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Abstract

The development of novel algorithms that process information in ways that are classically in-
tractable and achieve computational speedup is one of the prime motivations in quantum informa-
tion research. Machine learning is a rapidly advancing field with broad applications in the natural
sciences where quantum-inspired algorithms may offer significant speedup. To date, several quan-
tum algorithms for discriminative machine learning have been formulated and lately, quantum-
enhanced generative machine learning models have gained tremendous attention. However, the
higher levels of noise, and lack of scalability of current quantum devices limit the depth and com-
plexity of these algorithms. In this thesis, we propose and realize a working hybrid quantum-
classical algorithm, termed the QeVAE, or Quantum-enhanced Variational Autoencoder for gener-
ative machine learning, suitable for noisy-intermediate quantum devices. We present a thorough
discussion of the algorithm and its implementation, before presenting the results of our calculations
for learning distributions that are classically easy to learn and distributions that are classically hard.
We show that our algorithm in the zero-latent size limit yields the well-known generative quantum-
machine learning model, the quantum circuit born machine (QCBM). For classically easy distribu-
tions, we find that our model performs at-par with purely classical algorithms. For classically hard
distributions, we find that our model outperforms the pure quantum and pure classical models in
certain cases and verify the same on the IBMq Manila quantum computer. Furthermore, we show
how QeVAEs can assist in the practical task of circuit compilation. Finally, we identify crucial di-
rections for improvement of the current algorithm that will be key to developing more challenging
quantum-inspired algorithms for machine learning.
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Chapter 1

Introduction

At the dawn of the 20 century, the Ultraviolet Catastrophe and access to high-precision atomic
experiments allowed scientists to discover the structure of the atom, the subatomic particles within,
and kick-started the field of quantum mechanics. The development of quantum theory as a tool to
comprehend and engineer nature has had far-reaching consequences, from the nuclear bomb to the
transistor, and is touted to culminate in a fault-tolerant quantum computer. Initially proposed as
a new computing paradigm to achieve reversible computation with minimal heat-loss by Charlie
Bennet and Richard Feynman, quantum computers were limited to a theoretical construct, capable
of solving demanding problems [1, 2]. Several scientists have demonstrated that quantum algo-
rithms can, in theory, outperform the best-known conventional algorithms when tackling specific
problems and, in some situations, deliver a ‘quantum speedup’ [3]. For instance, certain quantum
algorithms can take exponentially fewer resources for tasks such as factorization and eigenvalue
decomposition, and quadratically fewer resources to search through unsorted databases [4, 5, 6].
This pursuit of ‘quantum speedup’ has motivated generations of physicists and engineers to dis-
cover novel algorithms that leverage the properties of the quantum world, and realize the dream
of practically constructing a quantum computer. Today, multiple candidate platforms and compre-
hensive software development kits exist as part of this realization [7].

Serendipitously, the invention of the transistor also initiated the information and the data revo-
lution. Through advances in processing power and algorithmic ability, machine learning techniques
have evolved into fundamental tools for detecting patterns in data. Originally studied under Pat-
tern recognition and Computer science, machine learning (ML) has heralded sweeping advances
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in basic and applied sciences [8, 9]. It is not uncommon for physicists to utilize machine learning
techniques to solve problems computationally, find patterns in nature or explain the behavior of
specialized black-box models using first-principle approaches. Conversely, since its beginning,
machine learning has drawn inspiration from statistical physics approaches, and many contem-
porary machine learning approaches, such variational inference and maximum entropy, are im-
provements of methods developed by physicists [10, 11]. Such models built using first-principle
approaches are indispensable to the growth and adoption of technology by the scientific commu-
nity. Theoretically, models like deep neural networks have the potential to learn some of the most
complex patterns that exist in nature or human-made systems and have been demonstrated to be
highly competent at complex tasks like playing Go, identifying protein structures, and self-driving
cars [12, 13, 14]. However, many tasks are still intractable or very expensive to these methods.
Some learning tasks, for example, include sampling from complex distributions or estimating the
average values of numerous parameters under a complicated distribution, both of which are typi-
cally1 intractable. Moreover, certain distributions derived from quantum-mechanical systems are
fundamentally intractable to ‘classical’ approaches [15, 16]. Enhancing and augmenting classical
machine-learning methods using quantum correlations has been the focus of quantum-enhanced
machine learning and the bulk of our work.

For a long time, the ability to prepare coherent quantum states that can generate samples from
specific probability distributions has interested of the ML community. On the other hand, novel
quantum algorithms that can supplement or completely replace classical ML subroutines interest
the scientific community of physicists. We would like to place our work and its contributions in this
flourishing, interdisciplinary field. In this thesis, we propose a new hybrid quantum-classical ML
model, the Quantum-enhanced Variational Autoencoder (QeVAE), capable of learning complex
distributions. We derive the general loss function using variational bayesian inference and bench-
mark the model against datasets obtained from classical and quantum sources. We observe that
our model encapsulates the current known quantum generative model, the Quantum Circuit Born
Machine (QCBM), and through numerical experiments show that our model outperforms both the
QCBM and its purely classical counterpart.

The outline of the thesis is as follows: in Chapter 2, we review selected aspects of machine
learning, variational quantum algorithms and the evidence lower-bound encountered in classical
variational autoencoders. So as to not deviate from our main subject matter, we discuss only those
topics that provide the necessary background for the rest of the thesis. Chapter 2 is also our attempt

1requiring exponential time or space resources
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at a self-contained introduction to variational bayesian inference, particularly applied to generative
modeling. With the necessary background in place, we discuss the methods followed to setup the
QeVAE. The setup comprises three main tasks: (i) constructing a hybrid quantum-classical neural
network, (ii) modifying the network to learn both classical and quantum datasets, and (iii) obtaining
results and contrasting them against current methods. These three tasks, in that order, will be taken
up in Chapters 3. In addition, we describe the different kinds of datasets we use, namely, the
MNIST database, measurement distributions from product states, haar random states, quantum
circuit states and quantum-kicked rotor states. In Chapter 4, we present and benchmark our results
for classical distributions, and for distributions generated by quantum-mechanical systems. Our
implementation uses the Quantum Information Science Kit (Qiskit)[17] and Pytorch libraries for
calculations. We provide a detailed guide to implementing the ideas presented in Qiskit at the end
of Chapter 4 along with a working-code implementation. We conclude with a few remarks on the
limitations of our setup and directions for future work in chapter 5.
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Chapter 2

Theory

Our first order of business is to review some important aspects of the theory underpinning
machine learning and quantum algorithms. The elucidation of the information processing abilities
of quantum systems is a rich subject, and we direct the reader to the following references for a
more in-depth study [18, 19]. Instead, here we restrict ourselves to a description of those aspects
that bear direct relevance to the thesis that follows.

2.1 Primer on machine learning

Machine Learning [20, 21] can be described as a mathematical model that learns the patterns
and relations from available data without being explicitly programmed. A computer program (ma-
chine) is said to learn from experience E , if a certain performance metric P improves with expe-
rience by repeatedly performing a set of tasks T , i.e, P(T ) ∝ E . In other words, its performance
measured by P for task T improves with E [22]. As depicted in figure 2.1, machine learning
algorithms are grouped into three types based on the type of experience E . They can be broadly
be described as:

• Supervised learning refers to the class of ML techniques that rely on inference modelling.
Given training examples X and their corresponding labels Y from the joint distribution
P(X ,Y ), we intend to determine the probability of a label y given a new data-point x̃, i.e.
P(Y = y|X = x̃). Ex: Classification, Regression.
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• Unsupervised learning techniques examine at the structural aspects of a data set. The al-
gorithm’s objective is to discover hidden patterns in the dataset and learn the probability
distribution P(X) given multiple samples x ∈ X . Clustering, dimensionality reduction, and
generative modeling are some prominent examples.

• Reinforcement learning methods do not explicitly require the dataset X nor its labels Y . An
agent investigates potential actions given an available state space and attempts to learn the
optimal strategy. Each action done and the state-space explored is assigned a score, and
activities that result in a higher score are rewarded, while actions that result in a lower score
are penalized.

Classification

TC S

Machine learning Paradigms

C

Supervised

learning

Reinforcement

learning

Unsupervised

learning

Regression

Clustering

Generative

Modelling

Dimensionality

Reduction Positive RL

Artificial 
Intelligence

Deep

Learning

Machine

Learning

A B

C

Forward propagation

Back propagation

Negative RL

state

Agent

reward

Environment

action

Figure 2.1: (A) The organization of Deep learing (DL), Machine learning (ML), and Artificial
intelligence (AI). The field of AI encompasses ML, which encompasses DL (B) The different
types of learning tasks in ML. In this thesis, our focus is on generative modeling. (C) A deep
neural network with multiple layers of neurons stacked together. It has three major components:
an input layer to which input data is fed, an output layer that outputs the generated signal, and
multiple hidden layers that transform the input into high-level representation

Operationally, ML algorithms broadly perform two main tasks: (1) Discriminative learning where
the focus is on learning the decision boundary between the classes within a dataset, i.e, learn-
ing p(Y |X) and (2) Generative learning where the model aims to capture the actual distribution
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of the classes in the dataset and learn the underlying distribution of data in each class i.e, learn
p(X ,Y ). The major focus of our work is on generative machine learning. For a detailed review
on the above topics, we direct the interested reader to [21, 23]. A majority of modern generative
algorithms utilize deep neural networks to learn from a large corpus of data and generate rich new
examples which may consist of text, image, audio, or combination of them. These algorithms in-
clude Variational Auto-Encoders [24], Normalizing Flows [25], Generative Adversarial Networks
(GANs) [26], and Diffusion models [11]. In the following section, we briefly review deep neural
networks and then discuss the limitations of current methods.

A deep learning model consists of multiple layers of representations of the raw data in increas-
ing levels of abstraction. Such a structure allows the model to independently learn the important
features of a dataset and perform inference, whereas in simpler ML models, one is required to
explicitly extract features before training. The simplest example of a deep learning model is a
feed-forward neural network with dense connections as shown in figure 2.1C. Successive layers
receive processed inputs based on a set of trainable parameters called Weights(W) and Biases(b).
At each layer, a non-linear operation φ : R → R with learnable parameters is applied to achieve
high expressivity. A general operation performed at every layer of the neural network on data xxx

can be given by:

Ln0→n1 = φ(WWWxxx+bbb) (2.1)

The parameters are trained using the gradients with respect to the output error using the chain
rule of derivatives, called the backpropagation algorithm. The high-level representations learned
are capable of distinguishing various patterns and suppressing noise within the raw data. In this
work, we will focus on deep neural networks with dense connections; for further reading for other
types of networks, we suggest [21]. Such neural networks are typically trained by minimizing a
pre-defined loss function. We measure the generalization performance, a measure of performance
on unseen data, of the learned map on new examples by calculating the loss for a different set of
examples, often called a testing set.

Notably, many prominent ML and DL algorithms have had a deep-connection with physical
principles, or ideas based on first-principles. With the objective of learning the boundary between
different classes, some techniques in discriminative learning can be mapped to solving an error-
minimization problem or can be viewed as a type of statistical physics model [27, 28]. Support
vector machines can be thought of as a type of potential function that seeks to minimize the energy
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between two classes and identifies a hyperplane that separates two regions of space. State-of-the-
art generative models like GPT-3 and DALL-E rely on physical principles like diffusion and varia-
tional principles [29]. Elucidating how complex black-box models function is a job that Physicists
have taken as a challenge and have had considerable success.

Nonetheless, current ML methods lack in several aspects and the field remains open for novel
contributions. While a lot of work has focused on improving and building the best ML algorithms
using neural networks, there are still tasks where a processing-speedup or accuracy-advantage is
desirable. For instance, conventional sampling techniques in machine learning are often intractable
(Ex: computing partition functions) or very expensive/time-consuming (Ex: markov-chain-monte-
carlo calculations). Moreover, classical machine learning techniques require exponential num-
ber of parameters to learn the probability distributions produced by quantum-mechanical systems
[30, 31]. Recent research has indicated that generative machine learning is the field where an
advantage can be seen by using principles from quantum algorithms [32]. Variational bayesian
inference (VBI) provides a method to learn the joint probability distribution p(X ,Y ) and this thesis
is dedicated to the specific problem of understanding how quantum models can assist in VBI. In
the following sections, we introduce the basic ideas in quantum computation, methods in quantum
machine learning, and those algorithms suitable for current-era quantum devices. We conclude this
chapter by introducing the variational bayesian inference technique and how quantum models can
potentially offer an advantage.

2.2 Primer on quantum algorithms

Quantum computation can be realized through many different frameworks and the two most
popular ones are (1)gate-based and (2)annealing-based approaches. The former operates by ap-
plying a sequence of quantum gates to a set of qubits initialized in a known state. The later is
a method of solving optimization problems by encoding the problem into the energy levels of a
physical system and then adiabatically evolving the system towards the global minimum of the en-
ergy landscape. Our work focusses primarily on the gate-based model of computation. The basic
primitives in this model of computation include the notion of qubits, gates, and measurements. The
following is a self-contained primer on the above alluded concepts, including variational quantum
circuits and quantum machine learning. We refer the interested reader to [18, 33, 34] for a more
in-depth review of same topics.
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2.2.1 Quantum computation

Classical computation and information processing is through the notion of bits, essentially re-
stricting packets of information to be binary: either a yes, or a no. Mathematically, such a bit is
a binary digit that takes one of two values: 0 or 1. Quantum information introduces the notion of
qubits (quantum bits), allowing a packet of information to be both a 0 or 1. More formally, a qubit
is a normalized two-dimensional complex vector, called a wavefunction, (|ψ⟩= α|0⟩+β |1⟩), such
that |ψ|2 = |α|2+ |β |2 = 1 where {|0⟩, |1⟩} are any orthonormal basis in two-dimensions. Conser-
vation of probability (∑i |ψi(t)|2 = 1) ensures that a closed quantum system undergoes unitary time
evolution. A pure quantum state made up of of n qubits can then be expressed through a tensor
product as:

|ψ⟩=⊗n−1
i=0 (αi|0⟩+βi|1⟩), (2.2)

and occupies a Hilbert space that has dimension 2n. Qubits exhibit two properties that classical
bits lack, namely, superposition and entanglement. The former allows a quantum state to exist in
a linear combination of orthogonal states, allowing a quantum state/wavefunction to encode much
more information than a classical bit. The later describes a form of correlation between many
quantum systems that is strictly non-classical and stronger than any known correlation of classical
systems. Such entangled states cannot be decomposed as a product over the component quantum
systems. Simple examples of entangled states include the the bell state (|ψ⟩= (|00⟩+ |11⟩)/

√
2),

and the GHZ state (|ψ⟩ = (|000⟩+ |111⟩)/
√

(2)). Apart from pure quantum states, a classical
mixture of pure quantum states, called mixed quantum states can be represented by density matrices
such as:

ρ = ∑
j

p j|ψ j⟩⟨ψ j| (2.3)

where p j is the probability of choosing a state |ψ j⟩ from a mixture of states such that Tr[ρ] = 1.
Lastly, measuring a quantum state with a Hermitian operator Ô equates to ⟨ψ|Ô|ψ⟩ or Tr[Ôρ].

The Bloch sphere is a useful geometrical representation of a two-level quantum system, such as
a qubit, representing a unit sphere with each point on the surface corresponding to a pure quantum
state. The north and south poles of the sphere correspond to the basis states |0⟩ and |1⟩, and any
other pure state can be written as a superposition of these states, with some amplitude and phase.
For instance, the state |+⟩= (|0⟩+ |1⟩)/

√
2 lies on the equator of the sphere at an azimuthal angle
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of 0. In addition, operations on the qubit can be visualized as rotations to the Bloch vector. For
example, Hadamard gate transforms a qubit in state |0⟩ to a superposition state (|0⟩+ |1⟩)/

√
2).

Such unitary operations are called gates. The U3 gate is a single-qubit gate with three tunable
parameters (θ ,φ ,λ ) that specifies the position of a qubit on a Bloch sphere. The U3 gate is a
generalization of the Rx, Ry and Rz gates (discussed under section2.2.3) and can be used to create
any single-qubit unitary operation.

U(θ ,φ ,λ ) =

(
cos(θ

2 ) −eiλ sin(θ

2 )

eiφ sin(θ

2 ) ei(φ+λ ) cos(θ

2 )

)
(2.4)

A sequence of such gates or unitary operations with tunable parameters can be applied to a qubit
instantiated in |0⟩ to reach a desired quantum state pre-measurement. Having looked at the neces-
sary concepts, we now move on to learn about how parameterized quantum gates are amenable to
machine learning methods.

2.2.2 Quantum machine learning

ML algorithms are known to be eloquent at finding atypical patterns. Given that quantum pro-
cesses naturally generate complex patterns, such systems might handle operations and perform
better than conventional methods. Quantum machine learning (QML) is a new discipline that ad-
dresses the use of quantum computers for finding patterns in data. Formed by the union of quantum
computation and machine learning, they include both quantum algorithms that process classical
data as well as classical algorithms that process data from a quantum system. We are specifically
interested in the question: How can the power of quantum computation solve problems in machine
learning in lesser time, or with a better accuracy? This pursuit is called a quantum speedup. Quan-

tum advantage refers to a calculation employing a quantum device that cannot be accomplished
classically with a realistic amount of resources [33].

Multiple QML algorithms have been proposed that are provably advantageous. The key com-
ponents of these algorithms involve subroutines such as the quantum phase estimation [35], quan-
tum amplitude estimation [36], or Grover’s search algorithm [6]. Majority of ML problems uti-
lize linear-algebraic subroutines like Fourier transforms, solving a system of linear equations, or
an eigen-decomposition of matrices to process and infer from data. Quantum basic linear alge-
bra (qBLAS) subroutines like the HHL algorithm, quantum PCA, and quantum fourier transform
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exhibit exponential speedup over the best-known classical algorithms for such tasks. However,
these algorithms require millions of qubits with long coherence times and very low error levels.
Since current noisy-intermediate scale quantum (NISQ) devices suffer from (1)limited connectiv-
ity, (2)qubit numbers upto 100 and are (3)prone to large errors and limited coherence times, the
above mentioned algorithms cannot be realized physically [37]. Moreover, these algorithms face
challenges with input-loading, output-measurement, and lack of bench-marking [34]. This raises
the question of how we might make the most of the limited resources at our disposal to accomplish
tasks that are classically challenging.

Quantum models cannot learn and generalize quantum data using just quantum processors
alone since they are still rather tiny and noisy. Thus, existing NISQ methods must use a hybrid
quantum-classical setup to leverage the potential of quantum computers. This is achieved by in-
tegrating conventional and quantum computing resources to train a parameterized model based on
the problem at hand. We can thus partition current QML algorithms into two types: those that re-
quire fault-tolerant quantum computers and those that work with first-generation quantum hard-
ware. The later often use variational quantum circuits, which are shallow, parameterized quantum
circuits. These algorithms perform a portion of the calculation that is classically challenging on
the quantum device and the remainder on a classical computer. Since optimization is performed by
varying the parameters and updating the variables to minimize a loss function, these algorithms are
known as variational quantum algorithms (VQA). Moreover, a quantum neural network (QNN)
also refers to a parameterized quantum-classical model that is optimized using a classical device
and run on a quantum computer. In the following section, we discuss the building blocks of a
VQA.

2.2.3 Variational Quantum Algorithms

Variational quantum algorithms (VQAs), as previously indicated, employ a conventional opti-
mizer to train a parameterized quantum circuit and provide a solution to the constraints of NISQ
technology. VQAs offer the best approach to achieve quantum advantage with NISQ technology,
and they have already been proposed for applications in quantum chemistry, machine learning,
and binary optimization problems. A VQA is made up of a number of modular parts that may be
easily merged, expanded, and enhanced as the hardware and algorithms advance. These elements
are the following: (1) the objective function, which essentially encodes an optimization problem
or a hermitian unitary as a cost function that is to be variationally minimized; (2) the parametrized
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Input Output
(a) Objective function

𝜽 → 𝜽𝟎 𝑂 𝜽, 𝐻 𝑈 𝜽

𝑚𝑖𝑛
𝜽

𝑂 𝜽, 𝐻 𝑈 𝜽

𝑈(𝜽)

(b) Parametrized
Quantum Circuit

(c) Multi-basis
Measurements

𝑀

(d) Classical Optimization
𝜽𝟎 → 𝜽𝒏𝒆𝝎

𝜽∗

Quantum-Classical Loop

Loss
(𝜽)

# iterations𝜽∗ ≈ min L(𝜽)

Figure 2.2: Structure of a variational quantum algorithm (VQA). (a) The input includes the the
objective function and the set of variational parameters to be optimized. (b) Evaluation of the
objective function involves computing the expectation value through (c) multi-basis measurements
of an operator or the quasi-probabilities obtained from a quantum computer. (d) The value of
the objective function is minimized by computing gradients with respect to the input or through
gradient-free approaches. This encapsulates the classical optimization step. Finally, after certain
number of iterations, a local minima of the objective and the corresponding variational parameters
are obtained.

quantum circuit (PQC), which contains unitaries like the U3 gate and quantum embedding lay-
ers that are manipulated during the training phase; (3) multi-basis measurements, which yield
quasi-probabilities or average values of operators required to evaluate the cost function; and (4) a
classical learner, that determines the best circuit parameters to minimize the cost function. For a
more detailed review of VQAs and its applications we direct the reader to [33].

Objective function: The optimization problem is formulated as the minimization of a pre-
defined objective/cost function : minθO(θ ,{p(θ)}). The collection of variational parameters {θθθ}
determine the value of the objective function O and the measurement results p(x|θθθ). In addition,
certain objective functions aim to find the ground state energy and wavefunction by minimizing
the expectation value of a Hamiltonian Ĥ. They vary {θθθ} such that ⟨Ĥ⟩U(θ) ≡ ⟨0|U†(θ)ĤU(θ)|0⟩
is minimized according to the Rayleigh-reitz criterion [18]. It is important to note that the choice
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of the objective function is critical to achieve the desired convergence. Global objective functions,
such as finding the smallest positive eigenvalue, are prone to the vanishing gradient problem during
optimization [38]. Following are some example of objective functions are:

(1) Pauli Strings: An operator from the full n-qubit Pauli group Pn =(−i)qPn−1⊗ ...⊗P0, where
q ∈ Z4 and Pi ∈ {σI,σX ,σY ,σZ} are single-qubit Pauli matrices. The objective function is usually
the expectation value of a manybody state with respect to the Pauli string ie ⟨ψ|Pn|ψ⟩ where

σX =

(
0 1
1 0

)
, σY =

(
0 −i
i 0

)
, σZ =

(
1 0
0 −1

)
, σI =

(
1 0
0 1

)
(2.5)

(2) State fidelity: The state fidelity for density matrix input states ρ1,ρ2 is:

F(ρ1,ρ2) = Tr
(√√

ρ1ρ2
√

ρ1

)2

(2.6)

If either of the states is pure then F(ρ1,ρ2) = ⟨ψ1|ρ2|ψ1⟩ where ρ2 is |ψ2⟩⟨ψ2|

Parametrized quantum circuits: The quantum circuit that sets up the wave function to be
optimized is known as the parametrized quantum circuit (PQC). It is a unitary operation Û that
depends on a set of free parameters θθθ = (θ1, ...θn), yielding Û(θθθ). The VQA can commence the
search in an area of the parameter space that is closest to the optimum by selecting a good initial
state, specified by {θθθ}. When the QML model is to be trained on a certain dataset, the PQC can
further be broken down into two parts: (1) The Feature Map, UF(xxx; µµµ) that encodes classical data xxx

onto a quantum circuit, embedding the data in a high-dimensional Hilbert space and (2) the Ansatz,
UA(ννν) that contains arbitrary rotation and entanglement gates parametrized by ννν . The PQC can
thus be concisely represented as

U(xxx,,,θθθ)|ψ0⟩=UA(ννν)UF(x; µµµ)|ψ0⟩ (2.7)

where θθθ = {µµµ,,,ννν}

The choice of the Ansatz (German for ‘educated guess’) UA(ννν) is known to greatly affect the
performance of a VQA. Most Ansatz contain arbitrary rotation and entangling gates operating
between two or more qubits. The Rx, Ry and Rz gates are single-qubit rotation gates where each Ri
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gate is a rotation around the ith-axis of the Bloch-sphere by an angle (θ ) (radians).

Rx(θ) =

(
cos(θ

2 ) −isin(θ

2 )

−isin(θ

2 ) cos(θ

2 )

)
Ry(θ) =

(
cos(θ

2 ) −sin(θ

2 )

sin(θ

2 ) cos(θ

2 )

)
Rz(θ) =

(
e−i θ

2 0
0 ei θ

2

)
(2.8)

Moreover, the Ansatz governs the convergence speed, the expressibility and entanglement capac-
ity of the desired output state ψ(θθθ) [39]. Although some problems, such as those in quantum
chemistry, require the ansatz to have certain symmetries or a particular entanglement structure,
such circuits might not be compatible with current quantum hardware. This is because deeper cir-
cuits tend to be more susceptible to errors, and only few types of native gates are executable on
hardware. Consequently, there is a trade-off between choosing an ansatz suitable for a particular
problem vs choosing it to be suitable to be executed on NISQ hardware efficiently. We will de-
scribe the feature map and ansatz used for our problems in the Methods chapter. Interested readers
can refer to [40, 41, 42] for a detailed guide on choosing the right ansatz, and quantum embedding.

Measurement: The expectation value with respect to an operator (⟨Ô⟩Uθ
) or the associated

quasi-probabilities of a prepared quantum state (|Uθ |ψ⟩|2), must be known to learn about the pre-
pared quantum state. They can be estimated through multiple measurement shots and a statistical
average of the measured eigenvalues. A straightforward approach is to estimate the eigenvalues
by transforming the quantum state to the diagonal basis of the observable Ô before measurement.
Alternatively, since NISQ-friendly approaches involve parameterized Pauli strings, the diagonal
basis can be achieved by simple single-qubit rotations. Other measurement procedures involve
estimation of state overlaps, SWAP tests, or classical shadows [43].

Parameter optimization: The process of optimizing the parameters of a PQC is similar to
optimizing a multivariate functional and one can leverage the extensive set of methods developed
for classical optimization. Nevertheless, not all optimization algorithms work well with PQCs and
must satisfy the following three criteria: (1) A shorter coherence time in NISQ-devices precludes
the execution of deep analytical gradient circuits. (2) Since the measurement protocol is costly
and error-prone, the number of measurements evaluations must be minimal. (3) Calibration errors
necessitate that the optimizer should be robust to noisy data and the number of measurement shots.
Furthermore, classical optimization is known to be intrinsically hard and that the training landscape
might contain a large number of far from optimum persistent local minima [44]. This restricts the
class of optimization methods and based on the method of evaluation, they are of three kinds:
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• Gradient-based approaches: The cost function O(φφφ) can be minimized by iteratively evaluat-
ing the change of the function value with respect to an infinitesimal change of its parameters
φφφ = (φ1, ...,φM). With the knowledge of the gradient, the local minima of the objective func-
tion can be iteratively computed: starting from an initial vector φφφ

(0) and iteratively updating
φφφ
(t) over many steps t. The rule to update φφφ i is:

φφφ
(t+1)
i = φφφ

(t)
i − l∂i f (φφφ) (2.9)

or φφφ
(t+1) = φφφ

(t)
i − l∇ f (φφφ), where l is the learning rate and

∂ ≡ ∂

∂φi
; ∇ ≡ (∂i, ...,∂M) (2.10)

is the partial derivative with respect to the parameter φi and the gradient vector, respectively.
The gradient can be computed in multiple ways for a quantum circuit and the most relevant of
them are detailed in [45]. The most popular ones are: (1) Finite difference, (2) Parameter-
shift rule, (3) Quantum natural gradient, (4) Quantum analytical gradient, (5) Stochastic
gradient descent.

• Gradient-free approaches: These techniques do not rely on the gradient of the cost function.
Instead, approaches such as evolutionary algorithms have been demonstrated to perform sim-
ilar to state-of-the-art gradient-based methods. In addition, Reinforcement learning methods
and surrogate model-based optimizations have also been used to optimize PQCs.

• Resource-aware optimizers: In recent years, optimizers have been designed to reduce pa-
rameters associated with running quantum circuits on hardware, such as the number of mea-
surement shots or real hardware attributes. Circuit compilation methods aid in reducing the
depth of the circuit to be optimized. Optimizers such as ROSALIN, SPSA, and QNSPSA
have been created to be noise-resilient and require fewer number of measurements.

2.2.4 Hybrid Quantum-classical neural networks

The majority of success and focus in machine learning research is due to the power of artificial
neural networks. Developing such machine learning models incorporating qubits, including the
phenomena of superposition and entanglement, is an active field of research. Hybrid quantum-
classical neural network is one of the NISQ-friendly approaches to construct a quantum neural

19



F 𝜃 𝑢, 𝜈

Feature
Map

Trainable 
quantum 

circuit

Input
Layer

Output
Layer

A

CB

Figure 2.3: (A) Schematic of a Hybrid quantum-classical neural network. An instance of a hybrid
network consisting of classical data processed by a feed-forward neural network. The processed
inputs are embedded into the quantum circuit and unitary operations are performed. Measurement
is like the activation function that yields outputs to be classified processed further. (B) Example
feature map function UF(x; µ) (C) Example of Trainable quantum circuits (Ansatz) UA(ν)

network, where one integrates the best of the classical and quantum resources. While classical
feed-forward dense networks process parts of the computation, a quantum device handles the re-
mainder. The combined parameters of the classical and quantum processing units can be tuned
using appropriate optimizers and loss functions. More specifically, data can be processed by a
neural network and embedded onto a quantum circuit, whose output can be utilized to infer the
category of the data supplied. Different learners (optimization methods) can be utilized for the
quantum circuit and the classical network. In figure 2.3, we represent a general structure of a
hybrid quantum-classical neural network.

Now that we have reviewed the required background of ML theory and variational quantum
algorithms, we move on to our generative model of interest, the variational autoencoder (VAE). In
the next section, we derive the loss function for the VAE using Bayesian inference and with the
help of mean-field theory, show how the loss function simplifies when the latent variables are set
to be factorized Gaussian distributions.
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2.3 Variational autoencoders

Variational autoencoders (VAE) [24, 46], are generative machine learning models that aim to
implicitly learn the underlying distribution of the dataset p(XXX ,Y ). We assume that the distribution
of observed dataset p(XXX) can be represented by another distribution p(ZZZ), where ZZZ is called the
hidden/latent variable. We are interested in discovering the relationship between (X ,Z), more
specifically the generative process: p(X |Z). We can depict this relationship through a graphical
model as as shown in figure 2.4a. The edge from node Z to node X depicts the relationship between
the two random variables through the conditional distribution p(X |Z). From Bayes’ Theorem, we
know the general relationship between these random variables:

p(Z|X) =
p(X |Z)p(Z)

p(X)
(2.11)

where p(Z|X) is the posterior distribution, p(X |Z) is the likelihood, p(Z) is the prior probability
distribution, and p(X) is the marginal distribution. Presuming we know how to evaluate functions
on the likelihood and the prior, generative learning requires us to compute functions on p(Z|X).
This is the problem of posterior inference. Several approaches exist to determine the posterior,
including those from statistical physics, Laplace approximations, importance sampling, and per-
turbation theory [47, 48, 49, 50]. In variational inference formalism, we assume a certain form for
the posterior through a known distribution qφ (z|x) with tunable parameters φ and approximate it
to the desired distribution p(Z|X).

Variational Lower Bound for Mean-field Approximation

The joint probability of the graphical model (Z → X) can be written as p(x,z) = p(x|z)p(z).
The generative process entails that we draw samples zi ∼ p(z) and xi ∼ p(x|z). To perform infer-
ence, we use the bayes rule and find the posterior distribution by:

p(z|x) = p(x|z)p(z)
p(x)

=
p(x|z)p(z)∫
p(x|z)p(z)dz

(2.12)

Since the computation of p(x) involves assessing all configurations of latent variables, the in-
tegral in the denominator (called ‘evidence’) is frequently intractable or takes exponential time to
compute. As a result, the posterior distribution can be approximated with a family of distributions
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qφ (z|x) = ΠJ
j=1qφ j(z j|x) where φ is a set of variational parameters and J is the latent-vector di-

mension. In the mean-field approximation, we assume that the latent variables can be partitioned
so that each partition is independent of the others. We measure the departure of our parametric
model qφ (z|x) from the true posterior p(z|x) through the reverse KL divergence which measures
the amount of information required to ‘distort’ p(z|x) into qφ (z|x). This can be written as:

KL(qφ (z|x)||p(z|x)) = ∑
z∈Z

qφ (z|x) log
qφ (z|x)
p(z|x)

(2.13)

On simplifying, we get:

KL(qφ (z|x)||p(z|x)) =

(
∑
z∈Z

qφ (z|x) log
qφ (z|x)
p(z,x)

)
+

(
log p(x) ∑

z∈Z
qφ (z|x)

)

= log p(x)+

(
∑
z∈Z

qφ (z|x) log
qφ (z|x)
p(z,x)

)

= log p(x)+Eqφ (z|x)

(
log

qφ (z|x)
p(z,x)

)
Minimizing the LHS is equivalent to minimizing the second term in the RHS since the fist term is
independent of the parameter set {φ}. The later is equivalent to maximizing the negation of :

maxφL =−Eqφ (z|x)

(
log

qφ (z|x)
p(z,x)

)
(2.14)

= Eqφ (z|x)
[
− logqφ (z|x)+ log p(x|z)+ log p(z)

]
(2.15)

= Eqφ (z|x)

[
log p(x|z)+ log

p(z)
qφ (z|x)

]
(2.16)

In ML literature, L is known as the variational lower bound or as the (negative) variational free

energy is statistical physics literature. If we can evaluate p(x|z), p(z),qφ (z|x), L is computation-
ally tractable. We may rearrange the terms even more to produce an intuitive formula:

L = Eqφ (z|x)

[
log p(x|z)+ log

p(z)
qφ (z|x)

]
(2.17)

= Eqφ (z|x)(log p(x|z))+∑
Q

qφ (z|x) log
p(z)

qφ (z|x)
(2.18)

= Eqφ (z|x)(log p(x|z))−KL(qφ (z|x)||p(z)) (2.19)
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Substituting L back into Eq.2.13, we have:

KL(q||p) = log p(x)−L

log p(x) = KL(q||p)+L (2.20)

In equation 2.20, we note that since KL(q||p) ≥ 0, log(p(x)) must be greater than L . Con-
sequently, L is a lower bound for log(p(x)) and is therefore called the evidence lower bound

(ELBO):

L = log p(x)−KL(qφ (z|x)||p(z|x)) = Eq[log p(x|z)]−KL(qφ (z|x)||p(z)) (2.21)

We have thus circumvented the problem of computing the posterior distribution by maximizing
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Figure 2.4: (a) Graphical model depicting the relationship between random variables (Z,X) (b,c)
The reparameterization trick allows backpropagation through the latent vector Z by considering
a random state ε from U(0,1) (d)Architecture of a variational autoencoder with the inference and
generative neural-networks

the ELBO. Such a formulation is amenable to deep learning methods. Specifically, it entails con-
structing a neural network where each data-point x ∈ X is itself the (input, output) pair, and the
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network learns to reconstruct the dataset by mapping it to a lower-dimensional manifold1 Z. The
posterior qθ (z|x) can be represented by a neural network (called ‘encoder’) that takes as input data
x and outputs parameters z. The likelihood p(x|z) can be specified, again, by a neural network
(called the ‘decoder’) that takes latent variables z and outputs x, and the parameters to the data
distribution pφ (x|z). The encoder and decoder networks have parameters (θ) and (φ) respectively.
Optimizing the encoder and decoder networks to maximize the ELBO solves the problem. Since
this network reconstructs itself by variationally encoding X onto a manifold Z, we call this a Vari-

ational Autoencoder (figure 2.4(d)). We can now restate the ELBO and include the inference and
generative network parameters as:

ELBOi(θ ,φ) = Eqθ (z|xi)[log(pφ (xi|z))]−KL(qθ (z|xi)||p(z)) (2.22)

This evidence lower bound gives the negative of the loss function for variational autoencoders. In
the next section, we show how restricting the prior and parameterized distributions to a normal
distribution can provide us with a closed-form expression for the loss function.

VAE loss-function with Gaussian latent variables: Suppose the prior and the approximate
posterior distributions are considered to be multivariate Gaussian distributions. Then, we have:

p(z)→ 1√
2πσ2

p

exp

(
−
(x−µp)

2

2σ2
p

)
and qθ (z|xi)→

1√
2πσ2

q

exp

(
−
(x−µq)

2

2σ2
q

)
(2.23)

the KL divergence term modifies into:

−KL(qθ (z|xi)||p(z)) = ∑
Q

1√
2πσ2

q

exp

(
−
(x−µq)

2

2σ2
q

)
× log

 1√
2πσ2

p
exp
(
− (x−µp)

2

2σ2
p

)
1√

2πσ2
q

exp
(
− (x−µq)2

2σ2
q

)


= ∑
Q

1√
2πσ2

q

exp

(
−
(x−µq)

2

2σ2
q

)
×

(
−1

2
log2π − logσp −

(x−µp)
2

2σ2
p

+
1
2

log2π + logσq +
(x−µq)

2

2σ2
q

)

1a higher dimension can also be used to build a model that mitigates noise
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The above equation simplifies to:

−KL(qθ (z|xi)||p(z)) = ∑
Q

1√
2πσ2

q

exp

(
−
(x−µq)

2

2σ2
q

)
×

{
log

σq

σp
−

(x−µp)
2

2σ2
p

+
(x−µq)

2

2σ2
q

}

= Eq

{
log
(

σq

σp

)
−

(x−µp)
2

2σ2
p

+
(x−µq)

2

2σ2
q

}

= log
(

σq

σp

)
− 1

2σ2
p
Eq
{
(x−µp)

2}+ 1
2σ2

q
Eq
{
(x−µq)

2}
= log

(
σq

σp

)
− 1

2σ2
p
Eq
{
[(x+µq)− (µp −µp)]

2}+ σ2
q

2σ2
q

Expanding the terms within the expectation term, we can simplify the RHS as:

= log
(

σq

σp

)
+

1
2
− 1

2σ2
p
Eq
{
(x−µq)

2 +2(x−µq)(µq −µp)+(µq −µp)
2}

= log
(

σq

σp

)
+

1
2
− 1

2σ2
p

[
Eq
{
(x−µ

2
q )
}
+2Eq

{
(x−µq)(x−µp)

}
+Eq

{
(µp −µq)

2}]
= log

(
σq

σp

)
+

1
2
− 1

2σ2
p

[
σ

2
q +2∗0∗ (µq −µp)+(µq −µp)

2]
= log

(
σq

σp

)
+

σ2
q +(µq −µp)

2

2σ2
p

+
1
2

When we set the prior distribution to a standard Gaussian, we set σp = 1 and µp=0, yielding:

−KL(qθ (z|xi)||p(z)) =
1
2
[
1+ log(σ2

q )−σ
2
q −µ

2
q
]

(2.24)

Consequently, the ELBO due to a set of data points xi is given by:

1
2
[
1+ log(σ2

q )−σ
2
q −µ

2
q
]
+Eqθ (z|xi)

[
logpφ (xi|z)

]
(2.25)

where σ2
q and µq are parameters of the approximate distribution, qθ (z|x). The loss function is the

negative of the previous equation and is given by:

L=−
J

∑
j=1

1
2
[
1+ log(σ2

q )−σ
2
q −µ

2
q
]
− 1

L
Eqθ (z|xi)

[
log pφ (xi|z)

]
(2.26)
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where J is the latent vector dimension, and L is the batch-size.

Reparameterization trick: Variational Autoencoders sample a random vector z from the para-
metric model qφ (z|x), representing the true posterior. We need to backpropogate via the random
sampling step to optimize the encoder and decoder neural networks, which is an issue since gra-
dients cannot propagate through random nodes (as demonstrated in figure 2.4(b,c). To get around
this, we employ the reparameterization method. We propose a new parameter ε , which allows us to
reparameterize z so that the backpropagation algorithm can flow through the deterministic nodes.
Specifically, we use ε ∼ N(0,1) sampled from a Normal distribution in (0,1) and set the ‘sampled’
z ∼ N(µµµ,σσσ ⊗ ε) where {µµµ,σσσ} are learnt during training.

2.3.1 IBM Hardware

IBM Quantum provides cutting-edge superconducting quantum computers that are incorpo-
rated into classical computing workflows. There are around 20 quantum systems offered through
IBM Cloud, some of which are open to the public and others of which are reserved for premium
access. The IBM Quantum devices are made up of many qubit and LC oscillator components,
each with a specific frequency. The qubits are built with Josephson junctions, which are nonlinear
electrical devices capable of exhibiting quantum behavior at low temperatures. The linear resonant
circuits, or LC oscillators, link to the qubits and serve as readout devices. IBM’s superconduct-
ing qubits offer several advantages over other systems. These include: (1)high coherence times:
preserving the quantum state for longer periods without being disturbed by noise. (2) Scalability,
(3) Rich implementation of set of single-qubit and two-qubit gates, and (4) Qiskit Runtime, an
open-source cloud-based platform that allows users to run quantum programs faster and more ef-
ficiently. These merits motivate us to test our proposed quantum algorithms on IBM hardware and
verify our results. Nonetheless, these platforms suffer from issues of noise and specific hardware
constraints. For instance, they require (1) extremely low temperatures (around 15 mK) to function,
which poses challenges for scalability and maintenance. They (2) suffer from crosstalk, wherein
unwanted interaction between neighboring qubits introduces errors during computations. They
have (3) limited connectivity, and have (4) finite gate fidelities. Thus they do not perform perfectly
every time. This may limits our ability to achieve fault tolerance or error correction.
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2.4 Previous work and our contribution

Quantum-enhanced machine learning is an area of active interest at the confluence of ma-
chine learning, quantum computing and engineering research. Many previous works have looked
at incorporating quantum correlations and building generative models [51]. While a majority of
such works on generative QML focus on quantum Generative Adversarial Networks (QGANs)
and Quantum Circuit Born Machines (QCBMs), very few focus on the quantizing the classical
variational autoencoder. In particular, previous works incorporating the ELBO framework was
focused mainly for annealing based computation [52]. However, only recently works based on
the gate-based model of computation have been realized. A recent work focused on improving the
latent space representation of classical VAEs through parameterized quantum circuits (PQCs) [53].
Another work considered a fully quantum model where both the encoder and decoder are PQCs
with continuous Gaussian latent space variables formed by the expectation values from the en-
coder [54]. The later work focused on determining molecular properties on graphs, where no
advantage in terms of accuracy or speed was reported. Our work focuses on incorporating the mer-
its of both quantum and classical models in a hybrid fashion and on both quantum and classical
datasets. We look at both discrete and continuous latent spaces and highlight the changes in per-
formance in both cases. In the next section, we detail our motivation on building our QeVAE and
how it can be used to solve a problem intrinsic to the ELBO framework that is still to be addressed
in literature.

Why the Vanilla Variational Autoencoder fails and how can quantum correlations help?
In traditional VAEs, the true posterior is estimated using diagonal Gaussian latent variables. The
reason factorized Gaussian distributions are used is because they are (a) computationally cheap to
compute and differentiate the posterior (a non-diagonal covariance matrix would require O(n2) pa-
rameters, whereas the current arrangement requires just O(n)), and (b) straightforward to sample
at each mini-batch. Nevertheless, completely factorized diagonal Gaussian distributions cannot
mimic all distributions. The fact that they are entirely factorized, in particular, restricts their ca-
pacity to simulate the genuine posterior. To this effect, ML practitioners have advocated building
auto-regressive models where consecutive latent space nodes share some dependence. However,
this still limits the expressive power of the model. In theory, if one can more precisely approxi-
mate the genuine posterior, the generator network should be able to train more easily, improving
the overall output. So, how can we use a more complicated distribution? Motivated by the fact that
quantum systems can produce complex distributions, we hypothesize that a parameterized quan-
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tum circuit (PQC) as our posterior ansatz can provide a better result. In other words, our primary
motivation for the study is: Can an ansatz or qφ (z|x) given by a variational quantum circuit ap-
proximate the true posterior better than a purely classical model? Another related question, we
would like to ask is if such quantum models can learn distributions which classical VAEs cannot.
If so, what are those distributions? What is the performance improvement? In the next section, we
provide a more elaborate description of the setup that will assist the reader in setting up a quantum
neural network within the variational autoencoder framework.
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Chapter 3

Methods

This chapter describes the theoretical and numerical methods used in this thesis. The first
section describes how to construct a quantum-enhanced variational autoencoder using parameter-
ized quantum circuits, why they are required and how they are beneficial. The second section
describes how we construct the Quantum-enhanced Variational Autoencoder (QeVAE) to learn a
classical distribution of pixels present in the MNIST database. We derive the loss function for
the QeVAE in the variational Bayesian approach and show how discrete latent variables modify
the final loss function. In the next section, we describe how we to construct QeVAEs to tackle
problems that classical VAEs fail at. The task involves learning the measurement distributions of
quantum-mechanical states. We also give a brief description of how these states and distributions
are obtained. We conclude this chapter with some notes on practically implementing our algorithm
on a quantum device.

3.1 Towards a Quantum Variational Autoencoder

The classical VAE can be quantized by substituting either the encoder, decoder or both by pa-
rameterized quantum circuits. The quantum-nature of these novel hybrid machine learning models
endow two important advantages: (1) Efficient sampling (performed by a quantum circuit) and (2)
larger latent space volume (through the exponentially growing Hilbert space of qubits). We exploit
these features and numerically benchmark the performance of QeVAEs and contrast them against
classical VAEs for two types of datasets: classical and quantum. For the classical dataset, we use

29



the Modified National Institute of Standards and Technology (MNIST) database and depict how
the quantum-enhanced model performs relative to the classical VAEs. Since, our construction of a
QeVAE uses a discrete latent space, we benchmark it with a classical VAE with discrete latent vec-
tors instead of a factorized multivariate Gaussian distribution (which is used in the next section).
In the following sections, we give a more detailed report to assist a reader aiming to reproduce our
results.

3.2 Learning Classical distributions
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Figure 3.1: QeVAE for learning classical distributions: (a) MNIST images are preprocessed by
reducing the dimension of each image through Principal Component Analysis (PCA). (b) The PCA
vectors of each image are the features that are fed as input to the VQA in our QeVAE setup. The
feature map loads the vector, and the ansatz performs a set of rotation and entangling operations,
followed by a measurement scheme. Binary vectors from the latent space are sampled based on
their probability of occurrence and passed through the decoder (a feed-forward neural network).
The output is a weighted average of many latent vectors sampled and processed by the decoder.
(c) A classical VAE with discrete latent variables.

We implement a QeVAE by substituting the encoder of a classical neural network qφ (z|x)
with a parameterized quantum circuit (PQC) as shown in figure 3.1. The PQC consists of three
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components: the feature map, the ansatz and the measurement. The feature map is responsible for
loading classical data onto the quantum circuit, the ansatz contains arbitrary rotation and entangling
gates that determine the expressibility and entangling capacity of the circuit. Finally, a projective
measurement yields a binary vector based on the Born rule. By varying the parameters of the PQC
(U(x;φ)), we optimize a variational family given by qφ (z|x) = ||ψ(x;φ)||2 = ||U(x;φ)|0⟩||2. In our
setup, we choose to work with a discrete latent space because of two main reasons: (1) The latent
space dimension grows exponentially with the number of qubits (|z| = O(2n)). This allows us to
encode a large dataset into a small qubit system (For instance, 1024 unique elements can be easily
encoded in a 10 qubit system). In addition, multi-basis measurement of the system (ie performing
measurements of different positive-operator valued measures (POVMs) on the same qubit) can
increase the size further. (2) Quantum models intrinsically produce discrete distribution and any
attempt at transforming this into a continuous distribution will reduce the amount of information
stored. Using latent variables also prevents the use of the reparameterization rule, and we can write
the loss-function as:

L =−Eqφ (z|x)(log pθ (x|z))+βKL(qφ (z|x)||p(z))

For discrete latent variables, we can choose our prior p(z) to be a Uniform distribution over all the
2n states available to simplify the second term as:

KL(qφ (z|x)||p(z)) =
2n

∑
z=1

qφ (z|x) log
(

qφ (z|x)
p(z)

)
=

2n

∑
z=1

|ψz(x;φ)|2 log
(
2n|ψz(x;φ)|2

)
=

2n

∑
z=1

|ψz(x;φ)|2 (n log2+2log |ψz(x;φ)|)

= n log2+2
2n

∑
z=1

|ψz(x;φ)|2 log(|ψz(x;φ)|)

Note that the second term in the RHS is actually the negative self-entropy of the measurement
distribution produced by the PQC and can be written as −H (|ψ(x,φ)|2). Furthermore, the differ-
ence between this term and n log2 computes the difference between the state of maximum entropy
(uniform) and the current state. To achieve a balance between the reconstruction loss and the
KL-divergence loss, we use an additional hyper-parameter β . During training, β can be slowly
changed from 0 → 1, resulting in focusing on reconstructing the input initially, and learning the
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(a)

(d)

(c)

(b)

Figure 3.2: Ansatz and Feature maps for learning classical distributions (a) A two-local ansatz
on three qubits with two repeating layers of Rx and Ry gates along with linear entanglement (b)
A Pauli-Z feature map that embeds a three-dimensional vector. ‘H’ represents the Hadamard gate.
(c) A Pauli-ZZ feature Map (d) A Pauli-(X, XY) feature map on a three qubit system.

latent space distribution only at the end. Thus, the loss function to be minimized becomes:

L =−Eqφ (z|x)(log pθ (x|z))+β
(
n log2−H (|ψ(x,φ)|2)

)
(3.1)

Notes on implementation

While using the MNIST dataset, we note that each image is a binary matrix of size 28x28,
flattening which, yields a 784-dimensional binary vector. The first-step of our algorithm is to
encode each data-point and forward propagate it through the PQC. To encode the 784-dimensional
vector, one needs to resort to amplitude-encoding on at least log2 (784) ∼ 10 qubits. Since qiskit
does not allow for backpropagation with amplitude encoding, we resort to a different encoding
scheme using Pauli feature map depicted in figure 3.2. Our proposed preprocessing scheme is as
follows: We consider a dataset of 1000 images of digits (6,9) [since they are the most difficult digits
for a classical algorithm to distinguish] and partition it into 70% training set and 30% validation set
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images. After mean-normalizing the training dataset, we perform a principal component analysis
(PCA) on the training set and reduce the dimension of each image to nQ, by choosing the first
nQ principal vectors (nQ= number of qubits). To avoid data leakage, we apply the same PCA
transformation to the validation set. Now, our training set is of size (nQ, 700) and the validation
set is of size (nQ, 300). This completes the data-preprocessing step. We are now ready to train the
algorithm.

Next, each image is passed through the encoder, namely, the feature-map which prepares a
complex-valued vector UF(x;ν)|ψ0⟩= |ψ(x;ν)⟩, the Ansatz is randomly initialized with parame-
ters in (-1,1) and applies the parameterized gates to yield UA(µ)|ψ(x; µ)⟩ = |ψ(x;{ν ,µ})⟩. This
state is measured in the computational basis to yield the distribution |ψ(x;{µ,ν})|2. This distri-
bution is used to compute the second term in equation 3.3. Instead of sampling a random binary
vector from the latent space, and computing the expectation (first term in equation 3.3), we com-
pute a closed form expectation by passing every latent-vector through the decoder and computing
a weighted average using |ψ(x;{φ ,θ})|2. It is crucial to note that with discrete latent variables,
the size of the latent dimension is bounded by 2n where n is the number of qubits. Furthermore,
instead of taking all the latent vectors, we choose to pass the top η% of the latent-vectors, arranged
in descending order of their probability. The weighted average is the output obtained from the de-
coder. We model the distribution of output as a factorized Gaussian distribution with mean equal
to the value of the corresponding entry in output vector and standard deviation 1. Repeating this
for all the neurons in the output layer, we reduce the first term in Equation3.3 to:

−Eqφ (z|x) log(pθ (x|z)) =−
L

∑
i=1

qφ (zi|x) log(pθ (x|zi))

We choose: pθ (x|zi) = Π
n
j=1

1√
2π

exp
(
−(x0 j − x j(θ))

2

2

)
Then: −Eqφ (z|x) log(pθ (x|z)) =−

L

∑
i=1

qφ (zi|x)
n

∑
j=1

{
log
(

1√
2π

)
−

(x0 j − x j(θ))
2

2

}

=
L

∑
i=1

n

∑
j=1

qφ (zi|x j)
(x0 j − x j(θ))

2

2
+

L

∑
z=1

n

∑
j=1

qφ (zi|x j) log
√

2π

=
L

∑
i=1

n

∑
j=1

qφ (zi|x j)
(x0 j − x j(θ))

2

2
+ log

√
2π

L

∑
z=1

qφ (zi|x j)
n

∑
j=1

I

=
1
2

L

∑
i=1

n

∑
j=1

|ψz(xi,φ)|2(x0 j − x j(θ))
2 (3.2)
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Neglecting the constant terms, the loss function for each sample xl reduces to:

Lφ ,θ (xl) =

(
L

∑
i=1

n

∑
j=1

|ψzi(x
l
j,φ)|2(xl

0 j − xl
j(θ))

2

)
−βH (|ψ(x,φ)|2) (3.3)

where L is the size of the latent dimension, n is the size of the input vector, x0 j is the entry in
the jthcolumn of the input vector, β is the relative weight given to the KL-divergence term and
|ψz(xi,φ)|2 is the distribution produced by the PQC.

Now, we return to describe the feature map and the ansatz. To encode classical data x onto the
quantum circuit, we use the Pauli Feature Map (figure 3.2(b,c,d)) - whose general form is given
by:

UΦ(⃗x) = exp

(
i ∑

S⊆[n]
φS(⃗x)∏

i∈S
Pi

)
(3.4)

If the variable Pi = Z, then U denotes the Pauli Z-feature map. The index S describes connectivities
between different qubits. Using this we can define both first-order (without entangling gates) and
second-order (with entangling gates) Pauli Z-evolution circuits as seen in figure 3.2 and figure
2.3. We use a two-local ansatz with linear entanglement since it is particularly suitable for NISQ-
devices.

Classical VAE with discrete latent variables

To compare the results from QeVAE, we setup a classical VAE with discrete latent variables
where both the encoder and decoder contain feed-forward neuronal networks. Equation 2.25 is
not valid here and we numerically compute the KL divergence with the variational posterior and
the prior. The output of the encoder is discretized using the sigmoid activation function (φ(x) =
1/(1+ e−x)) and the joint probability distribution is computed. Next, all samples upto a threshold
are passed through the decoder and a closed form average is computed similar to the QeVAE setup
described earlier. The resulting loss function is similar to 3.3 but the KL-term changes:

Lθ ,φ (xl) =

(
L

∑
i=1

n

∑
j=1

|ψzi(x
l
j,φ)|2(xl

j − xl
0 j)

2

)
+β

(
n ln2−H (qφ (z|x))

)
(3.5)
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Here, since the discrete latent variables can be modeled as independent Bernoulli variables (there is
no correlation between different latent neurons), we can rewrite the entropy term as H (qφ (x|z)) =
∑i {pi(φ) ln pi(φ)+(1− pi(φ)) log(1− pi(φ))}, where pi(φ) is the probability of the variable z

being equal to 1 (learnt by the encoder).

Using a gradient based learning algorithm for the classical neural network (ADAM, SGD) [55,
56] and gradient-free learners for the quantum-neural network (SPSA, QNSPSA) [57, 58], we
train the hybrid model and the classical model to minimize the loss function given by equation
3.3 or equation 3.5 respectively. To prevent over-fitting on the training dataset, we employ the
early-stopping criterion, wherein we halt the training process when the validation loss does not
decrease for δ number of epochs where δ is a hyper-parameter, called the patience-factor. The
trained model is reconstructs the original dataset and also does not over-fit. After training, the
encoder (quantum processor) can be discarded and only the decoder (classical neural network) can
be used as a sampler to generate novel samples. To compare the output distribution after training,
we sample latent vectors and pass them through the decoder. After performing an inverse-PCA
transform on the output vectors, one can visually see the original, the reconstructed, and sampled
images from the generative model.

3.3 Learning Quantum distributions

The study of quantum states has been a topic of great interest among physicists due to many
of its exotic properties and potential applications. However, describing general quantum states
can be a challenging task as the number of parameters required to represent a many-body spin
system scales exponentially with the number of qubits. Although classical generative learning
methods have been used to learn the measurement distribution of general quantum states, they
require an exponentially number of parameters and sometimes they cannot learn the distribution
with high fidelity [30, 31]. Recent research based on the Probably Approximately Correct (PAC)
framework has shown that there exist classes of probability distributions that can be efficiently
learned with quantum resources, but not with purely classical approaches. Furthermore, it is known
that simulability does bot guarantee learnability of certain class of states (Ex: Clifford circuits) [16,
59, 60]. However, the description of such a quantum learner requires the existence of a fault-
tolerant quantum computer. The canonical generative learning model suitable for NISQ devices
is the Quantum circuit Born machine (QCBM) that contains a quantum circuit with tunable layers
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of rotation gates and entanglement gates. However, these are input-agnostic and solely aim at
recreating a desired target distribution.

In this part of the thesis, we explore the question of whether near-term quantum learners, can
exhibit an improved performance over classical learning algorithms, in a generative modeling prob-
lem. Our focus is on the task of reconstructing a state/its measurement distribution via an iterative
learning process, which has applications in depth-circuit compressing, quantum metrology, and
sensing. We also show that our algorithm leads to the Quantum circuit Born machine (QCBM) in
a certain limit. The goal is learn a quantum circuit that generates the target distribution. Although
classical learners cannot efficiently learn the distribution of certain quantum states, we postulate
that quantum learners can reliably reproduce these distributions.
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Figure 3.3: QeVAE for learning quantum state distributions: (a) Multiple copies of a quantum
state ρ is obtained naturally from a quantum sensor and is measured through different POVMs in
a lab. The measurement dataset is stored on a classical computer. (b) The QeVAE with a param-
eterized quantum circuit as the generative network and a classical feed-forward neural network as
the inference network can be used to recrete the distribution. After training, the circuit can be used
to generate the original distribution through any quantum computer and generate states amenable
for downstream processing. (c) A classical VAE with continuous Gaussian latent variables that
perform the same task.
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To learn the distribution of unknown quantum states and realize it in different systems, we
implement a QeVAE by replacing the decoder of a classical VAE with a PQC as shown in figure
3.3. The algorithm (agent) is only given access to the measurement distribution of various POVMs
acting on an unknown quantum state. The agent learns to mimic the original distribution by re-
peatedly verifying the measurement distribution produced by the QeVAE with the original results
and iteratively altering the ansatz. In such a scenario, the encoder acts as a classical post-processor
whereas the decoder outputs probabilities associated with a learnt quantum state.

The metric we use to quantify the generated distribution is the fidelity between two discrete dis-
tributions. If ψ and φ are n-qubit states, then φ is a similar to ψ if the fidelity F =Tr(

√
ψ1/2φψ1/2)>

1− ε for an ε > 0. The fidelity can be written in terms of the probability distributions over a mea-
surement that maximally distinguishes the two states [61]. Thus given two random variables X ,Y

with probabilities p = (p1, p2, ..pn) and q = (q1,q2, ..qn), the fidelity of X and Y is defined to be
the quantity:

F(X ,Y ) =

(
∑

i

√
piqi

)2

(3.6)

where the measure ∑i
√

piqi is known as the Bhattacharyya coefficient between the two distribu-
tions. We now briefly describe the four distinct kinds of states we use: Random product states,
Haar random states, Quantum circuit states, and Quantum-kicked rotor states. Product states are
easy to learn. It is known that conventional VAEs can learn to represent such quantum states but
require exponential parameters (2n where n in the number of qubits) to learn the distribution of
Haar states and states postulated to be intractable on classical devices [15, 31].

3.3.1 Quantum measurement datasets

We benchmark the performance of QeVAE on several datasets. In the following sections, we
detail the types of datasets used and how they are generated.

Random product states: Product states are classically easy to simulate and are empirically
found to be classically easy to learn. We generate random product states by simulating quan-
tum circuits with only single qubit gates with arbitrary angles of rotation, generated accord-
ing to a random seed (As shown in figure 3.4(a)). The state prepared is on the form: |ψ⟩ =
⊗n−1

i=0 {αi|0⟩+βi|1⟩}, where n is the number of qubits. Projective Z-basis measurements generat-
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Figure 3.4: Different types of measurement datasets: (a) Product states obtained by a combi-
nation of arbitrary single qubit gates. The orange box represents repeatable layers of gates. (b)
Quantum circuit states obtained from circuits with local (nearest-neighbor) entanglement. (c) Haar
states obtained from a pure-quantum state by normalizing a 2n-dimensional complex vector. (d)
Quantum-kicked rotor states obtained by the time-evolution of an initial state |0⟩.

ing the distribution.

Haar random states are quantum states that are uniformly distributed over the Hilbert space
according to the Haar measure. Haar states represent classically hard states i.e, they require expo-
nential number of parameters in the number of qubits to learn. These states can either be generated
by first creating a Haar unitary U and then applying it on an initial state of dimension 2n or by
normalizing a complex-valued vector of dimension 2n. We use the later method, where a complex-
valued vector of |ψ⟩ = ∑

n
l=1(c1l + ic2l)|l⟩ is initialized with |l⟩ corresponding to the orthonormal

basis vector in the 2n-dimensional Hilbert space, Cn, and c1l,c2l are real numbers chosen indepen-
dently from a standard Gaussian distribution. This vector is normalized to yield a quantum state
by using the constraint: ⟨ψ|ψ⟩= 1. After normalization, the states are uniformly distributed on a
unit hyper-sphere.

Random quantum circuit states are obtained from random quantum circuits with a pre-
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defined entanglement structure and circuit depth, as shown in figure 3.3(b). These states are useful
for circuit compression and circuit compilation.

Quantum kicked rotor states are obtained from the quantum kicked rotor (QKR), a quintessen-
tial model for quantum chaos in floquet systems, and are known to produce rich dynamical behavior
under time evolution. The Hamiltonian of the system is given by:

H̄ =
p2

2
+κ cosx∑

n
δ (t −nτ) (3.7)

and the Floquet operator is given by:

F̂ = exp
(
− i

h̄s
K cos x̂

)
exp
(
− i

2h̄s
p̂2
)

(3.8)

where h̄s is the scaled Planck’s constant and K is the effective kicking strength, Under time evo-
lution, the wavefunction exhibits classical diffusion in the weak-kicking (K) regime. Under the
strong kicking regime, the system exhibits localization in momentum space, contrary to the chaotic
behavior observed in its classical counterpart. For a more detailed review on the quantum kicked
rotor, we refer the interested reader to [62]. To examine if the distribution of the wavefunction
can be learnt by a generative model, we evolve an initial wavefunction initialized at |ψp(0)⟩ = 0
until 1000 kicks and then store the the probability distribution |ψp|2. We train both classical and
quantum models to reproduce these distributions. We are interested in discovering if a classical
learner can learn the same distribution and how the number of parameters required scales with the
size of the system.

3.3.2 Notes on implementation

Substituting the decoder of a classical VAE with a PQC yields a QeVAE suitable for learning
the distribution of quantum states. Here we use continuous latent variables and the loss function is
given by equation 2.26. We also create a QeVAE with a preprocessing layer before the quantum
circuit, after sampling a latent vector. This provides two benefits: (a) Flexibility in choosing a latent
size (b) Linearly transforming the latent vector of a different size to fit the input requirements of
the quantum circuit.

The training pipeline is as follows: A dataset contains keys and values where keys represent
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a bit-string of size n, the number of qubits and values represent the quasi-probability (number of
times of occurrence) of measuring that bit-string in a measurement protocol. Such a dataset is
expanded proportionate to its quasi-probability before training, where each bit-sting is repeated
by its key value and permuted randomly. Sequentially, each bitstring is converted into a vector
of size (n,1) and passed through the encoder, a classical neural network with input size n. The
encoder terminates into two layers, representing the mean and log variance of a standard Gaussian.
Using the reparameterization trick, a vector z is sampled from the latent space and passed to the
preprocessor layer. In the absence of the preprocessor layer, the latent vector is passed to the vari-
ational quantum circuit directly where it is encoded using a Pauli feature-map, followed by layers
of learnable rotation and entangling gates. Now the state is measured with multiple measurement
shots (usually ∼ 1024). This produces a distribution over all 2n states. To minimize the loss func-
tion, we consider the probability of obtaining the state that was fed as input i.e log p(x|z). This
process is repeated for all the samples with a predefined batch-size. The loss function is computed
by summing the KL-divergence of the latent vectors and the network is optimized.
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Chapter 4

Results and Discussion

In this chapter, we summarize the results obtained from our experiments. In the first section,
we discuss the results on learning classical distributions. We observe how the QeVAE algorithm
performs relative to the discrete CVAE on the MNIST dataset. In the second section, we discuss
our findings on learning the distributions of quantum states with the QeVAE.

4.1 Learning Classical distributions

In the introduction and methods section of this thesis, we showed that quantum models might
perform better than classical models since they are more expressive. In other words, since vari-
ational quantum circuits can learn complex distributions, we can obtain a model that provides a
tighter bounder for the evidence lower bound loss introduced in section 2.22. Using methods de-
tailed in chapter 3, we compare the performance of a QeVAE with a classical discrete VAE and the
results are depicted in figure 4.1 and figure 4.2. Our keys observations are as follows:

1. Our proposed hybrid quantum-classical model can learn and generate images from the MNIST
(6,9) database reliably. Furthermore, as shown in figure 4.2, we notice that the overall loss
function decreases with the number of epochs (In ML literature, an epoch is one pass through
the entire training dataset) and saturates until a point.

2. Based on the type of images generated, we find that both models give similar quality of
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(a) Training

(e) Generating new images

(d) Latent vectors

(c) Validation set

(b) Training set

Figure 4.1: Learning the MNIST-(6,9) dataset with a cVAE: (a) While training the classical
VAE, we observe a gradual decrease in the combined loss (reconstruction loss (mse loss) + β Kl-
divergence loss) and training is halted based on the early stopping criterion on the validation loss.
(b,c) After training, samples from the training set and validation set are passed through the neural
network, here the top panel in (b,d) represent the input image and the bottom panel is the image
recovered from the decoder. (d) For a latent-dimension containing only 8 bit-strings, sampling
each bit-string leads to a unique image. We see that some bit-strings encode a ‘6’ while some
encode an ‘9’ (e) Sampling random vectors from the latent space generates new combinations of
images.

images. The generated images are blurry since the model actually only produces a vector of
a very small dimension compared to the size of the image (28x28). The image is constructed
from the vector via an inverse-PCA transform that is itself lossy. The final ELBO values of
both the methods are in the similar range, with those of the classical VAE being higher in
some cases.

3. We use an early stopping criterion on the validation set loss to prevent over-fitting. However,
we find that early stopping does not work for quantum models, and learning is halted very
early before. As shown in figure 4.3, the validation loss increases rapidly and then decreases
for all the models we have trained, and the results produced through early stopping are very
blurry. This indicates that our quantum models over-fit the training data and find it hard to
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generalize on the validation set.

4. Although it appears that the classical generative model take lesser number of epochs, the dif-
ference can be attributed to the difference in the learning rates used to train the two models.
Learning rates are tuned to achieve optimal performance and a balance between over-fitting
or under-fitting.

5. Finally, since encoders in both the QeVAE and CVAE have the same number of parameters,
we do not find any advantage in the number of parameters required to learn the posterior
distribution on the modified MNIST dataset.

A

F

D

E

C

B

Figure 4.2: Learning the MNIST-(6,9) dataset with QeVAE (A) Hybrid quantum-classical neural
network with a parameterized quantum circuit as the encoder, with discrete latent variables and a
classical decoder. (B) The structure of the PQC until measurement with a Pauli-Z feature map
on first three qubits with three ancilla qubits, followed by learnable rotation gates with linear
entanglement. (C) Loss function curves during learning i.e, the Total Loss, Mean-square error or
reconstruction loss and the KL loss (1/β=3), the average loss computes an moving average of 50
points and is offset to the left by 50 epochs, each epoch is one pass through the entire dataset
(D) Results of training, top panel depicts the original images while the bottom panel shows the
reconstructed images (E) New sample images by sampling latent vectors (F) A new sample image
generated by sampling a random vector v ∈ R10 where each vi ∈ (0,1)
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Figure 4.3: QeVAE over-fitting the training data: In some instances of training the QeVAE to
learn MNIST images, we find that the model over-fits the training dataset: losses on the training
data continue to reduce whereas the loss of the validation data increases, decreases and continues
to increase after 120 epochs. The rolling-average (orange line) shows that the validation loss
increasing when the training losses rapidly decrease. (Here we use a training dataset of 70 images
and a validation set of 30 images. The ansatz contains 5 qubits with 20 learnable parameters. β is
linearly annealed from 0 → 1)

4.1.1 Discussion

It is evident from the previous section that classical VAEs perform at par or better than Quantum-
enhanced VAEs at learning the distribution of the modified image dataset. There are many caveats
to consider and to fully arrive at an answer to the quantum advantage question. Firstly, we note that
since images are produced by the same generator network across both the models, any performance
differences must be attributed to the encoder network. Within the encoder, we note that quantum
models tend to over-fit and takes a very large number of epochs to train. A possible cause for the
above could be the problem of parameter initialization. Random quantum circuits initialized far
from their optima are known to suffer from the problem of barren plateaus where the gradients
with respect to the parameters become diminishingly low and parameter updates very slow. Our
quantum models are initialized with random parameters in (-1,+1), and the final parameters learnt
are very different and differ by 3x. In addition, gradients need to be propagated first through the de-
coder, and then the circuit, rendering the computation slow. A possible remedy is to initially train
the quantum model through tensor networks and then slowly increase the entanglement structure
of the encoder [63].

Secondly, the KL-divergence loss function and the relative-weight term β play an important
role in the quality of images produced. A higher β prioritizes minimizing the difference between
the measurement distribution produced and that of a uniform distribution. This constrains the
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quantum circuit to produce a distribution closer to a uniform distribution with less emphasis on the
encoded data-sample. On the other hand, the reconstruction term aims to produce a measurement
distribution that efficiently encodes different aspects of the dataset. In our simulations, we find
that higher β values produce better quality images whereas lower β values train better. A higher
β implies that the quantum circuit is producing a distribution close to the uniform distribution, a
distribution similar to uniform noise, and bulk of the generative work is performed by the decoder.
This results in the decoder solely working on generating images from noise rather a latent space
with rich features, a problem popularly described in literature as posterior collapse. To prevent the
collapse of the posterior distribution, we focus on maintaining a simple generator network.

Lastly, our results substantiate that classical deep learning models are highly expressive and can
encode the complex distributions produced by classical distributions (such as the distributions of
pixel values in a set of images). Although VAEs share their fair set of disadvantages like factorized
latent variables, and blurry images, our results highlight the fact they can learn distributions and
generate data with desirable performance. However, from the above considerations it not clear if
this implies that QeVAEs are better at approximating the ELBO loss encountered in VAEs. We
indicate the future plans to improve and consolidate our claims in the next chapter on outlook and
conclusion.

4.2 Learning Quantum distributions

In the tables presented below, we summarize the best fidelity obtained across each type of mea-
surement dataset. We compare the final fidelity between the target distribution and that produced
by a random uniform guess, a classical variational autoencoder (VAE), and a Quantum-enhanced
Variational Autoencoder. For each type of state, we consider five different random seeds. Qe-
VAE results include the best fidelity observed across different hyper-parameters like latent size,
feature-map, prepossessing-layer, and relative KL-divergence term β .

Table 4.1: Fidelity for Product states
No qubits 4 8
Seed 12 16 27 44 102 Mean ↓ 12 16 27 44 102 Mean ↓
Uniform .471 .356 .302 .156 .436 .344 .164 .306 .081 .306 .106 .193
CVAE .998 .995 .998 .995 .995 .996 .983 .979 .982 .983 .987 .983
QeVAE .995 .827 .882 .973 .892 .914 .875 .947 .870 .823 .957 .894
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Table 4.2: Fidelity for Quantum circuit states
No qubits 4 8
Seed 12 16 27 44 102 Mean ↓ 12 16 27 44 102 Mean ↓
Uniform .477 .366 .315 .154 .431 .348 .158 .279 .080 .309 .107 .187
CVAE .501 .667 .597 .925 .758 .690 .229 .423 .079 .304 .181 .243
QeVAE .981 .976 .950 .873 .912 .938 .665 .654 .388 .548 .591 .569

Table 4.3: Fidelity for Haar random states
No qubits 4 8
Seed 42 96 27 101 102 Mean ↓ 12 43 16 27 2 Mean ↓
Uniform .772 .776 .777 .771 .768 .773 .766 .770 .773 .781 .772 .772
CVAE .795 .798 .800 .788 .788 .794 .754 .755 .757 .766 .763 .759
QeVAE .839 .983 .913 .988 .932 .931 .876 .878 .887 .887 .887 .883

Table 4.4: Fidelity of Quantum-kicked rotor states
No qubits 4 8
Type Localized (k=6) Diffusive (k=0.5) Mean ↓ Localized (k=6) Diffusive (k=0.5) Mean ↓
Uniform .175 .838 .506 .053 .418 .236
CVAE .723 .908 .815 .061 .406 .233
QeVAE .991 .992 .991 .912 .616 .764

Table 4.5: Hardware results for a 4 qubit quantum circuit state
State Fidelity Simulator Hardware Suppression Mitigation
Uniform 0.477 ✓
CVAE 0.501 ✓
QeVAE 0.981 ✓
QeVAE 0.658 ✓
QeVAE 0.642 ✓ ✓ ✓

From the above tables, we observe that across all quantum states with entanglement, the final
fidelity obtained from a QeVAE outperforms the classical VAE and a random guess. In addition,
the number of parameters in the classical VAE is O(exp(n)) whereas it is O(n) in QeVAEs. To
further validate our findings, we run the best QVAE models on real quantum devices and see that
the obtained fidelity is higher than those achieved by classical methods.

What is the best feature-map to choose?: We look at two different kinds of feature-maps and
latent sizes for learning the measurement distribution of Haar random states, as shown in figure
4.4. We consider the Pauli-Z and Pauli-ZZ feature map and latent sizes: 0, 4, and 8. Latent size 0
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Figure 4.4: Variation in learning Haar states with different feature maps (Left) The average
number of epochs and its standard deviation required to achieve the same fidelity across different
types of quantum embeddings. The average is over five different seeds (Right) The average maxi-
mum fidelity and standard deviation for learning the measurement distribution of haar states.

Figure 4.5: Inference on IBMq Manila: The true distribution produced by an unknown 4-qubit
system (green) is used to train a QeVAE on IBM’s qasm-simulator (blue) that results in a final of
0.97. After training, the decoder is executed on the IBM-Manila. The measurement distribution
produced from hardware has a total fidelity of 0.658 which changes to 0.642 with error-mitigation
(Zero noise extrapolation) and error-suppression (Dynamic decoupling)

47



corresponds to the QCBM case and a quantum embedding is not required. We find that all models
achieve the same range of maximum fidelity and that the ZZ feature map with 8 latent variables
achieves it the in the lowest number of epochs. This can be explained by the fact that the ZZ8
feature-map with 8 latent variables is the deepest and with the largest number of gates, while the
QCBM requires the smallest number of gates and is the most shallow.

Hardware run: We execute the best model trained on the simulator on IBM Hardware by
transpiling the decoder circuit. To generate the output distribution, random samples from N(0,1)
are propagated through the preprocessor linear layer and then through the circuit (executed on
hardware). An average over all initial random points yields the desired output distribution. Our
results are depicted in figure 4.5 and in table 4.5. We find that final fidelity is lesser than that on a
simulator. Using error mitigation and suppression techniques, we are able to perform better than
the classical VAE.

4.2.1 Discussion

We know from literature that the measurement distribution obtained from product states are
classically easy and that measurements obtained from states with quantum correlations is clas-
sically hard. Our results not only corroborates with the above observation but also shows that
quantum-enhanced classical models can overcome the drawbacks of purely classical models. Our
main results and observations from data is as follows:

1. Firstly, all models are able to learn the measurement distribution obtained from various quan-
tum states. Our proposed algorithm achieves the highest fidelity across all types of datasets,
other than product states. The inherent ability of our model to learn quantum correlations
i.e we are able to produce entangled multi-qubit states through variational quantum circuits
and tailor the rotation gates to reproduce a desired distribution allows them to outperform
the classical model for the quantum circuit, haar random and kicked rotor states. Further-
more, all quantum models require only O(n) parameters where n is the number of qubits
whereas classical models require O(exp(n)) parameters to reproduce the same distribution
with similar fidelty.

2. Fidelity for Product states: Since product states do not employ quantum-correlations be-
tween different qubits in a many-body system, an n body system require only 2n parameters
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to be learnt. This polynomial dependence and presence of only classical correlations in the
output distributions enables classical VAEs to efficiently learn and reproduce the distribution
with very high fidelity. In addition, the ansatz in our model is not always tailored for product
states, i.e the ansatz has an entanglement structure and the quantum state produced from the
QeVAE will exhibit entanglement. Such a class of distribution produced cannot in general
be similar to that produced by product states. This might explain the reduced fidelities for
QVAEs.

3. Fidelity for Haar, Quantum circuit and Quantum kicked rotor states: We notice that for
measurement distributions obtained from more generic quantum states, our quantum models
outperform the classical models in terms of final fidelity. In some cases (like seed 44 for
quantum circuit states), the score of the classical model is higher because the resulting mea-
surement distribution is highly concentrated around a single output (> 80%). In such cases,
it becomes easier to just predict the output statistically than learning the intrinsic structure
of the quantum circuit producing the state. Nonetheless, we find that QeVAE models require
only O(n) rotation gates to learn the output distribution and achieve a fidelity score that is
unattainable to other methods.

4. Since QeVAE is a hybrid model, it operates through the synergy of quantum and classical re-
sources. Classical models are well-versed at producing non-linear transformations whereas
quantum models are restricted to unitary or linear transformations. Conversely, quantum
models can encode quantum correlations like entanglement and discord, a phenomenon in-
accessible to classical methods. An important feature of our model is the ability to leverage
the merits of both the classical and quantum models, and outperform both models.

5. The QeVAE model contains many hyper-parameters that can be tuned to achieve optimal
performance. In the above tables, we have presented the result for the best hyper-parameter
setup. When the latent-size is set to zero, there is no contribution from the classical encoder
and the output distribution is produced by the circuit alone. In such cases, the resulting
model is the Quantum circuit Born Machine (QCBM), wherein the circuit parameters are
iteratively updated to minimize the difference between the output and target distributions.
Thus in the latent-size=0 limit, our model results in the QCBM generative model. The KL
divergence term in the loss function can be neglected, and minimizing the negative expected
log-likelihood becomes equivalent to minimizing the KL-divergence between the output and
target distributions.
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6. We would like to highlight the subtle difference between training a QCBM and our approach
for QeVAEs. QCBMs are input-agnostic and the algorithm’s goal is to minimize the KL-
divergence betwwen the distribution produced by an ansatz and a true distribution (obtained
from data). Computing the KL divergence can be costly and the number of samples to
be evaluated increases exponentially with n. Alternatively, within QeVAEs we focus on
maximizing the log-likelihood of producing a bitstring x, ie maximise log p(x|z). This allows
the latent space Z to learn a representation for the input distribution and produce reliable a
X . Furthermore, training QeVAEs is by minimizing a loss function with a particular batch-
size. Thus gives one the flexibility to start training the QeVAE without having to wait for the
entire measurement dataset and begin learning through iterative access to samples.

Applications: Circuit compression (a case study)

Having described the ability of our model to learn complex quantum distributions, we conclude
this chapter with a practical application, on circuit compilation. Circuit compilation or circuit
compression is an important area of focus in the NISQ era. Since the depth of circuits executable
on hardware is limited, there is a need to transform deep circuits into shallow ones by altering
the sequence of gates and reducing the overall size and complexity. Furthermore, multi-qubit
gates like the CNOT gate, T gate, and SWAP gates are expensive to implement. Efficient circuit
compilation assists in faster computations, and allows accurate simulation of quantum systems.
This has immense applications in many-body physics, condensed matter physics, and quantum
chemistry. Here, we show show QeVAEs can help in exponentially reducing the complexity of
circuits by learning to reproduce measurement distributions with fewer gates. We show our results
in figure 4.6.

We simulate an unknown quantum state by considering a deep quantum circuit with twenty
layers of rotation and entangling gates. In reality, the form of the circuit is unknown and one
only has access to the measurement data. A projective measurement on such a state produces a
measurement distribution as shown in figure 4.6(e). Note that our goal here is to reproduce the
measurement distribution and not to learn the original state itself. Through the QeVAE learning
approach, we can learn the measurement distribution with high fidelity. After training, we can
discard the encoder part of the circuit, and the decoder provides a sequence of gates that can be
implemented on hardware to generate the same distribution. With this approach, we achieve a final
fidelity of 0.956 (figure 4.6(d)) and a multi-fold reduction in the number of gates as seen in figure
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(a)

(e)(d)

(c)

(b)

Figure 4.6: Circuit compilation with QeVAEs (a) Original circuit structure that produces a mea-
surement distribution. The orange box represents a single layer of rotation and entangling layer
that is repeated 20 times. (b) The compiled circuits requires very few gates when compared to
the original circuit that produces the state. Particularly, the number of CNOT gates is reduced by
∼14X (c) The variational quantum circuit containing the Pauli-Z feature Map that embeds data xxx
from the latent space and the ansatz with only 16 parameters. (d) Results of training the ansatz
to produce the measurement distribution. We achieve a final fidelity of 0.956 (e) Original and the
distribution produced by the QeVAE after training.

4.6(b). The initial circuit majorly contains: 80 Rx gates, 80 Ry gates, 63 CNOT gates which are
reduced to 28, 20, and 6 respectively.

51



52



Chapter 5

Outlook

This chapter begins by discussing various questions raised in the Theory and Methods chapters
regarding the expressivity of quantum-enhanced neural networks. Next, we discuss the implica-
tions and limitations of the new results presented in this thesis. Lastly, we provide an outlook on a
few open problems within generative quantum machine learning.

5.0.1 What are the key takeaways from our work?

The major outcome of our work is a working hybrid quantum-classical machine learning model
for generative learning and its bench-marking against purely classical and quantum models. We
have shown that our model can learn distributions, derived from both classical sources and quantum
systems. In addition, our models are particularly suitable for quantum devices with small number
of noisy qubits with limited connectivity. Firstly, we have considered the MNIST database as a
representative of a dataset obtained from a classical source. Here we find that classical models
require similar amount of resources and can provide a better final performance than our proposed
QeVAE model. Furthermore, we find that our hybrid model tends to over-fit the training dataset
and that additional fine-tuning is required to generalize on the validation dataset. We do not find
substantial evidence to show that quantum models can provide a tighter lower bound to infer the
posterior distribution. In agreement with literature, we find that quantum models do not provide
a substantial advantage in terms of accuracy for classical datasets. Thus, an implication one can
work towards is that quantum generative models can learn classical distributions but it is a more
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involved task to prove an accuracy advantage over the more robust classical generative models.

Secondly, we have investigated the ability of quantum generative models to learn the distri-
butions obtained from the measurement of quantum many-body systems. Such distributions are
known to be demanding for classical generative models and we verify the same in our experiments.
We further go on to show that our proposed hybrid-model can learn these distributions with a much
higher final fidelity. We find this trend to be universal across a range of different types of quantum
states, from generic haar random states to dynamic kicked rotor states. We find that our model
has multiple hyper-parameters to tune and in one such case, when the latent size is set to zero, we
obtain at the Quantum circuit Born Machine, the most popular pure quantum-mechanical genera-
tive model. In addition, we have shown that QeVAEs can be useful for the practical task of circuit
compilation.

To conclude, we have numerically shown that quantum-mechanical parametric models achieve
higher fidelity than classical models at learning distributions produced by quantum-mechanical
sources. Theoretically proving our findings is an on-going effort and future work could focus on
demonstrating their capabilities.

5.0.2 What are some limitations of our work?

Our work highlights the ability of quantum-enhanced models to perform better than classical
models within the variational autoencoder framework. There are some drawbacks of the VAE
approach and they include: (1) information loss in the encoding and decoding process that often
results in blurry images; (2) posterior collapse: if the likelihood function is much more complex
than the posterior, then the encoder ignores the input data and outputs a trivial latent space, leading
the decoder to reconstruct the data from noise. Other classical generative methods like GANs,
Diffusion Models, and Normalizing flows have gained much traction for producing better quality
images. Although, they also contain their fair share of disadvantages like mode collapse in GANs
and the large number of parameters in Diffusion models, they have been shown to produce better
quality images.

The QeVAE algorithm contains many tunable parameters like the learning rates of the encoder
and decoder, the relative weight of the KL divergence term in the loss function β , the patience
factor for early-stopping, the entanglement structure of the ansatz, the feature-map in the param-
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eterized quantum circuit etc. In our calculations, we observed that obtaining an accurate final
distribution requires careful fine-tuning of these hyperparameters. For example, we found out that
initializing the preprocessing layer near N (0,1) for our QeVAE is very essential to outperform
the classical model for learning measurement distributions. When there was no preprocessing
layer, the models quickly over-fit the training data and only sometimes performed better than clas-
sical VAE. However, when a preprocessing layer was added before the decoder, we observed a
substantial increase in performance. In addition, we found that feature maps with entanglement
(like the Pauli ZZ map) produced distributions with the same accuracy but require fewer epochs.
The correct hyper-parameters have to be found out through an extensive grid-search, and through
semi-empirical means.

5.0.3 Outlook

In the future, we will focus on verifying our results for learning the classical distribution on
more diverse datasets to ratify the implications arrived. Particularly, text datasets can be used for
discrete distributions. In addition, we will also examine if modifications in the ansatz: incorporat-
ing a non-linearity (like mid-circuit measurements) can enhance the performance of the QeVAE
and provide a better bound to the ELBO. On the other hand, we have already shown quantum-
enhanced models are better at learning measurement distributions. It is a challenging task to ex-
amine this behavior on real hardware and we speculate that the designed ansatz and parameters
learnt must produce reliable results when executed on hardware with suitable error mitigation and
suppression techniques.

55



56



Bibliography

[1] Charles H Bennett. The thermodynamics of computation—a review. International Journal
of Theoretical Physics, 21:905–940, 1982.

[2] Richard P Feynman. Quantum mechanical computers. Optics news, 11(2):11–20, 1985.

[3] Scott Aaronson. Read the fine print. Nature Physics, 11(4):291–293, 2015.

[4] Peter W Shor. Algorithms for quantum computation: discrete logarithms and factoring. In
Proceedings 35th annual symposium on foundations of computer science, pages 124–134.
Ieee, 1994.

[5] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems
of equations. Physical review letters, 103(15):150502, 2009.

[6] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of
the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219, 1996.

[7] Ryan LaRose. Overview and Comparison of Gate Level Quantum Software Platforms. Quan-
tum, 3:130, March 2019.

[8] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning,
volume 4. Springer, 2006.

[9] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali
Tishby, Leslie Vogt-Maranto, and Lenka Zdeborová. Machine learning and the physical
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