
Supervised Spike-Time Learning with an
Adaptive Learning Rate in Spiking

Neural Networks

A Thesis

submitted to

Indian Institute of Science Education and Research Pune in partial fulfillment of the
requirements for the BS-MS Dual Degree Programme

by

Vaishnavi V

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

Date: 1 April, 2023

Under the guidance of

Supervisor : Dr. Venkatakrishnan Ramaswamy,

Assistant Professor,

Department of Computer Science,

BITS Pilani(Hyderabad Campus)

From May 2022 to Mar 2023

INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH PUNE



Certificate

This is to certify that this dissertation entitled Supervised Spike-Time Learning with

an Adaptive Learning Rate in Spiking Neural Networks towards the partial fulfilment

of the BS-MS dual degree programme at the Indian Institute of Science Education and

Research, Pune represents study/work carried out by Vaishnavi V at BITS

Pilani(Hyderabad Campus) under the supervision of Dr. Venkatakrishnan Ramaswamy,

Assistant professor, Department of Computer Science, during the academic year

2022-2023.

Dr. Venkatakrishnan Ramaswamy

Committee:

Name of your Guide : Dr. Venkatakrishnan Ramaswamy

Name of Your TAC : Dr. Arunava Banerjee

Dr. Suhita Nadkarni



Dedicated to Mom and Dad



Declaration

I hereby declare that the matter embodied in the report entitled Supervised Spike-Time

Learning with an Adaptive Learning Rate in Spiking Neural Networks are the

results of the work carried out by me at BITS Pilani(Hyderabad Campus) under the

supervision of Dr. Venkatakrishnan Ramaswamy, Assistant professor, Department of

Computer Science, for the partial fulfilment of the BS-MS dual degree programme at the

Indian Institute of Science Education and Research, Pune and the same has not been

submitted elsewhere for any other degree.

Vaishnavi V

Date: 10/04/2023



Table of Contents

S.No Title Page No.

Certificate

Declaration

Acknowledgement

Abstract

Table of contents

List of tables

List of Figures

Contributions

Abbreviations

Chapter 1 Introduction

1.1 Background 1

1.1.1 Rate based and spike based coding 1

1.1.2 Spiking neural networks 2

1.1.3 Supervised learning in SNNs 3

1.1.4 Backpropagation in SNNs 4

1.1.5 Previous work 5



1.2 Existing problems 6

1.2.1 Silent synapses and saturated synapses 6

1.2.2 Fixed learning rate and update vector cap 7

1.3 Addressing the problems 7

1.3.1 Adaptive subgradient methods 7

a AdaGrad 8

b RMSProp 9

c ADAM 10

1.4 Scope of work 11

Chapter 2 Materials and Methods

2.1 Spike response model 12

2.2 Error functional 15

2.3 Perturbation analysis 17

2.4 Gradient descent 18

2.5 Experimental validation 18

2.5.1 Witness based evaluation framework 18

2.5.2 Mean absolute percentage error 19

2.6 Momentum 19

2.7 Adaptive subgradient methods 20

2.7.1 AdaGrad 20



2.7.2 RMSProp 21

2.7.3 Adam 22

2.8 Programming and hardware 23

Chapter 3 Results

3.1 Homogeneous Poisson input spike train 24

3.2 Inhomogeneous Poisson input spike train 26

3.3 Effect of inhibitory synapses 28

3.4 Effect of simulation window size 29

3.5 Effect of momentum 31

3.6 Gradient Descent with different optimisers 32

3.7 Effect of RMSProp 33

3.8 Effect of AdaGrad 34

3.9 Effect of Adam 34

3.8 Effect of RMSProp, AdaGrad and Adam on

inhibitory synapses

35

Chapter 4 Discussion

4.1 Summary of findings 37

4.2 Number of gradient descent steps 38

4.3 Diversity of inputs 39

4.4 Quiescent neurons and silent synapses 39



4.5 Role of homeostatic plasticity in solving

silent synapse problem

40

4.6 Steepest descent and fixed learning rate 42

4.7 Momentum and Adaptive gradient methods 42

4.8 Implications of the work 44

4.9 Future Directions 46

References 48



List of Figures

S.No Title Page
No.

3.1 Average MAPE changes for 50 neuron pairs - Homogeneous

Poisson input

24

3.2 a MAPE - Homogeneous Poisson input 25

b Synapses wise MAPE 25

3.3 Average MAPE changes for 50 neuron pairs - Inhomogeneous

Poisson input

26

3.4 a MAPE - Inhomogeneous Poisson input 27

b Synapse wise MAPE 27

c Synapse wise convergence after > 1000 GD steps 27

3.5 a MAPE - Excitatory + Inhibitory synapses 28

b Synapse wise MAPE 28

3.6 Effect of window size 30

3.7 a Average MAPE changes for 30 neuron pairs - Gradient descent

with momentum

31

b Effect of momentum 31

3.8 Gradient descent with different optimisers

3.9 Average MAPE changes for 50 neuron pairs - Gradient descent 33



with RMSProp

3.10 Average MAPE changes for 50 neuron pairs - Gradient descent

with RMSProp

34

3.11 Average MAPE changes for 50 neuron pairs - Gradient descent

with Adam

35

3.12 a MAPE for gradient descent with optimisers for excitatory +

inhibitory neurons

36

b Synapse-wise MAPE - Adam 36

c Synapse-wise MAPE - RMSProp 36

d Synapse-wise MAPE - AdaGrad 36



List of Tables

S.No Title Page No.

2.1 The parameters used in implementation of

spike response model

15

2.2 Parameters for gradient descent with

momentum

19

2.3 Parameters used in Adagrad 20

2.4 Parameters used in RMSprop 21

2.5 Parameters used in Adam 22



Abstract

Reliable communication of neuronal information by neurons of the central nervous

system to its downstream neurons involves transformation of input spike trains to

specific output spike trains. The spike train to spike train transformation problem has

been addressed by numerous studies in the past but we focus our attention on the

synaptic weight update rule proposed in Banerjee(2016) which aligns two spike trains

using only the spike time disparities. We implement the synaptic weight update rule on a

single neuron receiving multiple synaptic inputs and re-evaluate the results of

Banerjee(2016). We identify the problems that are faced during implementation of the

rule and suggest methods to address these problems.

During implementation, we identified that learning slows down due to silent synapses or

(synapses whose weights do not change much) or quiescent neurons and manual

tuning of hyperparameters - learning rate and cap on update vector. The first problem is

difficult to solve but we suggest a potential solution to the problem in the Discussion

section. The problem due to a fixed learning rate and update vector cap is solved by

using gradient descent with momentum and other adaptive gradient based optimisers -

AdaGrad, RMSProp and Adam. The choice of optimiser is very important especially

when dealing with sparse gradient tasks and large spiking neural networks because

optimisers take into account the characteristics of the data and assign a per-parameter

learning rate and accelerate the learning process. Out of gradient descent with

momentum and other three optimisers used, Adam performed remarkably well in

converging the weights of the learning neuron towards the target weights, which is used

as a measure of effectiveness of the learning rule.



Acknowledgements

It is my privilege and pleasure to express my deep sense of gratitude, sincere and

respectful thanks to my supervisors Dr. Venkatakrishnan Ramaswamy, Assistant

Professor, Department of Computer Science, BITS Pilani (Hyderabad campus) and Dr.
Arunava Banerjee, Associate Professor, Department of Computer & Information

Science & Engineering, University of Florida, who have been a source of inspiration for

me. Their valuable guidance, kind advice, constant encouragement and timely

suggestions throughout the course of this project have helped me immensely.

I am thankful to Dr. Suhita Nadkarni, Associate Professor, Department of Biology,

IISER Pune for her guidance and advice during the mid-year evaluations that helped me

charter the course of this project and motivated me to ask the right questions and

search for the right answers.

I take this opportunity to thank BITS Pilani(Hyderabad campus) for giving me access to

Sharanga, the high performance computing cluster and Brain server during the course

of this project.

I express my thanks to the library of Indian Institute of Science Education and Research

Pune for their help in providing me with reading materials for my project.

I express my thanks to my parents and my friends who have been a source of endless

motivation and support throughout the project period.

Vaishnavi V.



Contributions

Contributor name Contributor role

Vaishnavi V, Dr. Venkatakrishnan

Ramaswamy and Dr. Arunava Banerjee

Conceptualization Ideas

Vaishnavi V, Dr. Venkatakrishnan

Ramaswamy and Dr. Arunava Banerjee

Methodology

Vaishnavi V Software

Vaishnavi V Validation

Vaishnavi V Formal analysis

Vaishnavi V Investigation

Dr. Venkatakrishnan Ramaswamy Resources

Vaishnavi V Data Curation

Vaishnavi V Writing - original draft preparation

Vaishnavi V Writing - review and editing

Vaishnavi V Visualization

Dr. Venkatakrishnan Ramaswamy and

Dr. Arunava Banerjee

Supervision

Dr. Venkatakrishnan Ramaswamy and

Dr. Arunava Banerjee

Project administration



ABBREVIATIONS

AdaGrad Adaptive Gradient Algorithm

AHP Afterhyperpolarization

ANN Artificial Neural Network

CNS Central Nervous System

DNN Deep Neural Network

GD Gradient Descent

MAPE Mean Absolute Percentage Error

PSP Postsynaptic Potential

RMSProp Root Mean Square Propagation

SNN Spiking Neural Network

SRM Spike Response Model

VPD Victor-Purpura Distance



1. Introduction

1.1 Background

1.1.1 Rate based and spike based coding

In the central nervous system, neurons communicate with each other through electrical

signals called action potentials or spikes. Spikes can be considered as precisely timed

discrete events occurring in the brain. There are two lines of neural theory that describe

the basis of computation in the neural networks of the brain. The classical view of neural

computation suggests that the information related to a stimulus is conveyed through the

firing rate of neurons. Firing rate is an abstract mathematical concept defined in the limit

of an infinite number of spikes (Brette, 2015). In practice, in order to reliably estimate

the frequency of neuron firing, it is typically necessary to observe at least two spikes per

neuron, and neural responses need to be averaged over multiple trials and a significant

time window. In the rate coding perspective, neural activity can be described sufficiently

by the frequency of firing, and the precise timing of individual spikes is not regarded as

highly significant.

According to spike based neural coding theories, neurons use the precise timing of

individual spikes to communicate information.The question of whether precise timing of

spikes with a precision of milliseconds is relevant to neural computation is still being

debated. A number of scientists have presented experimental evidence that in many

animal sensory pathways, precise patterns of spikes encode temporal structure of the

stimulus especially for stimuli with a high temporal resolution (30-300ms). Nemenman,

et al. (2008) while investigating the motion sensitive neurons of the fly visual system

discovered that a considerable amount of visual information is conveyed through

specific patterns of action potentials, with a precision of fractions of a millisecond. The

varying patterns of spike timings represent slightly distinct trajectories of flight extracted

from the stimulus ensemble. Bialek et al.(1991) and De Ruyter van Steveninck et al.

(1997) conducted extensive research on the time-response of the H1 neuron in flies

1



during flight. They developed a method to decode signals from H1 and reconstruct the

original environment experienced by the fly. They discovered that individual spikes from

H1 were essential in determining the velocity estimate at each time point during

decoding. Their findings revealed that observing spikes with greater temporal precision

led to an increase in the accuracy of the decoded signal. Johansson and Birznieks

(2004) proposed that the relevant features of tactile sensory information regarding

mechanical events at the fingertips could be effectively communicated through the initial

timing of the first spike generated by groups of sensory neurons at the fingertips. This

empirical evidence has been confirmed by a different study on rat barrel cortex in which

computational analysis of information from neurons in the barrel cortex confirmed that

stimulus information is encoded in the precise timing of first-spike from the sensory

neurons (Panzeri et al., 2001). Other ways in which precise spike timing of the spikes

is used is in latency coding where the spike times relative to each other is used (Gawne

et al. 1996; Middlebrooks et al. 1994), coding by synchrony where groups of neurons

that encode different pieces of information about the same object fire in synchrony

(Izhikevich, 2006; Brette, 2012) or resonant burst coding where the frequency of the

burst allows for selective activation of specific neurons that are attuned to that

frequency, thus conveying information in a precise manner (Zeldenrust, 2018). Rank

order coding (Thorpe et al., 2001) and predictive spike coding (Deneve, 2008) are

temporal coding theories that rely on the asynchronous firing of neurons

1.1.2 Spiking neural networks

In the past decade, deep neural networks have achieved enormous success in various

fields attributed to their ability to learn and predict based on inputs of large amounts of

data. However, these networks are highly energy-intensive, require large amounts of

data and have high computational costs, especially when carrying out real-time tasks.

Biologically plausible spiking neural networks are able to overcome the bottlenecks of

artificial neural networks and can perform the same type of computations as the

traditional ANNs (Maass, 1997). Unlike ANNs which use single, static and continuous

valued activation functions, SNNs use discrete spike events for computation. A spiking

2



neural network architecture consists of spiking neurons based on various neuron

models such as Hodgkin-Huxley (Hodgkin & Huxley, 1952), spike response

model(SRM) (Gerstner et al., 1993 ; Gerstner 1995), Izhikevich model (Izhikevich, 2003)

or Leaky Integrate and Fire model (Lapicque, 1907) connected to each other through

synapses with adjustable scalar weights.. They are functionally similar to the networks

found in the central nervous system and have the properties of sparse representation

and temporal coding. Maass (1997) demonstrated that for spiking neurons, when the

input is made up of spikes that occur at different times (i.e., asynchronous spiking), the

specific timing of the resulting output spike can be understood as a computation

performed on the input i.e., under certain parameter ranges, spiking neurons are

capable of calculating a linear combination of the spike times. Maass (1997) also

proved theoretically that SNNs are more computationally powerful than ANNs. However,

training spiking neural networks is particularly challenging due to a number of factors.

First, in contrast to the basic spatial activation vectors used in DNNs, spatiotemporal

spike patterns are utilized as input stimuli and output in the spiking neural network.

Therefore the cost function used for training should cater specifically for the SNN. The

second challenge with many neuron models is that they lack differentiability at the time

of a spike, making it tough to use techniques based on gradients. Additionally, the spike

reset mechanism in many spiking neurons creates an inherent self-memory, which

presents a significant challenge when attempting to address it analytically (Zenke &

Ganguli, 2018). The learning rules in networks whether it be artificial neural networks or

spiking neural networks, involve adjusting the scalar weights of synapses. The training

methods for spiking neural networks include supervised training with gradient descent

and spike backpropagation, unsupervised learning with synaptic learning rules and

reinforcement learning. Here we discuss and implement supervised learning in spiking

neural networks.

1.1.3 Supervised learning in SNNs

Spiking neural networks utilize supervised learning, which entails modifying the weights

through gradient descent on a cost function that evaluates the similarity between the

3



observed output of the network and the desired output. The objective is to minimize the

error, often referred to as readout error, between the expected and actual output spike

trains in response to various inputs. By doing so, the spiking neural network can learn to

classify inputs with precision and generate the appropriate output spikes in response to

the input spike train.

1.1.4 Backpropagation in SNNs

The following formula is a core expression derived from the chain rule , used in all types

of backpropagation algorithms (Rumelhart, 1986; Lee, 2016).

and are partial derivatives of the cost function at neuron and respectively with

respect to the input to the neurons. is the weight of the feedforward connections

from neuron to neuron . is the activation function applied to the net input to

neuron .

There are notable issues with implementing this backpropagation algorithm in the brain

and the bio-plausible spiking neural networks. To compute with respect to , we

need to take the derivative of . However, in the case of a spiking neuron where

is represented by a sum of Dirac delta functions, the derivative of does not exist.

This means that calculating the derivative of with respect to is not possible.

This problem is addressed by using substitute derivatives. To enable backpropagation

in multi-layer spiking neural networks (SNNs), it is necessary to find a proxy, which is a

real-valued function that is almost everywhere differentiable. This proxy function is used

as a substitute for the actual spiking activity in the network and enables the use of

spike-based learning rules. By using this proxy, backpropagation can be applied to train

the network and adjust the weights of its connections. The proxy function should

accurately capture the behavior of the spiking neurons and their interactions, so that the

resulting weights can effectively support the network's learning and prediction tasks.

Next we look at prior works on the supervised learning of precisely timed spikes.

4

https://www.codecogs.com/eqnedit.php?latex=%20%5Cdelta_j%5E%5Cmu%20%3D%20g'(a_j%5E%5Cmu)%20%5Csum_k%20w_%7Bij%7D%20%5Cdelta_i%5E%5Cmu%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cdelta_j%5E%5Cmu%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Cdelta_i%5E%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=w_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=g(.)%20#0
https://www.codecogs.com/eqnedit.php?latex=a_j%5E%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=g'(.)#0
https://www.codecogs.com/eqnedit.php?latex=w_%7Bkj%7D#0
https://www.codecogs.com/eqnedit.php?latex=g(.)#0
https://www.codecogs.com/eqnedit.php?latex=g(.)#0
https://www.codecogs.com/eqnedit.php?latex=g(.)#0
https://www.codecogs.com/eqnedit.php?latex=g(.)#0
https://www.codecogs.com/eqnedit.php?latex=w_%7Bkj%7D#0


1.1.5 Previous work

SpikeProp (Bohte et al., 2002) is a supervised learning algorithm with a temporal coding

paradigm that uses the timing of single spikes for backpropagation. It overcomes the

discontinuous nature of spikes by approximating the threshold function around the spike

time. Bohte et. al.(2002) was able to show that the algorithm can learn complex

non-linear functions, such as XOR classification. Booij and tat Nguyen (2005) expanded

Spikeprop to include multiple spiketimes from a single neuron. However, the network

error remained the sum of squared differences between the desired spike time and the

first spike time of the output neurons. Since Spikeprop is computationally expensive, it

has not been used in large-scale deep learning applications as of now.

The Tempotron proposed by Gutig & Sompolinsky(2006) has been another successful

supervised learning rule. Tempotron learning is useful in categorizing different input

classes. Out of two different classes of input spike patterns, tempotron classifies these

inputs into two class labels + and -, depending on whether the output neuron generates

a spike or remains quiescent. It uses a gradient descent approach on a cost function

measuring the difference between the maximum potential of the neuron and its firing

threshold. However, the precise timing of the output spiketrain from the tempotron does

not carry any information. Chronotron(Florian, 2012) classifies the input spike trains to

multiple categories based on the output spike times with millisecond precision.

Chronotron utilizes a variation of Victor & Purpura (VP) distance (Victor & Purpura,

1996) as its error function. To determine the VPD, a metric used to quantify the temporal

disparity between two neural spike trains, the minimum expenditure required to

transform one spike train into the other is computed. This expenditure encompasses the

addition, removal, or shifting of individual spikes. However, E-learning in chronotron is

not biologically plausible since it does not allow online learning and because of its

dependence on time delocalised synaptic variables.

Another recent alternative approach is remote supervised learning(ReSuMe) proposed

by Ponulak(2005) which employs the interaction between two spike-timing dependent

plasticities. It can be seen as a spiking analogy to the Widrow-Hoff rule (Widrow &

5



Hoff,1960). The Widrow-Hoff rule reduces the cost function without gradient

calculations. This helps to bypass the first issue discussed earlier with backpropagation

in spiking neurons. However, the rule assumes that the neuron's response is linear

which is highly problematic because even though the subthreshold potential of the

neuron has a linear dependence on synaptic weights, the suprathreshold potential has a

non-linear dependence owing to the membrane potential reset after a spike.The

inherent sensitivity of the precise spike times due to the non-linearity could lead to

appearance and disappearance of spikes with small changes to one of the output spike

times.

One problem with spike timing-based approaches is they cannot learn when the neuron

is quiescent, because then the spike times are not defined. Superspike circumvents this

problem without injecting noise even when the hidden layer neurons are non-spiking.

Zenke and Ganguli (2018) use an estimation technique where the partial derivative of

hidden units is approximated as the product of the presynaptic spike train and a

nonlinear function of the postsynaptic voltage ie,

Many of these algorithms are also not physiologically realistic because their applicability

is restricted to specific spiking neuron models that can be analyzed mathematically.

Additionally, many learning algorithms are limited to solving particular information

coding schemes, such as single spike time coding. As a result, these models and

algorithms may not fully represent the complex mechanisms of the brain.

1.2 Existing Problems

1.2.1 Silent synapses and saturated synapses

A dead or silent synapse is a concern in spiking neural networks. If a synapse of the

postsynaptic neuron is silent i.e, has little or no contribution to the spiking of the neuron,

the algorithm will produce a negligible gradient value for the weight of that synapse in

6

https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%20%7B%5Cpartial%20S%7D%7B%5Cpartial%20w_%7Bi%2Cj%7D%7D%20%5Crightarrow%20%5Csigma%20'(U_i)%20%5Cfrac%20%7B%5Cpartial%20U_i%7D%7B%5Cpartial%20w_%7Bi%2Cj%7D%7D#0


the error function(Banerjee, 2016). As a result, the learning at that synapse can become

slow because the update vector for that synapse will also be small.

Saturated neuron problem occurs when the neurons in the hidden layer fire all the time,

at very high rates irrespective of the input to the neuron. When spike rates are high,

there are several possible combinations of synaptic weights that can generate the same

spike pattern. This makes it difficult for the gradient descent method to identify a unique

set of synaptic weights towards which to converge (Banerjee,2016). As a result, the

update rule can cause the synaptic weights to move randomly from one set of target

weights to another, without actually converging towards a specific set of weights. This

means that the synaptic weights do not reach a steady state, and the error E(·) remains

unstable and high throughout the process.

1.2.2 Fixed learning rate and update vector cap

Selecting an optimal learning rate for training a network can be a difficult task when the

learning rate remains constant. When the learning rate is too low, convergence can be

slow, but if it is too high, it can impede convergence and cause the loss function to

fluctuate or deviate from its minimum value. Additionally, using the same learning rate

for all parameter updates can be problematic when dealing with sparse data or

synapses with varying rates of learning. In such instances, updating all synapses

equally may not be desirable, and it may be advantageous to provide a larger update to

infrequently occurring features, i.e., synapses with slow learning.

1.3 Addressing the problems

1.3.1 Adaptive gradient methods

The properties of the data being viewed are not taken into account by conventional

gradient approaches. The reason adaptive gradient methods are distinct is that they

take into account the geometry of the data from earlier iterations and give rarely

7



occurring features a greater learning rate and frequently occurring features a lower

learning rate.

In this paper, we use adaptive gradient methods in an attempt to solve the problem of

manually changing the learning rate and the update vector cap when the learning slows

down. When most of the update vector is getting capped it is necessary to adjust the

cap or else the weights will be changed only in the direction of the cap vector and no

learning happens.

a) AdaGrad

One such adaptive gradient method is called AdaGrad. AdaGrad performs informative

gradient descent learning by taking into account the geometry of the data in the earlier

iterations. Let be a function and be the subdifferential set of function . Let’s say

is the gradient of with respect to time and .

In an online learning scenario with a regret bound model , the learner predicts the

weight vector . The goal of AdaGrad is to minimize the regret

where is the set of desired weights.

At every time step the learner receives . We perform a project gradient

update

where is the Mahalanobis norm denoting the projection of a point y onto X. This

can also be written as :

For a neuron i at time t+1, AdaGrad modifies the learning rate at each time step for

each parameter based on the past gradients of according to the equation:

8

https://www.codecogs.com/eqnedit.php?latex=f#0
https://www.codecogs.com/eqnedit.php?latex=%5Cpartial%20f#0
https://www.codecogs.com/eqnedit.php?latex=f#0
https://www.codecogs.com/eqnedit.php?latex=%20g%20%3D%20f'(w)%20%5Cquad%20%20%5Cepsilon%20%5Cquad%20%20%5Cpartial%20f(w)#0
https://www.codecogs.com/eqnedit.php?latex=w#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=g_t%20%20%5Cquad%20%5Cepsilon%20%5Cquad%20%5Cpartial%20f_t(w_t)#0
https://www.codecogs.com/eqnedit.php?latex=g_t%20%20%5Cepsilon%20%20%5Cpartial%20f_t(x_t)#0
https://www.codecogs.com/eqnedit.php?latex=g_t%20%20%5Cepsilon%20%20%5Cpartial%20f_t(x_t)#0
https://www.codecogs.com/eqnedit.php?latex=w_t%20%5Cquad%20%5Cepsilon%20%5Cquad%20W%20%5Csubseteq%20%5Cmathcal%7BR%7D%5Ed#0
https://www.codecogs.com/eqnedit.php?latex=R(T)%20%3D%20%5Csum_%7Bt%3D1%7D%5ET%20f_t(w_t)%20-%20inf_%7Bw%20%5Cepsilon%20W%7D%20%20%5Csum_%7Bt%3D1%7D%5ET%20f_t(w*)#0
https://www.codecogs.com/eqnedit.php?latex=w*#0
https://www.codecogs.com/eqnedit.php?latex=g_t%20%5Cepsilon%20%5Cpartial%20f_t(w_t)#0
https://www.codecogs.com/eqnedit.php?latex=%20%7C%7C.%7C%7C_A%20#0
https://www.codecogs.com/eqnedit.php?latex=w_%7Bt%2B1%7D%20%3D%20%5CPi_W%20%5E%7BG_t%5E%7B1%2F2%7D%7D%20(w_t%20-%20%5Ceta%20G_t%5E%7B-1%2F2%7Dg_t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Ceta#0
https://www.codecogs.com/eqnedit.php?latex=w_i#0
https://www.codecogs.com/eqnedit.php?latex=w_i#0


Where is the gradient of w with respect to time t, is the learning rate, G is the

outer product of all previous gradients and is a constant with a small

value to avoid a zero in the denominator.

The primary advantage of AdaGrad is that it removes the requirement for manual tuning

of the learning rate. Usually, a default value of 0.01 is utilized, and no further adjustment

is necessary. AdaGrad automatically modifies the learning rates for stochastic gradient

descent and online learning on a feature-by-feature basis. However, AdaGrad's principal

weakness is the accumulation of squared gradients in the denominator. Due to the

addition of positive terms, the accumulated sum grows during training, resulting in a

reduction in the learning rate to the point where it becomes exceptionally small,

preventing the algorithm from learning further.

b) RMSprop

RMSprop is a widely-used optimization algorithm in neural networks for gradient

descent that stands for Root Mean Square Propagation. Its objective is to adjust the

learning rate of each weight parameter by taking into account the historical average of

the squared gradients for that weight. The calculation of the learning rate for each

parameter in RMSProp can be seen as an extension of AdaGrad as it substitutes a

decaying average or moving average of the partial derivatives for the sum of partial

derivatives seen in AdaGrad.

The algorithm works by keeping track of a running average of the squared gradients

for each weight parameter. This running average is used to normalize the

gradient at each iteration, which helps prevent oscillations and divergence in the

optimization process. Specifically, RMSprop updates the weight parameters using the

following formula:

9

https://www.codecogs.com/eqnedit.php?latex=%20w_%7Bt%2B1%2Ci%7D%20%3D%20w_%7Bt%2Ci%7D%20-%20g_%7Bt%2Ci%7D%5Cfrac%7B%5Ceta%7D%7B%5Csqrt%7BG_%7Bt%2Cii%7D%20%2B%20%5Cepsilon%7D#0
https://www.codecogs.com/eqnedit.php?latex=g_%7Bt%2Ci%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ceta#0
https://www.codecogs.com/eqnedit.php?latex=G%20%3D%20%5Csum_%7B%5Ctau%20%3D%201%7D%5ET%20g_%5Ctau%20g_%5Ctau%5ET#0
https://www.codecogs.com/eqnedit.php?latex=%5Cepsilon#0
https://www.codecogs.com/eqnedit.php?latex=E%5Bg_%7Bt%2Ci%7D%5E2%5D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbb%7BE%7D%5Bg_%7Bt%2Ci%7D%5E2%5D%20%3D%20%5Cbeta%20%5Cmathbb%7BE%7D%5Bg_%7Bt-1%2Ci%7D%5E2%5D%20%2B%20(1-%5Cbeta)g_%7Bt%2Ci%7D%5E2%20#0


where, is the weight of the synapse i, is the learning rate and is moving

average of squared gradient and E is the error function.The term is added for

numerical stability and prevents division by zero.

c) Adam

Adam (Adaptive Moment Estimation) is an optimization algorithm that is commonly used

in stochastic gradient descent (SGD) for training deep neural networks. Adam is a

combination of two other optimization techniques, namely, RMSprop and momentum.

Adam utilises the estimates of first and second moment of gradients: the first is the

exponentially decaying average of the gradient itself, and the second is the

exponentially decaying average of the squared gradient.

At each iteration of the training process, Adam computes an effective learning rate for

each weight parameter. This effective learning rate is a function of the running averages

of the gradient and the squared gradient, and is normalized by a factor that accounts for

the initial values of these moving averages.

If is a noisy objective function, the goal of ADAM is to minimize the expected

value of with respect to parameter W. Let . is the exponential

decaying moving average of the gradient (first moment).

is the exponential decaying moving average of the squared gradient (second

moment).

10

https://www.codecogs.com/eqnedit.php?latex=w_%7Bt%2Ci%7D%20%3D%20w_%7Bt-1%2Ci%7D%20-%20%5Cfrac%7B%5Ceta%7D%20%7B%20%5Csqrt%7B%5Cmathbb%7BE%7D%5Bg_%7Bt-1%2Ci%7D%5E2%5D%20%2B%20%5Cepsilon%7D%7D%20*%20%5Cfrac%20%7B%5Cpartial%20E%7D%7B%5Cpartial%20w_%7Bt%2Ci%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=w_t%20%3D%20w_%7Bt-1%7D%20-%20%5Cfrac%7B%5Ceta%7D%20%7B%20%5Csqrt%7B%5Cmathbb%7BE%7D%5Bg_%7Bt-1%7D%5E2%5D%20%2B%20%5Cepsilon%7D%7D%20*%20%5Cfrac%20%7B%5Cpartial%20E%7D%7B%5Cpartial%20w_t%7D#0
https://www.codecogs.com/eqnedit.php?latex=w_i#0
https://www.codecogs.com/eqnedit.php?latex=%5Ceta#0
https://www.codecogs.com/eqnedit.php?latex=E%5Bg%5E2%5D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cepsilon#0
https://www.codecogs.com/eqnedit.php?latex=f(W)#0
https://www.codecogs.com/eqnedit.php?latex=f(W)#0
https://www.codecogs.com/eqnedit.php?latex=g_t%20%5Cepsilon%20%5Cpartial%20f(w_t)#0
https://www.codecogs.com/eqnedit.php?latex=m_t#0
https://www.codecogs.com/eqnedit.php?latex=m_%7Bt%7D%20%3D%20%5Cbeta_1%20*%20m_%7Bt-1%7D%20%2B%20(1%20-%20%5Cbeta_1)%20*%20%20g_%7Bt%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=v_t#0


where and are hyperparameters . and are biased towards zero

during the initial steps and when decay rates are small. To bias correct the two

moments, we perform:

The Adam update rule then looks like this:

where m and v are the moving averages of the gradient and squared gradient,

respectively, and are the bias-corrected first and second moment estimates, is

the weight parameter, is the learning rate, is a small constant added for numerical

stability, E is the error function and t is the current iteration number.

In summary, Adam is an algorithm that combines the advantages of both RMSprop and

momentum techniques to optimize the gradient descent process in deep learning. It is

effective in dealing with noisy or sparse gradients, and can converge to a good solution

more quickly than other optimization algorithms.

1.4 Scope of work

We implement an algorithm that operates on a neuron which receives input spikes and

produces output spikes, with the goal of training this neuron to learn a transformation

between its input and output spikes.The nature of this transformation is not specified or

assumed, as theoretically it is not yet fully understood although attempts have been

made in Ramaswamy & Banerjee (2014).The significance of this project lies in the

ability of the neuron to reliably produce output spike trains from input spike trains, which

is essential for conveying information without loss of any kind to downstream neurons.

We implement the algorithm proposed in Banerjee(2016) that can accurately map

patterns of input spikes to output spikes in a multi-layered feed-forward network of

deterministic spiking neurons, while ensuring that the learning rule is completely

spike-based and does not involve mean rates or probabilistic models. We identify the

11

https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_1%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_2%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cepsilon%20%5B0%2C1)#0
https://www.codecogs.com/eqnedit.php?latex=m_t#0
https://www.codecogs.com/eqnedit.php?latex=v_t#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7Bm%7D_%7Bt%7D%20%3D%20m_%7Bt%7D%20%2F%20(1%20-%20%5Cbeta_1%5E%7Bt%7D)%20%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7Bv%7D_%7Bt%7D%20%3D%20v_%7Bt%7D%20%2F%20(1%20-%20%5Cbeta_2%5E%7Bt%7D)%20%20#0
https://www.codecogs.com/eqnedit.php?latex=w_%7Bt%2B1%7D%20%3D%20w_t%20-%20%5Cfrac%7B%20%5Ceta%7D%7B%5Csqrt%7B%5Chat%7Bv%7D_t%7D%20%2B%20%5Cepsilon%7D%20%5Chat%7Bm%7D_t#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7Bm%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7Bv%7D#0
https://www.codecogs.com/eqnedit.php?latex=w#0
https://www.codecogs.com/eqnedit.php?latex=%5Ceta#0
https://www.codecogs.com/eqnedit.php?latex=%5Cepsilon#0


problems faced during implementation of the learning rule and address these problems

using momentum and adaptive gradient methods.

2. Materials and Methods

This section provides an overview of the neuron model adopted in the algorithm called

the spike response model (SRM) and the error function that measures the disparity

between actual output and desired output spike trains. Next, we compute the gradients

of the error functional with respect to the weights of synapses through perturbation

analysis and chain rule. The witness based evaluation method used to evaluate the

efficacy of the learning rule is discussed in detail. At the end we describe and compare

the adaptive gradient optimization methods AdaGrad, RMSProp and Adam.

2.1. Spike Response Model

The Spike Response Model (SRM) (Gerstner et al., 1993) is a simplification of the

Hodgkin and Huxley equations (Hodgkin & Huxley, 1952) by reduction of parameters to

a single variable, the membrane potential . The SRM views spiking as a process

that involves setting a threshold value for the membrane potential. If the potential

exceeds this value from below, an action potential is triggered. This phenomenon can

be represented by the conditions:

and

where signifies the firing time of the neuron. Assuming that the input current

remains in a biologically realistic range, the potential trajectory of the neuron during a

spike is predictable. Following the last firing time of the neuron, denoted as , for ,

12

https://www.codecogs.com/eqnedit.php?latex=u(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cnu#0
https://www.codecogs.com/eqnedit.php?latex=u(t%5E%7B(f)%7D)%20%3D%20%5Cnu#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7Bd%7D%7Bdt%7D%20u(t%5E%7B(f)%7D)%20%3E%200#0
https://www.codecogs.com/eqnedit.php?latex=t%5E%7B(f)%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7Bt%7D#0
https://www.codecogs.com/eqnedit.php?latex=t%20%3E%20%5Chat%7Bt%7D#0


the voltage trajectory spikes and resets to resting potential. Therefore, for , the

membrane potential can be expressed as , where is the

typical shape of a spike and is the resting membrane potential of the neuron.

Devoid of input, approach the and for .

If at , an additional input current is applied to the neuron. The membrane

potential is perturbed by a impulse response function or postsynaptic potential

function, .

Therefore for ,

(1)

This equation is called SRM.

In networks of neurons, the input generally comes in the form of spikes produced by

other presynaptic neurons. Let's assume that a presynaptic neuron releases a spike at

time and this generates a current input for in a postsynaptic

neuron i. Here, is a function which describes how the post synaptic potential

evolves with time. As a result of this, the voltage of the postsynaptic neuron changes,

as given by equation (2):

(2)

Where, is the last output spike time of neuron i.

We define

(3)

Suppose that the postsynaptic neuron had its last output spike a while ago. The

response in voltage, denoted as , represents the effect of the presynaptic

neuron j's firing on neuron i's potential.

The function is used to depict how the system reacts over time in response to an

incoming spike. When the effects of multiple incoming spikes are added up, and the

13

https://www.codecogs.com/eqnedit.php?latex=t%20%3E%20%5Chat%7Bt%7D#0
https://www.codecogs.com/eqnedit.php?latex=u(t)%20%3D%20%5Ceta%20(t-%5Chat%7Bt%7D)%20%2B%20u_%7Brest%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ceta#0
https://www.codecogs.com/eqnedit.php?latex=u_%7Brest%7D#0
https://www.codecogs.com/eqnedit.php?latex=u#0
https://www.codecogs.com/eqnedit.php?latex=u_%7Brest%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ceta(t-%5Chat%7Bt%7D)%20%5Crightarrow%200%20#0
https://www.codecogs.com/eqnedit.php?latex=t%20-%20%5Chat%7Bt%7D%20%5Crightarrow%20%5Cinfty#0
https://www.codecogs.com/eqnedit.php?latex=%20t'%20%3E%20%5Chat%7Bt%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=I#0
https://www.codecogs.com/eqnedit.php?latex=u#0
https://www.codecogs.com/eqnedit.php?latex=%5Cvarepsilon(t-%5Chat%7Bt%7D)#0
https://www.codecogs.com/eqnedit.php?latex=t'%3E%20t#0
https://www.codecogs.com/eqnedit.php?latex=u(t')%20%3D%20%5Ceta(t'-%5Chat%7Bt%7D)%20%2B%20%5Cint_0%5E%7B(t'-%5Chat%7Bt%7D)%7D%20%5Cvarepsilon%20(t'-%5Chat%7Bt%7D%2Cs)%20I(t'-s)ds%20%2B%20u_%7Brest%7D#0
https://www.codecogs.com/eqnedit.php?latex=t%5Ef#0
https://www.codecogs.com/eqnedit.php?latex=I(t)%20%3D%20%5Calpha(t%20-%20t%5Ef)%20#0
https://www.codecogs.com/eqnedit.php?latex=t%20%3E%20t%5Ef#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Calpha(t%20-%20t%5Ef)#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20u_i(t)%20%3D%20%5Cint_0%5E%7Bt%20-%20%5Chat%7Bt%7D_i%7D%20%5Cvarepsilon(t%20-%20%5Chat%7Bt%7D_i%2Cs)%5Calpha(t-t_j%5E%7B(f)%7D-s)ds#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7Bt%7D_i#0
https://www.codecogs.com/eqnedit.php?latex=%5Cvarepsilon(t-%5Chat%7Bt%7D_i%2C%20t-%20t%5E%7B(f)%7D_j)%20%3D%20%5CDelta%20u_i(t)%20%20%3D%20%5Cint_0%5E%7Bt%20-%20%5Chat%7Bt%7D_i%7D%20%5Cvarepsilon(t%20-%20%5Chat%7Bt%7D_i%2Cs)%5Calpha(t-t_j%5E%7B(f)%7D-s)ds#0
https://www.codecogs.com/eqnedit.php?latex=%5Cvarepsilon(%5Cinfty%2C%20t-%20t%5E%7B(f)%7D_j)%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Cvarepsilon#0


resulting potential of neuron i reaches the threshold value, denoted as , it will generate

an output spike. The shape of the output spike, which returns below the resting

membrane potential value after the pulse, is described by a function . After firing the

spike at , evolves at:

(4)

where is the last spike of

neuron i, is the spikes of presynaptic neurons j, is the synaptic efficacy.

presynaptic to and is the set of all firing times of neuron j.

This has three components:

1. kernel

The response kernel represents the typical shape of an action potential and

the spike after potential that follows a spike. Each time reaches the threshold

, is added to . Our choice of , adopted from the original paper

Banerjee(2016), is given by:

(5)

where, A is the maximum potential drop during an after spike reset, is the rate

of decay of after hyperpolarization potential and is the Heaviside step

function, for and everywhere else.

2. kernel

kernel is the linear response of the membrane potential to input spikes.

Biologically, after a spike spike occurs, ion channels open and membrane

resistance is reduced and the neuron enters a

refractory state. This is incorporated into the

kernel by the dependence on . is called excitatory postsynaptic

potential if the synapse from j to i is excitatory and inhibitory postsynaptic

potential if the synapse from j to i is inhibitory. The function is given by:

(6)

14

https://www.codecogs.com/eqnedit.php?latex=%5Cnu#0
https://www.codecogs.com/eqnedit.php?latex=%5Ceta#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7Bt%7D_i#0
https://www.codecogs.com/eqnedit.php?latex=u_i#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7Bt%7D_i#0
https://www.codecogs.com/eqnedit.php?latex=t_j%5E%7B(f)%7D#0
https://www.codecogs.com/eqnedit.php?latex=w_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau_i%20%3D%20%5C%7Bj%7Cj%20#0
https://www.codecogs.com/eqnedit.php?latex=i%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=F_j#0
https://www.codecogs.com/eqnedit.php?latex=t_j%5E%7B(f)%7D%20%3C%20t#0
https://www.codecogs.com/eqnedit.php?latex=%5Ceta#0
https://www.codecogs.com/eqnedit.php?latex=%5Ceta#0
https://www.codecogs.com/eqnedit.php?latex=u#0
https://www.codecogs.com/eqnedit.php?latex=%5Cnu#0
https://www.codecogs.com/eqnedit.php?latex=%5Ceta#0
https://www.codecogs.com/eqnedit.php?latex=u#0
https://www.codecogs.com/eqnedit.php?latex=%5Ceta#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau_m#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathcal%7BH%7D(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathcal%7BH%7D(t)%20%3D%201#0
https://www.codecogs.com/eqnedit.php?latex=t%3E%200#0
https://www.codecogs.com/eqnedit.php?latex=0%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Cvarepsilon#0
https://www.codecogs.com/eqnedit.php?latex=%5Cvarepsilon#0
https://www.codecogs.com/eqnedit.php?latex=%5Cvarepsilon#0
https://www.codecogs.com/eqnedit.php?latex=t-%5Chat%7Bt%7D_i#0
https://www.codecogs.com/eqnedit.php?latex=%5Cvarepsilon_%7Bij%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Cvarepsilon#0


where, , a dimensionless quantity is chosen to replicate the distance of the

synapse from the soma, , another dimensionless quantity describes the rate of

rise of postsynaptic potential. is the rate of decay of PSP.

3. Threshold

Threshold is defined as a free parameter. For the purpose of our algorithm, we

adopt hard thresholding.

Parameter Value of parameter

Number of synapses 8 or 15

Number of output neurons 1

- threshold - V

- excitatory synaptic time constant s

- inhibitory synaptic time constant s

- membrane potential constant s

A- drop in potential after a spike V

- simulation window size s

s

-dimensionless constant 1.5

-dimensionless constant 1.2

- dimensionless constant 1

Table 2.1 : The parameters used in implementation of spike response model

2.2 Error functional

15

https://www.codecogs.com/eqnedit.php?latex=%5Calpha#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau_c#0
https://www.codecogs.com/eqnedit.php?latex=%5Cnu#0
https://www.codecogs.com/eqnedit.php?latex=%5Cnu#0
https://www.codecogs.com/eqnedit.php?latex=20*10%5E%7B-3%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau_%7Bce%7D#0
https://www.codecogs.com/eqnedit.php?latex=20*%2010%5E%7B-3%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau_%7Bci%7D#0
https://www.codecogs.com/eqnedit.php?latex=10*%2010%5E%7B-3%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau_%7Bm%7D#0
https://www.codecogs.com/eqnedit.php?latex=1.2*10%5E%7B-3%7D#0
https://www.codecogs.com/eqnedit.php?latex=400*10%5E%7B-3%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=500%20*%2010%5E%7B-3%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5CGamma#0
https://www.codecogs.com/eqnedit.php?latex=150%20*%2010%5E%7B-3%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha_%7Bexc%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha_%7Binh%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0


We use the error functional described in Banerjee(2016) as a cost function for training

the SNN. It fulfills the following requirements:

1. The functional should focus more on the recent spikes than the past ones. If the

spikes are misaligned in the far past but more closely aligned in the recent past,

we want the effect of the far past to be diminished in our error function. We

achieve this by defining a parameter that acts as a bound and spikes that have

aged beyond it have no contribution to the present membrane potential of the

neuron. ensures a temporal asymmetry reflects the exponential decay of all

PSPs and AHPs towards the resting membrane potential.

2. The function must be capable of explicitly depicting how a spike train impacts the

membrane potential of a neuron.

3. The functional should be easy to manipulate, and its derivatives should be

obtained in closed form.

We start with a parametric function that resembles PSP of the neuron:

(7)

Let be the finite vector of output spike times and be the finite vector of desired

spike times.

The impact of the output spike train on the membrane potential can be described as:

(8)

The measure of disparity is therefore defined as the square of the difference in the

impact of the output spike train and the desired spike train in the membrane potential of

a neuron:

(9)

To remove the dependence on the parameters and , we integrate the measure over

all the values of and . However, since, integrating over to will make the

effect of the spikes aged past significant, we choose a value significantly greater

16

https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5CGamma#0
https://www.codecogs.com/eqnedit.php?latex=f_%7B%5Cbeta%2C%20%5Ctau%7D(t)%20%3D%201%2F%5Ctau%20e%5E%7B-%5Cbeta%2Ft%7De%5E%7B-t%2F%5Ctau%7D#0
https://www.codecogs.com/eqnedit.php?latex=O#0
https://www.codecogs.com/eqnedit.php?latex=D#0
https://www.codecogs.com/eqnedit.php?latex=%5Csum_%7Bi%3D1%7D%5EN%20f_%7B%5Cbeta%2C%20%5Ctau%7D(t_i%5EO)#0
https://www.codecogs.com/eqnedit.php?latex=%5CBiggl(%5Csum_%7Bi%3D1%7D%5EN%20f_%7B%5Cbeta%2C%20%5Ctau%7D(t_i%5ED)%20-%20%5Csum_%7Bi%3D1%7D%5EN%20f_%7B%5Cbeta%2C%20%5Ctau%7D(t_i%5EO)%5CBiggl)%5E2#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau#0
https://www.codecogs.com/eqnedit.php?latex=0#0
https://www.codecogs.com/eqnedit.php?latex=%5Cinfty#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=T#0


than such that the effect of the spike aged will have negligible impact on the

potential.

(10)

Taking a partial derivative of E with respect to the output spike times:

(11)

2.3 Perturbation Analysis

To derive the partial derivatives of with respect to the input spike times and input

weights we perform a perturbation analysis. Let us assume the neuron produces its

output spike at time . The state of the neuron at the time can be described as:

. (12)

If we perturb the input spike times by and input weights by , the neuron

spikes at . The state of the neuron can then be described as:

. (13)

From equation (13), we can derive:

(14)

17

https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=E(t%5ED%2C%20t%5EO)%20%3D%20%5Cint_%7B0%7D%5E%7BT%7D%20%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20%5CBiggl(%5Csum_%7Bi%3D1%7D%5EN%20f_%7B%5Cbeta%2C%20%5Ctau%7D(t_i%5ED)%20-%20%5Csum_%7Bi%3D1%7D%5EN%20f_%7B%5Cbeta%2C%20%5Ctau%7D(t_i%5EO)%5CBiggl)%5E2%20d%5Cbeta%20d%5Ctau#0
https://www.codecogs.com/eqnedit.php?latex=%3D%20%5Csum_%7Bi%2Cj%3D1%7D%5E%7BM%2CM%7D%20%5Cfrac%7Bt_i%5ED*t_j%5ED%7D%7B(t_i%5ED%2Bt_j%5ED)%5E2%7D%5Cquad%20e%5E%7B-%5Cfrac%7Bt_i%5ED%2Bt_j%5ED%7D%7BT%7D%7D%2B%5Csum_%7Bi%2Cj%3D1%7D%5E%7BN%2CN%7D%20%5Cfrac%7Bt_i%5EO*t_j%5EO%7D%7B(t_i%5EO%2Bt_j%5EO)%5E2%7D%5Cquad%20e%5E%7B-%5Cfrac%7Bt_i%5EO%2Bt_j%5EO%7D%7BT%7D%7D%20-%202%5Csum_%7Bi%2Cj%3D1%7D%5E%7BM%2Cn%7D%20%5Cfrac%7Bt_i%5ED*t_j%5EO%7D%7B(t_i%5ED%2Bt_j%5EO)%5E2%7D%5Cquad%20e%5E%7B-%5Cfrac%7Bt_i%5ED%2Bt_j%5EO%7D%7BT%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B%5Cpartial%20E%7D%7B%5Cpartial%20t_i%5EO%7D%20%3D%202%20%5CBiggl%20(%20%5Csum_%7Bj%20%3D%201%7D%5EN%20%5Cfrac%7Bt_j%5EO((t_j%5EO-t_i%5EO)-%5Cfrac%7Bt_i%5EO%7D%7BT%7D(t_j%5EO%2Bt_i%5EO))%7D%7B(t_j%5EO%2Bt_i%5EO)%5E3%7D%5Cquad%20e%5E%7B-%5Cfrac%7B(t_j%5EO%2Bt_i%5EO)%7D%7BT%7D%7D%20-%20%5Csum_%7Bj%20%3D%201%7D%5EM%20%5Cfrac%7Bt_j%5ED((t_j%5ED-t_i%5EO)-%5Cfrac%7Bt_i%5EO%7D%7BT%7D(t_j%5ED%2Bt_i%5EO))%7D%7B(t_j%5ED%2Bt_i%5EO)%5E3%7D%5Cquad%20e%5E%7B-%5Cfrac%7B(t_j%5ED%2Bt_i%5EO)%7D%7BT%7D%7D%20%5CBiggl%20)#0
https://www.codecogs.com/eqnedit.php?latex=E#0
https://www.codecogs.com/eqnedit.php?latex=l%5E%7Bth%7D#0
https://www.codecogs.com/eqnedit.php?latex=t_l%5EO#0
https://www.codecogs.com/eqnedit.php?latex=%5CTheta%20%3D%20%5Csum_%7Bi%20%5Cepsilon%20%5CGamma%7D%20%5Csum_%7Bj%20%5Cepsilon%20F_i%7D(w_%7Bi%2Cj%7D)%5Cvarepsilon_i(t_%7Bi%2Cj%7D%5EI-t_l%5EO)%20%2B%20%5Csum_%7Bk%20%5Cepsilon%20F%7D%5Ceta(t_k%5EO-t_l%5EO)%20#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20t_%7Bi%2Cj%7D%5EI#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20w_%7Bi%2Cj%7D#0
https://www.codecogs.com/eqnedit.php?latex=t_l%5EO%20%2B%20%5CDelta%20t_l%5EO#0
https://www.codecogs.com/eqnedit.php?latex=%5CTheta%20%3D%20%5Csum_%7Bi%20%5Cepsilon%20%5CGamma%7D%20%5Csum_%7Bj%20%5Cepsilon%20F_i%7D(w_%7Bi%2Cj%7D%2B%5CDelta%20w_%7Bi%2Cj%7D)%5Cvarepsilon_i(t_%7Bi%2Cj%7D%5EI%2B%5CDelta%20t_%7Bi%2Cj%7D-t_l%5EO-%5CDelta%20t_l%5EO)%20%2B%20%5Csum_%7Bk%20%5Cepsilon%20F%7D%5Ceta(t_k%5EO%2B%5CDelta%20t_k%5EO-t_l%5EO-%5CDelta%20t_l%5EO)%20#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20t_l%5EO%20%3D%20%5Cfrac%7B%5Csum_%7Bi%20%5Cepsilon%20%5CGamma%7D%20%5Csum_%7Bj%20%5Cepsilon%20F_i%7D%5CDelta%20w_%7Bi%2Cj%7D%5Cvarepsilon_i(t_%7Bi%2Cj%7D%5EI-t_l%5EO)%2B%5Csum_%7Bi%20%5Cepsilon%20%5CGamma%7D%20%5Csum_%7Bj%20%5Cepsilon%20F_i%7Dw_%7Bi%2Cj%7D%5Cfrac%7B%5Cpartial%20%5Cvarepsilon_i%7D%7B%5Cpartial%20t%7D%5Cvert_%7B(t_%7Bi%2Cj%7D%5EI-t_l%5EO)%7D%5CDelta%20t_%7Bi%2Cj%7D%5EI%20%2B%20%5Csum_%7Bk%20%5Cepsilon%20F%7D%5Cfrac%7B%5Cpartial%20%5Ceta%7D%7B%5Cpartial%20t%7D%20%5Cvert_%7B(t_k%5EO-t_l%5EO)%7D%5CDelta%20t_k%5EO%7D%7B%5Csum_%7Bi%20%5Cepsilon%20%5CGamma%7D%20%5Csum_%7Bj%20%5Cepsilon%20F_i%7Dw_%7Bi%2Cj%7D%5Cfrac%7B%5Cpartial%20%5Cvarepsilon_i%7D%7B%5Cpartial%20t%7D%5Cvert_%7B(t_%7Bi%2Cj%7D%5EI-t_l%5EO)%7D%2B%5Csum_%7Bk%20%5Cepsilon%20F%7D%5Cfrac%7B%5Cpartial%20%5Ceta%7D%7B%5Cpartial%20t%7D%20%5Cvert_%7B(t_k%5EO-t_l%5EO)%7D%20%7D%20#0


(15)

(16)

2.4 Gradient Descent

(17)

The expression presented is a typical update using gradient descent. However, rather

than updating the weights in the past, the approach advocated in Banerjee (2016)

involves a delayed update. In this approach, the weight at synapse i is updated based

on the contributions of a finite number of past spikes.The below expression describes

the gradient descent update that we have used:

←

(18)

is obtained by chain rule.

(19)

2.5 Experimental Validation

2.5.1 Witness-based evaluation framework

18

https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B%5Cpartial%20E%7D%7B%5Cpartial%20w_%7Bi%2Cj%7D%7D#0


We use a conservative evaluation criterion derived from witness-based evaluation

framework to evaluate the results because:

1. The state of the current knowledge on which transformations can be carried out

by a feedforward network of spiking neurons with a particular architecture and

complexity is very limited.

2. We don't make assumptions about what the desired spike train is supposed to

look like.

According to the evaluation framework,

● We generate a witness network of a particular architecture with weights randomly

assigned and later fixed.

● We drive the network with input spike trains generated by the Poisson process.

● We record the precise input and output spike trains

● We generate learning networks of the same architecture initialized with random

synaptic weights. Can the learning networks learn the input-output transformation

of the witness network by using the synaptic weight update rule proposed above?

2.5.2 Mean Absolute Percentage Error

Instead of examining whether the learning network has learned the transformation, we

check if the weights of the learning network have converged to that of the witness

network. We use a conservative criterion called Mean Absolute Percentage

Error(MAPE).

(20)

where: n is the number of synapses, CorrectWeight is the weight of the witness network

synapse, LearnedWeight is the weight of the learning network synapse. A MAPE of 1 or

shows convergence of the learning network weights to the witness network

weights.

19

https://www.codecogs.com/eqnedit.php?latex=100%5C%25#0


2.6 Momentum

Require :

Parameter Value of parameter

- step size 0.01

- decay rate of first moment 0.9

Table 2.2 : Parameters for gradient descent with momentum

Require : The error function at time t for neuron i

Initialise : - initial parameter value

← 0 initial derivative of error function wrt w

← 0 initial momentum vector

← 0 timestep

while not converged do:
← (update timestep)

← (update derivative)

← (update the momentum vector)

← (update parameters)

end while

return

2.7 Adaptive gradient Methods

2.7.1 AdaGrad

20

https://www.codecogs.com/eqnedit.php?latex=%5Ceta#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=E(w_%7Bt%2Ci%7D)#0
https://www.codecogs.com/eqnedit.php?latex=w_0#0
https://www.codecogs.com/eqnedit.php?latex=g_t#0
https://www.codecogs.com/eqnedit.php?latex=b_t#0
https://www.codecogs.com/eqnedit.php?latex=%20t#0
https://www.codecogs.com/eqnedit.php?latex=w_t#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=t%2B1#0
https://www.codecogs.com/eqnedit.php?latex=g_t%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B%5Cpartial%20E%7D%7B%5Cpartial%20w_t%7D#0
https://www.codecogs.com/eqnedit.php?latex=b_t#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta%20%20b_%7Bt-1%7D%20%2B%20g_t#0
https://www.codecogs.com/eqnedit.php?latex=w_%7Bt%2Ci%7D#0
https://www.codecogs.com/eqnedit.php?latex=w_%7Bt-1%2Ci%7D%20-%20%5Ceta%20b_t#0
https://www.codecogs.com/eqnedit.php?latex=w_t#0


Require :

Parameter Value of parameter

- step size 0.01

- constant for numerical stability

Table 2.3 : Parameters used in Adagrad

Require : The error function at time t for neuron i

Initialise : - initial parameter value

← 0 initial derivative of error function wrt w

← 0 initial outer product matrix

← 0 timestep

while not converged do:
← (update timestep)

← (update derivative)

← (update the outer product)

← (update parameters)

end while

return

2.7.2 RMSProp
Require :

Parameter Value of parameter

- learning rate 0.01

- decay rate of second moment 0.9

Table 2.4: Parameters used in RMSprop

21

https://www.codecogs.com/eqnedit.php?latex=%5Ceta#0
https://www.codecogs.com/eqnedit.php?latex=%5Cvarepsilon#0
https://www.codecogs.com/eqnedit.php?latex=10%5E%7B-8%7D#0
https://www.codecogs.com/eqnedit.php?latex=E(w_%7Bt%2Ci%7D)#0
https://www.codecogs.com/eqnedit.php?latex=w_0#0
https://www.codecogs.com/eqnedit.php?latex=g_t#0
https://www.codecogs.com/eqnedit.php?latex=G_0#0
https://www.codecogs.com/eqnedit.php?latex=%20t#0
https://www.codecogs.com/eqnedit.php?latex=w_t#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=t%2B1#0
https://www.codecogs.com/eqnedit.php?latex=g_t%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B%5Cpartial%20E%7D%7B%5Cpartial%20w_t%7D#0
https://www.codecogs.com/eqnedit.php?latex=G_t#0
https://www.codecogs.com/eqnedit.php?latex=%5Csum_%7B%5Ctau%20%3D%201%7D%5E%7Bt%7D%20g_%7B%5Ctau%7Dg_%7B%5Ctau%7D%5ET#0
https://www.codecogs.com/eqnedit.php?latex=w_%7Bt%2Ci%7D#0
https://www.codecogs.com/eqnedit.php?latex=w_%7Bt-1%2Ci%7D%20-%20g_%7Bt%2Ci%7D%5Cfrac%7B%5Ceta%7D%7B%5Csqrt%7BG_%7Bt%2Cii%7D%20%2B%20%5Cepsilon%7D#0
https://www.codecogs.com/eqnedit.php?latex=w_t#0
https://www.codecogs.com/eqnedit.php?latex=%5Ceta#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0


Require : The error function at time t for neuron i

Initialise : - initial parameter value

← 0 initial derivative of error function wrt w

← 0 initial moving average of squared gradients

← 0 timestep

while not converged do:

← (update decaying moving average

of squared gradients)

← (update parameters)

end while

return

2.7.3 Adam
Require :

Parameter Value of parameter

- step size 0.01

- decay rate of first moment 0.9

- decay rate of second moment 0.999

- constant for numerical stability

Table 2.5 : Parameters used in Adam

Require : The error function at time t for neuron i

Initialise : - initial parameter value

← 0 the first moment vector

← 0 the second moment vector

22

https://www.codecogs.com/eqnedit.php?latex=E(w_%7Bt%2Ci%7D)#0
https://www.codecogs.com/eqnedit.php?latex=w_0#0
https://www.codecogs.com/eqnedit.php?latex=g_t#0
https://www.codecogs.com/eqnedit.php?latex=E%5Bg%5E2%5D0#0
https://www.codecogs.com/eqnedit.php?latex=%20t#0
https://www.codecogs.com/eqnedit.php?latex=w(t)#0
https://www.codecogs.com/eqnedit.php?latex=E%5Bg%5E2%5D(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta%20E%5Bg%5E2%5D(t-1)%2B(1-%5Cbeta)*(%5Cfrac%7B%5Cpartial%20E%7D%7B%5Cpartial%20w%7D)%5E2#0
https://www.codecogs.com/eqnedit.php?latex=w_%7Bt%2B1%7D#0
https://www.codecogs.com/eqnedit.php?latex=w_%7Bt%7D%20-%20%5Cfrac%7B%5Ceta%7D%20%7B%20%5Csqrt%7BE%5Bg_%7Bt%7D%5E2%5D%20%2B%20%5Cepsilon%7D%7D%20*%20%5Cfrac%20%7B%5Cpartial%20E%7D%7B%5Cpartial%20w_%7Bt%2B1%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=w_t#0
https://www.codecogs.com/eqnedit.php?latex=%5Ceta#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_1#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_2#0
https://www.codecogs.com/eqnedit.php?latex=%5Cvarepsilon#0
https://www.codecogs.com/eqnedit.php?latex=10%5E%7B-8%7D#0
https://www.codecogs.com/eqnedit.php?latex=E(w_%7Bt%2Ci%7D)#0
https://www.codecogs.com/eqnedit.php?latex=w_0#0
https://www.codecogs.com/eqnedit.php?latex=m_0#0
https://www.codecogs.com/eqnedit.php?latex=v_0#0


← 0 timestep

while not converged do:
← (update time step)

← (update the derivative of error function wrt w)

← (update the first moment)

← (update the second moment)

← (calculate bias corrected first moment)

← ( calculate bias corrected second moment)

← (update parameters)

end while

return

2.8 Programming and Hardware
All learning experiments were run using custom built code in Python with the Pytorch

library. Few of them were run on CPU and a few on GPU. The code was run on the

Brain server at Department of COmputer Science, BITS Pilani(Hyderabad campus).

Specifications: CPU: 32 processors of AMD Ryzen Threadripper Pro 3955WX with 16

CPU cores each and 512 GB RAM. GPU: 2 NVIDIA GeForce RTX 3090 GPU cards

with 10496 CUDA cores and 24 GB memory each.

23

https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=w_t#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=t%2B1#0
https://www.codecogs.com/eqnedit.php?latex=g_t#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cpartial%20E_t%2F%5Cpartial%20w_%7Bt-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20m_t#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_1%20m_%7Bt-1%7D%20%2B(1-%5Cbeta_1)g_t#0
https://www.codecogs.com/eqnedit.php?latex=%20v_t%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cbeta_2%20v_%7Bt-1%7D%20%2B(1-%5Cbeta_2)g_t%5E2#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Chat%7Bm%7D_t#0
https://www.codecogs.com/eqnedit.php?latex=%20m_t%2F(1-%5Cbeta_1%5Et)#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Chat%7Bv%7D_t#0
https://www.codecogs.com/eqnedit.php?latex=v_t%2F(1-%5Cbeta_2%5Et)#0
https://www.codecogs.com/eqnedit.php?latex=w_t#0
https://www.codecogs.com/eqnedit.php?latex=w_%7Bt-1%7D%20-%20%5Ceta.%5Cfrac%7B%20%5Chat%7Bm%7D_t%7D%7B%5Csqrt%7B%5Chat%7Bv%7D_t%7D%20%2B%20%5Cvarepsilon%7D#0
https://www.codecogs.com/eqnedit.php?latex=w_t#0


3. RESULTS

3.1 Homogeneous Poisson input spike train

Figure 3.1 : Scatter plot depicting the initial MAPE versus change in MAPE for

50 witness-learning neuron pairs driven by homogeneous Poisson input spike

train after 1000 gradient descent steps. Each neuron has 15 excitatory synapses

each. The learning rate and the cap is not constant across each pair.

To assess the overall effectiveness of the algorithm in learning the spike train to spike

train transformation, we created 50 pairs of neurons, each with 15 excitatory synapses

that were randomly assigned weights. These pairs were then given a 10 Hz

24



homogeneous Poisson input spike train, and one neuron of the pair was subjected to

1000 gradient descent updates with a small learning rate and cap. We measured the

disparity between the initial and final performance of the learning neuron compared to

its corresponding witness neuron, and plotted this as a scatter plot in Figure 3.1.

Out of 50 learning neurons, 41 neurons showed convergence towards its corresponding

witness neuron. This corresponds to 83.67% (exact binomial test, p = 2.81*10^-6) of the

neuron pairs showing improvement in MAPE.

Figure 3.2 : A witness-learning neuron pair with 10 synapses each were driven

with a homogeneous Poisson spike train and driven until convergence. (a)

depicts the evolution of MAPE with the gradient descent on the weights. 74.08%

convergence was achieved in 630 gradient descent steps. (b) depicts the

synapse-wise MAPE versus the update number.

We ran a few pairs of witness-learning neuron pairs until convergence and were able to

achieve a maximum of 70-75% convergence. One such pair is depicted in Figure 3.2.

We gave the same homogeneous Poisson spike train as input to both neurons in a

witness learning neuron pair. The convergence of the weights of the learning network

towards the weights of the witness network is plotted as a function of the number of

gradient descent steps. We were able to achieve 73% convergence in 630 gradient

descent steps. The initial average MAPE was 0.1806 and the average MAPE after 630

25



gradient descent steps is 0.0489. The synapse wise MAPE shows that all the synapses

were converging at the beginning but learning slows down and stagnates after 400

gradient descent steps.

3.2 Inhomogeneous Poisson input spike train

To create diversity in the input spike trains, we created 50 pairs of neurons, each with

15 excitatory synapses that were randomly assigned weights. These pairs were then

given an inhomogeneous Poisson input spike train where the frequency of spikes varied

sinusoidally between 5 Hz and 10 Hz at a frequency of 2 Hz. The learning neuron

underwent 1000 updates through gradient descent, with a small learning rate and cap.

The change in the MAPE of the learning neuron compared to its corresponding witness

neuron was calculated and plotted as a scatter plot in Figure 3.3.

Out of the 50 learning neurons, 43 of them showed improvement in MAPE. This

corresponds to 86% (exact binomial test, p = 5.81*10^-6) of witness-learning neuron

pairs converging, which is marginally more than the percentage of pairs converging

when driven by homogeneous poisson input.

26



Figure 3.3 : Scatter plot depicting the initial MAPE versus change in MAPE for

50 witness-learning neuron pairs driven by inhomogeneous Poisson spike train

after 1000 gradient descent steps. Each neuron has 15 excitatory synapses

each. The learning rate and the cap is not constant across each pair.

We ran gradient descent on a few learning-witness neuron pairs until convergence. We

observed 80-85% convergence in most of the pairs. The hindrance in reaching 100%

convergence can be explained by the example below.

The witness-learning neuron pair in Figure 3.4(a) has been run for more than 1075

gradient descent steps. The gradient descent was stopped when the learning slowed

down considerably. The initial average MAPE was 4.4481 and the average MAPE after

1075 gradient descent steps is 0.8191. This example shows a percent MAPE

convergence of 81.6%.

27



Figure 3.4 : A witness-learning neuron pair with 15 synapses each was driven

with an inhomogeneous Poisson spike train and driven until 81.6% convergence.

(a) depicts the evolution of MAPE with the gradient descent on the

weights.81.6% convergence was achieved in 1075 gradient descent steps. (b)

depicts the synapse-wise MAPE versus the update number. Notice that synapses

3 and 9 with a higher initial MAPE converge faster compared to other synapses.

This is also depicted in (c) which shows the convergence(change in MAPE/initial

MAPE) after 1075 gradient descent steps versus the initial MAPE for each

synapse.

However, when we observe the synapse-wise MAPE trajectory of the learning neuron,

we can conclude that only two synapses i.e, synapse 3 and synapse 9, have shown

28



more than 95% convergence (98.15% and 95.40% respectively). Other synapses are

either diverging or converging very slowly towards the desired weights as can be

observed from Figure 3.4(b). The two synapses that showed rapid convergence had a

very high initial MAPE error(49.1308 and 9.8124 respectively). This trend has been

observed in other cases as well where synapses with very high initial MAPE converged

faster at the cost of other synapses.

3.3 Effect of inhibitory synapses

Figure 3.5 : A witness-learning neuron pair with 8 synapses in total, 6 of which

are excitatory and 2 are inhibitory. (a) depicts how the MAPE changes or the

learning weight converges to the witness weight. The learning started from a very

high MAPE value and therefore, in 150 gradient descent steps shows very low

convergence. The rate of convergence at 150 updates is around 0.21 per 100

gradient descent steps. (b) shows the synapse-wise MAPE versus the update

number. The pink(6) and gray (7) traces are the inhibitory neurons.

We created a witness learning neuron pair with both excitatory and inhibitory synapses

to see how the weight update rule influences the convergence of inhibitory weights. The

neurons were driven by 6 excitatory synapses and 2 inhibitory synapses. The learning

neuron’s synaptic weights converged 1.16% in 150 gradient descent updates. The

29



synapse wise MAPE changes are quite interesting. The synapse-wise MAPEs of the

two inhibitory synapses did not change at all during gradient descent i.e, the inhibitory

synapses are silent.

The silent inhibitory synapses can be explained using the nature of the inhibitory PSPs.

As discussed in Methods, is influenced by a key factor, given by the below

equation

This refers to how a small adjustment in weight would affect the timing of output spikes.

This factor is determined by the gradient of the postsynaptic potential (PSP) generated

by the inhibitory neuron. The output spikes occur during the ascending phase of the

inhibitory PSP , which has a much lower derivative than the ascending phase of an

excitatory PSP. Therefore the value of is low and therefore learning in those

synapses is very low.

3.4 Effect of simulation window size

The hyperparameter In our synaptic weight update rule, the window size within which

the input spikes to and output spikes from a neuron is significant to the membrane

potential of the neuron. Biologically, the parameter can be explained as follows: Once

they initially increase or decrease, both postsynaptic potentials (PSPs) and

afterhyperpolarization (AHPs) decay rapidly to the resting potential, in an exponential

manner. During the absolute refractory period , regardless of the strength of incoming

stimuli, the neuron is unable to fire another action potential. is the The

maximum limit on the number of effective spikes that neuron can possess at any

particular moment (Banerjee, 2001). This shows that and are both finite sets of

afferent and efferent spikes respectively.

30

https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B%5Cpartial%20E%7D%7B%5Cpartial%20w%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B%5Cpartial%20t%7D%7B%5Cpartial%20w%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B%5Cpartial%20E%7D%7B%5Cpartial%20w_%7Bi%2Cj%7D%7D%20%3D%20%5Csum_%7Bk%20%5Cepsilon%20F%7D%5Cfrac%7B%5Cpartial%20E%7D%7B%5Cpartial%20t_k%5EO%7D%5Cfrac%7B%5Cpartial%20t_k%5EO%7D%7B%5Cpartial%20w_%7Bi%2Cj%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B%5Cpartial%20E%7D%7B%5Cpartial%20w%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=r#0
https://www.codecogs.com/eqnedit.php?latex=n_i%20%3D%20%5B%5CGamma%2Fr_i%5D#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathcal%7BF%7D_i#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cmathcal%7BF%7D#0


Figure 3.6 : MAPE convergence for different values of the window size

Optimizing the value of is important for the weight update rule. Having a higher

seems to speed up the learning process and a lower shows very slow learning.

Logically, having a higher would mean a larger number of spikes that contribute to the

present membrane potential of the neuron and therefore, higher computation cost and

time. However, at an optimum value of , the error calculated at a moment in time is not

skewed by the low error of the recent past and the high error values of the far past

contribute to the calculation therefore, learning does not slow down. However, when

the error is high and erratic, there is a higher chance of divergence from the desired

values.This is the reason we see a more convergence in the same number of update

steps for higher values of .

3.5 Effect of momentum

31

https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0


Figure 3.7 : The figure(a) depicts 30 learning neurons subjected to gradient
descent with momentum. Scatter plot of initial MAPE versus change in MAPE for

these pairs of neurons, (b) depicts the performance of gradient descent with or

without momentum. WIthout momentum, the learning is very slow and

convergence stagnates.With momentum, learning is accelerated and there is a

very fast convergence of learning weights towards the witness weights.

30 pairs of neurons, each with 15 excitatory synapses with randomly assigned weights

were created. These pairs were then given an inhomogeneous Poisson input spike train

where the frequency of spikes varied sinusoidally between 5 and 10 Hz at a frequency

of 2 Hz. The learning neuron was subjected to 500 gradient descent updates with

momentum. 12 out of the 30 pairs showed improvement in MAPE value. This

corresponds to 43.33% (exact binomial test, p = 0.82) of the neuron pairs showing

convergence of learning weights towards witness weights. This is less than expected

since momentum accelerates the gradient descent. We speculate that this may be due

to the divergence of the weights before reaching the maximum convergence which has

been observed while using momentum.

We created a witness learning neuron pair with 15 synapses and the learning neuron

was subjected to gradient descent with momentum. The initial MAPE was 0.4985. The

final MAPE after 40 gradient descent steps is 0.1069 for momentum compared to

0.4930 for steepest descent algorithm. The convergence percentage after 40 gradient

32



descent steps is 78.54% for gradient descent with momentum and 1.1014% for gradient

without momentum. Momentum shows highly accelerated convergence compared to

traditional gradient descent.

3.6 Gradient Descent with different optimisers
We created a witness learning neuron pair with 15 synapses and the learning neuron

was subjected to gradient descent with different optimisers. We ran four different

variants of gradient descent. First, traditional gradient descent following the steepest

descent direction with a fixed learning rate. We observed that the weights of the

learning neuron diverged from the witness weights from the start of the learning

process. RMSprop also showed the same trend. During gradient descent with AdaGrad,

the weights converged in the beginning, but the learning slowed down after a few steps

and weights stagnated.

Figure 3.8: Gradient descent - Steepest descent and with different optimisers,

AdaGrad, RMSprop, and Adam.

Out of the three optimisers, Adam showed the best results. With Adam, the neuron went

from an initial MAPE of 0.1808 to a MAPE of 0.0404 in 502 gradient descent steps,

which is equal to 77.67% convergence. Learning slowed down considerably after 500

33



gradient descent steps. Even though this is not the highest MAPE convergence

obtained, achieving such a high convergence in fewer gradient descent steps is

commendable. Also taking into consideration, divergence of the traditional gradient

descent from the start this result appears significant.

3.7 Effect of RMSProp

Figure 3.9 : Fifty pairs of witness-learning neurons were subjected to gradient

descent with RMSProp. The initial MAPE versus change in MAPE after 100

gradient descent steps is plotted in the figure.

We created 50 witness-learning neurons that received inhomogeneous Poisson input.

The learning neuron underwent 100 updates of gradient descent with the RMSProp

algorithm. After the 100 steps, 32 of the 50 learning neurons improved their MAPE

score, while 6 showed a higher MAPE error than at the beginning. Therefore, 64 % of

the learning neurons (exact binomial test, p = 0.032) converged to the weights of their

respective witness neurons.

3.8 Effect of AdaGrad

34



Figure 3.10 : Fifty pairs of witness-learning neurons were subjected to gradient

descent with AdaGrad. The initial MAPE versus change in MAPE after 100

gradient descent steps is plotted in the figure.

50 pairs of witness learning neurons were created to receive input from inhomogeneous

Poisson sources. Each learning neuron underwent 100 gradient descent updates with

the AdaGrad algorithm. After the 100 iterations, 35 of the 50 learning neurons improved

their MAPE score, while 15 neurons exhibited a higher MAPE error than at the

beginning. As a result, 70% (exact binomial test, p = 0.003) of the learning neurons

converged to the weights of their corresponding witness neurons.

3.9 Effect of Adam

We created 50 witness-learning neurons which were driven by inhomogeneous poisson

input. The learning neuron underwent gradient descent with Adam for 100 updates. Out

of 50 learning neurons, 44 neurons showed improvement in MAPE after 100 gradient

descent steps. 6 of them had a higher MAPE error after 100 steps than at the start. This

corresponds to 92.5% (exact binomial test, 1.62 *10^-8) learning neurons converging to

weights of their witness neurons. This percentage is higher than the values we obtained

while employing traditional gradient descent in both homogeneous poisson input

case(83.67%) and inhomogeneous poisson input case(86%).

35



Figure 3.11 : Fifty pairs of witness-learning neurons were subjected to gradient

descent with Adam. The initial MAPE versus change in MAPE after 100 gradient

descent steps is plotted in the figure.

3.10 Effect of RMSProp, AdaGrad and Adam on inhibitory synapses

We created a witness learning neuron pair with both excitatory and inhibitory synapses

to see how the weight update rule with optimisers influences the convergence of

inhibitory weights. The neurons were driven by 8 excitatory synapses and 2 inhibitory

synapses.While using Adam, the learning neuron’s synaptic weights converged 38.82%

in 500 gradient descent updates. The synapse wise MAPE changes are quite

interesting. The synapse-wise MAPEs of the two inhibitory synapses diverged from their

witness weights during gradient descent and one of the synapses was silent.

While using RMSProp, the learning neuron’s synaptic weights converged 6% in 500

gradient descent updates. One of the inhibitory synapses remained silent and another

one converged to its witness weight. During gradient descent with AdaGrad, we observe

a convergence of 15.23% in 500 gradient descent steps. However, the synapse wise

MAPE shows that both the inhibitory synapses are converging.

36



Figure 3.12 : A witness-learning neuron pair with 10 synapses in total, 8 of

which are excitatory and 2 are inhibitory. (a) depicts how the MAPE changes or

the learning weight converges to the witness weight for three different optimisers

RMSProp, AdaGrad, Adam. (b) shows the synapse wise MAPE value for Adam.

(c) shows the synapse wise MAPE value for RMSProp.(b) shows the synapse

wise MAPE value for AdaGrad. The yellow (8) and cyan (9) traces are the

inhibitory neurons.

The code for reproducing the results can be accessed in

https://github.com/vaishnavivaliyaparambil/Supervised-Learning-in-Spiking-Neural-Netw

orks

37



4. DISCUSSION

The synaptic weight learning rule proposed by Banerjee(2016) posits to tackle the spike

train to spike train transformation problem. The aim of this study is to re-evaluate the

results of Banerjee(2016), recognise the problems faced during implementation and

come up with solutions to address the problems. We have been able to implement the

synaptic weight update rule, identify key problems namely the silent synapse problem

and the problem of slow learning due to a fixed learning rate and a fixed cap on the

update tensor. The silent synapse problem is a very difficult problem to solve but the

idea on how to try to tackle it using homeostatic plasticity is discussed in this chapter.

The problem of learning slowing down due to a fixed learning rate and cap on update

tensor has been solved by using momentum and adaptive gradient methods namely,

AdaGrad, Adam and RMSProp.

4.1 Summary of findings

To test the effectiveness of the synaptic weight update rule that relies solely on spike

time differences, we test its ability to accurately guide the synaptic weights of the

learning network towards those of the witness network. When the input spike train is

derived from a homogeneous poisson process, out of 50 learning neurons run through

1000 gradient descent steps, 83.67% of them showed convergence towards the

synaptic weights of the witness neuron. When the same process was repeated using an

inhomogeneous poisson spike train, out of 50 learning neurons, 86% showed

convergence after 1000 gradient descent steps. While running individual neuron pairs to

convergence we observe that the learning slows down after reaching 80-85%

convergence. To identify the reason for this trend, we observed the individual synaptic

38



MAPE values which showed that out of all the synapses, a few of them remain silent

during training because of not getting a rich enough input i.e, the input spike rate at

these synapses is very low. We also ran the gradient descent on a learning neuron that

had both excitatory and inhibitory synapses and observed that the inhibitory synapses

learn very slowly or remain silent when compared to other synapses of the neuron. An

important parameter for our synaptic weight update rule is . An arbitrary value of is

chosen for running gradient descent. To see what the effect of various values of is on

learning, we ran gradient descent for different values of and found that there is an

optimum value of = 700 at which the learning is quicker and steadier. We introduced

momentum to gradient descent that accelerated the learning process. Gradient descent

was optimised using Adagrad, RMSprop and Adam, out of which Adam accelerated

learning and did not diverge during the process. Out of 50 learning neurons run through

500 gradient descent steps with Adam, 92.25% of them showed convergence towards

the synaptic weights of the witness neuron.

4.2 Number of gradient descent steps

The data collected is restricted by the number of gradient descent steps because of

time constraints of running the network to convergence, learning slowing down before

convergence and divergence of the network after a few gradient descent updates.

Thousands of gradient descent steps might not be nearly enough to come to a

conclusion about MAPE convergence. The original study by Banerjee(2016) used

50000 gradient descent steps in 10000 pairs of neurons to produce the results of

percent improvement in MAPE convergence. Convergence of the learning weights to

witness weights happened after gradient descent steps. An increase in the number

of gradient descent steps can increase the improvement in MAPE, shifting the points

towards the y=x line and also shift the data points between the positive (initial MAPE -

final MAPE >0) and negative (initial MAPE - final MAPE <0) categories in Figure 3.1 and

Figure 3.3. However, the networks we ran either diverged or learning slowed down

significantly after a while.

39

https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=10%5E6#0


4.3 Diversity of input

When we model spike trains as a real-valued point process, the first naive model used

is the homogeneous Poisson model. In this model, the process is only characterized by

its sole parameter, firing rate , which was fixed to be 10 Hz in our study. When it

comes to homogeneous Poisson processes, where the firing rate remains constant,

the non-stationarity of the spike trains cannot be accurately simulated. The lack of

diversity in the spike train inputs can be a cause of lack of improvement in the

convergence of weights. To improve the results, the input spike train is modeled from an

inhomogeneous poisson process with a time dependent firing rate . The frequency

of spiketrain varied sinusoidally between 5 and 10 Hz at a frequency of 2 Hz. The spike

trains are phase-shifted uniformly for the 15 synapses.

The increase in the number of converging neuron pairs when the input spike train is

derived from an inhomogeneous poisson process shows that diversity in the input at the

synapses is important for the synaptic weight update rule to learn the transformation

accurately. When every synapse receives the same Poisson spike train input, even

when the network learns the transformation since the algorithm is insensitive to the

order of the synapses, a scrambled order of weights might be learned, which ultimately

gives a large MAPE value. To discriminate one synapse from the other, it is necessary

to give diverse input to each synapse.

4.4 Quiescent neurons and silent synapses

In a witness-learning neuron pair, when the learning neuron, driven by inhomogeneous

poisson input is run till convergence, we observe that it is able to reach 81.6%

convergence in 1075 gradient descent steps after which learning slows down

considerably and the convergence of weights stops. It has been observed that the

synapses that have very huge initial MAPE dominate the learning while other synapses

40

https://www.codecogs.com/eqnedit.php?latex=%5Clambda#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda(t)#0


remain silent or learn very slowly. Learning slows down once the synapses with very

high initial MAPEs converge considerably.

When synapses do not receive rich enough input from the presynaptic neuron (in this

case, the poisson input from outside) for the neuron to generate spikes, they remain

silent (or their weights do not change during learning). The synaptic weight update rule

depends on the spiking of the neurons to show us what the synaptic weights are. If a

neuron is not spiking, we obtain no information from the neuron that can aid learning.

Generalizing to a multi-layered network, if a presynaptic neuron is firing at a low rate,

the PSPs at the synapse of postsynaptic neuron does not reach the spiking threshold or

do not contribute significantly to spiking. As a result, the learning at that particular

synapse stops. Silent synapses occur due to the dependence of the learning rule on the

pre-post synaptic firing rate.

A potential solution for the silent synapse problem is by introducing homeostatic

plasticity to the learning rule. Through homeostatic plasticity, if we are able to regulate

the output spike rate of a synapse irrespective of the incoming spike train or the

excitability of the postsynaptic neuron, the synapses would not go silent and therefore,

learning doesn't slow down.

4.5 Role of homeostatic plasticity in solving silent synapse problem

Homeostatic plasticity counterbalances the many forces that destabilize activity in the

neural circuits of the brain like long term potentiation (LTP) and long term depression

(LTD). LTP, for example, is widely considered responsible for learning and storage of

information but it can also result in increasing the excitability of the postsynaptic neuron

which ultimately hinders the synaptic specificity of correlation-based plasticity

mechanisms and information storage based on synaptic strengths (Turrigiano,2012).

Homeostatic plasticity mechanisms work by generating an error signal which when

deviates from an optimum set value, changes the excitability of the neuron to bring the

activity towards the optimum value. Empirical evidence from several studies suggest

that the neurons of the central nervous system are able to maintain an optimum

average firing rate by compensatory changes like synaptic scaling which involves

41



increase or decrease of the amplitude distribution of miniature excitatory postsynaptic

currents(mEPSPs)

(Turrigiano et.al, 1998;Desai et al., 2002). Homeostatic plasticity mechanisms in the

CNS operate over a wide range of spatial and temporal scales - local and global as well

as presynaptic and postsynaptic.

Synaptic scaling and intrinsic plasticity mechanisms have been used in many studies in

order to stabilize learning with other learning rules, for example, STDP. One of the more

popular mechanisms, global multiplicative synaptic scaling, adjusts the weights of

synapses based on the error between target postsynaptic activity signal and time

averaged postsynaptic activity signal. van Rossum (2000) models the activity

dependent scaling as follows:

Let’s say a(t) is the post-synaptic activity signal given by

where are the spiketimes of neurons. We can update the weights at every time step

according to:

where gives the target postsynaptic activity and is the learning rate.

Incorporating this with the current error functional of our synaptic weight update rule, will

help to solve the problem caused by very high or low presynaptic neuron firing in a

multilayered neuronal network. If a presynaptic neuron is firing at a high rate, the

synapse from that neuron to the postsynaptic neuron will contribute significantly to the

firing of the postsynaptic neuron which will result in a high firing rate of the postsynaptic

neuron. However, the tuple of weights that can produce the output spike train from the

postsynaptic neuron is no longer unique. Therefore, with each gradient update the

weights will move towards one desired weight to the other and the error remains very

high and erratic (Banerjee, 2016). Conversely, if the presynaptic neuron is firing at a low

rate, the synapses from that neuron will contribute less to the firing of the postsynaptic

neuron and therefore will be small and the learning of those synapses slows down

42

https://www.codecogs.com/eqnedit.php?latex=%20%5Ctau%20%5Cfrac%7Bda%7D%7Bdt%7D%20%3D%20-a(t)%20%2B%20%5Csum_i%20%5Cdelta(t-t_i)%20#0
https://www.codecogs.com/eqnedit.php?latex=t_i#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%20%7Bdw%7D%7Bdt%7D%20%3D%20%5Cbeta%20w(t)%20%5Ba_%7Bgoal%7D%20-%20a(t)%5D%20#0
https://www.codecogs.com/eqnedit.php?latex=a_%7Bgoal%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B%5Cpartial%20E%7D%7B%5Cpartial%20w%7D%20#0


(Banerjee, 2016). This is what we call the silent synapse problem. Both of these

scenarios can be solved by introducing a homeostatic plasticity mechanism to our

weight update rule which will regulate the firing rate of the postsynaptic neuron.

4.6 Steepest descent and fixed learning rate

The synaptic weight update rule implemented in this work, updates the parameters i.e,

the weights of the synapses by computing the gradient of the error function w.r.t. to the

weight and following the direction of the steepest descent which is given by the negative

of the gradient (Meza, 2010). This can be represented by:

where is the gradient of the error function w.r.t the parameters at the iteration and

is the learning rate.

Selecting an optimal learning rate is a very significant step in the learning process

because a very high learning rate can result in overshooting the minima and a very low

learning rate can result in very slow learning or getting stuck in a local minima. One way

in which our synaptic weight update rule has made the learning rate adaptable is by

introducing a cap on the update tensor that clamps the size of the update step at a

maximum value. However, choosing the learning rate and cap on update tensor is not a

trivial task. Suboptimal values can result in slow learning, oscillations, or getting stuck in

a local minima. When the update vector is getting capped continuously, true learning

can no longer take place and it has been observed to result in oscillations of the weights

of the learning network. Manually increasing the cap on the update vector seems to

solve the oscillation problem.

4.7 Momentum and Adaptive gradient methods

Adaptive gradient methods use an adaptive learning rate which takes into account the

characteristics of the data and the parameters and helps in overcoming the issues

discussed earlier caused due to fixed rate and cap.

43

https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20x_t%20%3D%20-%20%5Ceta%20g_t%20#0
https://www.codecogs.com/eqnedit.php?latex=g_t#0
https://www.codecogs.com/eqnedit.php?latex=t%5E%7Bth%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ceta#0


One way to speed up learning and prevent its dependence of the hyperparameters,

learning rate and cap on update tensor, is by using momentum and adaptive gradient

methods. Adding momentum to gradient descent has two advantages: the weights

converge faster and weights will not get stuck in a local minima. Momentum prevents

the weights from going in the direction of steepest descent and pushes it to continue

going in the previous direction. This also damps oscillations as gradients of opposite

signs are added. Assigning separate learning rates to each synaptic connection makes

sure that even if the gradients are very different for each synapse, there is no overshoot

of minima caused by simultaneously adjusting multiple incoming weights of a neuron to

rectify the same error.

Out of momentum, AdaGrad, RMSprop and Adam, the latter showed better

convergence, at an accelerated rate without getting stuck in local minima or diverging

after a few steps. Momentum showed accelerated convergence compared to Adam, but

diverged after a few gradient descent steps. While using AdaGrad and RSMProp,

learning slowed down considerably after a few gradient descent steps.

Adam inherits the benefits of AdaGrad, RMSProp and Momentum which makes it

computationally faster and perform better than traditional optimisers.

Momentum : Momentum enables the algorithm to use information from the previous

iterations to improve the speed and accuracy of the optimization process. It helps the

gradient descent algorithm converge more quickly and efficiently. Gradient descent

updates the weights of the neural network by taking a step in the direction of the

steepest descent of the error function. However, this process can be slow and

inefficient, especially when the error function has many local minima. Momentum helps

to address this issue by taking into account the average of the previous batches of

gradient descent, which allows the algorithm to remember the direction of the previous

steps and use this information to make more informed decisions about which direction

to take in the next iteration. This approach helps the optimization algorithm to converge

faster towards the minimum point of the error function and avoid getting stuck in local

minima.

44



RMSprop: RMSprop employs an adaptive learning rate. RMSprop adapts the learning

rate of each weight based on the previous average of the magnitudes of its gradients.

This allows the algorithm to take larger steps when the gradients are small and smaller

steps when the gradients are large, which can help converge to the optimal solution

faster. It only needs to store the exponential moving average of the squared gradients

for each weight, which requires less memory than storing all the gradients of each

weight over time. The two benefits mentioned above ,the adaptive learning rate and

efficient memory usage of RMSprop can lead to faster convergence to the optimal

solution, especially for complex non-convex optimization problems.

Adagrad : Adagrad adapts the learning rate of each weight based on the historical sum

of the squares of its gradients. This allows the algorithm to take smaller steps for

frequently occurring features and larger steps for infrequent features, which can be

useful in dealing with sparse data. Adagrad, apart from having an adaptive learning rate

also performs automatic feature selection. It downweights the importance of features

that have already been well-learned which can help reduce the risk of learning slowing

down due to small errors in the recent past.

Adam : Like Adagrad and RMSprop, Adam adapts the learning rate of each weight

based on the historical average of the magnitudes of its gradients. However, instead of

using the sum of the squares of the gradients or the moving average of the squared

gradients, Adam uses the moving average of the first and second moments of the

gradients, which can lead to more efficient and effective adaptation of the learning rate.

Like momentum, Adam uses the moving average of the gradients to reduce the

variance of the updates and accelerate the optimization process. However, unlike

momentum, the moving average in Adam is biased towards zero in the early iterations,

which can help with faster convergence.

4.8 Implications of the work

45



The choice of optimiser is very important when dealing with large datasets and large

spiking neural networks. Traditional gradient descent in addition to being slow to

converge, is also oblivious to the characteristics of the data being learned. In order to

efficiently make use of time and memory, it is important to choose an optimiser that uses

a per-parameter or adaptive learning rate and can accelerate the learning process.

There is no universally best optimiser that suits every network and data. Adaptive

gradient methods like AdaGrad, RMSProp and Adam are particularly useful when

dealing with sparse gradient tasks, where many of the gradient values are close to zero

(Zhou, 2020). In such cases, traditional methods like traditional gradient descent can be

slow to converge, since the same learning rate is applied to all parameters. AdaGrad,

RMSProp and Adam adaptively adjust the learning rate for each parameter based on

the magnitude of recent gradients. This allows the learning rate to be scaled differently

for different parameters, which can improve convergence rates in sparse gradient tasks.

Adam especially has become an industry standard in the past few years because of its

benefits. Adam inherits the benefits of Stochastic gradient descent with Momentum ,

AdaGrad and RMSProp. Adam seems a perfect fit to accelerate learning using our

synaptic weight update rule and its properties ensure convergence of weights even

when the traditional gradient descent is diverging.

We also identify the problem of silent synapses and discuss a way to address the

problem when it occurs in a multi-layered feedforward network. The problem can be

solved by adding a separate homeostatic plasticity error term that brings the frequency

of the output spike train closer to the target spike train as a first step during the weight

update rule. Later this term switches off and the spike time disparity rule takes

precedence to learn the precise timing of spikes.

4.9 Future directions

The current study involves implementation of the synaptic weight update rule on a

single spiking neuron receiving multiple synaptic inputs. The next step would be

implementing the weight update rule on a spiking neural network with one or multiple

hidden layers. For an intermediate layer neuron, gradient descent is defined as

46



where,

The problem of quiescent neurons can be solved by incorporating homeostatic plasticity

that changes the excitability of neurons. Homeostatic plasticity mechanisms function by

producing an error signal that alters the neuron's excitability to move the activity closer

to the optimal value when it strays from the set value. Further details of implementation

discussed in section 4.5.

47

https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%20%7B%5Cpartial%20t_l%5EO%7D%7B%5Cpartial%20w_%7Bg%2Ch%7D%7D%20%3D%20%5Csum_%7Bj%20%5Cepsilon%20%5Cmathcal%7BF_i%7D%7D%20%5Cfrac%20%7B%5Cpartial%20t_l%5EO%7D%7B%5Cpartial%20t_%7Bi%2Cj%7D%5EI%7D%20%5Cfrac%20%7B%5Cpartial%20t_j%5EH%7D%7B%5Cpartial%20w_%7Bg%2Ch%7D%7D%20#0


48

REFERENCES

1. Banerjee, A. (2001). On the Phase-Space Dynamics of Systems of Spiking

Neurons. I: Model and Experiments. Neural Computation, 13(1), 161–193.

2. Banerjee, A. (2016). Learning precise spike train-to-spike train transformations in

multilayer feedforward neuronal networks. Neural Computation, 28(5), 826–848.

3. Bialek, W., Rieke, F., Steveninck, R. de Ruyter van, & Warland, D. (1991).

Reading a neural code. Science, 252, 1854-1857.

4. Bohte, S. M., Kok, J. N., & La Poutré, H. (2002). Error-backpropagation in

temporally encoded networks of spiking neurons. Neurocomputing, 48(1), 17–37.

5. Booij, O., & tat Nguyen, H. (2005). A gradient descent rule for spiking neurons

emitting multiple spikes. Information Processing Letters, 95(6), 552–558.

6. Brette R (2012) Computing with Neural Synchrony. PLoS Comput Biol 8(6):

e1002561.

7. Brette, R. (2015) ‘Philosophy of the Spike: Rate-Based vs. Spike-Based Theories

of the Brain’, Frontiers in Systems Neuroscience, 9.

8. Brunel, N., & van Rossum, M. C. W. (2007). Lapicque’s 1907 paper: from frogs to

integrate-and-fire. In Biological Cybernetics. Springer Science and Business

Media LLC. 97(5–6) pp. 337–339.

9. Deneve, S. (2008). Bayesian spiking neurons i: Inference. Neural Computation,

20(1):91-117.

10.de Ryter van Steveninck, R., Lewen, G., Strong, S., Koberle, R., & Bialek,W.

(1997). Reproducibility and variability in neural spike trains. Science, 275,

1805-1808.

11. Desai, N.S., Cudmore, R.H., Nelson, S.B., & Turrigiano, G.G. (2002). Critical

periods for experience-dependent synaptic scaling in visual cortex. Nature

Neuroscience, 5, 783-789.

12.Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for

online learning and stochastic optimization. Journal of machine learning

research, 12(7).

48



49

13.Florian R. V. (2012). The chronotron: a neuron that learns to fire temporally

precise spike patterns. PloS one, 7(8), e40233.

14.Gawne, T. J., Kjaer, T. W., & Richmond, B. J. (1996). Latency: another potential

code for feature binding in striate cortex. Journal of neurophysiology, 76(2),

1356–1360.

15.Gerstner, W., Ritz, R. & van Hemmen, J.L. (1993). Why spikes? Hebbian

learning and retrieval of time-resolved excitation patterns. Biol. Cybern. 69,

503–515.

16.Gerstner, W. (1995). Time structure of the activity in neural network models.

Phys. Rev. E, 51, 738–758.

17.Gütig, R., & Sompolinsky, H. (2006). The tempotron: a neuron that learns spike

timing–based decisions. Nature Neuroscience. Springer Science and Business

Media LLC. 9(3), pp. 420–428.

18.Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane

current and its application to conduction and excitation in nerve. The Journal of

physiology, 117(4), 500–544.

19. Izhikevich. E. M. (2003). Simple model of spiking neurons. IEEE Transactions

on Neural Networks. vol. 14. no. 6. pp. 1569-1572.

20. Izhikevich E. M. (2006). Polychronization: computation with spikes. Neural

computation, 18(2), 245–282.

21.Johansson, R. S., & Birznieks, I. (2004). First spikes in ensembles of human

tactile afferents code complex spatial fingertip events. Nature neuroscience, 7(2),

170–177.

22.Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

23.Maass, W. (1997). Networks of spiking neurons: The third generation of neural

network models. In Neural Networks (Vol. 10, Issue 9, pp. 1659–1671). Elsevier

BV.

24.Meza, J.C. (2010). Steepest descent. Wiley Interdisciplinary Reviews:

Computational Statistics, 2.

49



50

25.Middlebrooks, J. C., Clock, A. E., Xu, L., & Green, D. M. (1994). A panoramic

code for sound location by cortical neurons. Science, 264(5160), 842–844.

26.Nemenman I, Lewen GD, Bialek W, de Ruyter van Steveninck RR (2008) Neural

Coding of Natural Stimuli: Information at Sub-Millisecond Resolution. PLoS

Comput Biol 4(3): e1000025.

27.Lee, J. H., Delbruck, T., & Pfeiffer, M. (2016). Training Deep Spiking Neural

Networks Using Backpropagation. Frontiers in Neuroscience, 10.

28.Panzeri S, Petersen RS, Schultz SR, Lebedev M, Diamond ME (2001) The role

of spike timing in the coding of stimulus location in rat somatosensory cortex.

Neuron 29:769–77

29.Ponulak, F. (2005). ReSuMe—new supervised learning method for spiking neural

networks (Tech. Rep.). Poznan: Institute of Control and Information Engineering,

Poznan University of Technology.

30.Ramaswamy, V., & Banerjee, A. (2014). Connectomic constraints on computation

in feedforward networks of spiking neurons. Journal of computational

neuroscience, 37(2), 209–228.

31.Rumelhart, D., Hinton, G. & Williams, R.(1986). Learning representations by

back-propagating errors. Nature 323, 533–536.

32.Thorpe, S., Delorme, A., & Van Rullen, R. (2001). Spike-based strategies for

rapid processing. Neural networks : the official journal of the International Neural

Network Society, 14(6-7), 715–725.

33.Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., & Nelson, S. B.

(1998). Activity-dependent scaling of quantal amplitude in neocortical neurons.

Nature, 391(6670), 892–896.

34.Turrigiano G. (2012). Homeostatic synaptic plasticity: local and global

mechanisms for stabilizing neuronal function. Cold Spring Harbor perspectives in

biology, 4(1), a005736.

35.Victor, J. D., and Purpura, K. P. (1996). Nature and precision of temporal coding

in visual cortex: a metric-space analysis. J. Neurophysiol. 76, 1310–1326.

36.Widrow .B and Hoff M. E. Adaptive Switching Circuits. (1960). IRE WESCON

Convention Record, pp. 96-104.

50



51

37.Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701.

38.Zenke, F., & Ganguli, S. (2018). SuperSpike: Supervised Learning in Multilayer

Spiking Neural Networks. Neural computation, 30(6), 1514–1541.

https://doi.org/10.1162/neco_a_01086

39.Zeldenrust, F., Wadman, W. J., & Englitz, B. (2018). Neural Coding With

Bursts—Current State and Future Perspectives. Frontiers in Computational

Neuroscience, 12.

40.Zhou, D., Chen, J., Cao, Y., Tang, Y., Yang, Z., & Gu, Q. (2020) On the

convergence of adaptive gradient methods for nonconvex optimization. NeurIPS

Workshop on Optimization for Machine Learning (OPT)

51


