
Application of imitation learning in
automating end-to-end exploratory

data analysis

A Thesis

submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

Devarsh Patel

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

April, 2023

Supervisor: Hima Patel

Co-Supervisor: Dr. Naresh Manwani

© Devarsh Patel 2023

All rights reserved

Certificate

This is to certify that this dissertation entitled Application of imitation learning in

automating end-to-end exploratory data analysistowards the partial fulfilment of the

BS-MS dual degree programme at the Indian Institute of Science Education and Research,

Pune represents study/work carried out by Devarsh Patel at IBM Research under the

supervision of Hima Patel, STSM and Research Manager, IBM Research, and Dr. Naresh

Manwani, Assistant Professor, IIIT Hyderabad during the academic year 2022-2023.

Hima Patel

Committee:

Hima Patel

Dr. Naresh Manwani

Dr. Amit Apte

This thesis is dedicated to Maa and Papa

Declaration

I hereby declare that the matter embodied in the report entitled Application of imitation

learning in automating end-to-end exploratory data analysis are the results of the work

carried out by me at the IBM Research, Bangalore under the supervision of Hima Patel

and Dr. Naresh Manwani, and the same has not been submitted elsewhere for any other

degree.

Devarsh Patel

Acknowledgments

I am deeply thankful to everyone who has given me their encouragement and assistance

during this thesis. My supervisors, Hima Patel and Dr. Naresh Manwani, deserve my heart-

felt appreciation for their constant support, guidance, motivation, and valuable feedback

throughout this thesis. They have been excellent mentors and a role model for me, and I

am grateful for their input to my work. Moreover, I acknowledge Dr. Amit Apte, my expert

member, whose helpful comments and suggestions improved the quality of my work.

I would like to express my special thanks to my teammate Abhijit Manatkar, who was

working with me on this thesis project. He was always supportive, helpful, and cooper-

ative throughout the research process and provided valuable feedback and suggestions for

improving the quality of the work.

I would like to acknowledge the support and the resources provided by PARAM Brahma

Facility under the National Supercomputing Mission, Government of India at the Indian

Institute of Science Education and Research, Pune.

My academic journey at IISER Pune would not have been possible without the constant

support and encouragement of my friends. They have inspired me, motivated me, and

brought joy to me. I am also grateful to my family for their unconditional love and support

throughout my academic journey. My parents have always inspired me to follow my dreams

and aspirations.

ix

x

Abstract

One of the open problems in data science is how to automate the end-to-end EDA process,

which involves exploring the dataset, identifying patterns, outliers, and relationships among

variables, and preparing the data for further analysis or modeling. Some of the existing

approaches try to frame this problem as a Sequential Decision Making Problem and use

Reinforcement Learning (RL) to solve it. However, a major challenge in this approach is

how to define and assign rewards for each action (such as GROUP, FILTER, etc.) that

is taken during the EDA process. These rewards are essential for RL to learn an optimal

policy. The rewards are usually manually defined using various interestingness measures

that capture how relevant or informative an action is given the current state of the analysis.

However, these measures may not be able to capture all the important aspects of an action,

such as its impact on subsequent actions or its alignment with the analysis goals.

We present a novel end-to-end EDA method that learns to perform data analysis tasks

from human expert EDA notebooks without explicitly relying on any interestingness mea-

sures. Our method uses an imitation learning framework that learns the optimal policy for

EDA by mimicking the actions of expert data analysts. Specifically, we employ generative

adversarial imitation learning (GAIL) which allows our model to capture the essential as-

pects of data analysis in various domains. Our method can generate EDA notebooks that

are comparable to human-generated ones in terms of quality and diversity.

The proposed approach is able to generate EDA sessions on different datasets that share

the same schema. We evaluate our method on existing datasets for AutoEDA benchmarking

and on synthetic datasets. We show that our method surpasses the current state-of-the-art

end-to-end EDA method on various performance metrics and can generalize well on unseen

datasets. Moreover, we show that the EDA sessions (generated using the learned model with

our method) use a diverse set of interestingness measures for each step of the EDA process

as a byproduct.

xi

xii

Contents

Abstract xi

1 Introduction 5

1.1 Motivation and Analysis of Expert EDA Session 5

1.2 Our Contributions . 8

1.3 Related Work . 9

1.3.1 Next Step Recommendation system 10

1.3.2 Modeling user’s interestingness preferences 11

1.3.3 Auto EDA Methods . 11

2 Background information 15

2.1 Reinforcement Learning . 15

2.2 Basic concepts and terminology . 16

2.3 Policy optimization . 18

2.3.1 Trust Region Policy Optimization . 20

2.3.2 Proximal Policy Optimization . 22

3 Methodology 25

3.1 Problem Definition . 25

xiii

3.2 Generative Adversarial Imitation Learning 26

3.3 State and Action Space Representation . 27

3.3.1 Action Space . 27

3.3.2 State Space . 28

3.4 AdvEDA- System Description . 29

3.4.1 Policy and Discriminator Networks 30

3.4.2 Penalties for more coherent sessions 31

3.4.3 Training . 31

3.4.4 Policy Network initialization using Behavioural Cloning 33

3.5 Score used for explaining model’s predictions 34

3.5.1 Interestingness measures . 34

4 Experimental Evaluation 37

4.1 Dataset Details . 37

4.1.1 Cyber Security Datasets . 37

4.1.2 Synthetic datasets . 38

4.2 Experimental setup . 41

4.3 Evaluation Metrics . 42

4.4 Implementation details . 43

4.4.1 Data Preparation . 43

4.4.2 Architecture Details . 43

4.4.3 Model Initialization . 43

4.4.4 Implementation of AdvEDA . 44

5 Results and analysis 45

xiv

5.1 Baselines . 45

5.2 Results . 45

5.2.1 Ablation studies . 46

5.3 Analysis and Discussion . 47

5.3.1 Insights captured by generated trajectories 47

5.3.2 Interestingness captured in trajectories 49

5.3.3 Interestingness measure comparision analysis 50

5.3.4 Effect of STOP action . 52

5.3.5 Effect of Penalties . 53

5.3.6 Coherency reward in ATENA . 53

6 Conclusion 59

6.1 Paper communicated . 60

xv

xvi

List of Figures

1.1 Pictorial representation of the proposed system. The input to our system is
a dataset and the system outputs a sequence of operators that helps the user
to explore the dataset . 6

3.1 The state representation s formed by concatenating the features that are
extracted from the previous three displays 29

3.2 Overall flow of AdvEDA . 30

3.3 Training of the discriminator is done in mini-batches consisting of an equal
number of expert and generated trajectories 33

5.1 A comparison of Gold, ATENA and AdvEDA trajectories based on normalized
interestingess metrics. The results show that AdvEDA can adapt to different
metrics at different time steps, similar to the expert gold trajectory. ATENA,
on the other hand, only focuses on the specific metrics that it uses as reward. 51

5.2 Distribution of lengths of trajectories generated by our model with STOP action 52

1

2

List of Tables

1.1 The table shows an example of exploratory data analysis (EDA) done by an
expert and the values of different metrics that measure how interesting each
operation in the analysis sequence is. A notable observation from this expert-
generated trajectory is that different metrics emphasize different parts of the
trajectory as interesting. 7

4.1 Description of Cyber security datasets . 37

4.2 Database schema of Cyber Security datasets 38

4.3 Trajectory distribution for training across datasets 39

4.4 Trajectory distribution for synthetic dataset 41

4.5 A-EDA benchmark results on Cyber and Synthetic datasets 44

4.6 A-EDA benchmark results on Synthetic datasets 44

5.1 EDA session without penalty score on Cyber Dataset 46

5.2 Ablation study scores averaged our on Cyber dataset 47

5.3 EDA session #1 generated by model on dataset 1 47

5.4 EDA session #2 generated by model on dataset 1 48

5.5 Interestingness scores on ATENA session . 49

5.6 Interestingness scores for EDA session #1 50

5.7 Interestingness scores for EDA session #2 50

3

4

Chapter 1

Introduction

Data scientists utilise exploratory data analysis (EDA) to examine and investigate data sets

and characterise their attributes, frequently utilising various data visualisation approaches.

It helps data scientists decide how to best manipulate dataset to obtain the answers they

need, making it easier for them to identify patterns, detect anomalies, test hypotheses,

or verify assumptions. EDA is mainly used to see what data can show beyond the formal

modeling or hypothesis testing task and provides a better understanding of data set variables

and the relationships between them. It can also help determine if the statistical techniques

you are considering for data analysis are appropriate. One of the challenges involved is that

the patterns and problems in the data vary from dataset to dataset. A data scientist often

finds some patterns, develops a theory, and then has to write code to find more patterns. As

a result, there is no guarantee that all of the problems and patterns in the dataset can be

discovered. This stage is currently done by trial and error and varies from data scientist to

data scientist.

1.1 Motivation and Analysis of Expert EDA Session

A possible way to design an AutoEDA system is to formulate this problem as a sequential

decision-making problem and to use deep reinforcement learning to train a model that max-

imizes a reward function that encourages good analysis actions and discourages bad ones.

Previous works define this reward function as a combination of some of the interestingness

5

Figure 1.1: Pictorial representation of the proposed system. The input to our system is a
dataset and the system outputs a sequence of operators that helps the user to explore the
dataset

metrics mentioned above [1, 2]. An interestingness measure is a way of evaluating how rel-

evant or surprising a pattern in data is for a user, depending on various criteria such as

frequency, diversity, exceptionality, etc. ATENA [1] uses a mixture of metrics for diversity,

compactness, and coherence to model the reward function in its RL-based method. The

challegess with such a system is to be able to specify the best reward for guiding the system

to generate actions that reveal all the aspects of the dataset that would be relevant to the

user. Also, one has to consider the question - Can the reward capture all the interesting

aspects of the data that a user may want to explore?

To better analyze this question and to motivate our choice of learning from expert demon-

strations without using heuristic interestingness metrics performs for EDA. We use a cyber

security dataset as an example and compare the actions taken by an expert with the scores

obtained by different interestingness metrics. The interestingness metrics we consider are

based on previous works and are explained briefly in 3.5.1:

We use an expert’s EDA session on a cyber security dataset [3] to justify our approach

of learning from expert demonstrations without using heuristic interestingness metrics. We

compute different interestingness metrics for each step of the EDA session and report the ones

that scored above 0.8. Table 1.1 shows the sequence of expert actions and the corresponding

interestingness metrics that best captured them. The interestingness metrics we considered

6

are from [1] and [4], and we briefly describe them in Section 3.5.1 :

Action Interestingness captured
GROUP highest layer AGGREGATE COUNT packet number A-INT, Diversity
BACK -
GROUP eth src AGGREGATE COUNT packet number A-INT, Readability
GROUP ip src AGGREGATE COUNT packet number Peculiarity
FILTER info line CONTAINS Echo (ping) reply Diversity, Coherency
BACK -
BACK -
BACK -
FILTER highest layer NEQ ICMP Coherency
GROUP tcp srcport AGGREGATE COUNT packet number Diversity
GROUP ip src AGGREGATE COUNT packet number Coherency, Peculiarity
FILTER ip src NEQ 192.168.1.122 Coherency

Table 1.1: The table shows an example of exploratory data analysis (EDA) done by an
expert and the values of different metrics that measure how interesting each operation in
the analysis sequence is. A notable observation from this expert-generated trajectory is that
different metrics emphasize different parts of the trajectory as interesting.

From Table 1.1, we observe the following:

� Different interestingness metrics are optimized for each step within a single expert

session.

� Some actions optimize for peculiarity and readability, which are interestingness metrics

that ATENA does not include in its reward definition and thus, cannot train to capture.

� Multiple interestingness metrics are maximized for some actions in the session.

The same findings emerge when we examine other expert sessions as well. Systems that

rely on handcrafted rewards such as ATENA may fail to capture some important aspects

of the data that are not covered by the rewards (for example, readability and peculiarity

metrics in our analysis). This is a major limitation of such systems. We also note

that we randomly selected a few metrics from the literature for our analysis. The effect we

observed in our analysis could be more alarming if a wider range of metrics is chosen.

To obtain the goal of developing a meaningful AutoEDA system, systems like ATENA

depend on rewards that are specific to each dataset (such as coherency reward from ATENA).

7

The coherency reward of ATENA is composed of several rules that are related to each dataset.

Some examples of these rules are:

1. Rewarding Filtering/Grouping on certain columns that can be filtered/grouped, and

penalizing applying these operations on columns that cannot be filtered or grouped.

2. Rewarding using specific operators to filter the column info line.

3. Penalizing Grouping on column highest layer when the display is already filtered.

(Note : More discussion about these heuristic rules are done in Section 5.3.6 where we

investigate and analyse model results.)

The rules, including the ones mentioned above, indicate that the user already has a

high degree of familiarity with the dataset, and using them as reward functions defeats the

purpose of building an AutoEDA system in the first place. We thus conclude that it may

be hard to build generic systems that handcraft some rewards, and instead, a better version

would be to learn directly from the human-generated trajectories. In summary, we believe

that our proposed method is well motivated by the following factors:

� Building a system that can learn directly from expert sessions how to measure inter-

estingness for EDA, instead of trying to define a comprehensive set of metrics that

capture all relevant factors.

� Systems like ATENA that use RL to learn policies need very specific reward functions,

which depend on the dataset and require a lot of analysis beforehand. This defeats the

purpose of an AutoEDA system. Our method avoids reward crafting and provides a

complete end-to-end system for AutoEDA, without needing any intensive preliminary

data analysis.

1.2 Our Contributions

We challenge the assumption that manually defined reward functions can capture a user’s

intent. Instead, we suggest building a system that can automatically learn the policy from

8

human-generated training datasets. In Section 3, we present our system and we discuss our

experimental results in Sections 5.2 and 5.3. The main contributions of this work are as

follows:

� We introduce AdvEDA, a framework based on imitation learning that can auto-

matically generate EDA sessions by learning from expert sessions. Unlike previous

methods that require manual definition of reward functions to capture interestingness,

our framework can learn a policy from expert examples alone. Our system also avoids

the problem of having to do preliminary in-depth analysis on the dataset to hand-craft

a domain specific reward as done in [1].

� Our framework can generalize across datasets with the same schema, which is an

advantage over ATENA, which can only perform EDA on the dataset for which it has

been trained. ATENA needs a new model for every new dataset (even with the same

schema). Our framework can build one model that works across multiple datasets

with the same schema, resulting in a more scalable approach. We demonstrate this

on the Cyber datasets [3] (also used in ATENA) as well as on synthetically generated

datasets.

� We conduct a detailed analysis of our results and show that our approach can learn a

policy that performs well on various benchmarks with only a small number of expert

trajectories. We also show that the EDA sessions generated by our model capture mul-

tiple aspects of that makes up a good EDA session, such as interestingness, coherence

and readability. This is dicussed in detailed in Section 5.3.2 and 5.3.3.

1.3 Related Work

This section will discuss some other relevant and useful literature works that focuses on

automating exploratory data analysis. We categorize them into three main groups:

9

1.3.1 Next Step Recommendation system

These systems aim to guide the user towards the next best action to take in an exploratory

data analysis (EDA) process. Two main types of EDA recommendation systems have been

studied: data-driven systems and log-based systems.

Data-driven recommendations rely on the data presented or the outcome of previous

operations performed by the user. This system uses a predefined measure of interestingness

to evaluate the output of a specific EDA operation, such as [6] for data-visualization, [7], [8]

and [9] for finding interesting data tuple-subsets or data cube subsets, OLAP drill-down [10],

and data summaries [11]. The system searches efficiently over the space of possible EDA

operations and selects one (or top-k) with the highest interestingness score.

Log-based recommendations use historical logs of past EDA sessions by other users to

suggest relevant operations. The system learns from the patterns and preferences of previous

users and recommends operations that are likely to be useful for the current user. The input

for systems that use log-based recommendations is the current state of the user’s EDA session,

and they generate suggestions for the next exploratory operation. These systems, such as

[12], [13] and [14], use a collection of previous EDA sessions from the same or different users.

They assume that if two sessions have similar prefixes, then they are likely to have similar

continuations. To generate recommendations for an ongoing user session, they retrieve the

top-k most similar session prefixes from the collection, using a heuristic similarity measure

for EDA sessions. Then, they use the continuations of the retrieved prefixes to suggest the

next step in the ongoing user session.

Both data-driven and log-based approaches have limitations for providing personalized

recommendations to the user. The data-driven approach relies only on the available dataset

and does not account for the user’s preferences or needs. The log-based approach depends

on the existence of similar past EDA sessions that may not always be present. Therefore,

neither approach can guarantee optimal recommendations that suit the user’s context and

goals.

The authors of [15] and [16] propose hybrid EDA recommender systems that use a session

log to find similar prefixes, generate a set of possible “next-actions”, and convert them into

a set of abstract actions. These abstract actions can be further transformed to concrete

recommendations of EDA operations by selecting operations that have high interestingness

10

values according to the interestingness measures. All of these systems also use some prede-

fined measure of score and thus may overlook some interesting views of the data if they are

not captured by the user’s definition of interestingness score.

1.3.2 Modeling user’s interestingness preferences

A user’s preference for interestingness is not fixed, but depends on the data they are exploring

and how their exploration evolves over time. The authors of [17] proposed a dynamic way

of choosing an interestingness measure for each step of an EDA session, based on a kNN

classifier that predicts the user’s preference among different measures. They formulated the

problem as a multi-class classification task. This is a valuable contribution to the field, but it

does not address the issue of recommending appropriate data-analysis operations for EDA.

To learn what data views are interesting to the user, some systems ask the user to label

data views as relevant or non relevant. The system in [18] uses an active-learning approach

that builds a user interest model based on the user’s feedback on the presented tuples.

The model that captures user interest, improves its accuracy as more user preferences are

collected. These systems require human involvement and need to be trained for each dataset.

They may also need a lot of user labeling before they can be used effectively.

1.3.3 Auto EDA Methods

One of the most challenging tasks in EDA space is to automatically synthesize a complete

sequence or trajectory of operations for a given dataset. The authors of [1] introduced

ATENA, a framework that can automatically synthesize EDA session from a given dataset

as input. The EDA session is shown to the user as an EDA notebook that helps them to

explore the main features of the dataset. EDA is modeled as a control problem that consists

of.

1. A machine-compatible EDA interface that produces numerical representations of the

outcomes of exploratory operations and the parameterized, atomic composition of those

operations.

11

2. An objective function that evaluates exploratory sessions based on three criteria: in-

terestingness, diversity and human understandability (coherency). The interestingness

criterion measures how informative and surprising the results of exploratory operations

are, using a predefined notion of interestingness. The diversity criterion measures how

different the results of exploratory operations are from each other, using a distance

metric between sets of results. The human understandability criterion measures how

coherent and interpretable the results of exploratory operations are, using a binary

classifier that predicts if results are comprehensible or not.

ATENA is a deep reinforcement learning (DRL) framework for automatically generating

complete EDA session which helps user to guide them throught highlights of the dataset

for a given input dataset. DRL is a method that combines deep learning and reinforcement

learning, which enable agents to learn how to achieve their goals by using artificial neural

networks. The DRL agent explores the dataset by performing different EDA operations

and trains itself in a self-supervised manner itself using a reward signal from the objective

function. The objective function signals the agent to generate exploratory session that is

interesting, diverse, and coherent for human to understand using various interestingness

measure defined literature [1], [4] as reward functions. EDA sessions generated using this

approach optimize for a few heuristics only and may not be able to capture all interesting

aspects of data.

However, we argue that a generic system cannot include all possible rewards that cap-

ture the interestingness of dataset, rather a better solution would be to learn from human-

generated EDA sessions. Our method uses imitation learning to learn from expert demonstra-

tions and hence, avoiding explicit definition of reward functions like ATENA. Our proposed

work overcomes some challeges that ATENA faces as follows:

� ATENA defined specific reward functions to measure the interestingness of generated

EDA sessions. However, this approach may not capture all the aspects of data that are

interesting, since it only optimizes for the predefined heuristics. Instead of designing a

universal system that incorporates all possible interestingness rewards, a better solution

is to learn from human-generated sessions. Our method applies imitation learning,

which is a type of supervised machine learning that learns from expert demonstrations,

to mimic the human behavior in EDA sessions.

12

� ATENA outputs a fixed-length sequence of EDA operations for each dataset, which

may not be optimal for capturing the insights of different datasets. The proposed

method can generate variable-length sequences of EDA operations that are tailored to

the characteristics of each dataset.

� To use ATENA for generating EDA notebooks for a new dataset, we need to train

it on that specific dataset beforehand. This limits its applicability and scalability to

different domains and schemas. AdvEDA is a more general system that can generate

EDA notebooks for any dataset that has the same schema and domain as the one it

was trained on, without requiring additional training.

13

14

Chapter 2

Background information

2.1 Reinforcement Learning

Reinforcement learning (RL) is a subfield of machine learning that focuses on training algo-

rithms to interact with a specific environment and optimize their actions based on rewards.

A RL algorithm, or agent, learns by exploring its environment and receiving feedback in the

form of rewards or penalties for each action it takes. The goal of the agent is to maximize

the total reward it can obtain in the environment.

Reinforcement vs Supervised Learning: Both supervised and reinforcement learning in-

volve learning a function that maps inputs to outputs. However, the main difference is that

supervised learning uses historical data with known labels to train the model, while rein-

forcement learning uses a reward function that provides feedback to the agent based on its

actions. For instance, in a chess game, there are many possible moves that can be made at

any point. Creating a labeled dataset of all the moves and their outcomes is very difficult.

Therefore, it is more practical to use reinforcement learning, where the agent learns from its

own experience and improves its performance over time.

Reinforcement vs Unsupervised Learning: Reinforcement learning involves learning a

function that maps inputs to outputs based on feedback from the environment, while unsu-

pervised learning involves finding patterns and structure in the data without any predefined

outputs. For instance, if the problem is to recommend a news article to a user, a rein-

15

forcement learning algorithm would learn from the user’s reactions to different articles and

adjust its recommendations accordingly, while an unsupervised learning algorithm would

group articles based on their similarity and select one from each group.

2.2 Basic concepts and terminology

� Agent: RL algorithm that interacts with environment and takes actions to obtain

rewards.

� Environment E: Interacting space for agent. Inputs the action taken by agent and

current state and outputs rewards and next state for the agent.

� Action a: The action performed by agent based on environment state.

� Action space A: Finite set of all possible actions that can be performed by agent.

� State s: Current status of environment and hold all useful information agent require

to perform an action a.

� State space S: Set of all possible states, agent can be present in the environment.

� Reward R(st, at, st+1): Feedback received by the agent when it perform certain ac-

tion. Positive reward incentivise agent to perform similar actions and negative reward

punishes agent for taking wrong action.

� Policy π(s): Function that maps state space to action space π : A → S. It can be a

deterministic policy (Eq 2.1) or a stochastic policy (Eq 2.2).

a = π(s) (2.1)

π(a|s) = P [At = a|St = s] (2.2)

� Model: Representation of environment learnt by agent. It predicts next state and

rewards.

P a
ss′ = P[St+1 = s′|St = s,At = a] (2.3)

16

Ra
s = E[Rt+1|St = s,At = a] (2.4)

� Episode (rollout): A sequence of states st and actions at for t. The agent starts in a

given state of its environment and the agent observes the current state st ∈ S at each

timestep t and performs an action at ∈ A to obtain new state st+1, that depends only

on the state st and on the action at. The agent obtains a reward rt and the agent

observes the new state st+1 ∈ S and this process is looped till end of episode.

� Trajectory τ : A sequence of state, st, action, at and reward, Rt over a set of contiguous

timestamps from intial time, t0 till time associated with a certain event H, tH

τ = {(st, at, Rt)}t∈[t0,tH] st ∈ S, at ∈ A (2.5)

� Markov Decision Process (MDP): A mathematical framework used in RL to model

decision-making problems in a stochastic environment.

In an MDP, the goal of the agent is to learn a policy that maximizes the expected

cumulative reward over time. A policy is a function that maps states to actions, and

it tells the agent what action to take in each state. RL algorithms use the MDP

framework to learn an optimal policy by repeatedly interacting with the environment,

observing rewards and transitions, and updating their estimate of the optimal policy.

The mathematical formulation of an MDP can be represented as a tuple (S,A, P, R, γ),

where:

– S is set of states

– A is set of actions

– P is the transition probability function P a
ss′ = P[St+1 = s′|St = s,At = a]

– R is the reward function

– γ is the discount factor

The goal of RL algorithms is to learn the optimal policy π∗ that maximizes the expected

cumulative reward, which can be represented as:

V π(s) = Eπ[
∞∑
t=0

γtR(st, at, st+1)|s0 = s] (2.6)

17

where V π(s) represents the expected overall value from state s, under a given policy

from state, and γ is the discount factor. The optimal policy π∗ is defined as the policy

that maximizes V π(s) for all states s.

RL algorithms use iterative methods, such as value iteration or policy iteration, to

estimate the optimal value function V π∗
(s) and the optimal policy π∗. Once the optimal

policy is learned, the agent can use it to take actions in the environment and maximize

its cumulative reward over time.

� Q-value Q(s, a): It is the ”state action” value function, also known as the quality

function and represents the value of performing a certain action in a given state. It

is calculated as expected return starting from state s, taking action a, then following

policy π

Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ{
∞∑
k=0

γkrt+k+1|st = s, at = a} (2.7)

� Advantage A(s, a): For a given policy, π and state, s, the advantage indicates the

difference between the expected cummulative rewards for a specific action and overall

expection value.

Aπ(s, a) = Qπ(s, a)− V π(s) (2.8)

2.3 Policy optimization

Policy optimization is a class of reinforcement learning algorithms that aim to find the opti-

mal policy for an agent interacting with an environment. Rather than estimating the value

function and deriving a policy from it, these algorithms directly optimize the policy funcion

of an agent. Policy optimization methods can be divided into two categories: policy iteration

methods, which alternate between evaluating and improving a policy, and policy gradient

methods, which directly optimize a parameterized policy using gradient ascent. Policy gra-

dient methods are popular because they can handle high-dimensional and continuous action

spaces, and can be combined with function approximation techniques such as deep neural

networks.

18

In mathematical terms, policy optimization algorithms aim to find the policy function π

that maximizes the objective function J(π), which is defined as:

J(π) = Eπ[
∞∑
t

γtrt] (2.9)

where Eπ represents the expected value under policy π, γ is the discount factor, rt is the

reward received at time step t, and
∑∞

t γtrt is the discounted cumulative reward.

The objective of policy optimization is to maximize J(π) by updating the parameters of

the policy function. The policy function is typically represented as a parametric function

πθ that takes a state s as input and outputs a probability distribution over actions a. The

parameters θ of the policy function are updated through gradient ascent on the objective

function J(πθ).

The update rule for policy optimization can be derived using the policy gradient theorem,

which states that the gradient of the objective function J(πθ) with respect to the policy

parameters θ can be expressed as:

∇θJ(πθ) = Eπ[∇θlogπθ(a|s)Qπ(s, a)] (2.10)

where Qπ(s, a) is the state-action value function under policy π, and ∇θ log πθ(a|s) is the
derivative of the logarithm of the policy function with respect to the policy parameters.

The policy gradient theorem suggests that the policy parameters should be updated by

taking a step in the direction of the gradient of the objective function with respect to the

policy parameters:

θnew = θold + α∇θJ(πθ) (2.11)

where α is the learning rate, which determines the step size of the parameter update.

Policy optimization algorithms typically use variants of this update rule, such as the

trust region policy optimization (TRPO) or the proximal policy optimization (PPO) algo-

19

rithm, which incorporate additional constraints or penalties to ensure stable and efficient

convergence to the optimal policy.

2.3.1 Trust Region Policy Optimization

Trust Region Policy Optimization (TRPO) [19] is a popular reinforcement learning algorithm

for optimizing policies in continuous control tasks. It is designed to optimize the expected

cumulative reward of a policy in an environment while ensuring that the policy updates are

stable and do not deviate too far from the current policy.

The algorithm is based on the idea of a trust region, which is a region around the current

policy that is considered safe to explore. The size of the trust region determines how much

the policy can change in each update, and it is typically chosen to be small enough to ensure

stability, but large enough to allow for significant improvements.

TRPO uses a constrained optimization approach to ensure that the policy updates stay

within the trust region. Specifically, it solves a constrained optimization problem to find the

policy update that maximizes the expected reward subject to a constraint on the distance

between the new policy and the old policy.

The main advantage of TRPO is that it guarantees monotonic improvement in the ex-

pected reward, meaning that the performance of the policy is guaranteed to improve with

each update. This is because the algorithm maximizes the expected reward subject to a

constraint on the distance between the old and new policies, which ensures that the new

policy cannot be worse than the old policy.

The objective of TRPO is to maximize the expected reward under the new policy πθ,

where θ represents the policy parameters. This is expressed as:

J(θ) = Eτ∼πθ

[
∞∑
t=0

γtr(st, at)

]
(2.12)

where st and at represent the state and action at time step t, r(st, at) is the reward

received for taking action at in state st, and γ is the discount factor.

20

The policy update is performed by solving the following constrained optimization prob-

lem:

max
θ′

L(θ, θ′)

subject to DKL(θ||θ′) ≤ δ

where L(θ, θ′) is the surrogate objective function defined as:

L(θ, θ′) = Es, a ∼ πθ

[
πθ′(a|s)
πθ(a|s)

Aπθ
(s, a)

]
(2.13)

where πθ′(a|s) is the probability of taking action a in state s under the new policy,

πθ(a|s) is the probability of taking action a in state s under the old policy, and Aπθ
(s, a) is

the advantage function, which estimates the advantage of taking action a in state s under

the old policy compared to taking the mean action.

The KL-divergence constraint DKL(θ||θ′) ensures that the new policy is close enough

to the old policy to maintain stability. The trust region size δ determines the maximum

distance between the old policy and the new policy, and it is typically chosen to be small

enough to ensure stability but large enough to allow for significant improvements.

The constrained optimization problem is solved using the conjugate gradient method,

which is a fast and efficient method for solving large-scale optimization problems. The

solution of the optimization problem yields the updated policy parameters θ′, which are

used to update the policy.

The main advantage of TRPO is that it guarantees monotonic improvement in the ex-

pected reward, meaning that the performance of the policy is guaranteed to improve with

each update. This is because the algorithm maximizes the expected reward subject to a con-

straint on the distance between the old and new policies, which ensures that the new policy

cannot be worse than the old policy. However, TRPO can be computationally expensive due

to the need to solve a constrained optimization problem at each iteration. Additionally, the

size of the trust region can be difficult to choose, and a too-small trust region may result in

21

slow progress, while a too-large trust region can lead to instability and poor performance.

Despite these challenges, TRPO remains a popular and effective algorithm for optimizing

policies in continuous control tasks, and it has been used in a variety of applications, including

robotics, autonomous vehicles, and game playing.

2.3.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO) [20] is a state-of-the-art policy gradient method that

operates by collecting experience using the current policy, updating the policy based on

the collected experience, and repeating the process. PPO improves upon previous methods

such as Trust Region Policy Optimization (TRPO) by being simpler to implement, more

general, and having better sample efficiency. PPO works by alternating between sampling

data through interaction with the environment, and optimizing a surrogate objective function

using stochastic gradient ascent. The surrogate objective function is designed to ensure that

the new policy does not deviate too much from the old policy, while still maximizing the

expected return.

The objective of PPO is to maximize the expected cumulative reward of the policy, which

is given by:

J(θ) = Eπθ

[
∞∑
t=0

γtr(st, at)

]
(2.14)

where θ represents the policy parameters, st and at represent the state and action at time

step t, r(st, at) is the reward received for taking action at in state st, and γ is the discount

factor.

The PPO algorithm uses a surrogate objective function that approximates the true ob-

jective function, making it easier to optimize the policy. The surrogate objective function is

defined as:

L(θ) = Es,a∼πθ

[
πθ(a|s)

πθ,old(a|s)
Aclip(s, a)

]
(2.15)

22

LCLIP
πθ

(πθk) = Eτπθ

[
T∑
t=0

[
min

(
ρt(πθ, πθk)A

πθk
t , clip(ρt(πθ, πθk), 1− ϵ, 1 + ϵ)A

πθk
t

)]]
(2.16)

where πθ(a|s) is the probability of taking action a in state s under the current policy, πθold(a|s)
is the probability of taking action a in state s under the old policy (which is the policy used to

collect the experience), and Aclip(s, a) is a clipped version of the advantage function, defined

as:

The policy update in PPO is performed by solving a constrained optimization problem

that maximizes a clipped surrogate objective function:

θ′ = argmax
θ′

Eπθ
[
πθ′(at|st)
πθ(at|st)

Aclip
t (θ, θ′)

]
,

where at and st are the action and state at time step t, and Aclip
t (θ, θ′) is the clipped

advantage function, which is defined as:

where rt(θ) is the estimated advantage of taking action at in state st under the old policy,

ϵ is a hyperparameter that controls the degree of clipping, and clip(x, a, b) clips x to the range

[a, b].

The clipped surrogate objective function ensures that the policy updates are stable and

do not deviate too far from the current policy. Specifically, if the ratio of probabilities
πθ′ (at|st)
πθ(at|st)

is greater than 1 + ϵ, then the objective function is clipped to 1 + ϵ. If the ratio is less than

1 − ϵ, then the objective function is clipped to 1 − ϵ. Otherwise, the objective function is

not clipped.

The clipped surrogate objective function is maximized subject to a constraint on the

distance between the old and new policies:

subject to DKL(θ, θ
′) ≤ δ (2.17)

where DKL(θ, θ
′) is the KL-divergence between the old and new policies, and δ is a

hyperparameter that controls the size of the trust region.

23

The optimization problem is solved using stochastic gradient ascent, which updates the

policy parameters θ in the direction of the gradient of the clipped surrogate objective func-

tion. The trust region size δ is updated dynamically to ensure that the policy updates stay

within a reasonable range.

PPO is a computationally efficient algorithm that has been shown to achieve state-of-

the-art performance in a variety of continuous control tasks. The clipped surrogate objective

function and the KL-divergence constraint ensure that the policy updates are stable and do

not deviate too far from the current policy. This makes PPO more sample-efficient than

other reinforcement learning algorithms that do not have such constraints, such as vanilla

policy gradient. Overall, PPO is a powerful reinforcement learning algorithm that is widely

used in practice due to its efficiency and stability. Its combination of a clipped surrogate

objective function, a KL-divergence constraint, and a value function make it well-suited for

optimizing policies in continuous control tasks, where stability and sample efficiency are

crucial.

24

Chapter 3

Methodology

In this section, we describe our proposed system to overcome the limitations observed in

the ATENA system. Our key objective is to train the system to learn and mimic humans

by teaching it straight from human-generated trajectories. We also discuss the difficulties

posed by the fact that the trajectory lengths can vary.

3.1 Problem Definition

The goal is to learn a policy that can generate EDA trajectories given a dataset as input.

We model this problem as a reinforcement learning (RL) task. We next define the state

space S and action space A of the underlying Markov Decision Process (MDP) as follows.

Action space A is the set of possible actions in the EDA process, which are GROUP, FILTER,

BACK, and STOP. While we pick these actions to be consistent with ATENA to compare and

contrast, our framework is not restricted to just these actions. State space S is the space of

all possible tabular datasets which can be derived from the original dataset by performing a

sequence of actions. We will describe more details of the S and A later. In this MDP, we do

not have access to the reward structure. The reason is that at any step in the exploratory

data analysis, we generally do not explicitly receive feedback about the appropriateness of

the action taken. Thus, we want to learn the optimal policy without knowing the rewards.

Multiple approaches to learning optimal policy without access to the reward structure

25

have been proposed in the RL literature. Some of the techniques used to learn optimal policy

when we do not know the reward structure are behavioural cloning [21], imitation learning

[22], inverse RL [23, 24, 25]. To learn optimal policy, all of these approaches necessitate

expert trajectories.

To learn an optimal policy for an end-to-end auto EDA, the proposed study employs an

imitation learning approach known as Generative Adversarial Imitation Learning (GAIL).

Let Exp EDA be a set of EDA sessions by human experts. defined as Exp EDA = {τ1, τ2, . . . τN}
where each trajectory, τi is a sequence of state-action pairs {(s1, a1), (s2, a2) . . . (sT , aT)} such

that si ∈ S and ai ∈ A.

The learning objective to find a policy πθ parameterized by θ that closely resemble the

underlying expert policy πE. That is, for any state, s ∈ S, πθ(s) outputs a distribution over

the action set A such that action a sampled from this distribution, closely is quite similar

to the action a that a expert data analyst would take in s.

The next section discuss about how generative adversarial imitation learning (GAIL) is

used to model the end-to-end EDA process.

3.2 Generative Adversarial Imitation Learning

Generative Adversarial Imitation Learning (GAIL) [26] is a state-of-the-art imitation learn-

ing method that learns a policy directly from expert demonstrations without any reward

signal. It treats the problem as two-player min-max game. The method involves two neural

networks: a policy network πθ with parameters θ and a discriminator Dw with parameters w.

The goal is to make πθ imitate the expert policy πE by finding a saddle point (π,D) of the

following objective function that resembles the one used in generative adversarial networks:

Eπ[log(D(s, a))] + EπE
[log(1−D(s, a))]− λH(π) (3.1)

where H(π) is the entropy of the policy π. The discriminator and the policy network is

trained alternatingly. The discriminator is trained to maximize Eq 3.1, which means it

tries to distinguish between the expert and the policy trajectories. The policy is trained

to minimize Eq 3.1, which means it tries to fool the discriminator by imitating the expert

26

behavior.

GAIL is known to be very sample efficient regarding the number of expert demonstrations

required, and this is ideal for our case as the number of expert demonstrations we seek to

learn from is not very large. Significant challenges are associated with collecting expert

demonstrations for the EDA problem setting.

One of the advantages of GAIL is that it does not require a large amount of expert

demonstrations to learn an optimal policy, which is suitable for our scenario where we have

a limited number of expert demonstrations to imitate and collecting expert demonstrations

for complex tasks such as EDA is still challenging and costly.

GAIL is a suitable method for our problem setting because it can capture long-term

dependencies in the expert behavior better than methods like simple Behavioural Cloning

(BC). BC learns a supervised mapping between states and actions, but it ignores the long-

term effects of actions on the state distribution. This can lead to co-variate shift and error

accumulation if there is not enough data. GAIL solves this problem by matching the state

distribution of the agent and the expert using a generative adversarial framework.

In following section, we present how we model the state and action spaces for the EDA

problem and how we use a GAIL-based algorithm to learn from expert demonstrations

3.3 State and Action Space Representation

We use a similar approach to ATENA to define the state, S and action spaces, A for the

EDA problem.

3.3.1 Action Space

The action space includes the following actions:

1. GROUP(grp col, agg col, agg func): This action performs a grouping operation on

the grp col and computes the aggregation function agg func on the agg col. The

possible values for agg func are SUM, COUNT, MEAN, MIN, MAX.

27

2. FILTER(filter col, filter func, filter term): This action applies a filtering op-

eration on the dataset by checking if the condition given by the operator filter func

(=, ̸=, CONTAINS, STARTS WITH, ENDS WITH) and the term filter term, which is either

a numeric or textual value from the filter col, is satisfied.

3. BACK(): This action allows the agent to undo the last action and return to the previous

dataset display in the current analysis session.

4. STOP(): Thie action allows the agent to indicate that it has finished the current analysis

session.

We introduce a new action called STOP in addition to the existing actions of FILTER,

GROUP and BACK that are supported by ATENA. The STOP action enables the agent to end

the current EDA session when it does not find any more actions that can lead to interesting

explorations. This is useful because otherwise the agent would keep generating actions that

either repeat previous explorations or show nothing insightful to the user. Without an action

to indicate the end, an agent would continue to generate actions, which would either go down

exploration paths that have already been explored or have nothing insightful to show to the

user.

3.3.2 State Space

For any display obtained by employing a sequence of actions from A, we create a display

vector d⃗ with these features extracted from the display:

1. For each attribute (column) in the display, we include features that measure number

of nulls values, number of unique values and entropy of that attribute

2. For each attribute, we include a feature to determine whether that column is grouped

by some value, aggregated by some function or neither of those.

3. Three global features: number of groups, mean size of groups, and variation of size of

groups.

28

To represent a state s, we concate the display vectors of the three most recent displays

in the EDA session. If the EDA session has not included three displays yet, then display

vectors are padded with 0.

Figure 3.1: The state representation s formed by concatenating the features that are ex-
tracted from the previous three displays

3.4 AdvEDA- System Description

We build on the previous work of GAIL with some modifications to suit the EDA problem

setting better. Figure 3.2 shows the overall architecture and the flow diagram of our proposed

approach AdvEDA.

29

Figure 3.2: Overall flow of AdvEDA

3.4.1 Policy and Discriminator Networks

Our method is similar to GAIL in that it consists of a policy network πθ and a discriminator

network Dw. The policy network outputs a distribution over the actions given a state

representation s as input. The discriminator assigns a value between 0 and 1 to a state-

action pair, indicating how likely it is that the pair comes from existing expert trajectories

rather than from the policy network.

The output of the discriminator can be represented as:

Dw(s, a) = σ(Lw(s, a)) (3.2)

where L is the unnormalized output of the final layer of D which is then passed through the

sigmoid function σ to map it to the interval [0, 1].

30

3.4.2 Penalties for more coherent sessions

We propose introduction of penalties to improve the coherence of our model’s output tra-

jectories. These penalties are added to the reward signal that the policy network receives.

Their aim is to prevent the model from producing actions that are not suitable for an EDA

setup, such as

1. Performing a BACK action at the beginning of the analysis

2. Repeating the same FILTER/GROUP action consecutively

The model is penalized when it outputs actions that indicate uncertainty. We define

such actions as those that involve applying FILTER/GROUP operations to analyze the data,

followed by taking the BACK operation to undo them. We hypothesize that these actions

show a lack of confidence in the analysis steps.

Mathematically, the penalities are defined as follows:

P (s1:t, a1:t) =



−1.0 if at = BACK and st = s1

−1.0 if at ̸= BACK and at = at−1

−1.0× l if at = at−2 · · · = at−2l =

BACK ̸= at−2(l+1) and

at−1, at−3 . . . , at−2l−1 ∈
{FILTER, GROUP} and l > 1

0.0 otherwise

(3.3)

3.4.3 Training

We adopt an alternating training strategy for the policy and discriminator networks, which

is akin to GAIL. However, unlike GAIL, where the policy network was optimized using

Trust Region Policy Optimization (TRPO) with a cost function, we use Proximal Policy

Optimization (PPO) with reward signals to train our policy network. PPO and TRPO are

both methods for optimizing a reinforcement learning agent with an actor-critic architecture,

31

but PPO has a better sample efficiency than TRPO. The overall training approach is outlined

in Algorithm 1.

Algorithm 1 AdvEDA- Learning a policy for performing EDA from expert demonstrations

1: Input: Expert trajectory data (Exp Traj), initial policy and discriminator parameters
θ0 and w0.

2: Pre-train the policy network parameterized by θ0 using Behavioural Cloning using state-
action pairs from Exp Traj.

3: for i=1,2,... do
4: Sample trajectories τi ∼ πθi

5: Update discriminator parameters wi to wi+1 by taking a gradient ascent step with the
gradient

Êτi [∇w log(1−Dw(s, a))] + ÊτE [∇w log(Dw(s, a))]

6: Update policy parameters θi to θi+1 using a PPO clipped optimizer considering the
reward signal

rt = − log(1−Dw(st, at)) + P (s1:t, a1:t)

at every time-step t for all τi
7: end for

Training of Policy Network: To train the policy network, we sample multiple trajec-

tories using the current policy πθ in each iteration. Since there are no rewards defined in

the underlying MDP, we have to provide a reward signal that can help us update the policy

network to make πθ closer to πE while keeping some coherency constraints. For any sampled

trajectory, our reward signal at time step t is as follows:

rt = − log(1−Dw(st, at)) + P (s1:t, a1:t) (3.4)

The first term − log(1 − Dw(st, at)) is a function that increases as the discriminator

outputs increase. This means that it captures how confident the discriminator is that the

policy’s action is similar to what an expert would do. The second term P (s1:t, a1:t) is a penalty

term that discourages the policy from taking actions that are non-sensical or uncertain. A

PPO update is made with this modified reward signal at each time step of every sampled

trajectory.

Training of Discriminator Network: The discriminator network differentiate between

state-action pairs generated by our policy and state-action pairs from expert demonstrations

32

Figure 3.3: Training of the discriminator is done in mini-batches consisting of an equal
number of expert and generated trajectories

at each iteration. We sample a mini-batch of equal number of state-action pairs from both

sources (τi and τE, respectively) and train the discriminator to classify them as generated or

expert samples. We use Binary Cross-Entropy Loss as our loss function and the objective

function for the discriminator is given by:

Êτi [∇w log(1−Dw(s, a))] + ÊτE [∇w log(Dw(s, a))] (3.5)

3.4.4 Policy Network initialization using Behavioural Cloning

We adopt a two-stage approach to train our policy network in imitation learning. We ini-

tialize the policy network with behavioral cloning before applying GAIL as an adversarial

training method. Behavioral cloning is a supervised learning technique that aims to learn

a policy from expert demonstrations by maximizing the likelihood of matching the expert

actions given the same states. This initialization strategy can provide a ”better” initial

policy than random initialization, which may help with faster convergence. We conduct an

33

ablation study to investigate the impact of this initialization choice.

3.5 Score used for explaining model’s predictions

Taking inspiration from data-driven EDA systems discussed in Section 1.3, we use various

measures, i.e., diversity, coherency, readability, and peculiarity, along with interestingness

measures, to evaluate the EDA operations produced by the model. Interestingness, diversity,

and coherency are adopted from ATENA.

3.5.1 Interestingness measures

1. A-INT: This is the Interestingness score defined in ATENA. It is defined seperately

for the case of a GROUP operation and a FILTER operation:

(a) Interestingness Score for a GROUP operation: This is a score based on conciseness

measures [27, 4] that consider compact group-by views covering many rows as

informative and easy to understand and assigns them a higher reward. This

measure considers the number of groups g, the number of grouped attributes, a,

and the number of tuples, r. Score is calculated as

h1(g.a)/h2(r) (3.6)

where h1 and h2 are normalized sigmoid function with fixed width and center.

(b) Interestingness Score for a FILTER operation: To quantify the interestingness

of a FILTER operation, exceptionality [8, 28, 6] of filtered rows (generated af-

ter applying the operation) is compared with those of the unfiltered table. The

Kullback-Leibler (KL) [29] divergence on each column is used to measure how

much the filtered data view differs from the unfiltered view.

KL divergence is a measure of how one probability distribution is different from

another. Value probability distribution PA
t of an attribute A ∈ Attr, is the

relative frequency of its values in dt. If dt is grouped, Attr is a set of aggregated

34

attributes else it is a set of all attributes. The score is given by

h(max
A∈Attr

DKL(P
A
t−1, P

A
t)) (3.7)

where h is the sigmoid function.

This score highly rewards those FILTER operations whose resultant views deviate

from the unfiltered views.

2. Diversity score: This metric, also from [1], favors a display (data view) that highlights

parts of the dataset that are different from those seen in any of the previous displays

in the session so far. It is calculated as the minimum Euclidean distance between

the vectorized representation (observation vector, dt) of the resultant view and the

vectorized representations of all previous views.

min
0≤t′<t

δ(dt, d
′
t) (3.8)

3. Coherency score : This score, also from [1], is a highly detailed metric determined

by a set of hand-crafted rules which assign each view a penalty or reward based on

whether the action performed at the current step is coherent with previous actions. The

rules set consists of two types: (1) Rules that apply to any generic EDA session. For

e.g., an operation that results in an empty or unchanged view is considered incoherent.

(2) Rules specific to the dataset’s domain to be explored. In [1], many such rules are

defined for the Cyber datasets [3] being analyzed. These rules are highly specific and

are carefully hand-tuned to predict coherency for actions taken on the Cyber dataset.

4. Readability score: This metric builds on top of compaction gain from [27]. Let

compact display score, Cdt for current display, dt with number of groups, g defined as

h1(g.|dt|) (3.9)

where h1 is normalized sigmoid function with fixed width and center. Readability gain,

RGdt is defined

1− Cdt−1/Cdt (3.10)

Readability gain measures changes the compact display score from before and after

taking current EDA operation. We favour compact displays at each of EDA step and

35

thus readability gain captures this idea. Readability score is obtained by

h2(1−RGdtCdt) (3.11)

where h2 is normalized sigmoid function with fixed width and center.

5. Peculiarity score: This score helps quantify patterns that are anomalous. We have

adopted a deviation-based measure from [6] which favors display with a high difference

from reference display (given dataset d0 in our implementation). It is calculated by

taking KL divergence of PA
t defined above, which denotes the value probability distri-

bution of display dt, and PA
0 which is the value probability distribution of reference

display d0.

36

Chapter 4

Experimental Evaluation

4.1 Dataset Details

We conduct experiments on two types of datasets to evaluate the performance of proposed

method, which generates EDA sessions using training data.

4.1.1 Cyber Security Datasets

The ”cyber security datasets” are four distinct and mutually exclusive datasets as detailed

in Table 4.1 that were obtained from the Honeynet Project [3]. The database schema for all

cyber datasets is identical as shown in Table

Dataset No of rows Underlying insight
Cyber 1 8648 ICMP scan on IP range
Cyber 2 348 Remote code execution attack
Cyber 3 745 Web based phishing attack
Cyber 4 13625 TCP port scan

Table 4.1: Description of Cyber security datasets

37

Column Data type
captured length int64
eth dst string
eth src string
highest layer string
info line string
interface captured float64
ip dst string
ip src string
length int64
number int64
project id int64
sniff timestamp string
tcp dstport float64
tcp srcport float64
tcp stream float64

Table 4.2: Database schema of Cyber Security datasets

For each dataset, we generated human trajectories in two different ways:

1. REACT Dataset: The authors of [16] collected and curated the REACT dataset,

which consists of exploratory data analysis (EDA) session traces from 56 cyber security

analysts. The analysts were given four cyber security datasets to investigate, each

containing a different security event that they had to discover and describe using

various actions.

2. Gold Dataset: The authors from [1] use walkthrough documents created by cyber-

security experts and developed the gold-standard EDA sessions. These documents

guide viewers through the EDA process and point out key insights in the dataset.

Table 4.3 shows how the distribution of trajectories from each dataset. The following

sections explain how these trajectories are used for training and testing purposes.

4.1.2 Synthetic datasets

We also examine our strategy on synthetically created datasets because there aren’t many

expert EDA sessions for the cyber security datasets. We create datasets with a specific

38

REACT Gold
Dataset 1 104 7
Dataset 2 79 7
Dataset 3 76 7
Dataset 4 59 7

Table 4.3: Trajectory distribution for training across datasets

schema using an algorithm mentioned in following paragraphs, then induced interesting

patterns in them. We then algorithmically produce EDA sessions on these synthetic datasets

that discover these injected patterns. We use these sessions to train an AutoEDA model on

the dataset and to compare the sessions generated by the learned model.

The proposed synthetic data generation algorithm consists of two steps:

(1) Pattern Injection and Correlation:

We start with a schema S = {C1, C2 . . . Ck, N1, N2 . . . Nl, T1, T2 . . . Tm} where Ci, Ni, Ti de-

note categorical, numeric and rext columns respectively. For each column c ∈ S, we cre-

ate a set of random patterns P (c) = {p1, p2 . . . pn} and assign a random weight W (c) =

{w(p1), w(p2) . . . w(pn)} to each pattern (
∑

w(pi) = 1). These patterns represent typical

features of the data in column c and the weights indicate the probability that an element in

a column follows a pattern.

� For categorical column, each pi represents a category that occurs in the column.

� For a numerical column, each pi is a pair (µi, σi) where (µi, σi) denotes mean and

variance of Gaussian distribution respectively. Each element in the numeric column

Nj will be sampled from one of the pi ∈ P (Nj).

� For a column with text, each pi is a pair (si, POSi) where si is a string and POSi ∈
{START,MIDDLE,END}. If an element in a text column follows pattern (si, POSi),

it means that the element contains the string si at its position specified by POSi. The

rest of it is padded with random strings.

We randomly create a set of correlations C = {C1, C2 . . . Cn} where each Ci consists of two
columns (ci1, ci2) from S and a set of pairs {ri1, ri2 . . . rin} where each pair rik = (p1ik, p

2
ik)

represents a pattern from P (ci1) and a pattern from P (ci2). The term correlation here does

39

not imply the mathematical term correlation. Rather, it indicates that the probability of

observing a pattern in one column depends on the probability of observing patterns in the

other column.

We can interpret each Ci = (ci1, ci2, {ri1, ri2 . . . rin}) as follows: column ci1 has a corre-

lation with column ci2 such that for each rik = (p1ik, p
2
ik), the probability of p2ik occurring in

column ci2 increases whenever p
1
ik occurs in column ci1. To ensure that the list of correlations

does not form any cyclic chains (a set {C1, C2 . . . Ck} where c12 = c21, c22 = c31 . . . cn2 = c11),

we limit the number of correlations that involve each column and make sure that the set of

correlations forms a Directed Acyclic Graph (DAG) over the set of columns.

(2) Row population: In this step, we take the schema S and generated list of correlations

C and generate the rows of the dataset. We generate each row one by one. To generate the

element at column c in a row, we do the following:

� Set base distribution W = W (c) and get the relevant set of correlations CR = {Ci ∈
C such that ci2 = c}.

� For each correlation Ci ∈ CR, for each rik = (p1ik, p
2
ik), multiply weight of p2ik in W with

pre-defined multiplier m.

� Normalize W and sample pattern p according to updated weights. Generate element

according to p as described above.

Our synthetic data generation algorithm is designed to generate a specified number of

rows, each with a defined set of columns, including numerical, categorical, and string data.

The algorithm takes in parameters such as a minimum and a maximum number of categories

for categorical columns, which define the possible range of categories, and the range of the

mean and standard deviation for numerical columns, which determine the normal distribu-

tion from which values are sampled. In addition, each string column is defined by a specific

pattern that occurs at the start, middle, or end of the string.

The values in each column are correlated with values from other columns, with a spec-

ified maximum number of correlations. This correlation is represented as a set of tuples of

correlated values and is mapped out as a directed acyclic graph (DAG) with nodes corre-

sponding to correlated columns and edges representing correlated values from each column.

40

The correlation mapping determines the probability of the occurrence of one value based on

the presence of another.

The algorithm starts at the root node of the DAG and traverses the subtree using a depth-

first search approach. During this process, the type of column and its values determine the

operations performed. For instance, if there is an edge between two categorical columns (ci

and cj) for corresponding values (vi and vj), the possible order of operation would be either

[FILTER ci EQ vi, FILTER cj EQ vj] or [FILTER ci EQ vi, GROUP ci AGGREGATE COUNT cj].

Numerical columns are filtered based on the mean of the distribution from which the values

in each column are sampled, and string columns are filtered based on the pattern present in

the column and its position. The algorithm returns to the root node of the subtree using

BACK actions, and the trajectory ends when each node has been visited in topological order.

We create five artificial datasets for our experiments, each containing three categorical

columns, two text columns and three numeric columns, and 1000 rows. We then produce

expert trajectories as explained above. The resulting trajectories are randomly divided into

train and evaluation sets, whose distribution is shown in Table 4.4.

Train Evaluation
Dataset 1 614 154
Dataset 2 3686 922
Dataset 3 614 154
Dataset 4 921 231
Dataset 5 1638 410
Dataset 6 819 205
Dataset 7 1228 308

Table 4.4: Trajectory distribution for synthetic dataset

4.2 Experimental setup

One of our objectives is to train a model that can generate insightful EDA sessions that can

also handle datasets that it has not encountered before. Therefore, we design our training

and evaluation procedure such that we only evaluate the model on datasets that are unseen

during training. This way, we can assess the generalization capabilities of AdvEDA.

A “leave one out” strategy is used to train our model on the Cyber datasets, where we use

41

both REACT and gold trajectories from three of the four datasets for training and reserve

the remaining one for testing. We evaluate the model by generating trajectories on the test

dataset and comparing them with the gold-standard trajectories for that dataset. We repeat

this process four times for each of the four cyber security datasets, and we compute scores

to measure performance on each left-out dataset.

We use five out of seven synthetic datasets, which are artificially generated data that

mimic real-world data, to train our model on all the trajectories in each dataset. For evalu-

ation, we use the remaining two synthetic datasets and compare the trajectories generated

by our model with the evaluation trajectories of these datasets.

4.3 Evaluation Metrics

To evaluate the quality of AdvEDA and the baseline, we compute benchmark scores that

quantify how closely the generated sessions resemble expert EDA sessions. We adopt the

following similarity metrics proposed in [1] for evaluation:

1. Precision: This metric counts the number of times a view occurs in the gold standard

notebook. This is calculated by considering the generated EDA notebooks as distinct

EDA actions. Thus, regardless of the sequence, counting the number of times a view

occurs in the gold-standard notebooks. Every time a view is encountered, it is called

a “hit”; else, consider it a “miss.”

2. T-BLEU score: This metric is adopted from BLEU [30] score, used for calculating

the similarity of the machine translations to a set of reference translations. In this

case, we consider a sequence of EDA views in the notebooks as a “sentence.” T-BLEU

is stricter than Precision since it compares subsequences of size n (rather than single

views) and considers both the order and prevalence of each view in the gold-standard

set. Benchmark uses measures of T-BLEU-1, T-BLEU-2, and T-BLEU-3 (n between

1 to 3).

3. EDA-Sim: This metric was introduced in [16]. EDA-Sim considers the order of

views and enables a fine-grained comparison of EDA views. Nearly identical views

are regarded as “hit” as EDA-Sim will evaluate them as highly similar, whereas they

42

would have been considered “miss” in the abovementioned measures. The generated

notebook is compared to each of the gold-standard notebooks to get the final EDA-Sim

score, and the maximal score is used.

4.4 Implementation details

In the following section, we present the technical details of our implementation.

4.4.1 Data Preparation

We train our model using state-action representations derived from EDA sessions in the

REACT data and gold-standard notebooks from various datasets (see Section 3.3 for details).

The REACT data consists of EDA trajectories with different lengths, so we add a STOP

action at the end of each trajectory. This allows our model to generate EDA notebooks of

variable lengths by terminating the session when it outputs the STOP action. EDA session

is a sequence of actions performed by our model until it outputs the STOP action.

4.4.2 Architecture Details

The policy network is a fully-connected neural network that has 3 hidden layers. Each hidden

layer has 50 neurons and uses tanh as the activation function. The discriminator network

is also a fully-connected neural network, but it has only 2 hidden layers. Each hidden layer

has 32 neurons and uses ReLu as the activation function.

4.4.3 Model Initialization

We begin by learning a policy from expert demonstrations using Behaviour Cloning (BC).

The BC model was trained for 100 epochs with a learning rate of 10−4. We then use the BC

model to initialize the policy network’s weights, instead of using random weights. We further

train the policy network for 10000 total environment interaction steps with a learning rate of

43

10−6. We also conduct ablation studies to examine the impact of this initialization method

on the policy learning which is discussed in detail in Section 5.2.1

4.4.4 Implementation of AdvEDA

Our system is built using PyTorch [31], an open source machine learning framework.. We

extend the existing implementations of BC and GAIL in [32] to incorporate our proposed

methods.We also leverage [33] for additional functionalities and utilities in our system.

Cyber dataset 1 Cyber dataset 2 Cyber dataset 3 Cyber dataset 4

Metric AdvEDA ATENA AdvEDA ATENA AdvEDA ATENA AdvEDA ATENA

Precision 0.3750 0.1855 0.4000 0.2340 0.1429 0.1153 0.7500 0.1929

T-BLEU-1 0.3333 0.1855 0.2857 0.2325 0.1314 0.1122 0.3333 0.1929

T-BLEU-2 0.2041 0.1377 0.2182 0.1873 0.0449 0.0550 0.2041 0.1451

T-BLEU-3 0.0841 0.0625 0.1060 0.1182 0.0359 0.0320 0.0841 0.0708

EDA-Sim 0.2950 0.2704 0.3900 0.2682 0.3497 0.2462 0.2051 0.3017

Table 4.5: A-EDA benchmark results on Cyber and Synthetic datasets

Synthetic dataset 6 Synthetic dataset 7
Metric AdvEDA ATENA AdvEDA ATENA
Precision 0.4286 0.1111 0.8333 0.1111
T-BLEU-1 0.4286 0.0515 0.5333 0.0429
T-BLEU-2 0.1816 0.0173 0.4781 0.0143
T-BLEU-3 0.0669 0.0132 0.3852 0.0114
EDA-Sim 0.5647 0.1539 0.5536 0.1265

Table 4.6: A-EDA benchmark results on Synthetic datasets

44

Chapter 5

Results and analysis

5.1 Baselines

We compare our approach with ATENA as a baseline to compare against. We use their

publicly available code [34] to train and evaluate their model. However, note that this code

does not implement the coherency reward that was described in their paper. Therefore, our

comparison is based on a version of ATENA without the coherency score, which might affect

its performance. We argue that this is a fair comparison because we also present a general

model that does not rely on any dataset-specific rewards. The coherency reward might be

very sensitive to the dataset and improve the results significantly. Section 5.3.6 discuss about

more about coherency reward and it’s limitations. Moreover, to understand the impact of

different components of our model, we also conduct an ablation study (see Section 5.2.1).

5.2 Results

Our model’s performance on various evaluation metrics and its comparison with ATENA

are presented in Table 4.5. Unlike ATENA models, which are trained and evaluated on the

same dataset, our models employ a ”leave one out” strategy as explained in Section 4.2. This

means that they do not have access to any expert trajectories from the test dataset. The

results show that our model outperforms ATENA in most scenarios. We conduct further

45

experiments to analyze these results in Section 5.3 and provide more insights.

5.2.1 Ablation studies

To examine the impact of some of our design choices, we run two ablation experiments:

1. Model training without penalty scores: The aim of this experiement is to

examine how the quality of generated EDA sessions changes when we do not apply

penalty reward to the model based on the design described in 3.4.2. We use the same

configuration as AdvEDAexcept for penalty reward to train the model. Table 5.2

shows the results. We observe that the model without penalty performs worse than

ATENA and AdvEDA. Table 5.1 lists some generated EDA sessions that can help us

explain the lower scores. The EDA views 2 and 3 are the same because consecutive

GROUP operators have been used. Our original model discourages such actions with

penalty reward. Furthermore, we can see alternating GROUP and BACK actions.

These sequences indicate uncertainty and are incoherent for users to follow.

FILTER eth src EQ 00:26:b9:2b:0b:59
GROUP ip src AGGREGATE AggregationFunction.COUNT length
GROUP ip src AGGREGATE AggregationFunction.COUNT length
BACK
GROUP tcp srcport AGGREGATE AggregationFunction.SUM ip dst
BACK
GROUP info line AGGREGATE AggregationFunction.SUM eth src
GROUP tcp srcport AGGREGATE AggregationFunction.SUM length
GROUP info line AGGREGATE AggregationFunction.SUM length
BACK

Table 5.1: EDA session without penalty score on Cyber Dataset

2. Training without BC initialization: AdvEDA outperforms the version of model

that is not pre-trained with Behavioral Cloning. This result indicates that pre-training

the policy before applying the GAIL-based objective improves the model quality. We

hypothesize that this phenomenon occurs because the pre-trained policy has a warm

start that puts it in a better position to benefit from the adversarial training.

46

Table 5.2 shows the benchmarking scores for these experiments across four datasets. The

average scores for each experiment are also presented. Compared to our complete model,

these models perform significantly worse and often fail to surpass the baseline ATENA on

several benchmarks. This indicates that the penalties and Behavioral cloning pre-training

we introduced are crucial for our model’s performance.

Precision T-BLEU-1 T-BLEU-2 T-BLEU-3 EDA-sim
Without BC 0.259 0.103 0.038 0.029 0.195

Without penalty 0.413 0.239 0.144 0.058 0.258
ATENA 0.182 0.181 0.131 0.071 0.272

AdvEDA (Ours) 0.417 0.271 0.168 0.078 0.310

Table 5.2: Ablation study scores averaged our on Cyber dataset

5.3 Analysis and Discussion

In following sections, the experimental results are analysed and discussed in detail.

5.3.1 Insights captured by generated trajectories

We present two examples of EDA sessions produced by our model on dataset 1, as illustrated

in Table 5.3 and 5.4. These examples demonstrate how our model can explore different

aspects of the data.

FILTER eth src EQ 00:26:b9:2b:0b:59
FILTER ip src NEQ 82.108.69.238
FILTER highest layer NEQ ARP
FILTER highest layer NEQ ICMP
GROUP tcp srcport AGGREGATE COUNT packet number

Table 5.3: EDA session #1 generated by model on dataset 1

1. Insights from Session 1: As shown in Table 5.3, the model filters packets based

on different values of highest layer column, which indicates the network layer proto-

col (such as Address Resolution Protocol (ARP), Internet Control Message Protocol

(ICMP)) and Transmission Control Protocol (TCP) used by each packet . The model

47

first eliminates packets with ARP protocol, which is used to associate IP addresses

with MAC addresses. Then it removes packets with ICMP protocol, which is used to

send notifications of IP datagram problems. The resulting dataframe has a significant

reduction in rows, implying that many packets use ICMP protocol. By examining

the info line column, these packets are found to be ping requests, which are one of

the key insights in this dataset. The dataset 1 aims to detect ICMP flood attack,

which is successfully identified by the model through the generated EDA session. This

demonstrates that our model can learn data insights from expert EDA demonstrations

on similar domain data and can mimic expert behavior on unseen data. In the final

action, the model groups the remaining packets by tcp srcport. These packets all use

TCP protocol, which is used for reliable and ordered delivery of data. The grouping

operator produces a group view that shows 304 and 135 packets in ports 139 and 445

respectively. These ports are SMB ports that are used for authentication and file shar-

ing. The presence of these ports in TCP layer suggests that they are exposed to the

internet and vulnerable to attacks.

FILTER eth src EQ 00:26:b9:2b:0b:59
FILTER ip src NEQ 82.108.69.238
FILTER highest layer NEQ ICMP
FILTER highest layer NEQ ARP
FILTER captured length NEQ 62
GROUP captured length AGGREGATE COUNT packet number
BACK
GROUP highest layer AGGREGATE COUNT length
GROUP ip src AGGREGATE COUNT length
GROUP tcp srcport AGGREGATE COUNT length

Table 5.4: EDA session #2 generated by model on dataset 1

2. Insights from Session 2: As in EDA session 1, the model filters out packets from

different network layers as shown in Table 5.4. The model reveals that most of the

packets belong to the ICMP layer after excluding them from the analysis. This shows

that the model can generate trajectories that capture important insights from a given

input dataset. Next, the model investigates the IP source of TCP packets. This

behavior is similar to one of the gold-standard EDA notebooks where expert tried to

find out the source and destination IP for TCP packets. This indicates that our model

can discover the main highlight from the dataset as well as explore other potential

48

A-INT diversity coherency readability peculiarity
0.999 0.897 1.000 1.000 0.706
0.893 0.722 0.533 0.096 1.000
0.000 0.000 0.667 0.104 0.706
0.000 0.000 0.800 0.091 0.000
1.000 0.720 0.533 1.000 0.611
0.793 0.962 0.000 0.102 0.077
0.941 0.656 0.533 0.102 0.108
0.930 0.595 0.511 0.102 0.108
0.914 0.587 0.544 0.102 0.108
0.892 0.581 0.000 0.102 0.108
0.865 0.577 0.444 0.102 0.108
0.460 1.000 0.000 0.000 0.000

Table 5.5: Interestingness scores on ATENA session

insights. Moreover, this happens within a single EDA session unlike ATENA-generated

EDA sessions where this phenomenon is not observed.

5.3.2 Interestingness captured in trajectories

We use interestingness measures described in section 1.1 to obtain scores on model generate

EDA sessions. The scores are given in Table 5.6 and 5.7.

1. Interestingness Measures on Session 1: As shown in Table 5.6, A-INT, diversity,

and peculiarity scores increased significantly when ICMP packets were excluded. This

indicates that the model is able to detect important patterns in the data related to

this view. Furthermore, the last view obtained the highest scores in most measures,

which reflects that it is meaningful and interesting to viewers as it reveals another key

aspect of the data.

2. Interestingness Measures on Session 2: Consistent with what we observed with

interestingness scores in session 1, excluding ICMP packets resulted in high scores in

most interestingness measures (see Table 5.7). In this EDA session, the views generated

by the model had high readability scores as well as high diversity and peculiarity scores.

This suggests that our model can effectively filter data and present relevant tuples to

49

users that are easy to read. The views presented are diverse, each showing different

insights from the data.

Our model differs from ATENA in that it does not optimize for a specific set of inter-

estingness scores when generating views. As shown in Table 5.5, ATENA’s views have

high A-INT, diversity, and coherency scores, because these were the reward signals used

to train it. However, our model’s views vary in their scores depending on the different

interestingness measures they maximize. Our model aims to produce EDA views that

highlight different aspects of the dataset rather than focusing on a particular set of

interestingness measure.

A-INT diversity coherency readability peculiarity
0.890 0.721 0.924 0.006 0.659
0.000 0.000 1.000 0.000 0.659
0.000 0.037 0.000 0.000 0.659
0.416 0.312 0.000 0.005 1.000
1.000 1.000 0.978 1.000 0.000

Table 5.6: Interestingness scores for EDA session #1

A-INT diversity coherency readability peculiarity
1.000 0.893 0.832 1.000 0.000
0.048 0.616 0.900 0.948 0.000
0.492 0.729 0.000 0.993 0.967
0.049 0.675 0.000 0.948 0.970
0.050 0.680 0.000 0.949 1.000
0.000 1.000 0.000 0.000 1.000
0.000 0.000 0.800 0.845 1.000
0.000 0.808 0.000 0.000 1.000
0.141 0.916 1.000 0.845 1.000
0.068 0.774 0.880 0.916 1.000

Table 5.7: Interestingness scores for EDA session #2

5.3.3 Interestingness measure comparision analysis

We use normalization comparison from [17] to evaluate the interestingness of example sessions

from experts, ATENA and AdvEDA.We compute interestingness scores for each action in the

sessions and select the action a with the highest normalized score si as the most interesting

50

Figure 5.1: A comparison of Gold, ATENA and AdvEDA trajectories based on normalized
interestingess metrics. The results show that AdvEDA can adapt to different metrics at
different time steps, similar to the expert gold trajectory. ATENA, on the other hand, only
focuses on the specific metrics that it uses as reward.

51

one. Figure 5.1 highlights the actions with score ≥ 0.8 and the interestingness measures they

capture in the sessions.

The trajectories generated by AdvEDA show that the model prioritizes peculiarity, co-

herency, and readability more among all measures of interestingness. The trajectories ob-

tained from experts also exhibit high scores for peculiarity, readability, and diversity, which

are similar to those of AdvEDA. However, the trajectories produced by ATENA mainly focus

on A-INT and coherency, which are the scores used as rewards for training ATENA.

This analysis show that human experts perform actions that optimize for various measures

of interestingness, which are hard to define and implement explicitly. Therefore, proposed

imitation learning approach learns to mimic the expert’s decisions by using their demon-

strations. The imitation learning based model produces trajectories that match the expert’s

interestingness measures better than handcrafted ones, as shown by our analysis.

5.3.4 Effect of STOP action

Figure 5.2: Distribution of lengths of trajectories generated by our model with STOP action

The distribution of exploration lengths for the trajectories generated by our model that

has a STOP action is presented in Figure 5.2. Most of the trajectories have a length of around

12, which is not a clear reflection of the training data where most of the trajectories are very

short. The longer lengths seem to be influenced by the penalties that we applied to the

trajectories for making them coherent.

52

We also observe that some trajectories have lengths shorter than the maximum length,

which suggests that some exploration paths require shorter lengths. A good example of this

is the trajectory in Table 5.3 which shows good performance with only a length of 5.

5.3.5 Effect of Penalties

One way to evaluate the impact of penalties on our model is to compare the generated

trajectories with and without penalties. We trained a version of our model without including

any penalty terms in the reward function. A sample trajectory from this model is shown

in Table 5.1. We observe that the model tends to repeat the same action multiple times

in a row. This indicates that the model does not learn to explore different actions or avoid

redundant actions. On the other hand, when we train our model with penalties, we do

not see such repetitive patterns in the trajectories. This suggests that penalties help our

model to learn more diverse and efficient sequences of actions. Therefore, we can infer that

penalties are useful for preventing spurious sequences such as consecutive repetitions of the

same action.

5.3.6 Coherency reward in ATENA

ATENA defines a coherency reward as the confidence score (in [0,1]) of a weak-supervised

classifier that judges if an EDA operation is coherent or not. The weak-supervised classifier

is trained on hand-crafted heuristic rules. The authors used two kinds of rules:

� General rules : These rules consider the properties of the operation sequence.

For e.g., applying a filter on a dataframe with a few rows is regarded as incoherent.

""" Filter on a dataset containing

small amount of rows in the data

layer is NON -HUMANE """

prev_fdf = get_previous_fdf(

state_history , past_steps=2)

if len(prev_fdf) < 40:

too_low_rows_to_filter_punishment = -1.0

return trigger_rule(

53

NetHumanRule.filter_small_number_of_rows ,

too_low_rows_to_filter_punishment ,

)

Or Performing a group operation on a column that is already grouped which adds no

information for user

""" Group on a column that is

already grouped is NON -HUMANE """

prev_state = state_history[-2]

if grouped_column in prev_state.grouping:

column_already_grouped_punishment = -1.0

return trigger_rule(

NetHumanRule.column_already_grouped ,

column_already_grouped_punishment ,

remove_all=True ,

)

� Data-dependent rules: These are the optional rules that can be customized based

on the schema and key attributes of the input dataset from user.

""" Filter on ’highest_layer ’, ’ip_dst ’,

’ip_src ’, ’info_line ’, ’tcp_dstport ’,

’tcp_srcport ’, ’tcp_stream ’ is HUMANE """

most_humane_filter_columns = {"highest_layer",

"info_line"}

humane_filter_columns = {"ip_dst", "ip_src",

"tcp_dstport", "tcp_srcport"}

""" Filter on ’eth_dst ’, ’eth_src ’, ’length ’

is MOSTLY -NON -HUMANE

(note that no human actually did that)"""

neutral_filter_columns = {"captured_length",

"length", "eth_dst", "eth_src", "tcp_stream"}

""" Filter on ’packet_number ’,

’sniff_timestamp ’ is NON -HUMANE """

non_humane_filter_columns = {"number",

"packet_number", "sniff_timestamp"}

54

""" Group on ’eth_src ’, ’highest_layer ’,

’ip_dst ’, ’ip_src ’,’tcp_dstport ’,

’tcp_srcport ’, ’tcp_stream ’ is HUMANE """

most_humane_grouped_columns = {

"highest_layer", "ip_dst", "ip_src"}

humane_grouped_columns2 = {

"eth_src",

}

humane_grouped_columns = {"tcp_dstport",

"tcp_srcport", "tcp_stream"}

""" Group on ’eth_dst ’, ’length ’

is MOSTLY -NON -HUMANE """

neutral_grouped_columns =

{"captured_length", "length", "eth_dst"}

""" Group on ’packet_number ’, ’info_line ’,

’sniff_timestamp ’ is NON -HUMANE """

non_humane_grouped_columns =

{"number", "packet_number",

"info_line", "sniff_timestamp"}

However, the authors of ATENA used a coherency reward to fine-tune their model on

cyber datasets, which they reported in their paper . The coherency reward assigns scores to

different columns based on how suitable they are for applying FILTER or GROUPBY ac-

tions. It also encodes some rules that specify which kinds of operations are more appropriate

for each column.

In addition, each column has some rules that speicifies the best operation or action for

that column.

""" Filter using ’<built -in function ne >’ or ’<built -in function eq >’ on

the ’info -line’ column is NON -HUMANE """

filter_operator = last_action["operator"].lower ()

if filtered_column == "info_line" and filter_operator in {"eq", "ne"}:

info_line_bad_filter_operators = -1.0

return trigger_rule(

NetHumanRule.info_line_bad_filter_operators ,

55

info_line_bad_filter_operators ,

remove_all=True ,

)

elif filtered_column == "info_line" and filter_operator in {"contains"}:

info_line_good_filter_operators = 0.5

trigger_rule(

NetHumanRule.info_line_good_filter_operators ,

info_line_good_filter_operators ,

)

elif filter_operator == "ne":

"""

Using the filter operator NOT EQUAL should be discouraged

"""

not_equal_filter_operator_punishment = -0.2

trigger_rule(

NetHumanRule.using_not_equal_filter_operator ,

not_equal_filter_operator_punishment ,

)

"""

GROUP on eth_src that applied on a filtered display is INHUMANE

"""

if grouped_column == "eth_src":

if state.filtering:

eth_src_group_on_filtered_display_punishment = -0.5

trigger_rule(

NetHumanRule.group_eth_src_on_filtered_display ,

eth_src_group_on_filtered_display_punishment ,

)

else:

eth_src_group_on_non_filtered_display_incentive = 0.5

trigger_rule(

NetHumanRule.group_eth_src_on_filtered_display ,

eth_src_group_on_non_filtered_display_incentive ,

)

Using such kind of hard-coded rule defies the purpose of automatic EDA. ATENA used

these manually designed coherency rules to guide its training and reward its outputs. When

we train ATENA without these coherency rules, we find that its performance drops signif-

icantly as shown in Table 4.5. This suggests that the coherency rules are the main factor

56

behind ATENA’s performance and not its ability to learn from data.

57

58

Chapter 6

Conclusion

We study the problem of automatically generating EDA sessions using a Reinforcement

Learning framework. We first analyse the human generated trajectories with different in-

terestingness scores to understand indirectly how a human would generate these trajectories

and what should an Auto EDA system try to achieve. Based on our analysis, we suggest a

novel algorithm for automatically generating EDA sessions and compare it against the base-

line results. We see that our algorithm outperforms the baselines. We also show ablation

studies to discuss our design choices. We finally analyse and discuss on our results to get

insights on our model’s performance.

We introduced AdvEDA, a new end to end AutoEDA system that uses imitation learning

to learn a policy for AutoEDA without relying on hand-crafted heuristics for interestingness.

The proposed work is evaluated using automated benchmarking and manual analysis of gen-

erated EDA sessions shows that AdvEDA can perform meaningful EDA and outperform the

baseline across benchmarks. Moreover, we demonstrate the improved generalizability of our

system over the baseline. We also conduct ablation studies to justify our design choices. We

finally discuss and analyze our results to gain insights into our model’s performance. Some

possible directions for future work are: The following are some of the technical challenges

and directions for future work:

1. Training a system that generalizes to perform AutoEDA across datasets with different

schemas.

59

2. Developing a generalizable system that can perform AutoEDA across datasets with

different schemas. This requires designing a robust and flexible framework that can

automatically detect and adapt to the schema changes in the data sources over time.

3. Investigating the effect of other penalties on the performance of AutEDA. The cur-

rent approach penalizes model for producing actions which are incoherent for users.

However, other penalties, may also influence the quality and efficiency of generated

trajectories. A systematic study on how different penalties affect AdvEDAis needed.

4. Incorporating actions other than FILTER and GROUP into AdvEDA. The current

version of AdvEDA only supports 3 types of actions: BACK, FILTER and GROUP.

However, there are many other possible actions that can be applied to data analysis,

such as JOIN, AGGREGATE, SORT, PIVOT, etc. Extending AdvEDA to support

more actions would increase its expressiveness and applicability to a wider range of

data analysis tasks.

6.1 Paper communicated

This work is submitted to KDD 2023 conference [35]

60

Bibliography

[1] Ori Bar El, Tova Milo, and Amit Somech. Automatically generating data exploration
sessions using deep reinforcement learning. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, pages 1527–1537, 2020.

[2] Aurélien Personnaz, Sihem Amer-Yahia, Laure Berti-Equille, Maximilian Fabricius, and
Srividya Subramanian. Balancing familiarity and curiosity in data exploration with
deep reinforcement learning. In Fourth Workshop in Exploiting AI Techniques for Data
Management, pages 16–23, 2021.

[3] Lance Spitzner. The honeynet project: Trapping the hackers. IEEE Security & Privacy,
1(2):15–23, 2003.

[4] Liqiang Geng and Howard J Hamilton. Interestingness measures for data mining: A
survey. ACM Computing Surveys (CSUR), 38(3):9–es, 2006.

[5] Tova Milo and Amit Somech. Automating exploratory data analysis via machine learn-
ing: An overview. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data, pages 2617–2622, 2020.

[6] Manasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya Parameswaran, and Neoklis
Polyzotis. Seedb: Efficient data-driven visualization recommendations to support visual
analytics. In Proceedings of the VLDB Endowment International Conference on Very
Large Data Bases, volume 8, page 2182. NIH Public Access, 2015.

[7] Marina Drosou and Evaggelia Pitoura. Ymaldb: exploring relational databases via
result-driven recommendations. The VLDB Journal, 22(6):849–874, 2013.

[8] Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. Discovery-driven exploration
of olap data cubes. In International Conference on Extending Database Technology,
pages 168–182. Springer, 1998.

[9] Sunita Sarawagi. User-adaptive exploration of multidimensional data. In VLDB, volume
2000, pages 307–316. Citeseer, 2000.

61

[10] Manas Joglekar, Hector Garcia-Molina, and Aditya Parameswaran. Interactive data
exploration with smart drill-down. IEEE Transactions on Knowledge and Data Engi-
neering, 31(1):46–60, 2017.

[11] Manish Singh, Michael J Cafarella, and HV Jagadish. Dbexplorer: Exploratory search
in databases. In EDBT, pages 89–100, 2016.

[12] Julien Aligon, Enrico Gallinucci, Matteo Golfarelli, Patrick Marcel, and Stefano Rizzi.
A collaborative filtering approach for recommending olap sessions. Decision Support
Systems, 69:20–30, 2015.

[13] Magdalini Eirinaki, Suju Abraham, Neoklis Polyzotis, and Naushin Shaikh. Querie:
Collaborative database exploration. IEEE Transactions on knowledge and data engi-
neering, 26(7):1778–1790, 2013.

[14] Xiaoyan Yang, Cecilia M Procopiuc, and Divesh Srivastava. Recommending join queries
via query log analysis. In 2009 IEEE 25th International Conference on Data Engineer-
ing, pages 964–975. IEEE, 2009.

[15] Tova Milo and Amit Somech. React: Context-sensitive recommendations for data analy-
sis. In Proceedings of the 2016 International Conference on Management of Data, pages
2137–2140, 2016.

[16] Tova Milo and Amit Somech. Next-step suggestions for modern interactive data anal-
ysis platforms. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 576–585, 2018.

[17] Amit Somech, Tova Milo, and Chai Ozeri. Predicting” what is interesting” by mining
interactive-data-analysis session logs. In EDBT, 2019.

[18] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. Aide: an active learning-
based approach for interactive data exploration. IEEE Transactions on Knowledge and
Data Engineering, 28(11):2842–2856, 2016.

[19] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International conference on machine learning,
pages 1889–1897. PMLR, 2015.

[20] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[21] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJ-
CAI’18, page 4950–4957. AAAI Press, 2018.

62

[22] Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned
imitation learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[23] Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In
Proceedings of the Seventeenth International Conference on Machine Learning, ICML
’00, page 663–670, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[24] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement
learning. In Proceedings of the Twenty-First International Conference on Machine
Learning, ICML ’04, page 1, New York, NY, USA, 2004. Association for Computing
Machinery.

[25] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum
entropy inverse reinforcement learning. In Proceedings of the 23rd National Conference
on Artificial Intelligence - Volume 3, AAAI’08, page 1433–1438. AAAI Press, 2008.

[26] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances
in neural information processing systems, 29, 2016.

[27] Varun Chandola and Vipin Kumar. Summarization–compressing data into an informa-
tive representation. Knowledge and Information Systems, 12(3):355–378, 2007.

[28] Matthijs van Leeuwen. Maximal exceptions with minimal descriptions. Data Mining
and Knowledge Discovery, 21(2):259–276, 2010.

[29] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals
of mathematical statistics, 22(1):79–86, 1951.

[30] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the 40th annual meeting
of the Association for Computational Linguistics, pages 311–318, 2002.

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. Advances in neural infor-
mation processing systems, 32, 2019.

[32] Steven Wang, Sam Toyer, Adam Gleave, and Scott Emmons. The imitation li-
brary for imitation learning and inverse reinforcement learning. https://github.com/
HumanCompatibleAI/imitation, 2020.

[33] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and
Noah Dormann. Stable-baselines3: Reliable reinforcement learning implementations.
Journal of Machine Learning Research, 22(268):1–8, 2021.

63

https://github.com/HumanCompatibleAI/imitation
https://github.com/HumanCompatibleAI/imitation

[34] Ori Bar El, Tova Milo, and Amit Somech. Atena basic implementation. https://

github.com/TAU-DB/ATENA-A-EDA/tree/master/atena-basic, 2020.

[35] Abhijit Manatkar, Devarsh Patel, Hima Patel, Naresh Manwani, and Shanmukha Gut-
tula. Adveda: An advanced automatic end to end eda approach. Submitted to KDD
2023, 2023.

64

https://github.com/TAU-DB/ATENA-A-EDA/tree/master/atena-basic
https://github.com/TAU-DB/ATENA-A-EDA/tree/master/atena-basic

	Abstract
	Introduction
	Motivation and Analysis of Expert EDA Session
	Our Contributions
	Related Work
	Next Step Recommendation system
	Modeling user's interestingness preferences
	Auto EDA Methods

	Background information
	Reinforcement Learning
	Basic concepts and terminology
	Policy optimization
	Trust Region Policy Optimization
	Proximal Policy Optimization

	Methodology
	Problem Definition
	Generative Adversarial Imitation Learning
	State and Action Space Representation
	Action Space
	State Space

	AdvEDA- System Description
	Policy and Discriminator Networks
	Penalties for more coherent sessions
	Training
	Policy Network initialization using Behavioural Cloning

	Score used for explaining model's predictions
	Interestingness measures

	Experimental Evaluation
	Dataset Details
	Cyber Security Datasets
	Synthetic datasets

	Experimental setup
	Evaluation Metrics
	Implementation details
	Data Preparation
	Architecture Details
	Model Initialization
	Implementation of AdvEDA

	Results and analysis
	Baselines
	Results
	Ablation studies

	Analysis and Discussion
	Insights captured by generated trajectories
	Interestingness captured in trajectories
	Interestingness measure comparision analysis
	Effect of STOP action
	Effect of Penalties
	Coherency reward in ATENA

	Conclusion
	Paper communicated

