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Abstract

Studying amorphous/disordered solids is challenging compared to their ordered counter-
parts, crystals [1, 2]. Lattice imperfections or defects in crystals are known to play a sig-
nificant role in deformation, as the defects within crystals begin to move when an external
load is applied, resulting in permanent deformation or plasticity. These defects are referred
to as plasticity carriers. However, amorphous materials lack a reference lattice to identify
defects. In this study, we use optical tweezers and dense colloidal suspensions to investigate

the relationship between plastic activity and microscopic structure in amorphous substances.

Shear fields in a colloidal monolayer are generated using a holographic optical trap with
Laguerre Gaussian beam and a spatial light modulator. With this setup, we examine the
relationships between defect dynamics and microstructure in a quasi-2D system of colloidal
glasses, including the orientation of defects with respect to the shear direction. We have
built the instrumentation of time-shared optical traps to investigate the effect of random

pinning on phonon modes in colloidal crystals and glasses.
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Chapter 1

Introduction

Amorphous Solid materials do not have long-range order and are disordered structurally.
Many of the day-to-day materials are amorphous solids and they have a wide range of ap-
plications in various fields like pharmaceuticals, the food processing industry, cosmetics,
electronics, etc. Understanding of mechanical behaviour of these amorphous solids is ben-
eficial in modelling earthquakes and making stronger materials. The study of amorphous
solids under external forces like shear is used to understand the interesting phenomenon of

the mechanical behaviour of amorphous solids.

typically
underdamped

METALLIC
AND

SILICATE
GLASSES

POLYMER
GLASSES

COLLOIDAL GLASSES

typically COLLOIDAL GELS
overdamped
FOAMS

EMULSIONS

thermal mm = = = = - = = - = - & | B e W o m m m wm w m athermal

04 nm 1nm 1pm 1mm lem
particle size

Figure 1.1: The figure classifies a different range of amorphous materials based on their

elementary particles’ size and damping regime.[3]
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Figure 1.2: shear stress versus strain on a solid material when we apply shear stress

Particles in the solid material interact with each other through various intermolecular
forces. When shear stress is applied to the material, these particles start to slide past each
other and this results in the deformation of the material. At small strains, the behaviour
of the material is linearly elastic, meaning that the deformation is directly proportional to
the applied stress. This is because the particles are able to slide past each other without
causing any permanent deformation. However, as the applied stress increases, the deforma-
tion becomes non-linear and the material exhibits plastic deformation. At a certain point,
known as the yield point, the material either fails if it is brittle or starts to flow if it is
ductile. This is because the applied stress is now sufficient to cause permanent deformation
of the material, and the intermolecular forces between the particles can no longer hold the
material together. To understand this behaviour at the macroscopic level, we need to look
at the interactions between the colloidal particles in the material. These particles are held
together by various intermolecular forces such as van der Waals forces, hydrogen bonding,
and electrostatic interactions. When shear stress is applied to the material, these forces are
disrupted, and the particles start to slide past each other. As the applied stress increases, the
particles start to deform and rearrange themselves, leading to the non-linear behaviour of the
material. At the yield point, the deformation becomes permanent, and the material either
fails or starts to flow depending on its properties. Under shear stress, the behaviour of solid

materials is determined by the interactions between the colloidal particles in the material.



Understanding this behaviour at a microscopic level is essential for designing materials with

specific properties and for predicting their mechanical behaviour under different conditions.

When Mechanical stress like shear is applied to a crystalline solid which has a long-
range order the imperfection in lattice arrangement or defects play a significant role in the
deformation but in the case of amorphous solids, there will be complex rearrangements of

particles leading to the substantial difference in their mechanical properties.

In crystal when stress is applied defects will play a major role and act as plasticity
carriers. As the Roel Dullens’ Oxford colloidal group performed the experiment on colloidal
crystals and holographic optical tweezers to generate grain boundary loops|1]. These defects
of grain boundary loops will shrink when shear from the holographic optical tweezers is
removed. So the main inspiration of this thesis comes from the idea that these ideas can
also be applied to amorphous solids by applying shear with holographic optical tweezers and
generating defects in the system and identifying its positions and studying its dynamics. We

find stress in amorphous solids and identify these features in amorphous solids.

1.1 Amorphous solids under Shear

When under external stress an amorphous material may exhibit macroscopic flow. Even
though this movement can be uniform throughout the material, it frequently localizes, which
causes instability and failure in the long run. Despite the long-known prevalence of flow
instabilities in geology, as demonstrated by landslides, shear banding[4] is a common event
that happens in a wide variety of amorphous materials. Shear striping is seen in amorphous
materials such as molecular glasses, solutions, foams, and emulsions [5]. Due to thermally
induced relaxation processes, molecular glasses in particular show uniform flow under tiny
applied strains [6]. These relaxation processes, however, cannot proceed fast enough to
maintain the applied shear rate when there are significant applied pressures. The glass
consequently divides into bands that move at various shear rates. Despite this knowledge,

the process causing the development of these rings is still unclear.

Glass is a unique state of matter that exhibits properties of both liquids and solids. It is
formed by rapidly cooling a liquid, which results in an increase in viscosity and a transition to

a metastable state. This transition is known as the glass transition, and it is considered the



most significant unsolved problem in condensed matter physics. Due to the large relaxation
timescales associated with glass, many materials are considered glassy, including densely
packed colloidal particles, emulsions, foams, granular materials, proteins, and more. These
materials exhibit some degree of glassy dynamics and have their own phase diagrams. In the
metastable state, the particles remain caged by their neighbors, and the structure remain
frozen, similar to a crystalline substance. The relaxation time diverges at the glass transition

point, and the system is no longer ergodic on experimental timescales.

1.2 Theoretical Models of Deformation

Eyring’s model

When Particles are rearranged, a shear transformation occurs. The positions of the particles
before the rearrangement and after the rearrangement are considered to be relative stability
positions, which means they are in a local minimum of free energy. Under normal circum-
stances, with external force zero, Thermal fluctuations will provide the activation energy for
the transition from one minimum to another minimum, and particle jumps in all directions
are likely to occur equally. However, when an external force is non-zero, in the direction
of the force the energy barrier will be reduced. As a result, rearrangements of particles
are biased towards the direction of the force applied, resulting in a flow. The right side of
Figurel.3 (a) and (b) shows the energy barrier when shear stress is applied and shear stress

is not applied. 7. The Deformation rate based on the transition is
A= Aeo(ry —r-) (1.1)

here ¢ is strain resulting from transformation and r, and r_ are forward moves rate and
backward moves rate respectively. The forward moves rate and backward moves rate when

externally applied stress o are given by

ry = woe[(—EoiGQo)/kT] (1.2)

where, ) is the activation volume and wy is a microscopic attempt frequency, usually of the

order of 5-10 particles. So we can write the deformation rate equation as [7].
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Figure 1.3: Erying’s model. The particle rearrangement and the energy barrier in the shear

A key component of the formulation mentioned above is the free volume distribution, which
represents the available volume for an individual particle to displace without disrupting
surrounding particles. In areas with a large amount of free volume, shear transformations are
more likely to initiate because of the weak coupling to the surrounding area. The likelihood

of particle rearrangement increases with increasing free volume. In Spaepen’s free volume

(1.4)



where Af is the proportion of the sample which can be undergoing deformation, v* is the

volume of the particle, and vy is the average free volume available to the particle. The term
_ vt

A fe( “s " in equation 1.4, estimates the proportion of sites which can potentially undergo

a transformation based on the distribution of free volume in the given system.

Argon’s model

Shear transformation zones are suggested to be inclusions that are elastically linked to the
surrounding medium of material as proposed by Argon[6]. This was a significant advance-
ment over models which were discussed earlier, which assumed that shear transformations
occurred as independent events within the Eyring model. Argon’s hypothesis suggested that
a flip would occur when a zone deformed elastically up to a certain critical level of strain,
ranging from approximately 2-4% [7, 10], causing it to become unstable. As mentioned by
Eshelby [11, 12], this type of shear transformation results in increases in strain Ae; and

elastic strain energy Ae in a spherical region of size €.

7 — bv
Ae = ———— A2Q) 1.
¢ 30(1—@)” €o%%0 (1.5)

where p is the shear modulus. So the rate of deformation for this model is

c Q
g = ZWOAEOe(’AJTEO)smh(KL;) (1.6)

Shear Localization

Models put forth by Spaepen and Argon attempt to explain why shear transformation zones
begin to develop in regions with higher free volumes at lower stress levels. To generate free
volume and cause local dilation, a particle may force nearby particles under conditions of
greater stress. The surrounding particles are diffused and the excess free volume is eliminated
by a competitive relaxation process. The sheared areas may keep a significant quantity of
free volume if the formation of free volume is quick and the annihilation is gradual, which

will cause localized softening. It has been proposed that these disturbances lead to shear



bands in the system.

Soft glassy rheology - mesoscopic model (P.Sollich)

It is a mesoscopic model we treat small regions instead of particles. These regions are
associated with a strain variable [ and some yield threshold. If strain exceeds the threshold
then particles rearrange and relax. and each zone had elastic energy E characteristic local

yield. The dynamics of the microscopic yield is described by the Probability distribution

p(l, E,t)
0 .0
al =y

The first term is the Elastic loading between successive yield events, the second term is the

P —Toe B2k p L T(1)p(E)S(1)

yielding of the mesoscopic region and the third term is the relaxation of regions to the new

equilibrium. here we considered that if a region is flipping it doesn’t affect other regions.[13]

Elasto-Plastic Model

This is also a mesoscopic model[3] that describes the evolution of elasto-plastic elements on
a regular square lattice. Each lattice point is associated with yield stress. when the external
stress is applied each of these lattice points is associated with a certain threshold value, if
exceeds the local threshold value it will fail and redistribute its stress but redistribution is

anisotropic
n(r,t) =0 — 1if 0 > 0, whrer sigma, is threshold stress drawn from distribution

n(r,t) =0 «— 1 when [dt |0,o(t)/pu+ ()] > e

W here n = 0 is where block is completely elastic and n = 1 if not.

elastoplasticity models (EPM), which are coarse-grained models used for modeling plas-
ticity in amorphous substances. In the simplest flow scenario, the material is divided into
mesoscopic units and loaded elastically till they hit a yield threshold condition and turn
plastic. Following the end of the plastic event, the blocks regain their elastic properties once
the stress has been dispersed to other units via an elastic stress field. The default elastic

response, the local yield criteria, the stress redistribution during plasticity, and the recovery

7



criterion are the four preset rules on which EPMs are built. Utilizing equations of evolution
for stress carried by each block, contributions from externally imposed shear, nonlocal plastic
events, and local relaxation are included in the implementation of these principles. Due to

the EPMs’ simplicity and generality, several phenomenological models can develop.

do; o a’Y'jpl
o1 _WJF“;G” ot

. pl
N _ 94

ot " T

where the first part of the equation is the elastic part with an applied shear rate, Gj; is
;P!
ot

the stress kernel (self and neighbour) and is the plastic part

1.3 Objective of the thesis

The Objective of the thesis is to understand the amorphous system under Shear using holo-
graphic optical tweezers to understand how amorphous system particles undergo rearrange-
ments under shear stress. We also discuss on the instrumentation of time-shared optical
tweezers to study how random pinning of the colloidal particles will effect the phonon mode
in the system. In this project, we develop a robust Holographic optical tweezers setup and
time-shared optical tweezers setup. This involves the Generation of LG Beam which is the
major factor in our system. Once the system is ready we take shared data of colloidal
monolayer and understand the different parameters to understand the defects dynamics and

orientation of defects with respect to shear direction.

1.4 Overview of the thesis

Chapter 1 discusses theoretical models for the deformation of amorphous solids, such as
Eyring’s model, Argon’s model, Spaepen’s model, and mean-field models like the Elasto-

Plastic model.



Chapter 2 provides a basic understanding of Fourier optics, including Fresnel diffrac-
tion, Angular Spectrum Analysis, and Lens 1F System - Lens Fourier Transforms. These
concepts are used to comprehend Holographic Optical Tweezers. The chapter also covers
the electromagnetic theory of light and how light (optical vortex) can be used to shear a
system. Additionally, the basic principles of optical tweezers are discussed, including how
to understand them in different regions such as the Geometric optics region and Rayleigh
regime. Holographic optical tweezers and the Gerchberg-Saxton (GS) algorithm to generate

LG Beam are also discussed in this chapter.

Chapter 3 focuses on experimental details such as creating sample cells using pho-
tolithography, making colloidal amorphous monolayers, setting up optical circuits for Holo-
graphic optical tweezers and time-shared optical traps, and generating LG Beam and time-
shared optical traps. The chapter also covers how to drive AOD from RF synthesizer and
MSD, Radial

discusses some of the parameters used to analyze the data, such as D?

min’

Distribution function, Voronoi tessellation, and Delaunay triangulation.

Chapter 4 presents the results found from the analysis of sheared 2D amorphous solids,
including the identification of the location and orientation of defects with respect to the

shear direction.

Chapter 5 summarizes the conclusions and discusses future work.
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Chapter 2

Optics

2.1 Fourier Optics

In the area of optics known as Fourier optics, optical data are analysed and manipulated
using Fourier transforms. It has many uses in microscopy, holography, spectroscopy, and
telecommunications and offers a strong foundation for comprehending how light behaves in
different optical systems. Early in the 19th century, Joseph Fourier developed the idea of
Fourier optics as a quantitative method for explaining the propagation of light waves. Since
that time, Fourier optics has grown in importance as a field of study in optics and photonics,
particularly with the advancement of sophisticated optical methods and computers. Any
optical system can be viewed as a linear system that reacts to input through a linear operator,
which is the fundamental idea behind Fourier optics. Fourier transforms can be used to
analyse intricate optical systems because this operator can be expressed as a matrix in the
Fourier domain. The evolution of imaging methods, such as confocal microscopy and optical
coherence tomography, has been greatly aided by the study of Fourier optics. The Fourier
transform spectrometer, Holographic optical tweezers, and Fourier transform holography
have both been developed as a result of it. A key idea in wave optics is the Huygens-Fresnel
principle, which describes how a waveform moves through a medium. According to this
concept, each point on a wavefront produces spherical waves, that can be thought of as the
origin of secondary wavelets that travel in all directions. Later, the total waveform is created

by adding these wavelets together. The calculation of wave diffraction patterns made possible

11



by this concept is helpful for a number of tasks, including the creation of optical systems
like lenses, reflectors, and holograms. Notably, the Huygens-Fresnel principle makes the
assumption that waves propagate linearly, which is a reasonable estimate for many optical

systems.

2.1.1 Fraunhofer and fresnel diffraction

—ikr

—ik = ae
e thz E f() - dx
. r X,
al ///IX Ixs-x
5

Figure 2.1: Single-Slit Diffraction

In single slit diffraction as shown in figure 2.1, when a plain wave e~*** propagating in z-
direction incident on a slit of size 'a’ then at each point in the slit act as a secondary source
producing spherical wavelets. the field of light at a screen at a distance of 'd’ from the slit

and at a distance "X’ height on the screen will be given by (assume amplitude is 1)

a 6ikr
E :/ dx (2.1)
0

r

12



so by Pythagoras’ theorem and paraxial approximation,

r=(X,—2)?2+d (2.2)
rmayf14 Ee 2 (23)
r=d+ %w (2.4)
from the right figure 2.1 we can see that k, = ksinf = % and
Xo—z)? _ Xi—2Xoode? _ X3-2Xew since z? is small for Fraunhofer diffraction as

d d d
a << X,, r << X, and @ is small

. 1. (Xs—a)?
a ezkdeﬂkid
Gout(Xs) = / —— (small compare to d) (2.5)
o d + 2 d
ikd a ) Y
Gour(Xs) = ed / e3 T gy (2.6)
0
ikx2 [ _ixe
= Aoek;;/ e dy (2.7)
0
= AOC’O/ gin(z)e " *%dx g, () is a aperture function (2.8)

if a =~ X, then we have to use fresnel diffraction

a 1. s—T 2
Gout (Xs) = Ay / L (2.9)
0

Convolution: f(t) « g(t) = [~ f(7)g(t — 7)dr Fourier transform will convert

convolution to multiplication

gout<XS) = g'm(Xs) * 6% (210)
Gout(Kz) = BOGln(Kx)e% (211)

13



Transform function H(K,) = Seuls) — B o S

Gin(Kz)
Gout(Kz> - H(Km)Gm(Kx) (212)
Jout(Kz) = FH(Gow(K,)) (2.13)

2.1.2 Angular spectrum analysis

g()() GII‘I(!.(«) Gout(.lgg_}

\. - [ (—ikyx)
""“;.H F(g(x)) _[o g0 gy "

</\\/ / /// 7 _ _
— \ .

z=0 z=d

Figure 2.2: Angular spectrum analysis

The study of light waves and their interactions with optical instruments is the focus of
the field of Fourier optics, which includes the idea of angular spectrum analysis. Here,
a complicated waveform is split down through Fourier transforms to reveal its underlying
plane waves. This method offers a practical and effective analytical tool to explain how light
waves behave when they travel via space. Any complicated wavefront can be described as
a superposition of planar waves with various spatial frequencies and propagation directions,

and this is the foundation of the angular spectrum analysis.

The wavefront is first split into a number of narrow segments, every one of which is
regarded as a planar wave, in order to perform angular spectrum analysis. The frequency
components that emerge from the Fourier transform of each segment are then propagated to

the next segment using the free-space propagation equation. Until the complete wavefront is

14



rebuilt in the far field, this procedure is repeated. The benefit of angular spectrum analysis
is that it enables highly accurate and effective computation of diffraction patterns and other

visual phenomena.

we take the Fourier transform of g(x) function and decompose in terms of plane waves

Flg(z)) = / " g(e)e e d (2.14)

o

When an arbitrary plane wave propagates from z=0 to z=d,

K = (K, K.) (2.15)
= (K sinf, Kcost) (2.16)

7= (x,z) (2.17)
ok _ (Koot K. 2) (2.18)
(2.19)

the wave at z=0 is given by e and at the distance z=d is e 4) 5o the transform

function is ef=¢

|K|? = K2+ K? (2.20)
K?=|K]> - K? (2.21)
K2

So transform function is given by

H, = k= (2.23)

Hy = o133 (2.24)

Hy = eiKde="3k" (2.25)
iK2d

Hy= Ce 2k (2.26)

15



Therefore we can write the equation

2
iKzd

Cou(Ky) = e~ 2k Gin(K,) (2.27)

2.1.3 Thin Transparent lens aperture function

when a plane wave propagates in free space for a distance of let’s say L the transform function

for this plane wave propagation through free space is e’ where K is 2/ ).

If we have material of refractive index n and the same length L then the plane wave

propagates through with a smaller effective wavelength or larger value of K, so the transform

function becomes efont where Kj is 27/, Ao free space wavelength.

The Aperture function of refractive index medium is the difference in the phase a plane

wave see in medium and the free space.gmegium () = eKonb=Kol) — ciln=1)KoL

‘>
L
eikz etkL etkz
X
n L(x)
Z
Ay etkonl eikz

Figure 2.3: lens aperture function

If the plane wave not just propagating towards a constant L, if L is a function of x then

the aperture function is gpegium () = e~ HEL@)

16



For a simple plano-convex spherical lens then

2’ + 2% = R? (2.28)
2* + L(z)? = R? (2.29)
VR? — g2 (2.30)

L(z) =
L(z) = Ry/1— %22 (2.31)

L(z)=R— ;—R (Paraxial approximation) (2.32)
aperture function for the lens is
. o 22
Giens(T) = el DR g=in=1) K355 (constant) (2.33)
—ika? 1 1
Giens(z) = Ce o7 (for Plano convex lens? =(n— 1)—R) (2.34)

similar arguments can be done for the bi-convex lens. so the transformation of the field

through a lens is
—ikz?

Jout = GinGlens = € 2 Gin (235)

2.1.4 Lens 1F System - Lens Fourier Transforms

Consider an input aperture function g(x) at a distance f from the lens at x; then the elec-
tromagnetic field at a plane(X;)at a distance f from the lens is the Fourier transform of the
original wave i.e gou(Xs) = F(gin(z)) = Gin(K)

72
—iKL,f

i Glensf (Kx) =€ 2K Gm(KJ;) from equation 2.27

—ikX?
® Jlens+ = € 2/ l Glens— from equation 2.35
® Gout(Xs) = Grense x€ 27 from equation 2.10

o K, = % from fig 2.1

17



g(x) X, G(K,)

Figure 2.4: Lens 1F System - Lens Fourier Transforms

By using the above equations we can write

) ; (Xo—ap)2
gOUt(XS) = / glens—l-('rl)e k 2f dLUL

[e.9]

ikx2 [0 iKa? KX )
Gout(Xs) = €727 Jiensr€ 2 e T dxp from equation 2.35
-0

iKX2 o0 —iKz? iKe? iKXsx
gOUt(XS) =e Jlens—€ 2f e 2/ e dxy,
—00

iKX2 [° o
Gout(Xs) = € 2 / Dene €70, green potion is Giens— (K:) = F(giens— (1))

Gout (Xs) = Gzn<Kx)

18
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Figure 2.5: Lens 1F System - Lens Fourier Transforms[14]

The hologram and the back aperture of the objective are linked as conjugate image planes,
which leads to a direct correspondence between the beam produced by the hologram and the
beam in the focal plane. Another important aspect of this relationship is that the complex

amplitude of the beam in the trapping plane is essentially the Fourier transform of the beam
in the SLM plane.
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2.2 Electromagnetic Theory of light

The electromagnetic theory of light is a fundamental concept in physics that describes the
nature of light as an electromagnetic wave.In the 19th century, James Clerk Maxwell made
the initial suggestion, and Heinrich Hertz subsequently verified it experimentally. This theory
states that light is a transverse wave that moves through space and is made up of oscillating
magnetic and electric fields that are perpendicular to one another and to the direction of
transmission. Reflection, refraction, and polarisation are just a few of the events that the

electromagnetic theory of light can describe.

Maxwell’s equation for the electric and magnetic fields are

VE="L (2.45)
€o
VB =0 (2.46)
0B
VxE=-2 (2.47)
VxB= Ho (J + 60%—?) (248)

2.2.1 Electromagnetic waves in Vacuum

In a region of space (vacuum) where there is no charge or current then we can write Maxwell’s

equation as

VE=0 (2.49)
V.B =0 (2.50)
0B
E=— 2.51
V x T (2.51)
OE
VxB= IU()EOE (252)

VXx(VXE)=V(VE)-VE=V X —— = ——(V x B) = —jpcp—— (2.53)

20



Similarly

OE 0 9°B
Vx(VxB)=V(V.B)-V’B=V x (uoe()E) = uoeoa(v x BE) = —Ho€o 5 (2.54)
Since V.E = 0 and V.B = 0 so,
0’E
V2E = Ho€o 5 (2.55)
0°B
VB = Hoo 5 (2.56)
e : 2p .
which is similar to wave equation V2f = £ %L with v = \/;% =C =3x10%m/s

Energy in Electromagnetic Waves

The Work which is required to assemble a static charge distribution configuration (against

the coulomb repulsion of charges) is
We=% [ E?dr where E is resulting electric field
similarly, the work required to get the current going is given by
W, = ﬁ | B%dr where B is resulting Magnetic field

In an electromagnetic field, per unit volume, the energy is given by

1 1

2.2.2 Poynting Vectors and Poynting Theorem

A key idea in electromagnetic theory that pertains to the transmission of energy in electro-
magnetic fields is the Poynting’s theorem. It says that the Poynting vector, defined as the

cross product of the electric and magnetic fields at any particular point, is equivalent to the
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amount of energy per unit time passing through a unit area of a surface. This theory offers
an important resource for comprehending electromagnetic wave behaviour and interactions
with matter .S is the energy current density or flow of energy per unit time per unit area.
Poynting’s theorem states that The work done on the charges by the electromagnetic. force
is equal to the decrease in energy stored in the field, less the energy that flowed out through

the surface.

Think about a setup with some configuration charge and current. It produces electric
E and magnetic B fields, which in turn act on charged particles. By doing work on the
particles Electromagnetic forces lose energy. Particles on the other hand will increase their
mechanical energy (kinetic and potential energy). Energy may also lose if it flows out of the

volume.

On a single charge ¢ the work done by electromagnetic forces (work done by the magnetic
field is 0)

dW = q(E 4+ v x B).dl = gE.dl = ¢E.vdt

therefore,

" _E.
aw Y

Work done on all the charges per unit time (”Power delivered”):(J = pv)

d
d_ViIt/ = | pE.vdr = /E.JdT

\%

By Maxwell’s equation V x B = pj (J + 60%—?) SoJ = MAO(V x B) — 60%_13

Now using formula V.(A x B) = B.(V x A) — A.(V x B) we can write

V(ExB)=B.(VXE)-E.(VxB)= —B.aa—]? — E.(V x B)
E.(V xB)=-V.(ExB) — B.%—]?
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We can now write the

1 OE
EJ=—E(VxB)—¢E— 2.57
E(VxB) - B (257)
1 0B OE
EJ=—-V.(ExB) —-B.—) —¢E.— 2.58
(-V.(ExB) - B — B (2.58)
1 1 5’32 €0 0E2
EJ=—VExB) - —m — ——— 2.59
oV EXB) o S (2:59)
Work done on all the charges per unit time (" Power delivered”) is
dW
— = | E.Jd 2.60
o : T (2.60)
dW 1 1 0B? €, 0FE?
= | ——V((ExB) - ———Wm - ——-d 2.61
dt v Mo ( % ) 2#0 ot 2 Ot 7 ( )
dW 0 1 1 1
— = — [ = [¢FE? Bzd—%—E B).d 2.62
dt 3t/v2<60 o > X B)da (262)
part in red colour is the density of energy stored in the electromagnetic fields (uen),
and part in blue is the Poynting vector S we can write % as d% fV UmechdT Where Upecn, 19

the density of mechanical energy and W = U,,.., is the total mechanical energy of all the

particles in volume V

%/V(Umech + e )dT = — j{S.da =— /(V.S)dT (2.63)

S A%

%(Umech + Uem) = —=V.S (2.64)

Thus, Poynting’s theorem is simply a conservation of energy conservation. By their own,
the particles’ energy and momentum have not been preserved. Rather, the particles transfer
energy and momentum to the fields and the fields transfer it back to the particles. However,
the combined amount of energy and momentum of the fields and the particles together is

conserved.
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2.2.3 Lorentz Force per unit volume

The Lorentz Force on a charge q is given by F = g(E + v x B) The Force on all charge is
given by :(J = pv)
F:/p(E+V X B)dT:/(pE+J x B)dr

Force per unit volume is f = (pE + J x B) from Maxwell’s equations 2.45 and 2.48, we can
write p = ¢(V.E) and J = ——(V x B) — 50%—}?

1
o

1 E
f = 60(VE)E + (—(V X B) - 608—) x B (265)
Ho ot
OE 0 0B 0S
1 0S
f = — TB X (v X B> — M0€0§ — 6()E X (V X E> —+ (267)
Lo

using the equation

V(AB)=A x (VxB)+Bx (VxA)+(A.V)B + (B.V)A

VE? =V(E.E)=2E x (Vx E) +2(E.V)E (2.68)
1
Ex (VxE)= 5VE? — (E.-V)E (2.69)
similarly,
1
Bx (VxB)= 5VB2 - (B.V)B (2.70)

we can write the equation for f as

€0 o 1 1 , 1 0S
= E)— —VE EVE+—(V.BB-—VB —(B.V)B — — (2.71
f GO(V ) 9 V + 60( V) + 1 (V ) 2MOV + ILL()( V) Mo€o at ( 7 )

1 1 €0 1o 1 9 oS

= ¢(V.E EVE+—(VBB+—(BVB-V|—-EF"+—VB°)| — —

F=al(VE) + Q(BYE+ (VBB + (BB -V (FE 4 5 VE) ~
Maxwell stress tensor, in terms of physics, is the force per unit area (stress) operating on

the surface. we can define a Maxwell Stress Tensor

5;; 1 5
T, = e (EEJ - TJEQ) o (BiBj - 7732>
0
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where T}; is the "™ component of stress on j component of area element

“ 1 1 1
V.T=¢(V.E)+¢(EV)E+ —(V.B B+ —(B.V)B-V <EOE2 + —VB2>
Ho o 2 2410

so Force per unit volume is

< ON]
f=V.T —uoco—, (2.72)

ot

The Total force on the charges in volume V is therefore given by

< d

F= /V. T dT—uo(—:oE/SdT (2.73)
deech d 4

F=—=—— d d 2.74
o i |, T—f‘jéT a (2.74)

the green part is pe,, density of momentum stored in electromagnetic field

d . . o
% /(pmech +pem)d7 = %T .da (275)

S

dP pnech is the total (mechanical) momentum of the particles in V pecnis the (mechanical)

density of momentum of particles in volume V.

S = MLO(E x B) Poynting vector is the flow of electromagnetic energy per unit time
unit area and also p., = €S = €o(E x B) is the density of momentum stored in the
electromagnetic field. The momentum of the electromagnetic field is along the same direction

as that of the pointing vector.

2.2.4 Monochromatic plane wave

Electromagnetic radiation with a single frequency and a single direction of propagation in
a plane perpendicular to the wave’s vibration direction is known as monochromatic plane
electromagnetic waves. Both the magnetic and electrical fields fluctuate in phase and are
perpendicular to one another in these waves, which is a special characteristic. Common
uses for monochromatic plane waves include wireless communication, radar technology, and

medical imaging. The speed of light is the constant velocity of these waves in a vacuum. Due
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to their special qualities, monochromatic plane waves have a wide variety of applications and

are a crucial topic of research in the fields of engineering and physics.

XA

v
—_—
& E & = ;
ElE
4 :

Figure 2.6: Monochromatic Plane Electromagnetic Wave|[15]

If in an arbitrary direction Kk Plane monochromatic wave is propagating then

E(I‘, t) _ E0€i(k'r_Wt)fl

1 ) .
B(r,t) = ~Eoe'®™ ) (k x n)
c

where k: propagation vector, n: polarization vector and ik =0

Plane Monochromatic waves travelling along,

E(z,t) = Egcos(kz — wt + §)x

1
B(z,t) = —Egcos(kz — wt + )y
c

electromagnetic energy density is [* is (kz — wt + )]

1 1 1 1
Uem = 5 (€0E2 + %BQ) =3 (eoEgcos2(>x<) + mEgCOSQ(*)) = egB2cos® (%)
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S: the flow of electromagnetic energy per unit time per unit area

1 1
S=—(E x B) = —E5c05*(¥)2 = ClUem2
Ho HoC

Assume a cylindrical structure that is parallel with the z-axis and has a unit cross-section
area and length c. The entire amount of energy held in the cylinder is represented by the

flow of e.m. energy per unit time per unit area (= Cuep,).
electromagnetic momentum density will be €S = %uemi

By averaging over many complete cycles we know (cos?(x)) = (sin®(x)) = 1

S0 (Uem) = 3€0E] and (S) = Lceg gz and average momentum density (pem) = 5-€0 L5z

Intensity =(Power per unit area transported by an electromagnetic wave)

Intensity =(Energy per unit time per unit area transported) I = (|S|)

for a plane monochromatic wave Poynting vector which is perpendicular to the plane
wavefront so the momentum density is along the direction of the Poynting vector also per-
pendicular to the wavefront which is along z direction so it has only linear momentum and

no angular momentum.

2.2.5 GGaussian Light Beam

The study of Gaussian beams, a particular kind of laser beam with a particular intensity
distribution, is the focus of the optics branch known as ” Gaussian beam optics.” The intensity
profile of these beams is bell-shaped, with the centre having the highest intensity and the
periphery having progressively lower intensity. Self-focusing and maintaining beam size over
extended distances are just a few of the many crucial characteristics of Gaussian beams.
They are extensively utilized in many different applications, including laser surgery, material
processing, and cutting with a laser. Understanding how these beams move through various
optical components, such as lenses, and mirrors, as well as how their characteristics alter
when they contact with diverse materials, is a necessary part of the study of Gaussian beam

optics.
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Figure 2.7: Gaussian beam intensity profile

—ikz

The equation for plane wave is E(7) = Ey(r)e™""* for such plane wave Ej is constant in

xy plane But by solving the Helmholtz equation with paraxial approximation
(V2 + E*)E(z,y,2) =0
we will get Gaussian beam is one of the solution

The equation for the Gaussian wave is

Wo

. _ T2 . kT2 .
E(r,z) = E (@) T w7 ¢ TV 2RE) R
w(2)

We can write the Normalized Gaussian beam as

E(I’,y,Z) _ Wo

2
oI ik gilkz—2(2) (2.76)

Ey w(z
heren is the refractive index and )\ is the wavelength of the beam.
w(z) = woy/1+ (£)? is the spot size
R(z) = z[1 + (22)?] is the radius of curvature

®(z) = tan~'(z/zg) is the Guoy phase shift

2
TnWq

ZR = is the Rayleigh length of the Gaussian beam
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Figure 2.8: The Gaussian Beam’s wavefronts and plot between the radius of curvature of
wavefront and position along the beam axis. The dotted line is for the spherical wavefront

where it is linear[16]

At z=0 radius of curvature R(z) is 0o so wavefronts are planer. at the Rayleigh length, the
radius of curvature becomes the minimum value of twice of Rayleigh length then it increases
linearly with z. For very large z we can approximate it as spherical waves. but for z much
smaller than Rayleigh length we can treat it as a plane wave thereby S Poynting vector is
always perpendicular to the plane wavefront, so it has only linear momentum in the wave

which can be used to trap dielectric particles.

2.2.6 Laguerre Gaussian Beam

Laguerre Gaussian Beam is the solution to the Helmholtz equation solved under cylindrical
symmetry with paraxial approximation. A laser beam type known as a Laguerre Gaussian
Beam is distinguished by its helical phase front as well as annulus intensity distribution. This
beam is created by the superposition of Laguerre-Gaussian modes, which are cylindrical co-
ordinate solutions to the paraxial wave equation. In addition to its capacity to transport
orbital angular momentum (OAM) and its capacity to keep its shape across lengthy propa-

gation distances, the Laguerre Gaussian Beam has numerous other special qualities. Due to

29



these characteristics, the Laguerre Gaussian Beam is perfect for a number of uses, including
optical communication, quantum information processing, and optical trapping. Understand-
ing the features of the Laguerre Gaussian Beam, how it interacts with various materials and

optical components, and designing and optimizing optical systems based on it are all part
f=+1

=42

of the study of this phenomenon.

=2 =1 =0

Figure 2.9: Laguerre Gaussian Beam [17]

The equation of the Laguerre Gaussian Beam can be written as

_ 20 1 (V2 ' 2%\ g
Bre s =\ o miem” <w<z>) Ll 270

The brown part is the normalization, the blue part is Gaussian, the green part is the

doughnut hole for |[| > 0 cyan color part is the Laguerre polynomial (= 1 for p = 0), the
red part is the spiral phase which results in helical structured in the beam. 1 and p are the

azimuthal and radial mode index respectively.

In 1905, John Poynting developed the theory of electromagnetic radiation pressure and
momentum density, which Albert Einstein later supported, explaining the linear momentum

of a photon is hk. Light’s linear momentum has been used to trap and cool atoms and
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molecules. Poynting also realized that polarized light has spin angular momentum, while
in 1992, a group at Leiden University recognized that light beams with helical phase fronts
have an orbital angular momentum of L = [A per photon independent of polarization. The
beams have intertwined helical phase fronts, leading to an annular cross-sectional intensity
pattern that persists regardless of how tightly the beam is focused. This on-axis singularity
is a specific instance of phase dislocation, leading to a simple annular intensity profile, but
when made to interfere with a plane wave, it produces a spiral intensity pattern. Light
beams with quantized orbital angular momentum have been produced, providing a means
to investigate new optical interactions. The Poynting vector produces an orbital angular
momentum parallel to the beam axis, creating an optical vortex. The Laguerre-Gaussian
(LG) laser mode is the most common form of a helically phased beam. the spin angular
momentum associated with the circular polarization of light has the momentum of +A based

on polarization.

Figure 2.10: Pointing vector in Laguerre Gaussian Beam spirals due to the helicity of

wavefront[18]

The momentum density of light is along the direction of Poynting vector. The Poynting
vector (arrows) is no longer parallel to the beam axis (in-plane waves it is parallel to the beam
axis). At any fixed radius within the beam, the Poynting vector follows a spiral trajectory

around the axis in Laguerre Gaussian Beam so it also has orbital angular momentum
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2.3 Optical Tweezer

In this Section, we will outline the principle of holographic optical tweezer and time- shared
optical traps created by AOD. Arthur Ashkin invented the optical Tweezers technique in 1986
for the manipulation of micro-particles, and then eventually used it to manipulate atoms,
molecules, and biological cells. The Principle of this technique is the radiation pressure of
light[19, 20, 21].

2.4 Radiation Pressure

The Pressure applied by an electromagnetic wave on the object due to the transfer of mo-

mentum between matter and the electromagnetic field

Light on Reflective Mirror Light on Transperent sphere

Radiation Force
Radiation Force on sphere
on mirror

Figure 2.11: a)radiation pressure on material which reflective Light b)radiation pressure on

transparent sphere

When a Photon incident on the reflecting surface normally it reflects back so its momen-
tum is reversed and the reflecting surface experiences recoiling due to the conservation of

momentum.

When a photon incident on the transparent sphere as in the figure2.13(b) due to refraction
it bends towards the center of the sphere so it changes its direction thereby its momentum also
changes. If the photon enters the sphere upside of a sphere it leaves the sphere downwards
so by momentum conservation the sphere moves upwards and forward if the photon enters
the sphere downside of a sphere it leaves the sphere upwards so the sphere moves downwards

and forward.
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If two photons simultaneously and symmetrically enter both upward and downward of

the sphere then the sphere moves forward as the upward and downward components cancel
each other[20].

2.5 Optical trapping in Geometric optics region

Here the size of the trapping particle is greater than the wavelength of the electromagnetic
wave used to trap the particle.!

Gaussian
Beam Waist La rlBeam
C\. Objective Lens /D
=
5 F
< grad
Laser be@n \ M Optical Axis

———

-

sca

/=

Figure 2.12: a)scattering and Gradient force on a transparent sphere b)gradient force due

to focusing balances the scattering force

The laser beam is not plane waves and its intensity is not uniform in the transverse
direction. Lasers have a spatial mode of cavity usually 7'My, Gaussian mode distribution.
So the transparent sphere is located not at the centre of the Gaussian beam as in the
figure.2.12(a) more photons are in up compared to in the bottom of the sphere. So the Net
effect of gradient force is towards the centre of the Gaussian beam and due to scattering

force the sphere moves forward.

If we tightly focus the beam using the High NA objective then there is some point after
the focus where the scattering force is nullified by the gradient force which was created due to

tight focusing along the direction of the scattering force leading to optical tweezers trap[22].

Thttps://www.ijhonline.org/viewimage.asp?img=IraqiJHematol 2018_7_2_79_239528 f1.jpg
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2.6 Optical trapping in Rayleigh regime

In this case, the size of the particle is smaller than or comparable to the wavelength of the
electromagnetic wave used to trap the particle. The ray optical technique is less effective for
particles smaller than the laser beam’s wavelength, and it is preferable to think of the forces
in terms of the electric field and electric dipoles that surround the trapped particle. A dipole
moment is created in the particle by the electromagnetic radiation’s electric field. (to be
trapped). This dipole is drawn to the area of a light beam with the greatest intensity. The
dipole will experience non-zero force (F' = 1.V E) because the E field of the electromagnetic

wave is not homogeneous for the light utilised for trapping.

Gradient force : Let the polarizability of the trapping particle is a and the electric
field of electromagnetic field will be E then the Induced dipole moment (i) is ji = oE. The
Potential energy of the particle due to electric field E is
1 1
V=—jiE=—— I

2,u 2€0C re(a)
The force experienced is F' = —VV s0 Fyqq = §VI Here 1 is the field intensity I = %eoc\EP,

¢ is speed of electromagnetic waves,eg is permittivity of vacuum,E is field amplitude

Scattering force : the net momentum on a particle if N number of photon incident

on the particle is P = % so the scattering force is Fieatter = %
d(Nhy)

loses energy. The power of the beam is W = =—= so the scattering force if all photon will

here n is refractive index

-ve sign indicates photon

—Wn
c

absorb iS Fluegtter =

Time Shared Optical trap: For time-shared optical trap, the single Gaussian optical
trap is shared very fast between many traps compared to the relaxation of the trapped

particle so that the trapped particle will feel the time-averaged potential trap.

2.7 Holographic Optical Tweezers

With the use of a spatial light modulator, Holographic Optical Tweezers (HOT) [23, 14,
24, 25] are capable of controlling many small particles using a pattern of laser beams. The

pattern of interference generates stable trap sites that may be precisely manipulated and
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assembled in any way. In biology, materials science, and optics, HOT is used. Multiple
trapping, high accuracy, adaptable patterns, and non-invasiveness are benefits of HOT over
conventional optical tweezers.The plane of the Spatial light modulator has an inverse Fourier

transform of the trapping plane.

2.7.1 Gerchberg-Saxton (GS)Algorithm

Input Amplitude
(laser beam profile over SLM) Amplitude
(obtained)

ue (x5, ) Vil Xm s Y s Zm)
L. Al X, yl.) Forward Propagation . | A, ( X, V., Zm) —P-—
—_—
= @il X, y) Picl Xy Vms Zm) | ==
Target Amplitude

T

Weighting (WGS)
Weighting (sinc)

Initial Phase
(FromSR)

G

Optimized Phase

SVPR
Correction

ui( X3 y)) Vi Xens Vins Zim) Amplitude

(desired)
= | @[ x;, y;) | Backward Propagation Gl Xy Vs Zom) ‘J
Ak(xj’ yj) " A’k(xml Yms Zm) —— =

Final Hologram

Figure 2.13: Weighted Gerchberg-Saxton (GS)Algorithm|[25]

Ralph Gerchberg and Owen Saxton created the Gerchberg-Saxton algorithm, a technique
for calculating the phase distribution of an electron beam or light provided the intensity
distributions in two planes. It may be used to make holograms for trapping and expanded
to 3D trap geometries. The procedure requires switching back and forth between two planes
while propagating the complex amplitude, replacing the intensity in the trapping plane
with the target intensity and that in the SLM plane with the actual intensity profile of the
illuminating laser beam. The computer’s graphic processing unit may be used to speed up
the procedure, which converges after a few tens of iterations.By restricting the amplitude of

the field on either the SLM or trapping plane, a phase-modulating hologram may produce
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a variety of focus areas on the sample plane. The incoming laser beam’s amplitude profile
determines the amplitude on the SLM plane, whereas the target amplitudes sought for the
trapping pattern define the amplitude on the trapping plane.

e To begin, a field termed wu, (z;,y;) is formed as the incident laser beam on the Spatial
light modulator, with an amplitude profile A (z;,y;) and a phase selected ®4(z;,y;)

at from the random superposition algorithm.

e Then, this field is transformed from the Holographic plane to the focusing plane to

create a new field named vy (25, y;, 2) = Ar(x;,y;, z;) e Tr@vi2)

e A weight mixed form of the acquired amplitude and the intended amplitude is em-
ployed at the trapping plane to replace the amplitude while accounting for diffraction
issues brought on by the SLM’s pixelation and obtained phase is kept the same as

. / !/ > . . .
obtained.v, (x;,y;, 2;) = Ay(x;, y;, zj)e’q’k(mf’yﬂ’zf).

e The computed field v;c is transmitted back to the holographic plane to create the new
field ug(2;,y;) = Aw(z;, y;)e®s@vs),

e To get the final field u, for this iteration, the laser beam amplitude profile Ay (z;,y;) is
substituted for the amplitude profile Ax(x;,y;) at the SLM (holographic plane) plane.

e these steps a repeated till it converges in most cases it converges in a few iterations.

To do this Fourier transform relation between the SLM plane and trapping plane we use

the Fourier lens as we discussed in the Fourier optics section.
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Chapter 3

Experimental Details

3.1 Colloids and Brownian motion

Colloidal suspensions, commonly referred to as colloids, are a special kind of combination
in which particles are equally distributed throughout a medium, usually a liquid. Colloids
differ from solutions and suspensions in that their particles are bigger than those in solutions
but smaller than those in the latter. Colloids have fascinating characteristics, including the
capacity to scatter light and maintain stability for extended times without settling. Colloids
are a good model system that can mimic atomic systems in many properties and they
are much bigger and slower than atoms so under an optical microscope itself we can see
them.There are many examples of colloids in daily life, such as milk, mayonnaise, fog, and
paint. Colloid science, the study of colloids, is important in a variety of fields, including the
food and beverage industry, medicines, cosmetics, and environmental research. Colloids are
an interesting and crucial subject of research since it is crucial to comprehend their behaviour

and characteristics in many scientific and industrial domains.

A physical phenomenon known as Brownian motion, commonly referred to as Brownian
diffusion, is the random movement of microscopic particles floating in a fluid medium, which
is fueled by the thermal energy of the nearby molecules. Robert Brown, a Scottish botanist,
first identified it in 1827 while studying pollen grains moving erratically in water under a mi-
croscope. Due to the fast-moving fluid molecules’ continual bombardment of the suspended

particles, which results in their unpredictable, zigzag paths, Brownian motion is created.
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Temperature, particle size, and medium viscosity are only a few of the variables that affect
how the particles move. Diffusion is a phenomenon that develops as a result of the dispersion
and mixing of particles in a fluid caused by Brownian motion over time. Brownian motion is
essential to our comprehension of many natural and artificial processes, including colloidal
stability, drug administration, and nanoparticle production. It has important implications

for domains including physics, chemistry, and biology.

3.2 Making of sample wells using Photolithography and

making dense colloidal amorphous solid

Figure 3.1: sample wells made by Photo-Lithography and silica colloidal of diameter
3.34pum(Red) and 2.32um(Blue) to form a colloidal amorphous solid

We want to make a dense homogeneous area fraction of colloids so to make the sample
wells we are using photo-lithography. We use MICROPOSIT S1813 photoresist which is a
positive photoresist to spin coat the clean (by acetone and IPA ) glass substrate of 25x25 mm
dimension (Corning 25x25 mm Thickness 2 Cover Glass) at 1000rpm for 20 seconds. Then
in a clean yellow room, LaserWriter 405 nm wavelength laser was to write the pattern of the
circle of radius 1000um surrounded by concentric rings of pattern to avoid particles further
entering while taking the measurement. Then we develop the pattern using MICROPOSIT
MF-319 DEVELOPER for one minute and clean the sample with deionized (DI) water to

get 2um height wells and to avoid sticking we do oxygen plasma cleaning. Now we add
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bi-dispersed Si0O; colloids (microparticles) of diameter 2.32 and 3.34 pm in a 65:35 ratio (to
kill crystallization) in deionized water and wait for 3-5 minutes to make all colloidal enter

and make a dense amorphous solid (glass) well before taking measurements

3.3 Holographic Optical Tweezer

For the Holographic Optical tweezer, we use a 1064nm infrared laser (MATRIX-1064 Diode-
Pumped Solid State Q-switched LASER 10W continuous wave mode) and use Spatial light
Modulator(SLM) (The Holoeye PLUTO phase-only LCOS (Liquid Crystal on Silicon) with
(1920 x 1080 pixel) and 8 pm pixel pitch). To increase the resolution of the holographic
optical trap we increase the beam size using telescopic beam expansion (2.5cm and 5cm
lens) configuration (2x) we need to trade-off between the resolution and efficiency of the
laser in the first order if we expand largely then it either goes to zeroth order or it does not
go through the active area of SLM. We are using a half-wave plate before SLM, As incident
light on SLM needs to plane polarised and align with the liquid crystals in SLM to have
a maximum efficiency of SLM. The plane of SLM has an inverse Fourier transform of the
trapping plane. then using spatial filters we remove the zeroth and other order and take only
the first order as in figure 3.4. We reduce the size and collimate using 4F configuration so
that the LG beam just falls on a complete back aperture of high NA objective (Olympus 60x
0.70NA)and we collect the image of the sample using a bright field microscope (OLYMPUS
IX71 inverted microscope) with CMOS camera (BASLER acA2040) and take data at 10
frames per second. We made an optical shutter to stop the laser after taking a certain
amount of frames through the camera by sending on signal (digital on +5V) from LabVIEW

Daqcard to Arduino and Arduino will rotate the shutter to block laser

Generation of LG Beam, from SLM: the SLM is made of liquid crystal, and based
on the voltage given to each pixel of SLM the orientation varies, as a result, the phase added
to light by each pixel can be controlled from 0 to 27 as seen in figure 3.2. To create the
LG beam we used the OTS-the optical tweezers software toolbox[26] to generate the pattern
required to display on SLM. when no pattern is displayed then SLM acts as a mirror, when
a phase of 0 to 27 is displayed then an LG beam is created but it has both an LG beam
and an unconverted Gaussian beam, so to separate the LG beam a linear grating pattern is

overlapped. By this the first order contains only LG Beam as in figure 3.3 and the zero-order
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is removed by spatial filters.
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Figure 3.2: SLM based on liquid Crystal orientation add phase to light [27]
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Figure 3.3: Generation Of LG beam From SLM
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Figure 3.5: Experimental Setup for Holographic Optical tweezer to shear the amorphous

solids using LG Beam obtained by SLM.
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3.4 Time Shared Optical Traps

In this section, we discuss the instrumentation part of the Time Shared Optical Traps[28].
This setup is used to understand the crossover from crystalline to amorphous behaviours
if we increase the number of particles in optical traps which will increase spring stiffness.
so to create multiple optical traps with a large field of trapping and also a stiff trap of
single particle trap only is discussed in this section. optical tweezers from Gaussian beam
is a harmonic trap of stiffness k;.q,. once particles get trapped they experienced a spring

constant of ki, + k where k is inherent stiffness due to interpartical interaction.

Figure 3.6: Increasing the number of random pinning of colloidal in crystals by AOD red

particles are get trapped

Principle of working of AOD

TeO, - crystal Lty \ )
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— 1.0r ; =
Laser E!m. — gl \ ".’é
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— 0.0r /
\
vy ;._1
Piezo-
Transducer /
Gaussian Beam AOD Time-Shared High NA

Gaussian Beam Lens

Figure 3.7: : Functionality of an AOD: The laser beam is deflected by sound waves in the
TeO2- crystal inside the AOD
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AOD is made of Tellurium Dioxide crystal. When RF frequency is given to a crystal,
a periodic change in refractive index occurs due to compression and rarefaction of sound

waves. this act as grating and is able to deflect based on the frequency of RF.

The incident laser enters the sound field at Bragg angle

sinfp = \/2A

Beam Separation between zero and the first order is twice the Bragg angle

0 =205 = \F/V

where A=wavelength of incident Laser,A=wavelength of RF ,F=frequency of RF, V=acoustic

velocity of interaction medium.

For time shared Optical trap, we use Interaction DTD-274HD6M 2axis AOD which can
deflect the light based on the RF frequency given to AOD. We frequency modulate the
Moglabs Quad RF synthesizer using an arbitrary function generator (AFG1022 - Tektronix)
to create an arbitrary pattern of the optical trap. If AFG sed +1V to RF synthesizer then
+8MHz from central 27MHz will shift and -8MHz if -1V is sent.RF power used to drive is
1W per axis. The frequency of time sheared is 1000Hz.

We use 2 axis AOD (acoustic optic deflector) to deflect the 1064nm infrared laser(MATRIX-
1064 Diode-Pumped Solid State Q-switched LASER 10W continuous wave mode we used
2W power) to different angles very fast and block the zeroth order undeflected light using
a spatial filter and send the deflected light into the high NA objective (10x 0.85NA Le-
ica) in a home build caged upright microscope to create optical traps. The optical traps
are harmonic potential so here it is time-averaged so, particularly in trap experience time-
averaged potential. RF to AOD is given using an RF synthesizer and it is Modulated using
an arbitrary function generator and a function to arbitrary function generator is given using
LabVIEW. Imaging is done using a Baasler acA2040 CMOS camera. The communication
between AFG and RF synthesizer is done throw an SMA cable. Make confirm that the
impedance is matched between these two devices. The deflected beam is sent to the High
NA lens through the combination of lenses to make trap distance match the particle plane

and has a high field of trapping and single particle trap (stiff trapping).
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Figure 3.12: Time shared optical trap of heart shape formed by modulation given to 2 axes
of AOD

To make these functions as shown in figure 3.12,3.11,3.10 I am using parametric equations.
For example, for the circle, I used z = sin(t) and y = cos(t) Similarly, for other patterns
we need to define an array of points in x and y and upload those arrays by LabVIEW
or Arbexpress software to function generator make sure the functions used are normalized
between 1 to -1. the using arbitrary mode of the arbitrary function generator changes the
frequency of RF given to AOD. In RF synthesiser give the gain of frequency modulation as
half the bandwidth of AOD (in this case 8MHz) so by this way when +1V is given then the
frequency of RF shift by +8MHz with respect to central frequency (27MHz) and similarly
in the opposite direction if -1V was given. the trap depth the particle experience is the
time-averaged potential. so give the frequency of the repetition cycle to the original point
as around 1K Hz. It depends on the relaxation time of the particle (i.e how fast the particle
will go out of the trap if the laser is not there in that position). we are able to achieve a
trapping field of view of around 150um and around 200 particles were trapped in the optical

traps was demonstrated in this setup.

3.4.1 Data Analysis
g(r) Pair Correlation Function:

The description of the interior structure is typically quantified using mathematical methods

such as the pair correlation function or radial distribution function. These methods allow

46



for the calculation of the probability of encountering a different particle at a distance r from
the centre of a specific particle. In the case of hard spheres, the minimum distance between
two points may be equal to the diameter of the spheres. As we move farther away from a
given particle, the layers become less dense, resulting in a constant probability of finding two
spheres at a particular distance. The pair correlation function provides a quantification of the
surroundings of the particle of interest, with a constant value across all radial lengths. At long
distances or under conditions of uniform density, the pair correlation function approaches a

value of 1, which is normalized by the p density.

-

Figure 3.13: g(r) is computed for two-dimensional circles in the upper right image. Although
the function is computed using all pairs of particles, I've emphasized one reference particle
(black) in the left image to make it more obvious. According to the g(r) graph on the
right, the neighbouring particles are shaded according to how far they are from the black
particle.[29]

_4m(0/2)* N
e T (3.1)
o)~ e (Tt 52
(T

For Calculating in 3D:

e consider a particle and chose a value dr

e measures the number of particles between the sphere of radius r and the sphere of

47



radius dr-+r

e then multiplies it by m (1/volume of shell) and then divide it by number density,

this will make sure that g(r) is 1 at large distances.
e loop it over other particles and divide it by the number of particles which are considered
(which is usually total number of particles N)

For Calculating in 2D:

e consider a particle and chose a value dr

e measures the number of particles between the circle of radius r and the circle of radius
dr+r

e then multiplies it by 5= (1/volume of shell) and then divide it by number density,

this will make sure that g(r) is 1 at large distances.

e loop it over other particles and divide it by the number of particles which are considered

If particles are hard spheres and closely packed, then the first peak of g(r) is at a distance

of the diameter of particles.

3.5 MSD Mean Square Displacement:

The mean square displacement (MSD), which is computed as the ensemble average for N
particles with ¢ being the location of particle i at time t, is a metric for how far a particle’s

position deviates from a specific position over time.

MSD(At) = (Ja(t + At) — z(t)]?) (3.3)
MSD(At) = % > it + At) — 27 () (3.4)
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Three areas are commonly seen in the mean square displacement (MSD) as a function of time:
a ballistic zone, a plateau zone, and a diffusive zone. Particles travel within a cage made of
nearby particles in the ballistic zone, also known as the ” f-relaxation,” where the MSD rises
linearly with time and a quadratic slope denotes the lack of particle interference. After some
time, a plateau zone develops as a result of interference from nearby particles, which causes
particles to move in a cage-rattling manner. The MSD exhibits linear dependency with
time in the diffusive area, also known as a-relaxation (r?(t)) ~ t, which suggests that more
particles escape the cage and diffuse there. Due to particle collisions in the a-relaxation,

but motions are unhindered in [-relaxation, there is a variation in slope between the two
kT
6mnr

to viscocityn,radius of particle r and temperature T. so slop of MSD in Log-Log plot with

zones. The particles diffusivity can be connected by the Einstein-Strokes equation D =

time will give 4 times diffusivity D.

3.5.1 Average Local Strain and Non-affine Displacement

Affine non-Affine

/% 4]
Jo/ /o/ o/°4

(a)

Jo/e/e /0 /e 4
L0000

Figure 3.14: (a) is Affine deformatiion and (b) is Non-Affine Deformation[§]

If we apply pressure on a crystal from outside, its component particles experience a similar
and equal strain with their adjacent particles, leading to a consistent deformation known
as affine motion. Conversely, when external stress is applied to amorphous materials, the
local strain experienced by their particles is uneven, resulting in non-affine displacement.
Figure 3.14 depicts a very simplified depiction of affine and non-affine deformation In our
study of colloidal glass, we will analyze both types of motion. Non-affine displacements[30]
have a similar magnitude to relative affine displacements of adjacent particles and cannot

be considered a minor correction. Disregarding them or treating them as a perturbation can
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lead to highly unreliable estimations of macroscopic properties of materials such as elastic
moduli. Therefore, non-affine displacements should not be overlooked in order to obtain

accurate results in material science research.

Figure 3.15: Determining the local stress at a specific location, The reference particles are

represented by the colour red, and their neighbours are represented by the colour blue.[§]

To track the paths of particles, we identify the closest neighbours of each particle as those
within a distance of 7y, which corresponds to the first minimum of the g(r) function.In figure
3.15 will explain this in 2D. The reference particle is depicted in red, while its neighbouring
particles are illustrated in blue. The location of particles at time ¢t — At and ¢ are represented
by thick and dotted lines, respectively. An affine transformation can be employed to explain
the changes in closest neighbour vectors (arrow lines) during a time interval A¢. The optimal
affine transformation I is chosen to minimize the quantity D?, which is the mean-square dif-
ference between the actual displacements of neighbouring particles in relation to the central
particle and the relative displacements they would have experienced if they were situated in

a region of uniform deformation I" [31].

2(t, At) ZZ( ) —ri(t Zawr” w<t—At)—rg(t—At)]> (3.5)
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here the numbers i and j represent the spatial coordinates and n represents the number
of particles that fall within the reference particle’s interaction region, with n=0 serving as
the reference particle. The i** component of the n'* particle’s location at time t is known as

7t (t). Then, we identify the €;; that minimises D?.

n

Xij = Y [ () = ()] x [P (t — At) = (t — Ab)] (3.6)
Yij = [rh(t — At) —rj(t — At)] x [} (t — At) — rj(t — At))] (3.7)
Dy =Y XuYy'—dy (3.8)

The local departure from affine deformation or the non-affine deformation over the dura-
tion of the interval [t — At,t] is given by the minimized number of D?(t, At) which is called
D2

min

(t, At). The symmetric portion of the deformation tensor yields the local strain tensor,

€ij-
1
€ij = E(Pij +T7) (3.9)

The non-diagonal elements of strain tensor €;; give shear parts of deformation, while its

diagonal elements produce information on dilation components.

3.5.2 Voronoi tessellation and Delaunay triangulation

Figure 3.16: a)neighbours find based of distance and cutoff value b)lineas which are red are

Voronoi tessellation and lines which are black are Delaunay triangulation
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There are several applications for the computational geometry methods Voronoi tessellation
and Delaunay triangulation. With the use of the Voronoi tessellation technique, a plane is
divided into regions centered on a set of points, with each area including the points that are
closest to that specific point. These areas are referred to as Voronoi cells, and the perpen-
dicular bisectors of the connecting line segments between the nearby points serve as their
borders. Delaunay triangulation is a technique for creating non-overlapping triangles from
a group of points in a plane, ensuring that no point is inside the boundary of any triangle.
Triangles formed using the Delaunay triangulation have the property that their minimum
angles are all maximized, making them more stable and less prone to distortion. In disci-
plines including computer graphics, computer vision, geographic information systems (GIS),
and simulation of physical processes, both Voronoi tessellation and Delaunay triangulation

are often utilised.

3.5.3 Traking of Particles

The Trackpy algorithm is used for feature finding
and particle tracking in 2D images. It is an ex-
tension of the Crocker and Grier algorithm [32]
and returns particle information such as position,
frame number, eccentricity, mass, and particle
number from a set of ordered images. Before
applying the algorithm, images are processed to
remove geometric distortions, non-uniform con-
trast, and noise. The algorithm reads images and

identifies bright particles on a dark background,

and can also invert the image if necessary. The

background is removed by calculating a boxcar

Figure 3.17: Overlap of tracked position average of intensities and subtracting it from the
by trackpy on the raw image. Red par- qriginal image. Noise is reduced by convolving
ticles are 3.34 pm and blue are 2.32 pm  the image with a Gaussian surface half width An
respectivelly ~ 1 pixel. Particle positions are refined by find-

ing local brightness maxima within a certain dis-

tance and calculating the brightness centroid. Suspicious particles are discarded. Trackpy
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is used to track particles in a 2D. The modeling to background is done by average boxer

intensity

1 = . .
Au(z,y) = 5 Y Al +i,y+ )

(2w+1)

i j=—w
The boxcar average assigns the pixel brightness as an average of its neighbor’s brightness,
thereby smoothing the picture with a spectrum of w. And the formula yields the noise-
reduced image:

S o Al + i,y + feap(Z)

Z:‘jjsz exp(%%ﬂ)

The background is removed and the local intensity peak as the particle center is found to the

A)\n (I7 y) -

accuracy of pixel(width=w) to sub-pixel accuracy is improved by figuring out the brightness
centroid surrounding the local brightness maximum. By determining the offset from local

maxima to the center of brightness for each particle, it is further improved.

1 ' -
=2 X (V) A@riy+))
€ I - J

Yy 2452 <w?

I is integrated intensity. we use this algorithm to track the position of our colloidal and link
the particles with an id and get the trajectory as it is the crucial step for the rest of the
analysis. This data is taken at 10FPS for 500s the laser was on and the rest 500s laser was
off.
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Chapter 4

Results and Discussion

Particle trajectory during shear
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Particle trajectory whem shear is removed
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Figure 4.1: Tracked trajectory of all particles a)when Shear is applied(Laser On) For 500s

b) after shear is removed (Laser Off) for remaining 500s

By utilizing the Cocker and Grier algorithm, as discussed in a previous section, we were

able to determine the position of the particle with minimal subpixel biasing and track its

trajectory. The algorithm accurately located the center of the particles, which overlapped

with the raw data image and exhibited good alignment. To convert the pixel values to micron

measurements, we rescaled them using the standard scale made by photo-lithography, where
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1 pixel is equivalent to 0.28 microns. Figure 4.1 depicts the tracked trajectory of the particles
after linking them and assigning each particle a unique reference ID. The trajectory is plotted
after compensating for drift. The right figure illustrates the scenario where the laser was
turned on for 500 seconds, while the left figure represents the scenario where the laser was

turned off for the remaining 500 seconds.

17.5 + shear (Laser on) « shear (Laser on)
shear removed (Laser off) 101y * shearremoved (Laser off)
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Figure 4.2: Red, when Shear is applied(Laser On) For 500s. blue, after shear, is removed
(Laser Off) for the remaining 500s. a) MSD vs Time b) MSD vs Time In log-log Scale, c)
slop of Log-Log MDS with time
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The area fraction of the colloidal glass used in this study is 0.76. At this area fraction,
the colloidal monolayer behaves as a glassy system in 2D. This is confirmed by the plateau
observed in the mean square displacement (MSD) as shown in Figure 4.2, indicating the
glassy nature of the system. Interestingly, the MSD of the shared particles is higher compared
to when shear is removed. During shear, the system relaxes faster, and the slope of the MSD
in the log-log plot is much higher. However, after shear removal, the slope of the MSD
decreases, suggesting a plateau, and the relaxation occurs more slowly (over 250 seconds)
compared to the sheared case where it decreases to less than one for short times and then
relaxes at more than one slope, indicating the system is under the influence of shear, as
captured by the MSD.

When examining the trajectories of particles in Figure 4.1, it was intriguing to observe
that even though angular momentum from the LG Beam was applied only at the edge and
limited to one particle diameter, the inner particles also exhibited rotation. To gain a better

understanding, we analyzed the displacement field and calculated the angular velocity

15.0

rAB vsr

14 A

L7s 12 4

10 A

r5.0

r® in um

25

0.0 44

[A] [B] rin gm

Figure 4.3: a)Displacement Profile plotted in polar coordinate b) Azimuthal average of

Displacement (rAf) from the center of shear circle

The displacement profile, as expected and shown in Figure4.3, exhibits a maximum dis-
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placement at the trapping ring, located approximately rq = 27um away from the center of
the Trapping Circle. This is depicted in the azimuthal average of the displacement profile

with respect to the distance r from the center of the trap ring, shown in Figure 4.3 on the

ro A
L

where L represents the distance from the trapping ring to the boundary of the experimental

right. We use this distance to calculate the reference strain, which is given by strain =

field of view. Therefore, with ry and L fixed, Afdetermines the value of the strain
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Figure 4.4: a)Angular velocity vs distance from trapping ring center, the color indicates time
(blue to red) or strain b) at longer time the angular velocity will have a constant value for

different amount of shear time datas

The figure 4.4 shows how the angular velocity of particles varies with distance, denoted
as "r”, from the center of the trap. The color indicates the time or amount of strain that has
occurred over time. At the beginning of the shear, there is a peak at ry that reduces, and
the angular velocity of inner particles increases with time. When the laser is turned on, only
the particles that get trapped acquire angular momentum and angular velocity. However,
after approximately 20 to 30 seconds, the momentum starts to transfer towards the center of
the trapping ring due to particle interactions. Inside the trapping ring, the angular velocity

of particles starts to increase, and eventually converges, resulting in all particles inside the
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trapping ring having the same angular velocity, causing them to rotate as a rigid body.
Similar effects can be observed for different shear time data, as shown in the right plot of
figure 4.4. However, there is a shear band[4] occurring between the distances of 30 to 45 um

from the center.

To identify the location of defects in crystalline solids, we can structurally identify the
defect, and under shear, these defects act as plastic carriers. Around these defects, there are
more rearrangements of particles. However, in the case of amorphous solids, we apply similar
logic to identify locations analogous to the defects in this system, by looking at regions with
more rearrangements of particles.

D? . is a parameter that we discussed in an earlier section, and it is a very good parame-
ter for identifying the locations of defects. It is calculated by subtracting affine displacement

from real displacement to obtain non-affine displacement. We maximize the affine displace-
2

min

ment part to obtain D
D2

man

for finding locations of defects, and we set a threshold value for

(in our case, it is 2um? for the top 1.5% of particles) above which defects are identi-
2

fied. We then filter out only the local maxima of such D . values above the threshold as

our defects. We observe displacement between 200s, so that D? . will develop to find the

min
calculation. The number of neighbours lost is also a parameter that gives similar regions

for identifying locations. As we can see from Figure 4.5, both parameters match, confirming
2

more rearrangements around areas with high D7 . values.

0 50 100 150 200 250 300

S B

Figure 4.5: a)D2 .

(um?) b) Number of neighbours lost both are giving similar regions

For the above figure, calculations were done for a gap interval of 400s, but similarities were
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found at all time scales. For further calculations, we used D? . because it is a continuous
real number, whereas the number of neighbors lost is a discrete integer value. The number
of neighbors lost is calculated by finding neighbors through Voronoi tessellation (Delaunay

triangulation).

If we consider particles whose D? . is above the threshold value and is a local maximum,

and look at the pair correlation function g(r) for these defect particles to obtain the radial

distribution of particles averaged over these defects and over a 20s time period during shear.
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Figure 4.6: Radial distribution function for defect particles

There is a strong structural ordering of defects during shear, as evident from the pair

correlation plot of defects shown in Figure 4.6. The function g(r) displays prominent peaks
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at the diameter of small particles (2.32um), large particles (3.34um), and (2.83um) during
shear. However, even after shear is removed (after 500s), these peaks continue to persist for
some time. As the system relaxes, the first peaks gradually diminish and structural order
diminishes, but it shows a long-range correlation with more peaks at higher r, and it does not
converge to one, with higher peaks getting more resolved. This information indicates that

the structure around defects is different during shear compared to when shear is removed.

To understand the orientation of these defects with respect to the shear direction, we
calculate the displacement field for each frame between 30 seconds. Then, we coarse-grain
it by averaging the displacement of each particle’s neighbours, as determined by Voronoi
tessellation. Next, we examine the deformation vectors around these defect particles (based
on the local maxima of D2,

particle. We subtract the mean deformation vector for each defect (considered as an affine

value), within a range of (30) 3 times the diameter of the

part) and observe the deviation from the mean to determine if the strain field is homoge-
neous. Interestingly, we observe that it is a heterogenous field, the radial component of these
deformation vectors exhibits quadrupole symmetry[33], with two incoming and two outgoing

vectors as seen in figure 4.7.

Wiz, \
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[

Figure 4.7: a)The radial component of the deformation vector has quadrupolar symmetry
one direction particles are incoming and other direction particles are outgoing b) azimuthal

component of the deformation vector

To determine the orientation of quadrupole symmetry defects, I considered only outgoing
vectors and fitted an ellipse to the dumbbell-shaped outgoing vectors. By comparing the
orientation of these ellipses with the shear direction (i.e., tangent to concentric circles from
the center of the trapping ring), I observed that the defects were oriented at an angle of
approximately 45 degrees from the shear direction during the application of shear. However,
the orientation appeared random when the shear was removed. Figure 4.8 displays the

locations of D?, & with stars marking the local maxima of D? . that exceed the threshold

man?
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value. These locations correspond to the defects present in our system. Figure 4.9 shows the
radial component of the deviation of the displacement profile from the mean (approximately
affine) displacement, indicating a quadrupole field. Figure 4.9 represents the azimuthal

component of the displacement field around the locations of the defects identified in Fig 4.8.
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Figure 4.8: Defect Detected from maximums of D2,
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Figure 4.9: a)Radial component of the deformation vector has quadrupolar symmetry one
direction particles are incoming and other direction particles are out going b) azimuthal

component of the deformation vector
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Orientation of defect with respect to shear direction

100 B (Shear) Laser on
B (Shear) Laser off

Number of Defects
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Figure 4.10: Orientation of defects with respect to shear direction

From Figure 4.10, it is evident that a clear peak is observed around 45 degrees when shear
is applied, indicating that the defects tend to orient in a particular direction. However, when
the shear is removed, the orientation appears to be random, as evidenced by the randomness

in the peak when shear is removed.
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Figure 4.11: a)normalized density of orientation of defects when laser is off (no

shear)b)normalized density of orientation of defects when laser is on (shear is on)
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Figure 4.11 presents a normalized graph that provides the probability of defect orientation

with respect to the sheared direction.

Plane Shear Circular Shear

expanding axis
£
ha

7777777777‘ Compression axis

Figure 4.12: a) planer shear b) circular shear

The compression and extensional axes will form an angle of 45 degrees with the direction
of shear, as depicted in figure 4.12. In this case, we are applying a circular shear. In circular
geometry, we expect the defects to orient at 45 degree with respect to the direction of shear,

which is the direction tangent to the circular region.
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Chapter 5

Conclusion

In conclusion, our results demonstrate that the application of shear to a colloidal glass system
using LG beam manipulation leads to interesting dynamics and rearrangements of particles.
We successfully tracked the trajectories of particles using the Cocker and Grier algorithm,
and found that the system exhibits glassy behaviour based on the plateau observed in the
Mean Squared Displacement (MSD) analysis. The MSD is higher during shear, indicating
faster relaxation of the system, and the slope of the MSD in the log-log plot is higher during

shear, suggesting that the system is under drive.

We also observed that even though the shear was applied only at the edge of the system,
inner particles also rotated, as confirmed by the displacement profile and angular velocity
analysis. The angular velocity of particles varied with distance from the center of the trap,
and after an initial peak, it converged to a constant value for particles inside the trapping
ring, indicating rigid body rotation. However, a shear band was observed at a certain distance

from the center, suggesting localized rearrangements of particles.

Furthermore, we utilized the D?,, parameter to identify locations of defects in the amor-
phous solid, and found that regions with higher D? . values corresponded to areas of more
particle rearrangements, analogous to defects in crystalline solids. Overall, our findings pro-
vide insights into the dynamics of colloidal glass systems under shear and shed light on the
role of defects in the shear deformation and relaxation of amorphous systems. We also found
out that there is a preferred orientation ( 45 degrees) of these defects with respect to the

shear direction. Further studies can be conducted to investigate the effects of shear on dif-
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ferent types of colloidal glasses and explore potential applications in materials science and

engineering.

We also demonstrated the instrumentation of time-shared optical traps using AOD to
have a large trapping field of around 150 um and 200 particles so that we can investigate

the effect of random pinning of colloidal crystals on phonon mode.

5.0.1 Future work

Till now the setup is optimized to have a larger field of trapping and tight single particle
level trapping. Now we need to integrate the tracking of particle algorithm within LabVIEW

and take data to understand the effect of random pinning of particles.

We are also taken data for oscillatory shear by changing the topological charge of Laguerre
Gaussian beam as the optics path of alignment will not effect by changing the topological
charge of Laguerre Gaussian beam. this is used to investigate how amorphous solids behave
under oscillatory shear-like shear thickening and thinning will be investigated in future work.
We are also interested in finding the relation between the structure and dynamics of these

defects in amorphous solids.

We also further investigate how does orientation angle of these defects with respect to
shear direction is effected by shear rate (Laser intensity). and how these defects will relax
will be further studied.
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