Determinants of Representations of Hyperoctahedral Groups

A Thesis

submitted to Indian Institute of Science Education and Research Pune in partial fulfillment of the requirements for the BS-MS Dual Degree Programme

by

Debarun Ghosh 20120139

Indian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan, Pune 411008, INDIA.

April, 2017

Supervisor: Steven Spallone © Debarun Ghosh 2017

All rights reserved

Certificate

This is to certify that this dissertation entitled Determinants of Representations of Hyperoctahedral Groups towards the partial fulfilment of the BS-MS dual degree programme at the Indian Institute of Science Education and Research, Pune represents study/work carried out by Debarun Ghosh at Indian Institute of Science Education and Research under the supervision of Steven Spallone, Associate Professor, Department of Mathematics, during the academic year 2016-2017.

Steven Spallone

Committee:

Steven Spallone

Amritanshu Prasad

This thesis is dedicated to Mom and Dad.

Declaration

I hereby declare that the matter embodied in the report entitled Determinants of Representations of Hyperoctahedral Groups are the results of the work carried out by me at the Department of Mathematics, Name of the Institute, under the supervision of Steven Spallone and the same has not been submitted elsewhere for any other degree.

Debarun Ghosh

Acknowledgments

I would like to thank Prof Steven Spallone. The door to his office was always open whenever I ran into a trouble spot or had a question about my research or writing. He consistently allowed this paper to be my own work, but steered me in the right the direction whenever he thought I needed it.

I would also like to thank Prof Amritanshu Prasad for his valuable advice on solving this problem. This research wouldn't have been possible without the open-source mathematical software Sage[9] and its algebraic combinatorics features developed by the Sage-Combinat community[3].

Last but not the least, I would like to thank my parents and my friends (especially Ash) for supporting me wholeheartedly throughout this year and my life in general.

Abstract

The Weyl group of type B_n , which we denote by \mathbb{B}_n , has four linear representations ω : $\mathbb{B}_n \to \{\pm 1\}$. In this paper we count, for a given n and ω , the number $N_{\omega}(n)$ of irreducible representations π of \mathbb{B}_n satisfying det $\circ \pi = \omega$. Let $n \geq 6$. If n odd, then $N_1(n) > N_{\text{sgn}^0}(n) >$ $N_{\text{sgn}^1}(n) = N_{\epsilon}(n)$. If n even, we have $N_1(n) > N_{\text{sgn}^1}(n) > N_{\text{sgn}^0}(n) = N_{\epsilon}(n)$.

Contents

A	Abstract			
1	The	e determinant problem for S_n	3	
	1.1	The 2-core tower of a partition	3	
	1.2	Review of Arvind Ayyer, Amritanshu Prasad and Steven Spallone's Paper $\ .$	4	
2	Ma	ckey Theory for \mathbb{B}_n	7	
3	Solo	omon Formulas for \mathbb{B}_n	11	
	3.1	Formula for determinants	11	
	3.2	Parity of $x_{\alpha\beta}$	15	
	3.3	Parity of $y_{\alpha\beta}$	17	
	3.4	Involutions on the set of Bipartitions	19	
4	Cou	inting Representations of Given Determinant	ntations of Given Determinant 23	
	4.1	Counting in terms of (a, b)	23	
	4.2	Counting in terms of n	30	
	4.3	Proof of Theorem 0.0.1	35	

Introduction

The *n*-th hyperoctahedral group \mathbb{B}_n is the Weyl group of type B_n . It has four linear representations $\omega : \mathbb{B}_n \to \{\pm 1\}$. Let (π, V) be an irreducible representation of \mathbb{B}_n . Let det : $\operatorname{GL}_{\mathbb{C}}(V) \to \mathbb{C}^*$ be the determinant map, then the composition det $\circ \pi$ is a linear representation of \mathbb{B}_n . In this paper we count, for a given *n* and ω , the number $N_{\omega}(n)$ of irreducible representations π of \mathbb{B}_n satisfying det $\circ \pi = \omega$.

In the first chapter, we recall the theory of 2-core towers which will be extensively used in the later sections. We also study the paper by Arvind Ayyer, Amritanshu Prasad and Steven Spallone, in which they give an analogous result for the Symmetric group S_n . All the irreducible representations of \mathbb{B}_n are constructed with the help of Mackey Theory in chapter 2.

We find formulas for determinants of \mathbb{B}_n in chapter 3. The question then reduces to determining the parities of two quantities $x_{\alpha,\beta}$ and $y_{\alpha,\beta}$ [Theorem 3.1.4], which is solved using the 2-core tower theory of partitions.

We give explicit formulas for $N_{\omega}(n)$ in Chapter 4. We also prove the following.

Theorem 0.0.1. Let $n \ge 6$. If n odd, then $N_1(n) > N_{\text{sgn}^0}(n) > N_{\text{sgn}^1}(n) = N_{\epsilon}(n)$. If n even, we have $N_1(n) > N_{\text{sgn}^1}(n) > N_{\text{sgn}^0}(n) = N_{\epsilon}(n)$.

Chapter 1

The determinant problem for S_n

1.1 The 2-core tower of a partition

For a given partition λ , the 2-core core₂(λ) has no hooks of length divisible by 2. The *p*quotient quo₂(λ) contains all the information about hooks of length divisible by 2 in λ . The 2-quotient is a 2-tuple (λ_0, λ_1) of partitions, where the total number of cells is the number of 2-hooks whose rims were removed from λ to obtain core₂(λ). Consequently,

$$|\lambda| = |\operatorname{core}_2 \lambda| + 2(|\lambda_0| + |\lambda_1|).$$

The size of the partition λ_k in the 2-quotient is the number of nodes in the Young diagram of λ whose hook-lengths are multiples of 2, and whose hand nodes have content congruent to k modulo 2 (by definition, the content of the node (i; j) is j - i). The partition λ can be recovered uniquely from $\operatorname{core}_2(\lambda)$ and $\operatorname{quo}_2(\lambda)$.

For a given partition λ , its 2-core tower is defined as follows: it has rows numbered by integers $0, 1, 2, \ldots$. The *i*th row of this tower has 2^i many 2-cores. The 0th row has the partition $\alpha_{\phi} := \operatorname{core}_2(\lambda)$. The first row consists of the partitions α_0, α_1 , where, if $\operatorname{quo}_2 \lambda = (\lambda_0; \lambda_1)$, then $\alpha_i = \operatorname{core}_2 \lambda_i$. Let $\operatorname{quo}_2 \lambda_i = (\lambda_{i0}, \lambda_{i1})$, and define $\alpha_{ij} = \operatorname{core}_2 \lambda_{ij}$. Inductively, having defined partitions λ_x for a binary sequence x, define the partitions λ_{x0} and λ_{x1} by

$$quo_2\lambda_x = (\lambda_{x0}, \lambda_{x1}),$$

and let $\alpha_{x\epsilon} = \text{core}_2 \lambda_{x\epsilon}$ for $\epsilon = 0, 1$. Let $w_i(\lambda)$ denote the sum of the sizes of the partitions in the *i*th row of the 2-core tower of λ . Hence,

$$n = \sum_{i=0}^{\infty} w_i(\lambda) 2^i$$

More details can be found in Olsson's monograph [7].

1.2 Review of Arvind Ayyer, Amritanshu Prasad and Steven Spallone's Paper

We briefy recall the theorems and results in the case of symmetric groups. More details can be found in the paper [2].

For the symmetric group S_n , the partitions of n parametrize the irreducible complex representations of S_n . Let (ρ, V_{λ}) be a complex finite dimensional representation and det : $\operatorname{GL}_{\mathbb{C}}(V_{\lambda}) \to \mathbb{C}^*$ denote the determinant function. The composition det $\circ \rho : S_n \to \mathbb{C}^*$ is a linear character of S_n . Hence, it is either the trivial character or the sign character. We call (ρ, V) a chiral representation, if det $\circ \rho$ is the sign character of S_n . If the representation (ρ, V_{λ}) is chiral, we shall say the corresponding partition λ is a chiral partition. Suppose nis a positive integer with the following binary expansion:

$$n = \epsilon + 2^{k_1} + 2^{k_2} + \dots + 2^{k_r}, \epsilon \in \{0, 1\}, 0 < k_1 < k_2 < \dots < k_r.$$

Let f_{λ} denote the dimension of V_{λ} , for a given partition λ . For any integer m, let $v_2(m)$ denote the largest among integers v such that 2v divides m.

Theorem 1.2.1. [2, Theorem 6] A partition λ of n is chiral if and only if one of the following holds:

1. The partition λ satisfies

$$w_i(\lambda) = \begin{cases} 1 & \text{if } i \in \{k_1, k_2, \dots, k_r\}, \text{ or if } \epsilon = 1 \text{ and } i = 0, \\ 0 & \text{otherwise,} \end{cases}$$

and the unique non-trivial partition in the k_1 th row of the 2-core tower of μ is α_x ,

where the binary sequence x of length k_1 begins with ϵ . In this case f_{λ} is odd.

2. For some $0 < v < k_1$,

$$w_i(\lambda) = \begin{cases} 2 & \text{if } i = k_1 - v, \\ 1 & \text{if } k_1 - v + 1 \le i \le k_1 - 1 \text{ or } i \in \{k_1, k_2, \dots, k_r\}, \text{ or if } \epsilon = 1 \text{ and } i = 0, \\ 0 & \text{otherwise}, \end{cases}$$

and the two non-trivial partitions in the (k - v)th row of the 2-core tower of μ are α_x and α_y , for binary sequences x and y such that x begins with 0 and y begins with 1. In this case $v_2(f_{\lambda}) = v$.

3. We have $\epsilon = 1$ and the partition λ satisfies

$$w_i(\lambda) = \begin{cases} 3 & \text{if } i = 0, \\ 1 & \text{if } i \in \{1, \dots, k_1 - 1, k_2, \dots, k_r\}, \\ 0 & \text{otherwise.} \end{cases}$$

In this case, $v_2(f_\lambda) = k_1$.

As a consequence of the above theorem, we have the following result.

Theorem 1.2.2. [2, Theorem 1] The number of chiral partitions of n is given by

$$B(n) = 2^{k_2 + \dots + k_r} \left(2^{k_1 - 1} + \sum_{v=1}^{k_1 - 1} 2^{(v+1)(k_1 - 1) - \binom{v}{2}} + \epsilon 2^{\binom{k_1}{2}} \right).$$

We shall call a partition λ an odd partition if the dimension of the corresponding representation is odd.

Theorem 1.2.3. [5] If *n* has the binary expansion $n = a_0 + 2a_1 + 2^2a_2 + 2^3a_3 + \dots$, with $a_i \in \{0, 1\}$, then

$$\alpha(n) = a_1 + 2a_2 + 3a_3 + \dots$$

The number of odd partitions of n is $A(n) := 2^{\alpha(n)}$.

We denote sum(a, b) is neat, if there is no carry in adding a and b in binary. Similarly we denote sum(a, b) is messy, if there is a carry. **Proposition 1.2.4.** Let n, a and b be positive integers such that a + b = n. Then $A(n) \le A(a)A(b)$, with equality holding if sum(a,b) is neat.

This can be easily seen by just writing down the binary expansions of a and b. Let $\tilde{B}(n) := \frac{B(n)}{A(n)}$, then

$$\tilde{B}(n) = \frac{\left(2^{k_1-1} + \sum_{v=1}^{k_1-1} 2^{(v+1)(k_1-1) - \binom{v}{2}} + \epsilon 2^{\binom{k_1}{2}}\right)}{2^{k_1}}.$$

Lemma 1.2.5. Let n be a positive integer.

- 1. If $n \equiv 0 \mod 4$, then $\tilde{B}(n) \ge \frac{3}{2}$.
- 2. If $n \equiv 1 \mod 4$, then $\tilde{B}(n) \ge \frac{7}{2}$.
- 3. If $n \equiv 2 \mod 4$, then $\tilde{B}(n) = \frac{1}{2}$.
- 4. If $n \equiv 3 \mod 4$, then $\tilde{B}(n) = 1$.

Proof. This follows from $\frac{\sum_{v=1}^{k_1-1} 2^{(v+1)(k_1-1)-\binom{v}{2}} + \epsilon 2^{\binom{k_1}{2}}}{2^{k_1}} \ge 0$, with equality holding iff $k_1 = 1$ and $\epsilon = 0$.

Chapter 2

Mackey Theory for \mathbb{B}_n

Let $\mathbb{B}_n = (\mathbb{Z}/2\mathbb{Z})^n \rtimes S_n$ denote the *n*-th hyperoctahedral group. Let ρ_{λ} be an irreducible representation of S_n . The normal subgroup $(\mathbb{Z}/2\mathbb{Z})^n$ has two S_n invariant characters; the trivial character, and the character ϵ whose restriction to each factor $(\mathbb{Z}/2\mathbb{Z})$ is nontrivial. Consider two irreducible representations of \mathbb{B}_n namely,

$$\rho_{\lambda}^{0}(x;\omega) = \rho_{\lambda}(\omega) \text{ and } \rho_{\lambda}^{1}(x;\omega) = \epsilon(x)\rho_{\lambda}(\omega),$$

where $x \in (\mathbb{Z}/2\mathbb{Z})^n$ and $\omega \in S_n$. Let $\rho_{\alpha\beta}$ be defined as,

$$\rho_{\alpha\beta} = \operatorname{Ind}_{\mathbb{B}_a \times \mathbb{B}_b}^{\mathbb{B}_n} \rho_{\alpha}^0 \boxtimes \rho_{\beta}^1$$

In order to find all the irreducible representations, we are going to need the following theorems by Clifford (see [4], Theorem 6.2, Theorem 6.5).

Theorem 2.0.1. Let $H \triangleleft G$ and let $\chi \in Irr(G)$. Let ξ be an irreducible constituent of χ_H and suppose $\xi = \xi_1, \ldots, \xi_t$, are the distinct conjugates of ξ in G. Then

$$\chi_H = e \sum_{i=1}^t \xi_i,$$

where $e = [\chi_H, \xi]$.

Definition 2.0.2. Let G be a group. Let $H \triangleleft G$ and $\xi \in Irr(H)$. Then

$$N_G(\xi) = \{g \in G \mid \xi^g = \xi\}$$

is the normalizer of ξ in G.

Theorem 2.0.3. Let $H \triangleleft G$, $\xi \in Irr(H)$, and $T = N_G(\xi)$. Let

$$\mathcal{A} = \{ \psi \in \operatorname{Irr}(T) \mid [\psi_H, \xi] \neq 0 \},\$$
$$\mathcal{B} = \{ \chi \in \operatorname{Irr}(G) \mid [\chi_H, \xi] \neq 0 \}.$$

Then

- 1. If $\psi \in \mathcal{A}$, then ψ^G is irreducible;
- 2. The map $\psi \mapsto \psi^G$ is a bijection of \mathcal{A} onto \mathcal{B} ;
- 3. If $\psi^G = \chi$, with $\psi \in \mathcal{A}$, then ψ is the unique irreducible constituent of χ_T which lies in \mathcal{A} ;

4. If
$$\psi^G = \chi$$
, with $\psi \in \mathcal{A}$, then $[\psi_H, \xi] = [\chi_H, \xi]$.

Let

$$\rho_{\alpha\beta} = \operatorname{Ind}_{\mathbb{B}_a \times \mathbb{B}_b}^{\mathbb{B}_n} \rho_{\alpha}^0 \boxtimes \rho_{\beta}^1.$$

Lemma 2.0.4. If $\rho_{\alpha\beta}$ is defined as above, it is an irreducible representation of \mathbb{B}_n .

Proof. $V_n := C_2^n$ is an obvious normal subgroup of \mathbb{B}_n . Let $\xi_{a,b} \in \operatorname{Irr}(V_n)$ be defined as:

$$\xi_{a,b}(v_1,\ldots,v_a,v_{a+1},\ldots,v_{a+b}) = (-1)^{v_{a+1}+\cdots+v_{a+b}}.$$

Then

$$N_G(\xi_{a,b}) = C_2^n \rtimes (S_a \times S_b) \equiv \mathbb{B}_a \times \mathbb{B}_b.$$

Certainly $\rho_{\alpha}^{0} \boxtimes \rho_{\beta}^{1} \in \operatorname{Irr}(N_{g}(\xi_{a,b}))$. Now let $w_{a} \in V_{\alpha}$ and $w_{b} \in V_{\beta}$,

$$(\rho^0_{\alpha} \boxtimes \rho^1_{\beta})_{V_n}(w_a, w_b) = \mathrm{Id}_{V_{\alpha}} \boxtimes \epsilon(w_b) \mathrm{Id}_{V_{\beta}}$$

$$\chi_{(\rho_{\alpha}^{0}\boxtimes\rho_{\beta}^{1})v_{n}}(w_{a},w_{b}) = f_{\alpha}f_{\beta}\epsilon(w_{b}) = f_{\alpha}f_{\beta}\xi_{a,b}(w_{a},w_{b})$$

Hence $[(\rho^0_{\alpha} \boxtimes \rho^1_{\beta})_{V_n}, \xi_{a,b}] \neq 0$, therefore $\rho^0_{\alpha} \boxtimes \rho^1_{\beta} \in \mathcal{A}$ and $\mathrm{Ind}_{\mathbb{B}_a \times \mathbb{B}_b}^{\mathbb{B}_n} \rho^0_{\alpha} \boxtimes \rho^1_{\beta}$ is an irreducible representation of \mathbb{B}_n .

Lemma 2.0.5. All the irreducible representations of \mathbb{B}_n arise this way.

Proof. Let π be an irreducible representation of \mathbb{B}_n . Then π_{V_n} contains a linear functional σ . We can identify σ with a row vector having a number of 0's and b number of 1's. Thus σ is conjugate to some $\xi_{a,b}$. Using Theorem 2.0.1, we can deduce π_{V_n} contains $\xi_{a,b}$. π must be an induction of some τ from $\mathbb{B}_a \times \mathbb{B}_b$. We know that, τ must be a tensor product of τ_{α} from \mathbb{B}_a and τ_{β} from \mathbb{B}_b . By Theorem 2.0.3, τ contains a trivial representation. By Theorem 2.0.1, and as τ_{v_n} is trivial, it must be of the form ρ_{α}^0 . Similarly for τ_b , we can prove it is of the form ρ_{β}^1 . Hence τ is of the form $\rho_{\alpha,\beta}$.

Then

$$\{\rho_{\alpha\beta} | \alpha \vdash a, \beta \vdash b, a+b=n\}$$

is a complete set of representatives for the set of isomorphism classes of irreducible representations of \mathbb{B}_n . The dimension $f_{\alpha\beta}$ of the representation space $V_{\alpha\beta}$ is

$$f_{\alpha\beta} = \dim V_{\alpha\beta} = \frac{n!}{a!b!} f_{\alpha} f_{\beta}.$$

More details can be found about the irreducible representations in [6].

Chapter 3

Solomon Formulas for \mathbb{B}_n

3.1 Formula for determinants

There are four one-dimensional representations of \mathbb{B}_n , which we denote as 1, ϵ , sgn⁰ and sgn¹. Let $(x; \omega) \in \mathbb{B}_n$ where $x \in (\mathbb{Z}/2\mathbb{Z})^n$ and $\omega \in S_n$.

The projection to S_n followed by the sign character is sgn^0 , i.e. $\operatorname{sgn}^0(x;\omega) = \operatorname{sgn}(\omega)$. Similarly $\epsilon(x;\omega) = \epsilon(x)$, where ϵ is the character whose restriction to each factor $(\mathbb{Z}/2\mathbb{Z})$ is nontrivial. Finally, sgn^1 is the product of ϵ and sgn^0 , i.e. $\operatorname{sgn}^1(x;\omega) = \epsilon(x)\operatorname{sgn}(\omega)$.

The determinant of each irreducible representation is equal to one of them. Let $e_1 := (1, 0, \ldots, 0; 1_{S_n})$ and $s_1 := (\vec{0}; (12))$. Let $\chi_{\alpha\beta} := \chi_{\rho_{\alpha\beta}}$ and $\chi_{\lambda} := \chi_{\rho_{\lambda}}$. The following table lists the characters of the one dimensional representations at two particular conjugacy classes.

$\rho_{lphaeta}$	$\chi_{\rho_{\alpha\beta}}(e_1)$	$\chi_{ ho_{lphaeta}}(s_1)$
1	1	1
sgn^0	1	-1
ϵ	-1	1
sgn^1	-1	-1

Let,

$$g_{\lambda} = \frac{f_{\lambda} - \chi_{\lambda}((12))}{2}.$$
(3.1)

Let H be a subgroup of the finite group G and let g_1, \ldots, g_m be representatives for the distinct left cosets of H in G.

Proposition 3.1.1. (Frobenius character formula) If ψ is the character afforded by V then the induced character is given by

$$\operatorname{Ind}_{H}^{G}(\psi)(g) = \sum_{i=1}^{m} \psi(g_{i}^{-1}gg_{i})$$

where $g \in G/H$ and ψ is extended by 0 to G.

Using Proposition 3.1.1, we can determine the following formulas.

Proposition 3.1.2. For given α and β , we have

$$\chi_{\alpha\beta}(e_1) = f_{\alpha}f_{\beta}\left[2\binom{n-1}{a-1,b} - \binom{n}{a,b}\right].$$

Proof. To apply the Frobenius character formula, we need to know the distinct left coset representatives of $S_{a+b}/(S_a \times S_b)$. Let $\underline{n} = \{1, 2, ..., n\}$; take its power set and represent it as $\wp(\underline{n})$. Take $\underline{a} = (1, 2, ..., a) \in \wp(\underline{n})$ and consider the action of S_n on $\wp(\underline{n})$. Then by the orbit-stabiliser theorem,

$$\operatorname{Orb}(\underline{a}) \cong S_{a+b}/(S_a \times S_b)$$
 as *G*-sets

Now by Proposition 3.1.1,

$$\operatorname{Ind}_{\mathbb{B}_{a}\times\mathbb{B}_{b}}^{\mathbb{B}_{n}}(\rho_{\alpha}^{0}\boxtimes\rho_{\beta}^{1})(e_{1})=\sum_{i=1}^{m}(\rho_{\alpha}^{0}\boxtimes\rho_{\beta}^{1})(g_{i}^{-1}e_{1}g_{i})$$

Consider the map g_i which is given by:

 $e_1 \mapsto g_i^{-1} e_1 g_i,$

$$g_{i}:\begin{pmatrix}1\\\vdots\\a\\a+1\\\vdots\\b+a\end{pmatrix}\quad\longmapsto\begin{pmatrix}x_{i_{1}}\\\vdots\\x_{i_{a}}\\y_{i_{1}}\\\vdots\\y_{i_{b}}\end{pmatrix}$$

Let $X_a := (x_{i_1}, ..., x_{i_a})^T$ and $X_b := (y_{i_1}, ..., y_{i_b})^T$. Hence

$$\#\{g_i \mid 1 \in X_a\} = \#\{g_i \mid 1 \notin X_b\} = \binom{n-1}{a-1,b},$$

is the number of g_i 's such that $(\rho_{\alpha}^0 \boxtimes \rho_{\beta}^1)(g_i^{-1}e_1g_i) = 1$. The number of g_i 's such that $(\rho_{\alpha}^0 \boxtimes \rho_{\beta}^1)(g_i^{-1}e_1g_i) = -1$ is equal to $(\binom{n}{a,b} - \binom{n-1}{a-1,b})$. Hence

$$\chi_{\alpha\beta}(e_1) = f_{\alpha}f_{\beta}\left[\binom{n-1}{a-1,b} - \binom{n}{a,b} - \binom{n-1}{a-1,b}\right]$$
$$= f_{\alpha}f_{\beta}\left[2\binom{n-1}{a-1,b} - \binom{n}{a,b}\right].$$

Proposition 3.1.3. For a given α and β , we have

$$\chi_{\alpha\beta}(s_1) = \binom{n-2}{a-2,b} f_\beta \chi_\alpha((12)) + \binom{n-2}{a,b-2} f_\alpha \chi_\beta((12)).$$

Proof. By Proposition 3.1.1,

$$\chi_{\alpha\beta}(s_1) = \sum_{i=1}^{m} (\rho_{\alpha}^0 \boxtimes \rho_{\beta}^1) (g_i^{-1}(12)g_i).$$

We know that $g_i^{-1}(12)g_i = (g_i^{-1}(1)g_i^{-1}(2))$. Consider the map g_i which is given by:

$$(12) \mapsto (g_i^{-1}(12)g_i),$$

$$g_{i}:\begin{pmatrix}1\\\vdots\\a\\a+1\\\vdots\\b+a\end{pmatrix}\quad\longmapsto\begin{pmatrix}x_{i_{1}}\\\vdots\\x_{i_{a}}\\y_{i_{1}}\\\vdots\\y_{i_{b}}\end{pmatrix}$$

•

Thus,

$$#\{g_i \mid 1 \in X_a \text{ and } 2 \in X_a\} = #\{g_i \mid 1 \notin X_b \text{ and } 2 \notin X_a\} = \binom{n-2}{a-2,b}$$

and

$$\#\{g_i \mid 1 \in Y_a \text{ and } 2 \in Y_a\} = \#\{g_i \mid 1 \notin Y_b \text{ and } 2 \notin Y_b\} = \binom{n-2}{a, b-2}.$$

Hence

$$\chi_{\alpha\beta}(s_1) = \binom{n-2}{a-2,b} f_\beta \chi_\alpha((12)) + \binom{n-2}{a,b-2} f_\alpha \chi_\beta((12)).$$

Let $x_{\alpha\beta}$ and $y_{\alpha,\beta}$ denote the multiplicity of -1 as eigenvalues of $\rho_{\alpha\beta}(e_1)$ and $\rho_{\alpha\beta}(s_1)$ respectively. Then, similar to the formulas of Solomon for determinants of S_n (see [10], Exercise 7.55), we have:

$$x_{\alpha\beta} = \frac{\chi_{\alpha\beta}(1, 1, \dots, 1; 1_{S_n}) - \chi_{\alpha\beta}(e_1)}{2}$$

$$= f_{\alpha}f_{\beta}\binom{n-1}{a, b-1},$$

$$y_{\alpha\beta} = \frac{\chi_{\alpha\beta}(1, 1, \dots, 1; 1_{S_n}) - \chi_{\alpha\beta}(s_1)}{2}$$

$$= \frac{f_{\alpha}f_{\beta}\binom{n}{a, b} - \binom{n-2}{a-2, b}f_{\beta}\chi_{\alpha}((12)) - \binom{n-2}{a, b-2}f_{\alpha}\chi_{\beta}((12))}{2}.$$
(3.2)

By Equation 3.1, we have

$$y_{\alpha\beta} = \frac{\binom{n-2}{a-2,b}f_{\beta}\chi_{\alpha}((12)) + \binom{n-2}{a,b-2}f_{\alpha}\chi_{\beta}((12)) - f_{\alpha}f_{\beta}\binom{n}{a,b}}{2}$$
$$= \frac{f_{\alpha}f_{\beta}\left[\binom{n-2}{a-2,b} + \binom{n-2}{a,b-2} - \binom{n}{a,b}\right]}{2} - \binom{n-2}{a-2,b}f_{\alpha}g_{\alpha} - \binom{n-2}{a,b-2}f_{\beta}g_{\beta} \qquad (3.3)$$
$$= f_{\alpha}f_{\beta}\binom{n-2}{a-1,b-1} + f_{\beta}g_{\alpha}\binom{n-2}{a-2,b} + f_{\alpha}g_{\beta}\binom{n-2}{a,b-2}.$$

Theorem 3.1.4. For a given $x_{\alpha\beta}$ and $y_{\alpha\beta}$,

$$\det \circ \rho_{\alpha\beta} = \epsilon^{x_{\alpha\beta}} \cdot \left(\operatorname{sgn}^{0}\right)^{y_{\alpha\beta}}.$$

The study of the determinants of the representations of the hyperoctahedral group then reduces to finding the parities of $x_{\alpha\beta}$ and $y_{\alpha\beta}$.

3.2 Parity of $x_{\alpha\beta}$

Using the theory of 2-core towers of partitions developed for example in ([2], [5], [7]), we were able to determine the parity of x. That is, for which bipartitions (α, β) of n, x is odd or even; and count the number of such partitions of a given n. Let $X(n) = \{(\alpha, \beta) \models n \mid x_{\alpha\beta} \text{ is odd}\}$. Recall, $\binom{n}{a,b}$ is odd iff there are no carries while adding a and b in binary. Suppose n is a positive integer with the following binary expansion:

$$n = 2^{k_0} + 2^{k_1} + 2^{k_2} + \dots + 2^{k_r}, 0 \le k_1 < k_2 < \dots < k_r.$$

Define $bin(n) = k_0, \ldots, k_r$, a set of cardinality $\nu(n)$. Thus, $\binom{n}{a,b}$ is odd iff bin(a) and bin(b) are disjoint.

For a partition λ of n, let $\gamma = \operatorname{core}_2(\lambda)$ and $(\alpha; \beta) = \operatorname{quo}_2(\lambda)$. Let $g = |\gamma|, a = |\alpha|$, and $b = |\beta|$. Let 2n have the following binary expansion:

$$2n = 2^{k_1} + 2^{k_2} + \dots + 2^{k_r}, 0 < k_1 < k_2 < \dots < k_r.$$

Lemma 3.2.1. Suppose λ is a partition of 2n with trivial 2-core and f_{λ} is odd. Let the

2-core tower of λ satisfy the following conditions:

$$w_i(\lambda) = \begin{cases} 1 & \text{if } i \in \{k_1, k_2, \dots, k_r\}, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\binom{n-1}{a,b-1}$ is odd iff the unique non-trivial partition in the k_1 th row is in the right subtree of the tower. On the other hand, $\binom{n-1}{a,b-1}$ is even iff the unique non-trivial partition in the k_1 th row is in the left subtree of the tower.

Proof. Case $k_1 = 1$: If the unique non-trivial partition in the 1st row is in the right subtree, then *a* is even and *b* is odd. The conditions on w_i guarantee that bin(a) and bin(b-1) are disjoint. If the unique non-trivial partition in the 1st row is in the left subtree, then *a* is odd and *b* is even. Thus bin(a) and bin(b-1) are not disjoint.

Case $k_1 > 1$: In this case both *a* and *b* are even. We know,

$$bin(b-1) = \{0, 1, \dots, v_2(b) - 1\} \cup (bin(b) - \{v_2(b)\}).$$

If the unique non-trivial partition in the k_1 th row is in the right subtree, then $k_1 = v_2(b) - 1$ and $k_2 \le v_2(a) + 1$. Thus bin(a) and bin(b-1) are disjoint. If the unique non-trivial partition in the k_1 th row is in the left subtree, then $k_1 = v_1(a) - 1$ and $k_2 \le v_2(b) + 1$. Hence bin(a)and bin(b-1) are not disjoint.

Lemma 3.2.2. Given λ a partition of 2n with trivial 2-core. For some $0 < v < k_1$, let the 2-core tower of λ satisfy the following conditions:

$$w_i(\lambda) = \begin{cases} 2 & \text{if } i = k_1 - v, \\ 1 & \text{if } k_1 - v + 1 \le i \le k_1 - 1 \text{ or } i \in \{k_1, k_2, \dots, k_r\}, \\ 0 & \text{otherwise,} \end{cases}$$

and the two non-trivial partitions in the $(k_1 - v)$ th row are one on the left and one on the right subtree. Then $\binom{n-1}{a,b-1}$ is odd.

Proof. Case 1:

Suppose $k_1 - v = 1$. In the 2-core tower, this means $\alpha_0 = 1$ and $\alpha_1 = 1$. Both *a* and *b* are odd; hence b - 1 is even and as the number of 1's that occur in other rows of the 2-core tower is just 1, there are no carries while adding *a* and b - 1. Case 2: Suppose $k_1 > 2$ and $v \neq k_1 - 1$. Then *a* and *b* are even, but both have 1 at the $(k_1 - v)$ th position in the binary expansion. Thus, b - 1 is odd and looking at the binary expansion of b - 1, from the right, it will be all 1's $k_1 - v + 1$ times followed by a zero at the $(k_1 - v)$ th place, followed by some nonzero part. Hence there won't be any carries while adding *a* and b - 1.

Recall the following from [1, Lemma 6].

Lemma 3.2.3. The partition λ is odd if and only if $|\gamma| \leq 1$ (so γ is ϕ or (1)), the sets of place values where 1 appears in the binary expansions of g, 2a and 2b are disjoint, and α and β are odd.

These three conditions completely determine $x_{\alpha\beta} \mod 2$. Let Bip := { $(\alpha, \beta) \models n$ } and Bip_w = { $(\alpha, \beta) \models n \mid \det \circ \rho = w$ }. Let C_n = { $\alpha \mid \alpha \vdash n, \alpha$ is chiral}.

Lemma 3.2.4. For a given n,

$$N_{\epsilon}(n) + N_{\text{sgn}^1}(n) = B(2n).$$
 (3.4)

Proof. We know $\operatorname{Bip}_{\epsilon} \cup \operatorname{Bip}_{\operatorname{sgn}^1} = \{(\alpha, \beta) \mid (\alpha, \beta) \models n, x_{\alpha,\beta} \equiv 1 \pmod{2}\}$. Consider $\phi : \operatorname{Bip}_{\epsilon} \cup \operatorname{Bip}_{\operatorname{sgn}^1} \to C_{2n}$, where $\phi(\alpha, \beta)$ is the unique partition whose 2-core is trivial and whose 2-quotient is (α, β) . Then from the previous lemmas and Theorem 1.2.1, it follows that ϕ is a bijective map.

3.3 Parity of $y_{\alpha\beta}$

By Equation 3.3 we have

$$y_{\alpha\beta} = f_{\alpha}f_{\beta}\binom{n-2}{a-1,b-1} + f_{\beta}g_{\alpha}\binom{n-2}{a-2,b} + f_{\alpha}g_{\beta}\binom{n-2}{a,b-2}.$$

To study the above equation further, we must understand the correlation between the parities of f_{λ} and g_{λ} for various λ . Take μ to be a partition of m. Let m have the following binary expansion:

$$m = \epsilon + 2^{k_1} + 2^{k_2} + \dots + 2^{k_r}, \epsilon \in \{0, 1\}, 0 < k_1 < k_2 < \dots < k_r.$$

The two lemmas stated below follow directly from Theorem 1.2.1.

Lemma 3.3.1. If the following conditions are satisfied, then $g_{\mu} \equiv f_{\mu} + 1 \mod 2$.

1. Let m be even. Suppose, the 2-core tower of μ satisfies the following conditions:

$$w_i(\mu) = \begin{cases} 2 & \text{if } i = k_1 - v, \\ 1 & \text{if } k_1 - v + 1 \le i \le k_1 - 1 \text{ or } i \in \{k_1, k_2, \dots, k_r\}, \\ 0 & \text{otherwise,} \end{cases}$$

and the two non-trivial partitions in the $(k_1 - v)$ th row are one on the left and one on the right subtree.

2. Let m be odd. Suppose, the 2-core tower of μ satisfies the following conditions:

$$w_i(\mu) = \begin{cases} 3 & \text{if } i = 0, \\ 1 & \text{if } i \in \{1, \dots, k_1 - 1, k_2, \dots, k_r\}, \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 3.3.2. Suppose, the 2-core tower of μ satisfies the following conditions:

$$w_i(\mu) = \begin{cases} 1 & \text{if } i \in \{k_1, k_2, \dots, k_r\}, \\ 0 & \text{otherwise,} \end{cases}$$

and the unique non-trivial partition in the k_1 th row is in the left subtree of the tower. Then $g_{\mu} \equiv f_{\mu} \mod 2$.

Corollary 3.3.3. 1. The number of partitions λ of n, such that f_{λ} and g_{λ} are both odd is $\frac{1}{2}A(n)$.

- 2. The number of partitions λ of n, such that f_{λ} is odd and g_{λ} is even is $\frac{1}{2}A(n)$.
- 3. The number of partitions λ of n, such that f_{λ} is even and g_{λ} is odd is $B(n) \frac{1}{2}A(n)$.

Proof. These follow directly by Lemmas 3.3.1, 3.3.2 and Theorem 1.2.2, .

3.4 Involutions on the set of Bipartitions

Recall

$$x_{\alpha,\beta} = f_{\alpha} f_{\beta} \binom{n-1}{a,b-1}$$

and

$$y_{\alpha,\beta} = f_{\alpha}f_{\beta}\binom{n-2}{a-1,b-1} + f_{\alpha}g_{\beta}\binom{n-2}{a,b-2} + f_{\beta}g_{\alpha}\binom{n-2}{a-2,b}.$$

Proposition 3.4.1. Consider the map $\iota_1 : \operatorname{Bip}_{\epsilon} \to \operatorname{Bip}$ defined by $\iota_1(\alpha, \beta) := (\alpha', \beta)$. Then the parity of $x_{\alpha,\beta}$ is preserved and the parity of $y_{\alpha,\beta}$ changes iff $\binom{n-2}{a-1,b-1}$ is odd.

Proof. We know that

$$x_{\alpha',\beta} = f_{\alpha}f_{\beta}\binom{n-1}{a,b-1}$$

and

$$y_{\alpha',\beta} = f_{\alpha'}f_{\beta}\binom{n-2}{a-1,b-1} + f_{\alpha}'g_{\beta}\binom{n-2}{a,b-2} + f_{\beta}g_{\alpha'}\binom{n-2}{a-2,b}$$

We know that $x_{\alpha,\beta}$ be odd. Then $x_{\alpha',\beta}$ is also odd and

$$y_{\alpha',\beta} \equiv \binom{n-2}{a-1,b-1} + g_{\alpha'}\binom{n-2}{a-2,b} + g_{\beta}\binom{n-2}{a,b-2} \pmod{2}.$$

Case 1: Let $\binom{n-2}{a-1,b-1}$ be odd and $\binom{n-2}{a,b-2}$ be even. Hence

$$y_{\alpha,\beta} \equiv 1 + g_{\alpha} {\binom{n-2}{a-2,b}} \pmod{2}$$

and

$$y_{\alpha',\beta} \equiv 1 + g_{\alpha'} \binom{n-2}{a-2,b} \pmod{2}.$$

Since f_{α} is odd, we know $g_{\alpha'} \equiv 1 + g_{\alpha} \pmod{2}$. Thus $y_{\alpha,\beta}$ changes parity under the map ι_1 iff $\binom{n-2}{a-2,b}$ is odd.

Case 2: Let $\binom{n-2}{a-1,b-1}$ be odd and $\binom{n-2}{a,b-2}$ be even. Hence

$$y_{\alpha,\beta} \equiv g_{\alpha} \binom{n-2}{a-2,b} + g_{\beta}$$

and

$$y_{\alpha',\beta} \equiv g_{\alpha'} \binom{n-2}{a-2,b} + g_{\beta}$$

Similarly, $y_{\alpha,\beta}$ changes parity under the map ι_1 iff $\binom{n-2}{a-2,b}$ is odd.

Proposition 3.4.2. Consider the map $\iota_1 : \operatorname{Bip}_{\operatorname{sgn}^0} \to \operatorname{Bip}$ defined by $\iota_1(\alpha, \beta) := (\alpha', \beta)$. Then the parity of $x_{\alpha,\beta}$ is preserved. The parity of $y_{\alpha,\beta}$ is preserved if f_β is even or g_α doesn't change under conjugation, otherwise the parity changes iff $\binom{n-2}{a-2,b}$ is odd.

Proof. We know that $x_{\alpha,\beta}$ be even and $y_{\alpha,\beta}$ is odd. Hence, either one of f_{α} or f_{β} is even or $\binom{n-1}{a,b-1}$ is even. Consider f_{α} is even. Thus,

$$y_{\alpha,\beta} \equiv g_{\alpha} \binom{n-2}{a-2,b} \pmod{2},$$

and

$$y_{\alpha',\beta} \equiv g_{\alpha'} \binom{n-2}{a-2,b} \pmod{2}$$

Hence the parity changes iff $\binom{n-2}{a-2,b}$ is odd. Consider f_{β} is even, then

$$y_{\alpha,\beta} \equiv g_\beta \binom{n-2}{a,b-2}$$

Hence, there is no change in parity. Let f_{α} and f_{β} be odd, and $\binom{n-1}{a,b-1}$ is even. Then,

$$y_{\alpha,\beta} \equiv \binom{n-2}{a-1,b-1} + g_{\beta}\binom{n-2}{a,b-2} + g_{\alpha}\binom{n-2}{a-2,b} \pmod{2},$$

and

$$y_{\alpha',\beta} = \binom{n-2}{a-1,b-1} + g_{\beta}\binom{n-2}{a,b-2} + g_{\alpha'}\binom{n-2}{a-2,b} \pmod{2}.$$

So there is a change in parity iff $\binom{n-2}{a-2,b}$ is odd.

Proposition 3.4.3. Consider the map $\iota_2 : \operatorname{Bip}_{\epsilon} \to \operatorname{Bip}$ defined by $\iota_2(\alpha, \beta) := (\alpha, \beta')$. In this case the parity of $x_{\alpha,\beta}$ is preserved and the parity of $y_{\alpha,\beta}$ changes iff $\binom{n-2}{a-1,b-1}$ is even and $\binom{n-2}{a,b-2}$ is odd.

Proof. We have $x_{\alpha,\beta'} \equiv f_{\alpha}f_{\beta'}\binom{n-2}{a,b-1}$ and thus there is no change in parity.

Case 1: Let $\binom{n-2}{a-1,b-1}$ be odd and $\binom{n-2}{a-2,b}$ be even. Then

$$y_{\alpha,\beta} \equiv 1 + g_{\alpha} {\binom{n-2}{a-2,b}} \pmod{2}$$

and

$$y_{\alpha,\beta'} \equiv 1 + g_{\alpha} {\binom{n-2}{a-2,b}} \pmod{2}.$$

Thus there is no change in parity.

Case 2: Let $\binom{n-2}{a-1,b-1}$ be even and $\binom{n-2}{a-2,b}$ is odd. Then

$$y_{\alpha,\beta} \equiv g_{\beta} + g_{\alpha} {\binom{n-2}{a-2,b}} \pmod{2}$$

and

$$y_{\alpha,\beta'} \equiv g_{\beta'} + g_{\alpha} {\binom{n-2}{a-2,b}} \pmod{2}.$$

Thus the parity changes.

Proposition 3.4.4. Consider the map ι_2 : $\operatorname{Bip}_{\operatorname{sgn}^0} \to \operatorname{Bip}$ defined by $\iota_2(\alpha, \beta) := (\alpha, \beta')$. Then the parity of $x_{\alpha,\beta}$ is preserved. The parity of $y_{\alpha,\beta}$ is preserved if f_{α} is even or g_{β} doesn't change under conjugation, otherwise the parity changes iff $\binom{n-2}{a,b-2}$ is odd.

This follows directly from Proposition 3.4.2

Proposition 3.4.5. Consider the map ι_3 : Bip \rightarrow Bip defined by $\iota_3(\alpha, \beta) := (\beta, \alpha)$. The parity of $x_{\alpha,\beta}$ changes iff the 2-core tower of $\phi(\alpha, \beta)$ satisfies Lemma 5.1 while the parity of $y_{\alpha,\beta}$ is preserved.

This follows directly from Lemma 5.1 and the fact that $y_{\alpha,\beta}$ is symmetric with respect to α and β . Combining the above lemmas we get the following.

Corollary 3.4.6. Consider the map $\iota_4 : \operatorname{Bip}_{\epsilon} \to \operatorname{Bip}$ defined by $\iota_4(\alpha, \beta) := (\beta', \alpha')$. Then $\iota_4(\alpha, \beta) \in \operatorname{Bip}_{\epsilon}$ iff the 2-core tower of $\phi(\alpha, \beta)$ satisfies Lemma 5.2 and one of the following is true:

1. $\binom{n-2}{a-2,b}$, $\binom{n-2}{a-1,b-1}$ and $\binom{n-2}{a,b-2}$ are odd, even and odd respectively,

2. $\binom{n-2}{a-2,b}, \binom{n-2}{a-1,b-1}$ and $\binom{n-2}{a,b-2}$ are even, odd and even respectively.

Corollary 3.4.7. let $\iota_4 : \operatorname{Bip}_{\operatorname{sgn}^0} \to \operatorname{Bip}$ defined as above. Then $\iota_4(\alpha, \beta) \in \operatorname{Bip}_{\operatorname{sgn}^0}$ iff exactly one of f_{α} or f_{β} is even and the first non-trivial row in α or β contains two [1]'s symmetrically.

Chapter 4

Counting Representations of Given Determinant

4.1 Counting in terms of (a, b)

Let

$$N_{\omega}(n) = \#\{(\alpha, \beta) \models n \mid \det \circ \rho_{\alpha\beta} = \omega\}$$

and

$$N_{\omega}(a,b) = \#\{\alpha,\beta\} \mid \alpha \vdash a, \beta \vdash b, \det \circ \rho_{\alpha\beta} = \omega\} \text{ for } \omega \in \{1,\epsilon,\operatorname{sgn}^0,\operatorname{sgn}^1\}.$$

It follows that

$$N_{\omega}(n) = \sum_{a+b=n} N_{\omega}(a,b).$$

Recall that,

$$x_{\alpha\beta} = f_{\alpha}f_{\beta}\binom{n-1}{a,b-1},$$

and

$$y_{\alpha\beta} = f_{\alpha}f_{\beta}\binom{n-2}{a-1,b-1} + f_{\beta}g_{\alpha}\binom{n-2}{a-2,b} + f_{\alpha}g_{\beta}\binom{n-2}{a,b-2}.$$

Lemma 4.1.1. The following conditions are equivalent:

- 1. $\binom{n-2}{a-1,b-1}$ is odd, $\binom{n-2}{a,b-2}$ is even, and $\binom{n-2}{a-2,b}$ is even,
- 2. *n* is even and $\binom{n-2}{a-1,b-1}$ is odd.

This is immediate from considering the binary expansions of a, b and n. Recall $A(n) = 2^{\alpha(n)}$, is the number of odd partitions of n.

Proposition 4.1.2. For given a and b, we have

$$N_{\epsilon}(a,b) = \begin{cases} 0 & \text{if } \binom{n-1}{a,b-1} \text{ is even,} \\ 0 & \text{if } n \text{ is even and } \binom{n-2}{a-1,b-1} \text{ is odd,} \\ \frac{1}{2}A(a)A(b) & \text{otherwise.} \end{cases}$$
(4.1)

Proof. For $x_{\alpha\beta}$ to be odd, we need f_{α} , f_{β} and $\binom{n-1}{a,b-1}$ to be odd. We know,

$$\binom{n-1}{a,b-1} = \binom{n-2}{a-1,b-1} + \binom{n-2}{a,b-2}.$$

So there are two cases we need to consider. Case 1: If $\binom{n-2}{a-1,b-1}$ is odd and $\binom{n-2}{a,b-2}$ is even, then

$$y_{\alpha\beta} \equiv 1 + g_{\alpha} {\binom{n-2}{a-2,b}} \pmod{2}.$$

For $y_{\alpha\beta}$ to be even, we need $g_{\alpha}\binom{n-2}{a-2,b}$ to be odd, thus

$$N_{\epsilon}(a,b) = \#\{f_{\alpha} \text{ is odd}, g_{\alpha} \text{ is odd}\}\#\{f_{\beta} \text{ is odd}\}$$
$$= 2^{\alpha(a)-1}2^{\alpha(b)}$$
$$= \frac{1}{2}A(a)A(b).$$

Case 2: If $\binom{n-2}{a-1,b-1}$ is even and $\binom{n-2}{a,b-2}$ is odd, then

$$y_{\alpha\beta} \equiv g_{\alpha} \binom{n-2}{a-2,b} + g_{\beta} \pmod{2}.$$

For $y_{\alpha\beta}$ to be even, we need $g_{\alpha}\binom{n-2}{a-2,b}$ and g_{β} to be both odd or both even. We again have two possibilities.

Case 2a: If $\binom{n-2}{a-2,b}$ is even, then

$$N_{\epsilon}(a,b) = \#\{f_{\beta} \text{ is odd}, g_{\beta} \text{ is odd}\} \#\{f_{\alpha} \text{ is odd}\}$$
$$= 2^{\alpha(a)} 2^{\alpha(b)-1}$$
$$= \frac{1}{2} A(a) A(b).$$

Case 2b: If $\binom{n-2}{a-2,b}$ is odd, then

$$N_{\epsilon}(a,b) = \#\{f_{\alpha} \text{ is odd, } g_{\alpha} \text{ is even}\}\#\{f_{\beta} \text{ is odd, } g_{\beta} \text{ is even}\} + \#\{f_{\alpha} \text{ is odd, } g_{\alpha} \text{ is odd}\}\#\{f_{\beta} \text{ is odd, } g_{\beta} \text{ is odd}\} = A(a)A(b) - A(a)\frac{1}{2}A(b) - \frac{1}{2}A(a)A(b) + 2 \cdot \frac{1}{2}A(a)\frac{1}{2}A(b) = \frac{1}{2}A(a)A(b).$$

Proposition 4.1.3. For given a and b, we have

$$N_{\text{sgn}^{1}}(a,b) = \begin{cases} 0 & \text{if } \binom{n-1}{a,b-1} \text{ is even,} \\ A(a)A(b) & \text{if } n \text{ is even and } \binom{n-2}{a-1,b-1} \text{ is odd,} \\ \frac{1}{2}A(a)A(b) & \text{otherwise.} \end{cases}$$
(4.2)

Proof. For $x_{\alpha\beta}$ to be odd, we need f_{α} , f_{β} and $\binom{n-1}{a,b-1}$ to be odd. Again there are two cases to consider.

Case 1: If $\binom{n-2}{a-1,b-1}$ is odd and $\binom{n-2}{a,b-2}$ is even, then

$$y_{\alpha\beta} \equiv 1 + g_{\alpha} {\binom{n-2}{a-2,b}} \pmod{2}.$$

For $y_{\alpha\beta}$ to be odd, we need $g_{\alpha} \binom{n-2}{a-2,b}$ to be even. Case 1a: If $\binom{n-2}{a-2,b}$ is even, then $N_{\text{sgn}^1}(a,b) = A(a)A(b)$. Case 1b: If $\binom{n-2}{a-2,b}$ is odd, then

$$N_{\text{sgn}^{1}}(a, b) = \#\{f_{\alpha} \text{ is odd}, g_{\alpha} \text{ is even}\}\#\{f_{\beta} \text{ is odd}\}$$
$$= [\#\{f_{\alpha} \text{ is odd}\} - \#\{f_{\alpha} \text{ is odd}, g_{\alpha} \text{ is odd}\}] \#\{f_{\beta} \text{ is odd}\}$$
$$= \frac{1}{2}A(a)A(b).$$

Case 2: If $\binom{n-2}{a-1,b-1}$ is even and $\binom{n-2}{a,b-2}$ is odd, then

$$y_{\alpha\beta} \equiv g_{\alpha} \binom{n-2}{a-2,b} + g_{\beta} \pmod{2}.$$

For $y_{\alpha\beta}$ to be odd, we have two cases: Case 2a: If $g_{\alpha} \binom{n-2}{a-2,b}$ is even and g_{β} is odd, then

$$y_{\alpha\beta} \equiv g_\beta \pmod{2}$$
.

Thus, we have

$$N_{\operatorname{sgn}^{1}}(a, b) = \#\{f_{\beta} \text{ is odd}, g_{\beta} \text{ is odd}\}\#\{f_{\alpha} \text{ is odd}\}$$
$$= \frac{1}{2}A(b)A(a).$$

Case 2b: If $g_{\alpha} \begin{pmatrix} n-2\\ a-2,b \end{pmatrix}$ is odd and g_{β} is even, then

$$y_{\alpha\beta} \equiv g_{\beta} + g_{\alpha} \pmod{2}$$

Thus, we have

$$N_{\text{sgn}^{1}}(a, b) = \#\{f_{\beta} \text{ is odd}, g_{\beta} \text{ is odd}\} \#\{f_{\alpha} \text{ is odd}, g_{\alpha} \text{ is even}\} \\ + \#\{f_{\beta} \text{ is odd}, g_{\beta} \text{ is even}\} \#\{f_{\alpha} \text{ is odd}, g_{\alpha} \text{ is odd}\} \\ = \frac{1}{2}A(b)A(a).$$

Corollary 4.1.4. Given a positive odd integer n, $N_{\text{sgn}^1}(n) = N_{\epsilon}(n)$.

Proof. This follows immediately from Theorems 4.1.2 and 4.1.3. We can even construct a bijective map. Recall $\operatorname{Bip}_{\operatorname{sgn}^1} = \{(\alpha, \beta) \mid (\alpha, \beta) \models n, \det \circ \rho_{\alpha,\beta} = \operatorname{sgn}^1\}$ and $\operatorname{Bip}_{\epsilon} = \{(\alpha, \beta) \mid (\alpha, \beta) \models n, \det \circ \rho_{\alpha,\beta} = \epsilon\}$. Then

$$\phi : \operatorname{Bip}_{\operatorname{sgn}^1} \to \operatorname{Bip}_{\epsilon}$$
$$(\alpha, \beta) \mapsto (\alpha', \beta'),$$

where α' and β' are respective conjugate partitions. It can be easily verified that $x_{\phi(\alpha,\beta)} \equiv x_{\alpha,\beta} \pmod{2}$ and $y_{\phi(\alpha,\beta)} \equiv 1 + y_{\alpha,\beta} \pmod{2}$.

$\binom{n-2}{a-2,b}$	$\binom{n-2}{a-1,b-1}$	$\binom{n-2}{a,b-2}$	$N_{ m sgn^0}(a,b)$
even	even	even	0
even	odd	even	0
odd	even	even	s_1
even	odd	odd	s_2
odd	odd	odd	$s_1 + s_2 - \frac{1}{2}A(a)A(b)$
odd	odd	even	$s_1 - \frac{1}{2}A(a)A(b)$
even	even	odd	$s_2 - \frac{1}{2}A(a)A(b)$
odd	even	odd	$s_1 + s_2 - A(a)A(b)$

Proposition 4.1.5. Let $s_1 = B(a)A(b)$ and $s_2 = B(b)A(a)$. For given a and b, we have

Proof. For $x_{\alpha\beta}$ to be even, we need at least one of f_{α} , f_{β} and $\binom{n-1}{a,b-1}$ to be even. Let $\binom{n-1}{a,b-1}$ be even.

Case 1: If $\binom{n-2}{a-1,b-1}$ is even and $\binom{n-2}{a,b-2}$ is even, then

$$y_{\alpha\beta} \equiv f_{\beta}g_{\alpha} \binom{n-2}{a-2,b} \pmod{2}$$

For $y_{\alpha\beta}$ to be odd, we need $f_{\beta}g_{\alpha}\binom{n-2}{a-2,b}$ to be odd, thus

$$N_{\mathrm{sgn}^{0}}(a,b) = \#\{f_{\beta} \text{ is odd}\} [\#\{f_{\alpha} \text{ is odd}, g_{\alpha} \text{ is odd}\} + \#\{f_{\alpha} \text{ is even}, g_{\alpha} \text{ is odd}\}]$$
$$= B(a)A(b).$$

Case 2: If $\binom{n-2}{a-1,b-1}$ and $\binom{n-2}{a,b-2}$ is odd, then

$$y_{\alpha\beta} \equiv f_{\alpha}f_{\beta} + f_{\beta}g_{\alpha}\binom{n-2}{a-2,b} + f_{\alpha}g_{\beta} \pmod{2}.$$

Case 2a: If $\binom{n-2}{a-2,b}$ is even, then

$$y_{\alpha\beta} \equiv f_{\alpha}f_{\beta} + f_{\alpha}g_{\beta} (\text{mod } 2)$$
$$\equiv f_{\alpha} [f_{\beta} + g_{\beta}].$$

Hence,

$$N_{\operatorname{sgn}^{0}}(a,b) = \#\{f_{\alpha} \text{ is odd}\} [\#\{f_{\beta} \text{ is odd}, g_{\beta} \text{ is odd}\} + \#\{f_{\beta} \text{ is even}, g_{\beta} \text{ is odd}\}]$$
$$= B(b)A(a).$$

Case 2b: If $\binom{n-2}{a-2,b}$ is odd, then

$$y_{\alpha\beta} \equiv f_{\alpha}f_{\beta} + f_{\beta}g_{\alpha} + f_{\alpha}g_{\beta} \pmod{2}.$$

If f_{α} and f_{β} are both odd, then $y_{\alpha\beta} \equiv 1 + g_{\alpha} + g_{\beta} \pmod{2}$ and

$$N_1 = \#\{f_\alpha \text{ is odd, } g_\alpha \text{ is even}\}\#\{f_\beta \text{ is odd, } g_\beta \text{ is even}\} + \#\{f_\alpha \text{ is odd, } g_\alpha \text{ is odd}\}\#\{f_\beta \text{ is odd, } g_\beta \text{ is odd}\}.$$

If f_{α} is odd and f_{β} is even, then $y_{\alpha\beta} \equiv g_{\beta} \pmod{2}$ and

$$N_2 = \#\{f_\alpha \text{ is odd}\}\#\{f_\beta \text{ is even, } g_\beta \text{ is odd}\}.$$

Similarly, if f_{β} is odd and f_{α} is even, then $y_{\alpha\beta} \equiv g_{\alpha} \pmod{2}$ and

$$N_3 = \#\{f_\beta \text{ is odd}\}\#\{f_\alpha \text{ is even, } g_\alpha \text{ is odd}\}.$$

Thus, we have

$$N_{\text{sgn}^{0}}(a,b) = N_{1} + N_{2} + N_{3}$$

= $B(b)A(a) + B(a)A(b) - \frac{1}{2}A(a)A(b).$

Let $\binom{n-1}{a,b-1}$ be odd; thus one of f_{α} and f_{β} has to be even. Case 1: If $\binom{n-2}{a-1,b-1}$ is even and $\binom{n-2}{a,b-2}$ is odd, then

$$y_{\alpha\beta} \equiv f_{\beta}g_{\alpha} \binom{n-2}{a-2,b} + f_{\alpha}g_{\beta} \pmod{2}.$$

Case 1a: If $\binom{n-2}{a-2,b}$ is odd, then

$$y_{\alpha\beta} \equiv f_{\beta}g_{\alpha} + f_{\alpha}g_{\beta} \pmod{2}$$

If f_{α} is even and f_{β} is odd, then $y_{\alpha\beta} \equiv g_{\alpha} \pmod{2}$. Similarly if f_{β} is even and f_{α} is odd,

then $y_{\alpha\beta} \equiv g_\beta \pmod{2}$. Thus,

$$N_{\mathrm{sgn}^{0}}(a,b) = \#\{f_{\beta} \text{ is odd}\} \#\{f_{\alpha} \text{ is even, } g_{\alpha} \text{ is odd}\} + \#\{f_{\alpha} \text{ is odd}\} \#\{f_{\beta} \text{ is even, } g_{\beta} \text{ is odd}\}$$
$$= A(b) \left[B(a) - \frac{1}{2}A(a)\right] + A(a) \left[B(b) - \frac{1}{2}A(b)\right]$$
$$= A(b)B(a) + A(a)B(b) - A(a)A(b).$$

Case 1b: If $\binom{n-2}{a-2,b}$ is even, then

$$y_{\alpha\beta} \equiv f_{\alpha}g_{\beta} \pmod{2}$$
.

Thus,

$$N_{\mathrm{sgn}^0}(a,b) = \#\{f_\alpha \text{ is odd}\} \#\{f_\beta \text{ is even, } g_\beta \text{ is odd}\}$$
$$= A(a) \left[B(b) - \frac{1}{2}A(b)\right].$$

Case 2: If $\binom{n-2}{a-1,b-1}$ is odd and $\binom{n-2}{a,b-2}$ is even, then

$$y_{\alpha\beta} \equiv f_{\alpha}f_{\beta} + f_{\beta}g_{\alpha}\binom{n-2}{a-2,b} \pmod{2}.$$

Case 2a: If $\binom{n-2}{a-2,b}$ is even, then

$$y_{\alpha\beta} \equiv f_{\alpha}f_{\beta} \pmod{2}$$
.

Since one of f_{α} or f_{β} has to be even,

$$N_{\mathrm{sgn}^0}(a,b) = 0.$$

Case 2b: If $\binom{n-2}{a-2,b}$ is odd, then

$$y_{\alpha\beta} \equiv f_{\alpha}f_{\beta} + f_{\beta}g_{\alpha} (\text{mod } 2)$$
$$\equiv f_{\beta} [f_{\alpha} + g_{\alpha}].$$

Thus, we have

$$N_{\mathrm{sgn}^{0}}(a,b) = \#\{f_{\beta} \text{ is odd}\} [\#\{f_{\alpha} \text{ is odd}, g_{\alpha} \text{ is odd}\} + \#\{f_{\alpha} \text{ is even}, g_{\alpha} \text{ is odd}\}]$$
$$= B(a)A(b).$$

4.2 Counting in terms of n

Let $\nu(n)$ denote the number of 1's in the binary expansion of n.

Lemma 4.2.1. For a given even n, let $k = \text{ord}_2 n$. Then

$$\alpha(n-1) = \alpha(n) + \binom{k}{2} - k.$$

Proof. Suppose n is a positive integer with the following binary expansion:

$$n = 2^{k_1} + 2^{k_2} + \dots + 2^{k_r}, 0 < k_1 < k_2 < \dots < k_r.$$

By definition, $k = k_1$ and $\alpha(n) = k + k_2 + \dots + k_r$. The binary expansion of n-1 will have 1's till $(k_1 - 1)$ th place from the right, a zero at the k_1 th place and rest remains unchanged. Thus, $\alpha(n-1) = 1 + 2 + \dots + (k-1) + k_2 + \dots + k_r$. Hence $\alpha(n-1) = \alpha(n) + {k \choose 2} - k$.

Theorem 4.2.2. For a given n, we have

$$N_{\epsilon}(n) = \begin{cases} \frac{1}{2}A(n-1) \sum_{\substack{a+b=n \\ \text{sum}(a,b-1) \text{ is neat} \\ \text{sum}(a-1,b-1) \text{ is messy}} \\ 2^{\nu(n-1)-1}A(n-1) \text{ if } n \text{ is odd.} \end{cases} \text{ if } n \text{ is even, where } k = \text{ord}_2 b,$$

Proof. Suppose n is odd and a and b are positive integers such that a + b = n. So there are two cases we need to consider.

Case 1: If a is odd and b is even, then $N_{\epsilon}(a, b) = 0$. This is because sum(a, b - 1) is always messy.

Case 2: If a is even and b is odd, then sum(a, b - 1) is neat if bin(a) and bin(b - 1) are

disjoint. The number of choices for a and b is $2^{\nu(n-1)}$. Hence,

$$N_{\epsilon}(n) = \sum_{\substack{a+b=n\\ \text{sum}(a,b-1) \text{ is neat}}} \frac{1}{2}A(a)A(b)$$

= $\sum_{\substack{a+b=n\\ \text{sum}(a,b-1) \text{ is neat}}} \frac{1}{2}A(a)A(b-1)$
= $\sum_{\substack{a+b=n\\ \text{sum}(a,b-1) \text{ is neat}}} \frac{1}{2}A(n-1)$
= $2^{\nu(n-1)-1}A(n-1).$

Suppose n is even and a and b are positive integers as above.

Case 1: If a and b are both odd, then $N_{\epsilon}(a, b) = 0$. This is because sum(a - 1, b - 1) is neat when sum(a, b - 1) is neat.

Case 2: Let a and b be both even. Let $k = \operatorname{ord}_2(b)$. By the previous proposition, we know if b is even, then $\alpha(b-1) = \alpha(b) + \binom{k}{2} - k$. Hence,

$$N_{\epsilon}(n) = \sum_{\substack{a+b=n\\ \sup(a,b-1) \text{ is neat}\\ \sup(a-1,b-1) \text{ is neat}\\ \sup(a,b-1) \text{ is neat}\\ \sup(a,b-1) \text{ is neat}\\ \sup(a-1,b-1) \text{ is neat}\\ = \frac{1}{2}A(n-1)\sum_{\substack{a+b=n\\ \sup(a,b-1) \text{ is neat}\\ \sup(a-1,b-1) \text{ is neat}\\ \sup(a-1,b-1) \text{ is neat}\\ \sup(a-1,b-1) \text{ is neat}\\ \max(a-1,b-1) \text{ is n$$

From this and Lemma 3.2.4, we can easily calculate $N_{\text{sgn}^1}(n) = B(2n) - N_{\epsilon}(n)$. Recall $\tilde{B}(n) = \frac{B(n)}{A(n)}$.

Theorem 4.2.3. For a given *n*, we have the following cases.

1. If n = 4k + 1, then

$$\begin{split} N_{\mathrm{sgn}^{0}}(n) &= A(n) \sum_{\substack{a+b=n-2\\ \mathrm{sum}(a,b) \text{ is neat}\\ \mathrm{sum}(a-2,b+2) \text{ is neat}}} \left\{ 2\tilde{B}(b+2) - \frac{1}{2} \right\} \\ &+ \sum_{\substack{a+b=n-2\\ \mathrm{sum}(a,b) \text{ is neat}\\ \mathrm{sum}(a-1,b+1) \text{ is neat}\\ \mathrm{sum}(a-1,b+1) \text{ is neat}}} A(a)A(b+2) \left\{ \tilde{B}(b+2) + \tilde{B}(a) - \frac{1}{2} \right\}. \end{split}$$

2. If n = 4k + 2, then

$$N_{\rm sgn^0}(n) = A(n) \sum_{\substack{a+b=n-2\\ {\rm sum}(a,b) \text{ is neat}}} \left\{ \tilde{B}(b+2) + \tilde{B}(a+2) - \frac{1}{2} \right\}.$$

3. If n = 4k + 3, then

$$N_{\rm sgn^0}(n) = A(n) \sum_{\substack{a+b=n-3\\ \text{sum}(a,b) \text{ is neat}}} \left\{ \tilde{B}(b+3) + \tilde{B}(a+3) + \tilde{B}(b+2) + \tilde{B}(a+2) - 1 \right\}.$$

4. If n = 4k, then

$$\begin{split} N_{\mathrm{sgn}^{0}}(n) &= \sum_{\substack{a+b=n-2\\ \mathrm{sum}(a,b) \text{ is neat}\\ \mathrm{sum}(a+2,b-2) \text{ is neat}}} A(b)A(a+2)\{\tilde{B}(b) + \tilde{B}(a+2) - 1\} \\ &+ \sum_{\substack{a+b=n-2\\ \mathrm{sum}(a,b) \text{ is neat}\\ \mathrm{sum}(a+2,b-2) \text{ is mesty}}} A(n)\{2\tilde{B}(a+2) - \frac{1}{2}\}. \end{split}$$

Proof. Let n = 4k + 1. The only non-zero contribution comes from conditions 3, 4, 5, 6 and 7 of Proposition 4.1.5. Each of these conditions corresponds to a unique 3-tuple (code) in the (n - 2)nd row of the Pascal's triangle mod 2. For example, the third condition of Proposition 4.1.5 corresponds to the code 100. In this case, we are looking for the codes 100, 011, 111, 110 and 001. Hence,

$$\begin{split} N_{\mathrm{sgn}^{0}}(n) &= \sum_{\substack{a+b=n-2\\ \mathrm{sum}(a,b) \text{ is neat}\\ \mathrm{sum}(a-1,b+1) \text{ is messy}\\ \mathrm{sum}(a-2,b+2) \text{ is messy}}} \{B(b+2)A(a) - \frac{1}{2}A(a)A(b+2) + B(b+2)A(a)\} \\ &+ \sum_{\substack{a+b=n-2\\ \mathrm{sum}(a,b) \text{ is neat}\\ \mathrm{sum}(a-2,b+2) \text{ is meats}}} \{B(b+2)A(a) - \frac{1}{2}A(a)A(b+2) + B(b+2)A(a)\} \\ &+ \sum_{\substack{a+b=n-2\\ \mathrm{sum}(a,b) \text{ is neat}\\ \mathrm{sum}(a-2,b+2) \text{ is neat}}} \{B(a)A(b+2) - \frac{1}{2}A(a)A(b+2) + B(b+2)A(a)\} \\ &= A(n) \sum_{\substack{a+b=n-2\\ \mathrm{sum}(a,b) \text{ is neat}\\ \mathrm{sum}(a-2,b+2) \text{ is neat}}} \{2\tilde{B}(b+2) - \frac{1}{2}\} \\ &+ \sum_{\substack{a+b=n-2\\ \mathrm{sum}(a,b) \text{ is neat}\\ \mathrm{sum}(a-2,b+2) \text{ is neat}}} A(a)A(b+2) \left\{\tilde{B}(b+2) + \tilde{B}(a) - \frac{1}{2}\right\}. \end{split}$$

Let n = 4k+2. The only non-zero contribution comes from conditions 3 and 7 of Proposition 4.1.5. Hence,

$$\begin{split} N_{\text{sgn}^{0}}(n) &= \sum_{\substack{a+b=n-2\\ \text{sum}(a,b) \text{ is neat}}} \{B(b+2)A(a) - \frac{1}{2}A(a)A(b+2) + B(a+2)A(b)\} \\ &= \sum_{\substack{a+b=n-2\\ \text{sum}(a,b) \text{ is neat}}} \{\tilde{B}(b+2)A(a)A(b+2) + \tilde{B}(a+2)A(b)A(a+2) - \frac{1}{2}A(a)A(b+2)\} \\ &= \sum_{\substack{a+b=n-2\\ \text{sum}(a,b) \text{ is neat}}} \{A(n)\tilde{B}(b+2) + A(n)\tilde{B}(a+2) - \frac{1}{2}A(n)\} \\ &= A(n)\sum_{\substack{a+b=n-2\\ \text{sum}(a,b) \text{ is neat}}} \left\{\tilde{B}(b+2) + \tilde{B}(a+2) - \frac{1}{2}\right\}. \end{split}$$

Let n = 4k + 3. For every 1 in the (n - 3)nd row, the required codes occur exactly once.

Noting this and proceeding as above, we have

$$\begin{split} N_{\mathrm{sgn}^{0}}(n) &= \sum_{\substack{a+b=n-3\\ \mathrm{sum}(a,b) \text{ is neat}}} \{B(b+3)A(a) - \frac{1}{2}A(a)A(b+3) + B(b+2)A(a+1) + B(a+2)A(b+1) \\ &- \frac{1}{2}A(a+2)A(b+1) + B(a+3)A(b)\} \\ &= \sum_{\substack{a+b=n-3\\ \mathrm{sum}(a,b) \text{ is neat}}} \{\tilde{B}(b+3)A(a)A(b+3) + \tilde{B}(b+2)A(a+1)A(b+2) \\ &+ \tilde{B}(a+2)A(b+1)A(a+2) + \tilde{B}(a+3)A(b)A(a+3) - A(n)\} \\ &= A(n)\sum_{\substack{a+b=n-3\\ \mathrm{sum}(a,b) \text{ is neat}}} \left\{\tilde{B}(b+3) + \tilde{B}(a+3) + \tilde{B}(a+2) + \tilde{B}(b+2) - 1\right\}. \end{split}$$

Similarly for n = 4k, we have

$$\begin{split} N_{\text{sgn}^{0}}(n) &= \sum_{\substack{a+b=n-2\\\text{sum}(a,b) \text{ is neat}\\\text{sum}(a+2,b-2) \text{ is neat}}} B(a+2)A(b) + B(b)A(a+2) - A(a+2)A(b) \\ &+ \sum_{\substack{a+b=n-2\\\text{sum}(a,b) \text{ is neat}\\\text{sum}(a+2,b-2) \text{ is messy}}} B(a+2)A(b) + B(a+2)A(b) - \frac{1}{2}A(b)A(a+2) \\ &= \sum_{\substack{a+b=n-2\\\text{sum}(a,b) \text{ is neat}\\\text{sum}(a+2,b-2) \text{ is neat}}} \left\{ \tilde{B}(a+2) + \tilde{B}(b) - 1 \right\} A(b)A(a+2) \\ &+ \sum_{\substack{a+b=n-2\\\text{sum}(a,b) \text{ is neat}\\\text{sum}(a+2,b-2) \text{ is neat}}} \left\{ 2\tilde{B}(a+2) - \frac{1}{2} \right\} A(n). \end{split}$$

Using the Theorems 4.2.2 and 4.2.3, we compute the following values:

n	$N_1(n)$	$N_{ m sgn^0}(n)$	$N_{\epsilon}(n)$	$N_{\mathrm{sgn}^1}(n)$
1	1	0	1	0
2	1	1	1	2
3	2	4	2	2
4	4	4	4	8
5	8	20	4	4
6	33	8	8	16
7	46	32	16	16
8	69	28	28	60
9	116	168	8	8
10	417	16	16	32
11	624	64	32	32
12	909	64	64	128
13	1322	320	64	64
14	2153	128	128	256
15	2932	512	256	256

4.3 Proof of Theorem 0.0.1

Proposition 4.3.1. Let n be a positive integer. If $n \equiv 3 \pmod{4}$, then $\tilde{B}(n) = 1$ and

$$\sum_{\substack{a+b=n-3\\ \mathrm{sum}(a,b) \text{ is neat}}} \tilde{B}(b+3) = 2^{\nu(n-3)} \tilde{B}(n).$$

Proof. Let n = 4k + 3, then n - 3 = 4k. Let *a* and *b* be positive integers such that a + b = n - 3 and sum(a, b) is neat, then *a* and *b* are both forced to be multiples of 4. Recall $\tilde{B}(n)$ is a function of k_1 and ϵ . Thus $\tilde{B}(b + 3) = \tilde{B}(n) = 1$.

By [8, page 56, 9.6.2], we have

$$p(n) \ge \frac{n^{k-1}}{k!(k-1)!} \tag{4.3}$$

for all n and $k \leq n$. Stirling approximation gives

$$k! \le \sqrt{2\pi} k^{k + \frac{1}{2}} e^{-k} e^{\frac{1}{12k}},$$

and so

$$(k!)^2 \le (2\pi)k^{2k+1}e^{-2k}e^{\frac{1}{6k}}.$$
(4.4)

Lemma 4.3.2. We have

$$p(n) \ge (2\pi)^{-1} e^{2\sqrt{n} - 2 - (\frac{1}{6\sqrt{n}})} n^{-\frac{3}{2}}.$$

Proof. By (4.3), we have

$$p(n) \ge \frac{n^{[\sqrt{n}]-1}}{[\sqrt{n}]!^2}.$$

By (4.4), we have

$$([\sqrt{n}]!)^2 \le (2\pi) [\sqrt{n}]^{2[\sqrt{n}]+1} e^{-2[\sqrt{n}]} e^{\frac{1}{6[\sqrt{n}]}} \le (2\pi) n^{[\sqrt{n}]+\frac{1}{2}} e^{-2[\sqrt{n}]+\frac{1}{6[\sqrt{n}]}}$$

The lemma follows.

Lemma 4.3.3. We have

$$\frac{1}{2}n < A(n) \le n^{\frac{1}{2}(\log_2 n+1)}.$$

Proof. We have

$$\log_2 n - 1 < [\log_2 n] \le \alpha(n) \le 1 + 2 + \dots + [\log_2 n]$$
$$= \frac{[\log_2 n]([\log_2 n] + 1)}{2}$$
$$\le \frac{1}{2} \log_2 n (\log_2 n + 1)$$

Since $A(n) = 2^{\alpha(n)}$, this gives the lemma.

Proposition 4.3.4. For $n \ge 546$ we have

$$p(n) \ge 5nA(n).$$

Proof. By the previous, it is enough to show that

$$(2\pi)^{-1}e^{2\sqrt{n}-2-(\frac{1}{6\sqrt{n}})}n^{-\frac{3}{2}} \ge 5n^{\frac{1}{2}(\log_2 n+1)}.$$

Taking logs, this equivalent to showing

$$2\sqrt{n} \ge \log(2\pi) + 2 + \frac{1}{6\sqrt{n}} + (\log n)\left(\frac{1}{2}\log_2 n + 2\right) + \log(5).$$

This is evidently true for $n \ge 546$.

Note: Computation shows that this inequality is true $n \ge 64$.

Corollary 4.3.5. For a positive integer $n \ge 546$, let $P_2(n)$ denote the number of bipartitions of n. Then

$$P_2(n) > 2P(N) > 10nA(n).$$

Lemma 4.3.6. Let $n \ge 1$.

- 1. $\nu(n) \le \log_2 n + 1$. So $2^{\nu(n)} \le 2n$.
- 2. If n+1 is not a power of 2, then $\nu(n) \leq \log_2 n$. Thus $2^{\nu(n)} \leq n$.

Proposition 4.3.7. For $n \ge 546$, the following holds true:

1. If
$$n \equiv 1 \pmod{4}$$
, then $\frac{P_2(n)}{2^{\nu(n)}A(n)\{\tilde{B}(n)+\frac{1}{4}\}} > 5.$

2. Otherwise $\frac{P_2(n)}{2^{\nu(n-1)}A(n-1)} > 5.$

Proof. Case 1: Let $n \equiv 1 \pmod{4}$. We know $B(n) \leq \frac{5}{2}A(n-2)$, then

$$2^{\nu(n)}A(n)\left\{\tilde{B}(n) + \frac{1}{4}\right\} = 2^{\nu(n)}\left\{B(n) + \frac{1}{4}A(n)\right\}$$
$$< 2^{\nu(n)-2}\left\{10A(n-2) + A(n)\right\}.$$

Thus,

$$\begin{aligned} \frac{2^{\nu(n)}A(n)\left\{\tilde{B}(n)+\frac{1}{4}\right\}}{P_2(n)} &< \frac{2^{\nu(n)-2}\left\{10A(n-2)+A(n)\right\}}{P_2(n)} \\ &= \frac{2^{\nu(n)-2}\times10A(n-2)}{P_2(n)} + \frac{2^{\nu(n)-2}A(n)}{P_2(n)} \\ &< \frac{2^{\nu(n)-2}\times10A(n-2)}{10(n-2)A(n-2)} + \frac{2^{\nu(n)-2}A(n)}{10nA(n)} \\ &< \frac{2^{\nu(n)-2}}{(n-2)} + \frac{2^{\nu(n)-2}}{10n}. \end{aligned}$$

Now using Lemma 4.3.6

$$\frac{2^{\nu(n)}A(n)\left\{\tilde{B}(n)+\frac{1}{4}\right\}}{P_2(n)} < \frac{n}{4(n-2)} + \frac{1}{40} < \frac{11}{40} < \frac{1}{3}.$$

Hence the result follows.

Case 2: We know $P_2(n) > P_2(n-1) \ge 10(n-1)A(n-1)$. It follows from Lemma 4.3.6

$$\frac{P_2(n)}{2^{\nu(n-1)}A(n-1)} > \frac{10(n-1)}{2^{\nu(n-1)}} > 5.$$

Proof. (Theorem 0.0.1) We have already proven $N_{\text{sgn}^1}(n) \ge N_{\epsilon}(n)$, with equality holding iff n is odd. Let n = 4k + 3. We know,

$$N_{\rm sgn^1}(n) = 2^{\nu(n-1)-1}A(n-1)$$

and

$$\begin{split} N_{\mathrm{sgn}^0}(n) &= A(n) \sum_{\substack{a+b=n-3\\ \mathrm{sum}(a,b) \text{ is neat}}} \left\{ \tilde{B}(b+3) + \tilde{B}(a+3) + \tilde{B}(b+2) + \tilde{B}(a+2) - 1 \right\} \\ &= A(n) \sum_{\substack{a+b=n-3\\ \mathrm{sum}(a,b) \text{ is neat}}} \left\{ 1 + 1 + \frac{1}{2} + \frac{1}{2} - 1 \right\} \\ &= 2^{\nu(n-3)+1} A(n). \end{split}$$

As n = 4k + 3, we have A(n) = A(n-1) and $2^{\nu(n-1)} = 2^{\nu(n-3)+1}$. Hence,

$$\frac{N_{\mathrm{sgn}^0}(n)}{N_{\mathrm{sgn}^1}(n)} = 2.$$

From Proposition 4.3.7, it follows that

$$\begin{aligned} \frac{N_1(n)}{N_{\mathrm{sgn}^0}(n)} &= \frac{P_2(n)}{N_{\mathrm{sgn}^0}(n)} - \frac{2N_{\epsilon}(n)}{N_{\mathrm{sgn}^0}(n)} - 1\\ &= \frac{P_2(n)}{N_{\mathrm{sgn}^0}(n)} - 2 > 1. \end{aligned}$$

Let n = 4k + 2. We know

$$N_{\epsilon}(n) = \frac{1}{2}A(n-1)\sum_{\substack{a+b=n\\ \operatorname{sum}(a,b-1) \text{ is neat}\\ \operatorname{sum}(a-1,b-1) \text{ is messy}}} 2^{k-\binom{k}{2}},$$

where $k = \operatorname{ord}_2(b)$. In our case, k = 1. Hence,

$$N_{\epsilon}(n) = \frac{A(n-1)2^{\nu(n-1)}}{2}$$

Recall,

$$N_{\text{sgn}^{0}}(n) = A(n) \sum_{\substack{a+b=n-2\\ \text{sum}(a,b) \text{ is neat}}} \left\{ \tilde{B}(b+2) + \tilde{B}(a+2) - \frac{1}{2} \right\}.$$

The conditions on a and b force $a \equiv 2 \pmod{4}$ and $b \equiv 2 \pmod{4}$. Hence,

$$N_{\rm sgn^0}(n) = 2^{\nu(n-2)-1} A(n).$$

The equality follows as A(n) = 2A(n-1) and $\nu(n-1) = \nu(n-2) + 1$.

$$N_{\text{sgn}^{1}}(n) = \sum_{\substack{a+b=n\\\text{sum}(a,b-1)\text{ is neat}\\\text{sum}(a-1,b-1)\text{ is neat}\\\text{sum}(a-1,b-1)\text{ is neat}\\\text{sum}(a-1,b-1)\text{ is neat}}} \frac{\frac{1}{2}A(a)A(b) + \sum_{\substack{a+b=n\\\text{sum}(a,b-1)\text{ is neat}\\\text{sum}(a-1,b-1)\text{ is neat}}} A(a)A(b)$$

$$= \frac{1}{2}A(n-1)\sum_{\substack{a+b=n\\\text{sum}(a,b-1)\text{ is neat}\\\text{sum}(a-1,b-1)\text{ is neat}}} 2^{k-\binom{k}{2}} + A(n-1)\sum_{\substack{a+b=n\\\text{sum}(a,b-1)\text{ is neat}\\\text{sum}(a-1,b-1)\text{ is neat}}} 2^{k'-\binom{k'}{2}}.$$

In our case, k = 1 and k' = 0. Hence,

$$N_{\text{sgn}^{1}}(n) = \frac{A(n-1)2^{\nu(n)}}{2} + A(n-1)2^{\nu(n)-1}$$
$$= 2N_{\epsilon}(n).$$

From Proposition 4.3.7, it follows that

$$\frac{N_1(n)}{N_{\text{sgn}^1}(n)} = \frac{P_2(n)}{N_{\text{sgn}^1}(n)} - \frac{2N_{\epsilon}(n)}{N_{\text{sgn}^1}(n)} - 1$$
$$= \frac{P_2(n)}{N_{\text{sgn}^1}(n)} - 2 > 1.$$

Let n = 4k, $X = \{(\alpha, \beta) \models n \mid \det \circ \rho_{\alpha,\beta} = \epsilon\}$ and $Y = \{(\alpha, \beta) \models n \mid \det \circ \rho_{\alpha,\beta} = \operatorname{sgn}^0\}$. Define ι , a map from X to Y, as $\iota(\alpha, \beta) = (\beta', \alpha')$. Let $X_0 = \{x \in X \mid \iota(x) \in X\}$ and similarly $Y_0 = \{y \in Y \mid \iota(y) \in Y\}$. The elements of X_0 are (α, β) , such that there are two [1]'s appearing symmetrically in the first nontrivial row of the 2-core tower, and $|\alpha|$ and $|\beta|$ must also satisfy the conditions listed in Corollary 1.4. The elements of Y_0 are (α, β) such that there are two [1]'s appearing in the same subtree in the first nontrivial row of the 2-core tower. If the [1]'s occur in the *i*th row, then

$$|X_0| = |Y_0| = \binom{2^{i-1}}{2} \times \#\{\text{possible } 2^i \text{-quotients for partitions of } 2n\}.$$

Thus |X| = |Y|, i.e. when n = 4k, $N_{\epsilon}(n) = N_{\mathrm{sgn}^0}(n)$. As for $N_{\mathrm{sgn}^1}(n)$, we have

$$N_{\text{sgn}^{1}}(n) = \sum_{\substack{a+b=n\\\text{sum}(a,b-1)\text{ is neat}\\\text{sum}(a-1,b-1)\text{ is neat}\\\text{sum}(a,b-1)\text{ is neat}\\\text{sum}(a,b-1)\text{ is neat}}} \frac{\frac{1}{2}A(a)A(b) + \sum_{\substack{a+b=n\\\text{sum}(a,b-1)\text{ is neat}\\\text{sum}(a-1,b-1)\text{ is neat}}} A(a)A(b)$$

$$= \frac{1}{2}A(n-1)\sum_{\substack{a+b=n\\\text{sum}(a,b-1)\text{ is neat}\\\text{sum}(a-1,b-1)\text{ is neat}\\\text{sum}(a-1,b-1)\text{ is neat}}} 2^{k-\binom{k}{2}} + A(n-1)\sum_{\substack{a+b=n\\\text{sum}(a,b-1)\text{ is neat}\\\text{sum}(a-1,b-1)\text{ is neat}}} 2^{k'-\binom{k'}{2}}$$

$$< \frac{1}{2}2^{\nu(n-1)-1}A(n-1) \times 2 + 2^{\nu(n-1)-1}A(n-1)$$

$$= 2^{\nu(n-1)}A(n-1).$$

From Proposition 4.3.7, it follows that

$$\frac{N_1(n)}{N_{\text{sgn}^1}(n)} = \frac{P_2(n)}{N_{\text{sgn}^1}(n)} - \frac{2N_{\epsilon}(n)}{N_{\text{sgn}^1}(n)} - 1$$
$$> \frac{(n-1)P(n)}{N_{\text{sgn}^1}(n)} - 2$$
$$> 1.$$

Similarly let n = 4k + 1, we have

$$N_{\text{sgn}^1}(n) = 2^{\nu(n-1)-1}A(n-1),$$

and

$$\begin{split} N_{\mathrm{sgn}^{0}}(n) &= A(n) \sum_{\substack{a+b=n-2\\ \mathrm{sum}(a,b) \text{ is neat}\\ \mathrm{sum}(a-2,b+2) \text{ is neat}}} \{2\tilde{B}(b+2) - \frac{1}{2}\} \\ &+ \sum_{\substack{a+b=n-2\\ \mathrm{sum}(a,b) \text{ is neat}\\ \mathrm{sum}(a-1,b+1) \text{ is neat}\\ \mathrm{sum}(a-2,b+2) \text{ is neat}}} A(a)A(b+2) \left\{ \tilde{B}(b+2) + \tilde{B}(a) - \frac{1}{2} \right\} \\ &> A(n) \sum_{\substack{a+b=n-2\\ \mathrm{sum}(a,b) \text{ is neat}\\ \mathrm{sum}(a-2,b+2) \text{ is neat}}} \{2\tilde{B}(b+2) - \frac{1}{2}\}. \end{split}$$

We know $\tilde{B}(n) \ge \frac{1}{2}$, hence $N_{\operatorname{sgn}^0}(n) > A(n)2^{\nu(n)-2}$.

As n = 4k + 1, we have A(n) = A(n - 1) and $2^{\nu(n-1)-1} = 2^{\nu(n)-2}$. Thus

$$\frac{N_{\mathrm{sgn}^0}(n)}{N_{\mathrm{sgn}^1}(n)} > 1.$$

For the second part of the inequality, we need a greater bound on $N_{\rm sgn^0}(n)$. Hence,

$$\begin{split} N_{\text{sgn}^{0}}(n) &= A(n) \sum_{\substack{a+b=n-2\\ \text{sum}(a,b) \text{ is neat}\\ \text{sum}(a-2,b+2) \text{ is neat}}} \{2\tilde{B}(b+2) - \frac{1}{2}\} \\ &+ \sum_{\substack{a+b=n-2\\ \text{sum}(a,b) \text{ is neat}\\ \text{sum}(a-1,b+1) \text{ is neat}\\ \text{sum}(a-2,b+2) \text{ is neat}}} A(a)A(b+2) \left\{ \tilde{B}(b+2) + \tilde{B}(a) - \frac{1}{2} \right\} \\ &< A(n)2^{\nu(n)-1} \left\{ \tilde{B}(n) - \frac{1}{2} \right\} + A(n)2^{\nu(n)-1} \{1 + \frac{1}{2} - \frac{1}{2}\} \\ &= A(n)2^{\nu(n)} \{\tilde{B}(n) + \frac{1}{4}\}. \end{split}$$

From Proposition 4.3.7, it follows that

$$\begin{aligned} \frac{N_1(n)}{N_{\mathrm{sgn}^0}(n)} &= \frac{P_2(n)}{N_{\mathrm{sgn}^0}(n)} - \frac{2N_{\epsilon}(n)}{N_{\mathrm{sgn}^0}(n)} - 1\\ &= \frac{P_2(n)}{N_{\mathrm{sgn}^0}(n)} - 2 > 1. \end{aligned}$$

Bibliography

- [1] Arvind Ayyer, Amritanshu Prasad, and Steven Spallone. "Odd partitions in Young's lattice". In: Séminaire Lotharingien de Combinatoire 75 (2016), B75g.
- [2] Arvind Ayyer, Amritanshu Prasad, and Steven Spallone. "Representations of symmetric groups with non-trivial determinant". In: *Journal of Combinatorial Theory Series* A 150 (2017), pp. 208–232.
- [3] The Sage-Combinat community. Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics. http://combinat.sagemath.org. 2008.
- [4] I.Martin Isaacs. *Character Theory of Finite Groups*. Dover Publications Inc. ISBN: 978-0486680149.
- [5] Ian G. Macdonald. "On the degrees of the irreducible representations of symmetric groups". In: Bulletin of the London Mathematical Society 3.2 (1971), pp. 189–192.
- [6] Ian G. Macdonald. Symmetric functions and Hall polynomials. second. Oxford University Press, 1995.
- [7] Jørn B. Olsson. Combinatorics and representations of finite groups. Vol. 20. Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen. Universität Essen, 1993, pp. ii+94.
- [8] Igor Pak. "Partition bijections, a survey". In: The Ramanujan Journal (2006).
- [9] The Sage Developers. Sage Mathematics Software (Version 6.10). http://www. sagemath.org. 2015.
- [10] Richard P. Stanley. Enumerative Combinatorics. Vol. 2. Cambridge University Press, 2001.