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Abstract

Visual-spatial memory is essential for forming a representation of whatever picture the eye

captures in mind. Working memory is a subset of the limited capacity part of memory that

helps in cognition by integrating information modulation and transient storage (Baddeley

& Hitch, 1974). The working memory makes some amount of information to be readily ac-

cessible by retention of that piece of information. A study at the Kyoto Primate Research

Institute in s series of experiments showed that Ayumu, the chimpanzee they have been

training for various task-based purposes, has performed better at memory-based tasks

than their human counterparts (Inoue & Matsuzawa, 2007). Non-human primates are

recognized for their exceptional ability to process local characteristics, whereas humans

excel in integrating the local details to form a comprehensive global perception (Imura &

Tomonaga, 2013). As much as visual temporal integration plays a role here, the integrated

effect of attention and working memory to reproduce temporal cues is also equally impor-

tant (Marchetti, 2014). Given the environment that the chimpanzees and humans live in

are wildly different, the visual processing system may also have evolved some specialized

structures.

In order to gain a better understanding of the complex networks within neural systems,

we employ models that are capable of reconstructing network topology from various forms

of data - such as neural firing data. However, it is not enough to simply rely on these

models alone. It is essential that we assess their stability before generating any further

data through simulation in order to obtain accurate and reliable reconstructed network

parameters for analysis. Through this process, we hope to achieve greater depth and

precision in our understanding of the intricate workings of these highly complex networks.
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Chapter 1

Introduction

1.1 Remembering the Memory

The capacity for recollection of what the eye has seen is known as visual memory. Spa-

tial memory records and retrieves the information as and when needed in recalling the

position of an object or the occurrence of an event. Not only long-term and short-term

memory but also working memory contains representations of spatial memory (Wikimedi-

aFoundation, 2022). A mechanism with a finite capacity known as working memory (WM)

enables people to momentarily retain and cognize. The capacity of working memory is

restricted, but it enables individuals to retain and manage data for a brief duration. It is

used to complete complex tasks while keeping relevant information in mind. For exam-

ple, when solving a challenging math problem, working memory is crucial in integrating

information modulation and transient storage (Baddeley & Hitch, 1974). Working memory

is essential for various cognitive tasks, including decision-making, problem-solving, lan-

guage comprehension, and learning. In essence, working memory serves as a cognitive

workspace that enables individuals to hold and manipulate information for short periods

while engaged in complex tasks. The mechanism of working memory is characterized

by a restricted capacity and facilitates the temporary retention and manipulation of infor-

mation. This multi-faceted system encompasses various cognitive processes such as at-

tentional control, storage capacity, and manipulation of data.(Constantinidis & Klingberg,

2016; Persuh, LaRock, & Berger, 2018).
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The model put forth by Baddeley and Hitch (1974), which holds a significant standing

as one of the most impactful working memory models, consists of three essential con-

stituents: the central executive, visuospatial sketchpad, and phonological loop. The pri-

mary objective of the phonological loop is to encode and retain spoken information through

two separate domains - a transitory storage unit known as the phonological store along-

side an articulatory preparation process that aids individuals in preserving this data within

their active memory system. On the other hand, visual and spatial information processing

falls under the visuospatial sketchpad’s domain with its separate sub-components a visual

cache for storing visuals while the inner scribe manages the manipulation of space-based

data. This model has been widely researched and expanded upon, with many studies

exploring the neural and behavioral underpinnings of working memory, as well as its de-

velopment and individual differences across the lifespan. Overall, working memory is a

complex and dynamic cognitive system that plays a crucial role in many aspects of human

cognition. Its study has significantly contributed to our understanding of how we process

and manipulate information in our daily lives.

1.2 Numerals and Working Memory

The ability to remember numbers plays a crucial role in many aspects of daily life, from

remembering phone numbers and addresses to performing complex mathematical cal-

culations. The cognitive functions implicated in the registration, retention, alteration, and

recovery of numerical data within the cerebral cortex are denoted as numeral information

processing. This can involve the use of working memory, attention, and other cognitive

processes to perform mathematical calculations, remember phone numbers, recall dates

and perform other tasks that involve numerical information. The capacity and shortcom-

ings of short-termmemory and the role of attention and individual differences are important

factors to consider in understanding numeral information processing. Numeral information

processing is closely linked with working memory, as working memory is responsible for

transiently storing and operating information, including numerical information. The phono-

logical loop, a constituent of working memory, is paramount for processing numeric data

as it permits individuals to retain and operate verbal information such as numerical figures

and computations within their cognitive domain (Baddeley & Hitch, 1974). Also, attention

plays an essential role in processing numerical information, and attention is crucial in the
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successful encoding and retrieval of numerical information (Cowan, 2001).

1.3 Drawing Comparisions between Working Memory of

Humans and Chimpanzees

Research on working memory in chimpanzees has been conducted in several studies,

as these animals are known to possess advanced cognitive abilities, including the abil-

ity to use tools, understand cause and effect, and engage in complex problem-solving.

Experimental results suggest that humans have a superior working memory capacity in

comparison to chimpanzees. One study compared the working memory abilities of hu-

mans and chimpanzees using a delayed matching-to-sample task. The study found that

humans performed significantly better than chimpanzees on this task, even when control-

ling for differences in perceptual and attentional abilities. The researchers concluded that

this difference in working memory performance may be due to differences in the neural

architecture of the prefrontal cortex, which is believed to be involved in working memory

processes (Völter, Mundry, Call, & Seed, 2019; Read, Manrique, &Walker, 2022). A study

by Matsuzawa et. al. in 2000 (Kawai & Matsuzawa, 2000) compared the working memory

capacity of a chimpanzee and human participants on a numerical memory span task. The

results showed that the chimpanzee’s performance was significantly lower than that of

humans, suggesting that humans have a superior working memory capacity compared to

chimpanzees. Overall, these studies suggest that humans have a higher working memory

capacity than chimpanzees, possibly due to differences in neural architecture and cogni-

tive abilities. While research generally suggests that humans have a superior working

memory capacity compared to chimpanzees, there are some specific domains in which

chimpanzees may have superior working memory abilities.

One of themost groundbreaking studies on this subject was steered byMatsuzawa and

colleagues in 2007 (Inoue & Matsuzawa, 2007), which shed light on the remarkable extent

of chimpanzee working memory capacity and processing speed. In this study, five chim-

panzees were trained to memorize the location and order of numerals on a touch screen

monitor. The numerals appeared on the screen for a fraction of a second, after which they

were replaced by white squares in their previous locations. The chimpanzees were then
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required to touch the squares in ascending numerical order, demonstrating their memory

of the numeral positions and sequence. The results of this study were astonishing, as the

chimpanzees not only demonstrated a remarkable ability to recall the positions and se-

quence of numerals but also exhibited faster processing speed than humans on this task.

The findings of this study challenge the conventional belief that humans possess superior

working memory capacities in comparison to other primates. These findings suggest that

chimpanzees possess advanced cognitive abilities that were previously attributed solely

to humans and highlight the need for further research on animal cognition. Moreover, the

results of this experimental study have significant consequences for our understanding

of cognitive evolution. They can serve as a foundation for future research aimed at un-

covering the underlying neural mechanisms that contribute to the enhancement of such

advanced cognitive abilities in both humans and non-human primates.

1.3.1 Why Use Chimpanzees for Working Memory Studies?

Chimpanzees are often selected for working memory studies because they are one of our

closest living relatives and share many cognitive and behavioral similarities with humans.

In fact, chimpanzees are one of the few non-human primates that have been shown to per-

formwell on a range of cognitive tasks, including those related to workingmemory. Studies

have found that chimpanzees exhibit impressive working memory capabilities, such as the

ability to remember the location and identity of hidden food items or to remember the order

of events in a sequence (Cantwell, Buckholtz, Atencia, & Rosati, 2022). Moreover, chim-

panzees are highly intelligent and have been observed to use complex problem-solving

strategies in the wild, such as using tools to obtain food or communicating with each other

through a variety of vocalizations and gestures. This suggests that they have advanced

cognitive abilities that may be comparable to those of humans in some respects. Study-

ing chimpanzee working memory can provide insight into the cognitive and neural mech-

anisms that underlie working memory in humans, as well as shed light on the evolution

of cognitive abilities across different species. Additionally, because chimpanzees have

complex social lives, studying their working memory can provide insight into the cognitive

processes underlying their social behavior and decision-making. Overall, chimpanzees

are an ideal species for studying working memory because they have many cognitive and

behavioral similarities to humans and have been shown to perform well on a range of
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cognitive tasks.

1.4 Working Models of Working Memory

1.4.1 In Humans

According to neuronal oscillator models, the synchronization of neural oscillators is re-

sponsible for maintaining continual neural activity and sustaining working memory. These

models propose that only a small subset of neurons are responsible for sustained firing

during this process, which occurs due to their synchronized oscillatory behavior. This syn-

chronization is thought to occur through recurrent synaptic connections between neurons

in a local neural network, such as the prefrontal cortex (Singer, 2009; Loebel & Tsodyks,

2002). These connections facilitate the continuous exchange of information, allowing for

the maintenance and manipulation of stored information in working memory (Lodi, Rossa,

Sorrentino, & Storace, 2020). Furthermore, this process is thought to be highly dynamic

and flexible, adapting to changing cognitive demands and environmental inputs. Summa-

rized below are few models that underline this theory.

1.4.1.1 The Prefrontal Cortex Model

The Prefrontal Cortex Model: This model proposes that a network of prefrontal neurons

supports working memory through continued activity during the task’s delay period. This

continual activity can be maintained through recurrent excitatory connections among the

neurons, which are modulated by inhibitory feedback (Compte, 2000).

1.4.1.2 The Synaptic Scaling Model

This model proposes that working memory is mediated by synaptic scaling, which is the

process by which the strength of synapses is modulated to maintain a stable level of net-

work activity. The model suggests that synaptic scaling can be regulated by neuromodula-
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tors such as dopamine, which canmodulate the strength of synaptic connections based on

the reward value of the information being held in working memory (Lisman & Otmakhova,

2001).

1.4.1.3 The Theta-Gamma Network Model

This model suggests that working memory involves the coupling of theta and gamma oscil-

lations in different brain regions. Theta oscillations are slower and reflect the synchroniza-

tion of neuronal firing across large populations, while gamma oscillations are faster and

reflect the synchronization of neuronal firing within smaller populations. The model pro-

poses that theta oscillations provide a temporal framework for the activation and mainte-

nance of working memory representations, while gamma oscillations provide the detailed

content of those representations (Lisman & Jensen, 2013).

1.4.2 In Chimpanzees

There is limited research on coupled oscillator network models for working memory in

chimpanzees. However, some studies have investigated neural oscillations in the pre-

frontal cortex of chimpanzees during working memory tasks, which could be related to

these types of models. Additionally, these studies have provided valuable insights into the

underlying neural mechanisms and their potential similarities with human working memory

processes. However, more research is needed to investigate the precise neural mecha-

nisms underlying working memory in chimpanzees and how they relate to these models.

We use these studies as a foundation for developing coupled oscillator network models

for working memory in chimpanzees. In this thesis, we apply algorithms, such as the Ku-

ramoto model and the phase response curve (PRC) method, which helps infer the model

and network topology from a given dataset in a system, to simulate coupled oscillator

networks in the chimpanzee prefrontal cortex during working memory tasks (Panaggio,

Ciocanel, Lazarus, Topaz, & Xu, 2019).
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Chapter 2

Preliminaries

2.1 The Kuramoto Model

TheKuramotomodel, created by Japanese physicist Yoshiki Kuramoto in 1975 (Kuramoto,

2005), is a mathematical representation utilized to explain the synchronization of intercon-

nected oscillators.

It comprises N individual oscillators with distinctive natural frequencies that connect

through a coupling term relying on their phase disparity. The oscillator’s phases progress

over time according to both their inherent frequency and the impact of other surrounding

oscillators.

The equation for the Kuramoto model can be represented as follows:

dθi
dt

= ωi +
K

N

N∑
j=1

sin(θj − θi) (2.1)

The given equation denotes the phase θi of each oscillator, its respective natural frequency

ωi, and the total number of oscillatorsN . The coupling strength is represented byK, while

interaction between oscillators is expressed through a summation over j, and their phase

difference via sin(θj − θi).

This equation signifies that the inherent frequency of an oscillator, as well as its in-
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teractions with other oscillators through coupling terms, determine changes in its phase.

When these coupling strengths are strong enough to synchronize phases among different

oscillators, collective behavior emerges. The Kuramoto model has been widely studied

in physics, mathematics, and other fields, and has applications in areas such as neuro-

science, power grid stability, and chemical reactions. It is often used to investigate emer-

gent phenomena, such as the spontaneous synchronization of fireflies or the coordinated

behavior of cells in the heart.

2.2 The Phase response curve (PRC)

The phase response curve (PRC) is a tool applied to study the response of oscillators to

external perturbations, such as stimuli or inputs. It describes how the phase of an oscillator

is shifted by a small perturbation at different points in its oscillatory cycle.

The phase response curve (PRC) is commonly depicted in a graphical form as a curve

that illustrates the alteration of phase brought about by an insignificant disturbance con-

cerning the oscillator’s initial stage. The normalization of PRC is generally done to ensure

that the overall area covered under it equals one.

The phase response curve (PRC) can be represented mathematically as a function

that describes how the phase of an oscillator changes in response to a perturbation. The

PRC, represented as ∆φ(θ) with θ indicating the oscillator’s phase during perturbation, is

capable of expressing alterations in phase resulting from such disturbance. The duration

of perturbation can be depicted by ∆t, while the corresponding change in phase may be

expressed as ∆φ = ∆φ(θ)×∆t.

The PRC is an important tool for studying the dynamics of oscillators and understand-

ing how they respond to perturbations. It has applications in fields such as neuroscience,

physiology, and engineering.
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2.3 Coupled neural networks

Coupled neural networks refer to a collection of neural networks that interact with each

other through a set of connections or couplings. The networks can be either identical

or heterogeneous and can interact in various ways, including through mutual feedback,

feedforward connections, or lateral connections.

Coupled neural networks can be analyzed using various mathematical tools, such as

graph theory, dynamical systems theory, and statistical physics. These tools can be used

to understand the behavior of the networks, predict their dynamics, and optimize their

performance.

2.4 Adjacency matrix

In the field of graph theory, a square matrix known as an adjacency matrix is utilized to

depict a given graph. The vertices of the graph are represented by the rows and columns

in the matrix while each entry indicates whether there exists an edge between two vertices.

Notably, for a graph G comprising n vertices, its corresponding adjacency matrix can be

denoted as A(G) and takes up dimensions of n× n. In particular, if vertex i connects with

vertex j, then their respective entry (aij) = 1, otherwise it equals 0. Moreover, if said graph

lacks directionality (undirected), then all entries have symmetry such that (aij) = (aji)

holds true for any pair (i, j). An alternative representation method involves using this

notation:

A(G) =

a11 a12 a13 · · · a1n a21 a22 a23 · · · a2n
...
...

. . .
... an1 an2 · · · ann

 (2.2)

In the matrix, aij denotes the value located in row i and column j.
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2.5 The Van der Pol Equation

The Van der Pol oscillator, which exhibits nonlinear behavior and damping, is frequently

employed as a theoretical framework for numerous physical systems such as electrical

circuits and biological organisms. The system’s dynamics are summarized in the second-

order differential equation given below:

d2x

dt2
− µ(1− x2)

dx

dt
+ x = 0 (2.3)

where the position of the oscillator is x, µ is a parameter that controls the strength of the

damping and the non-linearity, and t is time.

2.6 Spike train model

A spike trainmodel is amathematical model that is used to describe the pattern of electrical

impulses (spikes) that are generated by neurons in the brain. Neurons communicate with

each other through these spikes, and the pattern of spikes has been shown to be important

for a variety of brain functions, including perception, cognition, and behavior.

Spike train models commonly delineate the likelihood of a neuron discharging an ac-

tion potential (spike) at a specified moment, conditional upon the stimuli received from

sensory inputs or other neurons. These models can be either deterministic or stochastic,

depending on the level of randomness that is included in the model.
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Chapter 3

The Prequel

Assuming we have the time-series data of the neuronal firing; we employ the method

given in the study done by Panaggio et al., 2019 (Panaggio et al., 2019), which involves

using a mathematical model known as the Kuramoto model to analyze and predict the

synchronization behavior of coupled oscillators.The methodology of the paper comprises

the generation of time-series data for oscillator phases followed by the calculation of their

respective phase velocities. Prior to model reconstruction, a nonlinear differential equa-

tion set is applied in order to formulate an optimization problem which aims at minimizing

mean squared error associated with estimated phase velocities. By using numerical mini-

mization techniques, values for ideal parameters such as the adjacency matrix of network

connections, intensity of oscillator coupling and frequencies can be obtained.

The estimated parameters are then used to rebuild the model, which is validated by

comparing the simulated and experimental phase velocities. The Kuramoto model has

been found to be highly effective in predicting the synchronization behavior of neuronal

firing and can provide valuable insights into the underlying mechanisms (Guo, Zhang, Li,

Wang, & Yu, 2021).

This method builds on the recipe given by Shandilya & Timme, 2011 (Shandilya &

Timme, 2011), which offers the theory of direct reconstruction from dynamical trajectories.

The methodology can be divided into the following steps:

1. Define the model: The first step is to define the model of the coupled oscillator net-
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work. The dynamics of the oscillator is defined by differential equations that describe

the dynamics of each oscillator in the network and the interactions between them.

2. Simulate the model: The next step is to simulate the model to generate synthetic

data. This is done by solving the differential equations numerically using an integra-

tionmethod, for example the Runge-Kutta method of the fourth order. The simulation

generates time-series data for each oscillator in the network.

3. Estimation of the derivatives: The derivatives are estimated using a first-order

approximation and a matrix equation is set up using the phases and the estimated

derivatives.

4. Identify the network structure: The correlation matrix is used to identify the net-

work structure of the coupled oscillator network. The network structure is repre-

sented as an adjacency matrix, which indicates which oscillators are connected to

each other. The adjacency matrix is estimated using a thresholding method that sets

a threshold on the absolute value of the correlation coefficients.

5. Estimate the coupling functions: Once the network structure is identified, the next

step is to estimate the coupling functions that describe the interactions between the

oscillators.

3.1 Equations for the dynamics of the oscillator

d

dt
xi = fi(xi) +

N∑
j=1

Jijgij(xi, xj), (3.1)

Taking the simple case with two unit osicillators x1 and x2, we obtain

M equations of the form,

12



ẋ1 = f1(x1) + J11g11(x1, x1) + J12g12(x1, x2) (3.2)

ẋ2 = f2(x2) + J21g21(x2, x1) + J22g22(x2, x2) (3.3)

ẋ1 − f1(x1) = J11g11(x1, x1) + J12g12(x1, x2) (3.4)

ẋ2 − f2(x2) = J21g21(x2, x1) + J22g22(x2, x2) (3.5)

(3.6)

Putting ẋ1 − f1(x1) = X1 & ẋ2 − f2(x2) = X2,

X1 = J11g11(x1, x1) + J12g12(x1, x2) (3.7)

X2 = J21g21(x2, x1) + J22g22(x2, x2) (3.8)

Xi = JiGi (3.9)

(3.10)

3.2 Reconstruction of network topology from dynamical

trajectories

Ei
ˆ(Ji) =

1

N ∗M

M∑
m=1

(xim −
N∑
k=1

Ĵikgikm)
2 (3.11)

For N = 2 and M = 2 (2-unit oscillator and 3 time-points)

Ei
ˆ(Ji) =

1

6

3∑
m=1

(xim −
2∑

k=1

Ĵikgikm)
2 (3.12)

We have the dynamics,

[
X1,1 X1,2 X1, 3

]
1×3

=
[
J11 J12

]
1×2

[
g11,1 g11,2 g11,3

g12,1 g12,2 g12,3

]
2×3

(3.13)

13



Which writing in the form of eq. (3.12) gives,

E1
ˆ(J1) = (X1,1 − J1g1,1)

2 + (X1,2 − J1g1,2)
2 + (X1,3 − J1g1,3)

2 (3.14)

Differentiating eq. (3.14) w.r.t. Ĵik

∂E1(Ĵ1)

∂(J11)
= 2(X1,1 − J11g11,1 − J12g12,1)(−g11,1)

+ 2(X1,2 − J11g11,2 − J12g12,2)(−g11,2)

+ 2(X1,3 − J11g11,3 − J12g12,3)(−g11,3)

Equating
∂E1(Ĵ1)
∂ (J11)

!
= 0 we get

X1,1g11,1 +X1,2g11,2 +X1, 3g11,3 = J11(g
2
11,1 + g211,2 + g211,3)

+ J12(g11,1g12,1 + g11,2g12,2 + g11,3g12,3)

X1,1g12,1 +X1,2g12,2 +X1, 3g12,3 = J11(g11,1g12,1 + g11,2g12,2 + g11,3g12,3)

+ J12(g
2
12,1 + g212,2 + g212,3)[

X1,1 X1,2 X1, 3
]
1×3

g11,1 g12,1

g11,2 g12,2

g11,3 g12,3


3×2

=
[
J11 J12

]
1×2

[
g+11,1g

2
11,2 + g211,3 x

x g+11,1g
2
11,2 + g211,3

]
2×3

where x = g11,1g12,1 + g11,2g12,2 + g11,3g12,3

J1 = X1G
T
1 (G1G

T
1 )

−1 (3.15)
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3.3 Minimization generalization for the reconstructed net-

work parameter

Ĵi = XiG
T
i (GiG

T
i )

−1 (3.16)

Ĵ1 = X1

f121f122
f123


3×1

[
f121 f122 f123

]
1×3

f121f122
f123


3×1


−1

(3.17)

Ĵ1 = X1

f121f122
f123


3×1

([
(f 2

121
+ f 2

122
+ f 2

123

]
1×1

)−1

(3.18)

(3.19)

Taking (f 2
121

+ f 2
122

+ f 2
123

) as a,

Ĵ1 =
[
X11 X12 X13

]
1×3

f121f122
f123


3×1

[
( 1
a
)
]
1×1

(3.20)

Ĵ1 =
[
X11 X12 X13

]
1×3


f121
a

f122
a

f123
a


3×1

(3.21)

Ĵ1 =
[(

(
X11f121

a
) + (

X12f122
a

) + (
X13f123

a
)
)]

(3.22)

3.4 Deriving the equations for Van der Pol oscillators

Rewriting eq. (3.11) explicitly for Ji:

Ei
ˆ(Ji) =

1

N ∗M

M∑
m=1

(xim −
N∑
k=1

Ĵikgikm)
2 (3.23)

Ĵi = XiG
T
i (GiG

T
i )

−1 (3.24)
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The Van der Pol equation:

ẋ = u(x− 1

3
x3 − y) (3.25)

ẏ =
1

u
x (3.26)

(3.27)

Coupling the Van der Pol equations through the x term and writing for 2 unit oscillators:

ẋ1 = u1(x1 −
1

3
x3
1 − y1) + a12(x1 − x2) + a11(x1 − x1) (3.28)

ẏ1 =
1

u1

x1 (3.29)

ẋ2 = u2(x2 −
1

3
x3
2 − y2) + a21(x2 − x1) + a22(x2 − x2) (3.30)

ẏ2 =
1

u2

x2 (3.31)

X1 = ẋ1 − u1(x1 −
1

3
x3
1 − y1) & (3.32)

X2 = ẋ2 − u2(x2 −
1

3
x3
2 − y2) gives (3.33)

X1 = a12(x1 − x2) & (3.34)

X2 = a21(x2 − x1) (3.35)

(3.36)
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Deriving the minimization solution for Van der Pol equation for 1st unit with m = 5:

Ĵi = XiG
T
i (GiG

T
i )

−1 (3.37)

Ĵ1 = X1


f121
f122
f123
f124
f125


5x1


[
f121 f122 f123 f124 f125

]
1x5


f121
f122
f123
f124
f125


5x1



−1

(3.38)

Ĵ1 = X1


f121
f122
f123
f124
f125


5x1

([
(f 2

121
+ f 2

122
+ f 2

123
+ f 2

124
+ f 2

125
)
]
1x1

)−1

(3.39)

(3.40)

Taking (f 2
121

+ f 2
122

+ f 2
123

+ f 2
124

+ f 2
125

) as a,

Ĵ1 =
[
X11 X12 X13 X14 X15

]
1x5


f121
f122
f123
f124
f125


5x1

[
( 1
a
)
]
1x1

(3.41)

Ĵ1 =
[
X11 X12 X13 X14 X15

]
1x5



f121
a

f122
a

f123
a

f124
a

f125
a


5x1

(3.42)

Ĵ1 =
[(

(
X11f121

a
) + (

X12f122
a

) + (
X13f123

a
) + (

X14f124
a

) + (
X15f125

a
)
)]

(3.43)
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1 1 22

Figure 3.1: Phase time plot for coupled Van der Pol equation with 2-unit oscillators. Black

Line represents unit 1 and red line represents unit 2. The oscillators are shown to be out

of phase w.r.t each other. Both units are initialized with an initial phase equal to 1 and

differentiation time of 0.05.
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3.5 Kuramoto model as the backbone and Van der Pol

equations for oscillator dynamics

We use different sets of input coupling strengths and different dt’s to test the quality of

reconstruction and compare the input strengths to the reconstructed ones like the plot

shown in fig. 3.1. The sets of input and reconstructed coupling strengths are provided in

table 3.1.

dt Time interval Input Coupling Strengths Reconstructed Coupling Strengths

J1 J2 J1 J2

0.0005 200 1 1 1.0001 1.0001

0.05 200 1 1 1.0073 1.0076

0.15 200 1 1 -2.1784 -2.1908

0.15 200 (II) 1 1 1.0237 1.0222

0.05 40 1 1 1.0085 1.0084

0.15 40(II) 1 1 1.0262 1.0228

0.05 200 3 2 3.0098 2.0074

0.005 200 4 8 4.0009 8.0016

0.05 200 4 8 4.6251 4.3352

0.005 200 8 4 8.0014 4.0010

0.05 200 8 4 5.2843 4.5798

Table 3.1: Comparision between input (true) and reconstructed coupling strengths given

by J’s. Here (*) refers to the integrator method vode while all others are with the Runge-

Kutta method.

From the reconstructed values of the coupling strengths, we can see that the values

are successfully recovered when the dt is small enough that the information is not lost,

and the reconstructions are not accurate if the dt is small, which is obvious enough. So,

while we do have a method of reconstructing the coupling strength, it was observed that

when the system complexity increases, i.e., the number of unit oscillators increase, the

reconstruction almost always fails and does not give the correct coupling strengths. This

limitation may be attributed to the high dimensionality of the system and the difficulty in

accurately capturing all interactions among unit oscillators. Therefore, this method may

be suitable for smaller and less complex systems, but alternative approaches may be

necessary for larger or more intricate systems.
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Chapter 4

Models, Methodology, and Derivations

4.1 Spike-train model

Another model we use for reconstruction in this thesis is the spike-train reconstruction

model by Cestnik et. al., 2017 (Cestnik & Rosenblum, 2017). The underlying premise

of this model is that it is possible to reconstitute a neuron’s spiking behavior through its

presynaptic inputs. Following is the methodology that will be used in the thesis with certain

modifications from the paper.

1. Model and simulation: The first step is to define the model and simulation. Using

a pulse-coupled oscillator model, which consists of a set of oscillators that are cou-

pled together via pulses. The dynamics of each oscillator are governed by a phase

variable, and the coupling between oscillators is modeled as a pulse that advances

the phase of the receiving oscillator by a fixed amount.

2. Data generation: Simulation is used to generate spike train data from the network.

A threshold for the phase variable is defined, such that when an oscillator’s phase

crosses the threshold, a spike is generated. Spike train data is generated by sim-

ulating the network dynamics for a period of time and recording the times at which

spikes occur.

3. Network inference and analysis: We start with an initial guess for the connectivity
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matrix, which is a binary matrix indicating which oscillators are connected to each

other. A comparison between the inferred network and the ground truth network is

done, which is the true connectivity matrix used to generate the spike train data.

We now go through how we build the model and define the equations that follow. The

Figure 4.1: Illustration of phase-time plot of oscillator 2 in the 3-unit oscillator

neurons are limit cycle oscillators which go form 0 to 2π. The spiking of an unit affects

other unit as a function of the coupling strength between the two units and the phase

response curve (PRC) of the same unit that is being impacted. The inter-spike intervals
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are given by τ ′s

φ
′

21 = ω2τ1 (4.1)

φ21 = φ
′

21 + ε21 sin(φ
′

21) (4.2)

φ
′

23 = ω2(τ1 + τ2) + ε23 sin(φ
′

23) (4.3)

φ23 = φ
′

23 + ε23 sin(φ
′

23) (4.4)

2π = ω2T + ε21 sin(φ
′

21) + ε23 sin(φ
′

23) (4.5)

4.2 Spike-train equations for 3-unit oscillator

Equations for the firing pattern 1-2-3 as shown in fig. 4.2:

For the third oscillator,

φ3 = ω3τ1 (4.6)

2π = ω3T − ε32 sin(φ3) (4.7)

2π = ω3T − ε32 sin(ω3τ1) (4.8)

For the second oscillator,

φ21 = ω2τ2 (4.9)

φ23 = ω2(τ2 + τ3)− ε21 sin(ω2τ2) (4.10)

2π = ω2T − ε21 sin(ω2τ2)− ε23 sin(ω2(τ2 + τ3)− ε21 sin(ω2τ2)) (4.11)

For the first oscillator,

φ1 = ω1(τ3 + τ1) (4.12)

2π = ω1T − ε12 sin(ω1(τ3 + τ1)) (4.13)
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Figure 4.2: Plot of phases of 3-unit oscillators 1,2, and 3 shown in green, red and purple

lines respectively as a function of time
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4.3 Re-deriving the spike-train equations for 3-unit oscil-

lator

Figure 4.3: All-to-all globally coupled 3-unit oscillator

The network topology for the globally-coupled network and the phase-time plot for the

3-unit oscillator is shown in fig. 4.3 and fig. 4.4 respectively.

For the second oscillator and the firing pattern 1-3-2, considering ω1 = ω2 = ω3 =

ω, τ1 = τ2 = τ3 = τ = T/3 & εij = ε

φ
′

21 = ωτ (4.14)

φ21 = φ
′

21 + ε sin(φ
′

21) (4.15)

φ
′

23 = ω(τ + τ) + ε sin(φ
′

21) (4.16)

φ23 = φ
′

23 + ε sin(φ
′

31) (4.17)

2π = ωT + ε sin(φ
′

21) + ε sin(φ
′

31) (4.18)

Here, the φ
′
’s are the phases before the phase transition occurs
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Figure 4.4: Illustration of phase-time plot of oscillator 2 in the 3-unit oscillator for the firing

pattern 1-3-2 for 3-unit oscillator

4.4 Spike-train equations for 4-unit oscillators

The network topology for the all-to-all coupled 4-unit oscillator is given in fig. 4.5.

For the second oscillator and the firing pattern 1-3-2-4, considering ω1 = ω2 = ω3 = ω4 =

ω, τ1 = τ2 = τ3 = τ4 = τ = T/4 & εij = ε

φ
′

24 = ωτ (4.19)

φ
′

21 = 2ωτ + ε1 sin(φ
′

24) (4.20)

φ
′

23 = 3ωτ + ε1 sin(φ
′

24) + ε2 sin(φ
′

21) (4.21)

2π = ωT + ε1 sin(φ
′

24) + ε2 sin(φ
′

21) + ε3 sin(φ
′

23) (4.22)

4.5 Spike-train equations for 5-unit oscillators

The network topology for the all-to-all coupled 4-unit oscillator is given in fig. 4.6.
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Figure 4.5: All-to-all globally coupled 4-unit oscillator

Figure 4.6: All-to-all globally coupled 5-unit oscillator
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For the second oscillator and the firing pattern 1-3-2-4-5, considering ω1 = ω2 = ω3 = ω4 =

ω5 = ω, τ1 = τ2 = τ3 = τ4 = τ5 = τ = T/4 & εij = ε

φ
′

24 = ωτ (4.23)

φ
′

25 = 2ωτ + ε sin(φ
′

24) (4.24)

φ
′

21 = 3ωτ + ε sin(φ
′

24) + ε sin(φ
′

25) (4.25)

φ
′

23 = 3ωτ + ε sin(φ
′

24) + ε sin(φ
′

25) + ε sin(φ
′

21) (4.26)

2π = ωT + ε sin(φ
′

24) + ε sin(φ
′

25) + ε sin(φ
′

21) + ε sin(φ
′

23) (4.27)
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4.6 Data Simulation and Generation

The data was generated by simulation using XPP-Aut software. XPP-Aut is a computa-

tional tool for modeling and simulating dynamical systems. We write the differential equa-

tions in the form of ’ode’ file (.ode) and then generate the time-series data for a coupled

oscillator with different parameter values and initiation conditions. This approach allows

for the systematic exploration of the parameter space and provides a large dataset for

analysis.
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Chapter 5

Data Analysis

5.1 Spike-train model data

We use the methods and equations given in the paper (Cestnik & Rosenblum, 2017) to

develop the set of equations and data simulation that follows. Figure 5.1 represents the

firing pattern and the time-spacing between the peaks of the 3 oscillators for the 3-unit

oscillator case.
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5.1.1 3-unit oscillator case

Figure 5.1: Illustration of the 3-unit oscillators 1,2, and 3 and the difference between them

shown by the tau’s, T represents one complete cycle of an oscillator

Given (from XPP), ω1 = 1, ω2 = 1.02, ω3 = 1.03, T = 6.17, τ1 = 0.355, τ2 = 0.495, τ3 =

5.32 and assuming that ε23 = ε32 and ε12 = ε21 From eq. (4.7) & eq. (4.13),

ε32 = −(2π − 1.03× 6.17)÷ sin(1.03× 0.355) (5.1)

ε32 = 0.2011 ∼ 0.2 (5.2)

ε12 = 0.1981 ∼ 0.2 (5.3)

Plugging ε32 as ε23 in eq. (4.11) we get,

ω2T − ε21 sin(ω2τ2)− ε23 sin(ω2(τ2 + τ3)− ε21 sin(ω2τ2)) = 6.2846 ∼ 6.2832 (5.4)

Putting ε12 = ε21 in eq. (4.11),

ε23 = (ω2T − ε21 sin(ω2τ2)− 2π)÷ sin(ω2(τ2 + τ3)− ε21 sin(ω2τ2)) (5.5)

ε23 = 0.1978 ,which substituting in (2) gives 6.2844 (5.6)
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5.1.2 3-unit oscillator with equal coupling strengths

Given (from XPP), ω1 = ω2 = ω3 = 1, T = 6.3, τ1 = τ2 = τ3 = 2.1 and ε′s = 0.2

φ
′

21 = ωτ (From eq. (4.18))

φ
′

21 = 1× 2.1

φ
′

21 = 2.1 (5.7)

φ21 = φ
′

21 + ε sin(φ
′

21) (From eq. (5.7))

φ21 = 2.1 + 0.2× sin(2.1) (From eq. (4.18))

φ21 = 2.1 + 0.173

φ21 = 2.273 ∼ 2.277 (5.8)

φ
′

23 = ω(τ + τ) + ε sin(φ
′

21) (From eq. (5.8))

φ
′

23 = 1× (2.1 + 2.1) + 0.2× sin(2.1) (From eq. (4.18))

φ
′

23 = 4.2 + 0.173

φ
′

23 = 4.373 (5.9)

φ23 = φ
′

23 + ε sin(φ
′

31) (From (18))

φ23 = 4.373 + 0.2× sin(2.1) + 0.2× sin(4.373) (From (20) & (22))

φ23 = 4.373− 0.189

φ23 = 4.184 ∼ 4.189 (5.10)

Plugging the values from (20) and (22) into the R.H.S of equation (19) we get,

R.H.S = ωT + ε sin(φ
′

21) + ε sin(φ
′

31)

R.H.S = 1× 6.3 + 0.2× sin(2.1) + 0.2× sin(4.373)

R.H.S = 6.3 + 0.173− 0.189

R.H.S = 6.28

R.H.S = L.H.S
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5.1.3 4-unit oscillator with unknown value of third jump coupling

strength

With τ = 1.6, ω = 1, & ε1 = ε2 = 0.2, we search for a ε3 satisfying eq. (4.22)

φ
′

24 = 1× 1.6

φ
′

24 = 1.6

φ
′

21 = 2× 1.6 + 0.2× sin(1.6)

φ
′

21 = 3.4

φ
′

23 = 3× 1.6 + 0.2× sin(1.6) + 0.2× sin(3.4)

φ
′

23 = 4.95

According to eq. (4.22), 2π & ωT must be equal to the the total jumps

ε1 sin(φ
′

24) + ε2 sin(φ
′

21) + ε3 sin(φ
′

23) = 2π − 1.6× 4

ε1 sin(φ
′

24) + ε2 sin(φ
′

21) = −0.12− ε3 sin(φ
′

23)

0.2× sin(1.6) + 0.2× sin(3.4) = −0.12− ε3 sin(4.95)

ε3 = −0.028÷ sin(4.95)

ε3 = 0.27
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Chapter 6

Results and Discussion

6.1 Spike train models

6.1.1 2-unit oscillator

We start with 2-unit oscillator where we test the all to all connected network with postive

coupling, which is the easiest one to begin with as it has only 2-unit oscillators as shown

in 6.1. We get an out-of-phase synchronization with the two oscillators and it was fairly

resistant to the perturbations in the phases. This suggests that the reconstructed coupling

strength for this network is likely to be accurate and reliable.
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Figure 6.1: Phase time plot for the spike train model for 2-unit oscillators. Black Line repre-

sents unit 1 and red line represents unit 2. We get a perfect out-of-phase synchronization

for the oscillators when the coupling is positive. The phases are initialized 2pi/2 apart, dt

is 0.005, omega’s are 1 and the coupling strengths are all equal to 0.2.

6.1.2 3-unit oscillator

We then moved on to add one more oscillator and tested the all-to-all connected 3-unit os-

cillator network with positive coupling. Similar to the 2-unit oscillator network, we observed

that the system is stable with symmetric coupling globally, and the peaks of the neurons

are 2pi/3 apart from each other, resulting in a synchronized and coherent system. To

consider all possibilities, we made modifications to the all-to-all network as shown in 6.2a,

6.2b, and 6.2c. Furthermore, any perturbation in the system still leads to an out-of-phase
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Nature of

Coupling

Coupling

Strengths

(ε)

Network

Topology
Initial Phases Observations

x1 x2

Negative 0.2 1<->2
3.14 0

In-phase synchronization

between the units 1 and 2,

and a single peak

1.2 6

Out-of-phase synchronization

with the pattern:

1-2-1

Positive 0.2

1<->2
3.14 0

Out-of-phase synchronization

with the pattern:

2-1-2

1.2 6

Out-of-phase synchronization

with the pattern:

2-1-2

1->2 1.2 6 Out-of-phase synchronization

with the pattern:

2-1-2
2->1 1.2 6

Table 6.1: Table showing the observations for the different topologies and patterns for the

2-unit oscillators
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synchronized state, indicating a reliable model for reconstruction.

Firing Pattern Analytical Solution XPP Values

ε φ′23 φ′21
\eref{eq:2}

RHS
φ23 φ21 φ23 φ21

0.2 2.1 4.373 6.284 2.273 4.184 2.273 4.184

1-2-3-1-2-3 0.1 2.095 4.277 6.281 2.181 4.186 2.185 4.189

0.5 2.12 4.67 6.284 2.546 4.167 2.548 4.169

ε φ′21 φ′23
\eref{eq:2}

RHS
φ21 φ23 φ21 φ23

0.2 4.373 2.1 6.284 2.273 4.184 2.277 4.187

1-3-2-1-3-2 0.1 4.277 2.095 6.281 2.181 4.186 2.183 4.188

0.5 4.67 2.12 6.284 2.546 4.167 2.542 4.167

Table 6.2: Table showing the stability of the phase equations with positive coupling with

the help of 3 different coupling strengths for the 3-unit oscillator case

We observe that for both 2 and 3-unit oscillators, the system is stable with symmetric

coupling globally and the peaks of the neurons are 2pi/(no. of unit oscillators) apart from

each other. We also additionally checked the accuracy and stability of the 3-unit ocillator

by trying different firing-patterns and coupling strengths (see table 6.2). This suggests that

the system is synchronized and operating in a coherent manner. Also, any perturbation

in the system (i.e., the peaks not being 2pi/(no. of unit oscillators apart) leads to the

same out-of-phase synchronized state, and thus a reliable model for the reconstruction.

The equally spaced peak distribution table for the 2 and 3-unit oscillator case is shown in

table 6.1 and table 6.3 respectively.
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(a) The phases are initialized in the order 1->3-

>2. Here the pattern we get is 1-3-2-1-3-2.
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(b) The phases are initialized in the order 1->2-

>3. Here the pattern we get is 1-2-3-1-2-3.
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(c) The phases are initialized in the order 1->3-

>2. Here the pattern we get is 1-3-2-1-3-2.

Figure 6.2: Phase time plot for the spike train model for 3-unit oscillators and global (all-

to-all) coupled network. The oscillators 1, 2, and 3 are indicated by the black, red, and

orange lines respectively. The phases are initialized 2pi/3 apart, dt is 0.005, omega’s are

1 and the coupling strengths are all equal to 0.2.
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Nature of

Coupling

Coupling

Strengths

(ε)

Network

Topology
Initial Phases Observations

x1 x2 x3

Negative 0.2 All-to-all

4.189 2.094 0 In-phase synchronization

between the units 1, 2, and 3

with a single peak
5 3 0

Positive 0.2

All-to-all
5 3 0

Out-of-phase synchronization

with the pattern:

1-2-3-1

5 0 3

Out-of-phase synchronization

with the pattern:

1-3-2-1

1->2->3->1
6 4 1

Out-of-phase synchronization

with the pattern:

1-2-3-1

6 1 4

Out-of-phase synchronization

with the pattern:

1-3-2-1

1->3->2->1
6 4 1

Out-of-phase synchronization

with the pattern:

1-2-3-1

6 1 4

Out-of-phase synchronization

with the pattern:

1-3-2-1

Table 6.3: Table showing the observations for the different topologies and patterns for the

3-unit oscillators
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6.1.3 4-unit oscillator
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(a) The phases are initialized in the order 1->2-

>3->4. Here the pattern we get is 1-2-3-4-1-2-3-

4.

1

2

3

4

5

6

X (Phase)

0 5 10 15 20 25 30 35 40
Time

1     2    3    4    1    2     3    4

(b) The phases are initialized in the order 1->2-

>3->4. Here the pattern we get is 1-2-3-4-1-2-3-

4.

Figure 6.3: Phase time plot for the spike train model for 4-unit oscillators and global (all-to-

all) coupled network. The oscillators 1, 2, 3, and 4 are indicated by the black, red, orange,

and yellow lines respectively. The phases are initialized 2pi/4 apart, dt is 0.005, omega’s

are 1 and the coupling strengths are all equal to 0.05.
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Nature of

Coupling

Coupling

Strengths

(ε)

Network

Topology
Initial Phases Observations

x1 x2 x3 x4

Negative 0.02 All-to-all 4.713 3.142 0 1.571

In-phase synchronization

between the units 1, 2, 3 and 4

with a single peak

Positive

0.05

All-to-all

4.713 3.142 1.571 0

Out-of-phase synchronization

with the pattern:

1-2-3-4-1

0.01 4.713 1.571 3.142 0

Out-of-phase synchronization

with the pattern:

1-3-2-4-1

0.02

4.713 0 3.142 1.571

Out-of-phase synchronization

with the pattern:

1-3-4-2-1

4.713 1.571 0 3.142

Out-of-phase synchronization

with the pattern:

1-4-2-3-1

4.713 0 1.571 3.142

Out-of-phase synchronization

with the pattern:

1-4-3-2-1

4.713 3.142 0 1.571

Out-of-phase synchronization

with the pattern:

1-2-4-3-1

1<->3<->2<->

4<->1

4.713 1.571 3.142 0

Out-of-phase synchronization

with the pattern:

1-3-2-4-1

4.713 1.571 0 3.142

Out-of-phase synchronization

with the pattern:

1-4-2-3-1

1<->2<->3<->

4<->1

4.713 3.142 1.571 0

Out-of-phase synchronization

with the pattern:

1-2-3-4-1

4.713 0 1.571 3.142

Out-of-phase synchronization

with the pattern:

1-4-3-2-1

1<->2<->4<->

3<->1

4.713 3.142 0 1.571

Out-of-phase synchronization

with the pattern:

1-2-4-3-1

4.713 0 3.142 1.571

Out-of-phase synchronization

with the pattern:

1-3-4-2-1

1->3->2->

4->1

4.713 1.571 3.142 0

Out-of-phase synchronization

with the pattern:

1-3-2-4-1

4.713 1.571 0 3.142

Out-of-phase synchronization

with the pattern:

1-4-2-3-1

1->2->3->

4->1

4.713 3.142 1.571 0

Out-of-phase synchronization

with the pattern:

1-2-3-4-1

4.713 0 1.571 3.142

Out-of-phase synchronization

with the pattern:

1-4-3-2-1

1->2->4->

3->1

4.713 3.142 0 1.571

Out-of-phase synchronization

with the pattern:

1-2-4-3-1

4.713 0 3.142 1.571

Out-of-phase synchronization

with the pattern:

1-3-4-2-1

Table 6.4: Table showing the observations for the different topologies and patterns for the

4-unit oscillators
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(a) The phases are initialized in the order 1<->3<-

>2<->4<->1. Here the pattern we get is 1-3-2-4-

1-3-2-4.
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(b) The phases are initialized in the order 1<->2<-

>3<->4<->1. Here the pattern we get is 1-2-3-4-

1-2-3-4.

Figure 6.4: Phase time plot for the spike train model for 4-unit oscillators which are bidi-

rectionally chain coupled. The oscillators 1, 2, 3, and 4 are indicated by the black, red,

orange, and yellow lines respectively. The phases are initialized 2pi/4 apart, dt is 0.005,

omega’s are 1 and the coupling strengths are all equal to 0.02.
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Figure 6.5: Phase time plot for the spike train model for 4-unit oscillators which are bidi-

rectionally chain coupled. The oscillators 1, 2, 3, and 4 are indicated by the black, red,

orange, and yellow lines respectively. The phases are initialized 2pi/4 apart, and in the

order 1<->4<->2<->3<->1, dt is 0.005, omega’s are 1 and the coupling strengths are all

equal to 0.02. Here the pattern we get is 1-4-2-3-1-4-2-3.
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(a) The phases are initialized in the order 1->2-

>3->4->1. Here the pattern we get is 1-2-3-4-1-

2-3-4.
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(b) The phases are initialized in the order 1->3-

>2->4->1. Here the pattern we get is 1-3-2-4-1-

3-2-4.
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(c) The phases are initialized in the order 1->2-

>4->3->1. Here the pattern we get is 1-2-4-3-1-

2-4-3.

Figure 6.6: Phase time plot for the spike train model for 4-unit oscillators which are uni-

directionally chain coupled. The oscillators 1, 2, 3, and 4 are indicated by the black, red,

orange, and yellow lines respectively. The phases are initialized 2pi/4 apart, dt is 0.005,

omega’s are 1 and the coupling strengths are all equal to 0.02.
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6.1.4 5-unit oscillator

1
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Figure 6.7: Phase time plot for the spike train model for 5-unit oscillators which are unidi-

rectionally chain coupled. The oscillators 1, 2, 3, 4, and 5 are indicated by the black, red,

orange, yellow, and green lines respectively. The phases are initialized 2pi/5 apart, and

in the order 1->2->4->3->1, dt is 0.005, omega’s are 1 and the coupling strengths are all

equal to 0.02. Here the pattern we get is 1-2-3-4-5-1-2-3-4-5.

For the 4 and 5-unit case, the globally-coupled oscillator case(figs. 6.3a and 6.3b and

fig. 6.7), and all the variations shown in fig. 6.4a through fig. 6.6c, we observe for that, when

initiated 2pi/(no. of unit oscillators) apart, the system runs on to be out-of-phase synchro-

nized. But when the system is perturbed, the oscillators merge and synchronize with each

other making reconstruction impossible. This means that while the equally spaced peaks

is one of the solution for the problem, it is not a stable one.
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Nature of

Coupling

Coupling

Strengths

(ε)

Network

Topology
Initial Phases Observations

x1 x2 x3 x4 x5

Negative

0.02

All-to-all 5.027 3.77 2.513 1.257 0

In-phase synchronization

between the units 1, 2, 3, 4

and 5 with a single peak

Positive All-to-all

5.027 3.77 2.513 1.257 0

Out-of-phase synchronization

with the pattern:

1-2-3-4-5-1

5.027 3.77 2.513 0 1.257

Out-of-phase synchronization

with the pattern:

1-2-3-5-4-1

5.027 3.77 1.257 2.513 0

Out-of-phase synchronization

with the pattern:

1-2-4-3-5

5.027 3.77 0 2.513 1.257

Out-of-phase synchronization

with the pattern:

1-2-4-5-3-1

5.027 3.77 1.257 0 2.513

Out-of-phase synchronization

with the pattern:

1-2-5-3-4-1

5.027 3.77 0 1.257 2.513

Out-of-phase synchronization

with the pattern:

1-2-5-4-3-1

5.027 2.513 3.77 1.257 0

Out-of-phase synchronization

with the pattern:

1-3-2-4-5-1

Table 6.5: Table showing the observations for the different topologies and patterns for the

5-unit oscillators, Part 1
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Nature of

Coupling

Coupling

Strengths

(ε)

Network

Topology
Initial Phases Observations

x1 x2 x3 x4 x5

Positive 0.02 All-to-all

5.027 2.513 3.77 0 1.257

Out-of-phase synchronization

with the pattern:

1-3-2-5-4-1

5.027 1.257 3.77 2.513 0

Out-of-phase synchronization

with the pattern:

1-3-4-2-5-1

5.027 0 3.77 2.513 1.257

Out-of-phase synchronization

with the pattern:

1-3-4-5-2-1

5.027 1.257 3.77 0 2.513

Out-of-phase synchronization

with the pattern:

1-3-5-2-4-1

5.027 0 3.77 1.257 2.513

Out-of-phase synchronization

with the pattern:

1-3-5-4-2-1

5.027 2.513 1.257 3.77 0

Out-of-phase synchronization

with the pattern:

1-4-2-3-5-1

5.027 2.513 0 3.77 1.257

Out-of-phase synchronization

with the pattern:

1-4-2-5-3-1

5.027 1.257 2.513 3.77 0

Out-of-phase synchronization

with the pattern:

1-4-3-2-5-1

Table 6.6: Table showing the observations for the different topologies and patterns for the

5-unit oscillators, Part 2
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Nature of

Coupling

Coupling

Strengths

(ε)

Network

Topology
Initial Phases Observations

x1 x2 x3 x4 x5

Positive 0.02 All-to-all

5.027 0 2.513 3.77 1.257

Out-of-phase synchronization

with the pattern:

1-4-3-5-2-1

5.027 1.257 0 3.77 2.513

Out-of-phase synchronization

with the pattern:

1-4-5-2-3-1

5.027 0 1.257 3.77 2.513

Out-of-phase synchronization

with the pattern:

1-4-5-3-2-1

5.027 2.513 1.257 0 3.77

Out-of-phase synchronization

with the pattern:

1-5-2-3-4-1

5.027 2.513 0 1.257 3.77

Out-of-phase synchronization

with the pattern:

1-5-2-4-3-1

5.027 1.257 0 2.513 3.77

Out-of-phase synchronization

with the pattern:

1-5-4-2-3-1

5.027 0 1.257 2.513 3.77

Out-of-phase synchronization

with the pattern:

1-5-4-3-2-1

5.027 1.257 2.513 0 3.77

Out-of-phase synchronization

with the pattern:

1-5-3-2-4-1

5.027 0 2.513 1.257 3.77

Out-of-phase synchronization

with the pattern:

1-5-3-4-2-1

Table 6.7: Observations for 5-unit oscillators, Part 3
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Nature of

Coupling

Coupling

Strengths

(ε)

Network

Topology
Initial Phases Observations

x1 x2 x3 x4 x5

Positive 0.02

1->2->3->

4->5->1

5.027 3.77 2.513 1.257 0

Out-of-phase synchronization

with the pattern:

1-2-3-4-5-1

5.027 0 1.257 2.513 3.77

Out-of-phase synchronization

with the pattern:

1-5-4-3-2-1

1<->2<->3<->

4<->5<->1

5.027 3.77 2.513 1.257 0

Out-of-phase synchronization

with the pattern:

1-3-5-2-4-1

5.027 1.257 3.77 0 2.513

Out-of-phase synchronization

with the pattern:

1-3-5-2-4-1

5.027 3.77 2.513 1.257 0

Out-of-phase synchronization

with the pattern:

1-4-2-5-3-1

5.027 2.513 0 3.77 1.257

Out-of-phase synchronization

with the pattern:

1-4-2-5-3-1

Table 6.8: Table showing the observations for the different topologies and patterns for the

5-unit oscillators, Part 4

We still do not have a plausible explanation for this behavior exhibited by the model

where the units greater than 4 only had one possible stable equally peaked synchronized

solution. Also, for the 5-unit uni-directional and bi-directional chain cases, there was an

anomaly observed where the chain 1 through 5 didn’t result in an equally spaced syn-

chronized state for the firing pattern 1->2->3->4->5, but some different firing pattern. This

gives us an idea about the complexity of the underlying network where even if the units

are not connected, the firing pattern is reflected.
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Chapter 7

Conclusion

Starting with the Kuramoto model for studying the reconstruction of the coupling strengths

of the oscillators using the time series data and Van der Pol as the intrinsic dynamics of

the oscillator, we learned that the model is great for 2 unit oscillators, but as the system

complexity increases the model becomes computationally intensive, and the accuracy of

reconstruction decreases. Moving on to the spike train models, while we do get additional

stability with the case of the 2 and 3-unit oscillator, the spike train model does not provide a

solution for the coupling reconstruction problem when the number of oscillators increases

further, which shows that there is still room for further research and development in this

area, with the aim of finding more efficient and accurate methods for reconstructing cou-

pling strengths in complex oscillator systems.

The observations suggest that the synchronization of oscillators in all-to-all connected

networks with positive coupling is dependent on the number of oscillators in the network.

The experiment began with a 2-unit oscillator network that exhibited an out-of-phase syn-

chronization with the two oscillators. This synchronization was found to be resistant to

perturbations, indicating that the reconstructed coupling strength for this network is likely

to be accurate and reliable. Moving on to a 3-unit oscillator network, we observed that

the system was stable with symmetric coupling globally, and the peaks of the neurons

were 2π/3 apart from each other. This resulted in a synchronized and coherent sys-

tem. Furthermore, any perturbation in the system still led to an out-of-phase synchronized

state, indicating that the model was reliable for reconstruction. To consider all possibili-
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ties, modifications were made to the all-to-all network by varying the coupling strengths

and introducing phase shifts between the oscillators. However, even with these modi-

fications, the system remained stable, indicating that the synchronization observed was

robust and not dependent on the specific network topology. However, for the 4 and 5-unit

oscillator networks, the researchers observed that although the system ran on to be out-

of-phase synchronized when initiated 2π/(no. of unit oscillators) apart, any perturbation

led to the synchronization of the oscillators, making reconstruction impossible. This meant

that equally spaced peaks while being one of the possible stable solutions for the problem

was not a fully stable case where it was robust to the perturbations. Overall, the observa-

tions suggest that the synchronization of oscillators in all-to-all connected networks with

positive coupling is a complex phenomenon that is dependent on the number of oscillators

in the network and the specific network topology. The findings also highlight the impor-

tance of considering different network topologies to determine the reliable reconstruction

of coupling strength.

All the findings where the all-to-all stable pattern is generated give a nice baseline of

a model to start finding links about how the working memory actually could function in

chimpanzees. The all-to-all network topology also fits in correctly intuition wise where

any sequence given to the chimpanzee can be memorized and recalled in any order,

which is reminiscent of an all-to-all network where there are equal interactions between all

neurons. But the chain coupled cases also showed unpredictable, but promising where if

a unit corresponding to a certain numeral isn’t even connected topology-wise to another

unit, it can still generate a particular pattern, which could be hypothesized to be a plastic

neural network. Further research is needed to determine the extent to which these findings

apply to real-world neural networks and working memory in chimpanzees. One of the

most key takeaways from this work is that as the complexity of the system increases in

terms of the number of unit oscillators, the coupling strength has to decrease almost as if

to accommodate the increased number of resulting patterns between the units. We can

hypothesize that this is an attribute that could be restricted to young chimpanzees and gets

lost in humans with time. While this hypothesis may be plausible, it is essential to note

that further research would need to be conducted to determine if the observed relationship

between system complexity and coupling strength is indeed present in other species and

maintained throughout development.
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Chapter 8

Appendix

8.1 MATLABcode for reconstructing the coupling strength

from the simulated data for the Van der Pol oscillator

Code 8.1: MATLAB code for reconstructing coupling strengths with minimization applied.

1 function Timeseries_to_CouplingStrengthReconstruction_Manual =

do_it(tab, ...

2 u1, u2)

3

4 % Preprocessing the tabular data (tab) in the format of x1,y1,x2,y2

wrt

5 % time, where u1 and u2 are the damping coefficients.

6 % Creating variables from the table and fetching the column length

of

7 % the table,

8 % s (height) of the tabular matrix is calcualted to get the number

of

9 % iterates

10 Time = tab.Time;

11 x1 = tab.x1;

12 x2 = tab.x2;

13 y1 = tab.y2;

53



14 y2 = tab.y2;

15 s = height(tab);

16

17 % x1D and x2D: Derivatives of the 2 unit oscillators. A zero array

of

18 % required size initiated before every calculation to ease and

hasten

19 % the computation as matlab uses more resources if the arrays are

20 % initiated and concatenated while computing.

21 x1D = zeros([s 1]);

22 x2D = zeros([s 1]);

23 for i = 2:s

24 x1D(i) = (x1(i)-x1(i-1))/(Time(i)-Time(i-1));

25 x2D(i) = (x2(i)-x2(i-1))/(Time(i)-Time(i-1));

26 end

27

28 % X1 and X2: LHS of the matrix equation [equation (3), equation box

2]

29 X1 = zeros([s 1]);

30 X2 = zeros([s 1]);

31 for i = 2:s

32 X1(i) = x1D(i)-u1*(x1(i)-(1/3)*x1(i).^3-y1(i));

33 X2(i) = x2D(i)-u2*(x2(i)-(1/3)*x2(i).^3-y2(i));

34 end

35

36 % g12 and g21: Coupling functions calculated as a function of the

37 % phases

38 g12 = zeros([s 1]);

39 g21 = zeros([s 1]);

40 for i = 2:s

41 g12(i) = x1(i)-x2(i);

42 g21(i) = x2(i)-x1(i);

43 end

44

45 % Minimization to the coupling strength , individual terms

calculated

46 % from the general formula derived by applying minimization:
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47 % J12 = [(X1,1*g12,1/a) + (X1,2*g12,2/a) + (X1,3*g12,3/a) + ...)]

48 % Where a = (g12,1^2 + g12,2^2 + g12,3^2 + ...)

49 % gsqr is the individual terms raised to the power of two and den

is

50 % the denominator of the equation (7), equation box 3.

51

52 % Calculating a

53 gsqr = g12.^2;

54 den = sum(gsqr);

55

56 % Calculating the different numerators for the different coupling

57 % strengths (J12 and J21): num1 and num2

58 num1 = zeros([s 1]);

59 num2 = zeros([s 1]);

60 for i = 2:s

61 num1(i) = X1(i)*g12(i)/den;

62 num2(i) = X2(i)*g21(i)/den;

63 end

64

65 % J1 and J2: Reconstructed coupling strengths

66 J1 = sum(num1);

67 J2 = sum(num2);

68

69 Timeseries_to_CouplingStrengthReconstruction_Manual = [J1, J2];

70 end

8.2 ODE files used to simulate Van der pol model

Code 8.2: Van der pol equation ODE file for 2-unit oscillator.

1 # van der Pol for 2 unit oscillator - coupled

2

3 x1'=y1+a11*(x1-x1)+a12*(x1-x2)

4 y1'=-x1+y1*u*(1-x1^2)

5
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6 x2'=y2+a21*(x2-x1)+a22*(x2-x2)

7 y2'=-x2+y2*e*(1-x2^2)

8

9 init x1=1,x2=1,y1=1,y2=1

10 par u=.8,e=.6,a11=0,a12=1,a22=0,a21=1

11 @ method=cvode,total=500, dt=0.005

12

13 done

8.3 ODE files used to simulate spike train models

8.3.1 2-unit oscillator

8.3.1.1

Code 8.3: Spike train equation ODE file for 2-unit oscillator with positive global coupling.

1 #2-unit postive coupling (e = 0.2)

2 #Equations for the globally coupled oscillator for 2 units

with positive coupling strengths. Here both the units

are connected to each other.

3 #Parameters: All coupling strengths (e) are equal to 0.2 and

omeaga's (w) are equal to 1

4 #Initial Condition: The phases are kept (2*pi)/2 apart

5

6 x1' = w1

7 x2' = w2

8

9 global 1 x1-2*pi {x1=0;x2=x2+e21*sin(x2)}

10 global 1 x2-2*pi {x2=0;x1=x1+e12*sin(x1)}

11 init x1=3.14,x2=0

12 par w1=1,w2=1,e21=0.2,e12=0.2

13

14 @ method=cvode,total=500, dt=0.005
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15 done

8.3.1.2

Code 8.4: Spike train equation ODE file for 2-unit oscillator with negative global coupling.

1 #2-unit negative coupling (e = 0.2)

2 #Equations for the globally coupled oscillator for 2 units

with negative coupling strengths. Here both the units

are connected to each other.

3 #Parameters: All coupling strengths (e) are equal to 0.2 and

omeaga's (w) are equal to 1

4 #Initial Condition: The phases are kept (2*pi)/2 apart

5

6 x1' = w1

7 x2' = w2

8

9 global 1 x1-2*pi {x1=0;x2=x2-e21*sin(x2)}

10 global 1 x2-2*pi {x2=0;x1=x1-e12*sin(x1)}

11

12 init x1=3.14,x2=0

13 par w1=1,w2=1,e21=0.2,e12=0.2

14 @ method=cvode,total=500, dt=0.005

15

16 done

8.3.2 3-unit oscillator

8.3.2.1

Code 8.5: Spike train equation ODE file for 3-unit oscillator with positive global coupling.

1 #Equations for the globally coupled oscillator for 2 units

with positive coupling strengths.
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2 #Parameters: All coupling strengths (e) are equal to 0.2 and

omeaga's (w) are equal to 1

3 #Initial Condition: The phases are kept (2*pi)/3 apart

4 # 3-unit global coupling (e=0.2)

5

6 x1' = w1

7 x2' = w2

8 x3' = w3

9

10 global 1 x1-2*pi {x1=0;x2=x2+e21*sin(x2);x3=x3+e31*sin(x3)}

11 global 1 x2-2*pi {x2=0;x3=x3+e32*sin(x3);x1=x1+e12*sin(x1)}

12 global 1 x3-2*pi {x3=0;x2=x2+e23*sin(x2);x1=x1+e13*sin(x1)}

13

14 init x1=4.188,x2=2.094,x3=0

15 par w1=1,w2=1,w3=1,e21=0.2,e32=0.2,e12=0.2,e23=0.2,e13=0.2,

e31=0.2

16 @ method=cvode,total=500, dt=0.005

17

18 done

8.3.2.2

Code 8.6: Spike train equation ODE file for 3-unit oscillator with chained unidirectional

coupling (pattern 1).

1 #Equations for the chained unidirectionally coupled

oscillator , where 1->2->3->1 (e21,e32,e13)

2 #Parameters: All coupling strengths (e) are equal to 0.2 and

omeaga's (w) are equal to 1

3 #Initial Condition: The phases are kept (2*pi)/3 apart

4 # 3-unit chain-coupled (1-2-3-1-)

5

6 x1' = w1

7 x2' = w2

8 x3' = w3

9
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10 global 1 x1-2*pi {x1=0;x2=x2+e21*sin(x2)}

11 global 1 x2-2*pi {x2=0;x3=x3+e32*sin(x3)}

12 global 1 x3-2*pi {x3=0;x1=x1+e13*sin(x1)}

13

14 init x1=4.188,x2=2.094,x3=0

15 par w1=1,w2=1,w3=1,e21=0.2,e32=0.2,e12=0.2,e23=0.2,e13=0.2,

e31=0.2

16 @ method=cvode,total=500, dt=0.005

17

18 done

8.3.2.3

Code 8.7: Spike train equation ODE file for 3-unit oscillator with chained unidirectional

coupling (pattern 2).

1 #Equations for the chained unidirectionally coupled

oscillator , where 1->3->2->1 (e31,e23,e12)

2 #Parameters: All coupling strengths (e) are equal to 0.2 and

omeaga's (w) are equal to 1

3 #Initial Condition: The phases are kept (2*pi)/3 apart

4 # 3-unit chain-coupled (1-3-2-1-)

5

6 x1' = w1

7 x2' = w2

8 x3' = w3

9

10 global 1 x1-2*pi {x1=0;x3=x3+e31*sin(x3)}

11 global 1 x2-2*pi {x2=0;x1=x1+e12*sin(x1)}

12 global 1 x3-2*pi {x3=0;x2=x2+e23*sin(x2)}

13

14 init x1=4.188,x2=2.094,x3=0

15 par w1=1,w2=1,w3=1,e21=0.2,e32=0.2,e12=0.2,e23=0.2,e13=0.2,

e31=0.2

16 @ method=cvode,total=500, dt=0.005

17
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18 done

8.3.2.4

Code 8.8: Spike train equation ODE file for 3-unit oscillator with bidirectional coupling.

1 #Equations for the bidirectional coupled oscillator , where

1<->2<->3 (e12,e21,e23,e32)

2 #Parameters: All coupling strengths (e) are equal to 0.2 and

omeaga's (w) are equal to 1

3 #Initial Condition: The phases are kept (2*pi)/3 apart

4 # 3-unit birectional chain coupling (1=2=3)

5

6 x1' = w1

7 x2' = w2

8 x3' = w3

9

10 global 1 x1-2*pi {x1=0;x2=x2+e21*sin(x2)}

11 global 1 x2-2*pi {x2=0;x3=x3+e32*sin(x3);x1=x1+e12*sin(x1)}

12 global 1 x3-2*pi {x3=0;x2=x2+e23*sin(x2)}

13

14 init x1=4.188,x2=2.094,x3=0

15 par w1=1,w2=1,w3=1,e21=0.2,e32=0.2,e12=0.2,e23=0.2,e13=0.2,

e31=0.2

16 @ method=cvode,total=500, dt=0.005

17

18 done

8.3.3 4-unit oscillator

8.3.3.1

Code 8.9: Spike train equation ODE file for 4-unit oscillator with postive global coupling.
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1 #Equations for the globally coupled oscillator for 4 units

with positive coupling strengths.

2 #Parameters: All coupling strengths (e) are equal to 0.05 and

omeaga's (w) are equal to 1

3 #Initial Condition: The phases are kept (2*pi)/4 apart

4 # 4-unit global (e = 0.05)

5

6 x1' = w1

7 x2' = w2

8 x3' = w3

9 x4' = w4

10

11 global 1 x1-2*pi {x1=0;x2=x2+e21*sin(x2);x3=x3+e31*sin(x3);

x4=x4+e41*sin(x4)}

12 global 1 x2-2*pi {x2=0;x3=x3+e32*sin(x3);x1=x1+e12*sin(x1);

x4=x4+e42*sin(x4)}

13 global 1 x3-2*pi {x3=0;x2=x2+e23*sin(x2);x1=x1+e13*sin(x1);

x4=x4+e43*sin(x4)}

14 global 1 x4-2*pi {x4=0;x2=x2+e24*sin(x2);x1=x1+e14*sin(x1);

x3=x3+e34*sin(x3)}

15

16 init x1=4.713,x2=3.142,x3=1.571,x4=0

17 par w1=1,w2=1,w3=1,w4=1,e21=0.05,e32=0.05,e12=0.05,e23

=0.05,e13=0.05,e31=0.05,e24=0.05,e14=0.05,e34=0.05,e41

=0.05,e42=0.05,e43=0.05

18 @ method=cvode,total=500, dt=0.005

19

20 done

8.3.3.2

Code 8.10: Spike train equation ODE file for 4-unit oscillator with bidirectional coupling.

1 #Equations for the bidirectionally chain coupled oscillator

where 1<->3<->2<->4<->1 (e13,e31,e32,e23,e24,e42,e41,

e14)
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2 #Parameters: All coupling strengths (e) are equal to 0.02 and

omeaga's (w) are equal to 1

3 #Initial Condition: The phases are kept (2*pi)/4 apart

4 # 4-unit 1-3-2-4-1 bidirectional chain (e=0.02)

5

6 x1' = w1

7 x2' = w2

8 x3' = w3

9 x4' = w4

10

11 global 1 x1-2*pi {x1=0;x3=x3+e31*sin(x3);x4=x4+e41*sin(x4)}

12 global 1 x2-2*pi {x2=0;x3=x3+e32*sin(x3);x4=x4+e42*sin(x4)}

13 global 1 x3-2*pi {x3=0;x2=x2+e23*sin(x2);x1=x1+e13*sin(x1)}

14 global 1 x4-2*pi {x4=0;x2=x2+e24*sin(x2);x1=x1+e14*sin(x1)}

15

16 init x1=4.71,x2=1.57,x3=3.14,x4=0

17 par w1=1,w2=1,w3=1,w4=1,e21=0.02,e32=0.02,e12=0.02,e13

=0.02,e24=0.02,e34=0.02,e41=0.02,e43=0.02,e23=0.02,e14

=0.02,e31=0.02,e42=0.02

18 @ method=cvode,total=500, dt=0.005

19

20 done

8.3.3.3

Code 8.11: Spike train equation ODE file for 4-unit oscillator with unidirectional chain

coupling.

1 #Equations for the unidirectionally chain coupled

oscillator where 1->2->3->4->1 (e21,e32,e43,e14)

2 #Parameters: All coupling strengths (e) are equal to 0.02 and

omeaga's (w) are equal to 1

3 #Initial Condition: The phases are kept (2*pi)/4 apart

4 # 4-unit 1-2-3-4-1 unidirectional coupling (e=0.02)

5

6 x1' = w1
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7 x2' = w2

8 x3' = w3

9 x4' = w4

10

11 global 1 x1-2*pi {x1=0;x2=x2+e21*sin(x2)}

12 global 1 x2-2*pi {x2=0;x3=x3+e32*sin(x3)}

13 global 1 x3-2*pi {x3=0;x4=x4+e43*sin(x4)}

14 global 1 x4-2*pi {x4=0;x1=x1+e14*sin(x1)}

15

16 init x1=4.71,x2=3.14,x3=1.57,x4=0

17 par w1=1,w2=1,w3=1,w4=1,e21=0.02,e32=0.02,e12=0.02,e13

=0.02,e24=0.02,e34=0.02,e41=0.02,e43=0.02,e23=0.02,e14

=0.02,e31=0.02,e42=0.02

18 @ method=cvode,total=500, dt=0.005

19

20 done

8.3.4 5-unit oscillator

Code 8.12: Spike train equation ODE file for 5-unit oscillator with global positive coupling.

1 # 5-unit e = 0.02

2

3 x1' = w1

4 x2' = w2

5 x3' = w3

6 x4' = w4

7 x5' = w5

8

9 global 1 x1-2*pi {x1=0;x2=x2+e21*sin(x2);x3=x3+e31*sin(x3);x4=

x4+e41*sin(x4);x5=x5+e51*sin(x5)}

10 global 1 x2-2*pi {x2=0;x3=x3+e32*sin(x3);x1=x1+e12*sin(x1);x4=

x4+e42*sin(x4);x5=x5+e52*sin(x5)}

11 global 1 x3-2*pi {x3=0;x2=x2+e23*sin(x2);x1=x1+e13*sin(x1);x4=

x4+e43*sin(x4);x5=x5+e53*sin(x5)}
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12 global 1 x4-2*pi {x4=0;x2=x2+e24*sin(x2);x1=x1+e14*sin(x1);x3=

x3+e34*sin(x3);x5=x5+e54*sin(x5)}

13 global 1 x5-2*pi {x5=0;x2=x2+e25*sin(x2);x1=x1+e15*sin(x1);x3=

x3+e35*sin(x3);x4=x4+e45*sin(x4)}

14

15 init x1=5.027,x2=3.77,x3=2.513,x4=1.257,x5=0

16 par w1=1,w2=1,w3=1,w4=1,w5=1,e21=0.02,e32=0.02,e12=0.02,e23

=0.02,e13=0.02,e31=0.02,e24=0.02,e14=0.02,e34=0.02,e41=0.02,

e42=0.02,e43=0.02,e45=0.02,e51=0.02,e52=0.02,e53=0.02,e54

=0.02,e15=0.02,e25=0.02,e35=0.02

17 @ method=cvode,total=80, dt=0.005

18

19 done

Github repository link with all ODE files: https://github.com/goelpranay/SuyogSankheThesis
.git
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