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Abstract

In this work, we study the use of machine learning techniques to generate simulation of pp col-
lisions at the CMS experiment at the LHC. Standard model processes such as W+jets form a
background for beyond standard model searches such as the search for vector-like leptons in the
one lepton and two jets final state. Full GEANT4 based simulation of these backgrounds is time
and compute intensive. However, if one focuses on only the quantities of interest, then the task
can be done in a simpler way by using modern tools such as Generative Adversarial Networks
(GANs) or variational autoencoders (VAEs). In this work, we implement a basic GAN and a ba-
sic VAE to produce event distributions for processes such as Drell-Yan and W+jets. We test the
dependence of the GAN and the VAE on the hyperparameters of the corresponding network. We
demonstrate the efficacy of using the generated distributions by training a binary classifier to distin-
guish theW+jets process from semileptonic tt̄ production. We find that an equivalent performance
to GEANT4 based simulation can be obtained by instead using the VAE generated output. This
shows us that the usage of these algorithms can be used to speed up the generation of simulations
for the LHC experiments.
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Chapter 1

Introduction

1.1 Machine Learning in High Energy Physics

Machine learning has become an essential tool in various aspects of particle physics research over
the past few years [1]. The ability of machine learning algorithms to efficiently process and ana-
lyze massive amounts of data has led to numerous applications in high energy Physics, including
particle identification, event reconstruction, anomaly detection, classification of signal and back-
ground events, and simulation and modelling [2]. Different neural network architectures, such as
deep neural networks, convolutional neural networks, or graph neural networks, have found dif-
ferent applications in experiments such as CMS (Compact Muon Solenoid) at the Large Hadron
Collider (LHC). Our objective is to study the use of generative adversarial networks and variational
autoencoders to simulate collision events.

1.2 Background and Rationale

Previous analyses from our group performed a search for inclusive nonresonant signatures of be-
yond the standard model (BSM) physics on 138 fb−1 Run II data collected by the CMS experiment
at the LHC [3]. The search was performed in multilepton final states, i.e. states with three or more
charged leptons, including hadronically decaying τ leptons. Models such as vector-like leptons
in their doublet and singlet scenario, type III seesaw, and scalar leptoquarks were probed, but no
significant deviations from the background expectations were observed. Ongoing studies focus on
the singlet model of vector-like leptons in a final state with one isolated lepton and two jets. In this
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search, the primary standard model background is W+jets production. The W production has an
extremely high cross-section at the LHC (& 60000 pb at

√
s = 13 TeV ) [4, 5]. This will increase

even more after the HL-LHC upgrade [6]. Thus, predicting data with low statistical uncertainty
requires simulating a large number of events [7]. The relation between uncertainty and number of
events is explained in further detail below.
The number of events predicted in Monte Carlo is given by

N = Lσε (1.1)

Here, L integrated luminosity, is the amount of data. σ is the production cross-section. It is the
measure of the probability of a process taking place. It has units of area. The smaller the cross
section of a process, the more rare it is to take place in a collision. ε is the efficiency and is defined
as,

ε = Number of events passing all selections

Total number of events

Thus, the predicted number of events N has a statistical uncertainty that depends on total number
of generated events as well as number of events passing selection. Typically, to reduce background,
modern analyses employ multivariate algorithms such as neural networks. These are basically de-
signed to be binary classifiers for signal against background. The performance of these algorithms
relies on large number of events for effective training. Additionally, signal optimization selection
results in low acceptance for W+jets events; this hampers good training for ML algorithms meant
to reduceW+jets. Thus, we need to produce more and more events as the amount of data produced
at the LHC increases. But, producing large simulation samples using GEANT4 or other toolkits
is computationally challenging. GEANT4 (for GEometry ANd Tracking) is a Monte Carlo- based
simulation platform that simulates the interaction between elementary particles and matter [8]. It
keeps track of particle trajectories and energy deposits in each cluster of the detector to help parti-
cle reconstruction. Thus, it takes a lot time to simulate millions of events [9].
In this scenario, simulating collision events using neural networks helps in reducing computational
power as well as computation time. Neural networks such as Generative Adversarial Networks
(GANs) or Variational Autoencoders (VAEs) require much less computational time as they gener-
ate certain numbers that follow a known distribution [10].
An additional benefit is that in certain situations, only some high-level variables are required in-
stead of a complete event description. To address this, we intend to set up a GAN/VAE to generate
only those relevant quantities of interest in W+jets production. GANs and VAEs are generative
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models used in machine learning for generating new data. GANs use two neural networks, a gen-
erator and a discriminator, to learn the underlying distribution of the training data and generate
new samples. VAEs use a probabilistic approach to learn the latent space representation of the data
and generate new data by sampling from this space. Further details are included in the respective
chapters. So far, we are able to generate five quantities of interest.

1.3 The research problem

Studies conducted on multilepton final states for beyond the Standard Model phenomena by the
EHEP group has found no significant excess in the data. This paved the way to the ongoing search
for BSM Physics in the singlet model of vector like leptons in final states with one isolated lepton
and atleast two jets. In this search, the primary standard model background is W+jets events.
Their respective Feynman diagrams are given below (Figure 1.1).

Figure 1.1: (a) Feynman diagram of VLL singlet model in their 1`2j final state and (b) Feynman
diagram of W+jets process

Neural network classifiers can be used to distinguish signal events from background. For this, the
neural network is trained on distributions of certain variables that could help distinctly identify
signal from background. But, the choice of these variables are context-specific. Once trained,
this model classifies similar events. In some examples, to distinguish between these events using
a neural network classifier, we would only need a few high level variables that exhibit substan-
tial differences across these events. Here, we are designing a neural network classifier that can
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distinguish W+jets process from semileptonic tt̄ production. In the case of W+jets events, such
variables are dijet mass, HT ,∆R, transverse mass of lepton, Missing ET (Emiss

T ) etc. We chose to
produce distributions of transverse mass of lepton, dijet mass, transverse mass of the dijet system,
Emiss

T and HT . Transverse mass of the lepton (M `
T ) is a relevant quantity because it is invariant un-

der Lorentz boosts along the direction of the colliding particles. The transverse mass for a single
lepton is defined as,

M `
T =

√
2p`TEmiss

T (1− cos(∆φ)) (1.2)

where ET is the transverse energy of the lepton, Emiss
T is the missing transverse energy in the

event and ∆φ is the angle between the lepton’s transverse momentum and the missing transverse
energy vector. Missing transverse energy (Emiss

T ) represents the momentum carried away by any
undetected particles. Dijet mass refers to the invariant mass of a pair of jets produced in a particle
collision. Transverse mass of the dijet system (M jj

T ) is the effective mass of the two jets in the
transverse direction, which is perpendicular to the direction of the colliding particles. It is calcu-
lated by using pjjT instead of p`T in equation. Here, pjjT is the resultant of the transverse momenta
of the two jets (p1

T and p2
T ), and ∆φ is the angle between the resultant transverse momentum of the

two jets and Emiss
T . HT is defined as the scalar pT sum of all jets. The NN score output plots and

ROC curve are shown in figure 1.2.

Figure 1.2: NN score output plot and ROC curve after training W+jets- classifier
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1.4 Approach and Methodology

We gained a basic understanding of the underlying principles of deep learning neural networks.
The fundamentals behind various neural networks and various components of deep learning neural
networks are discussed in chapter 2. We started by exploring the capabilities of Generative Adver-
sarial Networks (GANs). We produced plots of some basic functions and gradually progressed to
generating real distributions of high energy physics processes. However, GANs failed to provide
the results with the desired accuracy. Then, we focused on Variational Autoencoders (VAEs) and
tried to perform similar tasks. The preliminary results of GANs and VAEs are provided in chapters
3 and 4, respectively. Our findings indicated that Variational Autoencoders performed more effec-
tively than Generative Adversarial Networks in our specific context. The detailed descriptions and
better results obtained through the simulation of W+jets events are discussed in chapter 5.

In this thesis, the whole work was performed using a computer with the following specifications;
Intel® CoreTM i3-6006U 2.0GHz CPU , 3MB L3 Cache and 4 GB RAM.
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Chapter 2

A Comprehensive Guide to Neural
Networks

A neural network is a set of machine learning algorithms that imitate the functioning of biological
neurons in the human brain [11]. A neural network has an input layer, one or more hidden layers,
and an output layer. A basic neural network illustration is given in figure 2.1. The neural network
architecture is often considered important for its optimal performance. These networks use their
nodes to identify patterns and underlying relations in data. Each node, or artificial neuron, is
interconnected to others; they process and transmit information. Each node has a weight associated
with it. To train a neural network, a sufficiently large set of input data is provided. During training,
the network adjusts its weights using backpropagation method to minimize the differences between
the predicted and actual output. Once the training process is complete, the generated model can be
used to test similar data.

Figure 2.1: Illustration of a basic neural network.
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Neural networks can do classification as well as regression tasks. They can be applied to vari-
ous purposes, including prediction, image identification, and natural language processing. Multi-
ple types of neural networks exist, including RNNs (Recurrent Neural Networks), CNNs (Convo-
lutional Neural Networks), and DNNs (Deep Learning Neural Networks). Deep Neural Networks
(DNNs) are a type of artificial neural network (ANN), developed to learn and model complex non-
linear relationships in input data. It consists of several layers of interconnected neurons, with the
number of layers varying from a few dozens to hundreds. DNNs are implemented in many different
applications, including self-driving cars, voice recognition, language translation, natural language
processing, and visual recognition. Convolutional neural networks (CNNs) are mostly used for im-
age and video processing applications. They are able to recognise, and learn features and patterns
in the input data. CNNs are extensively used in fields including autonomous driving, facial recog-
nition, and medical imaging. Recurrent Neural Networks (RNNs) are built to process sequential
data, with each subsequent step’s output being fed back into the network as input for the next step.
They are frequently implemented for language processing tasks like speech recognition, document
analysis and natural language processing.

2.1 Training and Validation

Neural network training is the process of adjusting the parameters of a neural network to minimize
the difference between the predicted output and the true output. During training, the network is
provided with an input data set. The cost function (also known as the loss function), is defined as
a combination of weights of the network. Cost function indicates how well the model performs in
terms of its ability to predict the output values given the input data. During training, a neural net-
work tries to minimize the cost function, i.e. finding the set of weights and biases that results in the
best predictions on the training data. The lower the cost, the better the prediction. The weights of
the network are updated through an iterative process called backpropagation. In backpropagation,
the error is propagated backwards through the network, and the weights are updated accordingly.
The weights are then adjusted using an optimization algorithm, such as stochastic gradient descent
(SGD). In SGD, the gradient of the cost function with respect to weights is calculated, identifying
the direction in which the loss function is reducing. This process is known as gradient descent,
as shown in Figure 2.2. We change the weights by some amount (learning rate), recalculate the
cost, and iterate until we are satisfied with the weights. The learning rate is a hyperparameter that
determines the step size at which the model’s weights are updated during training. If the learning
rate is too high, the optimization algorithm may surpass the optimal weights, causing the model to
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diverge and perform poorly. Whereas, if the learning rate is too low, the optimization algorithm
may take a long time to converge to the optimal weights, resulting in slow training and potentially
getting stuck in local minima.

Figure 2.2: An illustration of Gradient descent method

The training process is repeated for multiple epochs, where each epoch is a complete pass through
the training data. After some number of epochs (equal to the batch size), the performance of the
network is evaluated on a separate validation set to prevent overfitting. If the validation error is not
improving, the training is stopped, and the final weights are used for prediction on the test set.
Testing a trained neural network model involves evaluating its performance on a statistically inde-
pendent dataset from the training data to avoid any potential biases or overfitting. The motivation
behind testing is to evaluate how well the model generates predictions and generalizes to new data.
The predicted outputs are then compared to the true outputs to calculate the model’s performance
metrics, such as accuracy, precision or neural network scores. The performance of the network is
determined by plotting the neural network scores and ROC curve plots.

2.1.1 ROC curve

The ROC curve is a tool for evaluating the performance of classification models implemented us-
ing neural networks. It plots the relationship between TPR (True Positive Rate) and FPR (False
Positive Rate), with threshold values varying along the x-axis. TPR measures the ratio of true pos-
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itive predictions to the total number of positive examples, while FPR measures the ratio of false
positive predictions to the total number of negative examples. A good classifier has a high TPR
and a low FPR, corresponding to a point in the top-left corner of the ROC curve. AUC (Area Under
the Curve) is also a useful metric for assessing neural network performance. It represents the area
under the ROC curve. For a good classifier, the AUC value will be close to 1.

2.2 Components of deep learning models

2.2.1 Activation functions

The activation function decides whether or not to activate a neuron, based on the input it receives.
The neural network’s activation function enables it to learn and model complex relationships in
the input data [12]. Commonly used activation functions and their respective plots are given below
(Figure 2.3).

• Linear activation function
The linear activation function is defined as f(x) = x; it simply returns the input value x as
the output value. It is often used in the output layer of regression models, where the goal is
to predict a continuous output variable. In linear activation function, output of the functions
will not be confined between any range.

• Sigmoid activation function
The sigmoid activation function maps the input values to the range (0, 1). It is defined as
f(x) = 1

1+exp(−x) . This function is commonly used in binary classification problems where
the probability is predicted as an output.

• Softmax activation function
The softmax function takes a vector of real numbers as input and transforms them into a
probability distribution. It maps the input values into the range of [0,1], ensuring that the
sum of the output values is equal to 1. The function is defined as f(xi) = exi∑m

j=1 e
xj Here, xi

represents the ith element of the input vector, and m is the number of elements in the vector.
It is commonly used in multi-class classification problems, where the output of the neural
network needs to be a probability distribution over a set of classes.
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• ReLU activation function
ReLU activation function performs well in convolutional neural networks or deep learning. It
is a non-linear function that maps the input values to the range (0,∞). The ReLU (Rectified
Linear Unit) function is defined as f(x) = max(0, x), i.e. it returns the input values if it
is positive and zero otherwise. Therefore, this function is piecewise linear with a slope of
one for positive inputs and a slope of zero for negative inputs. Setting the negative values
to zero ensures that the gradients in a deep neural network do not become too small as they
propagate through the network, allowing for faster and more stable training.

• Leaky ReLU and parametric ReLU activation functions
Leaky ReLU and parametric ReLU are similar to ReLU but allow a small negative slope for
negative input values. They map the input values to the range (∞,∞). Leaky ReLU is de-
fined as f(x) = max(αx, x). Whereas, parametric ReLU is defined as f(x) = max(0, x) +
αmin(0, x). In leaky ReLU, the value of alpha is fixed, and usually, it is 0.01. In parametric
ReLu, the value of alpha is learned along with the other network parameters through back-
propagation during training. Both these functions help recover the dying ReLU problem, in
which the negative inputs result in a zero output causing the neurons to be in a deactivated
state.

Figure 2.3: The figure shows the plots of (a) linear activation function, (b) sigmoid activation
function, (c) softmax activation function, (d) ReLU activation function, (e) leaky ReLU activation
function and (f) parametric ReLU function respectively.
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2.2.2 Loss functions

There are various types of loss functions used in neural networks. The most commonly used loss
functions are described below [13].

• Mean Square Error
Mean Squared Error (MSE) is commonly used in regression problems. It measures the av-
eraged square of the difference between the predicted and the true values of a dataset. It can
be calculated using the formula,

MSE = 1
m

m∑
i=1

(Yi − Ŷi)2

where, Yi is the true value and Ŷi is the predicted value. The lower the MSE value, the
closer the predicted values are to the actual values, indicating the better neural network per-
formance. It penalizes large errors more heavily than small errors due to the squaring of the
differences. It is also differentiable, making it suitable for use with gradient-based optimiza-
tion algorithms such as stochastic gradient descent (SGD) or backpropagation.

• Binary Cross-entropy
Binary Cross-entropy (BCE) is widely used in binary classification tasks. It measures the dif-
ference between the predicted probabilities and the actual binary labels for a given dataset.
BCE is defined as the negative mean of the log of corrected predicted probabilities for each
instance in the dataset. It can be calculated as

BCE = −y log(p)− (1− y) log(1− p)

The log value offers less penalty for small differences between predicted and corrected prob-
ability; when the difference is large, the penalty will be higher. Being differentiable, it allows
for easy optimization using gradient descent-based algorithms such as stochastic gradient
descent (SGD) or backpropagation.

2.2.3 Optimizers

Optimizers are functions or algorithms used to adjust the weights and biases of the neural network
to improve accuracy and minimize the error or loss function. It allows to find the optimal set of
weights and biases that will minimize the error on the training data and allows the network to gen-
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eralize on testing data. There are several optimization algorithms used in neural networks. Some
of them are Stochastic Gradient Descent (SGD), Adam (Adaptive Moment Estimation), AdaGrad
and AdaDelta.

Adam (Adaptive moment estimation) is a popular and powerful optimization algorithm used
in machine learning and deep learning. It is an extension of the stochastic gradient descent (SGD)
optimization method, designed to provide faster convergence and better performance. It uses a
combination of two gradient descent methods, a momentum algorithm, and an RMSP algorithm.
Adam optimizes the objective function by computing individual adaptive learning rates for each
parameter. The learning rate is computed using estimations of the first and second moments of
the gradient, and the weights of the neural network are updated using this learning rate. It has
several advantages over traditional optimization algorithms such as SGD. Adam provides faster
convergence due to adaptive learning rates. It is less sensitive to the choice of hyperparameters,
can handle noisy and sparse gradients, and can be easily parallelized.

2.2.4 Hyper parameters

• Number of epochs
The number of epochs refers to the number of times the entire training dataset is passed
through the model during training. An epoch represents a complete iteration through the
entire dataset. Typically, it can range from a few hundred to several thousand, depending
on the complexity of the problem, the size of the dataset and the computational power of
available resources. However, it is essential to monitor the training process and stop it when
the models reach a satisfactory level of performance, as continuing to train for too long can
lead to overfitting or other issues. Monitoring the loss and accuracy metrics, visualizing the
generated samples, and evaluating the model’s performance on a validation set helps to de-
termine the optimal value of the number of epochs for a particular GAN model.

• Batchsize
Batch size is the number of samples or events processed in each iteration during the training
process. The choice of batch size is crucial in neural networks as it can affect the convergence
speed, memory usage and the model performance. A larger batch size can lead to more
stable training and faster convergence, as more samples are processed in each iteration. But
it may require more memory and computational resources, and may lead to overfitting if the
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model is too complex. Whereas, a smaller batch size can help avoid overfitting, as the model
updates its parameters more frequently based on smaller batches of data. But this may also
result in slower convergence, as it doesn’t represent the overall data distribution. The choice
of optimal batch size varies depending on the dataset, model and the computational resources
available. During training, different batch sizes are experimented usually and the one with
the best trade-off between convergence speed and model performance is often selected.
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Chapter 3

Generative Adversarial Networks (GANs)

3.1 Introduction to GANs

Generative Adversarial Networks (GANs) are a type of artificial neural network based on deep
learning algorithm [14]. GANs can generate new data with the same statistics as the training set
provided [15]. It was designed by Ian Goodfellow and his colleagues in June 2014. A generative
adversarial network (GAN) has two parts: a generator and a discriminator. The generator gener-
ates data points in the latent space, and the discriminator learns to distinguish the generated data
from real data. The two models get trained adversarially. During training, the generator generates
a batch of fake data, and the discriminator receives a batch of real data from the training dataset
along with a batch of fake data generated by the generator. The discriminator evaluates these
batches of data and provides feedback to the generator on improving the quality of the generated
data. By playing a minimax game between the generator and the discriminator, the GAN learns to
generate realistic outputs that closely resemble the real data. Working of a GAN is represented in
the flowchart given below(Figure 3.1) .

GANs have a wide range of applications, including generating realistic images, and videos as well
as being used for data augmentation and anomaly detection. One of the strengths of GANs is their
ability to learn complex and high-dimensional data distributions, which makes them suitable for
generating realistic data. GANs can be trained on any combination of simulated and actual data.
Training GANs can be challenging, as it requires careful tuning of hyperparameters and the choice
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of loss functions used during training. But, they are extremely fast once trained. GANs have also
been used for unsupervised learning, where they can generate new data without the need for la-
belled training data.

Figure 3.1: Illustration of a Generative Adversarial Network (GAN)

GAN trainings

The training procedure for the generator is to maximise the probability of the discriminator mak-
ing a mistake, enabling the model to learn in an unsupervised manner. It learns to make the
discriminator classify its output as real. GAN has two losses associated with it; generator loss
and discriminator loss. The discriminator penalises (generator loss gets applied) the generator for
producing implausible results, and the generator updates its model parameters. The discriminator
uses real data instances as positive examples and fake data instances as negative examples during
training [16]. When the discriminator misclassifies a real instance as fake or a fake instance as real,
discriminator loss penalises the discriminator and updates its weights. As the generator improves
with training, the discriminator performance gets worse. At a limit, the generator generates perfect
replicas every time, and the discriminator cannot tell the difference and identifies the generated
samples as real. The figure 3.2 shows different stages of an example case of GAN training.
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Figure 3.2: The figure shows the training of GAN. (a) When the training begins, the generator
produces fake data, and the discriminator quickly identifies it’s fake. (b), (c) As training advances,
the generator gets closer to producing output that can fool the discriminator. (d) Finally, if the
generator training goes well, the discriminator cannot differentiate between real and fake. It starts
to classify fake data as real.

Implementation

GANs were implemented using tensorflow algorithms in python environment [17]. TensorFlow
is an open-source software library for numerical computation and machine learning [18]. It was
developed by the Google Brain team and is widely used in research and industry for building and
training machine learning models.

Activation functions

Generator and discriminator are both neural networks with an input layer, an output layer and sev-
eral hidden layers of neurons. In the generator, all the inner layer neurons are activated by ReLU/
Leaky ReLU activation functions, whereas linear activation functions are used for the output layer.
The discriminator has all the inner layer neurons activated by ReLU/ Leaky ReLU activation func-
tions and the last hidden layer activated by the sigmoid activation function.
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Loss functions

The standard GAN framework learns a data distribution as a minimax game between the gen-
erator (G) and the discriminator (D) [19]. Both the generator and the discriminator are multilayer
perceptrons [20]. The discriminator (D(x)) takes input ’x’ which is a combined set of input data
and generated data. The generator (G(z)) takes input ’z’ drawn from a random distribution. The
GAN loss function is given by,

minG maxD V (D,G) = Ex[log(D(x))] + Ez[log(1−D(G(z)))]

During training, the generator tries to minimise log(1−D(G(z))), whereas the discriminator tries
to maximise it [21].

Generator loss is applied to the generator when the discriminator identifies the generated outcomes
as fake. Generator loss is given by,

LossG = ∇θg1/m
m∑
i=1

log(1−D(G(z(i))))

Discriminator loss penalises the discriminator when it misclassifies a real instance as generated or
a generated instance as real. It is calculated as,

LossD = ∇θd
1/m

m∑
i=1

[logD(x(i)) + log(1−D(G(z(i))))]

The model employs the binary cross-entropy (BCE) loss function as the discriminator loss func-
tion and mean square error (MSE) as the generator loss function. GAN model was executed using
Adam (Adaptive Moment Estimation) optimizer. It uses estimations of the first and second mo-
ments of the gradient to update the weight of the neural network.

Hyper parameters

• Number of latent dimensions
The latent space refers to a finite dimensional space from which random vectors are drawn
that is used as input to the generator network. The selection of the number of latent dimen-
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sions is by the user’s freedom. By changing the value of this parameter, the generator can
create different outputs that correspond to different points in the latent space.

3.2 Producing simple functions using GANs

Initially, basic geometric shapes like circles and ellipses, and some simple polynomial functions
were generated and examined for their reasonable match. Subsequently, the ability of Genera-
tive Adversarial Networks (GANs) to produce periodic functions was tested by plotting sin(x)/x.
Following the training process, the GANs were found to yield satisfactory outcomes. To further
improve our proficiency in utilizing Generative Adversarial Networks (GANs), we generated stan-
dard distributions such as Gaussian and various stochastic distributions. This involved creating
text files that contained 10,000 data points for each function, which were then used as the truth
functions for the GAN. The minimum training time required was approximately 20 minutes, with
an increase up to 70-80 minutes based on the number of epochs chosen. The models were trained
by varying the number of epochs, network architecture, batch size and the number of latent dimen-
sions. However, some of the observed results were unsatisfactory. The most promising outputs
and their corresponding evolution plots are tabulated below (Table 3.1).

Function Generator Discriminator NEpochs Output plots

x2 + y2 = 1 32, 16, 8 16, 8, 1 12000 Figure 3.3
y = sin(x)/x 256, 128, 128, 64, 8 128, 64, 32, 1 14000 Figure 3.4
e−(x−5)2/4 256, 128, 128, 64, 8 128, 64, 32, 1 20000 Figure 3.5

y = x4 − 5x2 + cos(3x) 256, 128, 128, 64, 8 128, 64, 32, 1 20000 Figure 3.6

Table 3.1: Training information for various functions. (NEpochs is the number of epochs during
training, the number of latent dimensions = 4 and the batch size = 1024.)
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Figure 3.3: The figure shows the evolution of the GAN training for untrained, after 100 epochs,
after 4000 epochs, and at end of training (12000 epochs) respectively. The target function is
x2 + y2 = 1
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Figure 3.4: The figure shows the evolution of the GAN training for untrained, after 100 epochs,
after 6000 epochs, and at end of training (12000 epochs) respectively. The target function is
y = sin(x)/x
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Figure 3.5: The figure shows the evolution of the GAN training for untrained(a), after 500
epochs(b), after 8000 epochs(c), and at end of training (12000 epochs) (d) respectively. The target
function is e−(x−5)2/4
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Figure 3.6: The figure shows the evolution of the GAN training for untrained, after 500 epochs,
after 12000 epochs, and at end of training (20000 epochs) respectively. The target function is
y = x4 − 5x2 + cos(3x)

3.3 Predicting kinematics in Drell-Yan process

Drell-Yan process

The Drell-Yan process takes place when a fermion-antifermion pair decays into a pair of fermion-
antifermion via a Z boson or a virtual photon. The Feynman diagram is given below (Figure 3.7).
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Figure 3.7: Feynman diagram for Drell- Yan process. (Where `± can be an e± or a µ±)

Here we are predicting the following variables; ∆R, ∆φ) and transverse momentum of fermions
(pT ). The angular seperation between fermions (∆R) between fermions is a measure of the dis-
tance between two fermions in the detector. It is defined as the square root of the sum of the
differences in pseudorapidity (∆η) and azimuthal angle (∆φ) between the two fermions. Pseu-
dorapidity (η) is a measure of the angle between the trajectory of the particle and the beam axis,
while azimuthal angle (φ) is the angle of the particle’s trajectory in the plane perpendicular to the
beam axis.

∆R =
√

∆η2 + ∆φ2

The Azimuthal angle seperation between fermions (∆φ) is defined as the difference in azimuthal
angle between the two leptons in the center-of-mass frame of the collision. It can be used to study
the spin alignment of the produced lepton-antilepton pair. The transverse momentum (pT ) is the
momentum component that lies in the plane perpendicular to the beam axis in a particle accelerator.
pT for a particle is defined as;

pT =
√
p2
x + p2

y

Here, p1
T is the transverse momentum of the leading fermion and p2

T is the transverse momentum
of the subleading fermion. Leading particle is the most energetic particle in shower. Subleading
particle is the second most energetic particle in shower.
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Training phase

To train the GAN, we used 101216 Z → µ+µ− events as input. The scaling of input variables to
(-1,1) range was performed to ensure that they carry equal weightage during the training process.
Both the generator loss function and discriminator loss function used was binary cross-entropy.
After completing the training, we rescaled the variables to their original range. The trained model
was then used to analyze the distributions of ∆R, ∆φ, p1

T , and p2
T for the Drell-Yan process. The

original plots of different variables of Drell-Yan process are given below. (Figure 3.8)

Original plots of variables made using the input file

Figure 3.8: Original plots of ∆R, ∆φ, p1
T and p2

T respectively for Drell-Yan process.

After experimenting with various combinations of latent dimensions, batch sizes, epochs, and
network architectures, the optimal values for each of these parameters were determined. The
optimal values of various training parameters are tabulated below (Table 3.2).
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Generator architecture 256, 128, 64, 64, 8, 4
Discriminator architecture 128, 64, 64, 16, 1

Number of epochs 12000
Number of latent dimensions 12

Batch size 4096
Loss function Binary Cross-entropy

Table 3.2: Training information for optimal values of hyperparameters for DY process using GANs

The outputs which are mostly in agreement are given below (Figure 3.9). But, clearly, the agree-
ment is not perfect.

Figure 3.9: Comparison of GAN outputs of ∆R, ∆φ, p1
T and p2

T respectively for Drell-Yan process
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3.4 Predicting four-vector of a single electron

Four-vector describes the energy and momentum of a particle. It has four components; the mo-
mentum of the particle in the x, y, and z directions (pX , pY , and pZ) and the energy of the particle
(E). The energy-momentum four-vector is conserved in all particle interactions.

Training phase

The GAN was trained on a dataset of 70520 Z → e+e− events as input. To ensure equal weightage
during training, all input variables were scaled to the range (-1,1), and were subsequently rescaled
to their original range once the training was completed. The generator loss function employed was
the mean square error and discriminator loss function was binary cross-entropy. The trained model
was then used to generate the four vector distributions of Drell-Yan process. The figure 3.10 shows
the original distributions of these variables.

Original plots of variables made using the input file

Figure 3.10: Original plots of pX , pY , pZ and E respectively for Drell-Yan process
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Upon trying different combinations of latent dimensions, batch sizes, epochs, and network archi-
tectures, the most effective values for each of these parameters were identified. The optimal values
of the various training parameters are tabulated below (Table 3.3).

Generator architecture 128, 64, 64, 32, 8, 4
Discriminator architecture 128, 64, 32, 8, 1

Number of epochs 12000
Number of latent dimensions 10

Batch size 4096

Table 3.3: Training information for optimal values of hyperparameters for DY process using GANs

Below are the outputs that are considered to be the most optimal (Figure 3.11). Here, the agreement
is better compared to figure 3.9

Figure 3.11: Comparison of GAN outputs of pX , pY , pZ and E distributions respectively for Drell-
Yan process
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3.5 Producing various distributions relevant in W+jets events

In W+jets events, we tried to produce distribution of variables like MT of the lepton, dijet mass,
MT of the dijet, Emiss

T and HT . These variables are defined in section 1.3.

Training phase

To train the GAN, we used 252587 W+jets events as input. The normalization of input vari-
ables to (-1,1) range was performed to ensure that they carry equal weightage during the training
process. After completing the training, we scaled the variables back to their original range. The
generator loss function employed was the mean square error and discriminator loss function was
binary cross-entropy. The trained model was then used to analyze the distributions of MT of the
lepton, dijet mass, MT of the dijet, Emiss

T and HT distributions for W+jets process. The original
distributions of these variables made using the input file provided is given below in figure 3.12.

First, we tried to produce four variables; MT of the lepton, dijet mass, Emiss
T and HT first. The

resuls were unsatisfactory, but we decided to produce five variables also. They are MT of the
lepton, dijet mass, MT of the dijet, Emiss

T and HT . Upon trying different combinations of latent
dimensions, batch sizes, epochs, and network architectures, comparatively better values for each of
these parameters were identified. These values of various training parameters are tabulated below
(Table 3.4).
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Original plots of variables made using the input file

Figure 3.12: Original plots of MT of the lepton, dijet mass, MT of the dijet, Emiss
T and HT respec-

tively for Drell-Yan process.
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Training parameters For producing 4 variables For producing 5 variables

Generator architecture 128, 128, 128, 64, 32, 16, 4 128, 128, 128, 64, 16, 8, 5
Discriminator architecture 128, 128, 128, 64, 32, 16, 1 128, 128, 64, 32, 16, 1

Number of epochs 6000 10000
Number of latent dimensions 10 10

Batch size 1024 1024

Table 3.4: Training information for optimal values of hyperparameters for W+jets process using
GANs

The outputs we got are given below. Figure 3.13 shows the resulting distributions of four variables
and figure 3.14 are the results of five variable problem.

Figure 3.13: Comparison of GAN outputs of MT of the lepton, dijet mass, Emiss
T and HT respec-

tively for W+jets process
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Figure 3.14: Comparison of GAN outputs of MT of the lepton, dijet mass, MT of the dijet, Emiss
T

and HT respectively for W+jets process process

The agreement of generated outputs is worse. GANs are not performing well in this problem,
which needs further investigation. We decided to try Variational Autoencoders (VAEs), which can
also be used for generating new data.
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Chapter 4

Variational Autoencoders (VAEs)

Autoencoders are a kind of deep learning algorithm that contains a pair of neural networks; an
encoder and a decoder [22]. The illustration of a basic autoencoder is given in Figure 4.1. The
encoder receives input and compresses the data into a new lattice representation in a reduced di-
mension. The decoder maps the points in the latent space back to the original input space with
some reconstructional error. An autoencoder learns a compressed representation of the input data
in the latent space that can be used for tasks such as data compression or denoising.

Figure 4.1: An illustration of an Autoencoder

A variational autoencoder is also an autoencoder with an additional regularisation step [23]. The
origin of the term ”variational” is from the close relation between regularisation and the variational
inference method in statistics. In addition to encoding and decoding data, a VAE aims to learn a
probability distribution over the latent space. The regularisation process ensures that the latent
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space has good properties for the generative process and avoids overfitting. This is achieved by
adding a KL divergence term to the loss function, which encourages the latent space to follow a
prior distribution, typically a standard normal distribution. This regularization step allows for the
generation of new data by sampling from the learned probability distribution over the latent space,
making the VAE a generative model. The structure of a VAE is depicted in figure 4.2.

Figure 4.2: An illustration of a Variational Autoencoder (VAE)

The key difference between an autoencoder and a VAE is that the VAE explicitly models the proba-
bility distribution over the latent space, enabling it to generate new data samples. While an autoen-
coder can be used for data compression and denoising tasks, it is not inherently a generative model.

VAE training

During training, the encoder network maps the input data to a lower-dimensional latent space
and provides the mean and variance of the latent variables as output. The latent variables are then
sampled from the distribution defined by the mean and variance. These latent variables are then fed
into the decoder network, which reconstructs the original input data. The loss function is then cal-
culated, and the model weights are updated through backpropagation to minimize the loss. VAE
loss function typically consists of two terms; a reconstruction loss that measures the difference
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between the input data and the reconstructed output, and a KL-divergence loss that measures the
difference between the distribution of the encoded latent variables and a known prior distribution.

Activation functions

Encoder and decoder are both neural networks with an input layer, an output layer and several
hidden layers of neurons. In the encoder, both the inner layer neurons and output layer neurons are
activated by the ReLU activation function. The decoder has all the inner layer neurons activated
by ReLU activation functions and the outer layer activated by a linear activation function.

Loss functions

VAE loss function consists of two parts, reconstruction loss and the regularisation loss [24]. The
reconstruction loss measures how well the VAE can reconstruct the input data from the latent
space. It is typically calculated using a distance metric, such as mean squared error or binary
cross-entropy, between the input and the reconstructed data. This term encourages the VAE to
learn a compact representation of the input data that can be used to reconstruct the original data
with minimal loss. The Kullback Leibler (KL) divergence loss or the regularisation loss measures
the difference between the distribution of the encoded latent space and a prior distribution that is
usually assumed to be Gaussian [25]. This term helps to regularize the latent space to be smooth
and continuous, which enables interpolation and exploration of the latent space.

In this model, reconstruction loss is calculated using mean squared error (MSE) and regularisa-
tion loss is calculated by assuming the prior distribution to be N ∼ (0, 1). The optimizer used was
adam.

Hyper parameters

• Number of latent dimensions
The latent space refers to a lower-dimensional space which contains a compressed repre-
sentation of the input data, where the most important features are preserved. Typically, the
number of latent dimensions is lesser than the input data [26]. By optimising the dimension-
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ality of the latent space, the quality of the reconstructions and the interpretability of the latent
space can be improved. A smaller dimensional latent space can result in a more compact and
interpretable representation of the data, while a larger dimensional one can allow for more
flexibility in the reconstruction process.

• Reconstruction loss weight
The reconstruction loss weight determines the importance of the reconstruction loss term
in the overall VAE loss function. If this value is set too high, the VAE will focus more on
reconstructing the input data accurately, but may not learn a useful latent representation. On
the other hand, if the reconstruction loss weight is set too low, the VAE may learn a good
latent representation but may not generate high-quality reconstructions of the input data. The
optimal value of this parameter provides a balance between the reconstruction loss and the
KL divergence loss term.

4.1 Producing various distributions relevant in Drell- Yan pro-
cess

4.1.1 Producing ∆R, ∆φ and mass distributions

Here, we are predicting the angular seperation between fermions (∆R), azimuthal angle seperation
between fermions (∆φ) and mass. Here, mass is the invariant mass of fermions in the event.

Training phase

To train the VAE, we used 70520 Z → e+e− events as input. The normalization of input vari-
ables to (-1,1) range was performed to ensure that they carry equal weightage during the training
process. After completing the training, we rescaled the variables to their original range. The loss
function employed was the weighted mean square error. The trained model was then used to ana-
lyze the distributions of ∆R, ∆φ, and invariant mass for the Drell-Yan process. Figure 4.3 shows
the original plots of these variables made using the input file.
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Original plots of variables made using the input file

Figure 4.3: Original plots of ∆R, ∆φ, and mass respectively for Drell-Yan process

After experimenting with various combinations of latent dimensions, batch sizes, epochs, and
network architectures, the optimal values for each of these parameters were determined. The
optimal values of various training parameters are tabulated below (Table 4.1).

Encoder architecture 128, 64, 32, 16, 8
Decoder architecture 8, 16, 32, 64, 128
Number of epochs 10000

Number of latent dimensions 2
Batch size 1024

Test split size 0.1
Reconstruction loss factor 1

Weights of variables 0.75, 0.75, and 1 respectively for ∆R, ∆φ, and mass

Table 4.1: Training information for optimal values of hyperparameters for DY process using VAEs
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The most optimal outputs are given in figure 4.4.

Figure 4.4: VAE outputs of ∆R, ∆φ, and mass distributions respectively for Drell-Yan process

4.1.2 Producing four vectors of a single electron

Here we are predicting pX , pY , pZ and E.

Training phase

We used 200000 Drell-Yan events as input to train the VAE. To ensure that the input variables
carry equal weightage during the training process, the input variables were scaled to (-1,1) range.
After completing the training, we rescaled the variables to their original range. The loss function
employed was the weighted mean square error. Using the trained model, we generated pX , pY , pZ
and E distributions of Drell-Yan process. The original four vector distributions are given in fig-
ure 4.5.
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Original plots of variables made using the input file

Figure 4.5: Original plots of pX , pY , pZ and E respectively for Drell-Yan process

Upon trying different combinations of latent dimensions, batch sizes, epochs, and network archi-
tectures, the most effective values for each of these parameters were identified. The optimal values
of the various training parameters are tabulated below (Table 4.2).

Encoder architecture 128, 128, 128, 64, 32, 16, 8
Decoder architecture 8, 16, 32, 64, 128, 128, 128
Number of epochs 6000

Number of latent dimensions 3
Batch size 4096

Test split size 0.1
Reconstruction loss factor 1

Weights of variables 3.5, 3.5, 1.15 and 1.15 respectively for pX , pY , pZ and E

Table 4.2: Training information for optimal values of hyperparameters for DY process using VAEs
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The outputs which are most in agreement are given below (Figure 4.6).

Figure 4.6: Comparison of VAE outputs of pX , pY , pZ and E distributions respectively for Drell-
Yan process

4.2 Producing various distributions relevant in W+jets events

Training phase

To train the VAE, we used 252587 W+jets events as input. The normalization of input vari-
ables to (-1,1) range was performed to ensure that they carry equal weightage during the training
process. After completing the training, we scaled the variables back to their original range. The
loss function employed was the weighted mean square error. The trained model was then used to
analyze the distributions of ∆R, ∆φ, and invariant mass for the Drell-Yan process. The original
plots of these variables are given below. (Figure 4.7)
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Original distributions of variables made using the input file

Figure 4.7: Original MT of the lepton, Dijet mass, MT of dijet, Emiss
T and HT distributions respec-

tively for W+jets events

After experimenting with various combinations of latent dimensions, batch sizes, epochs, and
network architectures, the optimal values for each of these parameters were determined. The
optimal values of various training parameters are tabulated below (Table 4.3). The most optimal
outputs are shown in figure 4.8.
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Generator architecture 128, 128, 128, 64, 32, 16, 8
Discriminator architecture 8, 16, 32, 64, 128, 128, 128

Number of epochs 1000
Number of latent dimensions 3

Batch size 1024
Test split size 0.1

Reconstruction loss factor 1
Weights of variables 3.55, 3.6, 3.4, 1.45 and 1.5 respectively

for MT of the lepton, Dijet mass, MT of dijet, Emiss
T and HT

Table 4.3: Training information for optimal values of hyperparameters for W+jets process using
VAEs

Figure 4.8: Comparison of VAE outputs of MT of the lepton, Dijet mass, MT of dijet, Emiss
T and

HT distributions respectively for W+jets events
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4.3 Validation of generated W+jets events

In order to verify the reliability of the generated values, we developed a neural network classifier
designed to differentiate between W+jets events and semileptonic tt̄ events. We trained the neural
network to distinguish between real W+jets events and semileptonic tt̄ events. Following this,
we evaluated the trained model by testing on a separate set of real W+jets, generated W+jets,
and semileptonic tt̄ events. We then plotted the neural network output scores and ROC curves to
analyze the performance of the network. A flow chart depicting the entire process is given below
(Figure 4.9).

Figure 4.9: Flow chart of working of a neural network classifier that seperatesW+jets events from
semileptonic tt̄

For training, we chose variables such asMT of the lepton, dijet mass,MT of the dijet system, Emiss
T

and HT . The overlay plots of these variables are given in figure 4.10
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Overlay plots of chosen variables of Real W+jets and Semileptonic tt̄

Figure 4.10: The figure shows the overlay plots of different variables for W+jets and semileptonic
tt̄ events

The NN score plots and ROC curves are included in chapter 5
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Chapter 5

Results and discussion of simulation of
W+jets events

While using GANs, we obtained some moderately agreeable preliminary results, but the rest were
displeasing. We attempted to improve GANs, but could not find an effective solution. This re-
quires further investigation. In the meantime, we explored VAEs and were able to produce various
distributions using them. The results looked promising.
We examined the efficacy of the W+jets - semileptonic tt̄ classifier across various sets of gen-
erated W+jets events. The training information utilized for this is outlined in the table provided
below (Table 5.1).

Sl.No. Weights of variables while calculating mean square error NEpochs Output plots

1 3.75, 3.6, 3.3, 1.45, 1.5 1000 Figure 5.1
2 3.6, 3.6, 3.3, 1.45, 1.5 1000 Figure 5.2
3 3.65, 3.6, 3.4, 1.45, 1.5 1000 Figure 5.3
4 3.6, 3.6, 3.4, 1.45, 1.5 1000 Figure 5.4
5 3.55, 3.6, 3.4, 1.45, 1.5 1000 Figure 5.5

Table 5.1: The table includes the training information for the variables MT of the lepton, dijet
mass, MT of the dijet system, Missing ET and HT . (NEpochs is the number of epochs during
training, number of latent dimensions = 3 and batch size = 1024. The network architecture is 128,
128, 128, 64, 32, 16, 8 for both encoder and decoder.)
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Figure 5.1: The figure shows the Neural network output score plots and ROC curve for W+jets -
semileptonic tt̄ classifier for combination 1

Figure 5.2: The figure shows the Neural network output score plots and ROC curve for W+jets -
semileptonic tt̄ classifier for combination 2
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Figure 5.3: The figure shows the Neural network output score plots and ROC curve for W+jets -
semileptonic tt̄ classifier for combination 3

Figure 5.4: The figure shows the Neural network output score plots and ROC curve for W+jets -
semileptonic tt̄ classifier for combination 4
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Figure 5.5: The figure shows the Neural network output score plots and ROC curve for W+jets -
semileptonic tt̄ classifier for combination 5
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In our work, it was observed that VAEs outperformed GANs significantly. After testing various
combinations, the fifth combination mentioned in the table 5.1 provided the highest level of accu-
racy.
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Chapter 6

Summary

This thesis discusses an approach to simulating collision events using neural networks, specifi-
cally the Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs). In the
context of search for the singlet model of vector-like leptons in their 1`2j final state, the primary
standard model background is W+jets events. The W has an extremely high cross section at the
LHC. Thus, to predict data with low statistical uncertainty, as many events as possible should
be simulated. While Monte Carlo platforms like GEANT4 can simulate these events, they are
computationally heavy and time-consuming. Modern machine learning techniques employ multi-
variate algorithms such as neural networks to generate such events using less computational time
and power. Thus, this study shows the efficacy of simulating collision events using deep learning
neural networks such as GANs and VAEs. GANs and VAEs require much less computational time
as they generate certain numbers following a known distribution.

The study first explored the capabilities of GANs by producing simple mathematical functions.
Then produced the ∆R, ∆φ, p1

T , and p2
T distributions of Drell-Yan events with moderate accuracy.

We then moved on to produce four vectors of a single electron. GAN could produce really better re-
sults in this case. However, the trained GAN on W+jets events did not yield desirable results. The
predicted outputs of a four-variable GAN were slightly better than those of five-variable GANs.
As the GAN performance was worse, the study then explored VAEs, which can be used in similar
problems. Sampling from the probability distribution N ∼ (0, 1), the VAE produced different dis-
tributions, such as ∆R,∆φ, mass, and four vectors of an object of DY process with significantly
good accuracy. Moving on to the real problem of simulating W+jets events, the study produced
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distributions of five variables: MT of the lepton, dijet mass, MT of the dijet system, Emiss
T , andHT ,

achieving good accuracy. A W+jets-semileptonic tt̄ classifier was then made to validate these
generated values. The training ROC curve for this classifier was plotted, and the resulting AUC
value was 0.8158. The generated values, which are mostly in agreement, gave a testing AUC value
of 0.8111 for real W+jets vs tt̄ and 0.8062 for generated W+jets vs tt̄.

Once trained with optimal parameter values, these networks work extremely fast and can pro-
duce millions of events in significantly less time. VAEs provided results with the desired accuracy
and were found to generate better results than GANs in the specific context of this study. This
method has already been used for various purposes on CMS clusters and high-GPU devices. How-
ever, this study shows that the method can also be adopted to simulate collision events at smaller
scales using the CPU. Additionally, we can generate only relevant variables instead of simulating
the entire event description.
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