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Abstract

We study KMOC formalism developed to calculate classical observables from amplitudes
in Quantum Field Theory. Amplitudes and S-matrix carry the information of interaction of
any scattering process and thus the classically observed quantities should be attainable from
them .We try to show some new calculations regarding the angular momentum impulses via
this formalism which led to some interesting results. We studied the non-conservation of
angular momentum classically and understand the phenomenon.We studied Faddev Kulish
states that account for long range interactions of states and try to apply them to KMOC
formalism.We then studied the seminal papers by Weinberg on soft photons and gravitons
and look at the idea of these states arising from soft photons.Some results regarding the
validity of classical soft photon was also reviwed in context of angular momentum radiated
during collision.We then also study the S-matrix and its infrared divergence problem . We
saw how the dressings of Faddev Kulish states cancel these divergences in the S-Matrix. The
dressings are known to be coherent states of photons and the equivalence between S-matrix
and these states has been explored.
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Introduction

Importance of scattering interactions between particles be it the interactions in the Large
Hadron Coliiders or Gravitional wave detections of Black hole collision and nuetron star
mergers, has increased in the light of recent discoveries by LIGO and LHC.
These new discoveries makes it important to study two body scattering problem and gener-
ate a theoretical results to understand and analyze the vast amounts of data.
Traditionally these were done using Post Newtonian solutions[5] , Effective field theory ap-
proach[7], numerical relativity [28].
We will primarily focus on studying these collisons using the scattering amplitude methods
largely following the formalism developed in [22][10][26]. Scattering amplitudes have been
studied to obtain the potential between two bodies in the past [8].The importance of Loop
level diagrams in this context is also well known from [21].Starting with a paper [21] it proved
that one must consider the loop level diagrams too in order to calculate classical quantities
like stress-energy tensor , especially when we have two mass-less fields coupling.
This technique has clear advantages over the traditional approaches which have been used
up untill now. Firstly, the gravitational scattering can be studied easily using the gravia-
tional amplitudes , these amplitudes were shown to be product of two Yang-Mills amplitude
first introduced in [30][3]. This connection is called the double copy. Secondly, the classical
approaches to calculating these observables has several issues like the conservation of mo-
mentum loss due to radiation can not be taken care of by using lorentz force laws. One must
include the Lorrentz - Abraham force ([14]) to study system completely. This force has to
be put by hand in the dynamical equations which comes with its own baggage of problems
like causality violations and runaway solutions. This technique should be the solutions to
these problems , and we will see how in this thesis.
Although the calculations for several observable were done in the seminal work by [22].
We shall look at a few other observables which were not studied using this technique like
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the angular momentum impulse. We shall re-discover the problem of non conservation of
angular momentum using these calculations which though known in many forms has been
overlooked in the past. Analyzing the issue with the results will take us to delve into several
other closely knitted concepts. One among these will be the problem of Infrared divergence
of S-matrix , which we find is the major criminal for the discrepency in the results. These
divergences has been shown while calculating the amplitudes. These divergences were fixed
in the past by Faddev and Kulish by considering the possiblity of interacting asymptotic
states. These dressed states make the S matrix finite and in principle solves the issue of
angular momentum. We shall explore the ideas behind this approach .
Soft theorems are yet another important aspects which deals with the idea of infrared di-
vergences first introduced by Wienberg in [35][32]. These are key to connecting the infrared
divergences of amplitudes with the classical trajectory of the particles.
The Thesis is organised in the following way - In the first chapter we review the methodology
of KMOC formalism. We shall back those results by classical calculations in second chapter .
In the third Chapter we shall introduce Faddev Kulish states and look at their effect on our
previous calculations and the ambiguity of IR divergences of S matrix. In the fourth chapter
we will study the basics of soft theorems and look at their connection to IR divergence of
S matrix , We shall look explicity at how these divergences are dealt with by using Faddev
Kulish states [20].
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Chapter 1

Preliminaries

We will overview the basic definitions and notations that will be helpful throughout the
thesis. Let us first look at restoring the powers of h that are often emitted while doing
the quantum field theory calculations. We define the quantity called wavenumber, p̄ of any
particle associated with its momentum p-

p̄ =
p

h

to restore the power of h in amplitude .When h 6= 1 the mass dimension of masses and
momenta of the particle are unchanged, nor is their change in dimension of polarisation
vector .
Dimensionless coupling constant in electrodynamics and gravity scales as

k/
√
h

We will see how important this scaling becomes when we want to ensure the that the ob-
servables are classical in the subsequent sections.
Mode expansion formulas for the various fields and the commuatation relations are -
For complex scalar fields-

φ(x) =

∫
d3p

(2π)32Ep

(
a(p)e−ip·x + b†(p)e+ip·x,

)
φ†(x) =

∫
d3p

(2π)32Ep

(
b(p)e−ip·x + a†(p)e+ip·x,

)
5



The creation and annihilation operators in the mode expansion , satisfy the commutation
relations [

b~p, b
†
~q

]
= (2π)3δ(3)(~p− ~q)[

c~p, c
†
~q

]
= (2π)3δ(3)(~p− ~q)

[b~p, b~q] = [c~p, c~q] = [b~p, c~q] =
[
b~p, c

†
~q

]
= 0

The Dirac field expansion is,

ψ(x) =

∫
d3p
(
cr(p)ur(p)e

tpx + d†r(p)vr(p)e
−tp
)
,

ψ̄(x) =

∫
˜
d
¯
p3
(
c†(p)dr(p)e

tx + dr(p)ar(p)e
−Apx

)
,

where c†(p) is the electron creation operator and d†(p) is the positron creation operator,
while vr(p) and vr(p) are constant spinors satisfying the equations

(p+m)ur(p) = vr(p)(p+m) = 0

(−p+m)vr(p) = vr(p)(−p+m) = 0

vr(p)un(p) = −vr(p)vr(p) = δrx

ur(p)vx(p) = 0.

The anticommutation relations for the creation and annihilation operators are{
c(p), c3 (p′)

}
= (2π)3 (2ωp) δ

s (p− p′) ,{
d(p), d† (p′)

}
= (2π)3 (2ωp) δ

s (p− p′) .

For Maxwell field-
Aµ(x) =

∫
d̃kk

(
aµ(k)e

ikx + a†µ(k)e
−ikx

)
.

1.0.1 Notations

In our notations d̂p implicitly has a factor of 2π; in general, d̂np is defined by

d̂np ≡ dnp

(2π)n
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We take only the positive-energy solutions of the delta functions of p2i −m2
i ,this is indicated

by the (+) superscript in δ̂(+) whiile doing integration.

δ̂(+)
(
p2 −m2

)
≡ 2πΘ

(
p0
)
δ
(
p2 −m2

)
We shorten the notation for on-shell integrals over Lorentz-invariant phase space as -,

dΦ (pi) ≡ d̂4piδ̂
(+)
(
p2i −m2

i

)

Wedge Product of two vectors is denotes by -

Aµ ∧Bν

which is short for anti-symmteric cross product.

Aµ ∧Bν = Aµ ×Bν −Bµ × Aν

Another important notation we will encounter several times is

D = (p1.p2)
2 − (m1m2)

2
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Chapter 2

Review of KMOC formalism

In this chapter we will review the methodolody for calculating classical observables from
the methods of Feynman amplitude shown in papers [22] [10] , this is now called KMOC
formalism .It is based in -in formalism of two wavefunctions. Classical observables like
impulse , radiation can be studied via the scattering amplitudes .This approach has huge
advantages over classical methods which we shall point out as we discuss the formalism.
Let us start by looking at various components in the formalism in the sections of this chapter.

2.1 Incoming state

In any scattering experiment the incoming states are prepared in far past.They are described
by φi(pi) for the ith particle in the momentum space. We require classical scattering of the
particles therefore want φi(pi) to have reasonably well defined momentum and position. This
puts certain constraints on the kind of wavefunction we can assume which will be discussed
in more detail in 2.5 .
For now, we take a general φi(pi) and define the initial state, which is given by-

|Ψ >in=

∫
dφ(p1)dφ(p2)φ(p1)φ(p2)e

ib.p1/h|p1p2 > (2.1)

in momentum space.
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Here φi(pi)
′s are as said the wavefunction of the classical particles , bµ is the impact

paramater, and it is integrated over on shell integration measure dφ(pi) for both the particles
look at 1.0.1 in the preliminaries for its defination and notation..
We should notice one thing that the wavefunction above has been written for both incoming
particles relative to particle two . That is why we have a eib.p1/h in the expression. This will
play an important conceptual role in our subsequent calculations.

2.2 Impulse on particle

To see how the formalism works, let us focus on calculating momentum impulse of the
particles. Momentum impulse is the change in momentum of particle in any scattering.
Assuming detectors at a sphere of a large radius as compared to the scattering region will
measure the momentum of incoming and outgoing particle.
Let P µ

1 be the momentum operator for particle one.
The expectation value for outgoing momentum of particle one is given by -

< pµ1 >out=out< ψ|P µ
1 |ψ >out (2.2)

Writing in terms of incoming states-

< pµ1 >out=in< ψ|S†P µ
1 S|ψ >in (2.3)

‘S’ is the Scattering matrix for the two particle scattering which evolves the incoming state
to outgoing state.
Expectation value of this momentum impulse is evaluated by the difference of the outgoing
and incoming momentum.

< ∆pµ1 >= lim
h→0

[in< Ψ|S†P µ
1 S|Ψ >in −in < Ψ|P µ

1 |Ψ >in] (2.4)

Similarly one can find the impulse on particle two by replacing by momentum operator for
particle two.
We can write the scattering matrix in terms of transfer matrix -

S = I + iT (2.5)

10



Using the Unitarity property of S-matrix we get

< ∆P µ >=< ψ|i[P, T ]|ψ > + < ψ|T †[P, T ]|ψ > (2.6)

The first term in the above equation will be called Iµ1 and second Iµ2 .
We will substitute our wavefunction from 2.1 to 2.6 and try to get the impulse in terms of
amplitude.
We get -

Iµ(1) =

∫
dΦ (p1) dΦ (p2)d̂

4qδ̂
(
2p1 · q + q2

)
δ̂
(
2p2 · q − q2

)
Θ
(
p01 + q0

)
Θ
(
p02 − q0

)
× e−ib·q/~φ1 (p1)φ

∗
1 (p1 + q)φ2 (p2)φ

∗
2 (p2 − q)

× iqµA (p1p2 → p1 + q, p2 − q) .

(2.7)

Iµ(2) =
∑

X

∫ ∏
i=1,2 dΦ (pi) d̂

4wid̂
4qδ̂ (2pi · wi + w2

i )Θ (p0i + w0
i )

×δ̂ (2p1 · q + q2) δ̂ (2p2 · q − q2)Θ (p01 + q0)Θ (p02 − q0)

×φ1 (p1)φ2 (p2)φ
∗
1 (p1 + q)φ∗

2 (p2 − q)

×e−ib·q/~wµ
1 δ̂

(4) (w1 + w2 + rX)

×A (p1, p2 → p1 + w1, p2 + w2, rX)

×A∗ (p1 + q, p2 − q → p1 + w1, p2 + w2, rX)

(2.8)

Here A(p1p2 → p3, p4) is the transition matrix element between incoming |p1, p2 > and
outgoing |p3, p4 > states written as < p3, p4|T |p1, p2 >, qi is the ‘momentum mismatch’ given
by qi = p′i − pi, ω is the loop momentum in Iµ2 and intermediate states are summed over in
expression two as well.
We will skip the derivation of these results in the interest of time and space , (look at original
paper for [22] for details) . One must look at the definition of integration measure from 1.0.1.
Displaying the above amplitudes using Feynman diagram would look like.

φ(p1)

φ(p2)

φ∗(p1 + q)

φ∗(p2 − q)

Figure 2.1: A (p1p2 → p1 + q, p2 − q)
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φ(p1)

φ(p2)

p2 + ω

p1 + ω

φ∗(p1 + q)

φ∗(p2 − q)

rx

Figure 2.2: A (p1, p2 → p1 + w1, p2 + w2, rX)× A∗ (p1 + q, p2 − q → p1 + w1, p2 + w2, rX) for
Iµ2

2.3 Radiation and Conservation of momentum

In the previous section, we saw how impulses is written in terms of amplitudes . We will
now see how radiation is accounted for in this formalism. Radiation emitted is a well defined
observable as it can be expressed(we will show how) in terms of Feynman amplitudes .
Let Kµ be the momentum of radiated particle. Following similar approach to calculating
the impulse we find, that the expectation value of momentum for the radiated particles is

Rµ =< Kµ >=in< ψ|T †KµT |ψ >in (2.9)

as there is no incoming radiation there is only one term unlike expression 2.6.
Inserting complete set of states in between gives-

Ru =
∑
X

∫
dΦ(k)dΦ (r1) dΦ (r2)

〈
ψ
∣∣T †∣∣ kr1r2X〉 kuX 〈kr1r2X|T |ψ〉

=
∑
X

∫
dΦ(k〉dΦ (r1) dΦ (r2) k

µ
x |〈kr1r2X|T |ψ〉|2

In this above expression, X can be empty too (which we shall use later ), and kuX is the sum
of momentum of messengers andkµ and the momenta of any intermediate state X.The phase
space integral over k accounts for the sum over the helicities too.
Substituting the waveform of initial state from 2.1, we find that the expectation value of the

12



radiated momentum is given by,

Ru =
∑
X

∫
dΦ(k)dΦ (r1) dΦ (r2) k

µ
x |
∫
dΦ (p1) dΦ (p2) e

b.p1/h′
φ1 (p1)φ2 (p2)

× | A (p1, p2 → r1, r2, k, rX) δ
4) (p1 + p2 − r1 − r2 − k − rX)

∣∣2
=
∑
X

∫
dΦ(k)

∏
1=1,2

dΦ (r1) dΦ (pi) dΦ (p′1)φk (p4)φ
∗
1 (p

′
2) k

µ
Xe

d
(
p1−p′1)b

× A (p1, p2 → r1, r2, k, rX) δ̂
(4) (p1 + p2 − r1 − r2 − k − rX)

× A∗ (p′1, p
′
2 → r1, r2, k, rX) δ̂

(4) (p′1 + p2 − r1 − r2 − k − rX) .

(2.10)

We yet again introduced momentum transfer , q1 = p′1 − p1, and change the variable of
integrals from p′1 to integrals over the qr as in previous sections .

Rµ =
∑
X

∫
dΦ(k)

∏
t=1,2

dΦ (r1) dΦ (pt) d
4qφ1 (p1)φ2 (p2)φ

∗
1 (p1 + q)φ∗

2 (p2 − q)

× δ̂
(
2p1 · q + q2

)
δ̂
(
2q.p2 − q2

)
Θ
(
p01 + q0

)
Θ
(
p02 − q0

)
× kuXe

−4t−q/1δ̂(4) (p1 + p2 − r1 − r2 − k − rx)

× A (p1, p2 → r1, r2, k, rX)A
∗ (p1 + q, p2 − q → r1, r2, k, rX) .

Although the main focus of this thesis will be calculating the impulse we will realise that
radiation emitted can not be taken for granted and is an important aspects of these kinds of
calculations as it helps in conservation of momentum. We will revisit the radiation in later
sections.

2.4 Conservation of momentum

We will now see how the expectation value of radiated momentum is important for total
momentum conservation in the scattering process. In this formalism, we do not require to
take both Lorentz and ALD force by hand as it is already taken into account .This is one of
the biggest strengths of KMOC formalism over classical calculations.
The sum of momentum impulse for both particles is (using 2.6)

13



< ∆pµ1 > + < ∆pµ2 >=< ψ|i[P1 + P2, T ]|ψ > + < ψ|T †[P1 + P2, T ]|ψ > (2.11)

It is clear that the total momentum is time independent, written as -

[ΣPi, T ] = 0 (2.12)

The first term in 2.11 would hence vanish . Which is justified by the fact that the first term
only accounts for the exchange of momentum in between the particles .
The second term corresponds to radiation . Taking only other momentum in the system to
be the radiated field.
We know from the previous equation that

[P1 + P2 +K,T ] = 0 (2.13)

hence
< ∆P1 > + < ∆P1 >=in< ψ|T †KµT |ψ >in= −Rµ (2.14)

This conservation of impulse is derived independent of the order at which the calculation is
being done.
We should note here that the radiation for electromagnetic case takes place at O(e6) only
(proved in 3.3), before that there is no momentum radiated in the fields, the two particles
just exchange some momentum which we will calculate in 2.6.

2.5 Classical wavefunction

In this section we will discuss the various properties and constraints on our wavefunction
for it to be eligible for KMOC formalism. We want the expectation value of the impulse to
reach classical value as we take h→ 0.
We typically need two properties from our wavefunction . As they will be defined in the
momentum space we want to spread of the wavefunction to not be very large , because
we don’t want the interaction with other particle to peer into the wavepacket’s quantum
properties.
The spread in position space of the particle is given by lw. Assuming lc to be the compton
wavelength of the particle. For a non relativistic wavefunction we take a wavepacket with
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minimum uncertainty given by

exp(
−p2

2hmlc/l2w
) = exp(

−p2

2m2l2c/l
2
w

) (2.15)

This suggests for relativistic wavepacket the dimensionless ratio

ζ = (
lc
lw
)2

to be the parameter that takes us to the classical limit. The wavefunction will become
sharply peaked as we reach the classical limit with peak corresponding to the classical value
of momentum pi = miui .

Looking the the expression for impulse we figure out that the particle state with mo-
mentum p and its conjugate should both represent the particle in the classical limit and
their overlap should be of O(1) with correction of O(ζ). Requiring the overlap to be O(1) is
equivalent to saying that φ∗(p + q) is not different from φ∗(p). It implies that derivative at
p of the wavefunction is small or

q0.ui
mζ

<< 1

. q0 is the characteristic value of q scaling the wavefunction to wavenumber would mean

qo.uilw <<
√
ζ (2.16)

The delta function in our integrals would also need to be accounted for . The on shell delta
function of p written in wavenumber form is

δ(2p1.q + q2) =
1

hmi

δ(2q̄.ui + lcq̄
2) (2.17)

The two additional dimensionless ratios lc
√
−q̂2 and q.ui√

−q̂2
have to be taken into account

where ls = 1/
√

−q̄2 is the scattering length .

These two ratios can be constrained as our delta function depends on them. Non rela-
tivistic limit suggests that these constraints go by -

lc
ls
<=

√
ζ

15



Figure 2.3: A qualitative representation of Two waveparticle and its width compared to
impact parameter

q.uils <=
√
ζ

Combining the lower eq and previous constraint , We obtain

lw << lS

which would mean that that spread of wavefunction should be much less than the scattering
length of our experiment.
Also taking the above constraint with ζ << 1 We get

lw << ls <<
√
−b2

. We should remember not to take ζ = 0 limit blindly as we only want to take the leading
order term in the limit , which might or might not be proportional to ζ
Following the constraints shown above it important to take into account to scaling of several
other quantities in our impulse equation.

The general rule for classical limit goes like (see [22] for details) -

• We should scale the momentum transfers and loop momentum by 1
h
. and convert them

into wavenumbers.

• All radiated momenta k and rx must be scaled by 1
h
.
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• Scale the coupling constant (as mentioned in 1)

• The singular terms must be expanded in powers of h using laurent expansion and we
will generally see these terms cancelling out.

• Inside the on shell deta function one can neglect q̂2 term in isolation of any other
singular term .

• Neglect the hq0 term inside the positive-energy theta functions.

We will use large angle brackets to show classical limit -

<<f(p1, p2, ..)>> =

∫
dφ(p1)dφ(p2)|φ1(p1)|2|φ2(p2)|2f(p1, p2, ..) (2.18)

Using the power counting 1 and 2.5 for various terms while taking the classical limit using
the above equation we will look at the expression we get for both I1 and I2 calculations. For
I1 -

Iµ(1),cl = i

〈∫∫
d̂4qδ̂

(
2p1 · q + q2

)
δ̂
(
2p2 · q − q2

)
Θ
(
p01 + q0

)
Θ
(
p02 − q0

)
×e−ib·q/~qµA (p1p2 → p1 + q, p2 − q)

〉〉
.

(2.19)

Rescaling the quantities by the general rule mentioned above we get -

∆p
µ,(0)
1 ≡ I

µ,(0)
(1),cl = i

g2

4

〈〈
~2
∫
d̂4q̄δ̂ (q̄ · p1) δ̂ (q̄ · p2)

×e−ib·q̄ q̄µA(0)
(p1, p2 → p1 + ~q̄, p2 − ~q̄)

〉〉
.

(2.20)

For I2 we do the same thing and the net result taking both contributions is we get is

Iµcl = i

〈〈
~−2

∫
d̂4qδ̂

(
2p1 · q + q2

)
δ̂
(
2p2 · q − q2

)
Θ
(
p01 + q0

)
Θ
(
p02 − q0

)
e−ib·q/~Iµ

〉〉
17



where the impulse kernel Iµ is defined as,

Iµ ≡ ~2qµA (p1p2 → p1 + q, p2 − q)

−i~2
∑
X

∫ ∏
i=1,2

d̂4wiδ̂
(
2pi · wi + w2

i

)
Θ
(
p0i + w0

i

)
× wµ

1 δ̂
(4) (w1 + w2 + rX)

×A (p1p2 → p1 + w1, p2 + w2, rX)

×A∗ (p1 + q, p2 − q → p1 + w1, p2 + w2, rX) .

(2.21)

To summarize the result of this section , we have obtained the final expression for the classical
value of impulse in terms of amplitude of diagrams. Note that we have taken out h2 out of
the expression and shall find that it cancels with the scaled propagator in the amplitudes .
We can put in the value of the amplitude order by order and calculate the classical result.
We again point out that it not just the tree level diagrams that contribute to the classical
result , but higher orders as well.

2.6 Momentum impulse calculations

We shall discuss the formalism explicityl in the context of Scalar QED and Graviton scalar
coupling . This formalism can be extended to spinning particles and massless particles
described in [10] [26]. Let us study both the cases carefully.

2.6.1 Scalar QED

We start by working in scalar QED to explicitly apply the KMOC framework and calculate
the impulse. The Lagrangian for Scalar QED is given by -

L =
−1

4
F µνFµν +

∑
i=1,2

[(Dµφi)
†Dµφi −m2

iφ
†
iφi] (2.22)

Since complex scalar fields contain charge we can use this property to describe the charge
of classical particles. We will take the classical scattering of the charged particles under the
influence of Coulomb force to be the classical analog of the quantum calculations.
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p1

p2

p′1

q

p′2

Figure 2.4: Scalar QED 2-2 scattering tree level Diagram

The feynman rules for Scalar QED are easy and are used the construct the feynman dia-
grams.Tree level diagram for Scalar QED is given in the ??

Amplitude for the tree level diagram is -

4p1.p2 + q2

q2

Taking the relation between momentum mismatch and states momentum q1 = p′1 − p1 and
q2 = p′2 + p2 Substituting this into 2.21. (Notice that only I1 contributes at this level as I2
is higher order term.)

∆pµ1 = iq1q2

∫
d4q

(2π)4
δ̂ (2p1 · q) δ̂ (2p2 · q) e−ibq 4p1.p2 + q2

q2
qµ (2.23)

This integral can be solved (shown in .1) and the result we get is :-

∆pµ1 = −q1q2
p1.p2b

µ√
(p1.p2)2 − (m1m2)2b2

(2.24)

Notice how the first order impulse is O(e2) as it should be.
Momentum impulse of second particle can also be found by interchanging p1 and q with p2

and −q respectively . We will see that the sum of of impulse is zero which should be the
case as it is a non-radiative process.

2.6.2 Gravity example

For the case of gravity we will take the lagrangian of gravitons coupled with scalar massive
particles. We will take perturbative approach by expanding the metric in the backgroud of
Minkowski.
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p1

p2

p′1

q

p′2

Figure 2.5: Scalar Graviton Tree level Diagram

The Lagrangian density for Scalar coupled to Graviton is( Look at [12] for perturbative
Quantum Gravity basics) -

L = −R +

(
1

2
gµν∂µφ

∗∂νφ−m2φ∗φ2

)
(2.25)

The feynman rules for calculating the tree level 2-2 scattering amplitudes are given in ??.
?? is given by - The tree level amplitude in figure

−iM = i
k

2
[(pµ1p

ν
2 +p

µ
2p

ν
1)− ηµν(p1.p2−m2)]i

Pµναβ

2q2
i
k

2
[(pα1p

β
2 +p

α
2p

β
1 )− ηβ(p1.p2−m2)] (2.26)

It equals

−ik
2[8(p1.p2)

2 − 4m2
1m

2
2]

8q2
(2.27)

Following similar approach as of previous section to calculate impulse . We need to replace
the scalar QED amplitude with amplitude in equation 2.27 The final result after integration
is given by -

∆pµ1 = −k2 (2(p1.p2)
2 −m2

1m
2
2)b

µ√
(p1.p2)2 − (m1m2)2 × b2

(2.28)

This result matches the results with that of [19][27].

2.7 Angular momentum Impulse

Now we come to calculating angular momentum impulse of the particles at 0(e2) using
the same technique. The procedure for any general observable has been discussed and we
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shall use the angular momentum operator instead of momentum operators in the previous
calculations.
The calculations are much more subtle for this calculations and it is suggested to look at ??
for details as it is done first time in the context of KMOC formalism.
We have the same tree level diagram as ?? with the condition that p

′µ
1 = pµ1 + qµ.

The angular momentum operator for a particle with momentum pµi we know and discussed
in the 1.0.1 is :-

pµ1 ∧
∂

∂pν1

Using the similar expression as 2.6.

∆Jµν =< ψ|i[Jµν , T ]|ψ > (2.29)

It is clear that the angular momentum operator scales as O(h0) so unlike the momentum
impulse we will scale our expression using the rules given in 2.6 but regard only the O(h−1)

terms as classical expression as the angular momentum operator does not scale with h .
Just like momentum impulse the expression simplifies to

∆Jµν =

∫
d4q1d

4q2δ̂ (q1 · p1) δ̂ (q2 · p2) e−ib·q[pµ1∧
∂

∂pν1
+p

′µ
1 ∧

∂

∂p
′ν
1

](δ4 (q1 + q2)
(p1 + p

′
1).(p2 + p

′
2)

q2
)

(2.30)
Notice the plus sign in the primed and unprimed momentum contrary to the momentum
impulse . The result can be found by using the product rule and considering only the
O(h−1) terms, neglecting the higher order . the first term corresponds to

δ4 (q1 + q2) [p
µ
1 ∧

∂

∂pν1
A0 + p

′µ
1 ∧ ∂

∂p
′ν
1

A0] (2.31)

from the product rule which we will give the expression-

= δ4 (q1 + q2)
4p1 ∧ p2
q2

(2.32)

and from the second term in the product rule -∫
d4q1δ(p2.q)[A(p1 ∧ p2)p1.p2/D (2.33)
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Look at the .3 for detailed calculations . Combining both the term in 17 and 25.

∆Jµν =
(p1 ∧ p2)µνm2

1m
2
2

((p1.p2)2 −m4)3/2
log(−b2ε2) (2.34)

Here ε is the IR cutoff . We get the result exactly matching with the classical calculations
[17][4] which we will show in the next chapter explicitly.
The most important point to note here is that if we exchange the values of p1 andp2 we get
the same expression with a negative sign. Therefore the sum of angular momentum impulse
of two particles don’t cancel each other .
Let us look at the expression in the COM frame of reference. The momentum for particle
one is:-

pµ1 = (E1, 0, 0, pZ) (2.35)

While for particle two is
pµ2 = (E2, 0, 0,−pZ) (2.36)

Taking the wedge product we see that ∆J ij = 0 but ∆J0i 6= 0.Which means that some
components of Angular momentum impulse are not conserved , which is surprising . We
go on to explore this idea of non -conservation of angular momentum in scattering from
different point of views further in the thesis.
Let us first look at some higher order calculation via KMOC first.

2.8 Order e4 momentum impulse

In this section we will give a flavour of how the next to leading order calculations are done
for momentum impulse and how and the loop level diagrams give the classical contributions.
For these the contribution comes from two kinds of terms I1 and I2 defined in the above
section.
We have to be careful in considering the powers of ’h’ in these calculations. The contributions
comes from triangle box and cut box diagrams the other contributions are zero.(For detailed
steps of these calculations look at [22])[2]) Let us discuss each of the diagrams and their
contributions.
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ω

p′1
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Figure 2.6: Cut Box Diagram of O(e)4

p1
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p′1

ωq
p′2

p1

p2

ω

p′1

q
p′2

p1

p2

l

q

p′1

p′2

Figure 2.7: Triangle , Box and Cross Box diagrams respectively

Cut box arise due to I2 terms from the kernel 2.21 The amplitude is given by -

Ḃµ =− i
Q2

1Q
2
2

~2

∫
d̂4w̄δ̂

(
2p1 · w̄ + ~w̄2

)
δ̂
(
2p2 · w̄ − ~w̄2

) w̄µ

w̄2(w̄ − q̄)2

× (2p1 + ~w̄) · (2p2 − w̄~) (2p1 + ~q̄ + ~w̄) · (2p2 − ~q̄ − ~w̄) .
(2.37)

We expand the above expression via laurent expansion to look at the leading order power in
’h’.We then perform the integration over ω and q.
The final result is -

Ĩµ
3 = g4

(Q1Q2p1 · p2)2

8π2D2|b|2
[(
m2

1 + p1 · p2
)
pµ2 −

(
m2

2 + p1 · p2
)
pµ1
]
. (2.38)

For triangle diagram the contributions are - The amplitude of the diagram is -

−2Q2
1Q

2
2

∫
d̂D

2 (2p1 + `) · (2p1 + q + `)

`2(`− q)2 (2p1 − `+ `2 + i`)
. (2.39)

Performing the integration we get,

Ĩµ
1 = − g4

32π
(m1 +m2)

(Q1Q2)
2

√
D

bµ

|b|3
(2.40)

The box and cross boxed diagrams give vanishing contributions to the momentum im-
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pulse(Appendix of [2]). The total contributions is just the addition of 2.40 and 2.38 giving

∆p
(1)µ
1 = − g4

32π2|b|3
(Q1Q2)

2

D

[
π
√
D (m1 +m2) b

µ + 4
(p1 · p2)2 (p1 + p2)

2 |b|
D

pµ

]

where we have used

pµ =
m1m2

(p1 + p2)
2

[(
m2

m1

+
p1 · p2
m1m2

)
pµ1 −

(
m1

m2

+
p1 · p2
m1m2

)
pµ2

]

The final result obtained can also be derived from the classical calculations hence proving
the robustness of KMOC technique.

We will also look at the the radiation emitted using KMOC , It can be use to show the
classical soft photon theorem via KMOC . It was done in [25].
Classical radiation of particles can be calculated using the above equations. One has to
compute the five point amplitude of the scattering . The radiation kernel is defined as -

p1

p1

k

p′1

p′2

Figure 2.8: 5-Point Radiation Diagram

R(0)(k̄) = 4

∫
d̂4w̄1d̂

4w̄2δ̂ (2p1 · w̄1) δ̂ (2p2 · w̄2) δ̂
(4)
(
k̄ − w̄1 − w̄2

)
eiw̄1·b

×

{
Q2

1Q2

w2
2

[
−p2 · ε+

(p1 · p2) (w̄2 · ε)
p1 · k̄

+

(
p2 · k̄

)
(p1 · ε)

p1 · k̄

−
(
k̄ · w̄2

)
(p1 · p2) (p1 · ε)(
p1 · k̄

)2
]
+ (1 ↔ 2)

}
,

(2.41)

The 5 Point amplitude can be found by either taking all of the possible 5 Point diagrams
and calculating them or one can use an easier way of combining the 2 point and 3 point
vertex ( Look at [1] for details ).
This corresponds to classical current of moving charges particles depending on what order
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we calculate the amplitude.This expression is also given in [22] . Radiation was shown to be
equal to the one obtained from subleading classical soft photon theorem in [25].
We shall discuss more about the classical radiation of angular momentum in the next section.

25



26



Chapter 3

Classical calculation

We will now verify the calculations done the above section by calculating the results we get
from classical calculations.The approach will follow the paper [15]. The approach is discussed
in the following subsection.

Figure 3.1: Classical particle trajectory correction to leading order

3.1 Methodology for classical calculations

We will consider two body classical scattering under a large impact parameter. We will try
to iteratively find the solution to coupled differential equations.
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We assume that the trajectories of the particles can be expanded in the power of the coupling
constant .At each order , starting from the lowest, one can calculate the the electromagnetic
fields produces by the particles following that trajectory. Knowing these fields allows us to
compute the first order forces on the particles using the lorentz force laws. Hence the next
higher order deviations in the tranjectory can be found. Iterating this procedure allows us
to compute to any desired perturbative order.
Needless to say the calculations become harder at each step and unsolvable by hand.
More formally, we expand the trajectories as,

x1(t) = b1 + u1(t) + ∆1x1(t) + ∆2x1(t)..., (3.1)

x2(t) = u2(t) + ∆1x2(t) + ∆2x2(t)... (3.2)

where ∆n is e2n in order and b1 is the impact parameter.

Let the trajectory be only of leading order .Considering these trajectory we will be able
to calculate electromagnetic force on one particle due to the other one by the procedure
shown below.
The Maxwell’s field equation reads

∂µF
µν(x) = Jν(x) (3.3)

For Force on first particle due to second one, we take the current of second particle.

Jµ
2 (x) = eQ2

∫
dτδ4(x− x2(τ))u

µ
2(τ) (3.4)

uµ2(τ) is the derivative of the particle trajectory with respect to τ Putting this value in 3.3
and using the Lorentz gauge condition would evaluate to -

∂2Aµ
2 = eQ2

∫
dτδ4(x− x2(τ))v

µ
2 (τ) (3.5)

Going into fourier space this would give

∂2Aµ
2 = −eQ2

q2
uµ2δ(q.u2) (3.6)
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The field strength corresponding to this field is -

F µν
2 (x) = ieQ2

∫
d4qδ(q.u2)e

−q.x(τ) q
µuν2 − uµ2q

ν

q2
(3.7)

Plugging in the value of x(τ) as the equation of first particle because we want to calculate
the force on first particle -

m1
∂pµ1
∂t

= iq1q2

∫
d4q

(2π)4
δ̂ (2p2 · q) e−i(b+u1.τ)q

qµu2.u1 − uµ2q.u1
q2

(3.8)

Integration over time from −∞ to ∞ would lead to classical momentum impulse which
equals-

∆pµ1 = iq1q2

∫
d4q

(2π)4
δ̂ (2p1 · q) δ̂ (2p2 · q) e−ibq 4p1.p2 + q2

q2
qµ (3.9)

We see that this equation matches exactly with our result from KMOC 2.23.

Using this, one can also find the correction to the particle trajectory . The integration
has to be carried out till only a finite time t in order to get velocity as a function of time.
The integral must converge at t→ −∞ so we replace q.u in the exponential to q.u+ iε.

= m∆pµ1(t) = iq1q2

∫
d4q

(2π)4
δ̂ (2p2 · q) e−i(b.q q

µu2.u1 − uµ2q.u1
q2

∫ t

−∞
dte−i(q.u+iε)t (3.10)

= m∆pµ1(t) = iq1q2

∫
d4q

(2π)4
δ̂ (2p2 · q) e−i(b.q q

µu2.u1 − uµ2q.u1
q2(q.u+ iε)

(3.11)

The leading correction to the position of the particle is given by integrating once more, with
the result:

m∆xµ1(t) = iq1q2

∫
d4q

(2π)4
δ̂ (2p2 · q) e−i(b+u2.x)q

qµu2.u1 − uµ2q.u1
q2(q.u+ iε)2

(3.12)

Correction to trajectory is important to calculate the angular momentum impulse. Calcula-
tion of Angular momentum impulse lassically upto leading order can be done now .
Initial angular momentum in this system for the first particle is calculated below . One must
take caution in defining the origin because angular momentum is a origin quantity.

The origin is taken to be particle 2’s trajectory at the t=0. This is where our earlier
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discussion of wavefunction written in with respect to particle 2 come into account . This
choice of orgin becomes key because of our wavefunction structure for matching of the results.
Initial angular momentum is-

Jµν
in = (b ∧ pin)µν (3.13)

Final angular momentum is -

Jµν
out = ((b+∆b)µ) ∧ pfin)µν (3.14)

Notice the shift in the impact parameter.
Substituting pfi from 3.11 and subtracting 3.13 gives

∆Jµν
1 = bµ∆pν1 + z1(0)

µpν1 − µ↔ ν (3.15)

Substituting the values from the calculated values gives -

∆Jµν =
(p1 ∧ p2)µνm2

1m
2
2

((p1.p2)2 −m4)3/2
log(−b2ε2) (3.16)

For details of the calculation, see [25].
It matches with our result from the KMOC formalism The procedure and calculation for
momentum and angular momentum impulse in the electromagnetic case is elaborated much
more in [29] (Look at this for detailed explanation and higher order calculations).We will
take some results for the higher order calculations from this paper in the subsequent sections.

3.2 Back reaction in electrodynamics

We will take time before proceeding, to discuss one of the most important advantages of
KMOC over classical calculations. In every classical calculation at higher orders we have to
put in by hand the ALD force along with the usual lorrentz force to get the correct answer.
We will breiefy discuss the existence of this ALD force also called back reaction . Although
this is discussed in many standard book but we will largely follow the approach and notations
of [31]. The setup is similar to our classical calculations section. The electromagnetic
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potential can be derived from the current like was done in section 3.1. We got

Aµ(x) =

∫
d4x′Gµν(x− x′)Jν(x′) (3.17)

We take any potential at a point to be generated by the current in an otherwise vacuum
background, we must take the retarded greens function in the above equation. The retarded
greens function is given by -

G+(x− x′) =
θ(t′ − t)δ((x− x′)2)

2π
(3.18)

Field equation is then given by -

A+
µ (x) =

∫
d4x′G+

µν(x− x′)Jν(x′) (3.19)

The current is parametrized by a variable ’s’ given by -

Jµ = e

∫
ds
∂zµ

∂s
δ4(x′ − z(s)) (3.20)

The field is -
A+

µ (x) =

∫
d4x′G+

µν(x− x′)ds
∂zµ

∂s
δ4(x′ − z(s)) (3.21)

Doing the integration over x’ gives

A+
µ (x) =

∫
G+

µν(x− z(s))
∂zµ

∂s
(3.22)

This field exerts force on the particle . the partial derivative of the above equation is given
by

∂α ≡
∫
ds

x − zα · z
xµ − zµ · z

∂G+
µν(x− z(s))

∂s
(3.23)

We will use integration by parts. We see that at the point of the particle this field blows up
to infinity to counter this we take another greens function given by

GR = 1/2(G+ −G−) (3.24)
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Using this we get from

FR
αβ = e

∫ +∞

−∞
dsGR(x− z)

d

ds

[
(xα − zα) żβ − (xβ − zβ) żα

(xµ − zµ) żµ

]
,

since We want field on the trajectory of the particle we take the point. x = z (s0), defining
u = s− s0.

FR
αβ (z (s0)) =

e

4π

∫ +∞

−∞
du sgn(u)δ

(
u2
)

× d

du

[
(zα (s0)− zα(s)) żβ(s)− (zβ (s0)− zβ(s)) żα(s)

(zµ (s0)− zµ(s)) żµ(s)

]
,

All we need to do is to expand the particle position in terms of new parameters like ,

z(s)− z (s0) = uż (s0) +
u2

2
z̈ (s0) +

u3

6
z̈ (s0) + . . . (3.25)

We find that the only terms surviving are order u2. Performing the ’u’ integrations we find
that the ALD reaction force is given by

fµ
LD = eηµαFR

αβ ż
β = −2

3

e2

4π

(
z̈µ + z̈2żµ

)
(3.26)

This is important approach to ALD reaction .As it gives important insights into how to
deal with effects of self force etc., which are important in field integrations . We emphasize
here that the KMOC formalism does not require to put this force by hand unlike classical
calculations which is needed for conservation of momentum.

3.3 Radiated angular momentum

In this section we shall derive the formulas for the the radiation of momentum and angular
momentum in the fields classically.It follows a general approach of radiation calculation which
can be looked at from [24]. The result obtained will provide us insights into the radiation of
momentum and angular momentum.
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The Energy momentum tensor of EM field is given as

T µν = −F µ
ρF

νρ +
ηµν

4
F ρσFρσ

where Fµν = ∂[µAν] is the field strength.This can be derived using the lagrangian of the EM
field and also the arguments given in [35]. The Gauge field can be obtained in terms of the
current using the greens function as done in the previous sections. In momentum space, the
gauge field is given by

Aµ(x) =

∫
d̃k
(
GµνJ ν(k)e−ik·x + c.c.

)
(3.27)

where J ν(k) is the conserved current satisfying kµJ µ(k) = 0, and Gµν is the Green’s function.
We are interested in the momentum and angular momentum the fields carry to infinity. We
assume our detectors to cover the scattering region in shape of a sphere of finite radius . We
then take the sphere radius to be very large . The flux of momentum on that sphere will be
the momentum seen as radiation by the detectors .
The radiated momentum is given by -

P µ =

∫
d3xT µ0 (3.28)

The radiated angular momentum is -

Jµν =

∫
d3xx[µT ν]0 (3.29)

Substituting 3.27 gives the formula for radiated momentum and angular momentum .

P µ =

∫
d̃kkµ (−J ∗ρ(k)Jρ(k)) ,

Jµν =

∫
d̃k
(
−J ∗ρ(k)LµνJρ(k)− iJ ∗[µ(k)J ν](k)

) (3.30)

This formula can further be modified to retarded coordinates in position space (u=t-r) to -

J rad
k =

εkij
16πG

∫
dudΩ

[
Ai∂uAj −

1

2
xi∂jfab∂ufab

]
.
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Note that the integrand radiation is bilinear in fijand in ḟij ≡ ∂ufij. By contrast, the
radiated energy-momentum, P rad

i , is quadratic in ḟij, namely

P µ
rad =

1

32πG

∫
dudΩ [∂ufab∂ufab]n

µ,

It was shown in [11] using this equation,the order of radiation, where nµ = (1, xi/r).The
gauge fields and current can be expanded in the power of the coupling constant .

Ai(u, θ, φ) = eA
(1)
i (θ, φ) + e2A

(2)
i (u, θ, φ) +O

(
e3
)
,

where the (O(e)) contribution is independent of the retarded time u that Ȧi is of order O (e2).
Because of the second term we can see that angular momentum is radiated at a lower order
than the momentum radiation.

∆Ai(θ, φ) ≡
∫ +∞

−∞
du∂uAi = [Ai]

u−+∞
u−−∞

This term is also known as the memory effect and we can clearly see its relation to angular
momentum radiated . We shall discuss this effect again in detail and see how it arises from
the asymptotic symmetry and the associated charge.

3.4 Electromagnetic ”Scoot”

The paper by [17] first concretely described the phenomenon of electromagnetic ”Scoot”. We
will look at the setup here and state the results obtained from the paper.
Consider a scattering of two classical charged particles 1 and 2. To leading order, the
particles move in straight lines. We work in a frame where one particle is at rest. We will
take particle 2 to be at rest at the origin and denote this frame with a prime. Choosing the
initial momentum of particle one to be in the z direction and the transverse separation to
be in the x direction.
The leading-order trajectories are -

r′1 = (b, 0, vt′); r′2 = (0, 0, 0) (3.31)
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bµ is the impact parameter which is solely in the x direction. Since the calculations in
this paper is done in 3 dimensions only and time is used as parameter they defined the 0ith

component of the 4 angular momentum to be another quantity called the mass moment given
by -

Nmech =
∑
I

EIrI − t
∑
I

pI (3.32)

Given this trajectory one can calculate the zeroth order electric and magnetic fields at
any point in space and use the Lorentz equations to determine the leading order trajectory
of the particles.
We then transform the trajectories in the frame of Center of momentum and shifting the
origin to the Center of mass. We will here directly show the result from the paper , explicit
calculation will be shown using analogous technique of Green’s function which is more rele-
vant for our approach .
One must also consider the various quantities like momentum , energy and angular momen-
tum of the field along with the particle to take the full picture into account.
The calculation for field has more subtle issues like self energy which we will bypass here but
should be kept in mind.

The various quantities for the electromagnetic fields can be calculated using the following
formulas

EF× =
1

8π

∫
E×d3x (3.33)

pF× =
1

4π

∫
S×d

3x (3.34)

LF× =
1

4π

∫
x× S×d

3x (3.35)

NF× =
1

8π

∫
E×xd3x− pF×t (3.36)

Here Sx is the Poynting vector of the fields.
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The results for the quantities using the particle trajectory is given by -

E1 =
m1 + γm2

E0

(
m1 −

m2

E0

q1q2
γv|t|

)
+O

(
t−2
)

p1 =

(
µγv − q1q2

γ2v2
(m1 + γm2)

2

E2
0 |t|

)
ẑ

+Θ(t)
2q1q2
bv

x̂+O
(
t−2
)

L1 = −µbγvm2 (m2 + γm1)

E2
0

ŷ +O
(
t−2
)

N 1 = ∓ q1q2
γ2v2

(
log

2γvE0|t|
(m1 + γm2) b

− 1

)
ẑ +O

(
t−2
)

Looking at the results carefully we can analyze that the mass momentum is ill defined as
it blows up at early and late times and it is only the sum of mass moment for the three
particles that can be evaluated as we also got in the KMOC result.
Unlike Momentum and energy change at early and late times that conserved we observe that
The Mass moment of the particles are not. The result we obtained matches with the result
of [17] only discrepency is that our result is in the invariant form but here it is derived in a
particular frame.
A more general approach was shown in the recent paper by [4] and our results matches
exactly theirs.
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Chapter 4

Faddev kulish States

It is important to realise that the problem of ””Scoot”” lies in the exchange of angular
momentum between the particles and fields at late or asymptotic times. It tells us that it
is then important to have the information of the field at late times and not just velocities
of the particles. Therefore this suggests a fundamental problem in our concept of taking
the asymptotic states as free states . This brings us to the concept of Faddev-Kulish States
described in [23].

4.1 Faddev Kulish Derivation

Here we take reference from [13] , and see the exact need of faddev kulish states and their
form. Let us look at how the hamiltonian behaves at aysmptotic times. The interction
potential for QED is given by

V = −
∫
d3xLI = −

∫
d3xeψ̄Aψ ≡ −

∫
d3xJµAµ, (4.1)

where Jµ is the conserved current .

We can expand the fields in the above equation using mode expansion. We see that using
the expansion we will get eight terms of two types.
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• terms containing only two creation operators or only two annihilation operators

• terms containing a mix of creation and annihilation operators.

The terms of first kind will have the exponential of form

=

∫
d3xd̃3kd̃3pd̃3p′ exp

(
−i
(
p0 + p′0 ± k0

)
t
)
exp (−i (p+ p′ − k)x) (4.2)

Since we integrate over k we can send k → −k in the terms with photon creation opera-
tors.. Integrating over d3x will then result in a delta function,

=

∫
d̃3kd̃3pd̃3p′ exp

(
−i
(
p0 + p′

0 ± k0
)
t
)
δ3 (p+ p′ − k)

=

∫
d̃3kd̃3pd̃3p′ exp

(
−i
[√

p2 +m2 +
√

p′2 +m2 ± k0

]
t
)
δ3 (p+ p′ − k)

=

∫
d̃3kd̃3p exp

(
−i
[√

p2 +m2 +
√
(p− k)2 +m2 ± k0

]
t
) (4.3)

As |t| → ∞ the exponential will oscillate rapidly and and the integral will be cancelled
for the first term. However for the second term this rapid oscillating can be suppressed by
k → 0. Thus it is only the second term which will contribute to the potentail at large times.

Using the exponential of the second term and commutation relations of the fields we get
the asymptotic potential to be -

V as
I (t) = −e

∫
d̃3kd̃3ppµρ(p)

[
aµ(k)e

i ip
p0

t + a†µ(k)e
−i

pk0
p0

t
]

(4.4)

where ρ(p) ≡ d†r(p)dr(p)− c†r(p)cr(p) is the charged matter density operator.

In order to discuss the impact of this statement we will look at the IR divergence problem
of S matrix. We can either take the Faddev kulish states to be evolved using traditional S
matrix or use the new matrix acting on the free fock states.
The traditional approach to S matrix is following - We take the asymptotic states to be
evolving with the free hamiltonian , i.e. the free asymptotitc states We therefore define a
hard Moller operator defined as

Ω+− = limt→0e
iHte−iH0t (4.5)
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The incoming and outgoing states are represented by

|ψ >= Ω+|ψout >= Ω−|ψin > (4.6)

Hence
|ψout >= S|ψin > (4.7)

and
S = Ω+Ω− (4.8)

The dyson S matrix from is given by

S(vI) = Te−i
∫∞
−∞ dtVI (4.9)

But here the assumption that VI vanishes as t → ∞ is faulty As shown in the previous
section this S matrix is Infrared divergent . Let us look at the newer approach by Faddev
and Kulish . We define a new evolution operator such that

i
∂U(t)

∂t
= U(t)V as

i (4.10)

The time evolution equation for the free states is given by

S(vA) = Te−i
∫∞
−∞ dt(VA−V as

A (4.11)

This S matrix is not the usual Dyson S matrix , but is related by -

S(vA) = U−1SDU (4.12)

or equivalently the moller operators are modified to

Ω+− = limt→0e
iHte−iHast (4.13)

S matrix element takes the form

< f |SA(VA − VI)|i >=F K < f |SD|i >F K (4.14)

where
|I >F K = U(t)|I > (4.15)
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U is given in the eq [] we can taylor expand this term and due to time ordering operator we
have-

U(t) = exp(−i
∫ t

dt′V I
as(t

′)− 1/2

∫ t

dt′
∫ t′

ds[V I
as(t

′), V I
as(s)]) (4.16)

We can plug in the asymptotic potential from 4.4 and use the commutation relations. Hence
re writing this in the known format we have -

U(t) = eR(t)eiφ(t) (4.17)

where

R(t) = −i
∫ t

dt′V as
I = e

∫
d̃3kd̃3p

pµ

pk

(
a†µ(k)e

−i pk
p0

t − aµ(k)e
i pk
p0

t
)
ρ(p)

Φ(t) =
i

2

∫ t

dt′
∫ t′

dsQ (t′, s)

= − e2

4π

∫
d̃3pd̃3q : ρ(p)ρ(q) :

pq√
(pq)2 +m4

sgn t ln
|t|
t0

(4.18)

There action of these exponential factors will be discussed in subsequent section. These
states render the S-matrix to be finite (Proved in 5.4) .

4.1.1 Faddev-Kulish Derivation from Wilson line perspective

We shall now use the the concept of Wilson line to get a clearer and more physical picture
of what these dressings are [18] [13]. The gauge field under lorentz gauge is given as

2Aµ = Jµ(x) (4.19)

Jµ being the electric current. Solution is given using Greens’s function as:-

Aµ(x) = Ain
µ (x) +

∫
d4yGret(x− y)Jµ(y) (4.20)

Aµ is the incoming radiation that is not derived from the current . Wilson Tail for a field is
given by :-

C(x,−∞|t) = Pexp(−ie
∫ x

−∞
dxµAµ(x) (4.21)
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Substituting the value of field from 4.20

C(x,−∞|t) = Pexp(−ie
∫ x

−∞
dxµAin

µ (x) +

∫ x

−∞

∫
dxµd4yGret(x− y)Jµ(y) (4.22)

where current is given by the a charged particle moving on its worldline.

Jas
µ (y) = e

∫
d4p′ρ(p′)

∫ ∞

−∞
dt′v′µδ

4(y − v′t′) (4.23)

Plugging in the value of current and not considering the homogeneous part of field for now .
Here Plugging in the Green’s Function.

Gret(x− y) = 1/2πθ(x− y)δ(x− y)2 (4.24)

C(x,−∞|t) =
∫
d4p′ρ(p′)

∫
d4y1/2πθ(x− y)δ(x− y)2

∫ ∞

−∞
dt′v′µδ

4(y − v′t′) (4.25)

integrating over y gives ∫
d4p′ρ(p′)

∫ ∞

−∞
dt′v′µθ(x− v′t′)δ(x− v′t′)2 (4.26)

The contribution comes only at time t = t0

∫
d4p′ρ(p′)θ(x− v′t′0)

v′µ
((x.v′)2 − x2v′2)1/2

(4.27)

Changing the integration variable from x to vt .(Integrating over worldline of particle)∫
d4p′ρ(p′)

v.v′

((v.v′)2 − x2v′2)1/2

∫ tx

−∞
dt1/|t|θ(vt− v′t′0) (4.28)

This equals
iφ =

∫
d4p′ρ(p′)

v.v′

((v.v′)2 − v2v′2)1/2
ln
|t|
t0

(4.29)

where t0 is the IR cutoff to render the integration finite.
Now we are left to look at the contribution from the homogenous part of the field. We will
parameterize the worldline of the charged particle in terms of the proper time τ . For a τ -
independent four-velocity uµ. Using the first order or free trajectory of particle zµ = xµ+τuµ,
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we obtain

ie

∫ x

−∞
dzµAin

µ (z) = ie

∫ 0

−∞
dτ
dzµ

dτ
Ain

µ (x+ τu)

= ie

∫ 0

−∞
dτuµAin

µ (x+ τu)

= ie

∫
d̃3k

∫ 0

−∞
dτuµ

[
aµ(k)e

ik(x+τu) + a†µ(k)e
−ik(x+τu)

]
,

(4.30)

Where we have expanded the field in mode expansion. Integration over τ has to be done
taking care of the boundary terms. We find that

ie

∫ x

−∞
dzµAin

µ (x) = −e
∫
d̂3k

pµ

pk

[
a†µ(k)e

−ikx − aµ(k)e
ikx
]

where we used that uµ

uk
= pµ

pk
. This is exaclty the Radiation operator derived from faddev

kulish state with a few subtle difference like the charge density operator which is absent in
this derivation. This discrepancy can be resolved when one keeps in mind that the cloud of
photon is created for each particle . It is interesting to look at the action of these dressed
state factors on the state which we will do in the coming sections.

4.2 Faddev kulish states in KMOC

In this section we will show the calculations for if we include the phase factor defined in 4.18
for the calculations of angular momentum as we did in the previous section.
The derivation follows similar steps to our earlier angular momentum calculations but with
a few more complications.
Let us take the first expression in the equation but instead of using the free initial and final
states we use the dress states. Our initial state is -

|ψ >= e−iφ(t)|i > (4.31)

and the final state for amplitude calculation is the complex conjugate of the initial state,
where

φ(t) = − e2

4π

∫
d̃3pd̃3q : ρ(p)ρ(q) :

pq√
(pq)2 +m4

sgn t ln
|t|
t0

(4.32)
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(as shown earlier in 4.18) The expression for angular momentum impulse with these states
is -

∆Jµν =< ψ|i[Jµν , T ]|ψ > (4.33)

Once again following the steps in .3, we will substitute the wavefunction form and open the
commutator this will give the expression of form.

∆Jµν =< p1p2|e−iφ(t)JµνTeiφ(t)|p1p2 > − < p1p2|e−iφ(t)TJµνeiφ(t)|p1p2 > (4.34)

We see that along with the action of the angular momentum operator on the free states we
will have a contribution from the action of the operator on the phase factor. Using product
rule we will consider only the first term in the above equation.
We will get -

i[pµ1 ∧
∂

∂pν1
] < p1p2|e−iφ(t)Teiφ(t)|p1p2 > −e2 (p1 ∧ p2)

µν ln t/to

((p1.p2)2 −m4)3/2
< p1p2|e−iφ(t)Teiφ(t)|p1p2 >

(4.35)
Similarly one can calculate the second term of the above equation and combine them.
We see that the combination of the first terms are exactly the same as that of our angular
momentum impulse calculation at O(e2) , whereas we have an extra second term of O(e4)
due to the phase factor.
After combining the second term in the expression we have -∫

e2
(p1 ∧ p2)µν ln t/to
((p1.p2)2 −m4)3/2

− e2
(p1 ∧ p2)µν ln t/to
((p1.p2)2 −m4)3/2

< p1p2|e−iφ(t)Teiφ(t)|p1p2 > (4.36)

We write the transition matrix term in terms of the amplitude and using momentum transfer
notation to give-∫

e2
(p1 ∧ p2)µν ln t/to
((p1.p2)2 −m4)3/2

− e2
(p1 ∧ p2)µν ln t/to
((p1.p2)2 −m4)3/2

[δ(q1 + q2) · A] (4.37)

We will consider terms with only with leading power of the Planck’s constant. After inte-
gration over dq2 and using the delta function we get-

2b ∧ (p1 + p2) (p1 · p2) e4

D2
ln

(
t

t0

)
(4.38)
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The first term we should be dealt carefully as it might look similar to the calculation we
have already done but it includes the phase factor with the transition matrix too. It follows
similar steps to the Appendix C but but with some more terms .
The terms looks like -∫
d4qδ4(q1 + q2)δ (p2 · q) c−ib·q × 4 (p1 ∧ p2)

q2
+

∫
d4qδ(p · q)e−(φ′−φ)A

(
q ∧ ∂

∂q

)µν

δ4(q1 + q2)

(4.39)
Simplifying this we get

2bµ ∧ (pν1) (p1 · p2) e4

D2
ln

(
t

t0

)
(4.40)

If we also take into account the impulse of particle two we shall see that we get

2b ∧ (p1 + p2) (p1 · p2) e4

D2
ln

(
t

t0

)
(4.41)

We shall see that the term we obtained are nothing but the O(e4) Angular momentum and
the result matches with the literature value obtained in [2].It shows that the the Faddev
Kulish factor does account for interaction at a higher order in the far future and far past .It
is worth working out more of these calculations using IR finite S- Matrix.

4.3 Particle trajectory from Faddev Kulish states

As we saw how the free states need to be dressed in order to give the correct asymptotic
behaviour. We will show here how the Faddev kulish states give the particle trajectory [20]
at asymptotic times which will be the explanation of Electromagnetic ”Scoot”. The complex
phase factor is contains the information of this long range interaction of the particles under
Coulomb force.
Let us consider two point charge particles with dressing.
The wavefunction will be written as -

|Ψ(t) >in=

∫
dp1dp2e

iφ(t,t0)|p1p2 > (4.42)
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In position space this wavefunction is given by -

|Ψ(t) >in=

∫
dp1dp2e

iF (t,x,p)|p1p2 > (4.43)

Where

F (t;x1, p1;x2, p2)

= ip1x+ ip2x2 + iΦ (p1, p2; t, t0)

=
(
p01 + p02

)
(t− t0)− ~p1 · ~x1 − ~p2 · ~x2 +

eiej
4π

−p1 · p2(
(p1 · p2)2 −m2

1m
2
2

)1/2 log t

t0

(4.44)

Under the stationary phase assumption we take the derivative of the above equation and
put it to zero. We will get the trajectory of the particle.

~x1 =
~p1
p01

(t− t0) +
eiej
4πp01

m2
1m

2
2 (p

0
2~p1 − p01~p2)(

(p1 · p2)2 −m2
1m

2
2

)3/2 log t

t0

=
~v1
v01
t+

e1e2
4πm1v01

v02~v1 − v01~v2(
(v1 · v2)2 − 1

)3/2 ln t+O
(
1

t

)

where we have used pµi = miv
µ
i

We see that this equation is exactly the particle trajectory upto O(e2) as was also given
in [4].
We saw how it was the logarithmic behaviour of the particle trajectory at late times that
eventually contributes to the angular momentum at late times and causes the phenomenon
of ””Scoot””.
So it is safe to say that the phase factor is the term which accounts for ”Scoot” and since it
is missing in the KMOC approach we get a non-conserved angular momentum.
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Chapter 5

Soft Theorems

Soft photons are photons emitted with a very low momentum . One can relate the emission
of soft photon amplitude from an external leg with that of the amplitude without the soft
photon. Using this one can derive several things simply. In papers by Weinberg he used these
theorems to show charge and energy conservation in a process, derived Lorentz invariance
solely using gauge invariance([32]) . We can also derive Maxwell’s equation of motion using
these ([33]).
In this section we will give a brief review of soft photon theorems from seminal paper [34]
by Weinberg and study various results and their implications in the context of our project.

5.1 Soft photon from Feynman amplitudes

If we attach a soft-photon line with momentum q to an outgoing particle line in a Feynman
diagram 5.1, we must add one extra particle propagator with momentum p+q and one extra
vertex term for the transition p+ q → p.

In the limit q → 0 this factor becomes-

eηpµ

p.q − iηε
(5.1)

η is +1 for outgoing particle and -1 for incoming. This is valid for only the diagrams with
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p1

p2
p′ + q
p′2

p′ + q

Figure 5.1: Emission of soft photon from an external leg

soft photon line attached to external legs only and not the inner vertices as it will then not
have the propagator term then .
We note that if many soft photons are emitted from an outgoing charged-particle line then
the charged particle propagators will contribute a factor of

[(p.q1 − iηε)(p.(q1 + q2)− iηε)]−1.... (5.2)

While writing this we should carefully take care of the combinatoric factors.
Let us define an infrared virtual photon or as one which connects two external lines of the
feynman diagram and carries energy less than Λ(5.2). In addition to this we also make a

p1

p2
p′1
p′2

p′1

p′2
q

Figure 5.2: Virtual photon exchange

lower cutoff for the momentum of photon to describe the divergences .
The effect of adding N virtual infrared-photon lines is to multiply the matrix element by N
pairs of the factors, each pair connected by a photon propagator with it already known to
us. With the correct combinatoric factor we get the total multiplication factor to be -

=
1

N !
[

∫ Λ

λ

d4qA(q)]N (5.3)

where λ is the cutoff to avoid the divergence at q = 0

enemηnηmA(q) =

∫
λ≤|~q|≤Λ

d4q

(2π)4
−ienemηnηmpn · pm

[q2 − iε] [pn · q − iηnε] [−pm · q − iηmε]
, (5.4)

48



where pn and pm are the momenta of the two charged particles exchanging the virtual soft
photons. Summing ever all the contributions from all the possible combinations of the pairs.
The total amplitude becomes

Sαβ = S0
αβexp(1/2

∫ Λ

λ

d4qA(q)) (5.5)

The integral in the above equation becomes

= − 1

8π2βnm
ln

(
1 + βnm
1− βnm

)
ln

(
λ

Λ

)
+

iδmn

4πβmm

ln

(
λ

Λ

)
(5.6)

The calculation for this integral is shown in the .4 β is the relative velocity factor.We will
see how this result is helpful in the context of this thesis.

5.2 Sub leading soft photon theorem

. We saw in the previous sections that how that amplitude can be expanded in the powers of
ω and found the contribution O(ω−1) We will derive the O(ω0) contribution to the amplitude.
This section will follow the notations and procedure of [16] First step is to note that the
amplitude can be written as -

Mµ(k, p1...) =
eηpµ

p.k − iηε
Mn(p1, p2...) +Bµ(k, p1....) (5.7)

Here the second term is the subleading term Using Ward -Takahashi identity

kµM
µ(k, p1, p2..) = 0 (5.8)

the first equation reduces to
0 =Mn + kµB

µ(k, p1....) (5.9)

We assume that both the functions B and M are analytic around kµ = 0 so we expand
around it and get,

0 =Mn(p1...) + kµ
∂

∂pµ
M(p1) + kµB

µ(k, p1....) (5.10)
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using the above equation we get

0 = kµ
∂

∂pµ
M(p1) + kµB

µ(k, p1....) (5.11)

From this equation we see that

Bµ(0, p1....) = −kµ
∂

∂pµ
M(p1) (5.12)

Plugging this into the expansion of amplitude.

Mµ(k, p1...) =
eηpµ

p.k − iηε
Mn +

eηJµν

p.k − iηε
Mn (5.13)

Where Jµν is our friendly angular momentum operator (see 1).
It can be written in another form using Low’s notation as

lim
ω→0

< f |(1 + ω∂ω)arS|i >= Jλ < f |S|i > (5.14)

What is important to note here that these theorems are universal, in the sense that they are
independent on the type of particle and the kind of scattering.

5.3 Phase factor from soft theorem

As we saw in section 5.1that the ratio of scattering matrix with virtual soft photon gives the
following factor of

Sαβ = S0
αβexp(1/2)

∫ Λ

λ

d4qA(q)) (5.15)

The real part gets cancelled with infinite soft photon emission lines (see [35] for proof)
. What we will see is that the imaginary part will be the Coloumbic phase factor or the
Faddev Kulish phase factor that we derived in 4.18. Eq 5.15 can be written as

Sβα

S0
βα

= exp

{
1

2(2π)3

∑
nm

enemηnηm (pn · pm) Jnm

}
(5.16)
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where
Jnm ≡ i

∫ Λ d4q

[q2 + λ2 − iε] [pn · q − iηnε] [pm · q + iηmε]
(5.17)

Here we used photon mass λ instead of infrared cutoff. The integral is analytic except for
the following value for q0

q0 = ω − iε, q0 = −ω + iε,

q0 = vn · q− iηnε, q0 = vm · q+ iηmε

where ω = (q2 + λ2)1/2 If particle n is incoming and m is outgoing then we will close the
contour in upper half , therefore only contribution comes from the radiation poles.
The value of Jnm is purely real(when one particle is incoming and the other is outgoing or
vice versa) given by

Jnm = −π
∫ Λ d3q

ω (ωEn − q · pn) (ωEm − q · pm)
(5.18)

If both are incoming or outgoing Jnm is -

Jnm = −π
∫ Λ d3q

ω (ωEn − q · pn) (ωEm − q · pm)

+
2iπ3[

(pn · pm)2 −m2
nm

2
m

]1/2 ln(Λ2

λ2
+ 1

) (5.19)

The imaginary divergent phase factor is

=
2iπ3[

(pn · pm)2 −m2
nm

2
m

]1/2 ln(Λ2

λ2
+ 1

)
(5.20)

Since the UV cutoff is much greator than the infrared cutoff , we can write the imaginary
part of the ratio of scattering matrix as

Sαβ

S0
αβ

= exp(
2e2

π
[
(pn · pm)2 −m2

nm
2
m

]1/2 ln(Λλ )) (5.21)

Like claimed,the soft theorem does give us the Faddev kulish phase factor because of the
presence of virtual photon exchange. This solidifies our interpretation of the phase factor as
due to the long range weak interaction between asymptotic states.
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5.4 IR finite S matrix

In this section we will look at the fundamental problem of Infrared Divergences in QED
which appeared in the previous section . Firstly discussing its origin and then methods to
eradicate them.
We will look at the scattering of charged particles from another heavy charged particle for
simplicity. The corresponding Feynman amplitude is denoted by M0. When we are looking
at case where the emitted photon has very low energy (soft photon)then, ω = 0. As also
derived in the previous section the new amplitude can be written in the form of old amplitude

M = −ieM0[
p′ε

p′k
− pε

pk
] (5.22)

We see that this amplitude is divergent in the soft limit . The divergence is both at the
level of amplitude and cross section. In [6] Bloch and Nordsieck showed how to remove the
divergence at the level of the cross section , but the problem of S-matrix divergence still
prevailed .
As shown in previous section , Weinberg showed the divergences in the amplitudes and the
phase factors .
The solution to this problem was first discussed in [23].We will now see how the phase factors
we calculated actually cancel the divergences of the S-matrix .
The kind of divergences that appear are -

• Soft photon emission

• Virtual soft photon exchange

. Let us look try to work out how the FK states actually make the S matrix IR-finite. IR
finite S matrix elements are given by -

< f |eR(t)eiφ(t)Se−R(t)ei−φ(t)|i > (5.23)

We have already calculated R(t) previously in 4.18. Let us introduce the following shorthand
notation:

Sµ(p, k) ≡ efµ(p,k)

Pµ(p, k) ≡ e
pµ
p · k
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There are some subtleties regarding these factors satisfying the Gupta-Beluer conditions ,
which we will not discuss but can be looked at from [13].
Let us see action of this factor on the incoming and outgoing states firstly , the incoming
state is modified to -

|i〉 = eRf (pi)c† (pi) |0〉 = exp

(∫
d̃3k

[
Sµ
i a

†
µ(k)− Sµ

i aµ(k)
])

c† (pi) . (5.24)

using commutation relation for photon fields discussed in the Preliminaries 1.

[(∫
d̃3kSµ

i a
†
µ

)
,

(
−
∫
d̃3kSν

i aν

)]
=

∫
d̃3kSµ

i ηµνS
ν
i . (5.25)

Using BCH formula we can write it as

exp

(∫
d̃3k

[
Sµ
i a

†
µ(k)− Sµ

i aµ(k)
])

= exp

(∫
d̃3kSµ

i a
†
µ(k)

)
exp

(
−
∫
d̃3kSµ

i aµ(k)

)
×

exp

(
−1

2

∫
d̃3kSµ

i ηµνS
ν
i

)
(5.26)

To the lowest order in the photon creation operators this is

|i〉 =
(
1− 1

2

∫
d̃3kSµ

i ηµνS
ν
i +

∫
d̃3kSµ

i a
†
µ(k)

)
c† (pi) |0〉. (5.27)

Similarly, the final state may be written as,

< f | = 〈0|c (pf )
(
1− 1

2

∫
d̃3kSµ

f ηµνS
ν
f +

∫
d̃3kSµ

f aµ(k)

)
. (5.28)

from
〈f| = 〈0|c (pf ) e−Rf

(
pf

)

Let us look at cancelling of IR divergence due to soft photon emission .
Let us assume we have a soft photon emission then the final state is -

< K, r| =< 0|aµ(k) (5.29)
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Figure 5.3: Soft photon emission from the photon cloud

r denotes the polarization of the photon. Action of phase will give

< K, r|e−Rf (p)SDe
−Rf (p)|i >=< 0|e−Rf (p)[aµ + [aµ, e

Rf ]]SDe
Rf (p)|i > (5.30)

Here the first term will be the soft photon factor from the external leg 5.1 we already know
about.
The second term will also give the same factor but with a negative sign once we open up the

commutator and act it on the state 5.3(Notice that in the figure we have use 1-1 scattering
, it is clear that the cancellation takes place for 2-2 scattering as well , it is just easier to
show in this case). It accounts for the soft emission from the cloud of photons. Hence this
first kind of divergences will cancel.

Now the second kind of divergence produces the factor given in 5.15.
These terms will be cancelled if we take the exchange of soft photon between the clouds and
the external legs and exchange between the clouds themselves clearly as they are higher order
terms in e or charge.These process are given in the form of the diagram as - The contribution
from the exchange between cloud and external leg is given by the third term in 5.27
These contribution to the S matrix elements are order e4 given by,

Ma
int =

∫
d̃3kSµ (pi, k) ηµν

i

−2pi · k
(2iepν1) =

∫
d̃3kSµ (pi, k) ηµνe

pνi
pi · k

(5.31)

Similarly the contribution from other figures in the diagram are given by ,
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Figure 5.4: exchange diagram (a)

Figure 5.5: exchange diagram(b)

Figure 5.6: exchange diagram(c)

Figure 5.7: exchange diagram(d)
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For b)
M b

int = −
∫
d̃3kSµ (pi, k) ηµνP

ν (pf , k) (5.32)

For c)
M c

int = +

∫
d̃3kSµ (pf , k) ηµνP

ν (pf , k) (5.33)

For d)
Md

int = −
∫
d̃3kSµ (pf , k) ηµνP

ν (pi, k) (5.34)

For the figure involving emission and re-absorption of soft photon by the same cloud comes
from the 2nd term in 5.27, calculated to give,

M i = −1

2

∫
d̃3kSµ (pi, k)S

ν (pi, k)
〈
0
∣∣aµ(k)a†ν(k)∣∣ 0〉 = ∫ d̃3kSi · Si.

M f = −1

2

∫
d̃3kSµ (pf , k)S

ν (pf , k)
〈
0
∣∣aµ(k)a†ν(k)∣∣ 0〉 = ∫ d̃3kSf · Sf .

(5.35)

Here we have done it for both clouds associated with initial and final states.
The exchange between the two different clouds comes as -∫

d̃3kd3k′Sµ (pf , k
′)Sν (pi, k)

〈
0
∣∣aµ(k)a†ν (k′)

∣∣ 0〉 . (5.36)

this equals to
Mdis

ctc =

∫
d̃3kSµ (pf , k) ηµνS

ν (pi, k) =

∫
d̃3kSi · Sf (5.37)

The total contribution is calculated by adding all of the terms we found and it equals to -

M =
1

2

∫
d̂3k [Pi · Pi + Pf · Pf − 2Pi · Pf ] (5.38)

Slight modifications by going back to our original notation of particle momentum pi we see
that this is exactly the lowest power expansion of the soft factor given in 5.15
We can hence see that the IR divergences are cancelled , This cancellation can be proven to
occur at all orders refer to [9].
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Figure 5.8: Cloud to cloud disconnected diagram )(a)

Figure 5.9: Cloud to cloud disconnected diagram (b)

Figure 5.10: Cloud to cloud connected diagram
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Chapter 6

Summary and Outlook

In this thesis we presented a review of formalism that calculates classical obervable from
feynman amplitude methods.We used that formalism to calculate angular momentum im-
pulse in a 2 body scattering problem. . Some new results regarding Angular momentum
impulse were obtained which were non intuitive. We then looked at the classical calculations
which also produced similar results as that of our KMOC result .The classical counter part
of the Angular momentum Impulse which was called ””Scoot”” ,was understood to be the
main reason for this phenomenon.
We alo tried to find a solution to this problem of ””Scoot”” which lead us to review Fad-
dev Kulish States in the process.These states were shown to inculcate the information of
the particle in the far past and thus explained the phenomenon of ””Scoot””.Faddev Kulish
state introduced us to the problem of IR divergence of the QED theory. We studied similar
concepts of the infrared divergence problems using soft theorems. We saw how the Faddev
Kulish states cancel the divergences in the amplitude and the cross section due to emission
of soft photons.
With this basic clarity about various concepts it becomes possible to tackle many open
problems in this field. One can extend this work by using the dressed states instead of
asymptotic states to calculate observables using KMOC. The finite S marix elements have
been formulated but never used somehow. The concept of FK states relates to the exis-
tence of coherent states of photon . These coherent states are readily used to calculates
observables via Thompson Scattering. ”Scoot” can be anaylsed through this approach of
coherent incoming state od photons in amplitude as well then. The similar calculations can
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be performed for gravitons and can help develop the idea of Memory effects via KMOC.
This project wide plethora of questions and conceptual understanding of heavily used but
less understood concepts in QFT .
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.1 Appendix A

Here we will show how to calculate certain integrals used in 2.23

The integrals we are working with have the form :-

I = iq1q2

∫
d4q

(2π)4
δ̂ (2p1 · l) δ̂ (2p2 · l) e−ibqF (p1, p2)

q2
qµ (1)

We notice that we have two delta functions inside the integral. We proceed with integration
over q0 and use the iε prescription to bypass the poles.

1

q2 + iε
=

1

(q0 + |q|+ iε)(q0 − |q| − iε)
(2)

But since we have delta function δ(p2.q) we can choose to evaluate the integral in the rest
frame of p2. The delta function would then become δ(q0) This delta function will pick up
the pole at q0 = 0 and the value of propagator would be.

1

|q|+ iε)(−|q| − iε)
(3)

Hence we can say that if we have atleast one delta function in the numerator along with a
propagator we need not consider the contribution of poles from the propagator .

We can solve this integral by choosing a particular frame , but we will look at general
methods to solve it . We will decompose q into components along the velocity and transverse
to it .

q1 = α1p1 + α2p2 + q⊥ (4)

with
α1 =

(q · p1)m2
2 − (q · p2)(p2 · p1)

D

α2 =
(q · p2)m2

1 − (q · p1)(p2 · p1)
D

(5)

Where
D = (p1.p2)

2 − (m1m2)
2 (6)
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With change of variables the integration measure becomes

d4q =
1√
D
d2q⊥dx1dx2 (7)

Integration over x can be done easily , all we need to do is to substitute the new varible to
0 in the denominator of the propagator.
We will be left with the following integral

I = iq1q2

∫
d2q

(2π)2
e−ibq⊥qµ⊥q

2
⊥(8)

Converting the qµ⊥ integral in polar coordinates.

I =
q1q2√
D
∂bµlimµ→0

∫ ∞

µ

dq⊥
q⊥

∫ 2π

0

dθe−ibq⊥ (9)

I =
q1q2√
D
∂bµlimµ→0

∫ ∞

µ

dq⊥J0(q⊥b⊥)

q⊥
(10)

Where J0 is the zeroth order Bessels function , its integration is known.

I =
q1q2√
D
∂bµlimµ→0 log(−b2µ2) (11)

Now evaluating the limit after differentiation gives.

∆pµ1 = −k22(p1.p2)
2 −m2

1m
2
2b

µ

√
Db2

(12)

.2 Appendix B

Feynman rules for scalar graviton coupling (for derivation refer [12]).
The vertex term is given by -

i
k

2
[(pµp

′
ν + p′µpν)− ηµν(p.p

′ −m2)]
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The graviton propagator is given by -

i
ηαγηβδ + ηαδηβγ − ηαβηγδ

2q2

.3 Appendix C

The expression we start with is similar to momentum impulse expression-

∆Jµν =< ψ|i[Jµν , T ]|ψ > (13)

expanding the the commutator we get :-

∆Jµν =< ψ|iJµν , T |ψ > − < ψ|iTJµν |ψ > (14)

The angular momentum operator action in the ket state is easy but on the action of bra
state one has to insert a complete set of sets in between . The expression we get after doing
that and integrating is-

∆Jµν = i[pµ1 ∧
∂

∂pν1
+ p

′µ
1 ∧ ∂

∂p
′ν
1

] < ψ|T |ψ > (15)

Inserting the form the wavefunction we get-

∆Jµν =

∫
d4q1d

4q2δ̂ (q1 · p1) δ̂ (q2 · p2) e−ib·q[pµ1∧
∂

∂pν1
+p

′µ
1 ∧

∂

∂p
′ν
1

](δ4 (q1 + q2)
(p1 + p

′
1).(p2 + p

′
2)

q2
)

(16)
Now we will use product rule , the first term will be when the operator acts on the stripped
amplitude and the second where the operator acts on the delta function. The expression for
the first term is easy but should be done carefully considering what quatitites out of p,p’
and q are taken to be independent. We get -

= δ4 (q1 + q2)
4p1 ∧ p2
q2

(h−1) (17)

We will work with the second term from the product rule
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∫
d4q1d

4q2δ̂ (q1 · p1) δ̂ (q2 · p2) e−ib·q (p1 + p
′
1).(p2 + p

′
2)

q2
[pµ1 ∧

∂

∂pν1
+p

′µ
1 ∧ ∂

∂p
′ν
1

]δ4 (q1 + q2) (18)

=

∫
d4q1d

4q2δ̂ (q1 · p1) δ̂ (q2 · p2) e−ib·q (p1 + p
′
1).(p2 + p

′
2)

q2

qµ1∧
∂

∂qν1
δ4(q1+q2)(19) Applying by parts:-

−
∫
d4q2δ

4 (q1 + q2) δ (2q2 · p2 + q2)qµ ∧ ∂

∂qν
[δ (2q1 · p1 + q2)e−ib·q (p1 + p

′
1).(p2 + p

′
2)

q2
] (20)

= −
∫
d4q2δ

4 (q1 + q2) δ (2q2 · p2+q2)qµ∧(bνe−ib·q+e−ib·q ∂

∂qν
)[δ (2q1 · p1+q2)

(p1 + p
′
1).(p2 + p

′
2)

q2
]

(21)
= −

∫
d4q2δ

4 (q1 + q2) δ(p2.q)[Aq1 ∧ p1δ
′
(2p1.q1)] (22)

Other terms of form q ∧ b is 0 as δpµ is in the direction of bµ and other term of higher order
in h

∫
d4q1δ(p2.q)A(q1 ∧ p1)

∂

∂(p1.q1)
δ(2p1.q1)] (23)

Applying by parts again∫
d4q1δ(p2.q)[A

∂

∂(p1.q1)
(q1 ∧ p1) + (q1 ∧ p1)

∂

∂(p1.q1)
A] (24)

We get O(h−1) terms only from the first term in the above expression

We shall expand qµ in terms of the momentum as we did previously and substitute it.
The final expression we get from the second term hence is∫

d4q1δ(p2.q)[A(p1 ∧ p2)p1.p2/D (25)

All that is left is to combine these to terms. We shall do similar calculation in other section
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therefore one must look at this appendix for reference for those calculations as well.

.4 Appendix D

We shall look at the integrals of form 5.6. The integral expression is -

enemηnηmA(q) =

∫
λ≤|~q|≤Λ

d4q

(2π)4
−ienemηnηmpn · pm

[q2 − iε] [pn · q − iηnε] [−pm · q − iηmε]
, (26)

The integral over l0 can be evaluated vi residues. first closing the contour in the upper
half-plane lends to

Jnm = iπ

∫
|~r|<∆

~i

(2En|q|+ 2~pq̂) (2Em|q| − 2~p) |q|
(27)

and, going to polar cordinates ~q − ωı̂ with |ˆ̂n| = 1.

I− =
iπ

4

∫ λ

0

dω

ω2+2

∫
dΩ(ñ)

(E + ~pn̄)(E − ~pn̂)

For small ε ∫ λ

0

dy

ω1+2ε
−
[
−ω

−2ε

2x

]3
0

=
Λ−2

2ε
=

1

2ε
+O

(
e2
)

Evaluating the two-dimensional angular integral over the sphere gives

I− = −iπ
2

4ε

∫ +1

−1

dx

(En + |~p|x) (Em − |~p|x)
=

−iπ2

4ε {En + E ′) |~p|
log

(E + |~p|) (Em + |~p|)
(E − |~p|] (Em − |~p|)

.

This result can be cast in the invariant form

I−(p, p
′) = K (p, p′) = − 1

ε2mm′
arc coshσpp′√

σ2 − 1
.

where
σpp′ = − pp′

mmr
, p2 = m2, p2 = m2
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