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Abstract

Studying amorphous/disordered solids is challenging compared to their ordered counter-

parts, crystals [1, 2]. Lattice imperfections or defects in crystals are known to play a sig-

nificant role in deformation, as the defects within crystals begin to move when an external

load is applied, resulting in permanent deformation or plasticity. These defects are referred

to as plasticity carriers. However, amorphous materials lack a reference lattice to identify

defects. In this study, we use optical tweezers and dense colloidal suspensions to investigate

the relationship between plastic activity and microscopic structure in amorphous substances.

Shear fields in a colloidal monolayer are generated using a holographic optical trap with

Laguerre Gaussian beam and a spatial light modulator. With this setup, we examine the

relationships between defect dynamics and microstructure in a quasi-2D system of colloidal

glasses, including the orientation of defects with respect to the shear direction. We have

built the instrumentation of time-shared optical traps to investigate the effect of random

pinning on phonon modes in colloidal crystals and glasses.
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Chapter 1

Introduction

Amorphous Solid materials do not have long-range order and are disordered structurally.

Many of the day-to-day materials are amorphous solids and they have a wide range of ap-

plications in various fields like pharmaceuticals, the food processing industry, cosmetics,

electronics, etc. Understanding of mechanical behaviour of these amorphous solids is ben-

eficial in modelling earthquakes and making stronger materials. The study of amorphous

solids under external forces like shear is used to understand the interesting phenomenon of

the mechanical behaviour of amorphous solids.

Figure 1.1: The figure classifies a different range of amorphous materials based on their

elementary particles’ size and damping regime.[3]
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Figure 1.2: shear stress versus strain on a solid material when we apply shear stress

Particles in the solid material interact with each other through various intermolecular

forces. When shear stress is applied to the material, these particles start to slide past each

other and this results in the deformation of the material. At small strains, the behaviour

of the material is linearly elastic, meaning that the deformation is directly proportional to

the applied stress. This is because the particles are able to slide past each other without

causing any permanent deformation. However, as the applied stress increases, the deforma-

tion becomes non-linear and the material exhibits plastic deformation. At a certain point,

known as the yield point, the material either fails if it is brittle or starts to flow if it is

ductile. This is because the applied stress is now sufficient to cause permanent deformation

of the material, and the intermolecular forces between the particles can no longer hold the

material together. To understand this behaviour at the macroscopic level, we need to look

at the interactions between the colloidal particles in the material. These particles are held

together by various intermolecular forces such as van der Waals forces, hydrogen bonding,

and electrostatic interactions. When shear stress is applied to the material, these forces are

disrupted, and the particles start to slide past each other. As the applied stress increases, the

particles start to deform and rearrange themselves, leading to the non-linear behaviour of the

material. At the yield point, the deformation becomes permanent, and the material either

fails or starts to flow depending on its properties. Under shear stress, the behaviour of solid

materials is determined by the interactions between the colloidal particles in the material.
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Understanding this behaviour at a microscopic level is essential for designing materials with

specific properties and for predicting their mechanical behaviour under different conditions.

When Mechanical stress like shear is applied to a crystalline solid which has a long-

range order the imperfection in lattice arrangement or defects play a significant role in the

deformation but in the case of amorphous solids, there will be complex rearrangements of

particles leading to the substantial difference in their mechanical properties.

In crystal when stress is applied defects will play a major role and act as plasticity

carriers. As the Roel Dullens’ Oxford colloidal group performed the experiment on colloidal

crystals and holographic optical tweezers to generate grain boundary loops[1]. These defects

of grain boundary loops will shrink when shear from the holographic optical tweezers is

removed. So the main inspiration of this thesis comes from the idea that these ideas can

also be applied to amorphous solids by applying shear with holographic optical tweezers and

generating defects in the system and identifying its positions and studying its dynamics. We

find stress in amorphous solids and identify these features in amorphous solids.

1.1 Amorphous solids under Shear

When under external stress an amorphous material may exhibit macroscopic flow. Even

though this movement can be uniform throughout the material, it frequently localizes, which

causes instability and failure in the long run. Despite the long-known prevalence of flow

instabilities in geology, as demonstrated by landslides, shear banding[4] is a common event

that happens in a wide variety of amorphous materials. Shear striping is seen in amorphous

materials such as molecular glasses, solutions, foams, and emulsions [5]. Due to thermally

induced relaxation processes, molecular glasses in particular show uniform flow under tiny

applied strains [6]. These relaxation processes, however, cannot proceed fast enough to

maintain the applied shear rate when there are significant applied pressures. The glass

consequently divides into bands that move at various shear rates. Despite this knowledge,

the process causing the development of these rings is still unclear.

Glass is a unique state of matter that exhibits properties of both liquids and solids. It is

formed by rapidly cooling a liquid, which results in an increase in viscosity and a transition to

a metastable state. This transition is known as the glass transition, and it is considered the
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most significant unsolved problem in condensed matter physics. Due to the large relaxation

timescales associated with glass, many materials are considered glassy, including densely

packed colloidal particles, emulsions, foams, granular materials, proteins, and more. These

materials exhibit some degree of glassy dynamics and have their own phase diagrams. In the

metastable state, the particles remain caged by their neighbors, and the structure remain

frozen, similar to a crystalline substance. The relaxation time diverges at the glass transition

point, and the system is no longer ergodic on experimental timescales.

1.2 Theoretical Models of Deformation

Eyring’s model

When Particles are rearranged, a shear transformation occurs. The positions of the particles

before the rearrangement and after the rearrangement are considered to be relative stability

positions, which means they are in a local minimum of free energy. Under normal circum-

stances, with external force zero, Thermal fluctuations will provide the activation energy for

the transition from one minimum to another minimum, and particle jumps in all directions

are likely to occur equally. However, when an external force is non-zero, in the direction

of the force the energy barrier will be reduced. As a result, rearrangements of particles

are biased towards the direction of the force applied, resulting in a flow. The right side of

Figure1.3 (a) and (b) shows the energy barrier when shear stress is applied and shear stress

is not applied. τ . The Deformation rate based on the transition is

γ̇ = ∆ϵ0(r+ − r−) (1.1)

here ϵ0 is strain resulting from transformation and r+ and r− are forward moves rate and

backward moves rate respectively. The forward moves rate and backward moves rate when

externally applied stress σ are given by

r± = ω0e
[(−E0±σΩ0)/kT ] (1.2)

where, Ω0 is the activation volume and ω0 is a microscopic attempt frequency, usually of the

order of 5-10 particles. So we can write the deformation rate equation as [7].
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γ̇ = 2ω0∆ϵ0e
(− E0

KT
)sinh(

Ω0τ

KT
) (1.3)

Figure 1.3: Erying’s model. The particle rearrangement and the energy barrier in the shear

are non-zero (a) and the shear is zero d(b).[8]

Spaepen’s model

A key component of the formulation mentioned above is the free volume distribution, which

represents the available volume for an individual particle to displace without disrupting

surrounding particles. In areas with a large amount of free volume, shear transformations are

more likely to initiate because of the weak coupling to the surrounding area. The likelihood

of particle rearrangement increases with increasing free volume. In Spaepen’s free volume

model [9], the rate of deformation is described by the following equation:

γ̇ = ∆fe
(− ϵ0v

∗
vf

)
e(−

E0
KT

)sinh(
Ω0τ

KT
) (1.4)
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where ∆f is the proportion of the sample which can be undergoing deformation, v∗ is the

volume of the particle, and vf is the average free volume available to the particle. The term

∆fe
(− ϵ0v

∗
vf

)
in equation 1.4, estimates the proportion of sites which can potentially undergo

a transformation based on the distribution of free volume in the given system.

Argon’s model

Shear transformation zones are suggested to be inclusions that are elastically linked to the

surrounding medium of material as proposed by Argon[6]. This was a significant advance-

ment over models which were discussed earlier, which assumed that shear transformations

occurred as independent events within the Eyring model. Argon’s hypothesis suggested that

a flip would occur when a zone deformed elastically up to a certain critical level of strain,

ranging from approximately 2-4% [7, 10], causing it to become unstable. As mentioned by

Eshelby [11, 12], this type of shear transformation results in increases in strain ∆ϵ0 and

elastic strain energy ∆ϵ in a spherical region of size Ω0.

∆ϵ =
7− 5v

30(1− v)
µ∆ϵ20Ω0 (1.5)

where µ is the shear modulus. So the rate of deformation for this model is

γ̇ = 2ω0∆ϵ0e
(−∆ϵ+E0

KT
)sinh(

Ω0τ

KT
) (1.6)

Shear Localization

Models put forth by Spaepen and Argon attempt to explain why shear transformation zones

begin to develop in regions with higher free volumes at lower stress levels. To generate free

volume and cause local dilation, a particle may force nearby particles under conditions of

greater stress. The surrounding particles are diffused and the excess free volume is eliminated

by a competitive relaxation process. The sheared areas may keep a significant quantity of

free volume if the formation of free volume is quick and the annihilation is gradual, which

will cause localized softening. It has been proposed that these disturbances lead to shear
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bands in the system.

Soft glassy rheology - mesoscopic model (P.Sollich)

It is a mesoscopic model we treat small regions instead of particles. These regions are

associated with a strain variable l and some yield threshold. If strain exceeds the threshold

then particles rearrange and relax. and each zone had elastic energy E characteristic local

yield. The dynamics of the microscopic yield is described by the Probability distribution

p(l, E, t)
∂

∂t
P = −γ̇ ∂

∂t
P − Γ0e

−(E− 1
2
kl2)/xP + Γ(t)ρ(E)δ(l)

The first term is the Elastic loading between successive yield events, the second term is the

yielding of the mesoscopic region and the third term is the relaxation of regions to the new

equilibrium. here we considered that if a region is flipping it doesn’t affect other regions.[13]

Elasto-Plastic Model

This is also a mesoscopic model[3] that describes the evolution of elasto-plastic elements on

a regular square lattice. Each lattice point is associated with yield stress. when the external

stress is applied each of these lattice points is associated with a certain threshold value, if

exceeds the local threshold value it will fail and redistribute its stress but redistribution is

anisotropic

n(r, t) = 0 −→ 1 if σ > σy whrer sigmay is threshold stress drawn from distribution

n(r, t) = 0←− 1 when
∫
dt

′ |∂tσ(t
′
)/µ+ γ̇j

pl(t
′
)| ≥ γc

W here n = 0 is where block is completely elastic and n = 1 if not.

elastoplasticity models (EPM), which are coarse-grained models used for modeling plas-

ticity in amorphous substances. In the simplest flow scenario, the material is divided into

mesoscopic units and loaded elastically till they hit a yield threshold condition and turn

plastic. Following the end of the plastic event, the blocks regain their elastic properties once

the stress has been dispersed to other units via an elastic stress field. The default elastic

response, the local yield criteria, the stress redistribution during plasticity, and the recovery
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criterion are the four preset rules on which EPMs are built. Utilizing equations of evolution

for stress carried by each block, contributions from externally imposed shear, nonlocal plastic

events, and local relaxation are included in the implementation of these principles. Due to

the EPMs’ simplicity and generality, several phenomenological models can develop.

∂σi

∂t
= µγ̇ + µ

∑
j

Gij
∂γ̇j

pl

∂t

∂γ̇j
pl

∂t
= nj

σj

µτ

where the first part of the equation is the elastic part with an applied shear rate, Gij is

the stress kernel (self and neighbour) and
∂γ̇j

pl

∂t
is the plastic part

1.3 Objective of the thesis

The Objective of the thesis is to understand the amorphous system under Shear using holo-

graphic optical tweezers to understand how amorphous system particles undergo rearrange-

ments under shear stress. We also discuss on the instrumentation of time-shared optical

tweezers to study how random pinning of the colloidal particles will effect the phonon mode

in the system. In this project, we develop a robust Holographic optical tweezers setup and

time-shared optical tweezers setup. This involves the Generation of LG Beam which is the

major factor in our system. Once the system is ready we take shared data of colloidal

monolayer and understand the different parameters to understand the defects dynamics and

orientation of defects with respect to shear direction.

1.4 Overview of the thesis

Chapter 1 discusses theoretical models for the deformation of amorphous solids, such as

Eyring’s model, Argon’s model, Spaepen’s model, and mean-field models like the Elasto-

Plastic model.
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Chapter 2 provides a basic understanding of Fourier optics, including Fresnel diffrac-

tion, Angular Spectrum Analysis, and Lens 1F System - Lens Fourier Transforms. These

concepts are used to comprehend Holographic Optical Tweezers. The chapter also covers

the electromagnetic theory of light and how light (optical vortex) can be used to shear a

system. Additionally, the basic principles of optical tweezers are discussed, including how

to understand them in different regions such as the Geometric optics region and Rayleigh

regime. Holographic optical tweezers and the Gerchberg-Saxton (GS) algorithm to generate

LG Beam are also discussed in this chapter.

Chapter 3 focuses on experimental details such as creating sample cells using pho-

tolithography, making colloidal amorphous monolayers, setting up optical circuits for Holo-

graphic optical tweezers and time-shared optical traps, and generating LG Beam and time-

shared optical traps. The chapter also covers how to drive AOD from RF synthesizer and

discusses some of the parameters used to analyze the data, such as D2
min, MSD, Radial

Distribution function, Voronoi tessellation, and Delaunay triangulation.

Chapter 4 presents the results found from the analysis of sheared 2D amorphous solids,

including the identification of the location and orientation of defects with respect to the

shear direction.

Chapter 5 summarizes the conclusions and discusses future work.
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Chapter 2

Optics

2.1 Fourier Optics

In the area of optics known as Fourier optics, optical data are analysed and manipulated

using Fourier transforms. It has many uses in microscopy, holography, spectroscopy, and

telecommunications and offers a strong foundation for comprehending how light behaves in

different optical systems. Early in the 19th century, Joseph Fourier developed the idea of

Fourier optics as a quantitative method for explaining the propagation of light waves. Since

that time, Fourier optics has grown in importance as a field of study in optics and photonics,

particularly with the advancement of sophisticated optical methods and computers. Any

optical system can be viewed as a linear system that reacts to input through a linear operator,

which is the fundamental idea behind Fourier optics. Fourier transforms can be used to

analyse intricate optical systems because this operator can be expressed as a matrix in the

Fourier domain. The evolution of imaging methods, such as confocal microscopy and optical

coherence tomography, has been greatly aided by the study of Fourier optics. The Fourier

transform spectrometer, Holographic optical tweezers, and Fourier transform holography

have both been developed as a result of it. A key idea in wave optics is the Huygens-Fresnel

principle, which describes how a waveform moves through a medium. According to this

concept, each point on a wavefront produces spherical waves, that can be thought of as the

origin of secondary wavelets that travel in all directions. Later, the total waveform is created

by adding these wavelets together. The calculation of wave diffraction patterns made possible
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by this concept is helpful for a number of tasks, including the creation of optical systems

like lenses, reflectors, and holograms. Notably, the Huygens-Fresnel principle makes the

assumption that waves propagate linearly, which is a reasonable estimate for many optical

systems.

2.1.1 Fraunhofer and fresnel diffraction

Figure 2.1: Single-Slit Diffraction

In single slit diffraction as shown in figure 2.1, when a plain wave e−ikz propagating in z-

direction incident on a slit of size ’a’ then at each point in the slit act as a secondary source

producing spherical wavelets. the field of light at a screen at a distance of ’d’ from the slit

and at a distance ’Xs’ height on the screen will be given by (assume amplitude is 1 )

E =

∫ a

0

eikr

r
dx (2.1)
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so by Pythagoras’ theorem and paraxial approximation,

r =
√

(Xs − x)2 + d2 (2.2)

r = d

√
1 +

(Xs − x)2

d2
(2.3)

r = d+
1

2

(Xs − x)2

d
(2.4)

from the right figure 2.1 we can see that kx = ksinθ = kXs

d
and

(Xs−x)2

d
= X2

s−2Xsx+x2

d
= X2

s−2Xsx
d

,since x2 is small for Fraunhofer diffraction as

a << Xs, x << Xs and θ is small

gout(Xs) =

∫ a

0

eikde
1
2
ik

(Xs−x)2

d

d+ 1
2
(Xs−x)2

d

dx (small compare to d) (2.5)

gout(Xs) =
eikd

d

∫ a

0

e
1
2
ik

(Xs−x)2

d dx (2.6)

= A0e
ikX2

s
2d

∫ a

0

e
−ikXsx

d dx (2.7)

= A0C0

∫ ∞

−∞
gin(x)e

−ikxxdx gin(x) is a aperture function (2.8)

if a ≈ Xs then we have to use fresnel diffraction

gout(Xs) = A0

∫ a

0

e
1
2
ik

(Xs−x)2

d dx (2.9)

Convolution: f(t) ∗ g(t) =
∫∞
−∞ f(τ)g(t − τ)dτ Fourier transform will convert

convolution to multiplication

gout(Xs) = gin(Xs) ∗ e
ikX2

s
2d (2.10)

Gout(Kx) = B0Gin(Kx).e
ikX2

s
2d (2.11)
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Transform function H(Kx) =
Gout(Kx)
Gin(Kx)

= B0e
ikX2

s
2d

Gout(Kx) = H(Kx)Gin(Kx) (2.12)

gout(Kx) = F−1(Gout(Kx)) (2.13)

2.1.2 Angular spectrum analysis

Figure 2.2: Angular spectrum analysis

The study of light waves and their interactions with optical instruments is the focus of

the field of Fourier optics, which includes the idea of angular spectrum analysis. Here,

a complicated waveform is split down through Fourier transforms to reveal its underlying

plane waves. This method offers a practical and effective analytical tool to explain how light

waves behave when they travel via space. Any complicated wavefront can be described as

a superposition of planar waves with various spatial frequencies and propagation directions,

and this is the foundation of the angular spectrum analysis.

The wavefront is first split into a number of narrow segments, every one of which is

regarded as a planar wave, in order to perform angular spectrum analysis. The frequency

components that emerge from the Fourier transform of each segment are then propagated to

the next segment using the free-space propagation equation. Until the complete wavefront is

14



rebuilt in the far field, this procedure is repeated. The benefit of angular spectrum analysis

is that it enables highly accurate and effective computation of diffraction patterns and other

visual phenomena.

we take the Fourier transform of g(x) function and decompose in terms of plane waves

F(g(x)) =

∫ ∞

−∞
g(x)e−ikxxdx (2.14)

When an arbitrary plane wave propagates from z=0 to z=d,

K⃗ = ⟨Kx, Kz⟩ (2.15)

= ⟨Ksinθ,Kcosθ⟩ (2.16)

r⃗ = ⟨x, z⟩ (2.17)

eik.r = ei(Kxx+Kzz) (2.18)

(2.19)

the wave at z=0 is given by eiKxx and at the distance z=d is ei(Kxx+Kzd) so the transform

function is eiKzd

|K⃗|2 = K2
x +K2

z (2.20)

K2
z = |K⃗|2 −K2

x (2.21)

Kz = K

√
1− K2

x

K2
(2.22)

So transform function is given by

Hd = eiKzd (2.23)

Hd = e
iKd

√
1−K2

x
K2 (2.24)

Hd = eiKde−
iK2

xd

2K (2.25)

Hd = Ce−
iK2

xd

2K (2.26)

15



Therefore we can write the equation

Gout(Kx) = e−
iK2

xd

2K Gin(Kx) (2.27)

2.1.3 Thin Transparent lens aperture function

when a plane wave propagates in free space for a distance of let’s say L the transform function

for this plane wave propagation through free space is eikL where K is 2π/λ.

If we have material of refractive index n and the same length L then the plane wave

propagates through with a smaller effective wavelength or larger value of K, so the transform

function becomes eiK0nL where K0 is 2π/λ0, λ0 free space wavelength.

The Aperture function of refractive index medium is the difference in the phase a plane

wave see in medium and the free space.gmedium(x) = ei(K0nL−K0L) = ei(n−1)K0L

Figure 2.3: lens aperture function

If the plane wave not just propagating towards a constant L, if L is a function of x then

the aperture function is gmedium(x) = ei(n−1)K0L(x)

16



For a simple plano-convex spherical lens then

x2 + z2 = R2 (2.28)

x2 + L(x)2 = R2 (2.29)

L(x) =
√
R2 − x2 (2.30)

L(x) = R

√
1− x2

R2
(2.31)

L(x) = R− x2

2R
(Paraxial approximation) (2.32)

aperture function for the lens is

glens(x) = ei(n−1)KRe−i(n−1)K x2

2R (constant) (2.33)

glens(x) = Ce
−ikx2

2f (for Plano convex lens
1

f
= (n− 1)

1

R
) (2.34)

similar arguments can be done for the bi-convex lens. so the transformation of the field

through a lens is

gout = ginglens = e
−ikx2

2f gin (2.35)

2.1.4 Lens 1F System - Lens Fourier Transforms

Consider an input aperture function g(x) at a distance f from the lens at xl then the elec-

tromagnetic field at a plane(Xs)at a distance f from the lens is the Fourier transform of the

original wave i.e gout(Xs) = F (gin(x)) = Gin(Kx)

• Glens−(Kx) = e
−iK2

xf

2K Gin(Kx) from equation 2.27

• glens+ = e
−ikX2

l
2f glens− from equation 2.35

• gout(Xs) = glens+ ∗ e
ikX2

s
2f from equation 2.10

• Kx = KXs

f
from fig 2.1
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Figure 2.4: Lens 1F System - Lens Fourier Transforms

By using the above equations we can write

gout(Xs) =

∫ ∞

−∞
glens+(xl)e

ik
(Xs−xl)

2

2f dxL (2.36)

gout(Xs) = e
iKX2

s
2f

∫ ∞

−∞
glens+e

iKx2l
2f e

iKXsxl
f dxL from equation 2.35 (2.37)

gout(Xs) = e
iKX2

s
2f

∫ ∞

−∞
glens−e

−iKx2l
2f e

iKx2l
2f e

iKXsxl
f dxL (2.38)

gout(Xs) = e
iKX2

s
2f

∫ ∞

−∞
glens−e

iKxxldxL green potion is Glens−(Kx)→ F (glens−(xl)) (2.39)

gout(Xs) = e
iKX2

s
2f Glens−(Kx) (2.40)

gout(Xs) = e
iKX2

s
2f e

−iKx
2f

2K Gin(Kx) (2.41)

gout(Xs) = e
iKX2

s
2f e

−iK2X2
s f

2Kf2 Gin(Kx) (2.42)

gout(Xs) = e
iKX2

s
2f e

−iKX2
s

2f Gin(Kx) (2.43)

gout(Xs) = Gin(Kx) (2.44)

18



Figure 2.5: Lens 1F System - Lens Fourier Transforms[14]

The hologram and the back aperture of the objective are linked as conjugate image planes,

which leads to a direct correspondence between the beam produced by the hologram and the

beam in the focal plane. Another important aspect of this relationship is that the complex

amplitude of the beam in the trapping plane is essentially the Fourier transform of the beam

in the SLM plane.
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2.2 Electromagnetic Theory of light

The electromagnetic theory of light is a fundamental concept in physics that describes the

nature of light as an electromagnetic wave.In the 19th century, James Clerk Maxwell made

the initial suggestion, and Heinrich Hertz subsequently verified it experimentally. This theory

states that light is a transverse wave that moves through space and is made up of oscillating

magnetic and electric fields that are perpendicular to one another and to the direction of

transmission. Reflection, refraction, and polarisation are just a few of the events that the

electromagnetic theory of light can describe.

Maxwell’s equation for the electric and magnetic fields are

∇.E =
ρ

ϵ0
(2.45)

∇.B = 0 (2.46)

∇× E = −∂B

∂t
(2.47)

∇×B = µ0

(
J+ ϵ0

∂E

∂t

)
(2.48)

2.2.1 Electromagnetic waves in Vacuum

In a region of space (vacuum) where there is no charge or current then we can write Maxwell’s

equation as

∇.E = 0 (2.49)

∇.B = 0 (2.50)

∇× E = −∂B

∂t
(2.51)

∇×B = µ0ϵ0
∂E

∂t
(2.52)

for equations 2.51 and 2.52 find the curl (A× (B×C) = B(A.C)−C(A.B))

∇× (∇× E) = ∇(∇.E)−∇2E = ∇×−∂B

∂t
= − ∂

∂t
(∇×B) = −µ0ϵ0

∂2E

∂2t
(2.53)
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Similarly

∇× (∇×B) = ∇(∇.B)−∇2B = ∇×
(
µ0ϵ0

∂E

∂t

)
= µ0ϵ0

∂

∂t
(∇× E) = −µ0ϵ0

∂2B

∂2t
(2.54)

Since ∇.E = 0 and ∇.B = 0 so,

∇2E = µ0ϵ0
∂2E

∂2t
(2.55)

∇2B = µ0ϵ0
∂2B

∂2t
(2.56)

which is similar to wave equation ∇2f = 1
v2

∂2f
∂t2

with v = 1√
µ0ϵ0

= C = 3× 108m/s

Energy in Electromagnetic Waves

The Work which is required to assemble a static charge distribution configuration (against

the coulomb repulsion of charges) is

We =
ϵ0
2

∫
E2dτ where E is resulting electric field

similarly, the work required to get the current going is given by

Wm = 1
2µ0

∫
B2dτ where B is resulting Magnetic field

In an electromagnetic field, per unit volume, the energy is given by

u =
1

2

(
ϵ0E

2 +
1

µ0

B2

)

2.2.2 Poynting Vectors and Poynting Theorem

A key idea in electromagnetic theory that pertains to the transmission of energy in electro-

magnetic fields is the Poynting’s theorem. It says that the Poynting vector, defined as the

cross product of the electric and magnetic fields at any particular point, is equivalent to the
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amount of energy per unit time passing through a unit area of a surface. This theory offers

an important resource for comprehending electromagnetic wave behaviour and interactions

with matter .S is the energy current density or flow of energy per unit time per unit area.

Poynting’s theorem states that The work done on the charges by the electromagnetic. force

is equal to the decrease in energy stored in the field, less the energy that flowed out through

the surface.

Think about a setup with some configuration charge and current. It produces electric

E and magnetic B fields, which in turn act on charged particles. By doing work on the

particles Electromagnetic forces lose energy. Particles on the other hand will increase their

mechanical energy (kinetic and potential energy). Energy may also lose if it flows out of the

volume.

On a single charge q the work done by electromagnetic forces (work done by the magnetic

field is 0)

dW = q(E+ v ×B).dl = qE.dl = qE.vdt

therefore,
dW

dt
= qE.v

Work done on all the charges per unit time (”Power delivered”):(J = ρv)

dW

dt
=

∫
v

ρE.vdτ =

∫
v

E.Jdτ

By Maxwell’s equation ∇×B = µ0

(
J+ ϵ0

∂E
∂t

)
So J = 1

µ0
(∇×B)− ϵ0

∂E
∂t

Now using formula ∇.(A×B) = B.(∇×A)−A.(∇×B) we can write

∇.(E×B) = B.(∇× E)− E.(∇×B) = −B.
∂B

∂t
− E.(∇×B)

E.(∇×B) = −∇.(E×B)−B.
∂B

∂t
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We can now write the

E.J =
1

µ0

E.(∇×B)− ϵ0E.
∂E

∂t
(2.57)

E.J =
1

µ0

(−∇.(E×B)−B.
∂B

∂t
)− ϵ0E.

∂E

∂t
(2.58)

E.J = − 1

µ0

∇.(E×B)− 1

2µ0

∂B2

∂t
− ϵ0

2

∂E2

∂t
(2.59)

Work done on all the charges per unit time (”Power delivered”) is

dW

dt
=

∫
v

E.Jdτ (2.60)

dW

dt
=

∫
v

− 1

µ0

∇.(E×B)− 1

2µ0

∂B2

∂t
− ϵ0

2

∂E2

∂t
dτ (2.61)

dW

dt
=

∂

∂t

∫
v

1

2

(
ϵ0E

2 +
1

µ0

B2

)
dτ −

∮
s

1

µ0

(E×B).da (2.62)

part in red colour is the density of energy stored in the electromagnetic fields (uem),

and part in blue is the Poynting vector S we can write dW
dt

as d
dt

∫
v
umechdτ where umech is

the density of mechanical energy and W = Umech is the total mechanical energy of all the

particles in volume V

∂

∂t

∫
v

(umech + uem)dτ = −
∮
s

S.da = −
∫
v

(∇.S)dτ (2.63)

∂

∂t
(umech + uem) = −∇.S (2.64)

Thus, Poynting’s theorem is simply a conservation of energy conservation. By their own,

the particles’ energy and momentum have not been preserved. Rather, the particles transfer

energy and momentum to the fields and the fields transfer it back to the particles. However,

the combined amount of energy and momentum of the fields and the particles together is

conserved.
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2.2.3 Lorentz Force per unit volume

The Lorentz Force on a charge q is given by F = q(E + v × B) The Force on all charge is

given by :(J = ρv)

F =

∫
v

ρ(E+ v ×B)dτ =

∫
v

(ρE+ J×B)dτ

Force per unit volume is f = (ρE+ J×B) from Maxwell’s equations 2.45 and 2.48, we can

write ρ = ϵ0(∇.E) and J = 1
µ0
(∇×B)− ϵ0

∂E
∂t

f = ϵ0(∇.E)E+

(
1

µ0

(∇×B)− ϵ0
∂E

∂t

)
×B (2.65)

∂E

∂t
×B =

∂

∂t
(E×B)− ∂B

∂t
× E = µ0

∂S

∂t
+ E× (∇× E) (2.66)

f = ϵ0(∇.E)−
1

µ0

B× (∇×B)− µ0ϵ0
∂S

∂t
− ϵ0E× (∇× E) +

1

µ0

(∇.B)B (2.67)

using the equation

∇(A.B) = A× (∇×B) +B× (∇×A) + (A.∇)B+ (B.∇)A

∇E2 = ∇(E.E) = 2E× (∇× E) + 2(E.∇)E (2.68)

E× (∇× E) =
1

2
∇E2 − (E.∇)E (2.69)

similarly,

B× (∇×B) =
1

2
∇B2 − (B.∇)B (2.70)

we can write the equation for f as

f = ϵ0(∇.E)−
ϵ0
2
∇E2 + ϵ0(E.∇)E+

1

µ0

(∇.B)B− 1

2µ0

∇B2 +
1

µ0

(B.∇)B−µ0ϵ0
∂S

∂t
(2.71)

f = ϵ0(∇.E) + ϵ0(E.∇)E+
1

µ0

(∇.B)B+
1

µ0

(B.∇)B−∇
(
ϵ0
2
E2 +

1

2µ0

∇B2

)
− µ0ϵ0

∂S

∂t

Maxwell stress tensor, in terms of physics, is the force per unit area (stress) operating on

the surface. we can define a Maxwell Stress Tensor

Tij = ϵ0

(
EiEj −

δij
2
E2

)
+

1

µ0

(
BiBj −

δij
2
B2

)
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where Tij is the ith component of stress on jth component of area element

∇.
↔
T= ϵ0(∇.E) + ϵ0(E.∇)E+

1

µ0

(∇.B)B+
1

µ0

(B.∇)B−∇
(
ϵ0
2
E2 +

1

2µ0

∇B2

)
so Force per unit volume is

f = ∇.
↔
T −µ0ϵ0

∂S

∂t
(2.72)

The Total force on the charges in volume V is therefore given by

F =

∫
v

∇.
↔
T dτ − µ0ϵ0

d

dt

∫
v

Sdτ (2.73)

F =
dPmech

dt
= − d

dt

∫
v

ϵ0µ0Sdτ +

∮
s

↔
T .da (2.74)

the green part is p⃗em density of momentum stored in electromagnetic field

d

dt

∫
v

(p⃗mech + p⃗em)dτ =

∮
s

↔
T .da (2.75)

dPmech is the total (mechanical) momentum of the particles in V p⃗mechis the (mechanical)

density of momentum of particles in volume V.

S = 1
µ0
(E × B) Poynting vector is the flow of electromagnetic energy per unit time

unit area and also p⃗em = ϵ0µ0S = ϵ0(E × B) is the density of momentum stored in the

electromagnetic field. The momentum of the electromagnetic field is along the same direction

as that of the pointing vector.

2.2.4 Monochromatic plane wave

Electromagnetic radiation with a single frequency and a single direction of propagation in

a plane perpendicular to the wave’s vibration direction is known as monochromatic plane

electromagnetic waves. Both the magnetic and electrical fields fluctuate in phase and are

perpendicular to one another in these waves, which is a special characteristic. Common

uses for monochromatic plane waves include wireless communication, radar technology, and

medical imaging. The speed of light is the constant velocity of these waves in a vacuum. Due
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to their special qualities, monochromatic plane waves have a wide variety of applications and

are a crucial topic of research in the fields of engineering and physics.

Figure 2.6: Monochromatic Plane Electromagnetic Wave[15]

If in an arbitrary direction k⃗ Plane monochromatic wave is propagating then

E(r, t) = E0e
i(k.r−wt)n̂

B(r, t) =
1

c
E0e

i(k.r−wt)(k̂× n̂)

where k̂: propagation vector, n̂: polarization vector and n̂.k̂ = 0

Plane Monochromatic waves travelling along,

E(z, t) = E0cos(kz − wt+ δ)x̂

B(z, t) =
1

c
E0cos(kz − wt+ δ)ŷ

electromagnetic energy density is [* is (kz − wt+ δ)]

uem =
1

2

(
ϵ0E

2 +
1

µ0

B2

)
=

1

2

(
ϵ0E

2
0cos

2(∗) + 1

µ0c2
E2

0cos
2(∗)

)
= ϵ0E

2
0cos

2(∗)
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S: the flow of electromagnetic energy per unit time per unit area

S =
1

µ0

(E×B) =
1

µ0c
E2

0cos
2(∗)ẑ = cuemẑ

Assume a cylindrical structure that is parallel with the z-axis and has a unit cross-section

area and length c. The entire amount of energy held in the cylinder is represented by the

flow of e.m. energy per unit time per unit area (= cuem).

electromagnetic momentum density will be ϵ0µ0S = 1
c
uemẑ

By averaging over many complete cycles we know ⟨cos2(∗)⟩ = ⟨sin2(∗)⟩ = 1
2

so ⟨uem⟩ = 1
2
ϵ0E

2
0 and ⟨S⟩ = 1

2
cϵ0E

2
0 ẑ and average momentum density ⟨pem⟩ = 1

2c
ϵ0E

2
0 ẑ

Intensity =⟨Power per unit area transported by an electromagnetic wave⟩

Intensity =⟨Energy per unit time per unit area transported⟩ I = ⟨|S|⟩

for a plane monochromatic wave Poynting vector which is perpendicular to the plane

wavefront so the momentum density is along the direction of the Poynting vector also per-

pendicular to the wavefront which is along z direction so it has only linear momentum and

no angular momentum.

2.2.5 Gaussian Light Beam

The study of Gaussian beams, a particular kind of laser beam with a particular intensity

distribution, is the focus of the optics branch known as ”Gaussian beam optics.” The intensity

profile of these beams is bell-shaped, with the centre having the highest intensity and the

periphery having progressively lower intensity. Self-focusing and maintaining beam size over

extended distances are just a few of the many crucial characteristics of Gaussian beams.

They are extensively utilized in many different applications, including laser surgery, material

processing, and cutting with a laser. Understanding how these beams move through various

optical components, such as lenses, and mirrors, as well as how their characteristics alter

when they contact with diverse materials, is a necessary part of the study of Gaussian beam

optics.
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Figure 2.7: Gaussian beam intensity profile

The equation for plane wave is E(r⃗) = E0(r⃗)e
−ikz for such plane wave E0 is constant in

xy plane But by solving the Helmholtz equation with paraxial approximation

(∇2 + k2)E(x, y, z) = 0

we will get Gaussian beam is one of the solution

The equation for the Gaussian wave is

E(r, z) = E0
ω0

ω(z)
eiΦ(z)e

− r2

ω(z)2 e−i kr2

2R(z) eikz

We can write the Normalized Gaussian beam as

E(x, y, z)

E0

=
ω0

ω(z)
e
[− r2

ω2(z)
]
e[−i kr2

2R(z)
]ei[kz−Φ(z)] (2.76)

here,n is the refractive index and λ0 is the wavelength of the beam.

ω(z) = ω0

√
1 + ( z

zR
)2 is the spot size

R(z) = z[1 + ( zR
z
)2] is the radius of curvature

Φ(z) = tan−1(z/zR) is the Guoy phase shift

zR =
πnω2

0

λ0
is the Rayleigh length of the Gaussian beam
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Figure 2.8: The Gaussian Beam’s wavefronts and plot between the radius of curvature of

wavefront and position along the beam axis. The dotted line is for the spherical wavefront

where it is linear[16]

At z=0 radius of curvature R(z) is∞ so wavefronts are planer. at the Rayleigh length, the

radius of curvature becomes the minimum value of twice of Rayleigh length then it increases

linearly with z. For very large z we can approximate it as spherical waves. but for z much

smaller than Rayleigh length we can treat it as a plane wave thereby S Poynting vector is

always perpendicular to the plane wavefront, so it has only linear momentum in the wave

which can be used to trap dielectric particles.

2.2.6 Laguerre Gaussian Beam

Laguerre Gaussian Beam is the solution to the Helmholtz equation solved under cylindrical

symmetry with paraxial approximation. A laser beam type known as a Laguerre Gaussian

Beam is distinguished by its helical phase front as well as annulus intensity distribution. This

beam is created by the superposition of Laguerre-Gaussian modes, which are cylindrical co-

ordinate solutions to the paraxial wave equation. In addition to its capacity to transport

orbital angular momentum (OAM) and its capacity to keep its shape across lengthy propa-

gation distances, the Laguerre Gaussian Beam has numerous other special qualities. Due to
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these characteristics, the Laguerre Gaussian Beam is perfect for a number of uses, including

optical communication, quantum information processing, and optical trapping. Understand-

ing the features of the Laguerre Gaussian Beam, how it interacts with various materials and

optical components, and designing and optimizing optical systems based on it are all part

of the study of this phenomenon.

Figure 2.9: Laguerre Gaussian Beam [17]

The equation of the Laguerre Gaussian Beam can be written as

E(r, ϕ, z) =

√
2p!

π(p+ |l|)!
1

ω(z)
e
− r2

w2(z)

(
r
√
2

ω(z)

)|l|

Lp,|l|[
2r2

ω2(z)
]eilϕ (2.77)

The brown part is the normalization, the blue part is Gaussian, the green part is the

doughnut hole for |l| > 0 cyan color part is the Laguerre polynomial (= 1 for p = 0), the

red part is the spiral phase which results in helical structured in the beam. l and p are the

azimuthal and radial mode index respectively.

In 1905, John Poynting developed the theory of electromagnetic radiation pressure and

momentum density, which Albert Einstein later supported, explaining the linear momentum

of a photon is ℏk. Light’s linear momentum has been used to trap and cool atoms and
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molecules. Poynting also realized that polarized light has spin angular momentum, while

in 1992, a group at Leiden University recognized that light beams with helical phase fronts

have an orbital angular momentum of L = lℏ per photon independent of polarization. The

beams have intertwined helical phase fronts, leading to an annular cross-sectional intensity

pattern that persists regardless of how tightly the beam is focused. This on-axis singularity

is a specific instance of phase dislocation, leading to a simple annular intensity profile, but

when made to interfere with a plane wave, it produces a spiral intensity pattern. Light

beams with quantized orbital angular momentum have been produced, providing a means

to investigate new optical interactions. The Poynting vector produces an orbital angular

momentum parallel to the beam axis, creating an optical vortex. The Laguerre-Gaussian

(LG) laser mode is the most common form of a helically phased beam. the spin angular

momentum associated with the circular polarization of light has the momentum of ±ℏ based

on polarization.

Figure 2.10: Pointing vector in Laguerre Gaussian Beam spirals due to the helicity of

wavefront[18]

The momentum density of light is along the direction of Poynting vector. The Poynting

vector (arrows) is no longer parallel to the beam axis (in-plane waves it is parallel to the beam

axis). At any fixed radius within the beam, the Poynting vector follows a spiral trajectory

around the axis in Laguerre Gaussian Beam so it also has orbital angular momentum
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2.3 Optical Tweezer

In this Section, we will outline the principle of holographic optical tweezer and time- shared

optical traps created by AOD. Arthur Ashkin invented the optical Tweezers technique in 1986

for the manipulation of micro-particles, and then eventually used it to manipulate atoms,

molecules, and biological cells. The Principle of this technique is the radiation pressure of

light[19, 20, 21].

2.4 Radiation Pressure

The Pressure applied by an electromagnetic wave on the object due to the transfer of mo-

mentum between matter and the electromagnetic field

Figure 2.11: a)radiation pressure on material which reflective Light b)radiation pressure on

transparent sphere

When a Photon incident on the reflecting surface normally it reflects back so its momen-

tum is reversed and the reflecting surface experiences recoiling due to the conservation of

momentum.

When a photon incident on the transparent sphere as in the figure2.13(b) due to refraction

it bends towards the center of the sphere so it changes its direction thereby its momentum also

changes. If the photon enters the sphere upside of a sphere it leaves the sphere downwards

so by momentum conservation the sphere moves upwards and forward if the photon enters

the sphere downside of a sphere it leaves the sphere upwards so the sphere moves downwards

and forward.
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If two photons simultaneously and symmetrically enter both upward and downward of

the sphere then the sphere moves forward as the upward and downward components cancel

each other[20].

2.5 Optical trapping in Geometric optics region

Here the size of the trapping particle is greater than the wavelength of the electromagnetic

wave used to trap the particle.1

Figure 2.12: a)scattering and Gradient force on a transparent sphere b)gradient force due

to focusing balances the scattering force

The laser beam is not plane waves and its intensity is not uniform in the transverse

direction. Lasers have a spatial mode of cavity usually TM00 Gaussian mode distribution.

So the transparent sphere is located not at the centre of the Gaussian beam as in the

figure.2.12(a) more photons are in up compared to in the bottom of the sphere. So the Net

effect of gradient force is towards the centre of the Gaussian beam and due to scattering

force the sphere moves forward.

If we tightly focus the beam using the High NA objective then there is some point after

the focus where the scattering force is nullified by the gradient force which was created due to

tight focusing along the direction of the scattering force leading to optical tweezers trap[22].

1https://www.ijhonline.org/viewimage.asp?img=IraqiJHematol 2018 7 2 79 239528 f1.jpg
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2.6 Optical trapping in Rayleigh regime

In this case, the size of the particle is smaller than or comparable to the wavelength of the

electromagnetic wave used to trap the particle. The ray optical technique is less effective for

particles smaller than the laser beam’s wavelength, and it is preferable to think of the forces

in terms of the electric field and electric dipoles that surround the trapped particle. A dipole

moment is created in the particle by the electromagnetic radiation’s electric field. (to be

trapped). This dipole is drawn to the area of a light beam with the greatest intensity. The

dipole will experience non-zero force (F = µ.∇E) because the E field of the electromagnetic

wave is not homogeneous for the light utilised for trapping.

Gradient force : Let the polarizability of the trapping particle is α and the electric

field of electromagnetic field will be E then the Induced dipole moment (µ⃗) is µ⃗ = αE. The

Potential energy of the particle due to electric field E is

V = −1

2
µ⃗.E =

1

2ϵ0c
− re(α)I

The force experienced is F = −∇V so Fgrad ≈ α
2
∇I Here I is the field intensity I = 1

2
ϵ0c|E|2,

c is speed of electromagnetic waves,ϵ0 is permittivity of vacuum,E is field amplitude

Scattering force : the net momentum on a particle if N number of photon incident

on the particle is P = Nh
λ

so the scattering force is Fscatter =
−dP
dt

-ve sign indicates photon

loses energy. The power of the beam is W = d(Nhγ)
dt

so the scattering force if all photon will

absorb is Fscatter =
−Wn

c
here n is refractive index

Time Shared Optical trap: For time-shared optical trap, the single Gaussian optical

trap is shared very fast between many traps compared to the relaxation of the trapped

particle so that the trapped particle will feel the time-averaged potential trap.

2.7 Holographic Optical Tweezers

With the use of a spatial light modulator, Holographic Optical Tweezers (HOT) [23, 14,

24, 25] are capable of controlling many small particles using a pattern of laser beams. The

pattern of interference generates stable trap sites that may be precisely manipulated and
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assembled in any way. In biology, materials science, and optics, HOT is used. Multiple

trapping, high accuracy, adaptable patterns, and non-invasiveness are benefits of HOT over

conventional optical tweezers.The plane of the Spatial light modulator has an inverse Fourier

transform of the trapping plane.

2.7.1 Gerchberg-Saxton (GS)Algorithm

Figure 2.13: Weighted Gerchberg-Saxton (GS)Algorithm[25]

Ralph Gerchberg and Owen Saxton created the Gerchberg-Saxton algorithm, a technique

for calculating the phase distribution of an electron beam or light provided the intensity

distributions in two planes. It may be used to make holograms for trapping and expanded

to 3D trap geometries. The procedure requires switching back and forth between two planes

while propagating the complex amplitude, replacing the intensity in the trapping plane

with the target intensity and that in the SLM plane with the actual intensity profile of the

illuminating laser beam. The computer’s graphic processing unit may be used to speed up

the procedure, which converges after a few tens of iterations.By restricting the amplitude of

the field on either the SLM or trapping plane, a phase-modulating hologram may produce
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a variety of focus areas on the sample plane. The incoming laser beam’s amplitude profile

determines the amplitude on the SLM plane, whereas the target amplitudes sought for the

trapping pattern define the amplitude on the trapping plane.

• To begin, a field termed u
′

k(xj, yj) is formed as the incident laser beam on the Spatial

light modulator, with an amplitude profile AL(xj, yj) and a phase selected Φk(xj, yj)

at from the random superposition algorithm.

• Then, this field is transformed from the Holographic plane to the focusing plane to

create a new field named vk(xj, yj, zj) = Ak(xj, yj, zj)e
iΦk(xj ,yj ,zj).

• A weight mixed form of the acquired amplitude and the intended amplitude is em-

ployed at the trapping plane to replace the amplitude while accounting for diffraction

issues brought on by the SLM’s pixelation and obtained phase is kept the same as

obtained.v
′

k(xj, yj, zj) = A
′

k(xj, yj, zj)e
iΦk(xj ,yj ,zj).

• The computed field v
′

k is transmitted back to the holographic plane to create the new

field uk(xj, yj) = Ak(xj, yj)e
iΦk(xj ,yj).

• To get the final field u0 for this iteration, the laser beam amplitude profile AL(xj, yj) is

substituted for the amplitude profile Ak(xj, yj) at the SLM (holographic plane) plane.

• these steps a repeated till it converges in most cases it converges in a few iterations.

To do this Fourier transform relation between the SLM plane and trapping plane we use

the Fourier lens as we discussed in the Fourier optics section.
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Chapter 3

Experimental Details

3.1 Colloids and Brownian motion

Colloidal suspensions, commonly referred to as colloids, are a special kind of combination

in which particles are equally distributed throughout a medium, usually a liquid. Colloids

differ from solutions and suspensions in that their particles are bigger than those in solutions

but smaller than those in the latter. Colloids have fascinating characteristics, including the

capacity to scatter light and maintain stability for extended times without settling. Colloids

are a good model system that can mimic atomic systems in many properties and they

are much bigger and slower than atoms so under an optical microscope itself we can see

them.There are many examples of colloids in daily life, such as milk, mayonnaise, fog, and

paint. Colloid science, the study of colloids, is important in a variety of fields, including the

food and beverage industry, medicines, cosmetics, and environmental research. Colloids are

an interesting and crucial subject of research since it is crucial to comprehend their behaviour

and characteristics in many scientific and industrial domains.

A physical phenomenon known as Brownian motion, commonly referred to as Brownian

diffusion, is the random movement of microscopic particles floating in a fluid medium, which

is fueled by the thermal energy of the nearby molecules. Robert Brown, a Scottish botanist,

first identified it in 1827 while studying pollen grains moving erratically in water under a mi-

croscope. Due to the fast-moving fluid molecules’ continual bombardment of the suspended

particles, which results in their unpredictable, zigzag paths, Brownian motion is created.
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Temperature, particle size, and medium viscosity are only a few of the variables that affect

how the particles move. Diffusion is a phenomenon that develops as a result of the dispersion

and mixing of particles in a fluid caused by Brownian motion over time. Brownian motion is

essential to our comprehension of many natural and artificial processes, including colloidal

stability, drug administration, and nanoparticle production. It has important implications

for domains including physics, chemistry, and biology.

3.2 Making of sample wells using Photolithography and

making dense colloidal amorphous solid

Figure 3.1: sample wells made by Photo-Lithography and silica colloidal of diameter

3.34µm(Red) and 2.32µm(Blue) to form a colloidal amorphous solid

We want to make a dense homogeneous area fraction of colloids so to make the sample

wells we are using photo-lithography. We use MICROPOSIT S1813 photoresist which is a

positive photoresist to spin coat the clean (by acetone and IPA ) glass substrate of 25×25 mm

dimension (Corning 25×25 mm Thickness 2 Cover Glass) at 1000rpm for 20 seconds. Then

in a clean yellow room, LaserWriter 405 nm wavelength laser was to write the pattern of the

circle of radius 1000µm surrounded by concentric rings of pattern to avoid particles further

entering while taking the measurement. Then we develop the pattern using MICROPOSIT

MF-319 DEVELOPER for one minute and clean the sample with deionized (DI) water to

get 2µm height wells and to avoid sticking we do oxygen plasma cleaning. Now we add
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bi-dispersed SiO2 colloids (microparticles) of diameter 2.32 and 3.34 µm in a 65:35 ratio (to

kill crystallization) in deionized water and wait for 3-5 minutes to make all colloidal enter

and make a dense amorphous solid (glass) well before taking measurements

3.3 Holographic Optical Tweezer

For the Holographic Optical tweezer, we use a 1064nm infrared laser (MATRIX-1064 Diode-

Pumped Solid State Q-switched LASER 10W continuous wave mode) and use Spatial light

Modulator(SLM) (The Holoeye PLUTO phase-only LCOS (Liquid Crystal on Silicon) with

(1920 x 1080 pixel) and 8 µm pixel pitch). To increase the resolution of the holographic

optical trap we increase the beam size using telescopic beam expansion (2.5cm and 5cm

lens) configuration (2x) we need to trade-off between the resolution and efficiency of the

laser in the first order if we expand largely then it either goes to zeroth order or it does not

go through the active area of SLM. We are using a half-wave plate before SLM, As incident

light on SLM needs to plane polarised and align with the liquid crystals in SLM to have

a maximum efficiency of SLM. The plane of SLM has an inverse Fourier transform of the

trapping plane. then using spatial filters we remove the zeroth and other order and take only

the first order as in figure 3.4. We reduce the size and collimate using 4F configuration so

that the LG beam just falls on a complete back aperture of high NA objective (Olympus 60x

0.70NA)and we collect the image of the sample using a bright field microscope (OLYMPUS

IX71 inverted microscope) with CMOS camera (BASLER acA2040) and take data at 10

frames per second. We made an optical shutter to stop the laser after taking a certain

amount of frames through the camera by sending on signal (digital on +5V) from LabVIEW

Daqcard to Arduino and Arduino will rotate the shutter to block laser

Generation of LG Beam, from SLM: the SLM is made of liquid crystal, and based

on the voltage given to each pixel of SLM the orientation varies, as a result, the phase added

to light by each pixel can be controlled from 0 to 2π as seen in figure 3.2. To create the

LG beam we used the OTS-the optical tweezers software toolbox[26] to generate the pattern

required to display on SLM. when no pattern is displayed then SLM acts as a mirror, when

a phase of 0 to 2π is displayed then an LG beam is created but it has both an LG beam

and an unconverted Gaussian beam, so to separate the LG beam a linear grating pattern is

overlapped. By this the first order contains only LG Beam as in figure 3.3 and the zero-order
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is removed by spatial filters.

Figure 3.2: SLM based on liquid Crystal orientation add phase to light [27]

Figure 3.3: Generation Of LG beam From SLM

1

1https://upload.wikimedia.org/wikipedia/commons/f/fa/Generation of OAM beams using SLM.gif
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Figure 3.4: Schematics of Holographic Optical tweezer to shear the amorphous solids using

LG Beam obtained by SLM.

Figure 3.5: Experimental Setup for Holographic Optical tweezer to shear the amorphous

solids using LG Beam obtained by SLM.
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3.4 Time Shared Optical Traps

In this section, we discuss the instrumentation part of the Time Shared Optical Traps[28].

This setup is used to understand the crossover from crystalline to amorphous behaviours

if we increase the number of particles in optical traps which will increase spring stiffness.

so to create multiple optical traps with a large field of trapping and also a stiff trap of

single particle trap only is discussed in this section. optical tweezers from Gaussian beam

is a harmonic trap of stiffness ktrap. once particles get trapped they experienced a spring

constant of ktrap + k where k is inherent stiffness due to interpartical interaction.

Figure 3.6: Increasing the number of random pinning of colloidal in crystals by AOD red

particles are get trapped

Principle of working of AOD

Figure 3.7: : Functionality of an AOD: The laser beam is deflected by sound waves in the

TeO2– crystal inside the AOD
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AOD is made of Tellurium Dioxide crystal. When RF frequency is given to a crystal,

a periodic change in refractive index occurs due to compression and rarefaction of sound

waves. this act as grating and is able to deflect based on the frequency of RF.

The incident laser enters the sound field at Bragg angle

sinθB = λ/2Λ

Beam Separation between zero and the first order is twice the Bragg angle

θ = 2θB = λF/V

where λ=wavelength of incident Laser,Λ=wavelength of RF,F=frequency of RF, V=acoustic

velocity of interaction medium.

For time shared Optical trap, we use Interaction DTD-274HD6M 2axis AOD which can

deflect the light based on the RF frequency given to AOD. We frequency modulate the

Moglabs Quad RF synthesizer using an arbitrary function generator (AFG1022 - Tektronix)

to create an arbitrary pattern of the optical trap. If AFG sed +1V to RF synthesizer then

+8MHz from central 27MHz will shift and -8MHz if -1V is sent.RF power used to drive is

1W per axis. The frequency of time sheared is 1000Hz.

We use 2 axis AOD (acoustic optic deflector) to deflect the 1064nm infrared laser(MATRIX-

1064 Diode-Pumped Solid State Q-switched LASER 10W continuous wave mode we used

2W power) to different angles very fast and block the zeroth order undeflected light using

a spatial filter and send the deflected light into the high NA objective (10x 0.85NA Le-

ica) in a home build caged upright microscope to create optical traps. The optical traps

are harmonic potential so here it is time-averaged so, particularly in trap experience time-

averaged potential.RF to AOD is given using an RF synthesizer and it is Modulated using

an arbitrary function generator and a function to arbitrary function generator is given using

LabVIEW. Imaging is done using a Baasler acA2040 CMOS camera. The communication

between AFG and RF synthesizer is done throw an SMA cable. Make confirm that the

impedance is matched between these two devices. The deflected beam is sent to the High

NA lens through the combination of lenses to make trap distance match the particle plane

and has a high field of trapping and single particle trap (stiff trapping).
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Figure 3.8: Schematics of time shared optical traps setup using 2axis AOD

Figure 3.9: Experimental Setup for time shared optical traps setup using 2axis AOD
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Figure 3.10: Time shared optical trap of football court(modulation given to 2 axes of AOD)

Figure 3.11: Time shared optical trap of circular shape formed by sin and cos modulation

given to 2 axes of AOD
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Figure 3.12: Time shared optical trap of heart shape formed by modulation given to 2 axes

of AOD

To make these functions as shown in figure 3.12,3.11,3.10 I am using parametric equations.

For example, for the circle, I used x = sin(t) and y = cos(t) Similarly, for other patterns

we need to define an array of points in x and y and upload those arrays by LabVIEW

or Arbexpress software to function generator make sure the functions used are normalized

between 1 to -1. the using arbitrary mode of the arbitrary function generator changes the

frequency of RF given to AOD. In RF synthesiser give the gain of frequency modulation as

half the bandwidth of AOD (in this case 8MHz) so by this way when +1V is given then the

frequency of RF shift by +8MHz with respect to central frequency (27MHz) and similarly

in the opposite direction if -1V was given. the trap depth the particle experience is the

time-averaged potential. so give the frequency of the repetition cycle to the original point

as around 1K Hz. It depends on the relaxation time of the particle (i.e how fast the particle

will go out of the trap if the laser is not there in that position). we are able to achieve a

trapping field of view of around 150µm and around 200 particles were trapped in the optical

traps was demonstrated in this setup.

3.4.1 Data Analysis

g(r) Pair Correlation Function:

The description of the interior structure is typically quantified using mathematical methods

such as the pair correlation function or radial distribution function. These methods allow
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for the calculation of the probability of encountering a different particle at a distance r from

the centre of a specific particle. In the case of hard spheres, the minimum distance between

two points may be equal to the diameter of the spheres. As we move farther away from a

given particle, the layers become less dense, resulting in a constant probability of finding two

spheres at a particular distance. The pair correlation function provides a quantification of the

surroundings of the particle of interest, with a constant value across all radial lengths. At long

distances or under conditions of uniform density, the pair correlation function approaches a

value of 1, which is normalized by the ρ density.

[A] [B]

Figure 3.13: g(r) is computed for two-dimensional circles in the upper right image. Although
the function is computed using all pairs of particles, I’ve emphasized one reference particle
(black) in the left image to make it more obvious. According to the g(r) graph on the
right, the neighbouring particles are shaded according to how far they are from the black
particle.[29]

ρ =
4π(σ/2)3

3

N

V
(3.1)

g(r) =
V

4πr2N2

〈∑
i

∑
i ̸=j

δ(r − rij)

〉
(3.2)

For Calculating in 3D:

• consider a particle and chose a value dr

• measures the number of particles between the sphere of radius r and the sphere of
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radius dr+r

• then multiplies it by 1
4πr2dr

(1/volume of shell) and then divide it by number density,

this will make sure that g(r) is 1 at large distances.

• loop it over other particles and divide it by the number of particles which are considered

(which is usually total number of particles N)

For Calculating in 2D:

• consider a particle and chose a value dr

• measures the number of particles between the circle of radius r and the circle of radius

dr+r

• then multiplies it by 1
2πrdr

(1/volume of shell) and then divide it by number density,

this will make sure that g(r) is 1 at large distances.

• loop it over other particles and divide it by the number of particles which are considered

If particles are hard spheres and closely packed, then the first peak of g(r) is at a distance

of the diameter of particles.

3.5 MSD Mean Square Displacement:

The mean square displacement (MSD), which is computed as the ensemble average for N

particles with xi
t being the location of particle i at time t, is a metric for how far a particle’s

position deviates from a specific position over time.

MSD(∆t) = ⟨|x(t+∆t)− x(t)|2⟩ (3.3)

MSD(∆t) =
1

N

N∑
i=1

|xi(t+∆t)− xi(t)|2 (3.4)
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Three areas are commonly seen in the mean square displacement (MSD) as a function of time:

a ballistic zone, a plateau zone, and a diffusive zone. Particles travel within a cage made of

nearby particles in the ballistic zone, also known as the ”β-relaxation,” where the MSD rises

linearly with time and a quadratic slope denotes the lack of particle interference. After some

time, a plateau zone develops as a result of interference from nearby particles, which causes

particles to move in a cage-rattling manner. The MSD exhibits linear dependency with

time in the diffusive area, also known as α-relaxation ⟨r2(t)⟩ ≈ t, which suggests that more

particles escape the cage and diffuse there. Due to particle collisions in the α-relaxation,

but motions are unhindered in β-relaxation, there is a variation in slope between the two

zones. The particles diffusivity can be connected by the Einstein-Strokes equation D = kBT
6πηr

to viscocityη,radius of particle r and temperature T. so slop of MSD in Log-Log plot with

time will give 4 times diffusivity D.

3.5.1 Average Local Strain and Non-affine Displacement

Figure 3.14: (a) is Affine deformatiion and (b) is Non-Affine Deformation[8]

If we apply pressure on a crystal from outside, its component particles experience a similar

and equal strain with their adjacent particles, leading to a consistent deformation known

as affine motion. Conversely, when external stress is applied to amorphous materials, the

local strain experienced by their particles is uneven, resulting in non-affine displacement.

Figure 3.14 depicts a very simplified depiction of affine and non-affine deformation In our

study of colloidal glass, we will analyze both types of motion. Non-affine displacements[30]

have a similar magnitude to relative affine displacements of adjacent particles and cannot

be considered a minor correction. Disregarding them or treating them as a perturbation can
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lead to highly unreliable estimations of macroscopic properties of materials such as elastic

moduli. Therefore, non-affine displacements should not be overlooked in order to obtain

accurate results in material science research.

Figure 3.15: Determining the local stress at a specific location, The reference particles are

represented by the colour red, and their neighbours are represented by the colour blue.[8]

To track the paths of particles, we identify the closest neighbours of each particle as those

within a distance of r0, which corresponds to the first minimum of the g(r) function.In figure

3.15 will explain this in 2D. The reference particle is depicted in red, while its neighbouring

particles are illustrated in blue. The location of particles at time t−∆t and t are represented

by thick and dotted lines, respectively. An affine transformation can be employed to explain

the changes in closest neighbour vectors (arrow lines) during a time interval ∆t. The optimal

affine transformation Γ is chosen to minimize the quantity D2, which is the mean-square dif-

ference between the actual displacements of neighbouring particles in relation to the central

particle and the relative displacements they would have experienced if they were situated in

a region of uniform deformation Γ [31].

D2(t,∆t) =
∑
n

∑
i

(
rin(t)− ri0(t)−

∑
j

(δij + Γij)× [rjn(t−∆t)− rj0(t−∆t)]

)2

(3.5)
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here the numbers i and j represent the spatial coordinates and n represents the number

of particles that fall within the reference particle’s interaction region, with n=0 serving as

the reference particle. The ith component of the nth particle’s location at time t is known as

rin(t). Then, we identify the ϵij that minimises D2.

Xij =
∑
n

[rin(t)− ri0(t)]× [rjn(t−∆t)− rj0(t−∆t)] (3.6)

Yij =
∑
n

[rin(t−∆t)− ri0(t−∆t)]× [rjn(t−∆t)− rj0(t−∆t)] (3.7)

Γij =
∑
k

XikY
−1
ik − δij (3.8)

The local departure from affine deformation or the non-affine deformation over the dura-

tion of the interval [t−∆t, t] is given by the minimized number of D2(t,∆t) which is called

D2
min(t,∆t). The symmetric portion of the deformation tensor yields the local strain tensor,

ϵij.

ϵij =
1

2
(Γij + ΓT

ij) (3.9)

The non-diagonal elements of strain tensor ϵij give shear parts of deformation, while its

diagonal elements produce information on dilation components.

3.5.2 Voronoi tessellation and Delaunay triangulation

Figure 3.16: a)neighbours find based of distance and cutoff value b)lineas which are red are

Voronoi tessellation and lines which are black are Delaunay triangulation
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There are several applications for the computational geometry methods Voronoi tessellation

and Delaunay triangulation. With the use of the Voronoi tessellation technique, a plane is

divided into regions centered on a set of points, with each area including the points that are

closest to that specific point. These areas are referred to as Voronoi cells, and the perpen-

dicular bisectors of the connecting line segments between the nearby points serve as their

borders. Delaunay triangulation is a technique for creating non-overlapping triangles from

a group of points in a plane, ensuring that no point is inside the boundary of any triangle.

Triangles formed using the Delaunay triangulation have the property that their minimum

angles are all maximized, making them more stable and less prone to distortion. In disci-

plines including computer graphics, computer vision, geographic information systems (GIS),

and simulation of physical processes, both Voronoi tessellation and Delaunay triangulation

are often utilised.

3.5.3 Traking of Particles

Figure 3.17: Overlap of tracked position

by trackpy on the raw image. Red par-

ticles are 3.34 µm and blue are 2.32 µm

respectivelly

The Trackpy algorithm is used for feature finding

and particle tracking in 2D images. It is an ex-

tension of the Crocker and Grier algorithm [32]

and returns particle information such as position,

frame number, eccentricity, mass, and particle

number from a set of ordered images. Before

applying the algorithm, images are processed to

remove geometric distortions, non-uniform con-

trast, and noise. The algorithm reads images and

identifies bright particles on a dark background,

and can also invert the image if necessary. The

background is removed by calculating a boxcar

average of intensities and subtracting it from the

original image. Noise is reduced by convolving

the image with a Gaussian surface half width λn

≈ 1 pixel. Particle positions are refined by find-

ing local brightness maxima within a certain dis-

tance and calculating the brightness centroid. Suspicious particles are discarded. Trackpy
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is used to track particles in a 2D. The modeling to background is done by average boxer

intensity

Aω(x, y) =
1

(2ω + 1)2

ω∑
i,j=−ω

A(x+ i, y + j)

The boxcar average assigns the pixel brightness as an average of its neighbor’s brightness,

thereby smoothing the picture with a spectrum of w. And the formula yields the noise-

reduced image:

Aλn(x, y) =

∑ω
i,j=−ω A(x+ i, y + j)exp(−i2−J2

4λ2
n

)∑ω
i,j=−ω exp(

−i2−J2

4λ2
n

)

The background is removed and the local intensity peak as the particle center is found to the

accuracy of pixel(width=w) to sub-pixel accuracy is improved by figuring out the brightness

centroid surrounding the local brightness maximum. By determining the offset from local

maxima to the center of brightness for each particle, it is further improved.(
ϵx

ϵy

)
=

1

I

∑
i2+j2≤ω2

(
i

j

)
A(x+ i, y + j)

I is integrated intensity. we use this algorithm to track the position of our colloidal and link

the particles with an id and get the trajectory as it is the crucial step for the rest of the

analysis. This data is taken at 10FPS for 500s the laser was on and the rest 500s laser was

off.
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Chapter 4

Results and Discussion

Figure 4.1: Tracked trajectory of all particles a)when Shear is applied(Laser On) For 500s

b) after shear is removed (Laser Off) for remaining 500s

By utilizing the Cocker and Grier algorithm, as discussed in a previous section, we were

able to determine the position of the particle with minimal subpixel biasing and track its

trajectory. The algorithm accurately located the center of the particles, which overlapped

with the raw data image and exhibited good alignment. To convert the pixel values to micron

measurements, we rescaled them using the standard scale made by photo-lithography, where
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1 pixel is equivalent to 0.28 microns. Figure 4.1 depicts the tracked trajectory of the particles

after linking them and assigning each particle a unique reference ID. The trajectory is plotted

after compensating for drift. The right figure illustrates the scenario where the laser was

turned on for 500 seconds, while the left figure represents the scenario where the laser was

turned off for the remaining 500 seconds.

[A] [B]

[C]

Figure 4.2: Red, when Shear is applied(Laser On) For 500s. blue, after shear, is removed

(Laser Off) for the remaining 500s. a) MSD vs Time b) MSD vs Time In log-log Scale, c)

slop of Log-Log MDS with time
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The area fraction of the colloidal glass used in this study is 0.76. At this area fraction,

the colloidal monolayer behaves as a glassy system in 2D. This is confirmed by the plateau

observed in the mean square displacement (MSD) as shown in Figure 4.2, indicating the

glassy nature of the system. Interestingly, the MSD of the shared particles is higher compared

to when shear is removed. During shear, the system relaxes faster, and the slope of the MSD

in the log-log plot is much higher. However, after shear removal, the slope of the MSD

decreases, suggesting a plateau, and the relaxation occurs more slowly (over 250 seconds)

compared to the sheared case where it decreases to less than one for short times and then

relaxes at more than one slope, indicating the system is under the influence of shear, as

captured by the MSD.

When examining the trajectories of particles in Figure 4.1, it was intriguing to observe

that even though angular momentum from the LG Beam was applied only at the edge and

limited to one particle diameter, the inner particles also exhibited rotation. To gain a better

understanding, we analyzed the displacement field and calculated the angular velocity

[A] [B]

Figure 4.3: a)Displacement Profile plotted in polar coordinate b) Azimuthal average of

Displacement (r∆θ) from the center of shear circle

The displacement profile, as expected and shown in Figure4.3, exhibits a maximum dis-
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placement at the trapping ring, located approximately r0 = 27µm away from the center of

the Trapping Circle. This is depicted in the azimuthal average of the displacement profile

with respect to the distance r from the center of the trap ring, shown in Figure 4.3 on the

right. We use this distance to calculate the reference strain, which is given by strain = r0∆θ
L

,

where L represents the distance from the trapping ring to the boundary of the experimental

field of view. Therefore, with r0 and L fixed, ∆θdetermines the value of the strain

Figure 4.4: a)Angular velocity vs distance from trapping ring center, the color indicates time

(blue to red) or strain b) at longer time the angular velocity will have a constant value for

different amount of shear time datas

The figure 4.4 shows how the angular velocity of particles varies with distance, denoted

as ”r”, from the center of the trap. The color indicates the time or amount of strain that has

occurred over time. At the beginning of the shear, there is a peak at r0 that reduces, and

the angular velocity of inner particles increases with time. When the laser is turned on, only

the particles that get trapped acquire angular momentum and angular velocity. However,

after approximately 20 to 30 seconds, the momentum starts to transfer towards the center of

the trapping ring due to particle interactions. Inside the trapping ring, the angular velocity

of particles starts to increase, and eventually converges, resulting in all particles inside the
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trapping ring having the same angular velocity, causing them to rotate as a rigid body.

Similar effects can be observed for different shear time data, as shown in the right plot of

figure 4.4. However, there is a shear band[4] occurring between the distances of 30 to 45 µm

from the center.

To identify the location of defects in crystalline solids, we can structurally identify the

defect, and under shear, these defects act as plastic carriers. Around these defects, there are

more rearrangements of particles. However, in the case of amorphous solids, we apply similar

logic to identify locations analogous to the defects in this system, by looking at regions with

more rearrangements of particles.

D2
min is a parameter that we discussed in an earlier section, and it is a very good parame-

ter for identifying the locations of defects. It is calculated by subtracting affine displacement

from real displacement to obtain non-affine displacement. We maximize the affine displace-

ment part to obtain D2
min for finding locations of defects, and we set a threshold value for

D2
min (in our case, it is 2µm2 for the top 1.5% of particles) above which defects are identi-

fied. We then filter out only the local maxima of such D2
min values above the threshold as

our defects. We observe displacement between 200s, so that D2
min will develop to find the

calculation. The number of neighbours lost is also a parameter that gives similar regions

for identifying locations. As we can see from Figure 4.5, both parameters match, confirming

more rearrangements around areas with high D2
min values.

[A] [B]

Figure 4.5: a)D2
min (µm2) b) Number of neighbours lost both are giving similar regions

For the above figure, calculations were done for a gap interval of 400s, but similarities were
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found at all time scales. For further calculations, we used D2
min because it is a continuous

real number, whereas the number of neighbors lost is a discrete integer value. The number

of neighbors lost is calculated by finding neighbors through Voronoi tessellation (Delaunay

triangulation).

If we consider particles whose D2
min is above the threshold value and is a local maximum,

and look at the pair correlation function g(r) for these defect particles to obtain the radial

distribution of particles averaged over these defects and over a 20s time period during shear.

Figure 4.6: Radial distribution function for defect particles

There is a strong structural ordering of defects during shear, as evident from the pair

correlation plot of defects shown in Figure 4.6. The function g(r) displays prominent peaks
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at the diameter of small particles (2.32µm), large particles (3.34µm), and (2.83µm) during

shear. However, even after shear is removed (after 500s), these peaks continue to persist for

some time. As the system relaxes, the first peaks gradually diminish and structural order

diminishes, but it shows a long-range correlation with more peaks at higher r, and it does not

converge to one, with higher peaks getting more resolved. This information indicates that

the structure around defects is different during shear compared to when shear is removed.

To understand the orientation of these defects with respect to the shear direction, we

calculate the displacement field for each frame between 30 seconds. Then, we coarse-grain

it by averaging the displacement of each particle’s neighbours, as determined by Voronoi

tessellation. Next, we examine the deformation vectors around these defect particles (based

on the local maxima of D2
min value), within a range of (3σ) 3 times the diameter of the

particle. We subtract the mean deformation vector for each defect (considered as an affine

part) and observe the deviation from the mean to determine if the strain field is homoge-

neous. Interestingly, we observe that it is a heterogenous field, the radial component of these

deformation vectors exhibits quadrupole symmetry[33], with two incoming and two outgoing

vectors as seen in figure 4.7.

[A] [B]

Figure 4.7: a)The radial component of the deformation vector has quadrupolar symmetry

one direction particles are incoming and other direction particles are outgoing b) azimuthal

component of the deformation vector

To determine the orientation of quadrupole symmetry defects, I considered only outgoing

vectors and fitted an ellipse to the dumbbell-shaped outgoing vectors. By comparing the

orientation of these ellipses with the shear direction (i.e., tangent to concentric circles from

the center of the trapping ring), I observed that the defects were oriented at an angle of

approximately 45 degrees from the shear direction during the application of shear. However,

the orientation appeared random when the shear was removed. Figure 4.8 displays the

locations of D2
min, with stars marking the local maxima of D2

min that exceed the threshold
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value. These locations correspond to the defects present in our system. Figure 4.9 shows the

radial component of the deviation of the displacement profile from the mean (approximately

affine) displacement, indicating a quadrupole field. Figure 4.9 represents the azimuthal

component of the displacement field around the locations of the defects identified in Fig 4.8.

Figure 4.8: Defect Detected from maximums of D2
min

Figure 4.9: a)Radial component of the deformation vector has quadrupolar symmetry one

direction particles are incoming and other direction particles are out going b) azimuthal

component of the deformation vector
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Figure 4.10: Orientation of defects with respect to shear direction

From Figure 4.10, it is evident that a clear peak is observed around 45 degrees when shear

is applied, indicating that the defects tend to orient in a particular direction. However, when

the shear is removed, the orientation appears to be random, as evidenced by the randomness

in the peak when shear is removed.

Figure 4.11: a)normalized density of orientation of defects when laser is off (no

shear)b)normalized density of orientation of defects when laser is on (shear is on)
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Figure 4.11 presents a normalized graph that provides the probability of defect orientation

with respect to the sheared direction.

Figure 4.12: a) planer shear b) circular shear

The compression and extensional axes will form an angle of 45 degrees with the direction

of shear, as depicted in figure 4.12. In this case, we are applying a circular shear. In circular

geometry, we expect the defects to orient at 45 degree with respect to the direction of shear,

which is the direction tangent to the circular region.
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Chapter 5

Conclusion

In conclusion, our results demonstrate that the application of shear to a colloidal glass system

using LG beam manipulation leads to interesting dynamics and rearrangements of particles.

We successfully tracked the trajectories of particles using the Cocker and Grier algorithm,

and found that the system exhibits glassy behaviour based on the plateau observed in the

Mean Squared Displacement (MSD) analysis. The MSD is higher during shear, indicating

faster relaxation of the system, and the slope of the MSD in the log-log plot is higher during

shear, suggesting that the system is under drive.

We also observed that even though the shear was applied only at the edge of the system,

inner particles also rotated, as confirmed by the displacement profile and angular velocity

analysis. The angular velocity of particles varied with distance from the center of the trap,

and after an initial peak, it converged to a constant value for particles inside the trapping

ring, indicating rigid body rotation. However, a shear band was observed at a certain distance

from the center, suggesting localized rearrangements of particles.

Furthermore, we utilized the D2
min parameter to identify locations of defects in the amor-

phous solid, and found that regions with higher D2
minvalues corresponded to areas of more

particle rearrangements, analogous to defects in crystalline solids. Overall, our findings pro-

vide insights into the dynamics of colloidal glass systems under shear and shed light on the

role of defects in the shear deformation and relaxation of amorphous systems. We also found

out that there is a preferred orientation ( 45 degrees) of these defects with respect to the

shear direction. Further studies can be conducted to investigate the effects of shear on dif-
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ferent types of colloidal glasses and explore potential applications in materials science and

engineering.

We also demonstrated the instrumentation of time-shared optical traps using AOD to

have a large trapping field of around 150 µm and 200 particles so that we can investigate

the effect of random pinning of colloidal crystals on phonon mode.

5.0.1 Future work

Till now the setup is optimized to have a larger field of trapping and tight single particle

level trapping. Now we need to integrate the tracking of particle algorithm within LabVIEW

and take data to understand the effect of random pinning of particles.

We are also taken data for oscillatory shear by changing the topological charge of Laguerre

Gaussian beam as the optics path of alignment will not effect by changing the topological

charge of Laguerre Gaussian beam. this is used to investigate how amorphous solids behave

under oscillatory shear-like shear thickening and thinning will be investigated in future work.

We are also interested in finding the relation between the structure and dynamics of these

defects in amorphous solids.

We also further investigate how does orientation angle of these defects with respect to

shear direction is effected by shear rate (Laser intensity). and how these defects will relax

will be further studied.
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