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1. Abstract 

 

Subseasonal forecasting (SSF) is the forecasting of the weather parameters two 

weeks (weather timescale) to two months (seasons timescale) in advance. SSF was 

considered a ‘predictability desert’ as it is too long for much memory of the atmospheric 

initial conditions and too short for slowly varying oceanic variability to be felt sufficiently 

strongly. Moreover, it is a high dimensional problem as it has to consider predictors 

from atmosphere-land-ocean. Thus, using various parameters as predictors that 

capture intra-seasonal variability from these three domains, I tried to investigate the 

weekly forecast of temperature and precipitation at 2- week, 3-week and 4-week 

forecast horizon over India by a computationally inexpensive ML model-MultiLLR, 

which prunes out irrelevant predictors and integrates remaining predictors linearly for 

each target date. After integrating the MultiLLR model with existing physics based 

dynamical models, the forecast is found to be more skillfull by 41-57% (for 

temperature) and 178-401% (for precipitation) than the operational dynamical model 

ERFS currently used by IMD to forecast sub-seasonal climate. It has also been found 

that, though dynamical models forecast are more skillfull on shorter timescale (week 

2), the hybrid approach of MultiLLR comprising of both dynamical model and statistical 

model shows higher skill of precipitation forecast on extended range time scale (week-

3, week4). However, for temperature prediction, hybrid approach doesn’t give any 

better prediction than statistical approach. 
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2. Introduction 
 

Subseasonal to seasonal (S2S) forecasting is about forecasting of weather 
parameters, especially temperature and precipitation beyond two weeks, but less than 
a season (two months) ahead. This timescale of S2S prediction lies in between the 
weather forecasting timescale (upto 2-week) and the climate forecasting timescale (a 
season or beyond). Besides major advances in both weather and climate forecasting, 
S2S forecasting is still a big challenge. In order to understand that, an overview of 
modelling of the earth system is needed. 
 
A predictable phenomenon occurring on a particular timescale has the potential 
predictability of weather or climate on that timescale (Hoskins, 2013). From fig. 1, On 
a continuum of time scales, there are various interactions and phenomenons occurring 
between and within components of the earth system (atmosphere-land-ocean-
cryosphere-stratosphere) on the timescale of daily, to weekly, yearly and so on.  These 
phenomenon and components of earth system, can be used as predictability sources 
on the corresponding timescale. 
 

 
Figure 1 Time-scale is shown along the horizontal axis. Some phenomena on the different time-scales are shown at the 
bottom (acronyms are given in the text). At the top are indicated the components of the Earth system that need to be 
represented. (From Hoskins, 2013)  

 
Based on the method of prediction, models can be classified as statistical (empirical) 
models and dynamical weather/climate models. 

 

• Statistical Models: Statistical models use available observational data, past 
weather/climate patterns to find some predictive relationship between the 
predictors and the predictand variable. Based on the relationship found, the 
forecasts were made e.g., simple regression model which use past data to fit 
the linear model and predict the weather/climate based on best linear fit 
obtained. 
 

• Dynamical models: In dynamical models, which are primarily numerical 
weather and climate prediction models, one uses governing mathematical 
equation representing underlying physics of the system, which on numerically 
solving predicts future weather or climate. Usually, the numerical evolution of 
equations with time is carried out over a spatial or spectral grid and the subgrid-
scale processes, such as convection, are parametrized in terms of resolved 
scale variables. 
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The aim of Numerical weather prediction (NWP) is to predict the daily atmospheric 
state, primarily by evolving equations of the atmosphere. Other components of earth 
system like ocean and land surface have slow variability. Sea surface temperature 
(SST) and soil moisture change over a month timescale and their influence on daily 
weather is not deterministic (Robertson, Andrew et al., 2018). Hence, NWP becomes 
an initial value problem and ocean-land-cryosphere conditions are typically assumed 
to remain constant throughout evolution. (Lorenz, 1963) claimed that, as atmosphere 
is chaotic in nature, small deviations in initial conditions produces drastically different 
outcomes after certain timescale. He set 2-week as predictability limit for weather 
forecasting based on the midlatitude wave dynamics equations he considered. The 
tropical weather is mostly governed by convection, which has even less predictive 
power and in turn leads to the shorter predictability limit. 
 
In order to get better prediction at longer timescale using NWP, better model 
formulation on finer grid and good forecast initialization is needed. Good forecast 
initialization is achieved by using data assimilation methods where observations are 
optimally combined with the model’s previous output. By using ensemble of models 
with perturbed initial condition, one gets range of possible forecasts with their 
probabilities and uncertainty. With this advances, current NWP models has achieved 
significant prediction skill in extended range timescale (10-30 days), but the task 
requires a lot of processing power. The finer grid scale takes much memory of the 
system and also reduces the time step upto which skillful prediction can be achieved, 
thus making the NWP problem on extended range timescale computationally heavy. 
 
Numerical climate prediction (NCP), on the other hand, is not about forecasting daily 
weather on a longer forecast horizon, but to predict shifts in probability distribution of 
climatological values of weather variables over season or beyond. Climate prediction 
includes processes from ocean, land surface, stratosphere, etc. along with the 
atmospheric component. The slow variability in SST, Soil moisture stands as good 
predictability source for NCP. Thus, NCP are based on same governing equations of 
atmosphere as the NWP but one also need to provide boundary conditions with these 
equations which includes effect of other components of the earth system (Robertson, 
Andrew et al., 2018). As the aim is to predict on larger timescale, coarser grid 
resolution is implemented in the model and effect of subscale processes are averaged 
out on climate timescale. This in turn leads to the effect of climate components to be 
too small to have significant impact on the prediction of daily weather patterns on a 
shorter timescale (Robertson, Andrew et al., 2018). 
 
So, from the above discussion, S2S is a long timescale for much memory of the 
atmospheric initial condition in NWP model and too short for slowly varying boundary 
conditions too be felt sufficiently strongly. Prediction of weather parameters as 
average on long timescale and coarser grid resolution in NCP models makes the NCP 
forecast not useful for predicting regional S2S weather. For statistical models, S2S is 
a high-dimensional problem as one must consider predictors from global climate 
variables (SST, Geopotential height, soil moisture, etc.) and also from local weather 
variables (temperature, precipitation, etc.). Due of this, the S2S prediction was for long 
years thought of as a “predictability desert”. 
 
In recent years, there has been increase in international efforts to improve S2S 
forecasting. It has been spurred by the growing realization of seamless prediction 
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across timescale. Planetary scale climate phenomenon acts as background for smaller 
scale features, and combined effects of smaller scale disturbances are reflected in the 
former one. The feedback loop between these two scales occurs on S2S timescale. 
2-week predictability limit set by Lorenz (Lorenz, 1963), has been pushed forward in 
extended range timescale by introducing predictability source on longer timescale (like 
MJO). Improved understanding of S2S predictability sources like MJO, soil moisture, 
ocean, etc. and better forecasting methods has led to improved forecast skill in the 
S2S timescale. 
 
Subseasonal timescale is an important timescale and has potential user pool in 
agriculture sector, water management, aviation industry, etc (White, C. J. et al., 2017). 
Moreover, sub-seasonal variability (corresponding to 20-90 days) accounts for the 
substantial portion of the Indian summer monsoon (ISM) on which India’s economy is 
largely dependent. The modes corresponding to intra-seasonal variability are known 
as monsoon intra-seasonal oscillations (MISO) (Sikka and Gadgil 1980). The 
northward propagation of MISO plays important role in determining the onset of ISM. 
The active phases (above seasonal mean rainfall) and break phases of monsoon 
(below seasonal anomaly rainfall) are often considered as manifestation of MISO. 
Frequency and duration of these active-break episodes determines seasonal mean 
rainfall associated with ISM (Goswami and Ajayamohan 2001). Thus, prediction of 
MISOs, active break periods few weeks in advance has high societal importance for 
agriculture, disaster management, etc. across Indian subcontinent.  
 
(Abhilash, S. et al., 2014a) attempts to predict the MISOs using ensemble of dynamical 
CFSv2 model, where they found general characteristics of ISM in simulations and 
skilful predictions till nearly 17 days. Dynamical studies have also been done for 
predicting active-break periods (Abhilash, S. et. al 2014b, Sushmitha Joseph et al., 
2016). Study by (Goswami and Xavier at al., 2003; Suneet Dwivedi et al., 2006) uses 
statistical models to predict the active-break episodes and their duration by exploiting 
the potential predictability of the break phases. There are studies on prediction of 
MISO using linear or non-linear statistical models like (Xavier and Goswami 2007). 
Some MISO indices have also been proposed for extended-range MISO prediction 
and real-time monitoring (Suhas, E. et al., 2013; C T, Sabeerali et al., 2017). (Chen et 
al., 2018) attempts to predict the time-series of two MISO modes using physics 
constrained low-order non-linear stochastic model, and skilfully predicts MISO indices 
20-50 days in advance. 
 
(Judah Cohen et al., 2019) argues that in the last few decades, dynamical forecasting 
techniques were more skill full than the statistical approaches for prediction over the 
extended range mainly because of statistical techniques have not been updated since 
many years. It also highlights the need for new statistical technique approaches like 
machine learning for Subseasonal forecasting. The availability of ample 
meteorological climate data over India and high-performance computing makes it 
possible to apply machine learning (ML) based algorithms. A recent study (Jessica 
Hwang, 2019) tries to attempt the problem of Subseasonal forecast of temperature 
and precipitation over U.S region by applying simple ML forecasting system based on 
ensemble of two models: linear regression over multitask feature (predictor variable) 
selection criteria (MultiLLR model) and multitask k-nearest neighbour features 
(AutoKNN). The MultiLLR model chooses relevant features using backward stepwise 
criterion, which takes each out each feature out one-by-one and regress the model on 
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the remaining predictors. AutoKNN model finds ‘k’ most similar dates in the past and 
the historical data of temperature or precipitation from these dates is used for the 
prediction. Both methods and their ensemble have shown higher skill in temperature 
and precipitation prediction on week3-4 average and week 5-6 average forecast 
horizon than debiased operational U.S. CFSv2 model. Other similar studies (Sijie He 
et al., 2020, Soukanya Mouatadid et al., 2021) tries to address the problem by using 
various model from ML and deep learning (DL) over the U. S. region. Moreover, It 
highlights use of ocean (indices such as El Nino) of land variables (soil moisture) being 
more helpful than the atmospheric variables. 
 
Machine learning methods do not need complete understanding of the system. In this 
study, we have investigated the MultiLLR model discussed above on the predictors 
representing state of the atmosphere-land-ocean over India and evaluated the model’s 
performance over 2-week, 3-week and 4-week (in the extended range timescale) 
forecast horizon. 
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3. Data and methods 
 

In order to predict on longer timescales, along with considering particular phenomenon 
occurring on those timescales, averaging weather variables on relevant timescale is 
important e.g., although daily weather is hard to predict on a season ahead timescale, 
seasonal aggregate of weather parameters is predictable a season ahead using NCP 
models. This ensures high-frequency disturbances averages out and the predictability 
of phenomenon occurring on longer timescale can be used up. In S2S problem, more 
precisely in extended time range (10-30 days), as aim is to predict on few weeks 
ahead, (Zhu et al., 2014) suggests averaging period of a week for forecasting a week 
ahead. 

Problem statement: 

To forecast weekly temperature and precipitation at the forecast horizon of 8-14 days 
ahead (i.e. average temperature/precipitation of week 2), 15-21 days ahead (i.e. avg. 
temperature/precipitation of week 3) and 22 to 28 days ahead (i.e. avg 
temperature/precipitation of week 4) over India (7.5o N-37.5o N) X (67.5o E -97.5o  E), 
total 355 grid points. 
 
Data: 
 
Construction of the sub-seasonal dataset for training and validating the model is 
performed from a diverse collection of variables (listed below) which indicates the state 
of the atmosphere, land and ocean. Some of these variables are local weather 
variables (Temperature, Precipitation, surface, pressure, etc.), some are global 
climate variables (Sea surface temp, Geopotential height, etc.), and some are indices 
(Multivariate ENSO Index (MEI), RMM index). The Subseasonal data of 
spatiotemporal variables is prepared from the daily data of these variable, by taking 
the average measurements over the ensuing one-week period for each date starting 
from that date and interpolating on 1o X 1o grid over India (7.5o N-37.5o N) X (67.5o E 
-97.5o E). [Note: Words such as variable, predictors, features convey the same 
meaning and are used interchangeably] 
 
A. Spatiotemporal variables: 
 

1. Temperature: Variable (tmp2m) 
Data Source: Tmax, Tmin IMD daily data (1o x 1o) on target grid points 
over period (1979-2022). The same data source has been used to 
evaluate the model forecast. 
 

𝑡𝑚𝑝2𝑚 =
𝑡𝑚𝑎𝑥 + 𝑡𝑚𝑖𝑛  

2
 

 
2. Precipitation: Variable (precip) 

Data source: Rainfall IMD daily data (1o x 1o) on target grid points over 
period (1979-2022). The same data source has been used to evaluate 
the model forecast. 
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3. Relative humidity: Variable (rhum) 
It defines how much water vapour present in the air compared what it 
can hold.  
Data source: NCEP/NCAR reanalysis data (1948-2022) 
(https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html) 
 
 

4. Sea level pressure: Variable (slp) 
Data source: NCEP/NCAR reanalysis data (1948-2022) 
(https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html) 
 
 

5. Potential evaporation: Variable (pevpr) 
It is defined as the atmosphere’s demand for the water vapour if 
sufficient water sources were present. 
Data source: NCEP/NCAR reanalysis data (1948-2022) 
(https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html) 
 
 

6. Precipitable water: Variable (pr_wtr) 
It is defined the height of atmospheric columns achieved if all the water 
present in the columns precipitated down.  
Data source: NCEP/NCAR reanalysis data (1948-2022) 
(https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html) 
 
 

7. Surface pressure: Variable (pres) 
Data source: NCEP/NCAR reanalysis data (1948-2022) 
(https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html) 
 
 

8. Soil moisture: Variable (soilw) 
Data source: CPC soil moisture monthly data (1948-2022).  
(https://www.cpc.ncep.noaa.gov/products/Soilmst_Monitoring/US/Soilm
st/Soilmst.shtml) 
 
The monthly data has been interpolated to obtain the daily values. 
 

9. S2S multi-model ensemble: Variable (S2S ensemble) 
It is a collection of physics based dynamical subseasonal to seasonal 
forecast models from various modelling centres. Forecast and reforecast 
data of models JMA, ISAC, CNRM, CMA, KMA, NCEP been downloaded 
from ECMWF S2S: WWRP/WCRP Sub-seasonal to Seasonal Prediction 
Project. 
https://iridl.ldeo.columbia.edu/SOURCES/.ECMWF/.S2S/index.html?Se
t-Language=en 
 
A feature was constructed by taking equally weighted average of all 
models. 

 

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://www.cpc.ncep.noaa.gov/products/Soilmst_Monitoring/US/Soilmst/Soilmst.shtml
https://www.cpc.ncep.noaa.gov/products/Soilmst_Monitoring/US/Soilmst/Soilmst.shtml
https://iridl.ldeo.columbia.edu/SOURCES/.ECMWF/.S2S/index.html?Set-Language=en
https://iridl.ldeo.columbia.edu/SOURCES/.ECMWF/.S2S/index.html?Set-Language=en
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All the variables above have significant intra-seasonal variability. This has been 
checked by taking std. deviation of 20-90 day filtered time series of the daily data for 
each of the above variable. 

 
B. Temporal variables: 
 

      1.  Sea Surface Temperature: Variable (SST_2010_pc) 
Data source: NOAA dataset (1981-2022) 
(https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html) 
 
 
SST region selected: Indian ocean and west pacific ocean (30oE – 
150oE)X(-30oN – 30oN) + central and east equatorial pacific ocean (150oE 
– 270oE)X(-10oN – 10oN). 
(Xiouhua Fu et al., 2006) has shown extended predictability of MISOs by 
using a coupled atmosphere-ocean dynamical model which captures 
two-way interaction between MISO and sea surface. This highlight role 
of considering ocean parameter SST for prediction of precipitation. The 
selected region has the influence on generation and propogation of 
summer ISOs (Lau et al., 2011). 
 
After Principal Component Analysis (PCA) over all the selected regions 
using the scikit-learns’ PCA package, first three PC components were 
extracted based on PC loading from 1981-2010.  
 
Variance captured by first 3 PCs (in per cent): [63.05, 14.36, 4.93]. Thus, 
first 3 components are capturing significant variability in the SST. 
 
 

2. Geopotential height, U-V wind: Variable (wind_hgt_2010_pc) 
Data Source: NCEP/NCAR Reanalysis dataset (1948-2022) 
(https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html) 
 

 
Region: Over the whole globe. During boreal summer, there is drastic 
change in wind pattern over Indian subcontinent which grows strong and 
weak during active and break phases of MISOs respectively. Also, 
changes in geopotential height capture propagation of various 
atmospheric waves and disturbances. Thus, above parameters have 
been considered. 

 
After Principal Component Analysis (PCA) over all the selected regions 
using the scikit-learns’ PCA package, first three PC components were 
extracted based on PC loading from 1948-2010 
 
Variance captured by first 3 PCs (in per cent): 

a)   Geopotential height at 10 hPa: [91.2, 4.32, 0.81] 

b)  Geopotential height at 100 hPa: [85.34, 6.07, 1.23] 

https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
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c)   Geopotential height at 500 hPa: [59.56, 7.29, 3.59] 

d)  Geopotential height at 850 hPa: [24.86, 15.16, 7.82] 

e)  Zonal U-wind at 250 hPa: [32.64, 3.36, 2.91] 

f)    Zonal U-wind at 925 hPa: [15.06, 5.17, 4.23] 

g)   Meridional V-wind at 250 hPa: [6.14, 4.46, 3.68] 

h)  Meridional V-wind at 925 hPa: [13.42, 6.03, 4.24] 

 

                 3. Real time Multivariate MJO (RMM) Index: Variable (amplitude, phase) 

Data-source: 
http://www.bom.gov.au/climate/mjo/graphics/rmm.74toRealtime.txt 

MJO is a dominant tropical intra-seasonal variation (as oscillation period 
spread over a rough range of 30-100 days), large scale, slowly eastward 
moving centre of deep convection, adjacent to which are regions of weak 
deep convection (Zhang, C. (2005)). Over the past few years, 
improvement in understanding and prediction of MJO has led to use of 
MJO as important source of sub-seasnonal predictability. The real-time 
daily multivariate MJO (RMM) index developed by (Wheeler and 
Hendon, 2004) has used here as a predictor for the problem. 

 

                 4. Multivariate ENSO Index: Variable (mei) 

Data source: NOAA MEI V2 (https://psl.noaa.gov/enso/mei/) 

El-Nino Southern Oscillations (ENSO) are strong, irregular fluctuations 
in the tropical pacific through interactions between the atmosphere and 
oceans, affecting the global climate. MEI is scalar summary of 
atmospheric and oceanic variables associated with ENSO and thus a 
good indicator for the state of ENSO. 

The monthly MEI index has been interpolated to daily resolution. 

 

 

 

 

 

 

http://www.bom.gov.au/climate/mjo/graphics/rmm.74toRealtime.txt
https://psl.noaa.gov/enso/mei/
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Methods: 

Local Linear Regression with Multitask feature selection (MultiLLR) Model: 

The MultiLLR model consists of local linear regression at each grid point fitted on only 

those features (predictors) chosen by multitask feature selection algorithm. 

Local linear regression: For a grid point (g) and target date (t), we fit the linear model 
on training data chosen as the 56-day span (D) around day of the year of the target 
date (t) in any year. This 56-day span around target date (t) ensures the model is 
trained on a season of period around target date, and days from other seasons do not 
influence the prediction. 

 

Multitask backward stepwise feature selection: Feature selection is performed to 
create a model with optimum balance between bias-variance pair. Model with many 
features tend to have low bias-high variance and model with very few features have 
high bias-low variance. As we are dealing with many variables and thus have a high 
dimensional data, finding most relevant set of features will ensure optimum balance 
between bias and variance. 

At each iteration, every feature is taken out step by step and the model is regressed 
on the remaining set of features separately each grid point. The candidate predictor 
that decreases the predictive performance, LOYOCV skill (defined as in the next 
paragraph), the least is considered irrelevant for prediction. The tolerance threshold is 
set to 0.01 so that the procedure will terminate when removing any predictors 
decrease the predictive performance by more than 0.01. This variable selection 
approach is known as ‘frequentist’, where features are chosen principally based on 
their statistical relevance to the target variable (predictand). 

Cross-validation can be used for assessing the model’s overall performance where we 
repeatedly divide data into test and training data and evaluate model’s prediction on 
all the training tasks. In Leave One Year Out Cross-Validation (LOYOCV) skill method, 
we hold a year of data around the target date’s day of the year (t) in each year 
iteratively (the test data) and the rest of the data is used for training the model (training 
data). For example, when forecasting weeks 3, we hold out a data from 22 days before 
t till 342 days after t; for week 4, we hold out data from 29 days before till 335 days 
after t, which ensure model is not fitted on dates too close to t. Predictive performance 
in LOYOCV is calculated as the average cosine similarity skill (defined in the next 
section) achieved over all these iterations. 

The algorithm for feature selection can be summarized as follows, 
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Model Prediction Assessment: 

Prediction assessment also termed as prediction skill, gives measure of how good 
model’s prediction 𝑦𝑡̂ are compared with the observation 𝑦𝑡. The cosine similarity skill 
between observed spatial anomaly vector 𝑎𝑡 = 𝑦𝑡 − 𝑐𝑡 and predicted spatial anomaly 
vector 𝑎̂𝑡 = 𝑦̂𝑡 − 𝑐𝑡  (where 𝑐𝑡 is climatology of 𝑦𝑡 over year 1981-2010) is given as (the 

vector 𝑦𝑡 has the dimension of no. of grid points G), 

 

It takes values between [-1,1]. More similar are the vectors in orientation, higher will 
be the skill value. The cosine similarity skill of anomaly vectors is same as spatial 
correlation between observed anomalies and predicted anomalies. It is chosen as a 
prediction skill for the model as threshold can be set to 0.01, independent of prediction 
task. 

Other prediction skills RMSE error between observed and predicted value are used 
just for plotting purposes. RMSE error between observed temporal anomaly vector 𝑎𝑔 

and predicted temporal anomaly vector 𝑎̂𝑔 is given as, 
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4. Results and discussion 
 
In 2016, Indian Meteorological Department (IMD) has operationally implemented 
Extended Range Forecast System (ERFS) model which predicts daily temperature 
and precipitation up to extended range period (up to 30 days) starting from Thursday 
of every week. ERFS is an operational coupled model at IMD with a suit of models 
from CFSv2 coupled models. The Multi-model ensemble (MME) of 4 suit of models is 
run operationally for 32 days based on every Wednesday initial condition with 4 
ensemble members (one control and 3 perturbed) for each suit. The forecast anomaly 
is generated by subtracting the climatology calculated from hindcast over 13 years 
period (2003-2015). The operational ERFS is used for many applications such as 
extended-range prediction of active-break spells of ISM, monsoon onset, progression, 
withdrawal, heat and cold waves, monitoring of MISOs and Madden-Julian Oscillations 
MJOs), cyclogenesis, and many other events. More details about the IMD’s 
operational ERFS model can be found here:  
(https://nwp.imd.gov.in/document_MME.pdf).  
 
In order to compare between MultiLLR and operational ERFS model, forecast for 
MultiLLR are generated on the same dates on which ERFS model’s forecast is 
available i.e., on Thursday of every week, over the evolution period (May 2019-April 
2022). Also, the daily forecast of ERFS is converted to weekly forecast by taking 
average over week 2, week 3 and week 4, where each consecutive week is from Friday 
to next Thursday. ERFS forecasts from 1st January 2020-4th March 2020 are 
unavailable. Thus, those dates have not been considered in the evaluation period. 
Thus, the total no. of days considered in the evaluation period are 146. To mimic the 
real-time forecast, only the data available prior to the forecast date (starting from 1979 
onwards) has been used for training the model. 
 
Along with the ERFS model, S2S ensemble which is considered as one of the features 
for prediction, has also been used as a baseline to compare MultiLLR model’s 
prediction. The forecast anomaly for S2S ensemble forecasts is calculated by 
subtracting the hindcast over 38 years of period (1981-2018) from S2S ensemble 
forecast. 
 
Following experiments are performed to critically analyse the MultiLLR model’s 
performance.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://nwp.imd.gov.in/document_MME.pdf
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Experiment 1: MultiLLR on all features (Hybrid approach) 
 
 

 

 
Figure 2: Average cosine similarity skill achieved over complete evaluation period for temperature forecast at various 
forecast horizons (2-week, 3week, 4week) by each model MultiLLR, ERFS and S2S ensemble considered 

In this experiment, MultiLLR model is given all the features mentioned in the ‘data’ 
section, in the start. Figure 2 shows average cosine similarity skill achieved by 
MultiLLR model, ERFS model and S2S ensemble (which has also been used as one 
of the predictors), in each temperature prediction task (e.g., Temperature at 2week) 
over the whole evaluation period. We can see that MultiLLR model outperforms the 
baseline ERFS model, and S2S ensemble in each temperature prediction task. S2S 
ensemble has the least skill in each temperature prediction task than the other two 
models. Also, we observe that forecast skill of each model is decreasing with increase 
in forecast horizon. 
 
 

 
Figure 3: Average cosine similarity skill achieved over complete evaluation period for precipitation forecast at various 
forecast horizons (2-week, 3week, 4week) by each model MultiLLR, ERFS and S2S ensemble considered 
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Fig. 3, shows similar result for the precipitation prediction by each model. We can 
observe the average forecast skill achieved by MultiLLR model is much better than the 
other two models for precipitation forecast. Precipitation forecast of ERFS model has 
least skill compared to other two models. Also, the average skill achieved by MultiLLR 
over whole evaluation period decreases with increasing forecast horizon in 
precipitation prediction.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Table 1 shows more detailed analysis of the experiment results, average skill over 
each year period. Here 2020 denotes a year of period from May 2019-April 2020, 2021 
denotes May 2020-April 2021 and so on. Performance of MultiLLR model in each 
temperature and precipitation prediction task is better than other two in each year 
considered. The improvement in average skill over evaluation period by MultiLLR 
model in predicting temperature than the ERFS model is around 41% in week-2, 57% 
in week-3 and 57% in week-4. Similarly, the improvement in average skill by MultiLLR 
in predicting precipitation over ERFS is around 178% in week 2, 260% in week 3 and 
401% in week 4. 
 

 

 

a) 

b) 

c) 

d) 

e) 

f) 

Table 1: Average spatial cosine similarity skill obtained by each prediction model MultiLLR, ERFS and S2S ensemble for 
prediction of a) temperature at 2-week b) temperature at 3-week c) temperature at 4-week d) precipitation at 2-week e) 
precipitation at 3-week f) precipitation at 4-week 
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Figure 4: Skill distribution over evaluation period (146 days) for MultiLLR and ERFS model 

  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 shows more granular analysis of model’s performance. It shows the MultiLLR 
skill distribution over 146 days considered in evaluation period. We see that maximum 
no. of days in each MultiLLR temperature and precipitation task are having positive 
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skill with maxima in the higher skill range than the ERFS model’s maxima. Though 
ERFS model also has positive skill on many days in each temperature prediction task, 
it has maximum no. of dates around ‘0’ skill value for ERFS precipitation forecast task. 
This suggest MultiLLR does perform better than ERFS and can be used for operational 
forecasting.  
 
Thus, in experiment 1, MultiLLR is integrating the S2S ensemble with other statistical 
parameters, is performing much better than S2S ensemble. This highlights the power 
of the hybrid approach i.e., statical models plus physics based dynamical model, for 
temperature and precipitation prediction is better than only using the dynamical model. 
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Figure 5: Feature inclusion frequency of all candidate variables for MultiLLR across all target dates over evaluation period 
considered for prediction of temperature at week-2 forecast horizon. 

0 20 40 60 80 100 120 140 160

'precip_shift15'

'amplitude_shift10'

'wind_vwnd_925_2010_2_shift16'

'wind_vwnd_250_2010_1_shift16'

'wind_hgt_500_2010_3_shift16'

'rhum_shift16'

'pevpr_shift16'

'wind_hgt_10_2010_3_shift16'

'wind_hgt_850_2010_3_shift16'

'wind_hgt_100_2010_2_shift16'

'wind_uwnd_925_2010_2_shift16'

'wind_vwnd_250_2010_2_shift16'

'wind_uwnd_925_2010_1_shift16'

'pr_wtr_shift16'

'wind_hgt_100_2010_3_shift16'

'phase_shift10'

'wind_uwnd_250_2010_2_shift16'

'tmp2m_shift30_anom'

'wind_hgt_10_2010_2_shift16'

'wind_uwnd_250_2010_1_shift16'

'wind_hgt_850_2010_2_shift16'

'tmp2m_shift15_anom'

'tmp2m_shift30'

'wind_hgt_850_2010_1_shift16'

'wind_hgt_100_2010_1_shift16'

'wind_hgt_500_2010_2_shift16'

'sst_2010_1_shift16'

'wind_hgt_10_2010_1_shift16'

'wind_hgt_500_2010_1_shift16'

'soilw_shift16'

'mei_shift38'

'sst_2010_2_shift16'

'sst_2010_3_shift16'

'pres_shift16'

'ones'

'slp_shift16'

'tmp2m_shift15'

S2S_ensemble'

No.of days

P
ar

am
et

er
s

Temp-2week, No of days a parameter has been selected 
for prediction over evaluation period



18 
 

 
Figure 6: Feature inclusion frequency of all candidate variables for MultiLLR across all target dates over evaluation period 
considered for prediction of temperature at week-3 forecast horizon. 
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Figure 7: Feature inclusion frequency of all candidate variables for MultiLLR across all target dates over evaluation period 
considered for prediction of temperature at week-4 forecast horizon. 

 

 

 

0 20 40 60 80 100 120 140 160

'precip_shift29_anom'

'wind_vwnd_250_2010_1_shift30'

'precip_shift29'

'wind_vwnd_250_2010_2_shift30'

'wind_uwnd_250_2010_1_shift30'

'pevpr_shift30'

'wind_vwnd_925_2010_2_shift30'

'wind_uwnd_250_2010_2_shift30'

'amplitude_shift24'

'phase_shift24'

'rhum_shift30'

'wind_hgt_10_2010_3_shift30'

'pr_wtr_shift30'

'wind_hgt_100_2010_3_shift30'

'soilw_shift30'

'wind_uwnd_925_2010_1_shift30'

'wind_uwnd_925_2010_2_shift30'

'pres_shift30'

'wind_hgt_100_2010_2_shift30'

'wind_hgt_100_2010_1_shift30'

'wind_vwnd_925_2010_1_shift30'

'sst_2010_1_shift30'

'wind_hgt_10_2010_2_shift30'

'wind_hgt_500_2010_3_shift30'

'wind_hgt_850_2010_3_shift30'

'wind_hgt_500_2010_2_shift30'

'tmp2m_shift29_anom'

'mei_shift52'

'wind_hgt_850_2010_2_shift30'

'slp_shift30'

'tmp2m_shift29'

'tmp2m_shift58_anom'

'tmp2m_shift58'

'wind_hgt_850_2010_1_shift30'

'wind_hgt_10_2010_1_shift30'

'wind_hgt_500_2010_1_shift30'

'sst_2010_3_shift30'

'ones'

S2S_ensemble'

'sst_2010_2_shift30'

No. of days

P
ar

am
et

er
s

Temp-4week, No of days a parameter has been selected 
for prediction over evaluation period



20 
 

Figure 5, figure 6 and figure 7 denotes the number of days over evaluation period, a 

particular parameter has been selected by MultiLLR model for prediction of 

temperature at 2-week, 3-week, 4-week forecast horizon respectively. For 

temperature prediction, historical temperature values (temperature 15 days before 

‘tmp2m_shift15’), surface pressure (‘slp_shift_16’), dynamical model forecasts (S2S 

ensemble) are more frequently selected by the model for prediction at 2-week and 

thus these parameters hold greater importance in temperature prediction. These same 

parameters have been relatively less frequently selected for prediction at higher 

forecast horizon (3- week, 4 week).  

The skill of dynamical model forecasts (S2S ensemble feature here) decreases with 

increasing timescales. Thus, S2S ensemble feature stand as a good predictor at 2-

week forecast horizon (selected for nearly every day for prediction on 2-week 

timescale), but is less frequently selected in 3-week and 4-week prediction task. 

Similarly, declining selection of historical temperature values, (‘tmp2m_shift15’ in 2-

week, ‘tmp2m_shift22’ in 3-week prediction task) with the increasing forecast horizon 

highlights very little predictive information is shared between temperature values 

greater than two weeks apart. 

Conversely, the relative importance of large-scale parameters like PC components of 
SST, geopotential height at 10 hPa and 500 hPa is increasing with the increasing 
forecast horizon. Geopotential height, SST are large scale climate variables and 
MultiLLR model has captured their importance on longer timescale. 
 
Parameters such as precipitation, relative humidity, precipitable water, potential 

evaporation, MJO variables (amplitude and phase), U-V wind aren’t selected by 

MultiLLR model frequently for temperature forecast. Multivariate ENSO Index and soil 

moisture are not selected much frequently but are useful for temperature prediction 

(selected for nearly 30-40% of dates in each prediction task). It is important to 

remember that the model is capturing relative importance of variable based on only 

their local linear dependence on temperature and thus might be failing to capture non-

linear dependence of these variables on temperature. This suggests need for more 

complex models which will take non-linear dependence between various features and 

temperature into consideration. 

Out of 41 no. of parameters given for training, the MultiLLR model carefully selects on 

an average 10,10 and 11 parameters per date for prediction of temperature. 
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Figure 8: Feature inclusion frequency of all candidate variables for MultiLLR across all target dates over evaluation period 
considered for prediction of precipitation at week-2 forecast horizon. 
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Figure 9: Feature inclusion frequency of all candidate variables for MultiLLR across all target dates over evaluation period 
considered for prediction of precipitation at week-3 forecast horizon. 
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Figure 10: Feature inclusion frequency of all candidate variables for MultiLLR across all target dates over evaluation period 
considered for prediction of precipitation at week-4 forecast horizon. 

Similar analysis can be done for precipitation task. From the figure 8, figure 9 and 
figure 10, it is apparent that dynamical model forecast (‘S2S ensemble’) is an important 
predictor for precipitation forecast and has been selected by nearly all the dates in the 

0 20 40 60 80 100 120 140 160

'amplitude_shift24'

'wind_vwnd_925_2010_2_shift30'

'wind_uwnd_925_2010_2_shift30'

'wind_uwnd_250_2010_2_shift30'

'wind_hgt_100_2010_2_shift30'

'rhum_shift30'

'wind_hgt_850_2010_3_shift30'

'wind_vwnd_250_2010_1_shift30'

'wind_hgt_100_2010_3_shift30'

'wind_hgt_500_2010_3_shift30'

'wind_hgt_850_2010_2_shift30'

'wind_hgt_10_2010_3_shift30'

'wind_vwnd_925_2010_1_shift30'

'wind_hgt_500_2010_2_shift30'

'pevpr_shift30'

'pr_wtr_shift30'

'wind_hgt_10_2010_2_shift30'

'wind_uwnd_925_2010_1_shift30'

'wind_hgt_500_2010_1_shift30'

'phase_shift24'

'mei_shift52'

'tmp2m_shift29_anom'

'soilw_shift30'

'wind_hgt_850_2010_1_shift30'

'tmp2m_shift58_anom'

'wind_uwnd_250_2010_1_shift30'

'sst_2010_2_shift30'

'wind_hgt_100_2010_1_shift30'

'ones'

'pres_shift30'

'precip_shift58'

'precip_shift58_anom'

'tmp2m_shift58'

'slp_shift30'

'tmp2m_shift29'

'wind_hgt_10_2010_1_shift30'

'sst_2010_1_shift30'

'sst_2010_3_shift30'

'precip_shift29'

'precip_shift29_anom'

S2S_ensemble'

No. of days

P
ar

am
te

rs
Precip-4week, No of days a parameter has been selected 

for prediction over evaluation period



24 
 

evaluation period in each precipitation prediction task. The historical observations of 
precipitation (e.g., ‘precip_shift15’) also seem to be more frequent parameter 
compared to other parameters for precipitation forecast on all the forecast horizons 
but its importance is decreasing with increasing forecast horizon. This highlights, with 
the increasing forecast horizon highlights very little predictive information is shared 
between precipitation values greater than 2 weeks apart.  
 
Other parameters apart from above, do not seem to have that much relative 
importance and are not frequently selected by the model. Though relative importance 
of large-scale variables like SST, Geopotential height at 10 hPa is increasing with 
increasing forecast horizon, MultiLLR model has not assigned them much importance 
for precipitation forecast on larger forecast horizon. Relative humidity, Multivariate 
ENSO index, etc. are less frequently selected as predictor for prediction despite key 
dependence of precipitation on them. It might be due to the model is capturing relative 
importance of variable based only on their local linear dependence on precipitation 
and failing to capture non-linear dependence of these variables on precipitation.  
 
For the precipitation task average no. of parameters selected by model for forecast at 

2-week, 3-week and 4-week forecast horizon are 4,4 and 5 respectively. 
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Figure 11 shows the RMSE error between observation and MultiLLR temperature 

prediction calculated over the evaluation period. Here we see that MultiLLR model has 

low RMSE error over most part of the India India in general compared to the ERFS 

model forecast in each temperature forecast task. This highlights better prediction by 

MultiLLR model spatially. 

One more pattern of common observation is that the RMSE error in Southern part of 

India is lower compared to the North India in all prediction task of MultiLLR model. It 

is observed that deviation in temperature over a year is higher in north India than south 

India and thus it was expected to get good forecast by MultiLLR model over south 

India. The northernmost part of India, Kashmir region, shows large error. The primary 

reason might be unavailability of good observational data. 

Central Part of India also observe large deviation in temperature throughout the year. 

In ERFS model prediction tasks, there is large RMSE error over Central India. But 

RMSE error over same region by MultiLLR model is relatively less in each temperature 

prediction task. 

From figure 12, the RMSE error in each precipitation forecast task by MultiLLR model 

has a little less RMSE error than the ERFS model in every prediction task. The region 

which receives highest precipitation over a year i.e., western coast of India, North East 

India, seems to have large RMSE in both forecasting model. Conversely, Rajasthan 

and rain shadow region over Deccan plateau, which receives low precipitation over a 

year compared to other parts of India, seems to have low values of RMSE also. 

Overall, MultiLLR models perform is good over India than ERFS model. 

. 
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Figure 11:RMSE between temperature prediction and observation calculated over evaluation period for MultiLLR model (a), 
(b), (C) and for ERFS model (d), (e), (f) at 2-week, 3-week and 4-week forecast horizon respectively 

a) 

b) 

c) f) 

d) 

e) 
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Figure 12: RMSE between precipitation prediction and observation calculated over evaluation period for MultiLLR model (a), 
(b), (C) and for ERFS model (d), (e), (f) at 2-week, 3-week and 4-week forecast horizon respectively 

a) 

b) 

c) f) 

d) 

e) 
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a) 

b) 

c) f) 

d) 

e) 

Figure 13: Correlation between temperature prediction and observation calculated over evaluation period for MultiLLR 
model (a), (b), (C) and for ERFS model (d), (e), (f) at 2-week, 3-week and 4-week forecast horizon respectively 
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Figure 14: Correlation between precipitation prediction and observation calculated over evaluation period for MultiLLR 
model (a), (b), (C) and for ERFS model (d), (e), (f) at 2-week, 3-week and 4-week forecast horizon respectively 

a) 

b) 

c) f) 

d) 

e) 
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Figure 13 shows correlation between temperature forecast and observation by both 

models. Much part of the MultiLLR forecast region has higher correlation all over the 

India in each prediction task than the ERFS model.  

Correlation plots for precipitation in figure 14 shows greater correlation value achieved 

by MultiLLR model than the ERFS model in predicting precipitation all over the forecast 

region. 
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Experiment 2: MultiLLR without S2S ensemble feature (Pure statistical 

approach) 

S2S ensemble is one of the most selected paramters in nearly every prediction task. 

Thus, this experiment is carried out to see the importance of inclusion of physics based 

dynamical model’s forecast (S2S ensemble) in MultiLLR. Experiment 2 is performed 

on the same evaluation period (May 2019-April 2022) and the MultiLLR model is 

trained on all the features except the S2S ensemble feature. The following plots show 

comparison between MultiLLR model results in experiment 1 (trained on all the 

paramters) and MultiLLR model in experiment 2. 

 

 

Figure 15: Comparison between average cosine similarity skill achieved for temperature prediction by MultiLLR model 
with(exp1) and without (exp2) S2S ensemble as a parameter 

 

Figure 16: Comparison between average cosine similarity skill achieved for precipitation prediction by MultiLLR model 
with(exp1) and without (exp2) S2S ensemble as a parameter 
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In figure 15, we observe that MultiLLR in exp2 have greater skill than MultiLLR in exp1 

only at 2-week forecast horizon, but it performs equally well as MultiLLR in exp1 on 

longer forecast horizon. For precipitation forecasts (figure 16), we see that MultiLLR 

in exp 1 has better skill compared to MultiLLR in exp 2 at all forecast horizons.  

Thus, we can conclude that hybrid approach with combination of statistical parameters 

and physics based dynamical model’s forecast is better than solely taking statistical 

parameters in MultiLLR for the forecast of precipitation at all forecast horizon. 

However, for forecast of temperature at longer forecast horizon, hybrid approach using 

MultiLLR model does not show any improvement.  

The S2S ensemble is monthly granular and here we are trying to predict on weekly 

timescale. This mismatch might be leading to low performance of hybrid model in 

temperature forecast. It is expected that more granular S2S ensemble data will show 

improvement in the forecast. 
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Experiment 3: MultiLLR on homogenous region 

The vast extent of Indian landmass leads to different regions in India experiencing 

varied climate. India has been divided into five homogenous regions, based on rainfall 

distribution and regional climatology (figure 17). The MultiLLR model in experiment 1 

is selecting relevant parameters based on average forecast skill achieved over the 

whole forecast region (entire India) by excluding parameters one by one. As different 

parts of India experiences different climate at the same time, the feature which might 

be important for prediction in a region might not be important for forecast in another 

region. Thus, instead of taking whole India as a forecast region, an attempt has been 

made to train MultiLLR model on each of the homogenous region separately. 

Importance to the parameter based on avg skill achieved over the forecast region will 

only consider grid points falling within that homogenous region and not the entire India.  

 

 

Figure 17: Four homogenous regions of India 
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The result of MultiLLR model in experiment 3 are summarized through following 
plots: 

 

Figure 18: Comparison between average cosine similarity skill achieved for temperature prediction by MultiLLR model on 
entire Indian landmass(exp1) and trained on each homogeneous region separately (exp3) 

 

Figure 19: Comparison between average cosine similarity skill achieved for precipitation prediction by MultiLLR model on 
entire Indian landmass(exp1) and trained on each homogenous region separately (exp3) 

It is evident from figure 18 that the approach followed in experiment 3 has shown only 

a slight improvement in the MultiLLR forecast average skill for week-3 and week-4 

forecast horizon in the temperature forecast tasks. But besides it, there is no 

improvement in the average skill in any other task. For precipitation forecast in figure 

19, considering entire India for feature selection seems to be more useful than training 

MultiLLR on each homogenous region. 

It is unclear whether the homogenous region classification is not useful for the 

MultiLLR model or if the model doesn’t perform well with less no. of grid points for 

feature selection. 

 

0

0.1

0.2

0.3

0.4

0.5

2-week 3-week 4-week

A
vg

. c
o

si
n

e 
si

m
ila

ri
ty

 s
ki

ll

Forecast horizon

Avg. cosine similarity skill over evaluation period for 
temperature forecast

Avg skill MultiLLR exp1 Avg skill MultiLLR exp3

0

0.1

0.2

0.3

0.4

0.5

0.6

2-week 3-week 4-week

A
vg

. c
o

si
n

e 
si

m
ila

ri
ty

 s
ki

ll

Forecast horizon

Avg. cosine similarity skill over evaluation period for 
precipitation forecast

Avg skill MultiLLR exp1 Avg skill MultiLLR exp3



35 
 

5. Conclusion 

 
The following conclusions can be made from the analysis carried out with MultiLLR 
model: 
 

1. The average forecast skill of MultiLLR model for both temperature and 
precipitation is better than operational ERFS model for extended range 
prediction at 2-week, 3-week and 4-week forecast timescale and can be used 
for operational forecasting. 
 

2. On the shorter timescale (2 week), dynamical model forecast of S2S ensemble 
model have good skill. Combining forecast of S2S ensemble with the other 
statistical parameters in the MultiLLR model shows better overall skill for 
precipitation forecast at all forecast horizons. Thus, for precipitation prediction, 
using hybrid approach is better than only statistical or dynamical model 
forecast. However, for temperature prediction on extended range, only 
statistical approach using MultiLLR model seems to have better forecast skill. 
 

3. The model is able to capture importance of local weather parameters at short 
forecast horizon (2-week) and global climate parameters at longer forecast 
horizon (3-week and 4-week) 

 
4. In prediction of temperature, overall performance of MultiLLR model is good 

over coastal part and peninsular part compared to inland part. 
 

 
Simple machine learning MultiLLR model has been studied extensively and 
performance has been analysed on the available data. To improve the forecast skill, 
modification in MultiLLR like introducing non-linearity, more complex model from DL 
will be explored. 
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