale

NIRS Non-Increasing Return-to-Scale

NDRS Non-Decreasing Return-to-Scale

LP Linear Programming

CCR Charnes, Cooper, and Rhodes

BCC Banker, Charnes, and Cooper

SBM Slacks-based measures
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Chapter 1

Introduction

1.1 Background

Data Envelopment Analysis (DEA) has emerged as a powerful tool for evaluating
the relative e�ciency of decision-making units (DMUs) in various sectors such as
education, healthcare, banking, and transportation. The fundamental principle of
e�ciency is to achieve the best possible outcome with the least utilization of re-
sources. E�ciency measurement and enhancement is, therefore, crucial for making
better and more accurate decisions for any decision-making unit. However, quantify-
ing e�ciency is a complex task, particularly when dealing with multiple inputs and
outputs[15].

About fifty years ago, Farrel introduced the assessment of productivity e�ciency in
his seminal paper“The measurement of productive e�ciency”. Two decades later, in
1978, Charnes et al. [4] presented Data Envelopment Analysis (DEA), a methodology
for computing the relative e�ciency of units with multiple outputs and inputs. DEA
defines e�ciency as the ratio of the weighted sum of outputs to the weighted sum
of inputs and provides a mathematical representation in the forthcoming Chapters.
Some notable advantages of DEA include [15]:

1. The ability to handle multiple outputs and inputs with di↵erent units.

2. The capability to work with both qualitative and quantitative data.

3. Serving as an e↵ective decision-making tool for management by highlighting
areas for improvement.

In light of these advantages, DEA has garnered significant attention from scientists
and researchers in the fields of decision-making and operations research. DEA is a
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non-parametric linear programming method that evaluates the e�ciency of DMUs
by comparing their input-output ratios. However, traditional DEA models assume
deterministic inputs and outputs, which might not accurately capture the real-world
uncertainties and stochastic nature of data. This thesis aims to delve deeper into
DEA and its various extensions, including classical DEA models, inverse DEA, and
stochastic DEA, while exploring their applications in diverse contexts. By doing
so, we strive to contribute to a better understanding of e�ciency measurement and
provide valuable tools for organizations to optimize their resources and enhance their
performance.

1.2 Classical DEA

Classical DEA models, such as the CCR and BCC models, have been widely used to
assess the relative e�ciency of DMUs. These models are based on the assumption
that inputs and outputs are deterministic and do not consider any uncertainty in the
data. Despite their widespread application, classical DEA models have limitations
when dealing with uncertain or stochastic data.

1.3 Inverse DEA

Inverse DEA is an extension of the classical DEA, which focuses on estimating the
required changes in input or output levels to achieve a desired e�ciency level. This
approach is particularly useful for budgeting, resource allocation, and planning pur-
poses.

1.4 Stochastic DEA

Stochastic DEA is an advancement of the classical DEAmodel that takes into account
the stochastic nature of input and output data. By incorporating random errors or
uncertainties in the data, stochastic DEA provides a more realistic assessment of
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DMU e�ciency.

1.5 Research Objective and contributions

The primary objective of this research is to develop and apply inverse DEA models
in the presence of stochastic data . The main contributions of this thesis include the
development of basic DEA models With python Python code attached in Appendix
A (Code Listings) ,This Thesis explore and apply inverse DEA models in the context
of hypothetical data for 15 stores with two inputs and two outputs, analyzing the
work of Ghomi et al.[13] on inverse DEA in the presence of stochastic data, and
providing Python code for the relevant models in the appendix section. This research
contributes to the practical application of inverse DEA models in various industries,
which can be used e�ciently in Resourse allocation and Forcasting.

1.6 Thesis structure

The thesis is structured as follows:

1. Introduction: Provides an overview of DEA and its various extensions, setting
the stage for the development and application of inverse DEA models in the
presence of stochastic data.

2. Classical DEA Models : A comprehensive introduction to classical DEA mod-
els, including the CCR and BCC models, along with Python Code in The
Appendix section .

3. Inverse DEA and Application in Stores: Presents the concept of inverse DEA
and its application to e�ciency analysis in a case study of 15 hypothetical
Stores Data.

4. Stochastic DEA and Examples: Introduces stochastic DEA models that ac-
count for the uncertainty in data, and provides examples to demonstrate their
utility in real-world scenarios.
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5. Combining Inverse DEA and Stochastic DEA: Develops new inverse DEA mod-
els that incorporate stochastic data, thereby enhancing the applicability of
DEA models in uncertain environments.

6. Conclusion: Highlights the key contributions and conclusions of the thesis,
examines the consequences of the created models, and gives possible directions
for further investigation.

1.7 Conclusions

The introductory chapter provides an overview of the DEA and its various extensions,
setting the stage for the development and application of inverse DEA models in the
presence of stochastic data. The subsequent chapters delve into the details of classical
DEA, inverse DEA, and stochastic DEA, culminating in the proposed inverse DEA
models with stochastic data and their real-world applications.

4



Chapter 2

Classical DEA Models, Formulation,
and Key Terms

This chapter focuses on introducing the Classical DEA models and their key terms.
DEA models have been widely used to measure the relative e�ciency of Decision-
Making Units (DMUs) in various fields, including healthcare, education, and finance.
The motivation behind developing DEA models was to find a non-parametric ap-
proach to evaluate DMUs’ e�ciency and provide insights into improving their per-
formance.

To understand the DEA models, key terms need to be defined, such as input and
output vectors, production possibility set CRS (constant returns to scale), VRS
(variable returns to scale), and technical e�ciency. This chapter will explore these
concepts and their significance in DEA models.

The chapter will then delve into the first classical DEA model, CCR, which assumes
CRS and constant input/output prices. Then, will introduce the BCC model, which
allows for VRS and varying input/output prices. We will also discuss additive models,
SBMmodels, and Russell’s measure. Each model will be explained with their benefits
and shortcomings.

Overall, this chapter aims to provide us with a comprehensive understanding of DEA
models, their key terms, and the di↵erent types of models that have been developed.
Understanding DEA models and their key concepts can provide insights into the
relative e�ciency of DMUs and assist decision makers in making informed decisions
to enhance their performance.
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Before introducing the basic models of DEA, we need to define some key terms
that are essential for understanding the concept and methodology of e�ciency and
productivity measurement. These terms are DMU, input, output, benchmarking,
e�ciency and productivity, production possibility set, returns to scale, Units, and
Translation Invariant models, Radial and Non-Radial models, etc.

A DMU is an entity that uses multiple inputs to produce multiple outputs under its
control. A DMU can be an individual, a group, an organization, or any unit that
performs some activities or tasks. For example, a hospital can be considered a DMU
that uses inputs such as doctors, nurses, beds, equipment, etc., to produce outputs
such as patients treated, surgeries performed, quality indicators, etc. (Cooper et al.,
2007).

Input is any resource that is used by a DMU to produce outputs. An input can be
measured in physical units (such as labor hours) or monetary units (such as cost).
Input can also be classified into variable inputs (such as materials) or fixed inputs
(such as capital). The choice and measurement of inputs depend on the objective
and context of the analysis (Zhu, 2014).

Output is any product or service that is produced by a DMU using inputs. Output
can also be measured in physical units (such as quantity) or monetary units (such
as revenue). Output can also be classified into desirable outputs (such as profits)
or undesirable outputs (such as emissions). The choice and measurement of outputs
also depend on the objective and context of the analysis (Cooper et al., 2007).

Benchmarking is a process of comparing the performance of a DMU with that of
other DMUs or with some standards or best practices. Benchmarking can help iden-
tify the strengths and weaknesses of a DMU and provide insights for improvement.
Benchmarking can also be used for ranking, rating, or classifying DMUs based on
their e�ciency scores or other indicators (Zhu, 2014).

E�ciency and productivity are two related measures of how well a DMU uses its
inputs to produce outputs. E�ciency can be expressed as the ratio of actual output
to potential output or as the ratio of minimum input to actual input. Productivity
can be expressed as the ratio of output to input or as the ratio of output growth
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to input growth. E�ciency and productivity can also be decomposed into technical
e�ciency and allocative e�ciency for e�ciency; and e�ciency change and technical
change for productivity. Technical e�ciency reflects the ability of a DMU to produce
the maximum output from a given input or to use the minimum input for a given
output. Allocative e�ciency reflects the ability of a DMU to choose the optimal mix
of inputs and outputs given their prices. The technical change reflects the shift or
movement of the best practice frontier due to innovation or technological progress.
E�ciency change reflects the improvement or deterioration of a DMU’s performance
relative to the best practice frontier (Cooper et al., 2007).

A production possibility set is a set of all feasible combinations of inputs and outputs
for a given technology. A production possibility set defines what can be produced by
a DMU given its available resources and constraints. A production possibility set can
have di↵erent shapes depending on the assumptions about returns to scale, convexity,
and disposability (Zhu,2014). Returns to scale refer to how output changes when
inputs are proportionally increased or decreased. There are four types of returns
to scale: constant returns to scale (CRS), variable returns to scale (VRS), non-
increasing returns to scale (NIRS), and non-decreasing returns to scale (NDRS).
CRS means that output changes in the same proportion as inputs; VRS means that
output changes more than or less than inputs; NIRS means that output changes less
than or equal to inputs; and NDRS means that output varies more than or equal to
inputs. Returns to scale a↵ect the shape and properties of the production possibility
set and have implications for e�ciency measurement (Zhu, 2014).

0.1 PPS is generally defined as [1].

T = {(x, y) 2 Rm
+ ⇥ Rs

+ : the output y can be produced by input x} (2.1)

Some axiomatic assumptions that underlie various formulations of the technology set
which are[referred to Banker (1984), Banker et al. (1984), and Banker and Thrall
(1992)]

1. the Inclusion of Observations.

2. Convexity

3. Di↵erent return to scale Possibilities

4. Free Disposability.
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5. Minimal extrapolation

Based on these Five axioms, a unique 0.1 PPS represented as :

T (p) = {(x, y) 2 Rm
+ ⇥ Rs

+ : 9� = (�1, ...,�n) 2 S(p) :
nX

j=1

�jxj  X,
nX

j=1

�jyj � y}

(2.2)
[1]

where p 2 {CRS, V RS,NIRS,NDRS}0.1 and

S(CRS) = {� = (�1, ...,�n) : �j � 0, j = 1, ..., n},

S(V RS) = {� = (�1, ...,�n) :
nX

j=1

�j = 1,�j � 0, j = 1, ..., n},

S(NIRS) = {� = (�1, ...,�n) :
nX

j=1

�j  1,�j � 0, j = 1, ..., n},

S(NDRS) = {� = (�1, ...,�n) :
nX

j=1

�j = 1,�j 2 0, 1, j = 1, ..., n}

Unit invariant DEA models are those that are independent of the units in which the
input and output variables are measured, while translation invariant DEA models
are those that are independent of an a�ne translation of the input and output
variables. These properties are desirable for ensuring consistency and robustness of
the e�ciency scores.

Radial DEA models are those that measure the relative e�ciency of decision-making
units (DMUs) by assuming proportional changes in inputs or outputs. They neglect
the e↵ect of slacks (input excesses or output shortfalls) in evaluating e�ciency[17].
Non-radial DEA models[21] are those that measure the relative e�ciency of DMUs by
considering the e↵ect of slacks in evaluating e�ciency. They deal directly with input
excesses and output shortfalls by using di↵erent measures such as Russell Measure,
Slacks-based Measure, etc.
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2.1 Basic DEA Models

DEA models are based on the idea of comparing the performance of a set of DMUs(6)
that use inputs to produce outputs. A common measure of e�ciency used in DEA is
the ratio of weighted outputs to weighted inputs, where the weights are determined
by solving a linear programming problem. In the single input-output case, this ratio
reduces to the output per unit of input. In the multiple input-output cases, this
ratio reflects the trade-o↵s between di↵erent inputs and outputs. DEA models can
be formulated in di↵erent ways depending on the orientation (input or output), the
returns to scale assumption (constant, variable, or general), and the type of e�ciency
measure (radial or non-radial).

2.1.1 CCR Models

[8] The CCR model is a basic DEA model proposed by Charnes, Cooper, and Rhodes
in 1978. It uses virtual inputs and outputs formed by weights to determine the
optimal weights for each DMU using LP. The weights are derived from the data and
may vary from one DMU to another. Considering a set of n DMUs(6) with each
DMU j using m inputs xij(i = 1, 2...,m) and producing s outputs yrj(r = 1, 2, .., s)
and for each DMUs we construct virtual input and virtual outputs with unknown
input weights vi(i = 1, 2..m) and unknown output weights ur(r = 1, 2, .., s) as follows:

Virtual Input =
P

i vixij

Virtual Output =
P

r uryrj

From the given data to measure the e�ciency of each DMUs once, So we need to
perform n optimizations. Let DMUo(o 2 (1, 2, ., n)) .Then we need to solve the
following fractional programming problem to obtain the value of each input and

9



output weight.

(FP-CCR);maximize : ✓ =

Ps
r=1 uryroPm
i=1 vixio

Subject to

Ps
r=1 uryrjPm
i=1 vixij

 1 (j = 1, 2, .., n)

u � 0

v � 0

(2.3)

Where u(6)andv(6) are row vectors of output and input multipliers(weights). The
2.3 is equivalent to following linear program:

(LP-CCR);maximize : ✓ =
sX

r=1

uryro

Subject to
mX

i=1

vixio = 1

sX

r=1

uryrj �
mX

i=1

vixij  0 (j = 1, 2, ..n)

u � 0

v � 0

(2.4)

The optimal value ✓⇤ of the equivalent program (2.3) and (2.4) are the same.

Theorem 1 (Unit Invariance Theorem[8]). The optimal value ✓⇤ of (2.3) and (2.4)

are unit invariant if all DMUs use the same units for inputs and outputs.

Now using vector notation v and u (6) input and output weigts (multiplier).The
linear program(2.4) can we written as follows:

[Multiplier form of CCR] Maximize uyo

subject to vxo = 1

� vX+ uY  0

v � 0,u � 0

(2.5)

The dual of above(2.5) is known as the Envelopment form of CCR models as shown
below
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[Envelopment form of CCR / Radial Form] Minimize: ✓

Subject to: ✓xo �X� � 0

Y�� yo � 0

� � 0

(2.6)

Where � = (�1 . . .�n)T and real number ✓ are dual variables. The LPP (2.6) is
feasible(�o = 0,�i = 0(i 6= o), ✓ = 1).and hence optimal value will not exceed 1 and
we observe that 0 < ✓⇤  1.Also, we can see the relationship between T (CRS) and
by looking at the constraints of (2.6) we have (✓xo,yo) 2 T (CRS).The objective is to
find the minimum ✓ that reduces the input vector radially to ✓xo while remaining in
TCRS. We are looking for activity in TCRS that guarantees at least the output level yo
of DMUo in all components while proportionally (radially) reducing the input vector
xo to a value as small as possible.Under the assumption of T (CRS) , we can say that
(X�,Y�) outperform (✓xo,yo) when ✓⇤ < 1.In this context, we define input excess
s� 2 Rm and output shortfall s+ 2 Rs as “slack” vectors by s� = ✓xo �X� � 0 and
s+ = Y�� yo � 0. To identify potential input excess and output shortfall we solve
a two-phase LP.
Phase I: involves solving the dual linear programming problem (2.6) and obtain-
ing the optimal objective value,✓⇤, which represents CCR-e�ciency or “Farrell E�-
ciency.”
Phase II: uses the value to solve an LP problem, maximizing the sum of input excesses
and output shortfalls while maintaining ✓ = ✓⇤. [8]

Maximize: ! = s� + s+

Subject to: s� = ✓⇤xo �X�

s� = Y�� yo

� � 0 s� � 0 s+ � 0

(2.7)

The objective function can be modified with a weighted sum of input excesses and
output shortfalls, which may result in di↵erent optimal solutions but will still identify
nonzero slacks associated with ine�ciency.[8]

Definition 1. (Max-slack Solution, Zero-slack Activity) An optimal solution

(�⇤, s�, s⇤+) of Phase II is called the max-slack solution. If the max-slack solution

satisfies s⇤� = 0 and s⇤+ = 0, then it is called zero-slack.

[8]
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Definition 2. (CCR-E�ciency, Radial E�ciency, Technical E�ciency)
A DMUo is considered CCR-e�cient if the optimal solution (✓⇤, �⇤, s⇤�, s⇤+) of the
two LPs satisfies ✓⇤ = 1 and is zero-slack (s⇤� = 0, s⇤+ = 0). Otherwise, DMUo

is called CCR-ine�cient because both (i) ✓⇤ = 1 and (ii) all slacks are zero must

be satisfied for full e�ciency. The first condition, “radial e�ciency,” is also called

“technical e�ciency” as a value of ✓⇤ < 1 implies that all inputs can be reduced

simultaneously without changing their proportions. Any further reductions related to

nonzero slacks would change input proportions, leading to “mix ine�ciencies.”

The set with all CCR-e�cient DMUs is known as “Peer set”. Other terms are used
to describe these ine�ciencies. “Weak e�ciency” refers to condition (i) in Definition
3.2. When conditions (i) and (ii) are both satisfied, it is called “Pareto-Koopmans”
or ”strong” e�ciency.

Definition 3. (Pareto-Koopmans E�ciency) A DMU is fully e�cient if and

only if it is not possible to improve any input or output without worsening some other

input or output.

Now we set some reference set to improve the e�ciency of ine�cient DMU. Using
the above definition(2)

Definition 4. (Reference Set)[8] For an ine�cient DMU say DMUo, the reference

set Eo is defined based on the max-slack solution obtained in phases one and two, as

Eo = {j|�⇤ > 0, j 2 1, ..., n}

.

An optimal solution can be expressed as the positive combination of observed input

and output values. This implies that the e�ciency of DMUo can be improved if the

input values are reduced radially by the ratio ✓⇤ and input excesses recorded in s�

are eliminated. Similarly, e�ciency can be attained if output values are augmented

by output shortfalls in s+⇤
.

The gross input improvement �xo and output improvement �yo can be calculated
using the following formulas: �xo = (1�✓⇤)xo+s�⇤ and�yo = s+⇤. And we have the
formula for e�ciency improvement, which is also called the CCR-Projection formula
defined as below

d�xo = xo ��xo = ✓⇤xo � s�⇤
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byo = yo +�yo = yo + s+⇤

These relations project DMUo into the reference set Eo, and any non-negative com-
bination of DMUs in Eo is e�cient. The improved activity ( bxo, byo) defined by these
formulas is CCR-e�cient[8]. The point with coordinates bxo and byo, defined by these
formulas, is the point on the e�cient frontier used to evaluate the performance of
DMUo.[8]

In summary, the CCR projections identify the point either as a positive combination
of other DMUs with xo � bxo and byo > yo unless ✓⇤ = 1 and all slacks are zero, in
which case bxo = xo and byo = yo, so the operation performed on the observation for
DMUo identifies a new DMU positioned on the e�cient frontier. Conversely, the
point associated with the generated DMU evaluates the performance of DMUo as
exhibiting input excesses (xo � bxo) and output shortfalls (byo � yo)[8].

Till now, We have primarily discussed input-oriented models, which aim to mini-
mize inputs while maintaining given output levels. Another model type, output-
oriented models, focuses on maximizing outputs while not exceeding the observed
input amounts. Output-oriented fractional program is written as follows;

Minimize:

Pm
r=1 vrxroPs
i=1 uiyio

Subject to:

Pm
r=1 vrxrjPs
i=1 uiyij

� 1(j = 1, . . . n)

u,� 0 v � 0

(2.8)

This model is equivalent to the following LP

Minimize:
mX

r=1

vrxro

Subject to:
mX

r=1

vrxrj �
sX

i=1

uiyij � 0(j = 1, . . . n)

sX

i=1

uiyio = 1

u,� 0 v � 0

(2.9)

And Writing it into matrix notation we get the multiplier form of Output-oriented
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CCR written as follows:

[Multiplier form of Output-Oriented CCR] Minimize vxo

subject to uyo = 1

uY � vX � 0

v � 0,u � 0

(2.10)

Writing dual of (2.10) we get Radial/Envelopment form of the CCR output-oriented
model, as follows;

[Output-Oriented CCR Radial form] Max: ⌘

Subject to: xo �Xµ � 0

⌘yo �Yµ  0

µ � 0

(2.11)

By substituting ⌘ = 1
✓ and µ = ⌘� in (2.11) we get the input-oriented CCR model

(2.6).Hence, the optimal solution of the output-oriented model is connected to the
input-oriented model’s optimal solution as below:

⌘⇤ =
1

✓⇤
, µ⇤ =

�⇤

✓⇤

Hence for Output oriented model e�ciency will always be greater than 1.A higher
value of ⌘⇤ indicates a less e�cient DMU. ✓⇤ represents the input reduction rate,
while ⌘⇤ denotes the output enlargement rate. It can be concluded that an input-
oriented CCR model is e�cient for any DMU only if it is also e�cient when using
the output-oriented CCR model to assess its performance. As we defined the CCR-
e�ciency, reference set, and CCR-Projection in the case of Input oriented model
Similarly, we can define these terms for output-oriented CCR models.
Benifits and Shortcomings of CCR-Model: The CCR model, enables e�ciency
evaluation with multiple inputs and outputs, making it a versatile and straightfor-
ward tool. However, its limitations include the assumption of constant returns to
scale, sensitivity to outliers, and the inability to account for external factors. Addi-
tionally, it only measures relative e�ciency and provides a snapshot of e�ciency at
a specific point in time, without considering dynamic changes.

2.1.2 BCC models

The BCC model, an extension of the CCR model, accounts for variable returns to
scale, providing a more flexible analysis of e�ciency. By considering production
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frontiers spanned by the convex hull of existing DMUs, it enables the examination of
increasing, decreasing, and constant returns to scale within the DEA framework[10].

The BCC model, introduced by Banker, Charnes, and Cooper (1984), defines the pro-
duction possibility set as T (CRS) = {(x,y)|x > X�,y < Y�, e� = 1,� > 0}, where
X and Y are given data sets, � is a non-negative column vector, and e is a row vector
with all elements equal to 1. The BCC model di↵ers from the CCR model by adding
the condition e� = 1, which, along with the non-negativity constraint, imposes a
convexity condition on how the observations for the n DMUs can be combined, en-
abling the analysis of variable returns to scale[8]. As we have seen di↵erent types
of CCR models, we will create the following table for the di↵erent types of BCC[8]
models by combining convexity constraint to do e�ciency analysis for DMUo:

Input-oriented
BCC Model

Output-oriented
BCC Model

Envelopment/Radial Form

min ✓B
s.t.
✓BXo �X� � 0
Y� � Yo

e� = 1
� � 0

max ⌘B
s.t.
X�  xo

⌘Byo �Y�  0
e� � 0
� � 0

Multiplier Form

max z = uyo � uo

s.t.
vxo = 1
�vX+ uY � uo  0
u � 0,v � 0
uo, z scalars

min z = vxo � vo
s.t.
uyo = 1
vX� uY � voe � 0
u � 0,v � 0
vo, z scalars

Fractional Form
max uyo�uo

vxo

s.t.
uyj�uo

vxj
 1(j = 1 . . . n)

u � 0,v � 0, uo : free

min vxo�vo
uyo

s.t.
vxj�uo

uyj
� 1(j = 1 . . . n)

u � 0,v � 0, vo : free

Table 2.1: BCC Models [8]

Now, we define BCC-e�ciency in a similar manner to how we previously defined
CCR-e�ciency. First, we solve the radial form of the BCC model ( 2.1.2) using the
Two-phase method. let’s assume we get the optimal solution of the Input-oriented
Radial form of the BCC model(Table 2.1) as (✓B

⇤,�⇤, s�⇤, s+⇤) where s�⇤ denotes
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Maximal Input excesses and s+⇤ denotes maximal output shortfalls. Now we define
BCC-e�ciency, Reference set, and BCC-Projection similarly as of CCR models.

Definition 5. [BCC-E�ciency][8] An optimal solution (✓⇤,�⇤, s�⇤, s+⇤) obtained
in the two-phase process for the BCC model (BCCo) satisfies ✓⇤ = 1 and has no

slack (s� = 0, s+ = 0). If these conditions are met, then the Decision-Making Unit

(DMUo) is called BCC-e�cient. Otherwise, it is BCC-ine�cient.

For a BCC-ine�cient DMUo, we can define its reference set[8], Eo, based on an
optimal solution �⇤ by

Eo = {j|�⇤j > 0, j 2 {1, . . . , n)}}. (2.12)

If multiple optimal solutions exist, we can select any of them to determine the fol-
lowing:

✓B
⇤xo =

X

j2Eo

�⇤jxj + s�⇤ yo =
X

j2Eo

�⇤jyj � s+⇤ (2.13)

Consequently, we obtain the formula for the BCC projection, as shown below. The
improved activity resulting from this formula is BCC-e�cient[8]:

bxo ( ✓B
⇤xo � s�⇤, byo ( yo + s+⇤ (2.14)

The BCC model o↵ers flexibility and more accurate e�ciency scores for DMUs oper-
ating under variable returns to scale, as well as better discrimination between e�cient
and ine�cient units. However, it has shortcomings such as scale e�ciency ambiguity,
multiple optimal solutions, and increased complexity compared to the CCR model
(Banker et al., 1984).

2.1.3 Additive Models

The additive program addresses the limitations of input and output orientations
by simultaneously minimizing inputs and maximizing outputs, ensuring e�ciency in
both directions. Charnes et al.[6] introduced the Additive model by combining both
input and output orientation.By considering the technology set T (V RS) the additive
model[6] and it’s dual[20](similarly we can define additive model in T (CRS)) is given
in below table:
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Table 2.2: Additive model and Dual problem
Additive Model Dual of additive Model

max

 
mX

i=1

s�i +
sX

r=1

s+r

!

s.t.
nX

j=1

�jxij + s�i = xi0, i = 1, . . . ,m

nX

j=1

�jyrj � s+r = yr0, r = 1, 2, . . . , s

nX

j=1

�j = 1

�j, s
�
i , s

+
r � 0, j = 1, 2, . . . , n; i = 1, 2, . . . ,m; r = 1, 2, . . . , s

max

 
mX

i=1

vixi0 �
sX

r=1

uryr0 + u0

!

s.t.
mX

i=1

vixij �
sX

r=1

uryrj + u0 � 0, j = 1, 2, . . . , n

vi � 1, i = 1, . . . ,m

ur � 1, r = 1, 2, . . . , s

u0 free

This Additive model is always feasible(�o = 1 and �j = 0 for allj 6= o, s� =
s+ = 0) and bounded. This model uses input excesses and output shortfalls simulta-
neously to arrive at e�ciency frontier. We have the following definition for e�ciency
in the case of the Additive model;

Definition 6 (ADD-e�cient DMU). Let the optimal solution of DMUo is (�⇤, s�⇤, s+⇤),
then DMUo is e�cient () slacks in optimal solution is equal to zero.

All the constraints of the Additive model(2.2) are constraints of the BCC model in
table(2.1), from here we can observe that e�cient DMUs in both models(BCC and
Additive) are exactly same. And for ine�cient DMUs, we improve them to e�cient
DMUs by projection formula (cxio ( xio � s�⇤ cyro ( yro + s�⇤), and this improved
activity is ADD-e�cient[5]. One of the main advantages of this model is that it
remains invariant[7] under the translation of inputs and outputs data. One major
shortcoming of this model is that it is not invariant under units of inputs and outputs
because of the summation of slacks in the objective function. To tackle this problem
Tone[18] have introduced a measure called “Slack-Based Measure(SBM)”, which I
will discuss in the next part.

2.1.4 SBM Models

The Slacks-Based Measure (SBM) is a dimension-free, units-invariant e�ciency eval-
uation method for additive models. Introduced by Tone, it provides a single scalar
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that remains consistent across varying units of measurement for inputs and outputs.
This section introduces a single scalar called ”SBM” (Slacks-Based Measure) for ad-
ditive models, which was introduced by Tone[18] and possessed important properties
like unit invariance and monotonicity. SBM is unit-invariant and ensures a mono-
tone decrease in each input and output slack. To measure the e�ciency we have the
following fractional program which can be converted into LP[18] using the methods
which we used in CCR models;

min ⇢ =
1�

Pm
i=1

s�i
xi0

m

1 +
Ps

j=1
s+r
yr0

s

subject to:
nX

j=1

�jxij = xi0 � s�i , i = 1, 2, . . . ,m

nX

j=1

�jyrj = yr0 + s+r , r = 1, 2, . . . , s

�j � 0, j = 1, 2, . . . , n

s�i � 0,i = 1, 2, . . . ,ms+r � 0, r = 1, 2, . . . , s

(2.15)

After converting it into an LP program, we get the following model with di↵erent
transformed decision variables;

min ⌧ = t�
Pm

i=1
S�
i

xi0

m
subject to:

t+

Ps
j=1

S+
r

yr0

s
= 1

nX

j=1

⇤jxij = txi0 � S�
i , i = 1, 2, . . . ,m

nX

j=1

⇤jyrj = tyr0 + S+
r , r = 1, 2, . . . , s

⇤j � 0, j = 1, 2, . . . , n; t � 0

S�
i � 0,i = 1, 2, . . . ,m S+

r � 0,r = 1, 2, . . . , s

(2.16)
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Let the optimal solution of model(2.16) is (⌧ ⇤,⇤⇤,S�⇤,S+⇤, t⇤) and optimal solu-
tion of model(2.15) is (⇢⇤,�⇤, s�⇤, s+⇤), Then these solution is related by following
equations[18];

⇢⇤ = ⌧ ⇤; �⇤ =
⇤⇤

t⇤
; s�⇤ =

S�⇤

t⇤
; s+⇤ =

S+⇤

t⇤

In the case of Slack-based measures, we say DMUo is SBM-e�cient if ⇢⇤ = 1 (equiv-
alent to saying all input and output slacks is zero). And for ine�cient DMUo we
make it e�cient by below equation;

xio ( xio � s�⇤
i yro ( yro + sr+⇤

i = 1, 2...m; r = 1, 2...s

, which is known as SBM-Projection[5]. And we define the Reference set[18] ofDMUo

by
sbmRo = {j;�⇤j > 0, j = 1, 2..n}

The Slacks-Based Measure (SBM) ⇢⇤ focuses on reference-set dependent values, mak-
ing it distinct from other e�ciency measures that use the entire data set. This tar-
geted evaluation is not influenced by the performance of unrelated Decision-Making
Units (DMUs).We have the following results which is proved in the paper[18] which
relate SBM and CCR models ;

(1) 0 � ⇢⇤  ✓⇤CCR, and (2) DMUo is SBM-e�cient , it is CCR-e�cient.

Benefits and shortcomings;The Slacks-Based Measure (SBM) presents advan-
tages like unit invariance, monotonicity concerning slacks, and dependency on ref-
erence sets, distinguishing it from other e�ciency measures such as CCR and BCC.
Nonetheless, the additive model can di↵erentiate between e�cient and ine�cient
DMUs, but it falls short in assessing the extent of ine�ciency itself, which can be
viewed as a limitation.

2.2 Conclusions

This chapter has highlighted the importance and relevance of DEA models in eval-
uating DMUs’ e�ciency. We have discussed the motivation behind developing DEA
models and their fundamental concepts, such as input/output vectors and production
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possibility sets. We also introduced the most widely used DEA models, including
CCR, BCC, additive models, and SBM, and explained their benefits and limitations.

This chapter provides a solid foundation for further exploring DEA models’ applica-
tions and their use in various industries. By understanding the di↵erent models and
their assumptions, we can select the most appropriate model for their research and
gain insights into improving DMU’s e�ciency.

Furthermore, this chapter has highlighted the significance of DEA models as a non-
parametric approach to evaluating DMUs’ e�ciency, providing insights that could
aid in improving their performance. Exploring the applications of DEA models can
be valuable for decision-makers seeking to make informed decisions and improve
performance.
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Chapter 3

Inverse DEA

Introduction

The e↵ective allocation of resources is a crucial aspect of any decision-making process.
In the context of organizations, this entails the e�cient distribution of inputs and
outputs to achieve maximum performance. Data Envelopment Analysis (DEA) has
emerged as a widely used method for evaluating the relative e�ciency of decision-
making units (DMUs) by comparing their inputs and outputs. While classical DEA
provides valuable insights, it does not directly address the question of how to adjust
inputs and outputs to attain a desired e�ciency level. This leads to the development
of the inverse DEA approach.

Inverse DEA is an extension of classical DEA that focuses on determining the nec-
essary changes in input and output levels to reach a target e�ciency score. This
approach provides a valuable tool for managers and policymakers, helping them un-
derstand the magnitude of adjustments required to attain their desired e�ciency.
Inverse DEA models are particularly useful in budgeting and planning scenarios,
where managers need to make decisions about resource allocation to achieve specific
e�ciency goals.

This chapter aims to introduce the concept of inverse DEA, drawing inspiration
from the paper ”New Inverse DEA Models for Budgeting and Planning” by Sayar
et al. ([16]). We will start with the classical inverse DEA model, then explore
income-based and budget-based inverse DEA models, highlighting their applications
in various settings. The objective is to provide a comprehensive understanding of
the inverse DEA approach and its practical implications for organizational decision-
making processes.

Following this introduction, we will delve into the classical inverse DEA model, as
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presented in Sayar et al.’s paper. We will then explore income-based and budget-
based inverse DEA models([16]), illustrating their use in real-world scenarios. The
python code for solving these models will be provided in the appendix section of
this thesis. By the end of this chapter, we will have a solid understanding of inverse
DEA’s relevance and potential applications in budgeting and planning contexts, as
well as a deeper appreciation for the contributions made by Sayar et al. in this field.

3.1 Classical Inverse DEA Models

Following the notations as on the Notation page(0.1), we have two types of models
for e�ciency calculations one is input-oriented and the other is output-oriented with
the di↵erent return to scale denoted by S(p) : p 2 {CRS, V RS,NIRS,NDRS}(2.2).
Both Models are given below in the table for calculating the e�ciency of the target
DMUo

Table 3.1: Generalized Input-oriented and output-oriented DEA models
Model Input-oriented Output-oriented

Objective ✓o = min✓ �o = max�

Subject to
nP

j=1
�jxij  ✓xio 8i = 1, . . . ,m

nP
j=1

�jxij  xio 8i = 1, . . . ,m

nP
j=1

�jyrj � yro; 8r = 1, . . . ,m
nP

j=1
�jyrj � �yro; 8r = 1, . . . ,m

� = (�1, . . .�n) 2 S(p) � = (�1, . . .�n) 2 S(p)

As inverse DEA aims to answer questions such as: If, among a group of DMUs, we
increase certain inputs to a particular unit and assume that the DMU maintains its
current e�ciency level with respect to other units, how much more output could the
unit produce? Alternatively, if the outputs need to be increased to a certain level and
the unit’s e�ciency remains unchanged, how much more input should be provided to
the unit? These types of questions are generally addressed using Multiple Objective
Linear Programming (MOLP) in the inverse DEA literature. Let’s assume we have
two scenarios in which we perturb the output and input levels of DMUo.

1. In the first scenario, with an input-oriented perspective, we perturb the output
level of DMUo from yo to(yo +�yo). The classical inverse DEA models aim to
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find the level of the required inputs needed for producing the new output level
(yo +�yo) while maintaining the current e�ciency level. The below table for
this scenario illustrates the impact of perturbing output levels on the required
inputs. This formulation is a resource allocation problem.

2. In the second scenario, with an output-oriented perspective, assume we perturb
the input levels of DMUo from xo to (xo + �xo). The classical inverse DEA
model seeks to determine the producible output level (while maintaining the
current e�ciency measure) when the input level is perturbed to (xo + �xo).
The below table for this scenario shows the impact of perturbing input levels on
the producible outputs. This formulation is regarded as a forecasting problem.

By examining these two scenarios we can analyze how the e�ciency of DMUs is
a↵ected by perturbations in input and output levels in both input-oriented and
output-oriented contexts. This provides valuable insights into the performance of
each DMU under these new conditions and helps in better decision-making for re-
source allocation and performance improvement.

Let analyse classical Inverse DEA in case of output-oriented model, first we will
introduce a general model for Output-oriented model for di↵erent return-to-scale as
follows:

(Eo)�o = max�

s.t.
nX

j=1

�jxij  xio, 8i = {1, . . . ,m}

nX

j=1

�jyrj � �yr0, r = {1, . . . , s}

�1(
nX

j=1

�j + �2(�1)�3⌫) = �1,

⌫ � 0, �j � 0, j = 1, . . . , n. �i 2 {0, 1}; i = 1, 2, 3

(3.1)
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The dual problem for above model (3.1) given as ;

(Do)max z =
mX

i=1

wixio + ⌧�1

Subject to
mX

i=1

wixij �
sX

r=1

uryrj + �1⌧ �, 8j = {1, . . . , n}

sX

r=1

uryro = 1

wi � 0, 8i = {1, . . . ,m} ur � 0, 8r = {1, . . . , s}
�1�2(�1)�3⌧ � 0, ⌧ is free

(3.2)

As depending on di↵erent value of set {�1, �2, �3} we have di↵erent type of model,
let {�1 = 1, �2 = 0, �3 = 0}then we get VRS(BCC model) model.and similary we can
get CRS, NIRS, NDRS model for di↵erent set of {�1, �2, �3}.

Definition 7. [19] The optimal value �0 of problem (3.1), under a particular set of

values of �1, �2 and �3 , is called the e�ciency index of DMU0 under the corre-

sponding DEA model. If the e�ciency index �0 = 1, then we say the DMU0 is (at

least) weakly DEA e�cient under the particular model.

Now considering the second scenario, purturbing the input level of DMUo from
xo = (x1o, . . . , xmo) to xo + �xo = (x1o + �x1o, . . . xmo + �xmo) where �xo � and
�xo 6= 0. Then we need to find how much output vector purtubed by keeping
the e�ciency index same(i.e. �o). let yo = (y1o, . . . , yso) increased to yo + �yo =
(y1o + �y1o, . . . yso + �yso) then need quesion is to evaluate �yo. To do this let
DMUn+1 represent DMUo after perturbation in inputs. Then corresponding output
DEA model for measuring the e�ciency of DMUn+1 can be represented using the
following model;
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(E+
o )�n+1 = max�

s.t.
nX

j=1

�jxij + �n+1(xio +�xio)  (xio +�xio), 8i = {1, . . . ,m}

nX

j=1

�jyrj + �n+1(yio +�yio) � �(yr0 +�yro), r = {1, . . . , s}

�1(
nX

j=1

�j + �n+1 + �2(�1)�3⌫) = �1,

⌫ � 0, �j � 0, j = 1, . . . , n. �i 2 {0, 1}; i = 1, 2, 3

(3.3)

Now by considering following MOLP(multi Objective LP) with optimal value �o of
(3.1) ;

(MOLP �O)�n+1 = max(�y1o, . . .�yso)

s.t.
nX

j=1

�jxij+  (xio +�xio), 8i = {1, . . . ,m}

nX

j=1

�jyrj+ � �o(yr0 +�yro), r = {1, . . . , s}

�1(
nX

j=1

�j + �n+1 + �2(�1)�3⌫) = �1,

⌫ � 0, �j � 0, j = 1, . . . , n. �yro � 0; r = 1, .., s �i 2 {0, 1}; i = 1, 2, 3

(3.4)

Then for above MOLP model we define a Weak-Pareto solution as follows;

Definition 8 (Weak-Pareto solution). [19] Let (�̄yo, �̄, ⌫̄) 2 Rs⇥Rt⇥R be a feasible

solution of the MOLP(3.4),we call this feasible solution Weak-Pareto solution if there

in no other feasible solution that performs better in all objectives simultaneously,i.e.

there is no othe feasible solution (�yo,�, ⌫) of the MOLP(3.4) such that �yo > �̄yo.

Now we have the following lemma’s and Theorems established by Wei et al.[19]:
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lemma 1. Suppose (�̄yo, �̄, ⌫̄) is a Weak-Pareto solution of MOLP(3.4) and �o be

optimal solution of (3.1) then optimal value of following model is �o.

(Ēo)max�

s.t.

nX

j=1

�jxij  xio +�xio, 8i = {1, . . . ,m}

nX

j=1

�jyrj � �(yr0 + ¯�yro, r = {1, . . . , s}

�1(
nX

j=1

�j + �2(�1)�3⌫) = �1,

⌫ � 0, �j � 0, j = 1, . . . , n. �i 2 {0, 1}; i = 1, 2, 3

(3.5)

lemma 2. Given a feasible solution (�̄yo, �̄, ⌫̄) of MOLP(3.4), If optimal value of

problem(3.5) is �o. then (�̄yo, �̄, ⌫̄) is a Weak-Pareto solution of MOLP(3.4).

Define an another model as below by introducing the term �n+1 in(3.5);

( ¯Eo+)max�

s.t.
nX

j=1

�jxij + �n+1(xio +�xio)  xio +�xio, 8i = {1, . . . ,m}

nX

j=1

�jyrj + �n+1(yio + ¯�yio) � �(yr0 + ¯�yro), r = {1, . . . , s}

�1(
nX

j=1

�j + �2(�1)�3⌫) = �1,

⌫ � 0, �j � 0, j = 1, . . . , n. �i 2 {0, 1}; i = 1, 2, 3

(3.6)

lemma 3. Let we have �yo � 0. Then If optimal value for (3.6) is �o then optimal

value of(3.5 is also �o. converse is also true.

Theorem 2. Assume DMUo have e�ciency score �o for(3.1) and its input will

increase from xo to xo +�xo with �xo � 0,�xo 6= 0 then; If (�̄yo, �̄, ⌫̄) is a Weak-

Pareto solution of MOLP(3.4) then by increasing the outputs by �̄yo, the new DEA
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problem(3.6) have same e�ciency score �o. Conversely if (�̄yo, �̄, ⌫̄) is a feasible

solution of MOLP(3.4) and if optimal value of (3.6) is �o the (�̄yo, �̄, ⌫̄) is weak

pareto solution of MOLP(3.4).

Now we know that Inverse DEA problem can be converted into a MOLP.Now we
show that in certain cases we need to solve only a single-objective LP problem to
get more definite answer to Inverse DEA problem. Consider the scenario where
each output has a known per-unit weight such as income,profit or a specific weight
assigned to each output.Let ar denotes the value of weights for each output unit r
with ar > 0 then by considering the following LP problem,

maximize
sX

r=1

ar�yro

subject to:
nX

j=1

�jxij  (xio +�xio), i = 1, . . . ,m

nX

j=1

�jyrj � �o(yro +�yro), r = 1, . . . , s

�1(
nX

j=1

�j + �2(�1)�3⌫) = �1,

⌫ � 0, �j � 0, j = 1, . . . , n. �i 2 {0, 1}; i = 1, 2, 3

(3.7)

Any optimal solutions of above LP problem must be a weak-pareto solution of the
MLOP(3.4)[19].
Corollary: Suppose DMUo has an e�ciency index �o under the model(3.1) and
input is increased by �xo. If (�̄yo, �̄, ⌫̄) is an optimal solution of (3.7) then by
increasing the output by �̄yo ,e�ciency index of DMUo remains same under new
inputs and outputs.[19].
Similar analysis will work for first scenario, in case of input-oriented model table(C.1
shows MOLP form of inverse DEA in case of Input and output orientation.
Now Based on both scenario ,I will explain Income and Budget based inverse DEA
with applications which is work of SAYAR[16].
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3.2 Inverse DEA for Budgeting and Planning

In this section, we will explore two types of inverse DEA models that build upon
the concept of inverse DEA. The first model is the income-based model with an
input orientation, and the second model is the budget-based model with an output
orientation. These models are designed to determine how changes in income and
budget a↵ect the e�ciency of decision-making units.

3.2.1 Income-based Inverse DEA Model

In the income-based inverse DEA approach, the decision-maker (DM) aims to in-
crease the total income of a specific DMUo in order to reach a minimum income
level denoted by A. The primary objective is to determine the necessary input ad-
justments required to achieve this target while preserving the current e�ciency level.
The following model is formulated to address this objective[16]:

minimize �xo = (�x1o,�x2o, . . . ,�xmo)

subject to:
sX

r=1

ar ⇤�yro � A

nX

j=1

�j ⇤ xij  ✓o ⇤ (xio +�xio), i = 1, . . . ,m

nX

j=1

�j ⇤ yrj � (yro +�yro), r = 1, . . . , s

� = (�1, . . . ,�n) 2 S(p)

(3.8)

• Above Model(3.8) minimizes the necessary input adjustments (�x10, �x20, . . . ,
�xm0) to reach the desired income level A.

• The model considers the price of the rth output as ar (1  r  s).
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• The model finds the minimum input level required to produce the desired
output level and achieve the minimum total income of DMUo (A) while main-
taining the current e�ciency level.

• �x0 2 Rm
+ , �y0 2 Rs

+, and � 2 Rn
+ are decision variables in the model.

• The associated classical inverse DEA model(C.1) can be considered a special
case of the income-based inverse DEA model(3.8).

Key di↵erences between the income-based inverse DEA model(3.8) and the classical
inverse DEA model are as follows:

• The classical inverse DEA model focuses on achieving individual output levels,
while the income-based inverse DEA model (3.8) is concerned with reaching a
total income level with the minimum level of inputs.

• �yr0 represents the expected value of the output and serves as a vector param-
eter in the classical model.

• Both input and output levels are variable in the income-based inverse DEA
model(3.8), while the output level is given and acts as a parameter in the
associated inverse model.

The classical inverse DEAmodel(Input-Oriented)(C.1) is a special case of the income-
based model(3.8). The income-based model is more generalized and flexible than its
classical counterpart. By considering �yr0 = ¯�yr0 and ignoring the income con-
straint in the income-based model, the classical inverse DEA model can be derived.

As we discussed in the section on classical inverse DEA, the same pattern will work
here, we also have definition of the Weak-Pareto solution in the case of the Income-
Based model(3.8) as follows.

Definition (Weak-pareto Solution): Suppose (�, x0+�x0, y0+�y0) is a feasible
solution for model(3.8). If there is no feasible solution (�, x0+�x0

0, y0+�y00) of this
model such that x0 +�x0

0, y0 < x0 +�x0, then we say the (�, x0 +�x0, y0 +�y0) is
a Weak-Pareto solution of model(3.8).[16]
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Theorem (E�ciency Preservation): If (�, x0+�x0, y0+�y0) is a weak e�cient
solution of income-based model(3.8), then the e�ciency of DMUo = (x0, y0) and
DMUo+ = (x0 +�x0, y0 +�y0) are the same.[16]

As the model (3.8) is a multiple objective linear programming (MOLP) problem
and does not have an optimal solution; instead, it has an e�cient solution. As we
have discussed in the previous section, in similar fashion by Considering the input
weights, we can use the weighted sum approach to solve the MOLP problem(3.8)
and subsequently obtain the following linear programming problem:

minimize
mX

i=1

ci�xi0

subject to
sX

r=1

ar�yr0 � A

nX

j=1

�jxij  ⇢0(xi0 +�xi0) i = 1, . . . ,m

nX

j=1

�jyrj � (yr0 +�yr0) r = 1, . . . , s

nX

j=1

�j = 1

� � 0

(3.9)

where ci � 0, 1  i  m, is the price of the i-th input. For this LP formulation of
MLOP(3.8) we have the following theorem in a similar manner of the previous section.

Theorem 3. When a solution (�̄, �̄x, �̄y) is optimal for the linear programming

model(3.9), it also qualifies as a weak-Pareto solution for the MOLP model(3.8).

Remark: The optimal solution of(3.9)preserves the e�ciency score of the unit under
evaluation. If (�̄, �̄x, �̄y) is an optimal solution of the LP model (3.9), then the
e�ciency of DMUo remains the same before and after adjusting its input and output
levels, i.e., DMUo = (x0, y0) and DMUo+ = (x0 + �̄x, y0 + �̄y).
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3.2.2 Budget-based inverse DEA model

In the budget-based inverse DEA approach, the decision-maker (DM) aims to max-
imize the total output increment of a specific DMUo while having a given budget
constraint, denoted by B. The primary objective is to determine the necessary input
and output adjustments required to achieve this target while preserving the current
e�ciency level. The following model is formulated to address this objective:

Maximize �y0 = (�y1o,�y2o, . . . ,�yso)

subject to:
mX

i=1

bi�xio  B

nX

j=1

�jxij  (xio +�xio), i = 1, . . . ,m

nX

j=1

�jyrj � �o(yro +�yro), r = 1, . . . , s

� = (�1, . . . ,�n) 2 S(p)

(3.10)

• Above Model (3.10) maximizes the total output increment (�y1o,�y2o, . . . ,�yso)
under the given budget constraint B.

• The model considers the price of the i-th input as bi(1  i  m).

• The model finds the necessary input and output adjustments required to achieve
the maximum output increment while maintaining the current e�ciency level.

• �x0 2 Rm
+ , �y0 2 Rs

+, and � 2 Rn
+ are decision variables in the model.

Key di↵erences between the budget-based inverse DEA model(3.10) and the income-
based inverse DEA model(C.1) are as follows:

• The budget-based inverse DEA model focuses on maximizing the total output
increment, while the classical inverse DEA model is concerned with achieving
individual output levels with a given set of inputs.
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• �xi0 represents the expected value of the input and serves as a vector parameter
in the classical model.

• Both input and output levels are variable in the budget-based inverse DEA
model, whereas in the classical inverse DEA model, the output level is given
and acts as a parameter.

Theorem (E�ciency Preservation): If (�, x0 +�x0, y0 +�y0) is a weak-Pareto solu-
tion of the budget-based model(3.10) , then the e�ciency of DMUo = (x0, y0) and
DMUo+ = (x0 +�x0, y0 +�y0) are the same.

The model (3.10) is a multiple objective linear programming (MOLP) problem and
does not have an optimal solution; instead, it has an e�cient solution. By considering
the output weights, we can use the weighted sum approach to solve the MOLP
problem (3.10) and subsequently obtain the following linear programming problem
as we have in Classical Inverse DEA section:

maximize
sX

r=1

ar�yro

subject to:
mX

i=1

bi�xio  B

nX

j=1

�jxij  ⇢0(xio +�xio), i = 1, . . . ,m

nX

j=1

�jyrj � (yro +�yro), r = 1, . . . , s

� � 0

(3.11)

where ar � 0, 1  r  s, is the weight of the r-th output. For this LP formulation
of MLOP(3.10), we have the following theorem in a similar manner to the previous
section.

Theorem 4. When a solution (�̄, �̄x, �̄y) is optimal for the linear programming

model(3.11), it also qualifies as a weak-Pareto solution for the MOLP model (3.10).
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Remark: The optimal solution of (??) preserves the e�ciency score of the unit under
evaluation. If (�̄, �̄x, �̄y) is an optimal solution of the LP model (??), then the
e�ciency of DMUo remains the same before and after adjusting its input and output
levels, i.e., DMUo = (x0, y0) and DMUo+ = (x0 + �̄x, y0 + �̄y).

3.3 Applicatons of Income-based and Budget-based
Models

In this section, we apply the income-based and budget-based inverse DEA models to a
hypothetical dataset representing a group of retail stores. By examining the e�ciency
of these stores in terms of their resource utilization and output generation, we aim
to demonstrate the practical application of these models for decision-making and
strategic planning. The insights derived from this analysis can help store managers
and stakeholders identify areas for improvement and optimize resource allocation,
ultimately leading to enhanced performance and customer satisfaction.
The below sections explains the hypothetical data that I have assumed;

Data Description

The hypothetical data represents 15 stores and their input and output values.

Input Data

For the input data:

1. Store Area (in square meters) - This represents the size of the store. A larger
store may require more resources, such as more employees or higher utility
costs, to maintain and operate.

2. Man-hours - This represents the total number of hours worked by all employees
in the store. It indicates the labor input necessary to run the store and provide
customer services.
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Output Data

For the output data:

1. Revenue (in Indian Rupees) - This represents the total income generated by
the store. Higher revenue indicates better financial performance and a more
successful store.

2. Customer Loyalty (a score between 0 and 1) - This represents loyalty and
satisfaction among the store’s customers. A higher score means customers are
more likely to return to the store and recommend it to others. This is an
important non-financial indicator of store performance.

The table below shows data of all stores with their input and output e�ciencies;

Table 3.2: Store Data with Input and Output E�ciencies
Store Area (sq.m) Man-hours Revenue (INR) Customer Loyalty Input E�ciency Output E�ciency

1 500 1200 500000 0.80 1.000 1.000
2 600 1500 600000 0.82 0.951 1.012
3 450 1000 400000 0.75 1.000 1.000
4 800 2000 900000 0.85 0.958 1.036
5 900 2200 1000000 0.90 0.947 1.022
6 400 1100 350000 0.70 0.882 1.067
7 550 1300 450000 0.78 0.865 1.042
8 650 1700 700000 0.84 0.986 1.006
9 300 900 300000 0.68 1.000 1.000
10 750 1800 800000 0.83 0.950 1.054
11 700 1600 750000 0.81 1.000 1.000
12 850 2100 950000 0.88 0.952 1.028
13 350 950 320000 0.72 1.000 1.000
14 950 2300 1100000 0.92 0.971 1.016
15 1000 2400 1200000 0.95 1.000 1.000

To assign reasonable input and output prices, we consider the approximate costs and
values associated with each input and output in the Indian Currency.
For the input prices:

1. Store Area (in square meters): The cost of maintaining and operating a store
per square meter can vary depending on factors such as location, utility costs,
and rent. We assume an average cost of INR 2,000 per square meter per month.
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2. Man-hours: The cost of labor per hour can also vary depending on the skill
and experience of the employees. We assume an average cost of INR 200 per
man-hour.

For the output prices:

1. Revenue (in Indian Rupees): Since revenue is already in monetary terms (In-
dian Rupees), we assign a value of 1 to convert revenue to the same unit.

2. Customer Loyalty (a score between 0 and 1): Assigning a monetary value
to customer loyalty can be challenging, as its impact on revenue and long-
term success may not be directly proportional. However, we assume that an
increase of 0.1 in customer loyalty score translates to an additional INR 10,000
in revenue per month.

Analysis of Income based inverse DEA:
In the income-based inverse DEA model, we aimed to increase the income by INR
80,000 for each store while analyzing the required changes in inputs and outputs.
The results from the model are shown in the following table and their python code
listed in Appendix section;

Table 3.3: Results after applying income-based model with A=80,000
Stores �x1(Change in Store Area) �x2(Change in Man-hours) �y1(Change in Revenue (INR)) �y2(Change in Customer Loyalty (0-1))

1 44.444444 146.666667 80000.000000 0.000000
2 46.753247 97.792208 80000.000000 0.000000
3 1.851852 191.111111 80000.000000 0.000000
4 64.652420 121.149595 79661.016949 0.033898
5 57.798344 124.102042 79860.418744 0.013958
6 54.613858 165.721849 79810.568295 0.018943
7 30.266204 163.940972 80000.000000 0.000000
8 45.086705 15.549133 80000.000000 0.000000
9 62.036114 132.934530 79760.717846 0.023928
10 40.447371 164.492487 79760.717846 0.023928
11 11.997341 182.851446 79710.867398 0.028913
12 61.309778 122.894931 79810.568295 0.018943
13 35.185185 111.111111 80000.000000 0.000000
14 63.716124 137.087702 79760.717846 0.023928
15 NaN NaN NaN NaN

The results in the above table show how each store should adjust its inputs and
outputs to achieve the targeted increase in revenue. Note that some stores require
no change in customer loyalty (change in customer loyalty is 0) to achieve the desired
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increase in income, while others need a slight improvement in customer loyalty along
with changes in store area and man-hours.

For instance, Store 1 needs to increase its store area by 44.444 sq.m and man-hours
by 146.667 to achieve an income increase of INR 80,000 without any change in cus-
tomer loyalty. On the other hand, Store 4 needs to increase its store area by 64.652
sq.m and man-hours by 121.150 to achieve a revenue increase of INR 79,661.017
while also improving its customer loyalty by 0.033898. Now for store 15 analysis;It
is possible that Store 15 is already operating e�ciently, with no suggested improve-
ments from the income-based inverse DEA model. To better evaluate Store 15’s
performance, we can consider exploring alternative evaluation methods, such as in-
corporating additional variables or comparing it to similar stores outside the dataset
to reveal potential areas for improvement.
The below table shows the behavior of store 15 with di↵erent income levels;

Table 3.4: Analysis of Store 13 for Di↵erent Income Levels
Income Level (A) �x1(Change in Store Area) �x2(Change in Man-hours) �y1(Change in Revenue (INR)) �y2(Change in Customer Loyalty (0-1))

100,000 46.296296 147.777778 100,000.000000 0.000000
300,000 198.454636 482.402792 299,441.674975 0.055833
500,000 353.544921 814.739116 498,843.469591 0.115653
700,000 508.635205 1,147.075440 698,245.264207 0.175474
800,000 586.180348 1,313.243603 797,946.161515 0.205384
900,000 NaN NaN NaN NaN

From the table, we can observe that as the income level (A) increases, both the
required store area�x1 and man-hours (�x2) increase. This indicates that to achieve
higher revenue levels, the store needs to allocate more resources in terms of area and
labor. The customer loyalty (�y2) also improves as the income level increases. It is
clear from the above table is that, at an income level of 900,000, the model could not
find any feasible solution, suggesting that the store may have reached its maximum
potential with the given resources, and further improvement may not be possible.
Analysis of Budget-based inverse DEA:
In the budget-based inverse DEA model, we allocated a budget of INR 80,000 to
each store to improve their performance and analyzed the required changes in inputs
and outputs. The results obtained from the model are presented in the table below,
and the corresponding Python code can be found in the Appendix section:

In the results of the budget-based model with a budget (B) of 80,000, we can observe
a variety of patterns and di↵erences across the 15 stores.

36



Table 3.5: Results of the budget-based model with B=80,000
Stores �x1(Change in Store Area) �x2(Change in Man-hours) �y1(Change in Revenue (INR)) �y2(Change in Customer Loyalty (0-1))

1 30.075188 99.248120 54,135.338346 0.000000
2 34.586466 54.135338 93,794.727783 0.000000
3 16.165414 238.345865 105,764.411028 0.000000
4 35.294118 47.058824 53,834.698436 0.005612
5 34.117647 58.823529 91,048.593350 0.004488
6 35.338346 46.616541 76,300.125313 0.000000
7 28.007519 119.924812 148,796.992481 0.000000
8 40.000000 0.000000 77,372.781065 0.000000
9 32.941176 70.588235 42,352.941176 0.012706
10 30.075188 99.248120 57,636.949517 0.000000
11 20.000000 200.000000 90,000.000000 0.032000
12 34.705882 52.941176 72,710.432239 0.000515
13 30.451128 95.488722 71,478.696742 0.000000
14 33.529412 64.705882 59,911.921988 0.008508
15 40.000000 0.000000 0.000000 0.000000

• Store 1 has a �x1 value of 30.075188 and a �x2 value of 99.248120, with �y1 at
54,135.34 and �y2 at 0.00. This indicates that the store can potentially achieve
an increase in input e�ciency while maintaining its current output levels.

• Store 2 has a higher �x1 value of 34.586466 and a lower �x2 value of 54.135338
compared to Store 1. This store achieves a �y1 value of 93,794.73, which
suggests that it can allocate its budget more e�ciently.

• Interestingly, Store 15 shows a �x1 value of 40.000000 and a �x2 value of
0.000000, while both �y1 and �y2 are equal to 0.00. This indicates that there
are no improvements in the input e�ciencies for this store, suggesting that its
current allocation of resources is optimal given the budget constraint of 80,000.

Now we observe the behaviour of store 13 with di↵erent Budget levels as shown in
below table; In examining the performance of Store 13 under various budget levels,

Table 3.6: Store 13 under di↵erent budget levels
Budget �x1(Change in Store Area) �x2(Change in Man-hours) �y1(Change in Revenue (INR)) �y2(Change in Customer Loyalty (0-1))
80,000 30.451128 95.488722 71,478.70 0.000000
150,000 57.058824 179.411765 117,647.06 0.001294
200,000 77.647059 223.529412 144,117.65 0.009235
400,000 160.000000 400.000000 250,000.00 0.041000
600,000 242.352941 576.470588 355,882.35 0.072765
800,000 324.705882 752.941176 461,764.71 0.104529

we observe a notable relationship between the budget allocation and the changes in
input and output e�ciencies.

As the budget increases from INR 80,000 to INR 800,000, we see consistent growth
in both �x1 and �x2 values. This suggests that the store can allocate its resources
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more e↵ectively with larger budgets, improving input e�ciency. For example, when
the budget is INR 80,000, the �x1 value is 30.451128 and the �x2 value is 95.488722.
However, when the budget reaches INR 800,000, the �x1 value rises to 324.705882
and the �x2 value increases to 752.941176.

In terms of output e�ciency, the �y1 values show a steady increase as the budget
grows, indicating that the store can generate higher outputs with a larger budget.
Moreover, the �y2 values remain relatively low, suggesting that the store can main-
tain its current output levels even when the budget is increased.

In summary, the analysis of Store 13’s performance using income and budget-based
models o↵ers valuable insights for e�cient resource allocation and revenue growth.
These models help identify adjustments in store area, man-hours, and customer loy-
alty to balance financial and non-financial performance indicators. By combining the
insights, decision-makers can optimize store operations, e↵ectively allocate resources,
and contribute to the retail chain’s overall success. Continual assessment and adap-
tation of strategies based on these models will ensure long-term sustainability and
growth in a competitive market.
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Chapter 4

Stochastic DEA

Introduction

Measuring the e�ciency of organizations, especially non-profit ones that depend
on public funds, has become an important research area in recent years. Various
methodological approaches, such as the deterministic frontier, stochastic frontier, and
mathematical programming approaches, have been employed to measure e�ciency
in this context. The mathematical programming approach is fundamentally non-
parametric and has several benefits that make it attractive for e�ciency measurement
[4].

Data Envelopment Analysis (DEA) is a non-parametric frontier estimation method-
ology based on linear programming that measures the relative e�ciencies and per-
formance of Decision Making Units (DMUs) that transform multiple inputs into
multiple outputs [2]. DEA is used to classify DMUs as either e�cient or ine�cient
and to identify the source and level of ine�ciency. However, most previous DEA
applications have considered input variables of deterministic nature, although some
may have a random nature. Therefore, stochastic DEA models have been proposed
to handle random input variables [14].

In this Chapter, we propose a modification to the existing stochastic DEA model
by introducing a chance-constrained input-oriented DEA model and also we will
assume the inputs and outputs are random variables and present an uncertain DEA
model and its equivalent crisp model. The proposed model is illustrated with a
hypothetical example, and a solving algorithm is also presented. The rest of the
paper is organized as follows. Section 2 discusses the methodology of the general
DEA model and stochastic DEA model. Section 3 includes the proposed stochastic
chance-constrained input-oriented DEA model, the proposed solving algorithm, and
an illustrative example. Finally, the paper concludes with implications for the future.
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This study aims to contribute to the existing literature on e�ciency measurement in
non-profit organizations by proposing a modified stochastic DEA model that consid-
ers random input variables. The proposed model can help decision-makers identify
the source and level of ine�ciency.

4.1 Developing an input-oriented DEA model[11]

The classical DEA model is based on maximizing a production function that repre-
sents a deterministic frontier, where the DEA estimate defines the maximum output
producible from inputs under all circumstances, and the minimum input producing
a given output under all circumstances. This method is comparable to a one-sided
deviation estimated using mathematical programming methods.

The DEA model can be classified as either having CRS or VRS(0.1), depending on
the assumptions relating to changes in outputs resulting from changes in inputs.
Under the CRS model, the outputs change in direct proportion to the change in
inputs, assuming that the scale of operation does not influence e�ciency. Thus, the
output and input-oriented measures of e�ciency are equal. However, under the VRS
model, changes in outputs are not necessarily proportional to the changes in inputs,
meaning that the output and input-oriented measures of e�ciency scores are not
equal for ine�cient units. In this section, we are specifically focused on the input-
oriented VRS model(2.1).
The standard DEA model assumes a deterministic production function, but Subhash
Ray proposed a modification to the model that can account for random variation in
all outputs produced from given inputs. The DEA estimate still defines the maximum
output producible from inputs under all circumstances, but in this stochastic output-
oriented model, the inputs are assumed to be deterministic while all outputs are
random. Each output is normally distributed with a mean and variance, and the
relation between the same stochastic output variable through di↵erent DMUs is
independent(cov(yk, yp) = 0), meaning that the random inequality in the DEA model
may sometimes be violated.

To account for this, the chance-constrained programming (CCP) approach is used to
ensure that the probability that the inequality holds for a random sample of these
variables does not fall below a certain level. The chance-constrained output-oriented
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model and input-oriented model to measure the e�ciency level of a DMUp are given
in the Appendix section(Data) table(C.2) , I am going to explain the construction of
the Input-Oriented stochastic model and similar explanations will work for Output-
oriented stochastic model.

Developing Input-Oriented Stochastic DEA[11]

To evaluate the performance of public Higher Education Institutions (HEIs) and
ensure quality, it is important to consider the possibility of stochastic nature in some
of the input variables. As a result, a Stochastic Input Oriented DEA model has
been developed to modify the standard DEA model and measure technical e�ciency
in the presence of random variation in some of the inputs. This model is based on
the CCP method and addresses the random inequality that may be violated in the
restriction involving some of the input quantities. CCP ensures that the probability
that the inequality holds for a random sample of these variables does not fall below
a certain level. The chance-constrained input-oriented model is used to apply this
strategy and provide measurements of technical e�ciency.
The following is the chance-constrained input-oriented model used to measure the
e�ciency level of DMUp [11]:

Min Zp = ✓

Subject to

pr

(
nX

i=1

�ixi  ✓xp

)
� (1� ↵j), 8j = 1, 2, . . . , Js

nX

i=1

�ixi  ✓xp, 8j = 1, . . . , JD

nX

i=1

�iyi � yp, (8k = {1, . . . , s})

nX

i=1

�i = 1

�i � 0, i = 1, 2, . . . , n

(4.1)

Where n = number of DMus, m = the number of inputs s= the number of outputs,
Js = number of Stochastic inputs, JD = number of deterministic inputs.
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The inputs can be split into two categories: some are fixed and some are subject
to random variation. The random inputs xj, j 2 Js are assumed to follow a normal
distribution, with a certain average value µj and a level of variability �2

j . Addition-
ally, the relationship between these stochastic inputs across di↵erent DMUs is not
independent i.e. covariance(xi, xp) 6= 0, meaning that they are somehow related or
dependent on each other.

Let u be a random variable defined as

u =
nX

i=1

�ixi � ✓xp  0, where �i � 0, i = 1, 2..., n (4.2)

Taking the mean of u, we get

µu = E(u) = E(
nX

i=1

�ixi � ✓xp) =
nX

i=1

�iE(xi)� ✓E(xp) =
nX

i=1

�iµi � ✓µp (4.3)

The variance of u is given by

�2
u = var(u) =

nX

i=1,i 6=p

�2i�
2
i + (�p � ✓)2�2

p + 2cov(xi, xp) (4.4)

Given that the variables xj are normally distributed, their linear combination u is
also normally distributed with mean µu and variance �2

u. Thus, we can calculate the
probability of u  0 using the standard normal distribution by transforming u into
its standardized normal equivalent value z. Using the CDF of the standard normal
distribution �(.), we have:

pr

⇢
z  �µu

�u

�
= 1� �

✓
µu

�u

◆
(4.5)

We can replace the random inequality restriction in the Chance Constrained DEA
Problem (CCDEAP)(4.1) with an equivalent restriction, which is given by 1 �
�
⇣

µu

�u

⌘
� 1 � ↵ () �

⇣
µu

�u

⌘
 ↵ = �(e), where ↵ is the confidence level, and

e is the standard normal quantile corresponding to the desired level of confidence.
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Since �(.) is an increasing function, we can simplify this restriction to µu  e�u,
substituting equation(4.3) and (4.4) in µu  e�u, we get following equivalent deter-
ministic model of (4.1) ;

Min Zp = ✓

Subject to

nX

i=n

�iµi � ✓µp  e

vuut
nX

i=1,i 6=p

�i
2�i2 + (�p � ✓)2�2

p + 2cov(xi, xp) 8j = 1, 2, . . . , Js

nX

i=1

�ixi  ✓xp, 8j = 1, . . . , JD

nX

i=1

�iyi � yp, (8k = {1, . . . , s})

nX

i=1

�i = 1

�i � 0, i = 1, 2, . . . , n
(4.6)

The Non-Linear programming model that was developed above can be employed to
assess the e�ciency of di↵erent DMUs in relation to each other.

Illustration with example

To demonstrate the practical use of this model, we have taken the hypothetical
data for three universities([11]). By using this model, we can compare the relative
e�ciency of each university with respect to the others.

Table(B.1) presents the data for the deterministic input and output variables of three
hypothetical universities. The input variables are the number of professors in each
university, and the output variables are the number of diplomas, bachelor’s, and
master’s granted in a year by each university. The table shows the values for these
variables for each university.
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Table (B.1) provides the parameters of the stochastic input variable which is the
annual budget of each university (DMU). The data in the table represent the mean
and variance of the budget for each university. The budget variable is assumed to
be normally distributed with di↵erent mean and variance for each university.

In this problem, we are assuming a significance level of 5%, which corresponds to
a value of 1.96. As explained in Model (16), we need to provide a Non-Linear
Programming (NLP) formulation for each university in order to measure their relative
e�ciency. For evaluating the relative e�ciency of University A, we need to solve a
specific NLP problem[11].

Minimize ZA = ✓ s.t.

14�A + 15�B + 12�C � 14✓  1.96
⇥q

1.5�2B + 1.4(�A � ✓)2 + 2 · 0.9

+
q

1.2�2C + 1.4(�A � ✓)2 + 2 · 0.6
⇤

5�A + 8�B + 7�C  5✓

9�A + 5�B + 4�C � 9

4�A + 7�B + 9�C � 4

16�A + 10�B + 13�C � 16

�A + �B + �C = 1

�A,�B,�C � 0

To obtain the relative e�ciency of university A, we can solve the problem using a
suitable library in Python. The code for this problem can be found in the appendix
chapter(A.3) and the optimal value obtained is the Optimal Solution, similarly we can
adjust the coe�cient of appropriate data to calculate the e�ciency of the university
B and C. below is the table for the e�ciency. The values of LambdaA, LambdaC ,
Theta, and E�ciency have been rounded to two decimal places where applicable,
and scientific notation has been used for small values.

Lambda A Lambda B Lambda C Theta % E�ciency
University A 1.0 0.0 2.22e-16 1.00 100.00(e�cient)
University B 0.40 0.0 0.60 0.78 77.50(ine�cient)
University C 4.99e-16 0.0 1.0 1.00 100.00(e�cient)

Table 4.1: Optimal solution table
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The above analysis indicates that Universities A and C demonstrate e�ciency in their
performance, while University B falls short in this regard. Essentially, this means
that University B produces lower outputs despite having a considerable amount of
resources at its disposal, specifically a larger number of professors and a higher bud-
get allocation compared to the other two institutions. As we see in the table (B.1)
and (B.1)that University B has the greatest input levels among the three universities
but fails to achieve proportionately high outputs, thereby reflecting its ine�ciency
which is verified by above model.
In conclusion, the model (4.6) presents a promising approach for evaluating perfor-
mance in the context of multiple inputs and outputs, especially when dealing with a
mix of deterministic and stochastic variables. Future work will focus on applying the
(4.6) model to real-world cases and further expanding the model to accommodate
various probability distributions and incorporate both stochastic input and output
variables.

4.2 Linearization of Stochastic DEA through Sym-
metric Error Structure([3])

In the previous section, we developed a non-linear stochastic input-oriented model
based on Chance Constrained Programming, which can be challenging to solve in
certain cases. In this section, we will introduce a symmetric error structure that
allows us to obtain an equivalent non-linear deterministic model for the stochastic
CCR model. Subsequently, we will transform this deterministic model into a linear
form, thereby simplifying the solution process.
Let We have a set of n DMUs, each with m inputs denoted by xij and s outputs
represented by yrj, as specified in the Notations page(6). All of these input and
output vectors are non-negative and non-zero. The production possibility set for the
CCR model, defined as TCCR = T (CRS), is given in chapter 2 (2.2). In order to assess
the e�ciency of the target DMUo, we employ the input-oriented and output-oriented
radial form of the CCR model, as presented in the table (2.6,2.11) as below:

In the aforementioned CCR model, input and output vectors are considered to have
deterministic values. However, let’s examine a scenario in which these data points
are treated as random variables. We will assume that random input and output
vectors are provided, along with their respective expectation vectors. Furthermore,
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Input-oriented CCR Output-oriented CCR
Objective Function ✓o(↵) = min ✓ 'o(↵) = max'

Constraint 1
Pn

j=1 xij�j  ✓xio, i = 1, . . . ,m
Pn

j=1 xij�j  xio, i = 1, . . . ,m
Constraint 2

Pn
j=1 yrj�j � yro, r = 1, . . . , s

Pn
j=1 yrj�j � 'yro, r = 1, . . . , s

Constraint 3 �j � 0, j = 1, . . . , n µj � 0, j = 1, . . . , n

Table 4.2: input-oriented and output-oriented CCR radial-form e�ciency models

each input and output is assumed to follow a normal distribution, as described in
the table below:

Random Vector Expectations Distributions
Input X̃j = (x̃1j, . . . , x̃mj) Xj = (x1j, . . . , xmj) x̃ij ⇠ N(xij, �2

ij)
Output Ỹj = (ỹ1j, . . . , ỹsj) Yj = (y1j, . . . , ysj) ỹrj ⇠ N(yrj, �02

rj)

Table 4.3: Vectors, random vectors, expected values, and distributions

Thus, the chance-constrained model associated with the input-oriented and output-
oriented stochastic CCR model for evaluating DMUo, where o belongs to the set
{1, . . . , n}, in the level of significance ↵(↵ 2 [0, 1]) is as follows:

Input-oriented CCR Output-oriented CCR
Objective Function ✓o(↵) = min ✓ 'o(↵) = max'

Constraint 1 P
nP

j2{1,...n} �jx̃ij  ✓x̃io

o
� 1� ↵ P

nP
j2{1,...n} µjx̃ij  x̃io

o
� 1� ↵

Constraint 2 P
nP

j2{1,...n} �j ỹrj � ỹro
o
� 1� ↵ P

nP
j2{1,...n} µj ỹij � 'ỹio

o
� 1� ↵

Constraint 3 �j � 0; j = 1, . . . , n µj � 0; j = 1, . . . , n

Table 4.4: Input and output-oriented chance constraint CCR SDEA

Let � be a joint standard normal distribution function. Since � is invertible(��1(↵)
represents the inverse of the cumulative distribution function (CDF) at the level of
significance ↵.) function,we can use this to convert the above chance-constrained
model in the equivalent deterministic form which is a non-linear and quadratic pro-
gramming problem.
The deterministic equivalent of the chance-constrained input-oriented CCR model,
derived by Cooper et al.([9]), and output-oriented CCR([1]is as follows:
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deterministic form of Input-oriented stochastic equivalent model:

✓o(↵) = min ✓

s.t.
nX

j=1

xij�j + s�i � ��1(↵)vi = ✓xio, i = 1, . . . ,m,

nX

j=1

yrj�j � s+r + ��1(↵)ur = yro, r = 1, . . . , s,

v2i =
X

j 6=o

X

k 6=o

�j�k cov(x̃ij, x̃ik) + 2(�o � ✓)
X

j 6=o

�j cov(x̃ij, x̃io) + (�o � ✓)2 var(x̃io), i = 1, . . . ,m,

u2
r =

X

j 6=o

X

k 6=o

�j�k cov(ỹrj, ỹrk) + 2(�o � 1)
X

j 6=o

�j cov(ỹrj, ỹro) + (�o � 1)2 var(ỹro), r = 1, . . . , s,

s�i � 0, s+r � 0, i = 1, . . . ,m, r = 1, . . . , s,

�j � 0, ur � 0, vi � 0, j = 1, . . . , n, r = 1, . . . , s, i = 1, . . . ,m.
(4.7)

deterministic form of Output-oriented stochastic equivalent model:

'o(↵) = max'

s.t.
nX

j=1

xijµj + s�i � ��1(↵)vi = xio, i = 1, . . . ,m,

nX

j=1

yrjµj � s+r + ��1(↵)ur = 'yro, r = 1, . . . , s,

u2
r =

X

j 6=o

X

k 6=o

µjµk cov(x̃ij, x̃ik) + 2(µo � ')
X

j 6=o

µj cov(x̃ij, x̃io) + (µo � ')2 var(x̃io), r = 1, . . . , s,

v2i =
X

j 6=o

X

k 6=o

µjµk cov(ỹrj, ỹrk) + 2(µo � 1)
X

j 6=o

�j cov(ỹrj, ỹro) + (�o � 1)2 var(ỹro), s = 1, . . . ,m,

s�i � 0, s+r � 0, i = 1, . . . ,m, r = 1, . . . , s,

µj � 0, ur � 0, vi � 0, j = 1, . . . , n, r = 1, . . . , s, i = 1, . . . ,m.
(4.8)

Definition 9. At the significance level ↵, a DMUo is considered stochastically output-

oriented (or input-oriented) weakly e�cient if 'o(↵) = 1 (or ✓o(↵) = 1, respectively).
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The following theorem is established by Cooper et al.([9])

Theorem 5. For models (4.7) and (4.8), the following properties hold:

1. The models are feasible across all levels of significance, denoted by ↵.

2. When ↵  0.5, the conditions 0 < ✓o(↵)  1 and 'o(↵) � 1 are satisfied.

3. If ↵  ↵0, then it is true that ✓o(↵0)  ✓o(↵) and 'o(↵0) � 'o(↵).

Stochastic E�ciency of DMUs based on Symmetric-error structure in in-
puts and outputs[3]
Now we introduce a symmetric error structure for random inputs and outputs. By
utilizing this structure, the stochastic CCR model can be transformed into a deter-
ministic linear model.
Assume that the input and output levels of the Decision-Making Units (DMUs) ex-
hibit a symmetric error structure. For each DMUj, where j 2 {1, 2.., n}, the inputs
and outputs can be represented as follows:

x̃ij = xij + aij ✏̃ij, 8i 2 {1, 2..,m};

ỹrj = yrj + brj ⇠̃rj, 8r 2 {1, 2.., s}.
In this representation, aij and brj are non-negative real values. The variables ✏̃ij
and ⇠̃rj are normally distributed random variables with mean 0 and variance �̄2.
These variables represent the errors in the input and output levels compared to their
respective mean values.

Given that the normal distribution is symmetric, this structure in the given expres-
sion is referred to as a symmetric error structure. Moreover, the following relation-
ships can be derived from the expression:

x̃ij ⇠ N(xij; �̄
2a2ij);

ỹrj ⇠ N(yrj; �̄
2b2rj).

It is important to note that any random variable with a normal distribution can be
represented as a symmetric error structure. Assume that the ith input of each DMU
is uncorrelated. Similarly, assume the rth output of each DMU is also uncorrelated.
That is, for any j 6= k,

Cov(✏̃ij, ✏̃ik) = 0; i = 1, . . . ,m; Cov(⇠̃rj, ⇠̃rk) = 0; r = 1, . . . , s. (4.9)
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Taking into account the relationships described above, we can consider a common
error for all DMUs, meaning ✏̃i = ✏̃ij and ⇠̃r = ⇠̃rj, for every j = 1, . . . , n, i = 1, . . . ,m,
and r = 1, . . . , s. Now, we derive the linear programming form of the chance-
constrained program according to M. H. Behzadi[3] as follows:

Let’s consider the i-th input constraint1 of the input-oriented model as in table(4.4).

P
(

nX

j=1

x̃ij�j  ✓x̃io

)
� 1� ↵ (4.10)

suppose

h̃i =
nX

j=1

�jx̃ij � ✓x̃io

Then from (4.10) and (4.9), we get

h̃i =

 
nX

j=1

�jxij � ✓xio

!
+ ✏̃i

 
nX

j=1

�jaij � ✓aio

!
. (4.11)

Thus, h̃i follows a normal distribution:

h̃i ⇠ N

0

@
nX

j=1

�jxij � ✓xio, �̄
2

 
nX

j=1

�jaij � ✓aio

!2
1

A . (4.12)

Using the properties of normal distribution, we can convert the stochastic constraint
(4.10) into a deterministic equivalent

For the i-th constraint (4.10) , the following deterministic equivalent can be derived:

nX

j=1

�jxij � ��1(↵)�̄|
nX

j=1

�jaij � ✓aio|  ✓xio; i = 1, . . . ,m. (4.13)

Similarly, the r-th output constraint (constraint2 in table(4.4)can be converted as:

nX

j=1

�jyrj + ��1(↵)�̄|
nX

j=1

�jbrj � bro| � yro; r = 1, . . . , s. (4.14)
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Thus, the deterministic equivalent model of input-oriented CCR as in table(4.4) can
be represented as:

min ✓

s.t.
nX

j=1

�jxij � ��1(↵)�̄|
nX

j=1

�jaij � ✓aio|  ✓xio; i = 1, . . . ,m,

nX

j=1

�jyrj + ��1(↵)�̄|
nX

j=1

�jbrj � bro| � yro; r = 1, . . . , s,

�j � 0; j = 1, . . . , n.

now we convert this non-linear model to its equivalent form by using the below
information

|x| = max{0, x}+max{0,�x} = u+ v,

where u = max{0, x} and v = max{0,�x},
x = u� v,

with the condition u, v � 0 and uv = 0.

by applying this result and introducing the notationsp+i , p
�
i and q+r , q

�
r ,we get the

following conditions[3],

nX

j=1

�jaij � ✓aio = (p+i + p�i ); i = 1, . . . ,m;

nX

j=1

�jaij � ✓aio = (p+i � p�i ); i = 1, . . . ,m;

p+i p
�
i = 0; i = 1, . . . ,m;

nX

j=1

�jbrj � bro = (q+r + q�r ); r = 1, . . . , s;

nX

j=1

�jbrj � bro = (q+r � q�r ); r = 1, . . . , s;

q+r q
�
r = 0; r = 1, . . . , s;

p+i � 0; p�i � 0; q+r � 0; q�r � 0.
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and by substituting these conditions into the above model we get the following non-
linear program(Non-linearity because of constraints p+i p

�
i = 0, q+r q

�
r = 0)

min ✓ s.t.:
nX

j=1

�jxij � ��1(↵)(p+i + p�i )  ✓xio; i = 1, . . . ,m;

nX

j=1

�jyrj + ��1(↵)(q+r + q�r ) � yro; r = 1, . . . , s;

nX

j=1

�jaij � ✓aio = p+i � p�i ; i = 1, . . . ,m;

nX

j=1

�jbrj � bro = q+r � q�r ; r = 1, . . . , s;

p+i p
�
i = 0; i = 1, . . . ,m;

q+r q
�
r = 0; r = 1, . . . , s;

�j, p
+
i , p

�
i , q

+
r , q

�
r � 0; j = 1, . . . , n; i = 1, . . . ,m; r = 1, . . . , s.

This model is nonlinear due to constraints involving the product of decision variables.
However, since any linear problem with an optimal solution has a basic optimal so-
lution, these constraints are automatically satisfied in optimal basic solutions. Thus,
these constraints can be removed by utilizing algorithms like the Simplex method,
resulting in a linear deterministic model as shown in the table below(4.5)( Similarly,
we can obtain a linear deterministic form of a chance-constrained output-oriented
model(4.4) as shown in below table(4.5))

As This Input-oriented linear model (4.5) is a special case of (4.7) this implies The-
orem(5) is applicable for this special case also, and these theorem explanation for
Input-oriented linear model derived as below:

Part 2 proof of theorem[3] establish that for the stochastic e�ciency linear model,
the optimal value of ✓ lies in the range (0, 1] for every ↵ level less than 0.5. The
proof demonstrates that the model is minimizing ✓ and that ✓ cannot be equal to or
less than 0 if ↵ is less than 0.5.
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Table 4.5: Stochastic e�ciency linear models
Input-oriented Output-oriented
✓o(↵) = min ✓ 'o(↵) = max'Pn

j=1 �jxij � ��1(↵)�̄(p+i + p�i )  ✓xio

Pn
j=1 µjxij � ��1(↵)�̄(p+i + p�i )  xio

i = 1, 2...m i = 1, 2...mPn
j=1 �jyrj + ��1(↵)�̄(q+r + q�r ) � yro

Pn
j=1 µjyrj + ��1(↵)�̄(q+r + q�r ) � 'yro

r = 1, 2...s r = 1, 2...sPn
j=1 �jaij � ✓aio = p+i � p�i

Pn
j=1 µjaij � aio = p+i � p�i

i = 1, 2...m i = 1, 2...mPn
j=1 �jbrj � bro = q+r � q�r

Pn
j=1 µjbrj � 'bro = q+r � q�r

r = 1, 2...s r = 1, 2...s
� 2 R+, p+i � 0, p�i � 0, q+r � 0, q�r � 0 µ 2 R+, p+i � 0, p�i � 0, q+r � 0, q�r � 0

part 3 and its proof [3] demonstrate that the optimal value of ✓ decreases as the ↵
level increases, i.e., ✓⇤(↵0)  ✓⇤(↵) for every ↵  ↵0 in deterministic linear model .
This is shown by proving that an optimal solution of the model for a given ↵ level
can also serve as a feasible solution for the model at a higher ↵0 level, due to the
nondecreasing nature of the inverse of the standard normal distribution function,
��1.
Some implications of these two part of theorems are that if a decision-making unit
(DMU) is e�cient at ↵0 level of error, it will also be e�cient for every ↵ level less than
↵0. Conversely, if a DMU is ine�cient at ↵0 level of error, it will remain ine�cient
for every ↵ level greater than ↵0.

For ↵ = 0.5, the model(4.5) becomes the CCR model with mean data. This implies
that if a DMU is e�cient in the CCR mean model, it will be e�cient for every ↵ level
less than 0.5. In other words, permanently e�cient DMUs can be identified by as-
sessing them at ↵ = 0.5. Furthermore, if a DMU is ine�cient at ↵ = 0, it will remain
ine�cient at all ↵ levels. By assessing DMUs at ↵ = 0.001, almost all permanently
ine�cient DMUs can be detected, since ��1(0) = �1, while ��1(0.001) ⇡ �3[3].
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An Application in Banking Sector

In this example, 20 branches of an Iranian bank are considered, each with three
stochastic inputs and five stochastic outputs, as mentioned below: Inputs:

• Personal rate (weighted combination of personal qualifications, quantity, edu-
cation, and others)

• Payable benefits (of all deposits)

• Delayed requisitions (delay in returning ceded loans and other facilities)

Outputs:

• Facilities (sum of business and individual loans)

• Amount of deposits (of current, short duration, and long duration accounts)

• Received benefits (of all ceded loans and facilities)

• Received commission (on banking operations, issuance guaranty, transferring
money, and others)

• Other resources of deposits

The data, based on ten successive months, are assumed to have a normal distribution.
The scaled parameters of the data are presented in appendix B as a table(B.3)
and(B.4). The goal is to assess the total performance of these bank branches. In
this example, it is assumed that the symmetric error structure has a value of � =
1. Therefore, the parameters aij and brj are calculated as the square root of the
variance of the respective inputs and outputs (x̃ij and ỹrj), i.e., aij =

p
Var(x̃ij) and

brj =
p

Var(ỹrj).

Using the stochastic e�ciency linear model(4.5), we evaluated the e�ciencies of all
20 branches and compiled the results in the below table with di↵erent levels of
significance. The results show that the e�ciency of each DMU increases as the level
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of error decreases. Among the DMUs, 2, 3, 8, 9, 10, 11, 15, 16, and 19 are e�cient
at a level of error of 0.5 and are therefore permanent e�cient DMUs. On the other
hand, DMUs 1, 4,5, 7, 12, 13, 14, 18, and 20 are ine�cient at a level of error of 0.001
and are therefore permanent ine�cient DMUs[3].

The e�ciency calculations were performed using Python code, which is detailed in the
Appendix A section(A.4). In this chapter, the analysis showed that it is important to

DMU 0.999 0.500 0.200 0.010 0.050 0.100 0.001
DMU1 0.726059 0.587251 0.552503 0.490487 0.519160 0.534287 0.457730
DMU2 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
DMU3 1.000000 1.000000 1.000000 0.988625 1.000000 1.000000 0.944770
DMU4 0.358747 0.276575 0.264015 0.241387 0.252158 0.257632 0.228499
DMU5 0.574451 0.487551 0.458993 0.397381 0.427294 0.442130 0.360809
DMU6 0.935613 0.919609 0.907225 0.880459 0.893233 0.899749 0.865694
DMU7 0.350661 0.480603 0.499988 0.514851 0.508678 0.504929 0.520333
DMU8 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
DMU9 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
DMU10 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
DMU11 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
DMU12 0.654844 0.807305 0.847152 0.893232 0.872020 0.860829 0.917469
DMU13 0.701129 0.908487 0.930026 0.961053 0.947660 0.939972 0.974829
DMU14 0.750727 0.693021 0.660254 0.594807 0.623249 0.639464 0.565450
DMU15 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
DMU16 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
DMU17 0.775281 0.931433 0.953502 0.987924 0.972822 0.964291 1.000000
DMU18 0.620597 0.563222 0.544975 0.510523 0.526795 0.535105 0.491056
DMU19 0.980089 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
DMU20 0.860498 0.475659 0.429495 0.361525 0.390521 0.407652 0.340587

Table 4.6: E�ciency results for each DMU with di↵erent significance levels

consider the level of error when evaluating stochastic e�ciency using the equivalent
nonlinear deterministic model of the stochastic CCR model with symmetric error
structure. The study revealed that e�ciency is a non-increasing function of the level
of error, and a DMU may be permanently ine�cient if it is not e�cient at the lowest
level of error. Future research should explore the application of symmetric error
structures in other DEA models.
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Chapter 5

Inverse DEA with Stochastic data

E�ciency evaluation is a fundamental issue in various fields, including business,
economics, and management. The conventional data envelopment analysis (DEA)
models assume deterministic data, but in many practical applications, we encounter
stochastic data due to various factors, such as financial crises, social and political
features, inflation, and natural components. To address this issue, stochastic DEA
(SDEA) has been introduced, which utilizes production economic principles and
statistical methods to estimate stochastic ine�ciency rather than deterministic or
stochastic production possibility sets (PPS).

One area of SDEA is inverse DEA (InvDEA), where an e�ciency target is set as
a strategic objective, and the primary goal is to determine the necessary input and
output vectors to achieve this target. Previous research in InvDEA focused on solving
specific problems using deterministic data. However, in this paper titled ”Inverse
Data Envelopment Analysis with Stochastic Data,” Ali Ghomi et al. propose models
for input/output estimation in the presence of stochastic data in the context of
InvDEA.

To contribute to this area, we will provide Python code for these models, making it
more accessible and applicable for researchers and practitioners in various fields. By
implementing these models, users can estimate input/output levels in the presence
of stochastic data and make more informed decisions regarding e�ciency targets,
resource allocation, and investment analysis.
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Some Information of Data

We use the notation of section 2 of Chapter 4 and Models of Chapter 3. We are
analyzing a collection of Decision-Making Units (DMUs) where the input and output
quantities follow normal probability distributions. Specifically, input levels x̄ij adhere
to a normal distribution with mean xij and variance �2

ij, while output levels ȳrj are
associated with a normal distribution that has a mean of yrj and variance  2

rj. Our
objective is to estimate these parameters, which can be challenging to determine in
real-world scenarios.

To accomplish this, we employ unbiased and e�cient estimators. According to the
stochastic Data Envelopment Analysis (DEA) literature, we gather a random sample
of size p for every DMUj. The sample comprises input and output data labeled as
x̂t
ij and ŷtrj , respectively, where i is in the set I = 1, 2..m, r is in the set O = 1, 2.., s,

and t ranges from 1 to p.

Using the random samples, we can calculate unbiased estimators for the input and
output means and variances as follows:

1. To calculate the mean of inputs (x̄ij), average the random sample:

x̄ij =
1

p

pX

t=1

x̂t
ij

2. To calculate the variance of inputs (�̄2
ij), average the squared di↵erences between

the random sample values and the estimated mean:

�̄2
ij =

1

p� 1

pX

t=1

(x̂t
ij � x̄ij)

2

3. To calculate the mean of outputs (ȳrj), average the random sample:

ȳrj =
1

p

pX

t=1

ŷtrj

4. To calculate the variance of outputs ( ̄2
rj), average the squared di↵erences between
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the random sample values and the estimated mean:

 ̄2
rj =

1

p� 1

pX

t=1

(ŷtrj � ȳrj)
2

These estimators are considered unbiased for determining the true mean and variance
of inputs and outputs. Additionally, if the sample size is su�ciently large, then x̄ij,
ȳrj, �̄2

ij, and  ̄
2
rj are considered the optimal estimators for the mean and variance of

inputs and outputs, respectively.

In conclusion, by utilizing random samples and unbiased estimators, we can esti-
mate the mean and variance of input and output quantities for each DMU, which is
essential for conducting further e�ciency evaluations when dealing with stochastic
data.

5.1 Inverse DEA in the presence of stochastic
data

In traditional Data Envelopment Analysis (DEA) models, a Decision-Making Unit’s
(DMU) e�ciency score is typically computed based on input and output levels. How-
ever, in Inverse DEA (InvDEA), the focus shifts to setting an e�ciency target as a
strategic objective. The primary goal of InvDEA is to identify the required input
and output vectors to achieve the desired e�ciency target. Q.L Wei[19] explored the
critical question in the context of InvDEA:

Question: If the e�ciency index of DMUo remains unchanged concerning other
DMUs but the input/output levels increase, to what extent should the output/input
levels of DMUo increase?

This question has been tackled using Multi-Objective Programming (MOP) problems
in the literature. The authors also investigated several theoretical and practical
aspects of InvDEA, including:

• Setting revenue targets
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• Investment analysis

• Resource allocation

• Inter-temporal dependence of data

• Fuzzy data

However, the models developed in these works, including those by Q.L Wei[19],
could not address input and output estimation in the presence of stochastic data.
Consequently, this thesis attempts to estimate input and output levels in the presence
of stochastic data, building upon the work of Q.L Wei[19].

5.1.1 Input level estimation

Considering the question posed in the first scenario of Classical DEA Models In
Chapter 4. Then considering the input-oriented case by increasing the output from
ỹo to �̃o = (ỹo + �ỹo) with �ỹo � 0,�ỹo 6= 0 then need to find input level ↵̃o =
(x̃o + �x̃o). introduce new DMUn+1 after the change in outputs, then the below
model will calculate the e�ciency index of DMUn+1 in the level of significance ↵;

✓n+1(↵) = min ✓ (5.1)

s.t. P

(
nX

j=1

�jx̃j + �n+1↵̃o  ✓↵̃o

)
� 1� ↵;

P

(
nX

j=1

�j ỹj + �n+1�̃o � �̃o

)
� 1� ↵;

�1(
nX

j=1

�j + �n+1 + �2(�1)�3⌫) = �1,

⌫ � 0, �j � 0, j = 1, . . . , n. �i 2 {0, 1}; i = 1, 2, 3
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If optimal values of (5.1) and (4.4) remain same in level of significance ↵ (that is ✓n+1(↵) =
✓o(↵)),then we say e�ciency index remains unchanged. To find the input level,
Ali Ghomi et al[13] proposed following Stochastic Multi-Objective programming
(SMOP) problem in level of significance ↵:

min(↵̃1o, ↵̃2o, . . . , ↵̃mo) (5.2)

s.t. P

(
nX

j=1

�jX̃j  ✓o(↵)↵̃o

)
� 1� ↵;

P

(
nX

j=1

�jỸj � �̃o

)
� 1� ↵;

P
n
↵̃o � Ỹo

o
� 1� ↵;

�1(
nX

j=1

�j + �2(�1)�3⌫) = �1,

⌫ � 0, �j � 0, j = 1, . . . , n. �i 2 {0, 1}; i = 1, 2, 3

.

Here (�, ↵̃o) variables and ✓o(↵)(Optimal value of input-oriented model in table(4.4)
and �̃o are constant. As we defined Weak-pareto solution ,Ali Ghomi et al[13] defined
Stochastic Pareto(SP) and Stochastic Weak-Pareto(SWP) solutions as follows;

Definition 10. Stochastic Pareto(SP): A SP solution of (5.2) at a given level

of significance ↵ is a feasible solution � = (�⇤, ↵̃⇤
1o, . . . , ˜↵⇤

mo) such that there is no

other feasible solution � = (�, ↵̃1o, . . . , ˜↵mo) with the following properties ;

P{↵̃io � ↵̃⇤
io  0} � 1� ↵ for each i = 1, 2, . . . ,m;

P{↵̃io � ↵̃⇤
io  �✏} � 1� ↵ for some i = 1, 2, . . . ,m;

Where ✏ is a non-archimedian infinitesimal.

Definition 11. Stochastic Weak Pareto(SWP): A SP solution of (5.2) at a

given level of significance ↵ is a feasible solution � = (�⇤, ↵̃⇤
1o, . . . , ˜↵⇤

mo) such that

there is no other feasible solution � = (�, ↵̃1o, . . . , ˜↵mo) with the following properties

;

P{↵̃io � ↵̃⇤
io  �✏} � 1� ↵ for some i = 1, 2, . . . ,m;
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Ali Ghomi et al[13] established the following two theorems to answer the quesions of
input level estimation in the case of the stochastic framework.

Theorem 6. Assume that � = (�⇤, ↵̃⇤
o) is an SP solution at the significance level ↵

for model (5.2), given that at least one of the following conditions is met:

1. P{|↵̃⇤
oj � X̃o| < "} � 1� ↵

2. There exists at least l 2 I such that P{↵̃⇤
lo � x̃lo � "} � 1� ↵

where " is a non-Archimedean infinitesimal. Then,

✓o(↵) = ✓n+1(↵)

.

Theorem 7. Let ⇧ = (�̄, ¯̃↵o) be a feasible solution to SMOP (5.2) such that ✓o(↵) =
✓n+1(↵). Then, ⇧ is an SWP solution at the significance level ↵ for SMOP (5.2).

Now the question is When should we begin utilizing InvDEA? Let’s assume that the
output levels of DMUo are raised from Ỹo to Ỹo + �̃Yo . We will take into account
the following assumption at the significance level ↵:

(
H0 : ✓n+1(↵) = ✓o(↵)

H1 : ✓n+1(↵) 6= ✓o(↵)
equivalently

(
H0 : ↵̃o = X̃o

H1 : ↵̃o 6= X̃o

As we have assumed

x̃ij ⇠ N
�
xij, �

2
ij

�
, 8i 2 I = {1, 2, . . . ,m} =) x̄ij ⇠ N

✓
xij,

¯�ij2

p

◆

Hence, x̄ij�xij
�̄ijp

p

is t-distributed with degree of freedom p� 1. Then we have following

(1� ↵)% confidence interval for mean inputs xij ;

xl
ij(↵) = x̄ij � t(↵

2 )
�̄ijp
p

xu
ij(↵) = x̄ij + t(↵

2 )
�̄ijp
p
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Similarly for mean outputs �rj we have;

�l
rj(↵) = �̄rj � t(↵

2 )
 ̄rjp
p

�u
rj(↵) = �̄rj + t(↵

2 )
 ̄rjp
p

where l denotes the lower bound and u denotes the upper bound of the confidence
interval.

Now assuming worst-case scenario(pessimistic) and best case scenario(Optimistic)
we have lower and upper bounds for e�ciency of DMUn+1 with (1�↵)% confidence
interval[13]:

✓ln+1 = min ✓

subject to;
X

j2J

�jx
l
ij(↵) + �n+1x

u
in+1(↵)  ✓xu

in+1(↵), 8i 2 I,

X

j2J

�j�
u
rj(↵) + �n+1�

l
rn+1(↵) � �l

rn+1(↵), 8r 2 O,

�1(
nX

j=1

�j + �2(�1)�3⌫) = �1,

⌫ � 0, �j � 0, j = 1, . . . , n. �i 2 {0, 1}; i = 1, 2, 3

✓un+1 = min ✓

subject to;
X

j2J

�jx
u
ij(↵) + �n+1x

l
in+1(↵)  ✓xl

in+1(↵), 8i 2 I,

X

j2J

�j�
l
rj(↵) + �n+1�

u
rn+1(↵) � �u

rn+1(↵), 8r 2 O

�1(
nX

j=1

�j + �2(�1)�3⌫) = �1,

⌫ � 0, �j � 0, j = 1, . . . , n. �i 2 {0, 1}; i = 1, 2, 3

(5.3)

The e�ciency score, denoted as 'n+1(↵), lies within the range defined by its lower
bound, ✓ln+1(↵), and upper bound, ✓un+1(⌫). As a basis for comparison, Model (5.1)
is employed, with the parameter ↵̃o set to X̃o.
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If the optimal value resulting from Model (5.1) does not fall within the aforemen-
tioned range, i.e., [✓ln+1(↵), ✓un+1(↵)], the method outlined in this subsection can be
applied. This approach estimates the input levels in such a way that the e�ciency
score of DMUo remains constant at the significance level ↵, represented by ✓o(↵).

5.1.2 Output level estimation

Now we reverse the question we posed in input level estimation, stated in the second
scenario of chapter 4. Let input level increased from X̃o to ↵̃o = X̃ + �X̃;�X̃ �
0,�X̃ 6= 0,need to estimate output levels �̃o = (ỹo +�ỹo) by keeping the e�ciency
�o(↵)of DMUo unchanged in level of significance ↵ (4.4).
DMUn+1 : denotes new DMU after increasing the input and output levels of DMUo;
Then the following model estimates the e�ciency index of the new DMU in signifi-
cance level of ↵.

'n+1(↵) =max'

s.t. P

(
nX

j=1

µjX̃j + µn+1↵̃o  ↵̃o

)
� 1� ↵,

P

(
nX

j=1

µjỸj + µn+1�̃o � '�̃o

)
� 1� ↵,

�1(
nX

j=1

µj + µn+1 + �2(�1)�3⌫) = �1,

⌫ � 0, µj � 0, j = 1, . . . , n. �i 2 {0, 1}; i = 1, 2, 3

.

(5.4)

If optimal values of output oriented model(4.4) and (5.4)remains same then e�ciency
index �o(↵) = �n+1(↵) . Now we introduce the following SMOP model[13] for output
estimation in the level of significance ↵ as below;
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max
⇣
�̃1o, �̃2o, . . . , �̃so

⌘

s.t. P
nP

j2J µjX̃j  ↵̃o

o
� 1� ↵,

P
nP

j2J µjỸj � �o(↵)�̃o
o
� 1� ↵,

P
n
�̃o � Ỹo

o
� 1� ↵,

�1(
Pn

j=1 µj + µn+1 + �2(�1)�3⌫) = �1,
⌫ � 0, µj � 0, j = 1, . . . , n. �i 2 {0, 1}; i = 1, 2, 3

.

(5.5)

In the given problem, (µ, �̃o) represents the variable vector. The constant value
�o(↵)denotes the optimal value of the output-oriented model in Table(4.4). Further-
more, ↵̃o is a known and fixed value.
Following theorem established by Ali Ghomi et al[13] to answer the second scenario
in stochastic case;

Theorem 8. If � = (µ⇤, �̃⇤
o = (�̃⇤

1 , . . . , �̃
⇤
s )) is a SWP solution in the level of signif-

icance ↵ to model (5.5), then �o(↵) = �n+1(↵).

Theorem 9. Let � = (µ, �̃o = (�̃1o⇤, �̃2o⇤, . . . , �̃⇤
so)) be a feasible solution to SMOP

(5.5) such that �o(↵) = �n+1(↵) . Then, � is an SWP solution in the level of

significance ↵ to SMOP (5.5).

As we derived the optimistic and pessimistic view point in the previous section using
statistical concept, similar concept will be applied to find the bound of e�ciency of
model(5.5) and we have the below result(5.5) ;

↵l
ij(↵) = ↵̄ij � t(↵

2 )
�̄ijp
p , ↵u

ij(↵) = ↵̄ij � t(↵
2 )

�̄ijp
p , 8i 2 I, j 2 J,

ylrj(↵) = ȳrj � t(↵
2 )

 ̄rjp
p , yurj(↵) = ȳrj � t(↵

2 )
 ̄rjp
p , 8r 2 O, j 2 J.

Where

• ↵̄ij: input mean

• �̄ij2: input variance

• ȳrj: output mean

•  ̄rj
2
: output variance

• t(↵2 ): T-distribution with p � 1 de-
gree of freedom
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Then we get the following model to estimate the upper and lower bound of the e�-
ciency of DMUn+1 with (1�↵)% confidence interval using optimistic and pessimistic
viewpoints;[13]

'u
n+1 = max'

s.t.
X

j2J

µj↵
l
ij(↵) + µn+1↵

u
i(n+1)(↵)  ↵u

in+1(↵), 8i 2 I,

X

j2J

µjy
u
rj(↵) + µn+1y

l
rn+1(↵) � �ylr(n+1)(↵), 8r 2 O

�1(
nX

j=1

µj + µn+1 + �2(�1)�3⌫) = �1,

⌫ � 0, µj � 0, j = 1, . . . , n. �i 2 {0, 1}; i = 1, 2, 3

'l
n+1 = max'

s.t.
X

j2J

µj↵
u
ij(↵) + µn+1↵

l
i(n+1)(↵)  ↵l

in+1(↵), 8i 2 I,

X

j2J

µjy
l
rj(↵) + µn+1y

u
r(n+1)(↵) � �yur(n+1)(↵), 8r 2 O

�1(
nX

j=1

µj + µn+1 + �2(�1)�3⌫) = �1,

⌫ � 0, µj � 0, j = 1, . . . , n. �i 2 {0, 1}; i = 1, 2, 3

(5.6)

The models (5.6) estimate the upper and lower bounds of e�ciency for DMUn+1
within a (1�↵)% confidence interval. The e�ciency index for DMUn+1, �n+1(1�↵)
falls between these bounds.Now we do the following check to find output levels.

• Optimal value of model (5.4) checked.

• Output levels set equal to original levels

• E�ciency bounds for DMUn+1 considered.

• If the value doesn’t lie within bounds, then we’ll apply the method mentioned
above.
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• Then will find output levels while keeping the e�ciency index(�o(↵)) of the
model (4.4)constant

• Retain initial e�ciency value at a specific level of significance

Now final remark is when we have a symmetric error in both input and output, then
we will solve both problems in a similar manner as we have converted the Chance-
constrained model in Chapter 5 by incorporating a symmetric error structure to
convert it into an LP problem. Below Table show LP and MOLP form of above
described Chance-constrained models (5.1) and (5.4) and SMOP (5.2) and (5.5),

Input Estimation Output Estimation

LP Form

✓n+1
o = min ✓

s.t.
nX

j=1

�jxij + �n+1↵io � ��1(↵)�̄(p+i + p�i )  ✓↵io i = 1, ..m

nX

j=1

�jyrj + �n+1�ro + ��1(↵)�̄(q+r + q�r ) � �ro r = 1, ..s

nX

j=1

�jaij + �n+1āio � ✓āio = p+i � p�i i = 1, 2..m

nX

j=1

�jbrj + �n+1b̄ro � b̄ro = q+r � q�r r = 1, 2..s

p+i � 0 p�i � 0 q+r � 0 q�r � 0 i = 1, 2..m r = 1, 2.., s

�j � 0 ; j = 1, 2, ..n

�n+1
o = min�

s.t.
nX

j=1

�jxij + �n+1↵io � ��1(↵)�̄(p+i + p�i )  ↵io i = 1, ..m

nX

j=1

�jyrj + �n+1�ro + ��1(↵)�̄(q+r + q�r ) � ��ro r = 1, ..s

nX

j=1

�jaij + �n+1āio � āio = p+i � p�i i = 1, 2..m

nX

j=1

�jbrj + �n+1b̄ro � �b̄ro = q+r � q�r r = 1, 2..s

p+i � 0 p�i � 0 q+r � 0 q�r � 0 i = 1, 2..m r = 1, 2.., s

�j � 0 ; j = 1, 2, ..n

MOLP

min(↵̃1o, ↵̃2o, . . . , ˜↵mo)

s.t.
nX

j=1

�jxij � ��1(↵)�̄(p+i + p�i )  ✓↵io i = 1, ..m

nX

j=1

�jyrj + ��1(↵)�̄(q+r + q�r ) � �ro r = 1, ..s

↵io � ��1(↵)�̄(t+i + t�i ) � xio i = 1, 2..m
nX

j=1

�jaij � ✓āio = p+i � p�i i = 1, 2..m

nX

j=1

�jbrj � b̄ro = q+r � q�r r = 1, 2..s

āio � aio = t+i + t�i i = 1, 2..,m

t+i � 0 t�i � 0 p+i � 0 p�i � 0 i = 1, 2, ..m

q+r � 0 q�r � 0 r = 1, 2, .., s �j � 0 ; j = 1, 2, ..n

max
⇣
�̃1o, �̃2o, . . . , �̃so

⌘

s.t.
nX

j=1

�jxij � ��1(↵)�̄(p+i + p�i )  ↵io i = 1, ..m

nX

j=1

�jyrj + ��1(↵)�̄(q+r + q�r ) � ��ro r = 1, ..s

�ro � ��1(↵)�̄(t+r + t�r ) � yro r = 1, 2..s
nX

j=1

�jaij � āio = p+i � p�i i = 1, 2..m

nX

j=1

�jbrj � �b̄ro = q+r � q�r r = 1, 2..s

b̄ro � bro = t+r + t�r r = 1, 2.., s

�j � 0 ; j = 1, 2, ..n p+i � 0 p�i � 0 i = 1, 2, ..m

q+r � 0 q�r � 0 t+r � 0 t�r � 0r = 1, 2, .., s

Table 5.1: LP and MLOP form of Chance-constrained Inverse DEA in significance
level ↵
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5.2 Application in Banking Sector

This section demonstrates the application of the described methodology in the con-
text of the banking industry by utilizing a dataset from 20 branches of an Iranian
commercial bank. The goal is to validate the practicality of the research objectives.
The dataset, which comprises three input factors and five output factors, has been
obtained from the work of Behzadi and Mirbolouki and is displayed in Table(B.3)
and (B.4). the suggested methodology can be applied to various domains, not just
the banking sector.

In the existing literature, there are two dominant approaches for selecting input and
output factors: the production approach and the intermediation approach. For this
study, we have chosen to employ the intermediation approach.

• Inputs:

– Personal rate (x̃1): A weighted combination of personal qualifications,
quantity, education, and other bank branch factors, considered as the
cost input.

– Payable benefits (x̃2): The benefits payable to customers for all deposits
in each branch.

– Delayed requisitions (x̃3): Delays in repaying loans and other facilities in
each branch.

• Outputs:

– Facilities (ỹ1): The sum of business and individual loans in each branch.

– Amount of deposits (ỹ2): The value of various deposits, including current,
short-term, and long-term accounts in each branch.

– Received benefits (ỹ3): The benefits received from the total loans and
facilities.

– Received commission (ỹ4): The total commission received from all banking
actions, issuance guarantees, money transfers, and others in each branch.

– Other resources of deposits (ỹ5): Additional sources of deposits in each
branch.
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The cost input is determined by a weighted combination of factors such as personal
qualifications, quantity, education level, and the influence of other bank branches.
The benefits paid out to customers are derived from all deposits made in each branch.
Delayed claims represent instances of late repayment of loans and other facilities
within each branch. The output factor ”facilities” consists of the aggregated amount
of business loans and individual loans within each branch. The total amount of
deposits is represented by the combined value of various deposit types, such as current
accounts, short-term accounts, and long-term accounts in each branch. The benefits
received are determined by the overall loans and facilities, while the commissions
acquired are the aggregate amount of all banking activities, including the issuance
of guarantees, money transfers, and other related operations within each branch.

The table(4.6) shows the calculation of each DMUs under CRS technology at various
significance levels. From the table(4.6) it is clear that DMU10 is e�cient at the
significance level ↵ = 0.05 as ✓10(0.05) = 1; For DMU10, we aim to investigate the
possible increases in input levels while keeping its e�ciency index unchanged at the
significance level of 0.05. The input levels include personal rate, payable benefits,
and delayed requisitions.

The below table shows the change in output levels of DMU10 ;

Table 5.2: The percentage of expected increases in the output levels for DMU10.
Facilities Amount of Deposits Received Benefits Received Commission Other Resources of Deposits

Outputs Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance
Old Output ( ˜Y 10) 1229.1 69.02 194.58 17.35 25.91 12.3 86.76 22.1 600.6 86.34
New Output (�̃10) 1309.1 73.02 204.58 18.35 27.11 12.8 91.76 22.3 615.6 87.34
Expected Increase (� ˜Y 10) 80.0 4.0 10.0 1.0 1.2 0.5 5.0 0.2 15.0 1.0
Percentage Changes 6.51% 5.80% 5.14% 5.76% 4.63% 4.07% 5.76% 0.90% 2.50% 1.16%

Now we will employ MOLP in input orientation as in table(5.1) to analyze the
change in input data of DMU10 in the level of significance 0.05 and result is shown
in Table(5.3) and python code for calculation is attached in Appendix section.

Table(5.3) o↵ers two scenarios for decision-makers to select the most suitable strategy
for expanding DMU10. These scenarios ensure that the e�ciency score remains
equal to one at the 0.05 significance level, based on the input data of DMU10. By
increasing the output levels of DMU10 from Old Output (Ỹ10) to New Output (�̃10),
the decision-makers should do the following operations to maintain the e�ciency
score i.e. ✓10 = 1:
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Table 5.3: The percentage of necessary increases in the inputs for DMU10.
Inputs Personal rate (↵̃1

10) Payable benefits (↵̃2
10) Delayed requisitions (↵̃3

10)

Mean Variance Mean Variance Mean Variance

Initial input DMU10 19.88 0.25 46.41 53.1 12.81 0.38
The first SP solution (↵̃1) 20.98 0.28 49.04 57.33 14.88 0.77

The expected increase
⇣
�X̃10

⌘
1.10 0.03 2.63 4.23 2.07 0.39

Percentage increases 5.53% 12.00% 5.67% 7.97% 16.17% 102.63%

The second SP solution (↵̃2) 20.87 0.29 48.62 57.06 15.73 1.39

The expected increase
⇣
�X̃10

⌘
0.99 0.04 2.21 3.96 2.92 1.01

Percentage increases 4.98% 16.00% 4.76% 7.46% 22.79% 266.32%

1. For the personal rate input level ( ↵̃1
10):

• In Scenario 1, the mean should increase by 5.53% and the variance by
12.00%.

• In Scenario 2, the mean should increase by 4.98% and the variance by
16.00%.

2. For the payable benefits input level (↵̃2
10):

• In Scenario 1, the mean should increase by 5.67% and the variance by
7.97%.

• In Scenario 2, the mean should increase by 4.76% and the variance by
7.46%.

3. For the delayed requisitions input level (↵̃3
10):

• In Scenario 1, the mean should increase by 16.17% and the variance by
102.63%.

• In Scenario 2, the mean should increase by 22.79% and the variance by
266.32%.

Decision-makers can review the two scenarios and choose the most appropriate one
for expanding DMU10, considering the specific context and constraints of their or-
ganization. Each scenario suggests di↵erent degrees of input level increases, allowing
decision-makers to weigh the trade-o↵s and select the most suitable option for achiev-
ing growth while maintaining e�ciency.
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Now we will anlysize similar case in case of a ine�cient DMU18.Below Table illus-
trates the data for DMU18, which is currently ine�cient with an e�ciency index of
0.53. The table displays the changes in output levels for DMU18, assuming that its
e�ciency index remains unchanged at the 0.53 level while the output levels increase
from Old Output (Ỹ18) to New Output (�̃18). The expected percentage increases in
the various outputs are also provided in the table.

Outputs Facilities
Amount of
deposits

Received
benefits

Received
commission

Other resources
of deposits

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

Old output
⇣
Ỹ18

⌘
259.21 34.21 81.779 21.65 5.212 1.94 8.021 3.52 107.9 13.07

New output
⇣
�̃18
⌘

271.52 36.19 85.219 22.38 5.432 2.05 8.351 3.68 113.4 13.35

The expected increase
⇣
�Ỹ18

⌘
12.31 1.98 3.44 0.73 0.22 0.11 0.33 0.16 5.5 0.28

Percentage changes 4.75% 5.78% 4.21% 3.37% 4.22% 5.67% 4.12% 4.55% 5.10% 2.14%

Table 5.4: The percentage of expected increase in the outputs for DMU18.

Table(5.5) demonstrates the necessary increases in input levels for DMU18 in order to
maintain its current e�ciency index while increasing the output levels. Two scenarios
are presented, the first SP solution (↵̃118) and the second SP solution (↵̃218), each
o↵ering di↵erent percentages of necessary input level increases.

Table 5.5: The percentage of necessary increases in the inputs for DMU18.

Inputs Personal rate Payable benefits Delayed requisitions

Mean Variance Mean Variance Mean Variance

Old input
⇣
X̃18

⌘
13.71 0.18 40.32 51.4 10.88 0.12

First SP solution (↵̃118) 15.27046 1.039409 40.0856 51.46431 26.1024 0.66521

Expected increase
⇣
�X̃1

18

⌘
1.56046 0.859409 -0.2344 0.06431 15.2224 0.54521

Percentage increases 11.38% 477.45% -0.58% 0.13% 139.94% 454.34%

Second SP solution (↵̃218) 21.1160 0.201329 36.8938 25.14718 34.8968 11.06882

Expected increase
⇣
�X̃2

18

⌘
7.4060 0.021329 -3.4262 -26.25282 24.0168 10.94882

Percentage increases 54.01% 11.85% -8.50% -51.12% 220.70% 9124.02%

These two scenarios o↵er decision-makers alternative strategies for expanding DMU18
while preserving its e�ciency index at the 0.53 level. The required input level ad-
justments for each scenario are as follows:

1. For the personal rate input level :

69



• In Scenario 1, the mean should increase by 11.38% and the variance by
477.45%.

• In Scenario 2, the mean should increase by 54.01% and the variance by
11.85%.

2. For the payable benefits input level :

• In Scenario 1, the mean should decrease by 0.58% and the variance in-
crease by 0.13%.

• In Scenario 2, the mean should decrease by 8.50% and the variance de-
crease by 51.12%.

3. For the delayed requisitions input level :

• In Scenario 1, the mean should increase by 139.94% and the variance by
454.34%.

• In Scenario 2, the mean should increase by 220.70% and the variance by
9124.02%.

Decision-makers can evaluate these scenarios and select the most suitable one for
DMU18 expansion, considering their organization’s specific context and constraints.
Each scenario suggests varying input level increases, enabling decision-makers to
assess the trade-o↵s and choose the best option for growth while preserving e�ciency.

In summary, Tables (5.4) and (5.5) provides decision-makers with valuable infor-
mation on the changes in output levels for DMU18 and the necessary increases in
input levels under two di↵erent scenarios. This information allows decision-makers
to choose the most appropriate strategy for expanding DMU18 while maintaining its
e�ciency index at the 0.53 level.

Conclusion

In this Chapter, we expanded the InvDEA approach for input/output estimation
with stochastic data, presenting a new optimality concept in multi-objective opti-
mization problems [13]. The application of this methodology in the banking sector
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demonstrated its e↵ectiveness in achieving desired e�ciency levels. This work paves
the way for future research in dynamic and network DEA frameworks and practical
applications in various industries[13].
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Chapter 6

Conclusion and Future Research

6.1 Summary of Contributions:

This thesis has presented a comprehensive exploration of classical DEA models, in-
verse DEA, and stochastic DEA, culminating in the development of new inverse DEA
models that incorporate stochastic data. The main contributions of this research are:

• A detailed introduction to classical DEA models, including the CCR and BCC
models, along with their Python Codes for Practical implementations.

• An examination of inverse DEA and its application to e�ciency analysis in a
case study of 15 retail stores with hypothetical data.

• A thorough introduction to stochastic DEA models and their real-world appli-
cations, considering the uncertainty inherent in data.

• The development and application of new inverse DEA models that account for
stochastic data, which enhances the applicability of DEA models in uncertain
environments.

• Python code implementation for each DEA model, provided in the Appendix,
to aid in the practical application and replication of the models.

6.2 Future Research

This thesis lays the foundation for several potential research directions, which can
further enhance and refine the methodologies and applications of DEA models in
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uncertain environments. Future research opportunities include:

• Investigating various types of uncertainty in DEA models, such as interval or
fuzzy data, to broaden their applicability in diverse real-world situations.

• Developing more e�cient algorithms to solve large-scale problems and high-
dimensional data in DEA models, improving their scalability and computa-
tional e�ciency.

• Incorporating machine learning and artificial intelligence techniques into DEA
models, aiming to enhance their performance, predictive capabilities, and model
selection processes.

• Examining the robustness and sensitivity of the proposed DEA models against
outliers and data errors, and devising methods to mitigate their potential im-
pact on model performance.

• Conducting comparative studies of the proposed DEA models with other e�-
ciency measurement techniques, both deterministic and stochastic, to further
validate their usefulness and applicability in real-world settings.

• Applying the developed DEA models to a variety of industries and sectors,
such as healthcare, education, and energy, to demonstrate their practical im-
plications and e↵ectiveness in di↵erent contexts.

By pursuing these research avenues, future studies can continue to enhance and
refine DEA models, particularly in the context of uncertain environments, ultimately
leading to more robust and accurate e�ciency analyses across various industries and
settings.
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Appendix A

Code listings

A.1 Python Codes for CCR, BCC, ADDITIVE,
and SBM models

All codes use Gurobi Python and data will be in the format of a NumPy array. And
by importing necessary libraries like;
import numpy as np
import pandas as pd
from gurobipy import Model, GRB, quicksum and set data as numpy array

A.1.1 CCR Codes

Codes for the First Phase for calculating e�ciencies of the CCR model:

Listing A.1: CCR Phase 1 code

1 input_data = np.array ([])

2 output_data = np.array ([])

3 def input_efficiencyCCR(input_data , output_data):

4 n, m = input_data.shape

5 n, s = output_data.shape

6 efficiencies = []

7

8 for o in range(n):

9 model = Model("InputEfficiency")

10 model.setParam(GRB.Param.OutputFlag , 0)

11

12 lambdas = [model.addVar(lb=0, name=f"lambda_{j}") for
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j in range(n)]

13 theta = model.addVar(lb=0, name="theta")

14

15 model.setObjective(theta , GRB.MINIMIZE)

16

17 for i in range(m):

18 model.addConstr(quicksum(lambdas[j] *

input_data[j, i] for j in range(n)) <= theta *

input_data[o, i])

19

20 for r in range(s):

21 model.addConstr(quicksum(lambdas[j] *

output_data[j, r] for j in range(n)) >=

output_data[o, r])

22

23 model.optimize ()

24

25 efficiencies.append(model.objVal)

26

27 return efficiencies

28 input_efficiencies = input_efficiencyCCR(input_data ,

output_data)

29 print(input_efficiencies)

Now below codes is for maximizing slacks of the CCR model, which is Phase 2 of
the CCR model and we use above obtained input e�ciencies in Phase2:

Listing A.2: CCR Phase 2 code

1 def phase_twoCCR(input_data , output_data , input_efficiencies):

2 n, m = input_data.shape

3 n, s = output_data.shape

4 results = []

5

6 for o in range(n):

7 theta_star = input_efficiencies[o]

8 model = Model("Phase2")

9 model.setParam(GRB.Param.OutputFlag , 0)

10

11 lambdas = [model.addVar(lb=0, name=f"lambda_{j}") for

j in range(n)]
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12 S_minus = [model.addVar(lb=0, name=f"S_minus_{i}")

for i in range(m)]

13 S_plus = [model.addVar(lb=0, name=f"S_plus_{r}") for

r in range(s)]

14

15 model.setObjective(quicksum(S_minus) +

quicksum(S_plus), GRB.MAXIMIZE)

16

17 for i in range(m):

18 model.addConstr(quicksum(lambdas[j] *

input_data[j, i] for j in range(n)) +

S_minus[i] == theta_star * input_data[o, i])

19

20 for r in range(s):

21 model.addConstr(quicksum(lambdas[j] *

output_data[j, r] for j in range(n)) -

S_plus[r] >= output_data[o, r])

22

23 model.optimize ()

24

25 results.append ({

26 ’DMU’: o,

27 ’efficiency ’: theta_star ,

28 ’slacks_minus ’: [S_minus[i].x for i in range(m)],

29 ’slacks_plus ’: [S_plus[r].x for r in range(s)],

30 ’Lambda ’: [lambdas[j].x for j in range(n)]

31 })

32

33 return results

34

35 phase_two_results = phase_twoCCR(input_data , output_data ,

input_efficiencies)

36 results_df = pd.DataFrame(phase_two_results)

37 print(results_df)

A.1.2 BCC Codes

Below code will solve Phase 1 and Phase 2 of BCC Models:

78



1 #Phase one of BCC model

2 def input_efficiencyBCC(input_data , output_data):

3 n, m = input_data.shape

4 n, s = output_data.shape

5 efficiencies = []

6

7 for o in range(n):

8 model = Model (" InputEfficiency ")

9 model.setParam(GRB.Param.OutputFlag , 0)

10

11 lambdas = [model.addVar(lb=0, name=f"lambda_{j}") for

j in range(n)]

12 theta = model.addVar(lb=0, name="theta ")

13

14 model.setObjective(theta , GRB.MINIMIZE)

15

16 for i in range(m):

17 model.addConstr(quicksum(lambdas[j] *

input_data[j, i] for j in range(n)) <= theta *

input_data[o, i])

18

19 for r in range(s):

20 model.addConstr(quicksum(lambdas[j] *

output_data[j, r] for j in range(n)) >=

output_data[o, r])

21

22 model.addConstr(quicksum(lambdas[j] for j in

range(n)) ==1)

23

24 model.optimize ()

25

26 efficiencies.append(model.objVal)

27

28 return efficiencies

29

30

31 input_efficiencies = input_efficiencyBCC(input_data ,

output_data)

32 print(input_efficiencies)

33
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34

35 #phase two of BCC model

36 def phase_twoBCC(input_data , output_data , input_efficiencies):

37 n, m = input_data.shape

38 n, s = output_data.shape

39 results = []

40

41 for o in range(n):

42 theta_star = input_efficiencies[o]

43 model = Model (" Phase2 ")

44 model.setParam(GRB.Param.OutputFlag , 0)

45

46 lambdas = [model.addVar(lb=0, name=f"lambda_{j}") for

j in range(n)]

47 S_minus = [model.addVar(lb=0, name=f"S_minus_{i}")

for i in range(m)]

48 S_plus = [model.addVar(lb=0, name=f"S_plus_{r}") for

r in range(s)]

49

50 model.setObjective(quicksum(S_minus) +

quicksum(S_plus), GRB.MAXIMIZE)

51

52 for i in range(m):

53 model.addConstr(quicksum(lambdas[j] *

input_data[j, i] for j in range(n)) +

S_minus[i] == theta_star * input_data[o, i])

54

55 for r in range(s):

56 model.addConstr(quicksum(lambdas[j] *

output_data[j, r] for j in range(n)) -

S_plus[r] >= output_data[o, r])

57

58 model.addConstr(quicksum(lambdas[j] for j in

range(n)) ==1)

59 model.optimize ()

60

61 results.append ({

62 ’DMU ’: o,

63 ’efficiency ’: theta_star ,

64 ’slacks_minus ’: [S_minus[i].x for i in range(m)],

65 ’slacks_plus ’: [S_plus[r].x for r in range(s)],
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66 ’Lambda ’: [lambdas[j].x for j in range(n)]

67 })

68

69 return results

70

71 phase_two_results = phase_twoBCC(input_data , output_data ,

input_efficiencies)

72 results_df = pd.DataFrame(phase_two_results)

73 print(results_df)

A.1.3 Additive model Code

1 def additive_model(input_data , output_data):

2 n, m = input_data.shape

3 n, s = output_data.shape

4 results = []

5

6 for o in range(n):

7 model = Model (" AdditiveModel ")

8 model.setParam(GRB.Param.OutputFlag , 0)

9

10 lambdas = [model.addVar(lb=0, name=f"lambda_{j}") for

j in range(n)]

11 S_minus = [model.addVar(lb=0, name=f"S_minus_{i}")

for i in range(m)]

12 S_plus = [model.addVar(lb=0, name=f"S_plus_{r}") for

r in range(s)]

13

14 model.setObjective(quicksum(S_minus) +

quicksum(S_plus), GRB.MAXIMIZE)

15

16 for i in range(m):

17 model.addConstr(quicksum(lambdas[j] *

input_data[j, i] for j in range(n)) +

S_minus[i] == input_data[o, i])

18

19 for r in range(s):

20 model.addConstr(quicksum(lambdas[j] *

output_data[j, r] for j in range(n)) -
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S_plus[r] == output_data[o, r])

21

22 model.addConstr(quicksum(lambdas[j] for j in

range(n)) == 1)

23

24 model.optimize ()

25

26 results.append ({

27 ’DMU ’: o,

28 ’slacks_minus ’: [S_minus[i].x for i in range(m)],

29 ’slacks_plus ’: [S_plus[r].x for r in range(s)],

30 ’Lambda ’: [lambdas[j].x for j in range(n)]

31 })

32

33 return results

34

35 additive_model_results = additive_model(input_data ,

output_data)

36 results_df = pd.DataFrame(additive_model_results)

37 print(results_df)

A.1.4 SBM codes

1 def sbm_model(input_data , output_data):

2 n, m = input_data.shape

3 n, s = output_data.shape

4 results = []

5

6 for o in range(n):

7 model = Model (" OriginalSBM_Model ")

8 model.setParam(GRB.Param.OutputFlag , 0)

9

10 Lambda = [model.addVar(lb=0, name=f"Lambda_{j}") for

j in range(n)]

11 S_minus = [model.addVar(lb=0, name=f"S_minus_{i}")

for i in range(m)]

12 S_plus = [model.addVar(lb=0, name=f"S_plus_{r}") for

r in range(s)]
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13 t = model.addVar(lb=0, name="t")

14

15 model.setObjective(t - quicksum(S_minus[i] /

input_data[o, i] for i in range(m)) / m,

GRB.MINIMIZE)

16

17 model.addConstr(t + quicksum(S_plus[r] /

output_data[o, r] for r in range(s)) / s == 1)

18

19 for i in range(m):

20 model.addConstr(quicksum(Lambda[j] *

input_data[j, i] for j in range(n)) == t *

input_data[o, i] - S_minus[i])

21

22 for r in range(s):

23 model.addConstr(quicksum(Lambda[j] *

output_data[j, r] for j in range(n)) == t *

output_data[o, r] + S_plus[r])

24

25 model.optimize ()

26

27 rho_star = model.objVal

28 t_star = t.x

29 lambda_star = [Lambda[j].x / t_star for j in range(n)]

30 s_minus_star = [S_minus[i].x / t_star for i in

range(m)]

31 s_plus_star = [S_plus[r].x / t_star for r in range(s)]

32

33 results.append ({

34 ’DMU ’: o,

35 ’rho ’: rho_star ,

36 ’lambda ’: lambda_star ,

37 ’s_minus ’: s_minus_star ,

38 ’s_plus ’: s_plus_star

39 })

40

41 return results

42

43 sbm_model_results = sbm_model(input_data , output_data)

44 results_df = pd.DataFrame(sbm_model_results)

45 print(results_df)
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A.2 Python Codes for inverse DEA for data of 15
Stores

This Code calculates the Input-Output e�ciencies of stores

Listing A.3: E�ciency Calculation code for Stores

1 import numpy as np

2 from gurobipy import Model , quicksum , GRB

3 input_data = np.array ([ [500, 1200] , [600, 1500] , [450,

1000] , [800, 2000] , [900, 2200] ,

4 [400, 1100], [550, 1300], [650, 1700], [300, 900],

[750, 1800],

5 [700, 1600], [850, 2100], [350, 950], [950, 2300],

[1000 , 2400] , ])

6 output_data = np.array ([ [500000 , 0.80] ,[600000 ,

0.82] ,[400000 , 0.75] ,[900000 , 0.85] , [1000000 , 0.90] ,

7 [350000 , 0.70], [450000 , 0.78], [700000 , 0.84], [300000 ,

0.68] , [800000 , 0.83] , [750000 , 0.81] , [950000 , 0.88] ,

[320000 , 0.72], [1100000 , 0.92], [1200000 ,0.95] ,])

8 import pandas as pd

9 from gurobipy import Model , GRB , quicksum

10

11 def efficiency(input_data , output_data):

12 n, m = input_data.shape

13 n, s = output_data.shape

14 input_efficiencies = []

15 output_efficiencies = []

16 for o in range(n):

17 input_model = Model("input_efficiency")

18 input_model.setParam(GRB.Param.OutputFlag , 0)

19 lambdas_input = [input_model.addVar(lb=0,

name=f"lambda_input_{j}") for j in range(n)]

20 theta_input = input_model.addVar(lb=0,

name="theta_input")

21 input_model.setObjective(theta_input , GRB.MINIMIZE)
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22 input_model.addConstr(quicksum(lambdas_input[j] for j

in range(n)) == 1)

23 for i in range(m):

24 input_model.addConstr(quicksum(lambdas_input[j] *

input_data[j, i] for j in range(n)) <=

theta_input * input_data[o, i])

25 for r in range(s):

26 input_model.addConstr(quicksum(lambdas_input[j] *

output_data[j, r] for j in range(n)) >=

output_data[o, r])

27 input_model.optimize ()

28 input_efficiency = theta_input.X

29 input_efficiencies.append(input_efficiency)

30 output_model = Model("output_efficiency")

31 output_model.setParam(GRB.Param.OutputFlag , 0)

32 lambdas_output = [output_model.addVar(lb=0,

name=f"lambda_output_{j}") for j in range(n)]

33 phi = output_model.addVar(lb=0, name="phi")

34 output_model.setObjective(phi , GRB.MAXIMIZE)

35 output_model.addConstr(quicksum(lambdas_output[j] for

j in range(n)) == 1)

36 for i in range(m):

37 output_model.addConstr(quicksum(lambdas_output[j]

* input_data[j, i] for j in range(n)) <=

input_data[o, i])

38 for r in range(s):

39 output_model.addConstr(quicksum(lambdas_output[j]

* output_data[j, r] for j in range(n)) >= phi

* output_data[o, r])

40 output_model.optimize ()

41 output_efficiency = phi.X

42 output_efficiencies.append(output_efficiency)

43 return input_efficiencies , output_efficiencies

44 Stores_names = [ ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’I’,

’J’,’K’, ’L’, ’M’, ’N’, ’O’]

45 input_efficiencies , output_efficiencies =

efficiency(input_data , output_data)

46 result = pd.DataFrame ({’Supermarket ’: supermarket_names ,

’Input_Efficiencies ’: input_efficiencies ,

’Output_Efficiencies ’: output_efficiencies })

47 print(result)
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Below codes solve the income and budget based inverse DEA;

Listing A.4: Income and Budget Based python codes for Inverse DEA

1 def income_based_dea(input_data , output_data ,

input_efficiency , input_prices , output_prices , A):

2 n = len(input_data)

3 m = len(input_data [0])

4 s = len(output_data [0])

5 results = []

6 for k in range(n):

7 model = Model(f"Income_based_DEA_Supermarket_{k + 1}")

8 lambdas = model.addVars(n, name="lambda", lb=0)

9 dx = model.addVars(m, name="dx", lb=0)

10 dy = model.addVars(s, name="dy", lb=0)

11 model.setObjective(quicksum(input_prices[i] * dx[i]

for i in range(m)), GRB.MINIMIZE)

12 model.addConstr(quicksum(output_prices[r] * dy[r] for

r in range(s)) >= A, "A_constraint")

13 for i in range(m):

14 model.addConstr(

15 quicksum(lambdas[j] * input_data[j][i] for j

in range(n)) <= input_efficiency[k] *

(input_data[k][i] + dx[i]),

16 f"input_constraint_{i}" )

17 for r in range(s):

18 model.addConstr(

19 quicksum(lambdas[j] * output_data[j][r] for j

in range(n)) >= (dy[r] +

output_data[k][r]),

f"output_constraint_{r}")

20 model.addConstr(quicksum(lambdas[j] for j in

range(n)) == 1, "sum_lambda")

21 for j in range(n):

22 model.addConstr(lambdas[j] >= 0,

f"non_negative_lambda_{j}")

23 model.optimize ()

24 supermarket = k + 1

25 if model.status == GRB.Status.OPTIMAL:
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26 dx_values = [dx[i].x for i in range(m)]

27 dy_values = [dy[r].x for r in range(s)]

28 else:

29 dx_values = [None] * m

30 dy_values = [None] * s

31 results.append ([ supermarket] + dx_values + dy_values)

32 columns = [’Supermarket ’] + [f"dx_{i + 1}" for i in

range(m)] + [f"dy_{r + 1}" for r in range(s)]

33 results_df = pd.DataFrame(results , columns=columns)

34 return results_df

35

36 def budget_based_dea(input_data , output_data ,

output_efficiency , input_prices , output_prices , B):

37 n = len(input_data)

38 m = len(input_data [0])

39 s = len(output_data [0])

40 results = []

41 for k in range(n):

42 model = Model(f"Budget_based_DEA_Supermarket_{k + 1}")

43 lambdas = model.addVars(n, name="lambda", lb=0)

44 dx = model.addVars(m, name="dx", lb=0)

45 dy = model.addVars(s, name="dy", lb=0)

46 model.setObjective(quicksum(output_prices[r] * dy[r]

for r in range(s)), GRB.MAXIMIZE)

47 model.addConstr(quicksum(input_prices[i] * dx[i] for

i in range(m)) <= B, "B_constraint")

48 for i in range(m):

49 model.addConstr(

50 quicksum(lambdas[j] * input_data[j][i] for j

in range(n)) <= (input_data[k][i] + dx[i]),

51 f"input_constraint_{i}" )

52 for r in range(s):

53 model.addConstr(

54 quicksum(lambdas[j] * output_data[j][r] for j

in range(n)) >= output_efficiency[k] *

(dy[r] + output_data[k][r]),

55 f"output_constraint_{r}" )

56 model.addConstr(quicksum(lambdas[j] for j in

range(n)) == 1, "sum_lambda")

57 for j in range(n):

58 model.addConstr(lambdas[j] >= 0,
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f"non_negative_lambda_{j}")

59 model.optimize ()

60 supermarket = k + 1

61 if model.status == GRB.Status.OPTIMAL:

62 dx_values = [dx[i].x for i in range(m)]

63 dy_values = [dy[r].x for r in range(s)]

64 else:

65 dx_values = [None] * m

66 dy_values = [None] * s

67 results.append ([ supermarket] + dx_values + dy_values)

68 columns = [’Supermarket ’] + [f"dx_{i + 1}" for i in

range(m)] + [f"dy_{r + 1}" for r in range(s)]

69 results_df = pd.DataFrame(results , columns=columns)

70 return results_df

A.3 university A e�ciency calculation code

Listing A.5: UniversityAe�ciencyCode

1 import numpy as np

2 from scipy.optimize import minimize

3 def objective_function(x):

4 lambda_A , lambda_B , lambda_C , theta = x

5 return theta

6 def constraint1(x):

7 lambda_A , lambda_B , lambda_C , theta = x

8 return 1.96 * (np.sqrt (1.5 * lambda_B **2 + 1.4 *

(lambda_A - theta)**2 + 2 * 0.9) + np.sqrt (1.2 *

lambda_C **2 + 1.4 * (lambda_A - theta)**2 + 2 * 0.6))

- (14 * lambda_A + 15 * lambda_B + 12 * lambda_C - 14

* theta)

9 def constraint2(x):

10 lambda_A , lambda_B , lambda_C , theta = x

11 return 5 * theta - (5 * lambda_A + 8 * lambda_B + 7 *

lambda_C)

12 def constraint3(x):

13 lambda_A , lambda_B , lambda_C , theta = x

14 return 9 * lambda_A + 5 * lambda_B + 4 * lambda_C - 9
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15 def constraint4(x):

16 lambda_A , lambda_B , lambda_C , theta = x

17 return 4 * lambda_A + 7 * lambda_B + 9 * lambda_C - 4

18 def constraint5(x):

19 lambda_A , lambda_B , lambda_C , theta = x

20 return 16 * lambda_A + 10 * lambda_B + 13 * lambda_C - 16

21 def constraint6(x):

22 lambda_A , lambda_B , lambda_C , theta = x

23 return lambda_A + lambda_B + lambda_C - 1

24 constraints = (

25 {’type’: ’ineq’, ’fun’: constraint1},

26 {’type’: ’ineq’, ’fun’: constraint2},

27 {’type’: ’ineq’, ’fun’: constraint3},

28 {’type’: ’ineq’, ’fun’: constraint4},

29 {’type’: ’ineq’, ’fun’: constraint5},

30 {’type’: ’eq’, ’fun’: constraint6 },)

31 bounds = [(0, None), (0, None), (0, None), (0, None)]

32 x0 = np.array ([0.3, 0.3, 0.4, 0.5])

33 result = minimize(objective_function , x0 ,

constraints=constraints , bounds=bounds , method=’SLSQP ’)

34 print(’Optimal Solution:’)

35 print(’Lambda_A:’, result.x[0])

36 print(’Lambda_B:’, result.x[1])

37 print(’Lambda_C:’, result.x[2])

38 print(’Theta:’, result.x[3])

A.4 E�ciency calculation Code for 20 DMUs

Listing A.6: Data in numpy array format

1 import numpy as np

2

3 input_means = np.array ([

4 [9.131 , 18.79 , 7.228] ,.... ,[7.823 , 17.74 , 13.06]

5 ])

6

7 input_variances = np.array ([

8 [0.05 , 8.81, 0.58] ,... , [0.58 , 10.1, 8.88]
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9 ])

10

11 output_means = np.array([

12 [149.85 , 49.621 , 4.701, 4.748, 30.09] , ... ,[399.25 ,

40.985 , 11.51 , 6.432 , 82.13]

13 ])

14

15 output_variances = np.array([

16 [48.51 , 18.01 , 0.41, 0.41, 24.34] ,.... ,[10.41 , 15.93 ,

0.99, 3.25, 9.891]

17 ])

Below is the code for the e�ciency calculation of 20 banks

Listing A.7: Stochastic e�ciency code

1

2 import gurobipy

3 from scipy.stats import norm

4 from gurobipy import Model , GRB , quicksum

5 import pandas as pd

6

7

8 def solve_stochastic_dea(input_means , input_variances ,

output_means , output_variances , alpha , dmu_index):

9 num_DMUs , num_inputs = input_means.shape

10 _, num_outputs = output_means.shape

11

12 model = Model("Stochastic DEA")

13

14 theta = model.addVar(lb=0, name="theta")

15 lambdas = model.addVars(num_DMUs , lb=0, name="lambda")

16 p_plus = model.addVars(num_inputs , lb=0, name="p_plus")

17 p_minus = model.addVars(num_inputs , lb=0, name="p_minus")

18 q_plus = model.addVars(num_outputs , lb=0, name="q_plus")

19 q_minus = model.addVars(num_outputs , lb=0, name="q_minus")

20

21 model.setObjective(theta , GRB.MINIMIZE)

22

23 for i in range(num_inputs):

24 model.addConstr(quicksum(lambdas[j] * (input_means[j,
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i] - norm.ppf(alpha) * np.sqrt(input_variances[j,

i])) for j in range(num_DMUs)) <= theta *

(input_means[dmu_index , i] - norm.ppf(alpha) *

np.sqrt(input_variances[dmu_index , i])))

25 model.addConstr(quicksum(lambdas[j] *

input_variances[j, i] for j in range(num_DMUs)) -

theta * input_variances[dmu_index , i] == p_plus[i]

- p_minus[i])

26

27 for r in range(num_outputs):

28 model.addConstr(quicksum(lambdas[j] *

(output_means[j, r] + norm.ppf(alpha) *

np.sqrt(output_variances[j, r])) for j in

range(num_DMUs)) >= output_means[dmu_index , r] +

norm.ppf(alpha) *

np.sqrt(output_variances[dmu_index , r]))

29 model.addConstr(quicksum(lambdas[j] *

output_variances[j, r] for j in range(num_DMUs)) -

output_variances[dmu_index , r] == q_plus[r] -

q_minus[r])

30

31 model.optimize ()

32 return theta.X

33

34 alpha_levels = [0.999 , 0.5, 0.2, 0.01, 0.05, 0.1, 0.001]

35 num_DMUs = len(input_means)

36

37 efficiency_results = pd.DataFrame(index =[f"DMU{i+1}" for i in

range(num_DMUs)], columns=alpha_levels)

38

39 for alpha in alpha_levels:

40 for dmu_index in range(num_DMUs):

41 efficiency = solve_stochastic_dea(input_means ,

input_variances , output_means , output_variances ,

alpha , dmu_index)

42 efficiency_results.at[f"DMU{dmu_index +1}", alpha] =

efficiency

43

44 print("Efficiency results for each DMU with different alpha

levels:")

45 print(efficiency_results)
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A.5 Code for input level estimation in case of Stochas-
tic data

Listing A.8: input level estimation of 20 Banks

1 from gurobipy import Model , GRB , quicksum

2 import numpy as np

3 from scipy.stats import norm

4

5 def dea_minimize(n, m, s, x, a, y, b,o, beta , D, k,

sigma_bar , theta , w,alp):

6 model = Model("DEA")

7

8 Lambda = model.addVars(n, lb=0, name="lambda")

9 t_plus = model.addVars(m, lb=0, name="t_plus")

10 t_minus = model.addVars(m, lb=0, name="t_minus")

11 p_plus = model.addVars(m, lb=0, name="p_plus")

12 p_minus = model.addVars(m, lb=0, name="p_minus")

13 q_plus = model.addVars(s, lb=0, name="q_plus")

14 q_minus = model.addVars(s, lb=0, name="q_minus")

15 alpha = model.addVars(m, lb=0, name="alpha")

16 C = model.addVars(m, lb=0, name="C")

17 objective = quicksum(w[i] * (alpha[i] + k * C[i]) for i

in range(m))

18 model.setObjective(objective , GRB.MINIMIZE)

19

20 phi_inv_alpha = norm.ppf(alp)

21

22 for i in range(m):

23 model.addConstr(quicksum(Lambda[j] * x[i, j] for j in

range(n)) - phi_inv_alpha * sigma_bar * (p_plus[i]

+ p_minus[i]) <= theta * alpha[i])

24 for r in range(s):

25 model.addConstr(quicksum(Lambda[j] * y[r, j] for j in

range(n)) + phi_inv_alpha * sigma_bar * (q_plus[r]

+ q_minus[r]) >= beta[r])
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26 for i in range(m):

27 model.addConstr(alpha[i] - phi_inv_alpha * sigma_bar

* (t_plus[i] + t_minus[i]) >= x[i, o])

28 for i in range(m):

29 model.addConstr(quicksum(Lambda[j] * a[i, j] for j in

range(n)) - theta * C[i] == p_plus[i] - p_minus[i])

30 for r in range(s):

31 model.addConstr(quicksum(Lambda[j] * b[r, j] for j in

range(n)) - D[r] == q_plus[r] - q_minus[r])

32 for i in range(m):

33 model.addConstr(C[i] - a[i, o] == t_plus[i] -

t_minus[i])

34

35

36 model.optimize ()

37

38 if model.status == GRB.Status.OPTIMAL:

39 print("Optimal solution found")

40 for i in range(m):

41 print(f"alpha_{i+1}o: {alpha[i]}")

42 print(f"C_{i+1}o: {C[i]}")

43 else:

44 print("No optimal solution found")
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Appendix B

Data

B.1 Hypothetical data for the three universities

Input Data

Table B.1: Hypothetical data for the input and outputs for the three universities [11]

University
Deterministic Inputs Outputs
No. of Professors No. of Diploma No. of Bachelors No. of Masters

A 5 9 4 16
B 8 5 7 10
C 7 4 9 13

Output data

Table B.2: Hypothetical data for the stochastic input (budget) for the three univer-
sities[11]

University µ �2 Covariances
A 14 1.4 cov (xA, xB) = 0.9
B 15 1.5 cov (xA, xC) = 0.6
C 12 1.2 cov (xB, xC) = 0.7

B.2 Data of 20 Banks
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Table B.3: The inputs of 20 bank branches.[13]

Input 1 Input 2 Input 3

DMU Mean Variance Mean Variance Mean Variance

DMU01 9.131 0.05 18.79 8.81 7.228 0.58
DMU02 10.59 0.53 44.32 24.1 1.121 0.02
DMU03 6.712 0.86 19.73 27.7 19.21 0.47
DMU04 11.91 0.31 17.43 12.2 59.47 5.99
DMU05 7.012 0.02 10.38 2.12 12.23 0.85
DMU06 18.99 0.88 16.67 10.8 568.6 28.1
DMU07 11.16 0.01 25.46 18.6 552.8 43.2
DMU08 15.05 0.48 123.1 42.6 14.78 0.06
DMU09 8.787 0.38 36.16 38.4 361.8 23.2
DMU10 19.88 0.25 46.41 53.1 12.81 0.38
DMU11 18.92 0.17 36.88 54.5 24.43 0.01
DMU12 20.45 0.42 100.8 31.8 115.2 19.4
DMU13 12.41 0.12 20.19 10.6 78.02 24.1
DMU14 8.051 0.79 33.21 24.3 115.3 15.6
DMU15 18.48 0.92 45.36 92.6 57.52 12.8
DMU16 10.35 0.27 11.16 3.32 43.32 36.1
DMU17 9.511 0.01 31.49 38.5 173.3 3.13
DMU18 13.71 0.18 40.32 51.4 10.88 0.12
DMU19 11.69 0.26 26.44 26.2 31.22 0.05
DMU20 7.823 0.58 17.74 10.1 13.06 8.88
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Table B.4: The outputs of 20 bank branches.[12]

Output 1 Output 2 Output 3 Output 4 Output 5

DMU Mean VarianceMean VarianceMean VarianceMean VarianceMean Variance

DMU01 149.85 48.51 49.621 18.01 4.701 0.41 4.748 0.41 30.09 24.34
DMU02 50.772 8.011 73.132 13.11 1.815 0.02 3.035 0.68 5.823 0.689
DMU03 259.91 29.59 108.04 22.56 6.016 0.01 10.06 2.98 2.721 0.4392
DMU04 137.51 21.65 44.972 13.78 4.923 1.65 4.212 3.84 63.61 33.73
DMU05 95.901 2.521 31.633 18.94 2.718 0.44 9.024 7.23 64.55 31.25
DMU06 112.58 3.562 71.958 17.05 13.19 9.15 41.89 13.2 291.3 92.52
DMU07 192.97 14.56 78.015 19.56 7.791 3.56 15.89 2.34 7.499 1.268
DMU08 724.38 66.02 219.69 37.56 35.32 15.3 23.98 10.4 361.6 48.35
DMU09 548.15 41.86 86.225 28.31 17.64 3.67 86.23 17.2 565.2 175.1
DMU10 1229.1 69.02 194.58 17.35 25.91 12.3 86.76 22.1 600.6 86.34
DMU11 11557 718.1 155.32 49.13 166.6 14.1 8.142 3.11 119.9 14.89
DMU12 1132.1 35.35 248.16 23.89 46.88 26.3 31.85 4..1 96.21 44.47
DMU13 438.39 17.41 104.41 25.71 10.68 1.04 30.22 3.77 331.9 17.16
DMU14 260.82 15.32 87.369 23.44 8.415 3.52 6.101 2.86 36.93 5.777
DMU15 11190 1214 166.44 10.69 65.12 16.1 132.7 13.9 919.1 133.1
DMU16 709.85 42.19 159.48 32.78 36.89 6.28 12.15 2.51 79.66 10.52
DMU17 308.11 43.72 107.03 29.39 11.87 1.76 13.63 1.57 342.3 134.9
DMU18 259.21 34.21 81.779 21.65 5.212 1.94 8.021 3.52 107.9 13.07
DMU19 381.33 57.38 72.993 29.26 5.165 1.79 50.32 7.47 577.2 113.4
DMU20 399.25 10.41 40.985 15.93 11.51 0.99 6.432 3.25 82.13 9.891

96



Appendix C

Models

Table C.1: Generalized Input and Output Oriented inverse DEA Models
Model Input-Oriented Output-Oriented

Objective min (�x1o,�x2o, . . . ,�xmo) max (�y1o,�y2o, . . . ,�yso)
Constraints

Pn
j=1 �jxij  ✓0(xi0 +�xi0)

Pn
j=1 �jyrj � �o(yr0 +�yr0)Pn

j=1 �jyrj � yr0 +�yr0
Pn

j=1 �jxij  xi0 +�xi0

�1(
Pn

j=1 �j + �2(�1)�3⌫) = �1 �1(
Pn

j=1 �j + �2(�1)�3⌫) = �1
⌫ � 0, �j � 0, j = 1, . . . , n ⌫ � 0, �j � 0, j = 1, . . . , n

�i 2 {0, 1}; i = 1, 2, 3 �i 2 {0, 1}; i = 1, 2, 3

Input-oriented BCC Model Stochastic form of Input-oriented BCC model
Minimize Minimize
Zp = ✓ Zp = ✓

Subject to Subject to
Pn

i=1 �ixi  ✓xp, (8j = {1, . . . ,m})
Pn

i=n �iµi � �µp  e
qPn

i=1,i 6=p �i
2�i2 + (�p � ✓)2�2

p + 2cov(xi, xp) 8j = 1, 2, . . . , JsPn
i=1 �ixi  ✓xp, (8j = {1, . . . , JD})Pn

i=1 �iyi � yp, (8k = {1, . . . , s})
Pn

i=1 �iyi � yp, (8k = {1, . . . , s})Pn
i=1 �i = 1

Pn
i=1 �i = 1

�i � 0, i = 1, 2..., n �i � 0, i = 1, 2..., n
Output-oriented BCC model Stochastic form of Output-oriented BCC model

Maximize Maximize
Zp = � Zp = �

Subject to Subject toPn
i=1 �ixi  xp, (8j = {1, . . . ,m})

Pn
i=1 �ixi  ✓xp, (8j = {1, . . . ,m})

Pn
i=1 �iyi � �yp, (8k = {1, . . . , s}

Pn
i=n �iµi � �µp � e

qPn
i=1,i 6=p �i

2�i2 + (�p � �)2�2
pPn

i=1 �i = 1
Pn

i=1 �i = 1
�i � 0, i = 1, 2..., n �i � 0, i = 1, 2..., n

where e denotes the significance level

Table C.2: Stochastic Input-Output oriented Models
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