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ABSTRACT

Complex networks provide a common framework to study and understand dynamics

on them, for instance, on internet, transportation networks, and protein interaction

networks of biological systems. Though work on network science can be traced back to

almost 200 years ago, there is considerable interest in the last two decades due to many

interesting applications. Transport dynamics on complex networks, such as traffic on

roads or information packets on network of routers, show many emergent phenomena,

one of which is an extreme event, a rare event whose probability of occurrence is

very low. An extreme event is said to occur if flux through a certain node goes

beyond the prescribed threshold (may be related to its flux handling capacity). We

use non-interacting degree-biased random walk routing (in real-time) on urban road

transportation networks of four cities, namely, Mumbai, Delhi, Ahmedabad and New

York. These are planar networks. We confirm the validity of a previously known

result for planar networks as well – that small degree node are more prone to extreme

events than hubs.

Another emergent phenomenon of interest is congestion arising due to walker in-

teraction and finite handling capacity in the system. For example, road junctions can

accommodate only a finite and small number of vehicles. We adopted a interacting

random walk model for dynamics on city road transportation networks and studied

the collective behaviour through phase transition. The congestion phase transition of

real planar network shows similarity with that of 2D lattice network (a homogenous

network), in spite of the fact that degree distribution of planar network is quite dif-

ferent from a 2D lattice network. Finally, we studied the extreme events using the

generalized random walk model, a realistic transport model and showed that nodes

with lower degree are more susceptible to encountering extreme events than the hubs.
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Chapter 1

Introduction

1.1 Introduction

Network science is an interdisciplinary field that studies the structure, behaviour,

and dynamics of complex networks, such as social networks, biological networks, and

transportation networks. One of the key applications of network science is in the

modelling and analysis of traffic flow in transportation networks. Traffic modelling is

an important area of study, as it can help us to understand the behaviour of vehicles on

the road, predict traffic congestion, and design more efficient transportation systems.

In network science, traffic modelling involves using mathematical and computa-

tional models to simulate the flow of vehicles through a network of roads, highways,

and other transportation infrastructure. These models can be used to predict the

behaviour of traffic under different conditions, such as changes in road design, traffic

volume, and weather.

One of the central concepts in traffic modelling is the idea of network centrality,

which refers to the importance of different nodes or edges in the network. Nodes or

edges with high centrality are those that are most critical for the flow of traffic through

the network. For example, in a road network, a major highway or intersection might

have high centrality, as it connects many other roads and directs a large volume of

traffic. At last, we assert that understanding and optimizing transportation systems

have significant implications for improving the safety, efficiency, and sustainability of

our cities and communities. These systems impact the daily lives of people and play

a crucial role in enabling the mobility of goods and people. Efficient and well-planned
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transportation networks not only reduce travel time and costs but also minimize the

negative impact on the environment and contribute to a better quality of life.

1.2 Networks

Any complex physical system can be abstracted as a graph, for instance, a city net-

work consisting of roads and roads intersection, i.e. junction can be modelled as

a graph whose nodes and edges or links depict the junction and road, respectively.

Mathematically, a graph is represented as G(N,E), where N and E are the numbers

of nodes and edges in the graph. A graph G(N,E) can be represented by an N ×N

matrix or adjacency list. The adjacency matrix of a graph is more informative, and

any kind of graph, like directed, multigraph and weighted, can be represented easily.

1.2.1 Types of networks

• Simple undirected graph

A network whose links do not have a defined direction. Examples: Internet,

power grid, scientific collaboration networks.

• Simple Directed Network or Digraph

A network whose links have a defined direction.

• Multi-Graph

A network with multiple links(or parallel links) between two pairs of nodes.

• Multi-Digraph

A network with multiple directed links(or parallel links) between two pairs of

nodes.

• Weighted network

A network whose links have a defined weight, for example, road length, in the

case of a city network.

• Planar network

A network that can be embedded in the plane, or in other words, it can be drawn

on the plane in such a way that its edges intersect only at their endpoints.
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(a) Simple undirected graph (b) Directed Graph

(c) Multi-Digraph (d) Weighted Graph

Figure 1.1: Different graphs and its representation by adjacency matrix, taken from [4]

1.2.2 Basic characterization of networks

• Degree, average degree and degree distribution

The degree of a node is the number of links to the nodes in the network. If ki

is the degree of ith node, then the total number of links, E, in an undirected

network is given by

E =
1

2

N∑
i=1

ki. (1.1)

The average degree is given by,

⟨k⟩ = 1

N

N∑
i=1

ki =
2E

N
, (1.2)

or

⟨k⟩ =
∞∑
k=0

kpk, (1.3)

where pk is the fraction of nodes with degree k or normalized degree distribution,

which follows normalization condition
∑∞

k pk = 1. The degree distribution

plays a central role in network theory, for instance, for the discovery of scale-free

networks, which assumes a power-law degree distribution p(k) = k−γ, 2 ≤ γ ≤ 3.
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In a directed network, the total number of links E is given by

E =
N∑
i=1

kin
i =

N∑
i=1

kout
i , (1.4)

where kin
i and kout

i represents number of links pointing inward and outward from

a ith node respectively. The total degree of node i is given by

ki = kin
i + kout

i . (1.5)

The average degree of a directed network is

⟨kin⟩ =
1

N

N∑
i=1

kin
i = ⟨kout⟩ =

1

N

N∑
i=1

kout
i =

E

N
. (1.6)

• Paths and distances

A path is a sequence of nodes such that each node is connected to the next node

successively by a link; for example, the path between nodes i0 and in can be rep-

resented as an ordered list of n links P = {(i0, i1), (i1, i2), (i2, i3), ..., (in−1, in)},

comprising a total of n + 1 nodes. For a weighted network Aij = Wij, path

length is
∑

(i,j)∈P Wij. For an unweighted network, Wij = 1, the length of a

path is simply the number of links. There can be any number of paths between

given two pairs of nodes, a path which corresponds to the least number of links

(unweighted network ) or the least distance (weighted network) is called the

shortest path. Note that the shortest path does not need to be unique. The

longest among all shortest paths in the network is called the network’s diame-

ter. The average shortest path is the average of the shortest paths between

all pairs of nodes in the network.

• Connectedness

A network is said to be connected if a path exists for every pair of nodes in the

network. A network is disconnected if there is at least one pair of nodes with no

path. A link which makes a disconnected network connected is called a bridge.
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1.3 Extreme events and congestion phenomenon

1.3.1 Extreme events (EEs)

Extreme events are often associated with various types of crises, such as wildfires,

heatwaves, hurricanes, volcanic eruptions, and stock market crashes. For example,

when the temperature T (t) of a certain location recorded in a particular season as

a function of time t exceeds a predefined threshold Tq (which may be the normal

temperature of that location in that particular season), due to some inherent fluctu-

ations, it is considered an extreme event. It is worth noting the scalar variables such

as temperature, wind speed, economic growth, and seismic activity. Many theoretical

and empirical studies have been conducted on the statistics and dynamics of extreme

events for such univariate scalar variables [2].

In a similar sense as of above examples, extreme events can also take place on complex

networks (an abstract version of complex systems). In complex network settings, phe-

nomenons like traffic jams in city roads, web servers not responding due to heavy load

of web requests, floods in the network of rivers, and power blackouts due to tripping

of power grids may be the result of some rare events on networks. For example, flux of

vehicles on junction of roads goes beyond a certain threshold (related to its handling

capacity) can cause traffic jam in the whole city. Real-world examples of extreme

events include the China National Highway 110 traffic jam, which was a recurring

traffic jam on China National Highway and Beijing–Tibet expressway, in Hebei and

Inner Mongolia. The traffic jam slowed thousands of vehicles for more than 100 km

and lasted for ten days. Many drivers were only able to move their vehicles 1 km per

day, and some reported being stuck in the traffic jam for up to five days, making it

one of the longest traffic jams on record [15]. Another notable example is the power

blackout that occurred in the northeastern United States in 2003.

These events can be thought of as an emergent phenomenon due to the transport

process on the networks and lead to losses ranging from financial and productivity

to even of life and property, in order to handle them, it is important to estimate

probabilities for the occurrence of EEs and, if possible, incorporate them to design

resilience networks. Incorporating the estimation of probabilities of extreme events
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into the design of networks can help improve their resilience, to withstand and recover

from extreme events, reducing the magnitude and duration of their impacts. This can

involve various strategies, such as redundancy, robustness, and adaptability, to ensure

that the network can continue to function even in the presence of extreme events. For

example, in a city road network, incorporating alternative routes and transportation

modes can help reduce the impact of traffic jams.

1.3.2 Congestion

Congestion is another important phenomenon on real transport networks such as

the Internet, city roads and other queuing complex networks. It is considered to

be another emergent phenomenon or collective behaviour that mainly arises due to

interaction in the system. The first instance of congestion collapse on the Internet

was recorded in October 1986, when the data throughput between Lawrence Berkeley

National Laboratory and the University of California in Berkeley experienced a sharp

decline from 32 Kbps to a mere 40 bps. Since then, many synthetic simulations have

been done on real systems (like the Internet) to study the cause and design better

routing protocols to mitigate congestion. The same phenomena can be thought to

happen on city road networks as dynamics on the Internet are quite similar to that on

city roads. People are now applying routing algorithms for traffic dynamics on roads

which were developed for improving internet traffic flow [3].

Fig. 1.2, depicts how extreme events are different from congestion. It is possible

for extreme events and congestion to occur concurrently within a transport system. It

is imperative to conduct a thorough examination of these events in order to formulate

theoretical forecasts and implement measures to mitigate the loss of property and life,

while also saving energy and time.

12



(a) Extreme events is said to occur when x(t) > q, q
is some threshold. It can be studied only for free flow
regime or x(t) fluctuates about some average value.

(b) Here, vehicles are accumulating on a node or junc-
tion, forming queue and hence slowing down the traf-
fic flow. Thus, causing congestion.

Figure 1.2: Extreme event and congestion phenomenon.
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Chapter 2

Statistical Features of Spatial

Networks of Urban Streets

2.1 Introduction

A particular class of complex networks whose nodes occupy a precise position in two-

or three-dimensional Euclidean space and whose edges are real physical connections

referred to as spatial networks. Spatial networks of urban streets refer to the intercon-

nected system of roads, streets, and pathways that comprise a city’s transportation

infrastructure. Understanding the properties and characteristics of these networks

is essential to understanding how cities function and how they can be designed or

improved.

One important aspect of spatial networks or any network is centrality. Central-

ity measures identify the most important nodes or intersections in a network, based

on factors such as the number of connections they have to other nodes, the number

of shortest paths through them, and the flow of traffic through them. By identify-

ing these key locations, planners and policymakers can better understand the flow

of vehicles, goods, and information through a city, and design interventions to im-

prove accessibility, safety, and efficiency. There are different centrality measures, for

instance, betweenness centrality, closeness centrality and degree centrality. Each of

these measures provides a different perspective on the network, and can be used to

identify different types of nodes that are important for different reasons.
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2.2 Spatial networks of urban streets

A spatial network of urban streets refers to the interconnected system of roads and

streets that make up a city’s transportation infrastructure. These networks can vary

in complexity, with some cities having a more grid-like pattern while others have a

more organic and meandering layout.

New York City’s street network is known for its grid-like pattern, which was es-

tablished in the early 19th century as part of the Commissioners’ Plan of 1811. The

other cities that show grid-like pattern includes Portland, Oregon and San Francisco,

California. Ahmedabad, Delhi and Mumbai, on the other hand, have more organic

and unplanned street networks that have developed over time. In these cities, streets

often follow the contours of the land, and intersections can be irregular and difficult

to navigate.

In this thesis, we examine the urban street networks of major Indian cities, in-

cluding Delhi, Mumbai, and Ahmedabad. To provide a comparative analysis, we also

studied the planned city network of New York, USA. We obtained the spatial network

data, denoted as G(N,E), using OSMnx [5]. Here, N and E represent the number of

nodes and edges in the network, respectively. To capture approximately 1000 nodes,

we selected a region with a specific radius around the given coordinates. It is worth

noting that the data structure of networks obtained using OSMnx is a multi-digraph.

However, for simplicity, we converted it into a simple undirected network. Table

2.1 provides essential information regarding our networks, while fig. 2.1 showcases a

visually appealing representation of the networks under consideration.

City Coordinates Radius (Km) N E Total road length (Km)
Ahmedabad 23.03◦N, 72.58◦E 1.5 1064 1528 135.3
NewYork 40.71◦N, 74.01◦W 2 1117 1930 193.3
Delhi 28.70◦N, 77.10◦E 0.95 1092 1708 99.5

Mumbai 19.07◦N, 72.87◦E 2.15 1071 1522 169.7

Table 2.1: Network details
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(a) NewYork city (b) New Delhi

(c) Mumbai (d) Ahmedabad

Figure 2.1: Spatial networks of urban streets, red dots represent nodes and grey lines
edges
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2.3 Degree distribution of networks

The degree distribution of a city’s street network can provide insights into the city’s

transportation infrastructure, connectivity, and accessibility. In a city with a more

grid-like pattern, like New York, the degree distribution is nearly uniform, with most

intersections having a similar number of streets connected to them, for instance,

there are equal numbers of nodes of degrees 3 and 4. In a city with a more organic

street network, like Mumbai, Delhi and Ahmedabad, the degree distribution is more

heterogeneous, peaking at degree 3, see fig. 2.2.

Figure 2.2: Degree distribution for different networks

2.4 Road length statistics

An important aspect of urban street networks is their street’s road length distribution.

In fig 2.3(a), we have shown the road length distribution. The cumulative distribution

F (L) is defined as F (L) =
∫ L

0
E(L′)
ET

dL′ where ET is the total number of edges and

E(L′)dL′ is the number edges with having edge length between L′ and L′ + dL′, see

fig. 2.3(b). Table 2.2, shows statistics of road length of our considered networks. The

minimum road length in all networks is 10m.

17



City < L > σL Maximum road length
Ahmedabad 88.4 95.5 1282.2
New York 100.0 117.2 2170.1
Delhi 58.3 39.5 432.9

Mumbai 111.4 101.5 903.6

Table 2.2: Statistics of road length in metres

(a) Histogram (b) Cumulative distribution

Figure 2.3: Distribution of edge length in meters (m) for considered cities

2.5 Diameter of networks

The shortest distance between the two most distant nodes in the network is termed

as diameter. It can be computed as, first compute all the shortest path lengths

from every node to all other nodes, the maximum of all the paths is the diameter.

The diameter for weighted and unweighted networks need not be the same. For an

unweighted graph, diameter is the minimum number of links to be hopped between

the two most distant nodes, while for a weighted graph, it is the minimum path length

to be travelled. The table 2.3 shows the diameter of considered networks

City Diameter (unweighted) Diameter (weighted)
Ahmedabad 46 6.05Km
NewYork 44 6.15Km
Delhi 58 3.75Km

Mumbai 66 8Km

Table 2.3: Diameter of networks
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2.6 Centrality

We have computed the two important centrality measures, namely,

• Betweenness centrality

• Closeness centrality

For any centrality Cx, we computed the cumulative distribution using

F (Cx) =

∫ Cx

0

N(C
′
x)

NT

dC ′
x, (2.1)

where NT is the total number of nodes and N(C ′
x) is the number of nodes having

centrality value between C
′
x and C ′

x + dC ′
x.

2.6.1 Betweenness centrality

Betweenness centrality is a measure of a node’s importance in a network. It quantifies

the number of shortest paths that pass through a node, and it is often used to identify

nodes that act as “bridges” or “gatekeepers” between different parts of a network.

Betweenness centrality can be different for the network with unweighted and weighted

edges. In an unweighted network, the shortest path for a pair of nodes is the least

number of links connecting them. On the other hand, in a weighted network, the

shortest path is the one for which the sum of the weight of edges is minimum.

Mathematically, betweenness centrality of a node is given by

CB(v) =
1

(N − 1)(N − 2)

∑
s,t∈V

σ(s, t|v)
σ(s, t)

, (2.2)

σ(s, t) = number of shortest paths from node s to t.

σ(s, t|v) = number of shortest paths from node s to t passing through node v.

And, N is the total number of nodes.

In 2.4(a) and 2.5(a), we can see the distribution of betweenness centrality for

different real planar networks for unweighted and weighted, respectively.

In general, weighted betweenness centrality can be a more accurate measure of

a node’s importance in a network since it considers the actual distances and costs
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(a) Histogram (b) Cumulative distribution

Figure 2.4: Distribution of betweenness centrality of nodes for unweighted networks

(a) Histogram (b) Cumulative distribution

Figure 2.5: Distribution of betweenness centrality of nodes for weighted networks

of paths between nodes. However, unweighted betweenness centrality can still be

useful in some cases, especially when the weights of the edges in the network are not

meaningful or when the focus is on the network’s topology rather than the actual

distances between nodes.

2.6.2 Closeness centrality

Closeness centrality is a measure of centrality in a network. It measures how easily a

node can reach other nodes in the network. A node with high closeness centrality is

considered to be ”close” to other nodes in the network, in the sense that it can reach
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them quickly and efficiently. This can be an important characteristic in many real-

world networks, such as social networks or transportation networks, where the ability

to quickly and efficiently navigate the network is important. Closeness centrality of

a node u is the reciprocal of the average shortest path distance to u over all N − 1

reachable nodes.

C(u) =
N − 1∑(n−1)

v=1 d(u, v)
, (2.3)

where d(u, v) = shortest path distance between u and v.

Fig. 2.6(a) and 2.7(a), show the distribution of closeness centrality for different planar

networks for unweighted and weighted, respectively.

(a) Histogram (b) Cumulative distribution

Figure 2.6: Distribution of closeness centrality of nodes for different unweighted networks

2.7 Clustering coefficient

The clustering coefficient indicates the degree of connectivity of neighbours of a given

node. For a node i with degree Ki the local clustering coefficient is defined as

Ci =
2Li

Ki(Ki − 1)
, (2.4)

where Li represents the number of links between the Ki neighbours of node i. Ci for

nodes of a network lies between 0 and 1.

• Ci = 0 if none of the neighbours of node i link to each other.
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(a) Histrogram (b) Cumulative distribution

Figure 2.7: Distribution of closeness centrality of nodes for different weighted networks

• Ci = 1 if the neighbours of node i form a complete graph, i.e. they all link to

each other.

• Ci can be considered as the probability of two neighbours of a node-link to

each other. Consequently, C = 0.5 implies that there is a 50% chance that two

neighbours of a node are linked.

In summary, Ci measures the network’s local link density: The more densely inter-

connected the neighbourhood of node i, the higher its local clustering coefficient.

Average clustering coefficient

The degree of clustering of a whole network is captured by the average clustering co-

efficient, ⟨C⟩, representing the average Ci over all nodes i = 1, ..., N . Mathematically,

⟨C⟩ = 1

N

N∑
i=1

Ci (2.5)

City < C >
Ahmedabad 0.0754
NewYork 0.0550
Delhi 0.0157

Mumbai 0.0810

Table 2.4: Average clustering values
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2.8 Degree correlation

Consider a bunch of nodes, and let’s assume that each node connects randomly to

other nodes. Then, the probability that nodes with degrees K and K ′ link to each

other can be given by

pK,K′ =
KK ′

2L
(2.6)

Where L is the total number of links in the network.

We can clearly see if K and K ′ are large so as pK,K′ , so we expect that p1,2 << p13,56.

But, in general, we can find the networks in which hubs avoid hubs, falsifying the

above.

2.8.1 Assortativity and disassortativity

The networks having approximately the same degree distribution may have different

structures, giving rise to a different class of networks.

• Assortive

• Disassortive

• Neutral

(a) Assortive: Hubs connect
hubs

(b) Disassortive: Hubs avoid
hubs

(c) Neutral

Figure 2.8: Networks with precisely the same degree distribution, but displaying
different degree correlations [4]
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2.8.2 Measuring degree correlation: Degree correlation func-

tion

The degree correlation gives the relationship between the degrees of nodes that link to

each other. We can quantify the degree correlations of a node by the average degree

of its neighbours.

knn,i =
1

Ki

Ki∑
j=1

Kj, (2.7)

where Ki and Kj are the degree of node i and its neighbour j, respectively.

• Neutral Network

For a neutral network, the degree correlation function is a constant given by

knn =
< K2 >

< K >
(2.8)

so a graph plotted between knn and degree K of nodes is a horizontal line. if

we model the degree correlation function by an exponential function

knn = AKµ (2.9)

where A is a constant, then µ would be zero for neutral networks.

• Assortive Network

For a assortive network, the degree correlation function knn is an increasing

function of degree K, so if we model the degree correlation function by 2.9, then

we have µ > 0.

• Disassortive Network

For a disassortive network, degree correlation function knn is a decreasing func-

tion of degree K, so using equation 2.9, we have µ < 0.

So correlation exponent µ acts as a single parameter for quantifying the type of

network.

From the figure 2.9(b), µ > 0 for all networks, hence all considered networks are

assortative.

24



(a) Variation of average degree correlation function knn with de-
gree K

(b) Curve fitting by Akµ model

Figure 2.9: Average degree correlation function < knn > and curve fitting
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Chapter 3

Degree Biased Routing Model and

Extreme Events on Weighted

Spatial Networks of Urban Streets

3.1 Introduction

For simulating transport dynamics on a real urban city road network, the random

walk model is a simple and useful fundamental model to start with, compared to

real complex transport dynamics. Assuming we disregard driver behaviour, vehicle

interaction, and other intricate factors, we can consider the flow of vehicles through

the road traffic network as a random walk. However, to create a more accurate model

of this flow, we can use the generalized random walk. This approach incorporates

a bias towards either high-degree nodes or low-degree nodes to better represent the

actual flow of traffic [11], [13]. Imagine two distant road junctions that are not

directly linked by a road. In such cases, these junctions are often connected through

a significant hub in the city network. This scenario is one example of how traffic tends

to be biased towards the hubs in practical situations. This tendency can be observed

in other types of networks as well, such as telecommunication networks where phones

connect to the nearest hubs, and railways that link remote areas to important or

major junctions. The real-world instances we just mentioned inspired us to develop

a model for transportation processes using topology-biased random walks. We then

analyzed the likelihood of extreme events and other associated statistical measures
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using this model. In contrast to work in the paper [13], here we have adopted real

transportation network of a city with edges depicting actual road length, and a vehicle

is asked to take a speed from a normal distribution. On the other way, this can be

seen as a continuous time random walk where a vehicle picks up a waiting time from

a distribution of edge travel time shown in figure 3.1.

3.2 Degree biased routing model

We consider a weighted network consisting of a finite, undirected, and connected set

of N nodes and E edges, with the weight of each edge representing the corresponding

road length. There are W independent walkers performing biased random walks on

this network in the sense explained below.

• A walker on a node i transits to node j with probability Pij given by

Pi→j =
Kα

j∑
l K

α
l

Aij (3.1)

where α is a parameter, Ki is node degree and Aij is adjacency matrix.

• A speed v is chosen from a normal distribution N(µ, σ), time taken to traverse

the edge Eij of length Lij given by

tij =
Lij

v
(3.2)

• All walkers are allowed to traverse the whole network until total travel time

reaches a maximum tmax.

• Suppose for node i, the walkers time series is [(0, W0), (ti1, W1), (ti2, W2)....(tim,Wm)]

such that tim < tmax where Wj ∈ Z+ is the number of walkers at time in-

stance tij ∈ R+. If ∆N is the window time (or time resolution), the inter-

val in which walkers visited the node. So, our new time series is given as

[(0,W0), (∆,W1+W2+ ..Wk), (2∆,Wk+1+Wk+2..), ...(n∆, ..+Wm)], where n is

some multiple of ∆ such that n∆ < tim
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3.3 Travel time distribution of walkers

The speed of a walker (or vehicle) is taken from a normal distribution N (µ, σ) with

mean µ = 40km/hr and σ = 5km/hr. For every edge Eij with length Lij of the

network, possible travel time in seconds is given by

Tedge = 3.6
(Lij

v

)
(3.3)

where 3.6 is a conversion factor and v ∈ N (40, 5) Km/hr.

Distribution of Tedge for all considered networks is shown in figure 3.1. Since the

minimum edge length of all considered networks is 10m, so minimum travel for each

is 0.7s. From the table 3.1, the average edge travel time is the smallest for Delhi’s

network. We used the Delhi network for random walk simulation, and optimal ∆ was

found to be 5s, closer to the average edge travel time.

Figure 3.1: Distribution of edge travel time on different city roads in seconds s

City Mean(s) SD Max Min
Ahmedabad 8.1 8.8 181 0.7
NewYork 9.1 10.8 306.4 0.7
Delhi 5.3 3.7 61.1 0.7

Mumbai 10.2 9.4 127.6 0.7

Table 3.1: Statistics of travel time on edges in seconds s
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3.4 Analysis of dynamics

We took 5000 non-interacting walkers (or vehicles) on the Delhi city network with

1092 nodes and 1708 edges. All vehicles were allowed to traverse the network for the

maximum time, tmax = 120000s. Since travel time at each edge is different so it is

not possible that all walkers stopped at the same time. So, we chose tm = 100000s.

The walkers time series is shown in figure 3.2 for ∆ = 5s. The distribution of number

of walkers, as shown in Figure 3.3, indicates that when α > 0, the flux is inclined

towards nodes with a higher degree, whereas for α < 0, there is a greater number of

walkers present on nodes with a smaller degree.

(a) K=1 (b) K=3

(c) K=6

Figure 3.2: Walkers time series for node of different degree K
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(a) K=1 (b) K=3

(c) K=6

Figure 3.3: Distribution of number of walkers W for nodes of different degree
K

3.5 Statistics of the flux of walkers

In the paper [8], it was asserted that a flux fluctuation σ is related to average flux

< W > as

σ ∼< W >β (3.4)

where β ∈ [0.5, 1].

For standard discrete time random walk on the scale-free network, the average flux

of walkers on a node is directly proportional to its degree K, < W >∝ K, while flux

fluctuation varies as σ ∝
√
K, [12]. Thus, σ ∝

√
< W >, which implies β = 0.5 and

it is evident from the figure 3.4.
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(a) α=-2 (b) α=-1

(c) α=0 (d) α=1

(e) α=2

Figure 3.4: Variation of flux fluctuation σ with average flux < W >, for all nodes
of the network
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3.5.1 Variation of flux statistics as a function of node param-

eter

The average flux and fluctuation passing through a node must depend on the degree

of node, since higher-degree nodes are mostly visited by walkers. Figure 3.5 shows

a plot of flux statistics with degree of nodes computed for all nodes. So, for a given

biased parameter α, < Wi >= F(Ki) is not a good model. The flux through a node

will also depend on the degree of neighbouring nodes. We introduced a new parameter

[13] generalized strength ϕ, a measure of the ability of a node to attract walkers. The

generalized strength is a function of the degree of the node and that of its nearest

neighbours.

ϕ̃i = Kα
i

Ki∑
j=1

Kα
j (3.5)

Note that ϕi depends on the bias parameter α and the degree of the nearest neighbours

connected by an edge. So, nodes with the same degree can have different generalized

strengths, which is evident from figure 3.6. The generalized strength of a node is de-

termined by the local connectivity structure surrounding the node and is independent

of the overall network structure. This differs from the behaviour of standard random

walk on networks, where the larger-scale network topology does not play a significant

role. In biased random walks on networks, however, the local network structure plays

an important role.

To have generalized strength on the same scale for different values of α, we defined

normalized generalized strength ϕi for every biased value α

ϕi =
ϕ̃i∑N
j=1 ϕ̃j

(3.6)

In Fig. 3.6, we show how the generalized strength ϕ depends on the degree of a node

for several values of α in a planar network. For α = 0, which is the standard random

walk case, the generalized strength is the same for the same degree node. From the

figure 3.7, average number of walkers shows a linear relationship with generalized

strength(ϕ) irrespective of α, i.e < Wi >∝ ϕ and σi ∝ ϕβ thus holding universality of

relation σ ∝< W >β, 0.5 ≤ β ≤ 1 see [8].
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(a) Average flux < W > vs K (b) Flux fluctuation σ vs K

Figure 3.5: Variation of flux statistics with degree K, computed for all nodes

Figure 3.6: Generalized strength ϕ as function of degree K
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(a) Average flux < W > as a function of ϕ (b) Flux fluctuation σ as a function of ϕ

Figure 3.7: Flux statistics as a function of generalized strength ϕ

3.6 Extreme events (EE) statistics

In the context of extreme value statistics, an extreme event refers to a rare occurrence

with a low probability of happening, usually located at the tail of the probability

distribution function. In the context of a network, we will adopt the same concept

for each node. Specifically, we will consider an event as extreme if the number of

walkers passing through a particular node at any time exceeds a threshold value, q.

We modelled threshold qfor node i as

qi = ⟨Wi⟩+ mσi (3.7)

where ⟨Wi⟩ is the average flux & σi is flux fluctuation through node i, and m is a real

number.

We assert that threshold q should depend on node statistics rather than a constant

for all nodes of the network because when a uniform threshold is applied regardless of

the node, it can result in certain nodes consistently experiencing extreme events while

others never encountering any extreme events at all, [12][13]. So, the probability of
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occurrence of an extreme event on node i is given by,

P i
EE =

1

n

n∆∑
t=0

θ(Wi(t)− qi) (3.8)

where Wi(t) is a time series of walkers on node i, n is the number of time steps in the

time series, qi = threshold for node i and θ(x) is a Heaviside function defined as

θ(x) =

 0 x < 0

1 x ≥ 0
(3.9)

3.6.1 Probability of occurrence of extreme events as a func-

tion of generalized strength

From figure 3.7, we can clearly see that the flux statistics through a node are propor-

tional to its generalized strength value. It is better to see the probability of occurrence

of an extreme event as a function of generalized strength ϕ, averaged over nodes hav-

ing the same value of ϕi.

If there are Ni number of nodes having the same value of generalized strength ϕi, let

{ϕi} denotes the set of nodes with the same value of generalized strength, then, the

probability of occurrence of an extreme event is given by

PEE(ϕi) =
1

Ni

∑
j∈{ϕi}

P j
EE (3.10)

The simulation results depicted in Figure 3.8 display how the probability of ex-

treme events varies as a function of ϕ for different values of α. Notably, the results

indicate that nodes with lower generalized strength ϕ values tend to have a higher

predicted probability of encountering extreme events, on average, than nodes with

higher ϕ values. This is an unexpected observation. These results are in accordance

with, that were obtained in the paper by Kishore et al., 2012 [13] for the discrete

degree biased random walk on SF networks, which shows that extreme events are

more probable for nodes which attract large flux (on average).

35



(a) α=-2 (b) α=-1

(c) α=0 (d) α=1

(e) α=2

Figure 3.8: Variation of probability of occurrence of extreme event PEE as a
function of generalized strength ϕ
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Chapter 4

Interactive Random Walk Routing

And Congestion Phenomenon on

Unweighted Spatial Networks of

Urban Streets

4.1 Introduction

Traffic congestion is a condition in transport that leads to slower speeds, longer trip

times, and increased vehicular queuing. Traffic congestion in a city can arise due to

its large population, limited road infrastructure, underlying road network and high

number of vehicles on the road. Major cities of a country are more prone to congestion

mainly due to a high number of automobiles and inefficient traffic routing strategy,

resulting in large waiting hours, pollution and waste of energy and fuel. It is easier

to execute soft strategies rather than hard strategies for traffic management. Soft

strategies involve designing of efficient routing protocol, on the other hand, modifying

the underlying network structure comes under hard strategies. Hard strategies are

cost and time expensive and hence hard to implement.

Apart from a standard random walk, Computer scientists have proposed many rout-

ing algorithms for the efficient transport of data packets in the communication net-

work, one of which is the shortest-path routing protocol (SPRP). The real transport

networks are queuing networks, where each node generates packets or vehicles and de-
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livers to their destination node via a suitable routing protocol. In [9] author proposes

a routing strategy incorporating congestion level on neighbouring nodes with SPRP.

If j is the destination node for a packet generated on node i, then neighbouring node

l is chosen such that the quantity:

deffl = hdij + (1− h)cl, (4.1)

is minimum, where dij is the minimum number of hops one has to pass by in order to

reach j, and h is a tunable parameter that accounts for the degree of traffic awareness

incorporated in the delivery algorithm (h = 1, recovers SPRP, no congestion control).

It was verified that algorithms which integrate topological and traffic information

have been shown to perform better than the standard protocol (SPRP) in terms

of efficiency and packet delivery. Later on, many other protocols were proposed,

including probabilistic routing protocols [14]. But, there is a need for a parameter

to quantify the effectiveness of the protocol in the sense that all packets generated

with rate P reach their destination or, in other words, can the network process all

the incoming data packets. If it can do it, the total number of packets in the system

A(t) will be stationary in time or in free-flow regime, if it cannot, A(t) will grow in

time or the network will be in congested phase. One useful metric for distinguishing

between the two phases is to divide the average growth rate of the queues ˙⟨A⟩ by the

average rate P̄ at which packets are received. This yields the fraction of packets that

are either stuck in queues or not delivered,

ρ =
˙⟨A⟩
P̄

. (4.2)

In the paper, Echenique et al. [10], author came up with two scenarios, in one

where purely topological routing, such as routing along the shortest paths, is em-

ployed, the emergence of congested phases occurs in a continuous manner. However,

when a traffic-aware scheme is incorporated, the transition from uncongested to con-

gested phases becomes discontinuous, shown in fig. 4.1.

Aiming to analyze a wide range of congestion phenomena from a statistical per-

spective showing continuous, discontinuous, and hybrid phase transitions between a

free-flow and a congested phase, a generalized random walk routing protocol was de-
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Figure 4.1: Phase transition diagram for traffic protocol with different conges-
tion control parameter h, taken from[10]

veloped, simple enough to obtain analytical results. This protocol incorporates key

elements from real-world routing schemes, including a balanced approach between

topology-based and traffic-based routing strategies. This generalized routing protocol

was introduced with the intention of studying congestion dynamics comprehensively[].

The model was capable of replicating the observed cross-over in the scaling of traffic

fluctuations in the Internet, see Fig. 4.1, and furthermore, a modified version of the

model can qualitatively replicate certain stylized facts of traffic behaviour in trans-

portation networks.

Here, we adopted the model to study the congestion phenomenon on a real planar

network (city road network). The congestion phenomenon on the scale-free network

and grid network are well studied and shows the following phase transition behaviour,

shown in fig. 4.2.

4.2 Interacting random walk routing model

Let us consider a network of N nodes and let {Ωi} be the set of neighbours of node

i. At each time step, particles are generated at each node i with probability pi. Each

node is endowed with a FIFO queue in which arriving particles are stored. Let ni be

the number of particles in the queue of node i. If ni > 0, at most ri topmost parti-

cles can leave the node and jumps in the queue of a randomly chosen neighbour j ∈
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(a) Random regular graph, degree K = 4 (b) Scale-free network, exponent γ = 2.5

Figure 4.2: Phase transition diagram for synthetic network, each with 1000
nodes. The symbols represent the behaviour for increasing values of birth prob-
ability p, µ = 0.2, n∗ = 10 and different congestion control parameter η. The
dashed curve is obtained by decreasing the value of p, taken from [7]

{Ωi}. The arrival node rejects the particle with probability η(nj), and it stays on the

departure node. If not rejected, the particle is either destroyed during the hopping

with a probability µj or enters the queue on node j, schematic for the dynamics is

shown below 4.3.

Figure 4.3: For a node i in queuing network, pi (Creation rate), ri (Service rate
or outflux), µi (Absorbing rate), Pi→j (Transition probability)

For simplicity, we consider pi = p, µi = µ and η(ni) = η̄θ(ni − n∗
i ) where θ(x)

indicates the Heaviside step function for all node i. Thus, as per the routing protocol,
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node i refuses to accept a walker with probability η if ni ≥ n∗
i . Thus, here n∗

i is the

threshold queue length for ith node.

The primary objective of this model is to examine the statistical properties of

queue lengths, rather than individual particle trajectories. This approach enables us

to focus on probabilistic events and overlook the fate of individual particles gener-

ated and routed to their destination. The steady state of the system is governed by

the balance between the creation and absorption rates. When creation rates exceed

absorption rates, queues become saturated with particles, leading to congestion and

indefinite growth of the queues. However, as the external drive that creates particles

remains constant over time, the system eventually reaches a non-equilibrium steady

state where the queues grow at a constant rate. To characterize the phase transition

from a free phase to a congested one, we use the order parameter ρ defined as

ρ = lim
t→∞

A(t+ τ)− A(t)

Npτ
, (4.3)

where τ is the observation time, A(t) =
∑N

i ni, is the total number of particles in

the system at time t, Np is the average number of particles created at each time step

and τ is the observation time. Note that p =
∑

i pi
N

is the average birth probability

and N is the number of nodes. System is said to be congested in the steady state if

the order parameter is greater than 0. The higher the value of ρ higher is the level

of congestion, ρ = 1 corresponds to a highly congested state, while ρ = 0 means

no congestion or free flow. We can determine the congestion state of any node i by

computing its local order parameter just by replacing A(t) by ni(t) and p by pi. In

this work, we considered two scenarios

• Constant parameters values: All parameters of the model are kept same for

all the nodes of the network.

• Degree dependent outflux and node capacity: Only outflux ri and node

capacity n∗
i are made degree dependent.
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4.3 Analysis of the model dynamics with constant

parameter values

Here, we consider pi = p, µi = µ, ri = r, and n∗
i = n∗. The rejection probability is

given by

η(ni) = η̄θ(ni − n∗), (4.4)

where η̄ ∈ [0, 1] and θ(x) is a unit step function as defined in chapter 3, equation 3.9.

The transition probability for a walker to go from node i to j, can be written as

Pi→j =
Aij(1− η(nj))

ki
. (4.5)

Note that for η̄ = 0, we recover the standard random walk with no congestion

control.

(a) η̄ = 0 (b) η̄ = 0.5

(c) η̄ = 0.9

Figure 4.4: Variation of A(t) with time t, µ = 0.2, n∗ = 10 and different congestion
control parameter η̄
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(a) η̄ = 0 (b) η̄ = 0.5

(c) η̄ = 0.9

Figure 4.5: Distribution of number of walkers on nodes of different degree K,
p = 0.1, µ = 0.2, n∗ = 10, and different congestion control parameter η̄
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(a) Mumbai city network, 1071 nodes (b) Delhi city network, 1092 nodes

(c) Ahmedabad city network, 1064
nodes

(d) New York city network, 1117
nodes

(e) 2D grid network,1000 nodes (f) Scale-free network,1000 nodes

Figure 4.6: Order parameter ρ as a function of birth probability p, µ = 0.2,
n∗ = 10 and ri = 1, and different rejection probability η
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4.4 Analysis of the model dynamics when outflux

ri and node capacity n∗
i are degree dependent

Here, we consider pi = p, µi = µ, ri = b0ki, and n∗ = a0ki, where ki is degree of

node i, a0 and b0 are nonzero-positive integers such that b0 ≤ a0. So, the rejection

probability is modified to

η(ni, ki) = η̄θ(ni − n∗(ki)), (4.6)

(a) η̄ = 0 (b) η̄ = 0.5

(c) η̄ = 1

Figure 4.7: Variation of A(t) with time t, µ = 0.2, ri = ki, n∗ = ki and different
congestion control parameter η̄

When node capacity n∗
i and outflux ri are made degree dependent, congestion

regime completely disappears for scale-free networks, while for planar networks, it

still exists though critical birth probability (pc) shifted to a higher value as shown in

fig. 4.8.
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(a) Mumbai city network (b) Delhi city network

(c) Ahmedabad city network (d) New York city network

(e) 2D grid network (f) Scale-free network

Figure 4.8: Order parameter ρ as a function of birth probability p, µ = 0.2, n∗ = ki
and ri = ki, for different rejection probability η
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Considering parameter values p = 1, µ = 1, η̄ = 1, ri = b0ki, and n∗ = a0ki,

it would be interesting to see for what values of a0 and b0, we see no congestion on

planar networks. As a matter of computational complexity, we took a0 up to 9. For

different combination of a0 and b0, we find mainly four behaviour,

1. Linear variation

In this case, total number of walkers, A(t) linearly increasing with time t, as

shown in fig. 4.10(a).

2. Piecewise linear

Linear variation with a kink at a certain time tk, shown in fig. 4.10(b) for b0 = 4

and a0 = 5.

3. Congested and free-flow phase coexist

In paper [7], it was observed that for high η̄, there is the coexistence of two

phases in a certain range of p, shown in fig. 4.9. We also found the coexistence

of two phases, as shown in fig. 4.10(b) for b0 = 4 and a0 = 7 , where system

enters in congested state after critical time, tc.

4. Free flow

A(t) fluctuates about some mean value with Ȧ(t) = 0, after some small transient

time.

We grouped these four behaviour of variation of A(t) with time t into three cases,

• Highly congested (includes case 1)

• Weakly congested or two phases coexist (includes cases 2 and 3)

• Free flow (includes case 4)

We have shown three different cases by a heatmap for different combinations of

a0 and b0, shown in fig. 4.11. New York shows similarity with 2D lattice network. It

can be said that all cities show quite similar behaviour.
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Figure 4.9: Variation of total number of particles A(t) with time t for different
birth probability p, µ = 0.2, ri = 1, and η̄ = 0.9, taken from [7]
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(a) Highly congested

(b) Weakly congested or two phases coexist

(c) Free Flow

Figure 4.10: Variation of A(t) with time t, p = 1, µ = 0.2, n∗ = a0ki, ri = b0ki and
η̄ = 1
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(a) Ahmedabad (b) NewYork

(c) Delhi (d) Mumbai

(e) 2D lattice (f) Scale Free

Figure 4.11: Heat map showing level of congestion for different values of a0 and
b0, p = 1, µ = 0.2, n∗ = a0ki, ri = b0ki, and η̄ = 1
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Chapter 5

Interactive Random Walk Routing

and Extreme Events on

Unweighted Spatial Networks of

Urban Streets

5.1 Introduction

In the previous chapter, we studied congestion phenomenon on queuing networks.

In this chapter, we will study extreme events adopting the model introduced in the

previous chapter. As we discussed before, the extreme event is the other emergent

phenomenon on networks. Extreme events, are defined as exceedance above a pre-

scribed quantile. Unlike congestion, it is not necessary that extreme event emerges

due finiteness of node size. EE arise from the natural fluctuation in the traffic passing

through a node or a junction and not due to external constraints or the finiteness of

the junction. People adopted the simple random walk model and its different ver-

sions to study extreme events, [12] [13]. In chapter 2, we studied extreme events

by adopting non-interacting continuous time degree biased random walk model on

city road transportation networks. Contrary to expectation, it was observed that the

nodes which attract large flux experience less extreme events than those which attract

small flux or vehicles. But, there is a need for a more realistic routing protocol for

transport dynamics. It was found that even the intelligent routing protocol (SPRP)
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doesn’t change the nature of the result [12]. The actual dynamics of transportation

are interactive in nature and, therefore, require queuing networks. Hence, we have

adopted the generalized random walk model on queuing networks from [6], which has

already been described in chapter 4 of this thesis. The model is non-conservative in

nature. Hence the total number of vehicles in the system does not remain constant

over time. Instead, it may fluctuate about an average or linearly increase with time

depending on the specific values assigned to the model parameters.

The presence of a stationary distribution is an essential requirement for determin-

ing the EE probabilities. Hence, if a system is in a non-equilibrium steady state, it

is not possible to calculate the EE probabilities. It is possible to determine the EE

probabilities for a system that exhibits only slight variations in the total number of

walkers. In a free flow state, the system achieves a stationary state in which there is

a small fluctuation of walkers about some average value. Consequently, our analysis

of the extreme event probabilities focuses on the free-flow state of the system.

5.2 Interacting random walk model and analysis of

dynamics

For transport dynamics, we adopt an interacting random walk model on four urban

street networks of Ahmedabad, New York, Delhi and Mumbai. As a review, our model

parameters are of the form pi = p, µi = µ, ri = b0ki, and n∗ = a0ki, where ki is the

degree of node i, a0 and b0 are nonzero-positive integers such that b0 ≤ a0. So, the

rejection probability is modified to

η(ni, ki) = η̄θ(ni − n∗(ki)), (5.1)

where η̄ ∈ [0, 1].

We would like to assert that when road junction reached its capacity and becomes fully

occupied, no other vehicle can enter it or there is a complete rejection i.e η(ni) = 1

for ni > n∗
i . so, to include this realistic feature, we will take η̄ = 1.

We fixed our parameter values p = 1 (generating vehicles at full capacity), µ = 0.2,

ri = b0ki, n
∗
i = a0ki & η̄ = 1. In order to study EEs, the system should be in free flow
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regime. Hence, we look for values of a0 and b0, for which the system is in free-flow

regime. For Ahmedabad, Delhi and Mumbai, the free-flow state is found at a0 = 6

and b0 = 6, while for New York, a0 = 4 and b0 = 4, see fig. 4.11

Fig. 5.1 shows the variation of the total number of walkers, A(t), as a function of

time for different cities. The distribution of number of walkers is shown in fig. 5.2. 1

Figure 5.1: Variation of A(t) with time t, p=1, µ = 0.2, n∗ = a0ki and ri = b0ki, and η̄=1

5.3 Statistics of flux of walkers

The variation flux fluctuations σ with average flux ⟨W ⟩ depicts the behaviour of the

system. Here, the behaviour is quite different and interesting, as shown in fig. 5.3

5.3.1 Variation of flux statistics as a function of node param-

eter

It is good to see how average flux and fluctuations vary as a node parameter. By

intuition, a good node parameter is its degree K. In fig. 5.4, we plotted the average

flux ⟨W ⟩ and fluctuation as a function of the degree of nodes (average over nodes with

the same degree).

Let us now see how fluctuations σK (average over nodes with the same degree) vary

with average flux, ⟨W ⟩. In fig. 5.5, curves coincide for all cities.

1(a0, b0) = (6, 6) for Delhi, Mumbai and Ahmedabad and (a0, b0) = (4, 4) for New York
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(a) K = 1

(b) K = 3

(c) K = 6

Figure 5.2: Distribution of number of walkers W on nodes of different degrees
K
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(a) Ahmedabad (b) NewYork

(c) Delhi (d) Mumbai

Figure 5.3: Variation of standard deviation σ of walkers with average number
of walkers ⟨W ⟩, for all nodes of the network

(a) Average flux ⟨W ⟩ as a function of degree
K

(b) Flux fluctuation σ as a function of
degree K

Figure 5.4: Statistics of flux of walkers as a function of degree K

5.4 Probability of occurrence of EEs

As discussed in chapter 3, an event as extreme if flux passing through a particular

node at any time exceeds a threshold value, q. We modelled threshold q for node i as
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Figure 5.5: Variation of flux fluctuations σK with average flux < WK >

qi = ⟨Wi⟩+mσi (5.2)

where ⟨Wi⟩ & σi are average flux and fluctuations through node i and m is a real

number. Here, we chose the scaling parameter m = 4, fig 5.6 shows the probability

of occurrence of EE as a function of degree K.

Figure 5.6: Variation of probability of occurrence of EE, PEE with degree K
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Chapter 6

Conclusion

In chapter 1, we introduced types of networks and their basic characteristics, and

described extreme events and congestion phenomena.

In Chapter 2, we focused on examining the statistical features of the spatial net-

work of urban streets. Our analysis included studying the degree distribution of the

networks, and we observed that Mumbai, Delhi, and Ahmedabad exhibit quite sim-

ilar distributions, with a large number of nodes having a degree of 3. In contrast,

New York, being a planned city, has the highest number of nodes with degrees 3 and

4. We observed that the distribution of road length in most cities shows power law

behaviour. Among the spatial networks we analyzed, Mumbai appears to have the

largest diameter in both the weighted and unweighted versions. We computed the

different centrality measures for weighted and unweighted networks, namely between-

ness centrality and closeness centrality. From the degree correlation function, we can

conclude that all the networks under consideration were assortative.

In Chapter 3, inspired by the real-world examples, we adopted degree biased rout-

ing model on spatial networks and found that on average, extreme events are more

likely to occur at nodes with lower generalized strength ϕ values compared to those

with higher generalized strength ϕ.

In Chapter 4, we studied the congestion phenomenon on unweighted spatial net-

works, in spite of heterogeneity in the degree distribution of city planar networks,

the congestion diagram looks similar to that of a grid network with just a small shift

in critical birth probability value(pc) at which the network becomes congested. The

congestion appears earlier in spatial networks of streets due to heterogeneity in its
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degree distribution. If the outflux ri and node capacity n∗
i are made dependent on

the degree, the scale-free network does not exhibit congestion even when the birth

probability is p = 1. However, congestion persists in planar networks.

In chapter 5, the probability of occurrence of extreme events was studied using

interacting random walk model on unweighted spatial networks where nodes form

queues. Here, too we found that lower-degree nodes are more susceptible to extreme

events.

During my MS project I came up with the idea of real traffic model see appendix1

B. It is just the extension of the model introduced in chapter 3 of this thesis. Traffic

dynamics actually happens on roads or links rather than nodes or junctions. It would

be interesting to study the phase transition.

1Due to time constraint analysis wasn’t completed, python code see [1]
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Appendix A

Traffic Speed Models

A.1 Introduction

The important parameters of traffic models are vehicular speed and vehicle density.

Many people proposed models to give an exact relationship between speed and density.

The following are the models

• Greenshield’s macroscopic stream model

• Greenberg’s logarithmic model

• Underwood’s exponential model

• Pipes’ generalized model

we will see the details about the models in the coming sections.

A.2 Greenshield’s macroscopic stream model

Macroscopic stream models represent how the behaviour of one parameter of traffic

flow changes concerning another. The most important among them is the relation

between speed and density. Greenshield proposed the first and most simple relation

between them. As illustrated by the equation below, he assumed a linear speed-density

relationship to derive the model.

v = vf −
[ vf
kjam

]
k, (A.1)
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where vf is the free flow speed, k is vehicular density and kjam is the vehicular

density at jam condition. When density becomes zero, speed approaches free flow

speed (i.e. v → vf as k → 0).

A.2.1 Flow

• Flow of vehicles is given by

q = kv (A.2)

• Relation between flow and density is given by

q = kvf −
[ vf
kjam

]
k2 (A.3)

• Relation between flow and speed is given by

q = kjamv −
[kjam

vf

]
v2 (A.4)

A.2.2 Density corresponding to maximum flow

We can calculate the density at which flow is maximum. In equation A.3 put dq
dk

= 0,

we get k0 =
kjam
2

. So, maximum flow is qmax =
vfkjam

4

velocity v0 at maximum flow can be obtain by putting k = k0, v0 =
vf
2

A.2.3 Applying Greenshield model

For applying this model in my traffic simulation, k is the number of vehicles per edge.

Every edge has some finite capacity for holding the vehicles. So speed taken by a

vehicle will depend on the number of vehicles currently held by the edge.

vnext =

 vf

[
1−

(
kcurrent

kjam

)]
, k ≤ kjam

0, kcurrent > kjam
(A.5)
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Variation of v with k

If free speed is taken to be, vf=80 km/h = 22.8 m/s

v = 22.8
[
1−

( k

kjam

)]
, 0 ≤ k ≤ kjam (A.6)

A.1

Distribution of edge travel time

time of travel is given by

t =
D

v
, (A.7)

t =
D

22.8
[
1−

(
k

kjam

)] . (A.8)
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(a) Speed profile

(b) Histogram

(c) Boxplot

Figure A.1: Speed profile and distribution, Greenshield model
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(a) Travel time profile

(b) Histogram

(c) Boxplot

Figure A.2: Travel time profile and distribution, D = 500m, Greenshield model
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A.3 Greenberg’s logarithmic Model

Greenberg assumed a logarithmic relation between speed and density.

v = v0 ln
[kjam

k

]
(A.9)

The model has gained excellent popularity because this model can be derived analyt-

ically. The main drawback of this model is that as density tends to zero, the speed

tends to infinity. This shows the inability of the model to predict the speeds at lower

densities.

A.3.1 Applying Greenberg’s logarithmic Model

For practical application, there is a need for modification to the Greenberg model

since speed can not be infinite at high density.

vnext =


1.01 v0 ln(kjam), kcurrent = 0

v0 ln
[

kjam
kcurrent

]
, kcurrent ≤ kjam

0, kcurrent > kjam.

(A.10)

Variation of v with k

Taking v0 = 40km/h, speed is given by

v = 11.4 ln
[kjam

k

]
m/s, 0 < k < kjam. (A.11)

Distribution of time intervals

Time of travel is given by using the equation

t =
D

11.4 ln
[
kjam
k

] (A.12)
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(a) Speed profile

(b) Histogram

(c) Boxplot

Figure A.3: Speed profile and its distribution, Greenberg’s model
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(a) Travel time profile

(b) Histogram

(c) Boxplot

Figure A.4: Travel time profile and distribution, D = 500m, Greenberg’s model
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A.4 Underwood’s exponential model

Underwood proposed an exponential model to overcome the limitation of Greenberg’s

model, as shown below.

v = vfe
− k

kjam , (A.13)

where kjam is the optimal density, i.e. the density corresponding to the maximum

flow. vf is free to flow speed.

In this model, speed becomes zero only when the density reaches infinity which is

the drawback of this model. Hence this cannot be used for predicting speeds at high

densities.

A.4.1 Applying Underwood’s exponential model

For practical application, I modified the exponential model.

vnext =

 vfe
− kcurrent

kjam , kcurrent ≤ kjam

0 , kcurrent > kjam
(A.14)

Variation of v with k

If we take free speed, vf = 22.8m/s so, our equation of speed is given by

v = 22.8e
− k

kjamm/s (A.15)

Distribution of time intervals

Time of travel is given by

t =
D

22.8e
− k

kjam

(A.16)
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(a) Speed profile

(b) Histogram

(c) Histogram

Figure A.5: Speed profile and distribution, Underwood’s model
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(a) Travel time profile

(b) Histogram

(c) Boxplot

Figure A.6: Travel time profile and distribution, D = 500m, Underwood’s model
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A.5 Pipes’ Generalized model

Pipes proposed a model given by the following equation.

v = vf

[
1−

( k

kjam

)n]
(A.17)

where n ∈ Z+.

It is a more generalized modelling approach with introducing a new parameter n.

When n is set to one, Pipe’s model resembles Greenshield’s model. Thus, by varying

the values of n, a family of models can be developed.

A.5.1 Applying Pipes’ Generalized model

Let n=2, so speed is given by

vnext =

 vf

[
1−

(
kcurrent

kjam

)2]
, k ≤ kjam

0, kcurrent > kjam
(A.18)

Variation of v with k

If we take free speed, vf = 80km/h = 22.8m/s,

v = 22.8
[
1−

( k

kjam

)2]
, 0 ≤ k ≤ kjam (A.19)

Distribution of time intervals

Time of travel is given by,

t =
D

v
, (A.20)

t =
D

22.8
[
1−

(
k

kjam

)2] . (A.21)
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(a) Velocity profile

(b) Histogram

(c) Boxplot

Figure A.7: Speed profile and distribution, Pipes’ model
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(a) Travel time profile

(b) Histogram

(c) Boxplot

Figure A.8: Travel time profile and distribution, D = 500m, Pipes’ model
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Appendix B

The Real Traffic Model

B.1 A link model to mimic real traffic

• Consider a real planar city-directed network consisting ofN nodes and 2E edges,

where E is the number of edges in the undirected version of the considered

network. Each edge Eij has a finite length Lij ∈ R+ (actual road length of a

city).

• Each node and edge is endowed with a FIFO finite queue.

• Vehicles are created only on nodes with probability pi per time step (time res-

olution) and can only be destroyed on node with probability µi. No vehicle is

destroyed on edges.

• Vehicle on node i enters the queue of edge Eij, with probability Pi→j given by,

Pi→j =
1

Ki

, (B.1)

where Ki is degree of node i.

• Speed acquired by a vehicle on node i going to node j is given by,

Vi→j =

 Vf exp
[
−n(i,j)

n∗
(i,j)

]
, n(i,j) ≤ n∗

(i,j)

0, n∗
(i,j) < n(i,j)

(B.2)

where Vf is free flow speed, n(i,j) is number of vehicles on edge Eij, whose
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capacity is n∗
(i,j) defined as,

n∗
(i,j) = b0 ⌊Lij⌋, (B.3)

where b0 ∈ Z+ is some constant, Lij is edge length and ⌊⌋ represents the math-

ematical floor function.

• Node i can deliver at most ri vehicle to connecting edges per time step (time

resolution).
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