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Abstract

A knot K in a directed graph D = (V,E) is a strongly connected subgraph of D with at

least two vertices, such that there is no arc (u, v) of D with u ∈ V (K) and v /∈ V (K). Given

a directed graph D = (V,E), we study Knot-Free Vertex Deletion (KFVD), where

the goal is to remove the minimum number of vertices such that the resulting graph does not

have any knots. This problem naturally emerges from its application in deadlock resolution

in the OR-model of distributed computation. KFVD is known to be NP-complete even on

graphs of maximum degree 4. The fastest known exact algorithm in literature for KFVD runs

in time O⋆(1.576n). We present an improved exact algorithm running in time O⋆(1.4549n),

where n is the number of vertices in D. We also prove that the number of inclusion wise

minimal knot-free vertex deletion sets is O⋆(1.4549n) and show that this bound is almost

optimal by constructing a family of graphs with Ω(1.4422n) minimal knot-free vertex deletion

sets.
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Chapter 1

Introduction

The paper by Held and Karp [9] in the early sixties, sparked an interest in designing (fast)

exact exponential algorithms. In the last couple of decades there has been immense progress

in this field, resulting in non-trivial exact exponential algorithms [9, 7, 19, 13, 10, 6, 3].

Alongside optimisation problems, it is also of interest to find exact exponential algorithms

for enumeration problems. These are useful in answering natural questions that arise in

Graph Theory, about the number of minimal (maximal) vertex subsets that satisfy a given

property. In a graph of order n better bounds than the trivial O(2n/
√
n) are known only

for a few problems. The celebrated result of Moon and Moser [16] proving an upper bound

of O⋆(1.4422n) for maximal independent sets, alongside that of Fomin et al. for Feedback

Vertex Set [9] and Dominating Set [7] are some examples.

1.1 Knot-Free Vertex Deletion

A knot K in a directed graph D = (V,E) is a strongly connected subgraph of D with at

least two vertices, such that there is no arc (u, v) of D with u ∈ V (K) and v /∈ V (K). We

call a graph knot-free if it does not have any knots. The Knot-Free Vertex Deletion

problem belongs to a larger class of problems in which one has to modify the graph via some

simple operations such as vertex, edge deletion, addition or contraction to ensure that the

resulting graph has some special property. It is formally defined as follows:
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Knot-Free Vertex Deletion

Input: A digraph D = (V,E).

Question: What is the size of a smallest vertex subset S which satisfies the condition

that G[V \ S] is knot-free?

As mentioned previously, this problem naturally emerges from its application in deadlock

resolution in the OR-model of distributed computation. A distributed system consists of

independent processors which are interconnected via a network which facilitates resource

sharing. It is typically represented using a wait-for digraph D = (V,E), where the vertex

set V represents processes and edge set E represents wait-conditions. A deadlock occurs

when a set of processes wait indefinitely for resources from each other to take actions such as

sending a message or releasing a lock. Deadlocks [4] are a common problem in multiprocessing

systems, parallel computing and distributed systems.

The AND-model and OR-model are well investigated deadlock models in literature [17].

In the AND-model the process corresponding to a vertex v in the wait-for graph can start only

after the processes corresponding to all of its out-neighbours are completed, while in the OR-

model v can begin if atleast one of its out-neighbours has finished execution. Deadlocks in the

AND-model correspond to cycles and hence deadlock prevention via preempting processes

becomes equivalent to the Directed Feedback Vertex Set problem in the wait-for

graph. This problem has received considerable attention from various algorithmic viewpoints

[5, 19, 14, 15] over the years. Meanwhile, the deadlock resolution in OR-models (which is

equivalent to KFVD) has only been explored recently [2, 18].

1.1.1 Previous Work

Consider the Directed Feedback Vertex Set problem, where one has to find a smallest

size vertex subset whose deletion makes the input digraph acyclic. Observe that acyclic

graphs are also knot-free since they do not have strongly connected components of size greater

than 1. Hence one way of solving KFVD is to use the solution obtained via an algorithm for

Directed Feedback Vertex Set, since the problem has received considerable attention

in the past [5, 14, 19, 15]. But the size of a solution for KFVD could be considerably smaller

than that of Directed Feedback Vertex Set and hence it is of merit to focus on the
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problem directly.

In 2019, Carnerio, Protti and Souza [4] first investigated deadlock resolution in various

models via arc or vertex deletion. It was shown that corresponding to the OR-model, the

arc deletion problem is polynomial time solvable, while the vertex deletion (KFVD) remains

NP-complete even for graphs of maximum degree 4. They further showed that KFVD is

solvable in O(m
√
n) time in graphs of maximum degree 3. The first and only non-trivial

exact exponential algorithm for KFVD was presented by Ramanujan et al. [18] and runs

in time O⋆(1.576n). From the aspect of Parameterised Complexity, Bessy et al. [2] showed

that KFVD parameterised by solution size is W [1]-hard but FPT parameterised by clique-

width. Via [2, 1] and [4], we also know the Fine-Grained complexity of KFVD with respect

to both treewidth (tw) and size of the largest strongly connected component (cc). Under

ETH, KFVD does not admit an algorithm running in time 2o(tw)nO(1) but does have an

algorithm which runs exponential in tree width. Finally, KFVD has an algorithm running

in time 2ccnO(1) but does not have one which can run in 2o(cc)nO(1) assuming SETH

1.1.2 Our Contributions

We build upon the work of Ramanujan et al. [18] to obtain the results stated below. Note

that the algorithm mentioned in theorem 1.1 is designed using the technique of Branching

and its complexity is computed via Measure & Conquer

Theorem 1.1. There exists an algorithm for Knot-Free Vertex Deletion running in

O∗(1.4549n). Furthermore, there is an infinite family of graphs for which the algorithm takes

Ω(1.4422n) time.

Theorem 1.2. The number of inclusion-wise minimal knot-free vertex deletion sets is O∗(1.4549n)

and there exists an infinite family of graphs with Ω(1.4422n) many such sets.

Observe that the upper bound that we prove, is nearly optimal since the existence of the

family with Ω(1.4422n) many minimal knot-free vertex deletion sets implies that it cannot

go lower than O⋆(1.4422n). The above results has been concisely summarised and can be

found at [21].
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1.2 Scope of the Thesis

In Chapter 2 we present an overview of the field of Exact Exponential Algorithms and

summarise the techniques employed in the following chapters, with examples.

In Chapter 3 we cover the definitions and auxiliary results that are frequently used within

the algorithm.

In Chapter 4 we present our algorithm for KFVD, prove the correctness as well as the

upper bound for its running time

Finally, in Chapter 5 we prove some complementary results such as a lower bound for the

run-time of our algorithm, alongside an upper bound for the number of minimal knot-free

vertex deletion sets.

1.3 Original Contributions

The thesis presents an exact exponential algorithm for a graph theoretic problem known

as Knot-Free Vertex Deletion which is faster than the previous best known exact

algorithm in literature. The algorithm alongside the proof for its correctness and upper

bound for run-time can be found in Chapter 5. Some results complementing the algorithm,

such as a lower bound for its run-time, alongside some original combinatorial results are

presented in Chapter 6. Both the above mentioned chapters are entirely original. Alongside

this, we prove some original lemmas that are necessary to prove the correctness of our

algorithm, in Chapter 4. Consult [21] for a more concise exposition of the results.
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Chapter 2

Preliminaries

This chapter contains a brief summary of the common definitions and concepts that we

require from the field of Graph Theory and Computational Complexity. It is a concise

literature review meant to prepare the reader for the rest of the thesis.

2.1 Graph Theory

A graph is a widely studied combinatorial structure with V the set of vertices and E ⊆ V ×V
the set of edges. It is used to model real world scenarios with vertices representing objects

and edges representing some relation between said objects. A directed graphs is a type of

graph where the relations are represented by ordered pairs called in/out edges or arcs. In

this thesis, we deal mainly with directed graphs since the central problem that we work on

is defined on directed graphs.

Given an arc e = (u, v), we refer to e as an out-edge of u, and an in-edge of v. Similarly,

u is an in-neighbour of v and consequently v is an out-neighbour of u. We denote the in-

neighbours of a vertex x by N−(x) and out-neighbours by N+(x). A vertex without any

in-neighbour is called a source vertex while one without out-neighbours is called a sink vertex.

A path Puv from u to v in D is a sequence of vertices (v1, v2, . . . vp) where v1 = u, vp = v and

(vi, vi+1) is an arc in D for every i < p.
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A strongly connected component Q is a subset of vertices such the given v, u ∈ Q, there

is a directed path from u to v and vice versa. A graph H is called a subgraph of a graph

G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). A graph H is called an induced subgraph of graph

G, if V (H) ⊆ V (G) and E(H) is set of all the edges of G with both the endpoints in V (H).

For a set of vertices A ⊆ V (G) the induced subgraph on A is represented by G[A].

a

b

c

d

e

f

g

Figure 2.1: Digraph D

a

b

c

Figure 2.2: Subgraph H

Observe that in Figure 2.1, (a, b) is an arc. It is an out-edge for a and an in-edge for b.

Consequently a is an in-neighbour of b and b is an out-neighbour of a. e is a source vertex

while g is a sink vertex and (e, b, c, g) denotes a directed path of length 4 from e to g. Finally

Figure 2.2 is a subgraph of the graph in Figure 2.1 induced by the vertex set {a, b, c}.

2.2 Computational Complexity

A language is a set of finite strings Σ⋆ over some alphabet Σ. A computational problem

P is a language over some Σ and x is said to be a yes-instance of P if and only if x ∈ P .

6



There are various types of computational problems such as decision problems, optimization

problems and enumeration problems. Complexity theory concerns itself with the study of

resources required to solve such problems. The main quantity used to classify the hardness

of a problem is the number of basic operations such as addition, multiplication, logical OR

and logical AND required to solve it. A problem is said to be solvable in time T (n) if it can

be solved using at most T (n) basic operations, where n is the size of the input. In order to

concisely denote the time complexities, we use the following notation. Given two functions

f, g defined on N we denote f ∈ O(g) if there exists some positive real constant c such that

f(n) ≤ c ∗ g(n) for every n. Similarly, f ∈ O⋆(g) if there exists some positive real constant

c and some polynomial poly such that f(n) ≤ c ∗ g(n) ∗ poly(n) for every n. Now, we define

classes of computational problems below, based on the time it takes to solve and verify their

solutions.

P is the class of problems which can be solved in polynomial time.

NP is the class of problems for which there exists an algorithm which can verify solutions

in polynomial time.

These classes satisfy the relation P ⊆ NP. The question whether P = NP is one of the oldest

and largest question in computational complexity. The quest to answer this question has led

to a lot of deep and insightful research into the nature of computational problems.

2.2.1 NP-completeness

NP-complete problems are the hardest problems in NP. They do not currently have polyno-

mial time or efficient algorithms and at the same time, we do not have machinery to prove

that there will never be efficient algorithms for these problems. Consider a problem Π1, we

prove that it is NP-complete by showing that if there exists an algorithm that can solve Π1

efficiently, then we can construct another algorithm which can solve Π2, where the latter is

a problem which is proven to be NP-complete.

Definition 2.1. [12] Polynomial-Time Reductions: Let A,B be two decision problems.

We say that A reduces to B, denoted by A ≤P B if there exists a polynomial time computable

function which takes an input instance x of A and converts it into an instance f(x) of B

such that x is a Yes instance of A if and only if f(x) is a Yes instance of B.

7



Observe that if A ≤P B then B is harder than A in the sense that the existence of a

polynomial time algorithm for B implies the existence of a polynomial time algorithm for A

via this reduction.

Definition 2.2. [12] NP-hard: A decision problem A is NP-hard if B ≤P A for every

B ∈ NP .

Definition 2.3. [12] NP-complete: A decision problem A is NP-complete if A ∈ NP and

A is NP-hard.

Theorem 2.1. [12] If X is an NP-complete problem, then the existence of a polynomial time

algorithm for X implies P = NP

Theorem 2.2. [12] If Y is NP-complete and X is a problem in NP satisfying Y ≤P X then

X is also NP-complete

Hence due to Theorem 2.1 unless P=NP, there cannot be an algorithm for any NP-

complete problem, which solves every instance correctly and efficiently.

Figure 2.3: The hierarchy of computational problems
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There are a multitude of ways to deal with this intractability. We can compromise on

any of the above mentioned properties while trying to maintain the others. Compromising

correctness leads to approximation algorithms, weakening the requirement to solve every in-

stance leads to parameterised algorithms and algorithms for special classes of input. Finally,

we have exact exponential algorithms which we get by letting go of efficiency or the need for

a polynomial time algorithm.
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Chapter 3

Exact Exponential Algorithms

This chapter presents branching andmeasure & conquer which are two common and powerful

techniques in Exact Exponential Algorithms. It is a literature review meant to equip the

reader with an understanding of the technique used in the design of our algorithm for KFVD.

An exact exponential algorithm for an optimization problem Π takes an input of size n

and returns an optimal solution in time which is exponential in n. The construction of such

algorithms are of interest for a variety of reasons, some of which are

• Exponential time algorithms are sometimes the best one can hope for. This is due to

the widely believed hypothesis of P ̸= NP under which the large class of NP-complete

problems cannot be solved in polynomial time.

• These algorithms provide insight into the problem structure which has a variety of

applications in graph theory and other algorithmic regimes. An example would be the

use of enumeration algorithms to prove upper bounds on the number of such structures

in graphs.

• Technological advances can help speed up the execution of algorithms but this increases

the size of solvable instances by an additive factor. Meanwhile any improvement made

via algorithm design increases the size of solvable instances by a multiplicative factor.

The early works on designing such algorithms was surveyed and summarised by Gerhard

Woeginger [22] which inspired an elaborate monograph by Fomin and Kratsch titled Exact

11



Exponential Algorithms [8]. Amongst the wide range of techniques for designing such algo-

rithms, two popular ones are branching and measure & conquer, which we explore in the

following sections.

3.1 Branching

Branching is a fundamental algorithmic technique to design fast exponential algorithms by

decomposing a given instance into smaller ones and using their solution to build a solution

for the original instance.

Branching algorithms apply a combination of reduction rules and branching rules. Re-

duction rules simplify the problem instance and branching rules split the given instance into

smaller instances. Branching algorithms are convenient to use since they typically only need

polynomial space and can be naturally improved by looking for finer and more involved

branching rules. A well constructed branching algorithm must have branching rules which

account for all possible cases that need to be considered and reduction rules which are prov-

ably true. The typical argument is that there is at least one optimal solution which is not

overlooked by the algorithm. More often than not, the rules are straightforward enough to

not be explicitly proven.

An important aspect of any branching algorithm is the analysis of its worst case time

complexity. Usually, such algorithms have reduction rules which can be executed in polyno-

mial time. Further, the branching rules are such that the solution to the smaller instances

can be combined efficiently to get a solution to the original instance. Under these assump-

tions, the time it takes for the algorithm to execute is proportional to the total number of

smaller instances that need to be solved, counting multiple occurrences. It is beneficial to

consider the search tree of an execution of the algorithm to better understand this concept.

It is constructed by assigning a node to the input instance, and for every smaller instance

obtained via a branching rule we assign a child node to the node (corresponding to the

instance) on which the rule was applied. Note that we do not assign nodes for instances ob-

tained via reduction rules. It follows from the construction that the number of subproblems

solved for any problem instance is equal to the number of nodes in the search tree, which can

be bounded by counting the number of leaves. Let us denote the maximum number of leaves

for an input instance of size n by T (n). Consider a branching rule which takes this instance

12



and decomposes it to r smaller instances, jth of which is of size n− tj. We call (t1, t2, . . . , tr)

the branching vector of the rule. The reduction in size implies a linear recurrence of the

form

T (n) = T (n− t1) + T (n− t2) + · · ·+ T (n− tr) (3.1)

This can be solved via many well-known techniques [20]. Observe that the worst case running

time of the branching algorithm is the maximum amongst the worst case run-time of its

branching rules.

A fact when it comes to linear recurrences such as equation 3.1 is that its base solution

is always of the form cn for some complex number c. Furthermore, c has to be a root of the

polynomial equation

xn − xn−t1 − xn−t2 − . . . − xn−tr = 0 (3.2)

Since we are only interested in the worst case running time of the algorithm, we obtain

T (n) = cn where c is the largest positive root of equation 3.2.

3.1.1 Example: Vertex Cover

Vertex Cover

Input: A graph G = (V,E).

Question: What is the size of a smallest vertex subset S that satisfies u ∈ S or v ∈ S

for every (u, v) ∈ E?

Vertex Cover is arguably the most widely studied graph problem in history. It was

proven to be NP-complete at a very early stage by Richard Karp, and it belongs to his

famous list of 21 NP-complete problems [11]. It has been attacked via a variety of methods

ranging from approximation to parameterization and it responds positively to most meth-

ods. Note that, since it is a vertex subset problem, the brute force method of checking every

subset takes O⋆(2n) time. Consider the following graph in which the shaded vertices make

up a solution to the vertex cover problem. Observe that every edge is incident upon at least

one shaded vertex. Furthermore, since {(e, d), (a, b), (c, g), (h, f)} is a set of disjoint edges

(maximum matching), we need atleast 4 vertices to form a vertex cover. Hence the shaded

solution is an optimal solution.

13



a

e

g

h

b

cd

f

Figure 3.1: Example instance of vertex cover

Now we make a few observations which will be useful in designing a branching algorithm.

• Isolated vertices do not cover any edge and hence is not present in any optimal solution.

• Vertices of degree 1 only covers one edge which is also covered by its neighbour. If there

is an optimal solution which contains such a vertex, then removing it and adding its

neighbour still leaves us with a vertex cover of (at most) same size. Hence if the input

instance has a degree 1 vertex, there is always a solution which contains its neighbour.

• If a vertex is not present in an optimal solution, then all of its neighbours must be in

order to cover all the edges adjacent to it.

Algorithm 1: VC(G)

Input: A graph G
Output: The size of a smallest vertex cover

1 if V (G) = ∅ then
2 return 0

3 if ∃ x such that N(x) = ∅ then
4 return VC(G− {x})

5 if ∃ x such that N(x) = {y} then
6 return VC(G− {y}) + 1

7 else
8 pick x ∈ V (G) with maximum degree
9 return min{ VC(G− x) + 1, VC(G−N [x]) + |N(x)| }

14



Note that lines 1-2 of Algorithm 1 takes care of the base case where the input graph is

empty and 3-4 is a reduction whose correctness follows from our first observation. Similarly

lines 5-6 follows from the second one, while 7-9 denote a branching rule arising from the final

observation. Observe that given any input at least one of the rules can be applied and each

of the rules creates instances of smaller size (or terminates the algorithm). This alongside

the correctness of each individual rule proves that the algorithm finds an optimal solution

in finite time.

Now, in order to compute the worst case running time of Algorithm 1, we need to find

branching vectors for each of the branching rules. For Algorithm 1 we note that there is

only one branching rule, corresponding to lines 6-8. In it, we branch on a vertex (x) of

degree at least 2, since vertices of degree 0 and 1 are removed. One branch corresponds to

the possibility that x is in the optimal vertex cover, while the other considers the possibility

that it isn’t. In the first one, the vertex x is removed giving a drop of at least 1 while in the

other, the neighbourhood of x can be removed giving a drop of at least 3. Hence the only

branching vector corresponding to Algorithm 1 is (1, 3). This implies the recurrence relation

x3 − x2 − 1 = 0.

This can be solved to find the largest positive root c which turns out to be less than 1.4657.

Hence Algorithm VC runs in time O⋆(1.4657n).

3.2 Measure & Conquer

Measure and conquer is a powerful technique used to better analyse the worst case running

time of branching algorithms. It is motivated by the fact that the naive analysis of branching

uses only ”natural parameters” such as number of vertices to account for the drop in size

of the instance for each branch. Conceptually, the idea of measure and conquer is not very

different from the earlier simple analysis. The only difference being that instead of using

such simple parameters to quantify the drop, we can choose the measure more freely and

cleverly. The following are some points to keep in mind while designing a measure for any

branching algorithm.

15



• Every instance of the problem with non-positive measure must be solvable in poly-

nomial time. This allows us to use the same concepts that were used earlier, since

T (µ) = nO(1) whenever µ ≤ 0.

• Measure of every smaller instance created via branching or reduction must have a

smaller measure than the original instance. This is to ensure that if we begin with

a positive measure, the measure reaches zero after a finite number of branching and

reduction rules are applied.

• We must be able to upper bound the measure of the input instance by some linear

function of the ”natural parameter”. In the case of graphs, we require that µ(G) ≤ f(n)

for some function of n. This allows us to translate the time complexity obtained in

terms of some non-standard measure µ to one in terms of the natural parameter of the

input instance, which lends itself to better comparisons and statements.

Note that the procedure after defining a measure (µ) which satisfies these requirements

are identical to that of the earlier analysis. For every branching rule, we quantify the drop

in measure and find the branching vector (t1, t2, . . . , tr). This implies the recurrence relation

T (µ) = T (µ− t1) + T (µ− t2)− . . .− T (µ− tr) (3.3)

This is solved to obtain a solution of the form T (µ(G)) ≤ cµ(G) ≤ cf(n) giving us an upper

bound for the time taken on the input instance G.

3.2.1 Example: Independent Set

Independent Set

Input: A graph G = (V,E).

Question: What is the size α(G) of a largest vertex subset S such that the graph

induced by S has no edges?

Independent Set is closely connected to vertex cover (see Section 3.1.1), due to the

fact that if S is a largest independent set in G, then V (G)\S is a smallest vertex cover. Note

that, since this is also a vertex subset problem, the brute force method of checking every

16



subset takes O⋆(2n) time. Consider the following graph in which the shaded vertices make

up a solution to the independent set problem. Observe that the shaded solution is optimal,

since the existence of a larger solution for independent set implies the existence of a smaller

solution to the vertex cover problem for the same graph which doesn’t exist via the proof

sketch in Section 3.1.1.

a

e

g

h

b

cd

f

Figure 3.2: Example instance of independent set

Now let us make a few observations which will be useful in designing a branching algo-

rithm.

• Isolated vertices are present in every optimal solution. This is due to the fact that

by definition they do not have any neighbours and can hence be freely added to any

independent set.

• Given a vertex v of degree 1, we can always find an optimal solution which contains it.

This follows from the fact that any optimal solution which does not contain v, contains

its neighbour (if it does not, we can freely add v and get a larger independent set).

Hence we can pick any optimal solution and if it does not contain v, we can replace its

neighbour with v and still maintain an optimal solution.

• If a vertex is present in an optimal solution, then none of its neighbours can be, since

otherwise the subgraph induced by them will contain an edge.

• If the degree of every vertex in the graph is 2, then it is a disjoint union of cycles. In

any cycle graph, the size of α(G) = ⌊n
2
⌋. This can be used to solve the problem in

polynomial time, if the maximum degree of the graph is 2.
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The idea for the algorithm is to build reduction rules using the initial observations, branch

on high degree vertices using ideas from observation 3 and finally when the maximum degree

of the graph is small enough, apply reduction rules using observation 4. We shall analyse

the algorithm initially via the naive method and later via two different measures.

Algorithm 2: MIS(G)

Input: A graph G
Output: The size of a largest Independent Set

1 if V (G) = ∅ then
2 return 0

3 if ∃ x such that N(x) = ∅ then
4 return MIS(G− {x}) + 1

5 if ∃ x such that N(x) = {y} then
6 return MIS(G− {N [x]}) + 1

7 else
8 if ∆(G) ≥ 3 then
9 pick x ∈ V (G) with maximum degree

10 return max{ MIS(G− x), VC(G−N [x]) + 1 }

11 else
12 compute α(G) in polynomial time
13 return α(G)

Observe that the algorithm has only one branching rule, corresponding to lines 8-10. Let

us denote the branch where the vertex x on which we branch, is added to the solution set by

IN and the other branch by OUT . We note that in IN the whole neighbourhood of x can

be removed while in OUT only x can be. Since the degree of x is at least 3 we get a drop

in size of at least 4 in IN and 1 for OUT . This gives a branching vector (1, 4) which can be

evaluated by solving the corresponding polynomial equation to obtain a worst case running

time that is O⋆(1.3803n). Hence the naive analysis gives the worst case time complexity for

MIS as O⋆(1.3803n) which we would like to improve.

We begin with the observation that vertices of low degree 0 − 2 seem to be easier to

handle, since we have reduction rules which can get rid of them. Following this intuition, let

us define a measure for an input graph G with µ(G) = v≥3, where v≥3 denotes the number

of vertices of degree 3 or higher. Note that this is equivalent to setting the weight of vertices
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with degree 2 or lower as 0 and that of every other vertex as 1. Now in OUT , we get a drop

in measure of 1 since a vertex of degree higher than 3 is removed. But in IN , even though

all the neighbours of x is removed, we cannot count them towards the drop in measure, since

they could be degree 2 vertices. Hence the branching vector is (1, 1) which solves to give

T (µ) ≤ 2µ(G) = O⋆(2n) which is worse than the “naive” analysis.

Finally, let us try a slightly different measure µ(G) = v≥3 +
v2
2

where V≥3 denotes the

number of vertices of degree at least 3 and v2 denotes the number of vertices of degree 2.

Here, we set weight of vertices with degree more than 2 as 1, vertices of degree 2 has weight

0.5 and vertices of lower degree have weight 0. We observe that if x has neighbours of degree

2, then in OUT the degree of that vertex becomes 1 which contributes to the drop in measure.

Hence the contribution of each neighbour to the potential drop over both the branches is

at least 1. This implies, OUT ≥ 1, IN ≥ 1 and finally OUT + IN ≥ 2 + d(v), since x

contributes 1 in both the branches. Here there are two possibilities, one is that the vertex

x has degree 4 or higher. The worst case branching vector possible under this possibility is

(1, 5) which evaluates to T (µ) ≤ 1.3248µ(G) = O⋆(1.3248n). The other is that the maximum

degree of the graph is 3 under which possibility, every neighbour of x contributes 0.5 to both

the branches. Hence OUT, IN ≥ 1 + d(v)
2

= 2.5 which evaluates to O⋆(1.3196n)

Observe that by simply changing the weight assigned to some vertices we were able to

reduce the upper bound in running time from O⋆(1.3803n) to O⋆(1.3248n). Note that here

there is no reason why setting weight of degree 2 vertices as 0.5 is the optimal. In fact,

setting weight of degree 2 as 0.5966 and degree 3 as 0.9287 while keeping the rest same, gives

an improved bound of O⋆(1.2905n).

19



20



Chapter 4

The Knot Free Vertex Deletion

problem

In this chapter, we present some known ideas and reduction rules which are used in our

algorithm. Alongside this summary, we also state and prove some original lemmas [21]

which draw inspiration from [18] and make some new definitions to help concisely present

our algorithm.

Recall that a strongly connected subgraph in a directed graph D is a subgraph K such

that for every u, v ∈ V (K), there exists a directed path in K from u to v and from v to u.

A knot K in a directed graph D = (V,E) is a strongly connected subgraph of D with at

least two vertices, such that there is no arc (u, v) of D with u ∈ V (K) and v /∈ V (K). The

knot-free vertex deletion problem is defined in Section 1.1 as follows:

Knot-Free Vertex Deletion

Input: A digraph D = (V,E).

Question: What is the size of a smallest vertex subset S which satisfies the condition

that G[V \ S] is knot-free?

Figure 4.1 provides an example of an instance of the knot-free vertex deletion problem,

with the highlighted vertices forming a solution. Figure 4.2 is the knot-free digraph obtained

after deleting the solution vertices.
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Figure 4.1: Example instance of knot-free vertex deletion problem
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Figure 4.2: Knot-free graph after removal of solution set

Observe that in the input graph, there is one knot {c, f, g} and atleast one vertex needs

to be deleted to ensure that this knot is removed. Further, after the deletion of {f} observe

that the earlier knot is removed and there aren’t any strongly connected components of size

2 or higher without out-edges.

In a 2019 paper by Stéphane Bessy et al. [2], a very useful characterisation of knot-free

graphs were proven. This definition and its corrollary will play a crucial role in the design

of our algorithm.
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Proposition 4.1. [2] A digraph D is knot-free if and only if for every vertex v of D, v has

a path to a sink.

Proof. Consider any vertex v in a knot-free digraph D. We shall construct a path from v to

some sink vertex in D. If v is not a sink, then it belongs to a strongly connected component

Q with an out edge. Consider a path beginning with v and going out of Q, reaching a vertex

v′. Observe that we cannot go from v′ to any other vertex of Q. We can repeat this process

considering v′ as the starting vertex. But, every time this process is repeated, the vertices

that are reachable from the current vertex keeps dropping. Since there are only finitely many

vertices, we arrive at a vertex u from which we cannot reach any more vertices. u has to be

a sink vertex, as any out-neighbours u has, can be reached from u.

Consider a digraph D such that every vertex of D has a directed path to some sink in D.

Pick any strongly connected component Q with two or more vertices. Observe that the

vertices of Q must also have a path to some sink, and that the sink cannot be a part of an

strongly connected component of size more than one. Hence, there must be some edge going

out of Q and consequently the digraph D is knot-free.

Corollary 4.2. [2] For any minimal solution S ⊆ V (D) with the set of sink vertices Z in

D − S, we have N+(Z) = S.

Proof. Observe that, given the set of sinks Z corresponding to any minimal solution S ⊆
V (D), the set N+(Z) forms a solution. Removing the out-neighbours of Z makes them

sinks, and this set is enough to ensure that every vertex has a path to some sink. Hence via

Proposition 4.1 we get the relation N+(Z) = S.

The above propositions ensure that to solve the Knot-Free Vertex Deletion prob-

lem we only need to find the set of vertices Z such that upon deleting its out-neighbours the

graph is knot-free and |N(Z)| is minimum. Therefore, rather than directly identifying the

solution vertices our algorithm finds the set of sink vertices in the optimal solution, hence

indirectly finding the solution vertices.

Observe that in the example provided in Figure 4.1 the highlighted vertex is the out-

neighbours of the vertex c which becomes a sink in Figure 4.2. Hence by removing N+(c) =

{f} we get a knot-free graph in which every vertex can reach c via some directed path.
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4.1 Definitions

Strategy of our Algorithm. The algorithm expands on the ideas used in [18] where the

algorithm branches on the possibility that a vertex v ∈ V (D) is either a sink or a non-sink

vertex in some optimal solution. In the branch where we conclude v to be a non-sink vertex

there are two possibilities, v is either in the deletion set or not. To track this additional

information that v is non-sink, we use a potential function ϕ for V (D) defined as follows.

Definition 4.1 (Potential function). Given a digraph D = (V,E), we define a potential

function on V (D), ϕ : V (D) → {0.25, 1} such that ϕ(v) = 1, if v is a potential vertex to

become a sink in an optimal solution and ϕ(v) = 0.25, if v is a non-sink vertex. For any

subset V ′ ⊆ V (D), ϕ(V ′) =
∑

x∈V ′ ϕ(x). We call a vertex v as an undecided vertex if

ϕ(v) = 1 and a semi-decided vertex if ϕ(v) = 0.25.

Definition 4.2 (Feasible solution). A set S ⊆ V (D) is called a feasible solution for (D,ϕ)

if D− S is knot-free and for any sink vertex s in D− S, ϕ(s) = 1. KFVD(D,ϕ) denotes the

size of an optimal solution for (D,ϕ).

Given an input digraph D, we set the potential of all the vertices as 1 and run the algorithm.

Over the course of the algorithm, we change the potential of vertices which are not sinks

in the optimal solution to 0.25. Now we make some definitions which will be useful for

presenting our algorithm.

Definition 4.3 (In-reachability set). The in-reachability set of a vertex v denoted by R−(v),

is the set of vertices that can reach v via some directed path in D −N+(v).

Definition 4.4 (Out-reachability set). The out-reachability set of a vertex v denoted by

R+(v), is the set of undecided vertices (say u) that can be reached from v via some directed

path in D −N+(u).

Notice that v ∈ R−(v) and u ∈ R+(v) if and only if v ∈ R−(u). We denote the set

N+(v) ∪ R−(v) as R(v). We also use Smin to denote a minimal solution for the given in-

stance (D,ϕ) and Zmin for the set of sinks in D − Smin. Similarly, we use Sopt and Zopt to

refer to an optimal solution and its sink set. We further define an update function Algorithm
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3 below.

Algorithm 3: update(D,ϕ, s,NS)

Input: A directed graph D, a potential function ϕ, a sink vertex s (optional) and a set of
non-sink vertices NS (optional)

Output: An updated digraph D′ and an updated potential function ϕ′

1 D′ = D, ϕ′ = ϕ
2 if input s is provided then
3 D′ = D′ −R(s)
4 for v ∈ R+(s) do
5 ϕ′(v) = 0.25

6 if input NS is provided then
7 for v ∈ NS do
8 ϕ′(v) = 0.25

9 return D′, ϕ′

In the example given below, the vertices which are coloured yellow are semi-decided.

Using this, we observe that R−(h) = {i} while R+(h) = {c}. Note than even though the

vertices from the set {e, d, b, a} can reach h in D, they do not belong to R−(h) since after

deleting the out-neighbour of h they can no longer reach h. Similarly even though h can reach

any vertex from the set {b, f}, they do not belong to R+(h) since they are semi-decided.

a c

d

h

fb

e

i

g

Figure 4.3: Example instance of knot-free vertex deletion problem
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4.2 Auxiliary Results

The following rules were used by Ramanujan et al. in 2022 to design the first exact expo-

nential algorithm for KFVD, and shall also be implemented in our algorithm.

Reducion Rule 1. [18] If all the vertices in D are semi-decided and D has no source or

sink vertices, then V (D) is contained inside any feasible solution for (D,ϕ).

Reducion Rule 2. [18] Let v ∈ D be such that N−(v) = ∅, S is an optimal solution for D

iff S is an optimal solution for D′ = D − v.

Reducion Rule 3. [18] Let v ∈ D be such that N+(v) = ∅, S is an optimal solution for D

iff S is an optimal solution for D′ = D −R(v).

With this, we are ready to prove some propositions which are required to prove the correct-

ness of various subroutines in our algorithm.

Proposition 4.3. If x ∈ Zmin, then we have, N+(x) ⊆ Smin, Smin ∩ R−(x) = ∅ and

Zmin ∩R+(x) = ∅.

Proof. By the definition of a sink vertex, if x ∈ Zmin then N+(x) is in Smin. Let Y =

Smin ∩R−(x). We claim S ′ = Smin \ Y is also a solution which will contradict the fact that

Smin is a minimal solution. Suppose S ′ is not a solution, then there exists a vertex v in

D − S ′, that does not reach a sink in D − S ′ but v reaches some sink s in D − Smin. Since

every vertex in Y reaches sink x in D − S ′, v /∈ Y . If s is not a sink vertex in D − S ′, then

some vertex y ∈ Y is an out-neighbor of s. But then v can reach the sink x in D − S ′ via

y. Hence, S ′ is a solution of size strictly smaller than Smin, which is a contradiction. Since

Smin ∩R−(x) = ∅, we also have Zmin ∩R−(x) = ∅. Now, let s ∈ R+(x). If s ∈ Zmin then by

definition of R+(x), x ∈ Zmin ∩R−(s) which is a contradiction.

Proposition 4.4. If x ∈ Zmin, then Smin = N+(x) ∪ S ′, where S ′ is a minimal feasible

solution for (D′, ϕ′) = update(D,ϕ, x,−). Also, if S ′
min is a minimal solution for (D′, ϕ′)

then S = N+(x) ∪ S ′
min is a solution for (D,ϕ).
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Proof. First, assume that S ′
min is a minimal solution for (D′, ϕ′). We claim that S = S ′

min ∪
N+(x) is a solution for (D,ϕ). Suppose not, then there exists a vertex v that does not reach

a sink in D − S. Note that v /∈ R−(x) as all vertices in R−(x) can reach sink x in D − S.

Then v /∈ R(x) ∪ S and hence it is also in D′ − Smin, where it reaches a sink s. Since this

path is disjoint from S ′
min ∪ R−(x), v still can reach s via the same path in D − S. Note

that s is not a sink in D − S only if it has an out-neighbor in R−(x) \ N+(x). But then s

and v are in R−(x) which is a contradiction. Hence, v can still reach the same sink s and

S = S ′
min ∪N+(x) is a solution for D.

Now, we prove that S ′ = Smin \ N+(x) is a solution for (D′, ϕ′). Since, Smin is optimal,

S ′ ∩R+(x) = ∅ via Claim 4.3 and thus, S ′ is feasible. If S ′ is not a solution, then there has

to be a vertex v in D′ − S ′ that does not reach any sink. Since Smin ⊆ R(x) ∪ S ′, v /∈ Smin.

But Smin is a solution for (D,ϕ) and v can reach some sink s ∈ Zmin in D−Smin. Note that

s ̸= x, since v is not in R−(x) and cannot reach x in D−Sopt. Then v has a path to s which

is disjoint from Sopt ⊇ N+(x). Moreover this path is also disjoint from the set R(x)\N+(x),

since v /∈ R(x). Hence this path is disjoint from R(x) and Sopt. Therefore, v can reach s via

the same path in D′−S ′. If s is a sink in D−Sopt, then s is also a sink in D′−S ′. Hence, v

has a path to a sink in D′ − S ′, which is a contradiction. It implies that S ′ = Smin \N+(x)

is a solution for (D′, ϕ′).

Finally, assume S ′ = Smin \N+(x) is not a minimal solution for (D′, ϕ′). Then there exists

S ′′ ⊂ S ′ which is also a solution for (D′, ϕ′), but then S ′′∪N+(x) is also a solution for (D,ϕ)

contradicting the minimality of Smin.

Corollary 4.5. If x ∈ Zopt, then we have, |Sopt| = |N+(x)| + KFVD(D′, ϕ′), where

(D′, ϕ′) = update(D,ϕ, x,−).

Proof. Let us assume S ′
opt to be an optimal solution to (D′, ϕ′). By Proposition 4.4, S =

N+(x)∪S ′
opt is a solution to (D,ϕ). Now, if (D,ϕ) has a minimal solution S̃ smaller than S

then via Proposition 4.4, S̃ \ N+(x) is a solution to (D′, ϕ′) that is smaller than S ′
opt. This

is a contradiction and hence the claim is true.

With this, we are ready to make the final few definitions and conclude the chapter. They

involve a function which keeps track of the potential drop corresponding to each vertex being

a sink, alongside some sets that are of interest to the algorithm.
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Definition 4.5 (Drop function). The drop function, denoted by ψ(x) takes the value ψ(x) =

ϕ(R(x)) + 0.75 ∗ |R+(x) \R(x)| for every undecided vertex in the given instance.

Definition 4.6 (Surviving set). The surviving set of vertex x, denoted by Sx is defined as

the set {u ∈ N+(x) | N−(u) ∩ U = {x}}.

Definition 4.7 (Candidate-Sink set). The candidate-sink set of vertex x, denoted by Cx is

defined as the set {u ∈ R+(y) | y ∈ N+(x)}.

Observe that for a given instance (D,ϕ), if x ∈ U has a nonempty survivor set, then the

vertices of Sx is in a minimal solution Smin if and only if x is in Zmin since Corollary 4.2

requires Smin = N+(Zmin) and x is the only in-neighbour of elements of Sx which can be in

Zmin.

Also note that, for any given instance (D,ϕ) if x /∈ Zmin then some out-neighbour y of x

must satisfy y /∈ Smin. This y must reach some sink s in the final solution, and by definition,

s must belong to R+(y). Thus Cx is the set of sinks the out neighbours of x can possibly

reach if x is not a sink in the final solution. Also, note Cx ⊆ N−(x) ∪ R+(x), since given

y ∈ N+(x) and s ∈ R+(y), either x ∈ N+(s) or x has a path to s via y in D −N+(s).
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Chapter 5

An Improved Exact Algorithm for

Knot Free Vertex Deletion

5.1 Algorithm KFVD

In this section, we provide an improved exact exponential algorithm (Algorithm 4) to com-

pute the minimum knot-free vertex deletion set. This chapter is based on the paper [21]. We

begin by initialising the potential of all vertices to 1 and as soon as we decide a vertex to be

non-sink we reduce its potential to 0.25. In our algorithm, whenever we encounter a sink or

a source, we remove them using Reduction Rules 2 and 3. If all the vertices have potential

0.25, then we apply Reduction Rule 1 to solve the instance in polynomial time.

At any point, if there exists an undecided vertex x of potential ψ(x) ≥ 3.75 then we

branch on the possibility of it being a sink or non-sink in the optimal solution. Here we

benefit from the high potential drop in the branch where x becomes a sink which gives us a

branching factor of (3.75, 0.75). Once such vertices are exhausted, we choose an undecided

vertex x with the maximum number of undecided neighbours to branch on. We show that if

x is not a sink in the optimal solution then some other vertex s from Cx has to be. Further,

the bound on ψ(x) helps us limit the cardinality of Cx and consequently the number of

branches. In this case, we get a set of vertices from which atleast one has to be a sink in the

final solution. Since, each branch has some vertex becoming a sink, the potential drop will

be high enough to give a good running time for our algorithm.
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Algorithm 4: KFVD (D,ϕ)

Input: A directed graph D and a potential function ϕ
Output: The size of a minimum knot-free vertex deletion set

1 if ∃ x such that N−(x) = ∅ then
2 return KFVD(D − {x}, ϕ);

3 if ∃ x such that N+(x) = ∅ then
4 return KFVD(D −R(x), ϕ);

5 if V (D) ⊆ Ū then
6 return |V (D)|;

7 if ∃ x ∈ U such that ψ(x) ≥ 3.75 then
8 D1, ϕ1 = update(D,ϕ, x,−);
9 D2, ϕ2 = update(D,ϕ,−, x);

10 return min{KFVD(D1, ϕ1) + |N+(x)|, KFVD(D2, ϕ2)};

11 pick x ∈ U maximizing |N(x) ∩ U|

12 if Sx = ∅ then
13 for si ∈ Cx do
14 Di, ϕi = update(D,ϕ, si,−)
15 return min{KFVD(Dx, ϕx) + |N+(x)|, minsi{KFVD(Di, ϕi) + |N+(si)|}};
16 else
17 if |N(x) ∩ U| ≥ 1 then
18 Dx, ϕx = update(D,ϕ, x,−);
19 pick y ∈ Sx

20 set Bx = R+(y)
21 for si ∈ Bx do
22 if N+(si) ⊆ N+(sj) for some sj ∈ Bx then
23 Bx = Bx − sj
24 for si ∈ Bx do
25 NSi = {sj : j < i}
26 Di, ϕi = update(D,ϕ, si, NSi)

27 return min{KFVD(Dx, ϕx) + |N+(x)|, minsi{KFVD(Di, ϕi) + |N+(si)|}};
28 else
29 Dx, ϕx = update(D,ϕ, x,−);
30 pick y ∈ Sx, s ∈ R+(y)
31 Ds, ϕs = update(D,ϕ, s,−)
32 return min{KFVD(Dx, ϕx) + |N+(x)|, KFVD(Ds, ϕs) + |N+(s)|}};
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The algorithm presented in this chapter, proof of its correctness and upper bound on its

running time are all new and make up a major part of the work conducted during the masters

thesis [21]. The algorithm draws inspiration from and builds upon An exact algorithm for

knot-free vertex deletion [18] by MS Ramanujan, Abhishek Sahu, Saket Saurabh and Shaily

Verma.

5.2 Correctness of the algorithm

Let Subroutine 0 represent the lines 1 − 6 of the algorithm. The correctness of lines 5 − 6,

1 − 2 and 3 − 4 follow from Reduction Rules 1, 2 and 3 respectively. We use the terms

Subroutine 1, Subroutine 2, Subroutine 3 and Subroutine 4 to refer to lines 7-10, 12-15, 17-27

and 28-32 of Algorithm KFVD respectively.

5.2.1 Correctness of Subroutine 1

Lemma 5.1. If ∃ x ∈ V (D) such that x ∈ U and ψ(x) ≥ 3.75, then KFVD(D,ϕ) =

min{KFVD(D1, ϕ1) + |N+(x)|, KFVD(D2, ϕ2)} where, (D1, ϕ1) = update(D,ϕ, x,−) and

(D2, ϕ2) = update(D,ϕ,−, x).

Proof. We prove the lemma using an inductive argument on the potential of the instance

(ϕ(D)). Observe that if we consider the base case ϕ(D) = 1, then there is only one undecided

vertex in the input instance and the recurrence holds true. Now given an instance D, assume

that the algorithm computes the correct solution for all smaller instances. Let the solutions

for KFVD(D1, ϕ1) and KFVD(D2, ϕ2) be S1 and S2, respectively. Assuming Sopt is an optimal

solution for KFVD(D,ϕ), we evaluate the two possibilities:

• Case 1: x ∈ Zopt. We show that S1∪N+(x) is an optimal solution for KFVD(D,ϕ) if

and only if S1 is an optimal solution for KFVD(D1, ϕ1). The arguments are exactly the

same as that in Corollary 4.5. We also claim that KFVD(D2, ϕ2) ≥ KFVD(D1, ϕ1) +

|N+(x)|. For contradiction, suppose that is not the case, then any optimal solution S2

for (D2, ϕ2) is also a feasible solution for KFVD(D,ϕ). But S2 has size strictly smaller
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than Sopt, which contradicts our assumption that it is optimal. Hence, KFVD(D,ϕ) =

min{KFVD (D1, ϕ) + |N+(x)|, KFVD(D,ϕ2)}.

• Case 2: x /∈ Zopt. In this case, KFVD(D2, ϕ2) = KFVD(D,ϕ), by definition. Also

KFVD(D2, ϕ2) ≤ KFVD(D1, ϕ1) + |N+(x)|, otherwise we have S ′ = S1 ∪ N+(x) as a

solution with size strictly smaller than Sopt which contradicts our assumption that it

is optimal. Hence, KFVD(D,ϕ) = min{KFVD(D1, ϕ) + |N+(x)|, KFVD(D,ϕ2)}.

In Subroutine 1, we get a branching vector (3.75, 0.75) since we branch on vertices with

ψ ≥ 3.75. After exhaustively running Subroutine 1, every remaining undecided vertex sat-

isfies ψ(x) ≤ 3.75. An important implication of this bound is the restricted number of

undecided vertices in N(x) as well as Cx, which we prove in the following lemma.

Lemma 5.2. If (D,ϕ) is an instance on which Subroutine 1 is no longer applicable, then

every x ∈ U satisfies, |Cx| ≤ 2.

Proof. If Subroutine 1 is no longer applicable to (D,ϕ), then every undecided vertex has at

most 2 undecided neighbours, since N(x) ⊆ R(x) and ϕ(R(x)) is counted towards ψ(x).

To begin with, consider the possibility that, |R+(x)\R(x)| ≥ 3. Observe that while comput-

ing ψ(x), vertices of |R+(x) \R(x)| contribute a total of 2.25, the potential of x contributes

1 and the in-neighbour and out-neighbour of x has to contribute atleast 0.5. This adds up

to a total of 3.75 which is not allowed since Subroutine 1 is no longer applicable. Hence

|R+(x) \ R(x)| ≤ 2. Also, recall that Cx ⊆ N−(x) ∪ R+(x) ⊆ R(x) ∪ R+(x). Now we can

consider the following possibilities.

• Case 1: |R+(x) \ R(x)| = 0. Here Cx ⊆ R(x). Also ϕ(R(x)) is less than 3.75, out

of which x contributes 1. Hence R(x) can have at most 2 more undecided vertices and

consequently, |Cx| ≤ 2.

• Case 2: |R+(x) \ R(x)| = 1. In this case, since R+(x) \R(x) contributes 0.75, the
contribution of R(x) to ψ(x) has to be less than 3. Since x itself contributes 1, we can

have at most one other undecided vertex in R(x). Hence |Cx| ≤ 2.
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• Case 3: |R+(x) \ R(x)| = 2. Here, vertices in R+(x)\R(x) contribute a total of 1.5

to ψ(x) which gives ϕ(R(x)) < 2.25. Hence if |U ∩ R(x)| ≥ 2 then we get |R(x)| = 2

which is not possible since d+(x), d−(x) ≥ 1. Hence U ∩R(x) = {x} and |Cx| ≤ 2.

5.2.2 Correctness of Subroutine 2

In Subroutine 2, we deal with undecided vertices that have an empty surviving set cor-

responding to them. The fact that every out-neighbour of such a vertex has some other

undecided in-neighbour helps us establish a high potential for elements of Cx.

Lemma 5.3. Let (D,ϕ) be an instance such that ψ(v) < 3.75, for every vertex in U . let x

be a vertex maximizing U ∩N(x) and Sx = ∅. We claim,

KFVD(D,ϕ) = min{KFVD(Dx, ϕx) + |N+(x)|, minsi{KFVD(Di, ϕi) + |N+(si)|}}

where (Dx, ϕx) = update(D,ϕ, x,−) and (Di, ϕi) = update(D,ϕ, si,−) for every si ∈ Cx.

Proof. In any given minimal solution, either x is a sink or at least one of its out-neighbours

must survive. The out-neighbour which survives, say y, must be able to reach a sink in the

final solution. This sink by definition, belongs to R+(y). Hence, if x is not a sink in the final

solution, then at least one vertex of Cx has to be. Thus, every possible minimal solution

contains at least one element from the set {x} ∪ Cx in its sink set. By induction, assuming

that KFVD(D′, ϕ′) returns the optimal solution for every instance smaller than (D,ϕ) along

with Corollary 4.5, proves the lemma.

Observe that, since |Cx| ≤ 2, we have at most 3 branches when running Subroutine 2. Further

we claim that whenever we branch on the case where si ∈ Cx becomes a sink, the potential

drop is at least 3. We have, either x ∈ N+(si) or x ∈ R−(si). Further, si ∈ R+(y) for

some y ∈ N+(x) and since Sx = ∅, y has some undecided in-neighbour z different from

x. Note that, z ̸= si since si ∈ R+(y). Similar to x, z ∈ N+(si) or z ∈ R−(si). Hence

ψ(si) ≥ ϕ({si, x, z}) = 3. Now let us look at the possible branches which could arise and

their corresponding worst case branching factor. Note that if |Cx| = 0, no branching is

involved and the subroutine is executed as a reduction rule.
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Note: In the following sections we use diagrams to give some intuitions about the cases

we are considering. In them, white vertices are undecided, yellow ones are semi-decided.

Dotted lines indicate possibility of in and out-neighbours, dashed lines denote directed paths

and thick lines denote edges.

• Case 1: Cx = {s}. Here, we have the following possibilities:

– |N(x) ∩ Cx| = 0, in which case, N [x] has potential at least 1.5, since x has

atleast two neighbours and ϕ(x) = 1. Further, s ∈ Cx contributes 0.75, giving

ψ(x) ≥ 2.25.

Figure 5.1: Case 1.1: N [x] ∩ Cx = ∅

– |N(x) ∩ Cx| = 1, in which case, N [x] has potential at least 2.25, since ϕ(x) =

ϕ(s) = 1, and x has at least one more neighbour, giving ψ(x) ≥ 2.25.

Figure 5.2: Case 1.2: s ∈ N [x] ∩ Cx

• Case 2: Cx = {s1, s2}. Here the possibilities are as follows.

– |N(x)∩Cx| = 0, in which case, N [x] has potential at least 1.5, since x has at least

two neighbours and ϕ(x) = 1. Further s1, s2 ∈ Cx contribute 1.5, giving ψ(x) ≥ 3.
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Figure 5.3: Case 2.1: s1, s2 ∈ N [x] ∩ Cx

– N(x) ∩ Cx = {s1}, in which case, N [x] has potential at least 2.25, since x has at

least two neighbours, including s1. Further s2 ∈ Cx\N(x) contributes 0.75, giving

ψ(x) ≥ 3.

Figure 5.4: Case 2.2: s1 ∈ N [x] ∩ Cx

– |N(x) ∩ Cx| = 2, in which case, N [x] has potential at least 3, due to ϕ(x) =

ϕ(s1) = ϕ(s2) = 1 and hence ψ(x) ≥ 3.

Figure 5.5: Case 2.3: N [x] ∩ Cx = ∅

Hence the worst case branching vectors from Subroutine 2 are (3, 2.25) and (3, 3, 3).
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5.2.3 Correctness of Subroutine 3

In Subroutine 3 we branch on undecided vertices with a non-empty surviving set and at least

one undecided neighbour. Let us define Dx = {u | ∃ v ∈ R+(y), v ̸= u, N+(v) ⊆ N+(u)}
and Bx to be R+(y) \ Dx. We also fix an arbitrary ordering of vertices of Bx and define

NSi = {sj ∈ Bx | j < i}

Lemma 5.4. Let (D,ϕ) be an instance such that ψ(v) < 3.75, for every vertex in U , let x
be a vertex maximizing U ∩N(x) and y ∈ Sx. We claim

KFVD(D,ϕ) = min{KFVD(Dx, ϕx) + |N+(x)|, minsi{KFVD(Di, ϕi) + |N+(si)|}}

where (Dx, ϕx) = update(D,ϕ, x,−) and (Di, ϕi) = update(D,ϕ, si, NSi) for all si ∈ Bx.

Proof. We claim that y ∈ Sx survives in every minimal solution where x is not a sink. We

have y ∈ Smin if and only if some in-neighbour of y is a sink in D−Smin, but y ∈ Sx implies

N−(y)∩U = {x}. Hence, if x /∈ Zmin, then y /∈ Smin and we can assume that if x is not a sink

then y survives and must reach some sink. This sink by definition must be in R+(y). But if

some distinct u, v in R+(y) satisfy N+(v) ⊆ N+(u), then in every minimal solution where u

is a sink, v is also a sink and KFVD(update(D,ϕ, v,−)) ≤ KFVD(update(D,ϕ, u,−)). Thus,

every possible minimal solution contains at least one element from the set {x}∪(R+(y)\Dx) =

{x} ∪ Bx in its sink set. Further, we can fix an arbitrary ordering for elements of Bx and

branch on the first vertex of this ordering which becomes a sink. In the branch where the

ith vertex becomes a sink, we can assume that all the vertices before it are non-sinks. Hence

by induction, assuming that KFVD(D′, ϕ′) returns the optimal solution for every instance

smaller than (D,ϕ), proves the claim.

Since ψ(x) < 3.75, N(x) has at most two undecided vertices whenever x is undecided. We

will analyze the branching vector for this subroutine in two steps. For undecided vertices

with two undecided neighbours and for undecided vertices with one undecided neighbour.

If R+(y) is empty, then x must be a sink and no branching is involved. Also, Lemma 5.2

implies R+(y) can have cardinality at most 2, which leads to the following possibilities.
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Bx = {s}

Observe that if x is a sink, then since x has at least three vertices in its closed neighbourhood,

at least two of which are undecided, we have ψ(x) ≥ 2.25. But, if x is not a sink and s is

the sink y reaches, then since s has at least two neighbours, and x ∈ N+(s) or x ∈ R−(s),

we have ψ(s) ≥ ϕ(N [s]∪ {x}) ≥ 2.25. Hence the worst case branching vector is (2.25, 2.25).

Figure 5.6: Case 1: Bx = {s}

Bx = {s1, s2}

In this case, depending on the number of undecided neighbours x has, we have the following

cases.

Case 1: Branching on a vertex with two undecided neighbours

Here |N(x) ∩ U| = 2 implies ϕ(N [x]) ≥ 3 and hence Bx \ N(x) = ∅. Otherwise, the vertex

in Bx \ N(x) would contribute 0.75 to ψ(x) making it at least 3.75 which contradicts our

assumption that Subroutine 1 is no longer applicable. Now, assuming y ∈ Sx is the chosen

vertex, we have the following possibilities.

• Subcase 1.1: s2 ∈ R−(s1) or s1 ∈ R−(s2)

The arguments for both cases are identical, hence assume that s2 ∈ R−(s1).

• If x is a sink, then since x has at least three undecided vertices in its closed

neighbourhood each contributing 1 giving ψ(x) ≥ 3.

• If x is not a sink and s1 is a sink which reaches in the final solution. Then we

have x ∈ N(s1), s2 ∈ R−(s1) and hence ψ(s1) ≥ 3
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• If x is not a sink, s1 is not a sink in the final solution but s2 is. Then we have

x ∈ N(s2), y ∈ R−(s2) and s1 ∈ R+(s2). Now if s1 ∈ R−(s2) then x, s1 and s2

each contribute 1 to ψ(s2). Else, we can assume y ̸= s1 and x, y, s2 contributes a

total of 2.25 and s1 contributes 0.75 giving ψ(s2) ≥ 3.

Figure 5.7: Case 2.1.1: s2 ∈ R−(s1)

Hence we have a worst case branching vector (3, 3, 3). Further, in the rest of the

sub-cases, we can assume s1 /∈ R−(s2) and vice-versa which implies y /∈ {s1, s2}. Now
consider the case where s1 ∈ N+(x), s2 ∈ N−(x), since x /∈ N+(s1), either s2 ∈ N+(s1)

or s2 ∈ R−(s1). But s2 /∈ R−(s1) is and s2 ∈ N+(s1) implies s1 ∈ R−(s2), which can-

not be the case. Thus this possibility is already considered, which leaves us with the

following configurations.

• Subcase 1.2: s1, s2 ∈ N−(x)

• If x is a sink, since N [x] has at least four vertices out of which three are undecided,

we have ψ(x) ≥ 3.25.

• If x is not a sink and s1 is a sink which y reaches in the final solution. Then we

have x ∈ N+(s1), y ∈ R−(s1). Also, since N+(s1) ̸⊆ N+(s2) and x ∈ N+(s2),

N+(s1) has at least one more vertex other than x, giving ψ(s1) ≥ 2.5.

• If x is not a sink, s1 is not a sink in the final solution, but s2 is. Then we have

x ∈ N+(s2), y ∈ R−(s2). Also, since N+(s2) ̸⊆ N+(s1) and x ∈ N+(s1), N
+(s2)

has at least one more vertex, giving ϕ(R(s2)) ≥ 2.5. Further, since we also have

the added information that s1 is not a sink which gives a drop of 0.75, the total

drop in potential is at least 3.25.
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Figure 5.8: Case 2.1.2: s1, s2 ∈ N−(x)

Here we have a worst case branching vector (2.5, 3.25, 3.25)

• Subcase 1.3: s1, s2 ∈ N+(x)

• If x is a sink, since N [x] has at least four vertices out of which three are undecided,

we have ψ(x) ≥ 3.25.

• If x is not a sink and s1 is a sink which y reaches in the final solution. Then

we have x ∈ N−(s1), y ∈ R−(s1) and at least one other vertex in N+(s1) giving

ψ(s1) ≥ 2.5.

• If x is not a sink, s1 is not a sink in the final solution, but s2 is. Then we

have, x ∈ N−(s2), y ∈ R−(s2) and at least one other vertex in N+(s2) giving

ψ(s2) ≥ 2.5. Further, we also have the added information that s1 is not a sink

which gives a drop of 0.75. Hence, the total drop in potential is at least 3.25.

Figure 5.9: Case 2.1.3: s1, s2 ∈ N+(x)

Here we have a worst case branching vector (3.25, 2.5, 3.25).

Case 2: Branching on a vertex with one undecided neighbour

Here, |N(x) ∩ U| = 1 implies ϕ(N [x]) ≥ 2.25 and hence, |Bx \ N(x)| ≤ 1. Otherwise, the
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vertices in Bx \N(x) would contribute 0.75 to ψ(x) making it at least 3.75 which contradicts

our assumption that Subroutine 1 is no longer applicable. Now, assuming s1 ∈ N(x) and

y ∈ Sx is the chosen vertex, we have the following possibilities.

• Subcase 2.1: s1 ∈ R−(s2) or s2 ∈ R−(s1)

The arguments for both the case are identical, hence we assume s1 ∈ R−(s2).

• If x is a sink, then since x has at least three vertices in its closed neighbourhood

exactly two of which are undecided and s2 ∈ R+(x), we get ψ(x) ≥ 3.

• If x is not a sink and s1 is a sink which y reaches in the final solution. Then we

have at least three vertices in N [s1] out of which only x, s1 are undecided. This

and s2 ∈ R+(s1) give ψ(s1) ≥ 3.

• If x is not a sink, s1 is not a sink in the final solution but s2 is. Then we have

x ∈ R−(s2) and s1 ∈ R−(s2). Now, s2 has an out-neighbour which cannot be

x since x has only one undecided neighbour and s1 since s2 ∈ R+(s1). This

out-neighbour contributes at least 0.25 making the total drop at least 3.25.

Figure 5.10: Case 2.2.1: s1 ∈ R−(s2) Figure 5.11: Case 2.2.1: s2 ∈ R−(s1)

Hence the worst case branching vector is (3, 3, 3.25).

• Subcase 2.2: s2 /∈ R−(s1) & s1 /∈ R−(s2)

Here, s1 /∈ N−(x), since in that case s1 ∈ R−(s2) or s1 ∈ N+(s2) which implies

s2 ∈ R−(s1). Also, y ̸= s1 since otherwise s1 ∈ R−(s2).

• If x is a sink, then since x has at least two out-neighbours y, s1 and some in-

neighbour z, along with s2 ∈ R+(x) we have ψ(x) ≥ 3.25.
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• If x is not a sink and s1 is a sink which y reaches. Then we have x, y in R−(s1)

and since s1 has some other out-neighbour, we get ψ(s1) ≥ 2.5.

• If x is not a sink, s1 is not a sink in the final solution but s2 is. Then we have,

x, y, z in R−(s2) which gives ψ(s2) ≥ 2.5. Further, since we also have the added

information that s1 is not a sink which gives a drop of 0.75, the total drop in

potential is at least 3.25.

Figure 5.12: Case 2.2.2: s1, s2 ∈ N+(x)

Hence the worst case branching vector is (3.25, 2.5, 3.25).

5.2.4 Correctness of Subroutine 4

In Subroutine 4, we branch on undecided vertices with a non-empty surviving set and zero

undecided neighbour. It is executed only when Subroutines 1, 2 and 3 is no longer applicable.

Hence, we can assume all the vertices no longer satisfy the requirements of Subroutine 1, 2

and 3. In particular, note that every undecided vertex has zero undecided neighbours.

Lemma 5.5. Let (D,ϕ) be an instance such that ψ(v) < 3.75 and U ∩ N(v) = ∅ for every

vertex in U . Let x be an undecided vertex, y ∈ Sx and s ∈ R+(y). We claim

KFVD(D,ϕ) = min{KFVD(Dx, ϕx) + |N+(x)|, KFVD(Ds, ϕs) + |N+(s)|}

where (Dx, ϕx) = update(D,ϕ, x,−) and (Ds, ϕs) = update(D,ϕ, s,−).

Proof. We claim that y ∈ Sx survives in every minimal solution where x is not a sink. We

have, y ∈ Smin if and only if some in-neighbour of y is a sink in D−Smin, but y ∈ Sx implies

N−(y) ∩ U = {x}. Hence, if x /∈ Zmin, then y /∈ Smin. Now, assuming x is not a sink,

y survives, and it must reach some sink, which by definition must belong to R+(y). Now
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assume that s ∈ R+(y) is not a sink in the final solution where x is not a sink and y survives.

Since s is not a sink, it must either belong to the solution set or reach a sink vertex. But s

cannot belong to any minimal feasible solution to (D,ϕ), since N−(s) ∩ U = ∅. Hence we

can assume s reaches some sink z. Now there are two possibilities either N+(z) intersects a

vertex of P(y,s) or not.

• Case 1: w1 ∈ N+(z) ∩ P(y,s). Here, z has a path to s in D − N+(s) via P(w1,s).

Also, x, z /∈ N(s) since s is undecided and cannot have undecided neighbours and hence

x ∈ R−(s) since it has a path to s via y. Now, w1 ̸= y, since z is a sink that s can

reach in a solution where y survives and hence y, w1 ∈ R−(s). Thus, R−(s) contains

x, y, w1, z and s. Now, out-neighbour of s in P(s,z) cannot be y or w1 since N
+(s) does

not intersect P(y,s) and y, w1 ∈ P(y,s). Thus N+(s) contains at least one semidecided

vertex w2 different from y, w1 which implies that x, y, w1, z, w2 and s belongs to R(s).

This leads to a contradiction since this implies ϕ(R(s)) ≥ 3.75.

Figure 5.13: Case 1: w1 ∈ N+(z) ∩ P(y,s)

• Case 2: N+(z) ∩ P(y,s) = ∅. Here, y can reach z in D−N+(z) via the path P(y,s) fol-

lowed by P(s,z). Observe that x /∈ N+(z) as both are undecided, and y ∈ R−(z) which

implies that x ∈ R−(z). Now, out-neighbour of s in P(s,z) cannot be y since N
+(s) does

not intersect P(y,s) and y ∈ P(y,s). Thus P(s,z) contains at least one semidecided vertex

w1 different from y and R−(z) contains x, y, w1, z and s. Now, out-neighbour of z can-

not be y, since z is a sink that s can reach in a solution where y survives and it cannot

be w1 since N+(z) does not intersect P(s,z) and w1 ∈ P(s,z). Thus N+(z) contains at

least one semidecided vertex w2 different from y, w1 which implies that x, y, w1, z, w2

and s belong to R(z). This leads to a contradiction since, ϕ(R(z)) ≥ 3.75.
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Figure 5.14: Case 2: N+(z) ∩ P(y,s) = ∅

Observe that both possibilities lead to a contradiction and hence our assumption that s

reaches some sink z in a minimal solution where x is not a sink and y survives, has to be

wrong. Thus, for the given instance where Subroutines 1, 2 and 3 are no longer applicable,

in any minimal solution where x is not a sink, y ∈ Sx and s ∈ R+(y), s has to be a sink.

By induction, assuming that KFVD(D′, ϕ′) returns the optimal solution for every instance

smaller than (D,ϕ), proves the claim.

If R+(y) = ∅ then x has to be a sink and the subroutine is executed as a reduction rule

without branching. Now, since x has at least two neighbours and as s ∈ R+(x) we get

ψ(x) ≥ 2.25. Similarly, since s has at least two neighbours and x ∈ R−(s) we get ψ(s) ≥ 2.5.

Hence the worst case branching factor is (2.25, 2.5).

5.3 Running time analysis

Observe that the reduction Rules 1, 2 and 3 can be applied on any input instance in polyno-

mial time. The branching vector obtained in Subroutine 1 was (3.75, 0.75), which gives the

recurrence f(µ) ≤ f(µ − 3.75) + f(µ − 0.75). This solves to f(µ) = O(1.4549µ). For Sub-

routine 2 we observe a worst case drop in measure of (2.25, 3) and (3, 3, 3), amongst which

(3, 3, 3) has the higher running time f(µ) = O(1.4422µ). Similarly, for Subroutine 3, we have

branching vectors (2.25, 2.25), (3.25, 2.5, 3.25), and (3, 3, 3), out of which (3.25, 2.5, 3.25)

gives the worst running time f(µ) = O(1.4465µ). Finally Subroutine 4 has a branching

vector (2.25, 2.5) which gives f(µ) = O(1.3393µ).

For an input instance D of Knot-Free Vertex Deletion, we initialise the potential of
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each vertex to 1 and run KFVD(D,ϕ). Observe that, ϕ(V (D)) = |V (D)| = n and during

the recursive calls the potential of the instance never increases or drops below 0. Hence we

can bound the running time of the algorithm by the run time corresponding to its worst case

subroutine which is Subroutine 1. This gives us the following theorem.

Theorem 5.6. Algorithm KFVD solves Knot-Free Vertex Deletion in O∗(1.4549n).
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Chapter 6

Complimentary Results

In this chapter, we prove some results to complement the algorithm presented in the previous

chapter. We present a lower bound for the running time of our algorithm, alongside an upper

bound for the number of inclusion wise minimal knot-free vertex deletion sets in a graph

of order n. These results are new and make up a part of the work conducted during the

masters thesis [21].

6.1 Lower bound on the run-time of our algorithm

We run our algorithm KFVD on the graph D in figure 6.1, where V (D) = {ai, bi, ci | 1 ≤ i ≤
n
3
} and E(D) = {(ai, bi), (bi, ci), (ci, ai) | 1 ≤ i ≤ n

3
}.

Figure 6.1: Illustration of a worst-case instance for our algorithm.

We claim that in the worst case, our algorithm takes O∗(3n/3) time to solve KFVD on D
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which we prove via adversarial arguments. Initially since ϕ(v) = 1 for every vertex of D,

we have ψ(ai) = 3, ψ(bi) = 3, ψ(ci) = 3. Since ψ(v) < 3.75 and Sv ̸= ∅ for every vertex,

Subroutine 1 and 2 are not applicable. The adversary chooses the vertex ai to branch on.

Since bi ∈ Sai and bi, ci ∈ R+(bi) we get one branch where ai becomes a sink with potential

drop 3. Another where ai is not a sink, but bi is, with drop 3. Finally, one where ai, bi are

not sinks, but ci is, with drop 3.

In all of the above branches, {ai, bi, ci} is removed, giving a recurrence relation T (n) =

3T (n − 3) which implies T (n) is 3n/3 ≥ 1.4422n for this instance. Which gives us the

following theorem.

Theorem 6.1. Algorithm KFVD runs in time Ω(1.4422n).

6.2 Upper bound on number of minimal solutions

We claim that if we run our algorithm on any given directed graph, and create a decision tree

then for every minimal knot-free vertex deletion set there exists a leaf node of the decision

tree which corresponds to it. Note that any algorithm which finds all the minimal solutions

needs at least unit time to find each solution and hence the number of minimal solutions for

any graph of size n cannot exceed the complexity of the algorithm. This observation gives

us the following theorem.

Theorem 6.2. The number of inclusion minimal knot-free vertex deletion sets is O∗(1.4549n).

Proof. Let Smin be a minimal solution and Zmin be the set of sinks in D − Smin. Beginning

with the root of decision tree use the following set of rules to find the corresponding leaf

node. If the node corresponds to an execution of subroutine 1 on a vertex v, then if v ∈ Zmin

choose the branch of the tree where v is added to the sink set, else choose the branch where

v is labelled as a non-sink vertex. If the node corresponds to any other subroutine, then

by correctness of the algorithm proven in the earlier section, at that node it branches on

a set of vertices, which intersects the sink set of any minimal solution. Choose a branch

corresponding to a vertex s such that s ∈ Zmin. Follow this procedure to get to a leaf node

which corresponds to a knot-free vertex deletion set Sleaf and sink set Zleaf . Note that due

to our choice of leaf node, we have Zleaf ⊆ Zmin and consequently Sleaf ⊆ Smin. This along
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with minimality of Smin gives Sleaf = Smin. Hence the number of minimal knot-free vertex

deletion sets of D cannot exceed the number of leaf nodes of the decision tree corresponding

to any run of the algorithm on D. Hence maximum number of minimal knot-free vertex

deletion sets is O∗(1.4549n).

Theorem 6.3. There exists an infinite family of graphs with Ω(1.4422n) many inclusion-wise

minimal knot-free vertex deletion sets.

Figure 6.2: Family of graphs with Ω(1.4422n) minimal knot-free vertex deletion sets

Proof. Consider the graph in Figure 6.2. Each strongly connected component {ai, bi, ci} can

be made knot-free by deleting a single vertex. Hence every set S which contains only one

element from {ai, bi, ci} is a knot-free vertex deletion set. Observe that there are 3
n
3 many of

them since we can choose the element for each i in 3 ways and i ranges from 1 to n
3
. Further,

any proper subset S ′ of such a set will not intersect {ai, bi, ci} for some i, leaving D−S ′ with

at least one knot. Hence the graph in Figure 6.2 has at least 3
n
3 ≥ 1.4422n many minimal

knot-free vertex deletion sets. Now, by taking graphs which are disjoint union of triangles,

we obtain an infinite family of graphs such that each element of that family has at least

1.4422n many minimal knot-free vertex deletion sets.
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Chapter 7

Conclusion

In this thesis, we obtain a O(1.4549n) time algorithm for the KFVD problem which uses poly-

nomial space. We also obtained a family of graphs for which our algorithm takes Ω(1.4422n)

time. We further proved an upper bound of O(1.4549n) on the number of minimal knot-free

vertex deletion sets possible for any directed graph and observed that this bound is nearly

optimal by presenting a family of graphs which have 1.4422n many minimal knot-free vertex

deletion sets.

Our algorithm is not proven to be optimal and it would be interesting to see what ideas

can help improve it. Closing the gap between the upper and lower bound for the maximum

number of knot-free vertex deletion sets is also a problem of interest for the future.
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