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Abstract

Multi-loop Feynman integrals have been a significant roadblock in the journey of precision
in collider physics and calculations in perturbative gravity. The search for New Physics am-
plifies the need to compute multi-loop integrals effectively. In the first half of the project,
we understand the developments in analytical calculation of multi-loop integrals using mod-
ern methods such as IBP reduction and the differential equations method for the master

integrals.

In the second half of the project, we study the idea of obtaining a generalized boundary
condition for the differential equations by adding an auxiliary mass to the master integrals|1].
We then extend the idea by solving the differential equations of master integrals w.r.t.
1 using the techniques of series expansions and analytical continuation, and obtain the
numerical solutions of the master integrals for one-loop and two-loop integrals, including the

possibilities of having complex mass in the integrals.
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Introduction

The discovery of the Higgs boson in 2012 led to the beginning of the precision era in high-
energy physics. Higgs boson, being the only non-composite scalar particle, has opened the
paths to the study of various couplings with different particles, useful for the Standard Model
and Beyond Standard Model corrections to various particle processes. Therefore, extensive

study of the Higgs sector has extended the scope of precision collider physics. [2]

While studying the Standard Model(SM) and Beyond Standard Model(BSM) processes per-
turbatively, the precision calculations in collider physics play a very important role. These
perturbative calculations are often done beyond leading orders to meet the precision limits
detected by experiments at the LHC, which makes the computations of multi-loop integrals a
key step. These perturbative precise calculations are required in order to distinguish the New
Physics sector from the Standard Model sector at the high energy limit. To present why the
computation of multi-loop integrals is an essential step, we try to motivate the need to calcu-
late the Next-to-Next Leading order(NNLO), Next-to-next-to-next-to leading order(N3LO)
and Higher corrections to the Quantum Chromodynamic(QCD) processes measured at the
LHC.

To obtain SM and BSM physics, one of the most interesting precision studies is Higgs boson
production. As gluons cannot directly couple to Higgs, QCD corrections to Higgs production
is a top-mediated process, which makes it loop-induced|2|. To match the precision limits at
the LHC, NNLOJ3, |4} [5, 6, 7] and N3LO|8, 9, |10] corrections to Higgs production become
relevant and have been calculated. Another path to Higgs production is in association with a
vector boson, which gives the opportunity to probe Higgs couplings to gauge bosons. In order
to obtain the contributions on the electroweak(EW) scale, Next-to-Leading Order(NLO)
QCDxEW|11][12] and NNLO QCD|13]|14] corrections to the Higgs production via vector

boson fusion are calculated. Similarly, to match the precision of the future ete™ colliders,



two-loop and three-loop EW and mixed QCDxEW corrections to pair production processes
such as the Drell-Yan process[15} |16} [L7] become important, especially to probe the Higgs-W
coupling and obtain the mass of W at high precision. [1§]

The bottlenecks of obtaining NNLO and N3LO corrections to the above processes are compli-
cated multi-loop Feynman diagrams with increasing mass scales. They become significantly
difficult with increasing loops, legs and mass scales of the processes targeted by the present
and future colliders. To make progress, it becomes increasingly important to effectively eval-
uate these Feynman integrals both analytically and numerically. In the next section, we talk

about the progress made to achieve the task up to the highest precision.

Multi-loop Feynman Integrals

While performing any perturbative calculation, computing scattering cross-sections becomes
the most crucial step to obtain physical information about any particle process, including
Standard Model Physics, Beyond Standard Model Physics and gravity. The Feynman di-
agrams obtained while doing a perturbative study can be a tree-level diagram, a one-loop
diagram, or multi-loop diagrams. As we discussed in the last section, QCD and Electroweak
corrections to Higgs physics have significant contributions from two-loop and higher Feyn-
man diagrams. To achieve these corrections, the evaluation of multi-loop integrals becomes

the key and the most challenging step in precision physics.

In the 20" century, the computation of one-loop integrals of SM and BSM processes was
done using various integration tricks like Schwinger and Feynman Paramatrizations, Mellin-
Barnes Integrations and frame dependant integrals.[19] The onset of the 215 century has

seen a development in modern methods to evaluate multi-loop Feynman integrals.

The most successful method is to reduce a family of Master Integrals using Integration-by
parts identities (IBP) and Lorentz Invariance (LI). Using IBP and LI identities, we obtain
a set of master integrals following the Laporta algorithm [20]. The algorithm helps us to
obtain master integrals, and write any integral of the family as a linear combination of
master integrals. The Laporta algorithm has been publically implemented as programs like
LiteRed|[21], Reduze[22], FIRE|23| and KIRA[24], which enables us to perform reductions

effectively up to two loops. Recent years have seen developments that suggest we perform



IBP reduction numerically over finite fields(implemented in FiniteFlow|25]) to tackle two-

loop integrals with multiple mass scales.

Obtaining the solutions of master integrals has been the bottleneck in the field of precision
physics. In the last two decades, analytical and numerical techniques have been developed
to achieve the solution of two-loop master integrals effectively. We discuss the advantages
and limitations of these techniques, and these techniques have been discussed in detail in

sections [2-4].

Analytical Methods

The analytic calculations of master integrals are commonly achieved using the method of
differential equations. In this method, we set up a linear differential equation for the basis of
master integrals w.r.t. each kinematic variable. The differential equation is then solved via
canonical transformations to e-form, and we obtain the solution in terms of polylogarithms,
multiple polylogarithms and elliptical polylogarithms in massive cases. These Polylogarithms

can be simplified using the public packages PolyLogTools [26] and HPL[27].

In order to solve the basis of master integrals using the above method, we need a boundary
condition for each master integral at a point in the physical region. This is often hard to
obtain for complicated integrals and poses a limitation to this method. Another limitation of
the method is that the matrix A of some basis of master integrals cannot be written into the
e-form, which poses a difficulty in solving the differential equation. While solving a massive
Feynman integral, we obtain an elliptic integral after the canonical transformation, which
results in elliptic polylogarithms, which are yet to be completely understood. This limits

the use of differential equation techniques for massive Feynman integrals.

Numerical Methods

With the improving computational speed and technology, numerical evaluation of Feynman
integrals can be effectively computed to match the precision required by the colliders. One
of the successful algorithms for numerical integration by isolation of poles is the Sector
Decomposition method[28], and has been developed into a public package pySecDec [29].

Another promising technique to perform numeric computation is the semi-analytic solution
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of the system of differential equations set up in the previous section, using series expansion.
This method requires a numeric boundary condition of the master integral in any region of
space, and we obtain the solutions of master integrals as a Laurent expansion in epsilon with
numerical coefficients. These algorithms have been publicly released as programs DiffExp
[30] and SeaSyde[31]. The package SeaSyde [31] also includes the possibility of evaluating

Feynman diagrams containing complex masses.

One of the limitations that the series expansion method poses is that it requires us to
calculate the numerical boundary condition for each master integral, which is often difficult to
calculate. This limitation was overcome by developing a technique that obtains a generalized
boundary condition for each master integral by adding an auxiliary mass to the propagators
and taking it to a high mass limit. This method has been implemented as a Mathematica

package AMFlow [32]. We present it in detail in section 3.

Aim of the thesis

The initial aim of the thesis was to understand and implement the modern methods of
evaluating multi-loop Feynman integrals, the key aspect of precision physics. We wished
to obtain the skill of performing multi-loop calculations required at the frontier of collider

physics.

In the first half of the project, we focused on understanding the analytical and numerical
methods stated in the above sections and getting familiar with the state-of-the-art programs
such as LiteRed[21] to perform IBP reduction and PolyLogTools[26] to simplify multiple

polylogarithms for some complex integrals.

In the second half of the project, we use the idea of obtaining a generalized boundary
condition by adding an auxiliary mass|[1] and implementing it as a Mathematica program with
some modifications to the algorithm. We then wish to extend the algorithm by including the
techniques to compute mixed QCD-EW corrections to particle processes, where the master

integrals have complex masses due to the finite decay width of W and Z particles|17].



Chapter 1

Preliminaries
1.1 Basic perturbative QFT and scattering amplitude

Today, particle physics is understood experimentally using particle colliders, but the under-
lying theory to study most of the particles and fields is perturbative Quantum Field Theory.
We show the representation and significance of Feynman integrals in the theory of pQFT

and how it connects to the physical observables at particle colliders|33].

To understand the basic concepts, we start with a single field ¢(x). The Lagrangian of the
field is given by L£(¢), and the action functional is given by:

S(@() = [ daL(o) (1.1)

For a field ¢ with £(¢), the ng -point Green function in free theory is given by

z1) ... (x,.) s
OIT (6 (01). 6 ] ) = L2t ) 12)

We wish to solve this Green’s function, and it can be done in two ways: the interaction picture

of ¢(z) or using the path integral approach. Here, we use the path integral approach. The

9



path integral of this field is given by:

U= / Dge'Sl9l (1.3)

In order to obtain a generating functional for the action, we introduce an auxiliary field J(z),

and integrate over all field configurations ¢(x)

UL = A / D (S dPrI(@)6()) (1.4)

Using the equation and the functional derivatives, we can express the ng point function

in free space as:

smeU[J]

OIT (@(@) - b (rac)I0) = (=)™ eS| (15)
To obtain the Green functions, we use the relation:
UlJ] = eVl (1.6)
and use it and equation to write the Greens function as:
o (51, n) = (i1 — OV (1.7)

6J (1) ... 0J (Tne) | j—o

We can define the Greens function in the momentum space by a Fourier transformation given
by:

Ghe (T1,. .. Tp,) =

/del denG
(2m)P " (2m)P

(1.8)

<27T>D5D (pl +..+ pnG) éfLG (pla o e 7pTLG) e*i(p1$1+...+pnGan)

Using this relation, we obtain the scattering amplitude of the ng point function of field ¢(x).

The scattering amplitude is given by:

Gh L (p1, - - Png)
LA ; o - C
(p1,p2 Pnc) G5(p1)G5(p2) - . . G5(Pne,)

(1.9)

10



The scattering amplitude A acts as the connection between the calculations done in QFT
to the physical observables measured at the colliders. Consider an observable O measured

by experiments at the particle collider. We have the relation:

O o |A]? (1.10)

The Greens function in equation is expressed in the form of propagators that arise from

the Lagrangian of the fields. We get the expression from equation [L.7]

The terms in a Lagrangian of fields ¢; and ¢9 are of the form:

L= ¢aDut (1.11)
a,b

Then the inverse of the Fourier transform of the term D, is known as the propagator for
the field.

Py =D} (1.12)

The Greens function is then written as the product of the propagators. Putting it back into

the momentum greens function, we get:

GP o (pri- o one = > ] Pa (1.13)

pairs

where we get the Greens function as a product of two or more propagators.

These propagators in the momentum space with integration over the arbitrary momentum

after renormalization are what constitute a Feynman integral.

11
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Chapter 2

Evaluation of Feynman Integrals for

each Kinematic Variables

We consider the following renormalized family of integrals in the momentum space: 33|

V*i le nlnt
['Ul---vint (D’ xl’ tee 7INB) = 6n8’YE /H j (21)
Sy AT £ —1
where P; are the propagators of momentum for the particular family of integrals. Here, the
S 2
kinematic variables 1, x5, 73, ... are given by: —Z ;g’ , ’Zg’

2.1 Integration by-parts relations

Integration-by-parts identities are relations that help us to express any Feynman Integral as
a linear combination of basis integrals, which we call Master Integrals. They are the basic
integrals for each family, which can be used to express any higher integral of the family.
These identities are based on the fact that for each momenta, the integral of the derivative

of the product of momenta and the integral w.r.t loop momentum is zero[33].

13



d”l,. 0 FLI |
/H._DWQ{LBP H (P')Uj =0 (22)
r=1

This identity is derived from the fact that within dimension regularization of an integral,

addition of any momentum ¢j;p to the propagators P; does not change the integral. Consider

the function:

Nint 1
9 =11 5
=1 () 03
L dPl, LdPl, 23
SIS0 = [ TT %o+ 3
r—1 1T 2 r—1 1T 2

If we expand the RHS around A = 0, the terms dependent on A should go to zero for the

above property to be true. Hence,

d’l,
/H )\gl“—i-)\q“):O

ir% 0
(2.4)
dPl, 0
a/H E o a)] = 0
oy AT T
Hence, we obtain the IBP reduction identity as shown in equation
One-loop example
Consider the following integral:
dPs 1
[ o= - 25)
irP/2 (63)™ (61 + p1)?)

The IBP identity for ¢igp = [; is:

e o, 1
9 _ 2.
/i7rD/2 81511 ()" ((by +p1)?)™ 0 (2:6)

14



On mathematical manipulation, we obtain the following identity:
(D — ay — 2a3) Inyay — a11(ay41)(—1) + 81(2 — 1) L (ay 41)ay + 28014, (ap41) = 0 (2.7)

The relations and another IBP relation obtained by setting ggp = pl give rise to the
Master Integrals for each family. The basis of Master Integrals is also enough to calculate

all higher integrals of this family.
For the one loop example, the basis of master integrals is:

I = {Ioy, Iy}

The algorithm to obtain master integrals and use IBP relations to reduce higher integrals
of a particular family to a linear combination of master integrals is known as Laporta algo-

rithm|[20]. Using the package LiteRed|21], we perform the following reduction:

L = %(—12 4+ D)(=10+ D)(=T7+ D)(=5+ D)(=3+ D)l (2.8)

Two-loop three-point diagram

We consider the two-loop three-point integral:

y4

Figure 2.1: Two-loop three-point diagram

15



dPi, dP1,

o ) (X MU AT R

[(1 = 12)]* [(1)e] (13)™

We choose the kinematics as:

lay..ar

X

p1=0, p=0
(p1 +P2)2 = -2

Using the IBP reduction package LiteRed, we obtain the Master Integrals for the above

integral. The Master Integrals are:

Number of > > Kinematic
Master Integrals [ Master Integral number J
Propagators Dependence

2 Toooo101 Ji B
ITn101010 Jo P1, D2

3 To110100 J3 b1, D2
T1010001 Jy P1, P2
To201010 Js P1, D2
Tn210100 Js P1, P2
In101011 J7 P1, D2

4 Io101110 Js P1, D2
To110101 Jo P1; D2
To111100 J1o P1, D2
Lo10101 Jn b1, P2
Ir010101 J12 b1, P2
Io101111 Ji3 P1,P2

o Io111101 Jia P1, D2
L1101 Jis P1, D2
L110101 J16 P1, P2
Liiti01 Ji7 P1, P2
Diitio1 Jig b1, P2

Table 2.1: Master Integrals: Two-loop three-point

16



Two-loop four-point diagram

We consider a two-loop four-point integral with some massive legs. The topology we are

considering is given by the propagators:

Figure 2.2: Two-loop four-point diagram (dark lines are massive)

(Pr=01,Po=(p1— L), Py=(ki+p)’, Po=—mip + 15, P = —mj + (=, — Iz + p1)?
Ps=-—mi+ (L +l+p)° Pr=—m2+ (=l —ly+pr—ps)?, Ps = (L +p3)°

Py= (I +1,)°}
(2.10)

and the integral is of the form:

ag pag
al Pa2 Pas Pa4 Pas Pae Pat
Pl P2 PS P4 PS P6 P?

I= /lelle2 (2.11)

After performing IBP reduction using LiteRed, we obtain 32 master integrals for this topol-

ogy. Some of these are listed below:

17



Number of - o Kinematic
Propagators Master Integrals I Master Integral number J Dependence
4 To00200200 J1 ——
T002020000 Jo P1,P3
T512000200 J3 P1, P2
Too0212000 Jy P1, P2
T200100200 Js P1, D3
To01220000 Js P1, P2
T100200200 J7 P1, D3

D Tooo211100 Js P1,P2,P3
Io11200100 Jo P1,P2,P3
T100211000 J1o P1, P2
T200111000 Jn P1, D2
Io11111000 J12 P1, D2
Io11101100 Ji3 P1,P2,P3
To12021000 J14 P1, P2

6 Too1310100 Jis P1,P2,P3
T100301100 J16 P1,D2,P3
In12100200 Ji7 D1, P2, D3

Table 2.2: Master Integrals: Two-loop four-point function

2.2 Schwinger and Feynman parametrization

To set up the differential equation for each kinematic variable, the Schwinger and Feynman

parametrization of integrals of the form [2.1) turn out to be helful|33] [19].
The Schwinger parametrization of 2.1] is given by:

lgny Nint 1 -
Ivl...vw D Tt 1 /.. / d"mt o Oévk_l —e U (212
o OV T T o (H )u? )

where the U and F are Symanzik polynomials and « is the Schwinger parameter. Using the

18



identity of the Dirac delta function given by:

1:/_de5(14—§_:%):/OoodM(k—iam) (2.13)

and re-scaling of the Schwinger parameter by k, we can obtain the Feynman parametrization

of integrals given by:

Nlegs Nlegs [Z/{(a)]vf (l+21)D
Ly v, (D)=P / d" ™ ad | 1 — A, PR — 214
int ( ) f a]zo ( Z > ( H J ) [f(a)]v_% ( )

m=1 J=1

where a; is the Feynman parameter given by a; = «a;/k. These two parametrizations are

often useful in calculating two or higher loop vacuum integrals.

2.2.1 Calculation of &/ and F

The calculation of Symanzik polynomials & and F can be done using various methods.[33]

Here, we present one such method to perform the calculation:

Method : We use the Schwinger parametrization form given by:

_ID
2

elg/yE (Iu2>7.1 / MNint i1 / l le Nint
I = =mer d"m o o Fexp (=) a;(—=¢;+mi) | (2.15)
Hj:l I (v;) ;>0 ]1:[1 ’ rljll i3 ; ’ ( ’ ])

Now we can express the exponential term in the form:

Tint

i (—gi+md) ==> > LWyl +2Y LT+ (2.16)
j=1 r oy z

where J comprises terms with no loop dependence. Using this relation, we can write as

19



and we can obtain the Symanzik polynomials &/ and F given by:

U = det(W) (2.17)
F=UJ+TWLT) (2.18)

2.3 Obtaining the differential equation w.r.t kinematic

variables

To set up the differential equation of the basis of Master Integrals w.r.t kinematic variables,

we need the following operators on the Schwinger parametrization [2.12}

The dimensional shift operator [34] increases the dimension of the integral by 2. Tt is defined

as:
D*I1,(D,%) = I,(D + 2,7) (2.19)
The raising operators j©(with 7 € {1,...,ni } ), which act on a Feynman integral as [34]
j+IU1...Uj...vnim (D7 ZL‘) =V Ivl...(vj—i-l)...vnmt <D7 ZL’) (220)

We can obtain the relation between the basis of Master integrals with dimensions (D+2) and

(D) given by:

-

I(D)=U*(1,... nyme) I(D+2) (2.21)

The U operator is defined with all a terms replaced with the j operator acting on the

integral basis.

To obtain the differential equation of I in terms of the above operators, we differentiate the

20



Schwinger parametrization w.r.t. kinematic variables. We get the relation[33]:

9 = —FF (L, nin )DLy (2.22)

oo,
Oz,

for x; € {1,...,any41}. Here F is the derivative of the Symanzik polynomial w.r.t the

kinematic variable z;.
For one loop two point massless case, the U and F operators will be:
Ut =12+

Ft=1%2%p + (17 + 27)?

The F is then given by:
Ft=1%2t

On applying the above operators, we get the linear differential equation of the form:

Nimas
a master )
5ol == Y Al 10 < Noger, 1<m < Np, (2.23)
m k=1
where the coefficients A, ;; are rational functions of D and z1,...,zy,.
70 B

To write the differential equation in a more compact form, we define:

I[= (I, Luy, ..\ T

)T
’ VNmaster

(2.24)

Np
oL,
dl, =) | (m) dp,. (2.25)

m=1

Np
A=A, day. (2.26)

m=1
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We obtain the compact differential equation: [33]

(d+ AT =0 (2.27)

Here, A is a one-form that satisfies the integrability condition given by:

dA+ANA=0 (2.28)

In the project, we have written a code to obtain the matrix A for a family of integrals. Some

examples of them include:

2.3.1 Omne-loop two-point integral

We have the following integral:

I (D)= / dPe, 1
Y A e (O

The kinematic variable for this integral: z, = —p? and the basis of master integral is:

f: {[[)17[11}

The matrix A, after substituting D — 4 — 2, is given by:

U= aq + (6] (229)
F = ajaar + (o) + ay)? (2.30)

0 0
A<6’p1>1k - 2¢—2 2ep7—4

4p?—pf  8p7—2p]
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2.3.2 Two loop two point sunrise integral

The integral is given by:

o) — / dP4,dP 1, !
116, 1) = irD (03 —m2)™ (02 —m2)™ (0, + by — p1)% — m?2)™

Taking p? = 2m?, we have the kinematic variables given by:

We obtain the basis of master integrals and the matrix A, as:

I'={Io, 111, o1}

0 0 0

Ae)r = 0 2 —4e 6
—2(2¢—2)2  —21(12¢2—14e+4)  174e—104

17 34 17

2.3.3 One loop four point box integral

The integral is given by:

(2.31)

(2.32)

(2.33)

dPe, 1
Ia1a2asa4 (67 7]) - /

irP/2 ()™ (6 — p1)?)™ (6 = p1r — p2)*)™ (61 — p1 — p2 — p3)?)"

Taking p? = p3 = p3 = 0, we have the kinematic variables given by:

1 1
Ty =—-, T2=~

4 4

For the box diagram, the Symanzik polynomials are given by:

U=o1+as+ a3+ ay

F = o1 + apoizxa + a3y

23
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Hence, we obtain the basis of master integrals and the matrix A, andA,, as:

f: {]0011a ]0101; ]1010; ]1111} (237)
0 0 0 0
A(€)a, = 8 _Sl ‘ 8 8 (2.38)
“Gl) MRl (26 — 1) —2 — de
0 0 0 0
A(€)a, = 8 8 fe g (2.39)

BB g(2e — 1) BN 9 4e

2.4 Canonical Transformation of A(e form)

In the previous section, we have achieved a linear system of differential equations of Master
Integrals, which are all coupled to each other. This system is often hard to solve analytically
and is one of the bottlenecks of solving the basis of Master Integrals of higher complexity.
One of the methods to simplify this system is to perform a Canonical transformation and

express the matrix A as an e form. [33]

The differential equation

(d+A)T=0
is in € form if
N’master ~
A=ce¢ Z Bjw; = €A (2.40)
j=1

where Bj is the Nyaster X Npaster matrix
w; are the one forms of kinematic variables with a singular dlog pole in the matrix. They

are represented as:

wilsg) = - _'zj (2.41)
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The canonical transformation to e-form is useful as it helps us write [ in the following way:

Firstly, we express I as a Taylor series around € — 0 given as:

(e, z;) Zﬂ” (2.42)

Substituting and in the we get the relation:

Nmaster e °]
(d +e Z Ckwk> <Z 10 (x) ~£l> =0 (2.43)
k=1 =0

Comparing each power of € in this expansion, we can write:

Al (z;) =0

2.44

These relations can be solved recursively to obtain the basis of the Master Integrals. The

general solution of the above equation can be written as:|2]

f(f7 6) = @exp |:€/d121:| ]_l;oundary(e)
v

where O is the path ordering operator.

Transformation matrix W

To achieve the € form, we need to make a transformation to the A matrix such that it has

only an explicit € dependence. This is done by considering the transformation:

=, -

I'(e,z) = W(e,z)I(e, x) (2.45)
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where U (e, x) is an invertible (Npaster X Nmaster )-matrix, which may depend on ¢ and z.

We have the following relations:
dl = W=tdl + dw—'T (2.46)

Al = Wdl +dWT (2.47)

Substituting into we get:

Al = —(WAW ™! + Wdw )T (2.48)

We obtain a new differential equation given by:

(d+AYI =0 (2.49)

where A’ is related to A by
A =WAW ™ 4+ Wdw (2.50)

Obtaining the transformation U is often a non-trivial task. The transformation is obtained
via two steps, i.e., Fibre Transformation and Base Transformation. The algorithm to obtain

U is lengthy and non-trivial to be discussed in the thesis but is presented in [35][33].

To achieve the e-form computationally, The packages Epsilon [36] can be used to give a

canonical transformation of matrix A.

2.5 Polylogarithms and Multiple Polylogarithms

A Polylogarithm is a power series of complex numbers given by:

o0 n

Lir(z) =Y % (2.51)

n=1
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which satisfies the property:

z Lls
Liyer(2) = / b gt (2.52)
o U
where the first term of this recursion is Lii(z) = —In(1 — z2).

Analytical solutions of Feynman integrals often contain polylogarithms and their properties

become very useful while adding many integrals to obtain the scattering amplitude.

While calculating multi-loop integrals, we obtain a multi-variable extension of polyloga-

rithms, known as multiple polylogarithms. They satisfy the relation|33]:

= odt
G(al,...,an;z):/ ; G (ag,...,an;t) (2.53)
o t—m

with G(0,, 2) = SIn"(z).

n!

Along with multiple polylogarithms, we also obtain functions known as multiple polyloga-

rithms given by:
y
H (m,ny;y) = / dxf(m,x)H (my;x), me0,£1 (2.54)
0

with H(1,z) = G(1,z) = —In(1 — z). Here, the function f is given by:

1

f(l;y)ET?J, f(0;y) = !

Sy = (2.55)

1 1+y

< |-

These harmonic polylogarithms satisfy the shuffle algebra just like multiple polylogarithms.
We also obtain 2d-Harmonic Polylogarithms, an extension of harmonic polylogarithms with

m € (2,3)[37]. They are constructed via the functions:

1 1

m, f(3;y)5f(2;y)5y+z

fZy)=fl-zy)= (2.56)
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2.5.1 Multiple polylogarithms in master integrals

In section we studied how canonical transformation helps us to solve the set of differ-
ential equations of each master integral [equation [2.44]. Upon solving them recursively, we
obtain polylogarithms and multiple polylogarithms as functions of kinematic variables. The

multiple polylogarithms obtained are of the form [33]:
G @1, 203 2) = G (@ (1) s (2)52) (2.57)

where (w (x1),...,w(x,)) are the dlog one forms as discussed in section In the next
sections, we discuss certain properties and mathematical structures which are used to sim-
plify the multiple polylogarithms present in master integrals, to achieve the cancellation of

divergences and unnecessary expressions.

2.5.2 Shuffle Algebra

These multiple polylogarithms follow the properties of shuffle algebra denoted by:|[38]

G(x1,. o Ty 2) G(Tpy g1y ooy Tiymg 2) = Z G (To(1), - -+ s Ta(ny4nz); 2) (2.58)

c€X(n1,n2)

where 3 (ny,ns) is the list of all the shuffles of n; + ny alphabets in the multiple polyloga-

rithms, and Zo(n,4no) € (T1, -+, Tny) W (Tny415 - -+ 5 Tnygms)

Example:
G(kl,kQ;Z)G(kg,]ﬂ;;Z) = G(ZCU(l),. ..,LEU(4);Z)

o€X(n1,n2)

where 3 (n1,ng) contains the RHS of the relation:

(kla kQ) W (k37 k4) - (kla k?a k37 k4) + (kla k37 k27 k:4) + (kla k37 k47 k?)
+ (k37 kl? k27 k4) + (k37 k47 kl? k2> + (k37 kl? k47 k2) (259>

The shuffle product can also be used to write multiple polylogarithms of higher-degree in

terms of lower-degree polylogarithms with other terms. This property helps us to simplify
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our expressions of master integrals.

G(y,0,2) = G(0,2)G(y, z) — G(0,y, 2) (2.60)

2.5.3 Hopf Algebra and Coproducts

In this section, we introduce multiple polylogarithms as a Hopf algebra, and how its maps,
like coproducts, can be used to express a complex multiple polylogarithm in terms of simpler

ones.

Definition 2.5.1. A tensor algebra on a vector space V is a vector space A with the map:

m:AxA— A
(a,b) — m(a,b)=a-b

that is associative and has a unit vector €. In this case the map m s a tensor product given

by: a unique linear map p: AR A — A such that
a-b=m(a,b) = pla®0b)

Definition 2.5.2. If A is an algebra with multiplication p : AQA — A and unit e, we define
the coalgebra as the dual of an algebra, i.e. C = A*, which is equipped with the coproduct

linear map:
A=u:C=>C®C

and the unit covectors ¢ = el.

Definition 2.5.3. The Hopf Algebra H is a bialgebra i.e. an algebra on a vector space with
both the product map p and the coproduct map A. It has an additional structure of antipode,
amap S : H — H given by:

S(x-y) = S(x)-S(y) (2.61)
p(id ® S)A = u(S ®id)A =0 (2.62)
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Hopf Algebra in Multiple Polylogarithms

In order to use the properties of Hopf Algebra to simplify polylogarithms, one needs to show

that multiple polylogarithms follow Hopf Algebra. The proof is motivated as follows:

In the previous sections, we showed that multiple polylogarithms follow the properties of
shuffle algebra. One can show that shuffle algebra is a non-commutative Hopf algebra[39].
Hence, we can use the coproduct map A to express higher-weight polylogarithms into poly-

logarithms of lower weight.

For a Hopf algebra H, the coproduct map has the iterative property given by|[38]:

A®id

H S HoH Ny ooy 20Lgd

(2.63)

We know that, as the shuffle product preserves the weight of the MPLs, MPLs are given by
a graded algebra. This gives out additional properties for the coproduct. If a graded Hopf

algebra H is decomposed via a coproduct, it’s weight n is preserved:
Ho = D Ho® H (2.64)

The action of A on H,, can be expressed as:

A= " Ay (2.65)

a+b=k

Using these relations, coproducts of logarithms and basic polylogarithms have been ob-

tained[38]:

A(lnz)=1®nz+hz®1,

In* 2 (2.66)
A

A (Liy(2)) = 1® Liy(2) + Liy(2) ® 1 + ni Li, 1(2) ®
k=1
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A(Cor) = ® 1 (2.67)
Alr)=m®1

Here, the terms 1 ® £k + k ® 1 are primitive terms, so we can define the reduced coproduct
given by:
Ay =10k +k@1+A (k) (2.68)

Hence the reduced coproducts are:

i

A(lnz)=0=A(Gn) =A'(n)

/ S n” 2 2.69
A (Lin(2)) = 3 Lin 4(2) ® ! : (2.69)
k=1 :

The main conjecture of using Hopf algebra in the context of multiple polylogarithms is as

follows:

If we have an expression F,, containing multiple polylogarithms and we wish to express it in

the form of a simpler function G,,, the expression G,, should be such that if:
A’ (Fw) = A’ (Gw)

then we can imply that
Fy=Gy+ Y ciku, (2.70)

where k,,; are the powers of functions, such as 7 and ¢, which have their coproduct as zero

but can be part of the function F,,.

Examples

The relation in equation [2.70] can be used to simplify polylogarithms with the alphabets of
the form (1 — %)

1
Liy, (1 7 z) = ¢;Lig(f, z) + Other terms
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This has been done for a few examples|3§]:

1 1 ' 2
Lis (E) = Liz(z) + 8 In®x — % In?z — % Inz (2.71)
) o ) 1 1.4 0T 4 2, mt
Liy (1 — 2e*") = —Liy T2 —ﬂln (1+z)—?ln (1+z)+€1n (1+z)+£(2.72)

Using coproducts to simplify multiple polylogarithms becomes more complex, and examples

were not worked out for the same.

2.5.4 Fibration Basis

A general multiple polylogarithm can be written in several representations due to its func-
tional properties. In the many variable cases, it’s important to express the multiple poly-
logarithms as a basis. In this section, we show how polylogarithms with many algebraic
variables (kinematic variables in the case of Feynman integrals) can be written in a simpler

form using its fibration basis. [33] [26]

Consider a multiple polylogarithm with x4, ..., z, kinematic variables and rational functions
(f1,---, fn)- In the language of shuffle algebra, consider these f,, as letters and a word defined
by w = fifs....fn. Consider a multiple polylogarithm G(w;1) = G(fi, fa,..., fn). We also
know that the letters f; are of the form:

filzr, . xn) = ci(xy, ..o xp)x; + d(xy, .. )

Then we can express the multiple polylogarithms above as:

G(fi, fay s fn) = Z apG(wy ;1) G(waok; T2) - .. G(Wn k3 Ty (2.73)

k

where w;;, are words containing only ¢, letters and are algebraic functions of variables
Zit1 - .- %,. The method of fibration basis is very useful to simplify polylogarithms containing
functions of different variables and express them as functions of a single variable, which is

useful for the cancellation of terms while simplifying scattering amplitudes.
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Examples

The multiple polylogarithm G(0,1,1+ 2,1 — y) can be expressed in its fibration basis as:

mG(—1,7)
G0,1,1+=x,1—2) == + G(0,2)G(0,—1,2) + G(0, -1, —1,2)— (2.74)
G(=1,2)G(1,0,2) = G(0, -1, —2,%) + G(1,0,0,2) + ¢(3)
The fibration basis of G(2,1 — z) in z is:
G(2,1—z)=—-G2,z) +In(z)G(1,z) + ((2) (2.75)

The fibration basis and coproducts of multiple polylogarithms can be obtained using the

Mathematica package PolyLogTools|26).
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Chapter 3

Numerical solutions of Master
Integrals via addition of an auxiliary

1Mass

As the complexity of solving Master Integrals analytically increases with increasing loops,
legs and mass scales, numerical methods of the complex integrals become more feasible
than analytical methods. In the next few sections, we’ll discuss one technique of performing

numerical computations of Master Integrals and its advantages over heavy analytical results.

3.1 Obtaining a generalized boundary condition

The methods of setting up a differential equation of the basis of MIs w.r.t kinematic variables
have been successful in calculating many physical processes. However, even after successful
IBP reduction and canonical transformation to e-form, the limitation or the bottleneck of

this method is to know a boundary condition of the Master Integrals at one point in space.

This section presents a method to obtain a generalized boundary condition of a master

integral at an unphysical point in space by adding an auxiliary mass to the Master integral.
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This is done by introducing an auxiliary mass for each propagator in the integral:[1]

1 1

—
D, D, +

(3.1)

where D, is the propagator and 7 is the auxiliary mass.

The advantage of introducing 7 is that, by taking n — oo, I(2}, €,n) can be reduced to linear
combinations of simpler integrals. For tree propagators, the denominator can be easily

expanded for n — oo.

]- 0 1 <% _D ree J
L eyl <_> (3.2)
Dt’ree + n n =0 n

As the loop momenta can be any large value, one cannot perform the expansion of the
loop propagators in the same way as tree propagators. However, one can do the following

auxiliary mass expansion: [1]

o [ — i,
b D,,+110+ ;L:o (mTI(%-*-) if D, # 0, 3.3
Dloop + 0+ ﬁ i 'Dn _ 07

where we decompose Djop = D, + K,, with D, including only the part at the order of |n],

while K, contains the finite terms that are smaller than |7|.

We find that, as n — oo, I(z], €,n) is simplified to a linear combination of integrals with less
inverse propagators in the denominator or multiplied by single-scale vacuum integrals. This
is true as all the terms dependent on external momenta are a part of the K, term, due to

which the propagators of the expansion are independent of external momenta.

The one loop vacuum integrals can be solved easily by using the relation already in the

literature[19):

/ dPl (l_z)x F(y—x—%D)

r
2m)P (2 +K)? (4m)P/20(y)T (D)

36



For two loops vacuum integrals or higher, calculations using Feynman parametrizations and

other techniques is possible, which has been done in the literature.[40][41]

Hence, using this method, we know the calculations of Master Integrals I(z},€,n) in an
unphysical region, i.e. at 7 — 0o, which can further act as a boundary condition for obtaining
the Master Integral at n = 0. Furthermore, the next section discusses the certain strategies

we need to achieve the above results.

3.1.1 IBP reduction with the auxiliary mass

In order to use the auxiliary mass expansion, we need to add n to the propagators before
performing the IBP reduction in order to obtain the correct set of master integrals. As adding
an auxiliary mass to the propagator is equivalent to having a massive propagator while doing
IBP reduction, adding the mass to all the propagators would increase the number of Master
Integrals by a great amount. This would highly complicate the computation of a diagram

like two-loop three-point massless integral.

Consider a two-loop three-point integral with on-shell propagators, as shown in figure 2.1}
For the case when we don’t add any auxiliary mass n to the propagators, we get just 4 master
integrals. If we add 7 to all the propagators, we get 37 master integrals. Hence, adding n to

only four of the propagators with loop momentum [, gives us 17 master integrals.

As the addition of 7 to all propagators increases the Master Integrals by more than 9.X,
we cannot casually add n to the propagators in order to optimize this method. Therefore,
we need an optimized strategy to perform IBP reduction with an auxiliary mass|42]. Some

possible strategies are:

o If there are massive propagators present, add n to the mass. In this case, no increase

in the number of Master Integrals would be seen.

o Adding n only to the propagators with no external momentum can give an optimized

basis of Master Integrals

o Adding n to only a few propagators such that all differential equations are dependant

on n
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3.1.2 Differential equation w.r.t. auxiliary mass

The advantage of adding an auxiliary mass to the Integrals becomes prominent when we

obtain a differential equation of the basis of master integrals in the following manner:[43]

ﬁf(f, e,n) = M(Z,e,n)I(Z, e 1) (3.5)

On differentiating, the master integrals become higher-order integrals, which we write as a
linear combination of master integrals using IBP reduction. This gives rise to a linear set of

differential equations as written in the equation [3.5

To solve this differential equation, we require a boundary condition which has already been
discussed in section As our primary aim is to obtain the master integrals at n = 0, we
use the boundary condition i.e. the master integral at n — oo, and perform an analytical

continuation to obtain the desired integral. This is discussed in detail in the next section.

3.2 Numerical Solution of MIs using auxiliary mass

method

Upon obtaining the basis of Master Integrals after adding an auxiliary mass 7, we obtain
a differential equation of the Master Integrals w.r.t n as discussed in section |3.1.2. The

equation obtained is of the form:

0 = . S
_[(5577776) = M(xanae) (.Z',?’},é) (36>

The solution of this set of differential equations at n = 0 gives us the numerical solution of
the desired basis of MIs. To obtain the solution, we use the generalized boundary condi-
tion of each master integral in the unphysical region i.e. 7 — oo and use the methods of

analytical continuation to obtain the solution of MIs in the desired physical region i.e. n = 0.
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In this section, we discuss the methodology for solving the above differential equation. For
every value of 17, we use the Frobenius method of series expansion to solve the n** order dif-
ferential equations and obtain the solution of MIs as a Laurent expansion in € with numerical
coefficients. We also discuss the path of analytical continuation of MIs from n — oo ton =0,

including the method to avoid branch cuts while performing analytical continuation.

3.2.1 Analytical continuation

Analytic Continuation is a powerful statement that provides a way of extending the complex

domain over which we have a defined function. It is formally defined as:

Definition 3.2.1. If g, and go are analytic functions on complex domains X, and X,
respectively, and the intersection X1 N Xy # ¢ and g1 = g2 on X1 N Xs. Then g is called an

analytic continuation of g1 to the domain Xs.

The most useful way to perform analytical continuation is using a power series of the form:
p(z) = an(z = 2)" (3.7)

As this power series is analytical in its radius of convergence, we can perform analytical
continuation of the series from z, to any other point in its analytical domain defined via its

radius of convergence.

Analytical continuation of Master Integrals

In order to obtain Master Integrals at n = 0, our aim is to perform an analytical continuation
from n — oo to n = 0. To achieve this, the best way is to express the Master integrals as a
power series around the points near co and extend their convergence domain to points near
0. This motivates us to use the Frobenius method to obtain a numerical solution to the

differential equations.
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3.2.2 Frobenius Method

We use the most common semi-analytical method to solve our first and second-order differ-

ential equations i.e. the Frobenius method. Consider the following differential equation:
f'(@) + a@)f(z) = b(x) (3.8)

The general solution of the differential equation is given by: fiotar = K () fhomg. S0 we need

to first solve the homogeneous part of the differential equation.

Homogeneous part

Consider the following differential equation:
(20 + 1) /() + 3f(2) = 20 +3

In the above example, we have the homogeneous part of the form:

3
20 +1

f'(x) + flz) =0 (3.9)

In order to solve this first-order homogeneous differential equation around a point p, we take
the ansatz as the expansion of f(z) around the point p:
N

Jromg(@) = (z — p)* Z an(x —p)" (3.10)

n=0

To obtain the value of k, we solve the indical equation obtained by comparing the terms

with the least power i.e. the coefficient of z*~!. We get:
k=0

After putting in the solution of the indical equation, we obtain a set of N equations that

relate the coefficients a,, with each other. On solving the set of equations recursively, we
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obtain all the coefficients aj...... a, in terms of an unknown coefficient ag. Here, we get the :

3 3
fhomg = ag + 3apT + 5@0562 — 5@05[33 + §a0174 + ...

Inhomogeneous part

To find the solution to the equation, including the inhomogeneous terms, we obtain the inho-
mogeneous solution of the differential equation using the variation of the constant method.

The total solution is given by:
ftotal = K<x)fhomg (311)

ftfotal = K(‘T)fl;omg + K/ (‘x)fhomg (312>

On substituting and into we get the following relation:

K(2) fromg + K () fromg + a(2) K (2) fromg = b(x) (3.13)

As fromg satisfies the following equation:
f(x) +a(z) f(z) =0
we substitute it back into to get:

K'(2) fromg = b()

Using this relation and integrating the equation w.r.t x, we get:
b
fhomg

Hence, the total solution of any first-order differential equation at a point p using the Frobe-

nius method is given by:

b(x)

fhomg

f(SC) = fhomg'/ + thomg (314)
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3.2.3 MlIs as a Laurent expansion in ¢

In order to make the algorithm of solving the differential equations of MIs simpler and faster,

we express our Mls as a Laurent expansion in terms of e.

2L
1- 1 -
27 —) + 1T, ) + el(F,n,€') + O(e) (3.15)

Q

Inserting the Laurent expansion of Mls into the differential equation [3.5 we get a separate
differential equation for each term I (#,m,€e77).The idea of solving each coefficient of the

master integral is advantageous in the following ways:

o As we have a differential equation for each coefficient of €, the number of differential
equations to solve increases by (2L+3) times. Even though the number of differential
equations increases, this reduces the complexity of each differential equation in terms

of n, leading to a faster computation of the Frobenius solution.

o In many cases, such as two-loop two-point function, the coupled nature of the differ-
ential equations is also simplified using the Laurent expansion of the master integrals.
As we go to higher coupled systems, this method reduces the coupled equations to

simpler coupled ones, hence simplifying our problem to a great deal.

3.2.4 Path of Analytical Continuation

In the sections[3.2.1 and [3.2.2, we discussed the method to obtain the solution at a point in

space and the concept of extending the analytical domain of the solution using continuation.
In this section, we talk about the path chosen to perform analytical continuation in the

context of Feynman integrals.

We need to choose such a path such that we do not extend the domain of the power series
solution of the master integrals(of the type shown in equation beyond its radius of
convergence. This depends on the simple poles of n that are present in the matrix M
(equation . The poles of 17 can either be all real poles or might contain some complex

poles. Also, while obtaining the differential equation of each term of the e-expansion of
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master integral(discussed in section w.r.t 7, we obtain logarithmic terms of 7. As
logarithmic functions are multi-valued functions, we need to be extra careful of logarithmic
singularities leading to branch cuts. To perform analytic continuation of master integrals,
we need to successfully avoid the branch cuts in order to achieve the correct results. Keeping

all these intricacies in mind, we discuss the two cases in detail:

Real poles

While computing the integrals of the particle processes with scalars and fermions, we only
have real poles of 1 as the propagators contain only real-valued terms. In this case, the
logarithmic branch cut is present on the real line. To avoid the branch cut and stay in the
analytical domain, we can access all the points on the imaginary line to perform analytical

continuation.

Path (Real Poles)
1.2

1.0 1 pl
0.8 -
0.6 1

P2 ¢
0.4 ROC[p2,w1]

Im(z)

p3 |
0.2 1

0.0 1 pole wl

ROC[p3,w1]

-0.6 T T T T T T T T
-06 -04 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Re(z)

Figure 3.1: The path for pole w; = }l. The figure shows the circle of convergence of point po
and ps3 where the next point of the path is inside the circle.

Complex Poles

The particle processes involving the production of W* and Z particles have complex mass

terms in their propagators .[17] [16] In such cases, we often get complex poles of 7. As
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discussed above, this complex pole gives rise to a logarithmic branch cut. Avoiding the
branch cut, in this case, is non-trivial because it divides the complex plane into two different
Riemann surfaces. In order to avoid these branch cuts, an algorithm was written to find the
path with the least number of points of analytical continuation from 7 going from oo to 0.

The rules followed by the algorithm are:

o After evaluating the integral at n — oo, the starting point of the path is taken to be

a random real number between [2xIm[Max[poles]],Im[Max[poles]]].

o If the master integral is evaluated at a point, it can only be continued within its circle

of convergence i.e. the circle enclosed by the radius of convergence of the closest pole.

o We move away left or right from the branch cut when the distance to the branch cut
is less than the radius of convergence w.r.t the closest pole, and we move towards the

origin after avoiding the branch cut.

Path (Complex Poles)

6
B Moving towards 0
B Avoiding branch cut
5 - pl
4 -
pole w2
34 ROC[w2,p1]
N yp2
E
2 p4 p5
pole wl
1 — 3
/ ROC[w,p4]
01 -
0 1 2 3 4 5 6
Re(z)

Figure 3.2: The figure shows the path with complex poles: w; =5+ ¢ and wy = 2 + 3.
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Chapter 4

Methodology of Numerical Evaluation
of Master Integrals

All computations are done via Wolfram Mathematica.

In this chapter, we discuss the methodology of implementing the Mathematica code to
numerically compute the master integrals of the one-loop and two-loop Feynman diagrams,

using the techniques discussed in section [3]

4.1 General construct

The algorithm to solve the master integrals could be expressed into two parts: 1) Setting up

the differential equation and 2) Solving the differential equation by semi-analytical methods.

In order to set up the differential equation of the basis if master integrals I wrt. 7, we

perform the following operations:

o In order to obtain the basis of master integrals, we perform an IBP Reduction of the
family of Feynman integrals, with numerical kinematic values, upon adding an auxiliary
mass 7 to the propagators, as mentioned in section @ The packages LiteRed[21]
and Mint[44] have been used to perform the IBP reduction.
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« Upon obtaining the basis of master integrals for each family, we differentiate the master
integrals w.r.t 17 to obtain the differential equation and the matrix M. Using this
matrix M, we obtain the differential equation of each coefficient of ¢ for a master
integral i.e. f(f, n, el]), as discussed in section @

After obtaining the set of differential equations for the basis of master integrals, we use the
series expansion method i.e. The Frobenius method, to solve the differential equation of each

master integral. The algorithm used is as follows:

o The power series of the master integral at  — oo can be obtained using the vacuum
integrals obtained after performing an expansion at 7 — oo (Appendix A) and ob-
taining a general form of the power series. We then use the equation to obtain a
recursive relation of the coefficients of the power series, which is then solved using the
boundary condition i.e. evaluation of the first integral of the expansion. This step is

discussed for each case in the next section.

« Consider the path of analytical continuation given by p = {po, p1,...,0}. We use the
power series of master integral at 7 — oo and evaluate it at pg i.e. the first point of
the path of analytical continuation. This acts as a boundary condition for the next

step i.e. solving the differential equation for each coefficient of € at py.

o Obtaining the boundary condition, we can solve the differential equation for I (Z,m, 6%)
using the Frobenius method in section [3.2.2. The solution obtained by us for n = py
is then evaluated at n = p; and the same step is repeated along the path p until we

obtain the solution of I(Z,7, L) at n=0.

4.2 One-loop computations

In this section, we focus on the intricacies of solving one-loop diagrams using the above

general construct.

Upon setting up a differential equation, we obtain the set of differential equations where
the basic one-propagator and two-propagator master integrals can be solved independently,

and they can be used to solve the dependant master integrals such as master integrals with
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3-propagators and higher. To understand this, we consider the matrix M of a one-loop

three—point function: I = {1001, 1011, 1101, 1110, 1111}

1;6 0 0 0 0
—1+e€ 1—2¢
2n2+n 2n+1 0 0 0
_ —2+42¢ 2—4e
M(e,n) = Tt 0 o 0 0 (4.1)

—2+42¢ 2—4e
an%4n 0 0 an+1 0
2—2¢ —142¢ —142¢ —2€

n+6n2+48n3 1+8n2+6n  1+8n2+6n 1+2n

The first master integral Ipg; can be solved independently. Following that, we solve the
master integrals [yi1, [1g1andl¢ using the solution Ipp;. Similarly, we use the other four

master integrals to solve the master integral [;1;.

4.2.1 Solving the power expansion at 7 — oo

The power expansion at 7 — oo can be obtained by solving the vacuum integrals obtained
after the integral expansion around 7(See Appendix [A.1]). The first integral is usually of the

form:

dPe¢ 1
I(terml):/, D/12 . -
(6 =) (4.2)

= —n(2_k_€)F(€ +k—2)

Hence, we can write the power expansion at n — oo as:

Ling = Z con@kmem) (4.3)
n=0
Now, we use the equation to obtain the recursive relations which give us c¢i,...,¢, in

terms of ¢y, which is given by equation for each k. Hence, we obtain the power series of

the master integral at n — oo.
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4.2.2 Solving the power series along the path

To solve the differential equation of | (Z,n, 6%) at the next point in the path i.e. 1, = pg, we
first obtain the boundary value by evaluating the master integral I;,; at 7, and obtaining

the coefficient of the required power of e.

The power series at 7, is taken to be:

L, = —=10)" Y an(n —10)" (4.4)

We use the Frobenius method to obtain a, in terms of ag, where ag is again the obtained
boundary condition at 1,. This can be done for all points in the path p to obtain I (@,n, 6%) at
17 = 0. On solving the lowest coefficient of €, we solve the subsequent dependant coefficients

and obtain the master integrals I(0, €).

4.3 'Two-loop computations

We discuss the complications that arise while obtaining the numerical solution of the master

integrals of two-loop diagrams, and the strategies adopted to solve them.

4.3.1 Two-loop vacuum integrals

In order to obtain the power series at n — 0o, we need to solve two-loop vacuum integrals as
the boundary condition. Unlike one-loop vacuum integrals, two-loop integrals do not have
any general solution. To solve them, Feynman parametrizations and Mellin-Barnes integra-
tions prove to be useful strategies. The vacuum integral of the two-loop sunrise diagram has
been calculated in the Appendix section In the literature, vacuum integrals of up to

five loops have been solved and can be used to solve complicated diagrams.[40][41]
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4.3.2 Coupled Differential equations

Upon performing the IBP reduction for a two-loop diagram and setting up the differential
equation, we obtain the matrix M, where a few of the master integrals cannot be calculated
independently as they are coupled to other master integrals. This complicates the solution
of the set of differential equations and they have to be tackled using certain strategies. One
such strategy is to decouple these equations by rewriting the equation as a higher-order

equation. We show this for two coupled equations:

Consider the two differential equations:

7T\ _ [ amz+bn)y (45)
oY c(n)z +d(n)y
We can use the first equation of [4.5] to express:

v= 05 (e = atule) (16)

We substitute {.6] into the second equation of [4.5 to get a second order differential equation

of variable x:

(2 N (al) +dm) Oz | a(n)d(n) = b(n)e(n)
b0 (fﬂn) ( b0 )an o) 0 (A7)

We can do the same to get a second-order differential equation in y. These two decoupled

2"d_order equations can now be solved using the Frobenius method.

We use the same strategy with differential equations of master integrals, and we can do
perform the same method for more than two coupled differential equations. This strategy
was used to solve the two-loop sunrise integral which contains only two coupled differential

equations of master integrals.

As the matrix M contains uncoupled equations and coupled equations of different orders, an
algorithm was developed to identify the uncoupled and coupled equations from the matrix
and solve them accordingly. This is being used to solve two-loop kite integrals (another

topology of two-loop two-point diagrams) and two-loop three-point integrals.
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Chapter 5

Results

All numerical values are obtained by computation via Wolfram Mathematica. The reference

values are obtained using AMFlow|32].

In this section, we present the numerical results of the master integrals for various one-loop
and two-loop Feynman diagrams with defined kinematics, and compare them with the master
integrals obtained using AMFlow|32]. We then talk about their improving precision with

the number of terms in the series.

5.0.1 One loop two-point bubble diagrams

One loop two point diagrams are the basic one loop diagrams and hence our first calculated
result. We present two cases of the bubble diagrams: massive internal lines and massless

internal lines.

Massless internal propagators

We consider the following one-loop two-point Feynman diagram. The propagators Py for the

above diagram are given by:

P =1}, Py=(l—p)

o1



Figure 5.1: One-loop two-point diagram

Number of ~ > Ki ti
tmber o Master Integrals I Master Integral number J Hematie
Propagators Dependence
2 Ill J2 b1

Table 5.1: Master Integrals of two-loop two-point integral

Upon IBP Reduction using LiteRed, we get the following two Master Integrals:

On adding auxiliary mass n to each propagator, we get the differential equation matrix

M (e, n) given by:

Aﬂan%=< 0 2ﬂ6> (5.1)

an?+n  4An+l

The master integrals with auxiliary masses are given by:

. dPe, 1
15 (e,m) :/iWD/2 G _77)1
1

dPe, 1
im /2 G ?7)1 (6 +p1)* = 77)1

1%%LLan%=/

We use the equation [3.4] to obtain the exact solution to the vacuum integral I;o:

I3 = —0=9r(e - 1) (5.2)
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To solve the integral I{{™, we calculate it’s value at 7 — oo. To achieve that, the expansion

around 17 — oo is given by:

dPe, 1 > (20p —p*\’
[aux — .
- [ ar s a) o

J=0

This expansion can be calculated using the boundary condition i.e. the first term of the

expansion. The first term of the expansion is a vacuum integral given by:

I (first term) = / inD/2 (2 — 77)2 (5.4)
2 .

=n"T(e)

Hence, the boundary conditions for a one loop massless bubble diagram at n — oo are (see

Appendix [A.1)):

iy = =" 790 (e — 1)

I = (o

We obtain the values of the above Master Integrals at n = 0 using the above boundary

conditions. The values of the master integrals for various precision terms are:

Ji precision= 20 precision= 30 precision= 40

J1 0 0 0

Jo | 14228043604 + 10000000000 | 1 4228202324 + 10000000000 | 1 4227970875 + 10000000000

Table 5.2: Numerical Values of master integrals

The reference value using AMFlow is given by Jy = 1.4227843350 + MSOOOOO.
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Massive case

The propagators Py for the massive case are given by:

P=0l-m? P=(0—-—p)?-m

The master integrals and the boundary conditions are the same as the massless cases, as
the auxiliary mass was anyway added before the IBP reduction. The kinematics of this

configuration is given by:

The matrix M (e,n) is given by:

1—e¢ 0
M(e,n) = ( e ) (5.5)

An2+17n+18  4n+9

The two master integrals are given for precision terms=40:

J; precision= 40 Reference Value
Ji -3.8540401040 + 2 -3.8540401040 + 2
Jo | —2.0041707455 + C2999299998 | —2.0041707455 +- 22909999999

Table 5.3: Numerical values of Master integrals: One-loop two-point massive

5.0.2 One loop three-point diagram

Here, we present the numerical solution to the basis of Master Integrals for a one-loop three-

point diagram with massless internal propagators.

We consider the following Feynman diagram:
The propagators Py for the above diagram are given by:
=10}, Po=(h-p)? Ps=(+p)?
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Figure 5.2: One-loop three point function
Off-Shell Case

For the kinematics with p? # 0 and p3 # 0 and p; = ps, we get the following Master Integrals
via LiteRed:

Number of - - Kinematic
Master Integrals I Master Integral number J
Propagators Dependence
1 Loo1 J1 -
Ion Jo P1, P2
2 I110 J3 P1
Lo Jy P2
3 I Js P1, D2
Table 5.4: Master integrals: One-loop three-point
The matrix M (e,n) for this diagram is given by:
% 0 0 0 0
—1+e€ 1—2¢
2n%+n 2n+1 0 0 0
_ —242¢ 2—4e
M(e,n) = pr 0 prve 0 0 (5.6)
—2+42¢ 2—4e
An%+n 0 0 4n+1 0
2—2¢ —1+2¢ —1+42¢ —2e¢
n+672+8n3 1+8n2+6n  14+8n2+6n 1427

The boundary values for each of the five Master Integrals at n — oo have been calculated
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(see Appendix |A.1]). They are given by:

Iy = —n""IT(e—1)
IG7 = oy = 115 =n"T'(e)
Jaux — (—1—¢) F<€ + 1)

111 —

2

We obtain the values of the above 5 Master Integrals for precision=40:

Kinematics 1

Ji precision= 40 Reference Value

J 0 0

Jo | 0.03595315519 + 10000000000 | () 03595315519 - 10000000000
Js | 1.4227970875 + 10000000000 | 7 4227843350 + 10000000000
Jy | 1.4227970875 + 10000000000 | 7 4227843350 + 10000000000
Js 0.4868757134 0.4868757134

Table 5.5: Numerical values of Master integrals: One-loop three-point kinl

Kinematics 2

o6

(7 +p2)2 =0




Ji precision= 40 Reference Value

Ji 0 0

Jo | 0.72963715453 + L0000000000 | () 72963715453 + 10000000000
Jy | 1.4227843350 - 10000000000 | 7 4227843350 + 10000000000
Jy | 1.4227843350 + 10000000000 | 7 4227843350 - 10000000000
J5 —1.8319311884 —1.8319311884

Table 5.6: Numerical values of Master integrals: One-loop three-point kin2

On-shell case

For the kinematics with p? = 0 and p3 = 0 and p; = p», we get the following Master Integrals

via LiteRed:

Number of - - Kinematic
Master Integrals [ Master Integral number J
Propagators Dependence
1 Too1 Ji -
2 Ton Jo P1, P2
3 I J3 P1; D2

Table 5.7: Master integrals: One-loop three-point on-shell

The kinematics of the following integral is:

u = (p1 +p2)2 = -2

The matrix M (e,n) for this integral and kinematic configurations is given by:

1—e¢ 0 0
_ —14e€ 1—2¢
M(E’ 77) - 2n%+n 2n+1 0
1—e —142¢ —€
2n24+4n3  4An242n 7

The boundary values for each of the five Master Integrals at n — oo have been calculated

(see Appendix |A.1)). They are given by:
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Iy = =" 790 (e — 1)
It =n"T(e)

Iy = =90 (e + 1)

The values of the above 3 Master Integrals for various precision terms are:

J; precision= 40 Reference Value

J1 0 0

Jo | 0.0077671357 - 0:300000000 | 063517892341 | () 1077780769 — 04999999999 | 0.6351814273
J3 0.7296421621 + w 0.7296371545 + 0.9999399999

Table 5.8: Numerical values of Master integrals: One-loop three-point

5.0.3 One loop 4 point function

We calculated the numerical solutions to the Master Integrals for a one-loop four-point

function with 4 on-shell external legs and massless internal propagators. The Feynman

diagram for the same is given below.

Considering all incoming particles, the propagators P, for the above diagram are given by:
p1 —P4

— > <9 <9

b2 —P3

EEE— EEE—

*— —0— > — 0 —<——90

Figure 5.3: One-loop four-point diagram

P1=lf; P2=(l1+p1)2> P3:(ll+p1+p2)27 P4:(l1—|—p1+p2+p3)2
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Number of - - Kinematic
Master Integrals I Master Integral number J
Propagators Dependence
1 Tooo1 Ji P1,P2,P3
Io101 Jo P1,P2,P3
2 Liom J3 P1,P2,P3
Lo10 Ja P1, D2
To111 Js P1,DP2,P3
5 Lo Js P1,D2,P3
Lo J7 P1,P2,P3
Li110 Jg P1; D2
4 L Jo D1, P2, D3

Table 5.9: Master integrals: One-loop four-point

For p? = 0, p2 = 0 and p2 = 0, we get the following Master Integrals via LiteRed:

The kinematics of the following integral are:
u=(p1+p)’=—4

v=(p +p3)2 =—4

w = (p2 +ps)* = —4

M(e,n) =

% 0 0 0 0 0 0 0 0

S o By 0 0 0 0 0 0 0

S e 0 Do 0 0 0 0 0 0

5o 0 0 B 0 0 0 0 0

m ﬁ 0 0 — 0 0 0 0

T EEyeE) 0 W@y s 0 Ty 0 0 0

T ) G7) Se? G 0 0 0 — 0 0
(mn) 1?26 3?65 47{%352 (3 (3 (3 _e% 1326
8(—1+mn?(1+n)(3+n)  8n—8n3  8(—1+mn(3+n) 8n—8n* dn—dn? —2n+2n? —2n+2p%  dn—dn? (257%




The boundary values for each of the three Master Integrals at 7 — oo have been calculated
(see Appendix |A.1)). They are given by:

I, = —n" 9T (e~ 1)
Ioior = oo = Tioto = 0~ T(e)

(c1-9L(e+1)

Ioitn = Ton = Iior = Litho = 1 5
aux —4—€ F<€ + 2)
I = 77( ? )T

The values of the above 9 Master Integrals for 40 precision terms are:

J; precision= 40 Reference Value
J1 0 0

Jo —0.6566572065 + < —0.6566572065 + £
J3 0 0

Jy 0.03648997397. + 1 0.03648997397. + 1

Js | —0.2763046944 — 037 4 OANST00 | —().2763046944 — 230 4 C-A20ETT000

€ €

Js | —0.2785444346 + 0122 — 03320821508 | _() 2785444346 + %20 — 0-3520821508

€ €

J7 _02785444346 + 0.1225 _0.3320821508 —02785444346 + 0.1225 _0.3320821508

€ €

Jg | —0.2763046944 — 033 4 QA0STEOE | _().2763046944 — 232 4 04908TI5065

€ €

Jo | 0.0852102004 — 125 4 02887604520 | (),0852102004 — L1258 4 02887604520

€ €

Table 5.10: Numerical values of Master integrals: One-loop four-point

5.0.4 2 loop sunrise integral

After calculating the basic diagrams with one loop momenta and four external legs, we cal-

culate the two-loop two-point sunrise integral for uniform masses. We consider the following
Feynman diagram shown in figure

The propagators Py for the above diagram are given by:
=1}, Po=(L)? Pi=(-h—-lb+m)
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Figure 5.4: Two loop two point sunrise diagram

For the kinematics with p? # 0, we get the following Master Integrals via LiteRed:

Number of - - Kinematic
Master Integrals [ Master Integral number J
Propagators Dependence
3 L Ji D1
3 I Jo p1

Table 5.11: Master integrals: Two-loop two-point

We obtain the boundary conditions for these propagators(see Appendix [A.2)):

['(2e —1)T(e)*T'(1 —¢)

1111 = iﬂ'D - (58)
i) (n)*~! T(2eT(2—¢)
) ['(2e) T(e)I'(1 —e)l'(1 +¢)
Iy = (in” 5.9
an = (i) () T2+ 1)I(2—¢) (59)
The kinematics of the following integral is:
u=(p)*=—1
The matrix M (e,n) for this integral and kinematic configurations is given by:
2—3e €+en
M(e,n) = 2—727-7&-652 eig;fézn (5.10)
24212 2n+2n7?
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The values of the above 2 Master Integrals for various precision terms are:

J; precision= 40 Reference Value
Ji 133639216754 —+ 22500000000 1.33639216754 + 2500000000

Jg -2.9790638956 - 0.5000502000000 _ 0.92272343350 -2.9790638956 - 0.5000502000000 _ 0.92272343350

Table 5.12: Numerical values of Master integrals: Two-loop two-point

5.0.5 2 loop kite integral

We calculate the two-loop two-point kite integral for uniform masses. We consider the

following Feynman diagram shown in figure [5.5

li+q

L

Figure 5.5: Two loop two point kite diagram

The propagators Py for the above diagram are given by:
P=05 P=1 P=(-lh—b+p), P=(h+m)? P=(-la+p)

For the kinematics with p? — 1, we get the following Master Integrals via LiteRed:

The kinematics of the following integral is:

U = (p1)2 =-1
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Number of - - Kinematic
Master Integrals I Master Integral number J
Propagators Dependence
2 To1100 J1 D1
3 To1011 Jo P1
3 To1110 J3 D1
3 T11100 Jy D1
3 To2011 J5 P1
3 Ir1100 Ja P1
4 Lo J7 p1
b} I Jg p1

Table 5.13: Master integrals: Two-loop two-point

The matrix M (e,n) for this integral and kinematic configurations is given by:

= 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
—1+e€ 1—e+2n—3en
P 0 # 0 0 0 0 0
—1+e€ 1—2¢
2712:271 0 0 2042 0 0 0 0
0 0 0 0 0 3 0 0
—24Te—6¢2 —e+2n—5ne
0 o0 o0 w0 o0
—2(1—¢)? 0 0 (—2+T7e—6¢€?) 0 107+18n? 0 0
972 +10m3+nt (1-9) 9n2+10m3+n* In24+10n3+nt
—2(1—e¢ 2—4e
0 0 ) 0 0 0 0
2(1-¢)? —2+43¢ 2—2¢ —243¢ —147 —143n —142¢  —e+3en
(1-2n)n?(1+n)? n(1+n)? n?(14n)? n(1+n)? n(1+n)? n(1+n)? n(1+n)?  n(l+n)

The values of the above 2 Master Integrals for various precision terms are:
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precision terms= 40

Reference Value

Ji 0 0

Ja 1.3363921675 + w 1.3363921675 + 0.25002000000

J3 13363921675 4 225000000000 1.3363921675 + 2:25000000000

Jy 0 0

J5 —92.2790638956 — 0.49951299999 _ 0.92276843350 —92.9790638956 — 0.4992299999 _ 0.92276843350
=]6 —2.92790638956 — 0‘4995252)99999 o 0.9227?43350 —2.9790638956 — 0.4992299999 o 0.9227343350
J7 6.4036964615 + 0.99996299999 + 2.8455?‘86701 6.4036964615 + 0.99996299999 + 2.84556686701
Jg —7.2123414189 —7.2123414189

Table 5.14: Numerical values of Master integrals: Two-loop two-point
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Chapter 6

Conclusion and Future works

In the first half of the thesis, we focused on understanding the modern methods of computing
multi-loop integrals, specifically by setting up a differential equation of the basis of master
integrals. Some of the computations performed while understanding the techniques are
included as examples for each technique. These techniques and their examples have been
presented in Chapter 2. The idea to simplify some known scattering amplitudes containing
2DHPLs using PolyLogTools was attempted but could not be completed with a successful

result.

In the second half of the thesis, we studied the method of obtaining generalized boundary
conditions by adding an auxiliary mass n(chapter 3). Using the power series method of solv-
ing the differential equation and analytical continuation, we wrote a Mathematica program
to obtain the numerical solution of the master integrals for one-loop and two-loop diagrams.
The most complex diagram to be successfully evaluated is a two-loop two-point function, and

the computation of two-loop three-point function is being programmed using the decoupling

method (section [4.3.2).

In Chapter 5, we presented the results of the master integrals obtained using the Mathematica
program. The master integrals are expressed as a Laurent expansion in ¢ with numerical
real coefficients and are presented up to the €’ order. These results have been compared to

the values obtained by evaluating the same diagrams using AMFlow[32].

On a careful study of the results, we observe that improving precision by increasing the
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number of terms by 10 improves the accuracy of the master integrals by one decimal place.
We also observe that all the master integrals with 40 terms of the series expansion are

2th

accurate up to the 12" decimal place in comparison with the 40th decimal precision by

AMFlow. The limitations in the precision of our numerical values of master integrals are:

o The Mathematica built-in function Solve is computationally slow and inaccurate be-
yond twenty terms in the matrix. When precision=40 is considered, the row reduction

of the function gives inaccurate results at higher decimal places.

o The precision of the value is limited by the other built-in functions used in the Math-

ematica program.

o The precision of the computed master integrals can be improved by including more
terms in the power series solution, but the computational time increases drastically

with an increasing number of terms.

Future works and prospective

The Mathematica program is still in its developing stages, and many interesting prospects

can be implemented in the same:

o The program needs to be developed to obtain two-loop three-point and two-loop four-

point integrals for single mass scales.

« The decoupling method used in the program is effective only when the n” order decou-
pled differential equation is factorizable. In order to solve systems where decoupling
isn’t possible, we wish to use algorithms that can solve any coupled system more

effectively.

e In order to increase the speed and precision of the master integrals obtained using
the program, effective ways of solving the recursive relations of the Frobenius solution

would be necessary to produce significant results.

o The Mathematica program can also be improved to include the computation of phase-

space integrals using the reverse unitarity condition[3] of IBP reduction.
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Appendix A

Vacuum integrals

A.1 Infinity expansion of one-loop integrals

All the one-loop vacuum integrals are of the form:

[ adPe 1
- inD/2 (62 k

n)
LD
Am T (1)

(A1)

We use this relation to calculate the boundary conditions containing one-loop vacuum inte-

grals in section 5.

A.1.1 One-loop two-point integral

We have the following one-loop two point integral:

dPe, 1
im /2 (3 - 77>1 (6 +p1)* = 77)1
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The expansion of the above integral at n — oo is given by:

dPe, 1 = [ 2p — p? J
111:/. ( )
iwP2 (63 — )t (2 — ) ; G—n (A2)

dPe 1 .
- / irD/2 (2 — 77)2 + Higher powers

Using the equation we get:
IH = 77761—1(6) (AS)

A.1.2 One-loop three-point integral

We have the following one-loop three-point integral:

dPe, 1
Li(en) = / irP/2 (03 — ) (01 — p1)? —n) (€1 + p2)? — 1) Ay

The expansion of the above integral at n — oo is given by:

dPe, 1 > 20py — p% i 20py + pg k
Iy = iD/2 (p2 3 /2 — Z /2 —
(G =) o 11 0 17" (A5)

dPe 1 '
- / irD/2 (EQ _ 77)3 + Higher powers

Using the equation we get:

r 1
Ly =179 (6; ) (A.6)
A.1.3 One-loop four-point integral
We have the following one-loop four-point integral:
Inu(en) / dPe, 1
€, = ;
e irP/2 (6 —n) (6 = p1)? —n) (br — pr —p2)* = 1) (Lt — p1 — P2 —P3)2(—A777)>
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The expansion of the above integral at n — oo is given by:

dPy¢ 1 20 TE&E (20(ps + 2\ F
[1111:/17TD/12 62 E ( P1 — pl) § ( p2 pl p2) % (A8)
=0 k=0

2£(p2+p1+p3)—p1—p2 ' A9
Z Do) (A.9)
=0 ! g
dPe¢ 1 .
N / irP/2 (g2 — p)? + Higher powers (4.10)

Using the equation we get:

JA— >F<€; 2) (A11)
A.2 Infinity expansion of two-loop integrals
A.2.1 Two-loop two point sunrise diagram
e = [ e
The expansion of the above integral at n — oo is given by:
(A.13)

[ dP0dPe, 1 N (26 + G)pr — pP’
fn = / i/ (03 —n) (63 —n) (€ + £2)? — 1) JZO ( ((r +£2)* =) >
1
)

B / AP, dP 1,

irD2 (2 =) (&2 + Higher powers

—n) ({1 +42)? —n)
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Calculation of the first term

The first term is a massive vacuum two-loop sunrise diagram. This is easier to solve using

the Feynman parametrization of integrals. Consider the integral:

dPe,dPe 1
/ 5 . - (A.14)
im (63 —n) (63 =) (L + 2)?)
We first calculate the Symanzik polynomials:

U= 10 + Qpig3 + Qg (A15)
F = (qqas + avaz + ajag) (g + ag)x (A.16)

The Feynman representation using equation [2.14|is given by:

2 —1)
I = (1’/T + is 1 / / / da1 da2 dOég)

9 (A.17)

Qg + a3 + 043041) ;
) (Z ) — 1> )25_1
!

(Ozl + (6]

Now, we use the Cheng-Wu identity to write:

(5(20@—1) =0 (a1 +ay—1) (A.18)

We redefine the variables ay = 3, @y =1 — ( and simplify the integral as:

e—2
I = (ir?) +2§; : / / dB dag f;t @) (A.19)

We integrate over asz to obtain:

: —|-2 —1) 1
I= (17T ; T / ﬂ 1 (A= A9 (A.20)
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On integrating, we get the solution:

(26 — 1) T(e)2D(1 — ¢)
(n)*~" T(2e)L(2—¢)

L = (i) (A.21)

pj

T(2¢) T(e)D(1 — e)T(1 + ¢)

Iy = (i’]TD) (77)2571 (2 T 1T@ o) (A.22)
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