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Abstract

In this thesis, the spectral zeta function associated with the Jaynes-Cummings
Hamiltonian is explored. The thesis first reviews the known results about the
spectral properties of the JC Hamiltonian and then goes on to prove the analytic
continuation of the JC spectral zeta function using summation formulas. This
proof is completed in two parts, first the analytic continuation to Re(s) > 0 is
shown followed by the analytic continuation to the entire complex plane. This
proof involves analysing some hypergeometric functions arising naturally from
the summation formulas used in the proof. Some possible areas where this proof
might be applied in the future are discussed.
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Chapter 1

Introduction

The Jaynes-Cummings(JC) model is a quantum optics model which describes the
interaction between a two-level atom and a single mode of a quantized electro-
magnetic field [10]. This model, being exactly solvable, finds much application in
quantum optics and solid-state physics, among other applications. For example,
the JC model was used to predict the existence of Rabi oscillations which was
then experimentally shown to exist.

The Quantum Rabi model is an important fundamental model describing the
interaction between an atom and an electromagnetic field, the fully quantised ver-
sion of which was first discussed by Jaynes and Cummings in 1963. The JC model
can be derived as an approximation to the Quantum Rabi model, via the rotating
wave approximation when the coupling strength between the atom and the field is
weak (called the JC regime of the Quantum Rabi model). The predictions of phys-
ical quantities made using the JC model have been demonstrated to be matching
the experimental results for suitable values of the coupling strength[16].

The spectral zeta function of operators in quantum mechanics has interest-
ing connections to number theory. For example, the spectral zeta function of the
Quantum Harmonic Oscillator (QHO) which encodes the energy eigenvalues of
the system, is the Riemann zeta multiplied by some elementary functions. The
spectral zeta function of the Jaynes-Cummings model encodes the information
about the energy eigenvalues of the JC Hamiltonian and is therefore interesting
both mathematically and with respect to its physical applications. The spectral
zeta function of the aforementioned Quantum Rabi model has been studied and its
analytic continuation was shown by Sugiyama[19] and then by Reyes-Bustos and
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Wakayama[18] by another method. The topic of this thesis is proving the analytic
continuation of the spectral zeta function of the JC Hamiltonian and providing an
explicit formula for the same. Since the eigenvalues of the JC Hamiltonian can
be easily computed, which is not the case for QRM, the proof of analytic contin-
uation of its spectral zeta function could proceed through the use of elementary
summation formulas as elaborated in the thesis. The analytic continuation of the
JC spectral zeta function and the derivation of an explicit formula for the same
may be used to compute physical quantities related to the system.

The Jaynes-Cummings Hamiltonian is given by

HJC = ωa†a+
g
2
(σ+a+a†

σ−)+
ω0

2
σz,

Chapter 2 deals with developing the background necessary for studying this
JC Hamiltonian through studying the Quantum Harmonic Oscillator. The Quan-
tum Harmonic Oscillator is an important model of quantum mechanics which can
be used to model various physical phenomena such as phonons in condensed mat-
ter or molecular vibrations. The solution to the Quantum Harmonic Oscillator
will introduce the concepts of the raising and lowering operators a and a† and the
number operator a†a which appear in the JC Hamiltonian.

The operators introduced in chapter 2 will in turn be used to find the eigenval-
ues of the Jaynes-Cummings Hamiltonian in chapter 3. This is possible since the
JC Hamiltonian has U(1) symmetry and its action can be written in the eigenbasis
of the eigenspaces of its commuting operator. Chapter 3 also includes a deriva-
tion of the JC-evolution operator as an application of the theory discussed in that
chapter.

Chapter 4 introduces the concept of spectral zeta functions and discusses the
spectral zeta functions of other physical models. It illustrates the interconnection
between number theory and the spectral zeta functions of such models. Finally,
some strategies for proving the analytic continuation of these spectral zeta func-
tions are discussed.

Chapter 5 comprises of the main topic of this thesis- the analytic continuation
of the spectral zeta function of the JC model. It discusses in detail the proof of
the analytic continuation using summation formulas such as the Euler-Maclaurin
summation formula. The proof involves hypergeometric functions which arise

iii



naturally from the summation formula. The concluding chapter, chapter 6 dis-
cusses the future directions the research might take.

1.1 Original contribution
This thesis consists of reviewing the literature on the spectral properties if the JC
hamiltonian and then proving the analytic continuation of its spectral zeta func-
tion. The result on the analytic continuation of the JC spectral zeta function is an
original result obtained during this thesis.
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Chapter 2

Quantum Harmonic Oscillator

The Quantum Harmonic Oscillator (QHO) is an important model in quantum me-
chanics. This chapter describes in detail the Hamiltonian and spectrum of QHO to
set up the necessary notation used in this thesis. This chapter consists of reviewing
the literature on the QHO.

2.1 The number operator
The Quantum Harmonic Oscillator Hamiltonian is given by

H =
P2

2m
+

1
2

kX2 =
P2

2m
+

1
2

mω
2X2 =

ω

2

(
P2

mω
+mωX2

)
, (2.1)

where the quantities m,ω and k are positive constants. Physically m is considered
as the particle’s mass, and

ω =

√
k
m

is considered the angular frequency of the oscillator. X and P are the position and
momentum operators. The properties of these operators are discussed below.

Let H be a Hilbert space. The Stone-von Neumann theorem implies that if
there exist two self-adjoint operators in H following the canonical commutation
relations, these operators are unitarily equivalent to the operators X and P consid-
ered as acting on L2(R). The momentum and position operators X and P follow
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the canonical commutation relation (using the bracket notation for commutation)

[X ,P] = ı̇I

and hence can be considered as operators acting on an abstract Hilbert space H
as well as specifically as operators acting on L2(R). The operators P and X can
be described as acting on L2(R) in the following way

P =−ih̄
d
dx

X = x.

The theorems on momentum and position operators which are assumed (such as
their self-adjoint property) are proved in [6]. Planck’s constant h̄ is considered as
1 in the remainder of the thesis for ease of calculation.

To find the spectrum of the QHO, an operator called the number operator can
be defined as follows. Let us define

A :=
P√
mω

and B :=
√

mωX .

The Quantum Harmonic Oscillator Hamiltonian can now be written as

H =
1
2

ω(A2 +B2). (2.2)

If A and B were commutative, we could easily factorize this expression as

H =
1
2

ω(B+ ı̇A)(B− ı̇A).

A and B do not commute, but motivated by this factorization we define

a =
1√
2
(B+ ı̇A) =

1√
2

(√
mωX + ı̇

P√
mω

)
(2.3)

and

a† =
1√
2
(B− ı̇A) =

1√
2

(√
mωX − ı̇

P√
mω

)
(2.4)

.
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Multiplying them,

a†a =
1
2
(B− ı̇A)(B+ ı̇A) =

1
2
(B2 +A2 + ı̇[B,A]).

The canonical commutation relation followed by X and P implies

[B,A] = [X ,P] = ı̇I.

Continuing the evaluation of a†a,

a†a =
1
2
(B2 +A2 + ı̇[B,A])

=
1
2
(B2 +A2 + ı̇(ı̇I))

=
1
2
(B2 +A2 − I).

Hence, the operator a†a can be written as

a†a =
1
ω

H − 1
2

I. (2.5)

H = ω

(
a†a+

1
2

I
)

This operator a†a is called the number operator since it counts the number of
particles in a system.

2.2 Relation between a and a†

In order to compute the spectrum of the Quantum Harmonic Oscillator Hamil-
tonian, it is sufficient to compute the spectrum of the number operator. To find
the spectrum of the number operator, the relation between the operators a and a†

needs to be evaluated.

4



Proposition 2.2.1. The commutator relation between a and a† is given as

[a,a†] = I.

Proof. Writing a and a† in terms of A and B

[a,a†] =
1
2
[B+ ı̇A,B− ı̇A]

=
1
2
([B,B]+ [B,−ı̇A]+ [ı̇A,B]+ [ı̇A,−ı̇A])

=
1
2
(−ı̇[B,A]+ ı̇[A,B]).

Using the canonical commutation relation of A and B,

=
1
2
(−ı̇(ı̇I)+ ı̇(−ı̇I))

=
1
2
(2I) = I.

Proposition 2.2.2. The adjoint of the operator a is a† (acting on L2(R)).

Proof. Define

D :=
1√
mω

and x̃ :=
x
D

and therefore,
d
dx̃

=
1√
mω

d
dx

.

Then the operators can be written in differential form in the following manner

a =
1√
2
(B+ ı̇A) =

1√
2

(√
mωX + ı̇

P√
mω

)
=

1√
2

(
x̃+

d
dx̃

)
a† =

1√
2
(B− ı̇A) =

1√
2

(√
mωX − ı̇

P√
mω

)
=

1√
2

(
x̃− d

dx̃

)
.
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Since the subspace S 2(R) of rapidly decreasing functions on R of L2(R) is dense
in L2(R) (see [5]), it suffices to show that the adjoint of the operator a is a† in
S 2(R). To prove this, we need to show that given two complex functions f (x̃)
and g(x̃) ∈ S 2(R), the following holds:

⟨ f ,ag⟩= ⟨a† f ,g⟩.

In L2(R) and in S 2(R), this inner product is defined as

⟨ f ,g⟩=
∫

∞

−∞

f (x)g(x)dx.

Considering the left-hand side of the equation,

⟨ f ,ag⟩= 1√
2

∫
∞

−∞

f (x̃) a g(x̃)dx̃

=
1√
2

∫
∞

−∞

f (x̃)
(

x̃+
d
dx̃

)
g(x̃)dx̃

=
1√
2

∫
∞

−∞

f (x̃) x̃ g(x̃)+ f (x̃)
d
dx̃

g(x̃)dx̃.

Using the Integration by Parts formula, this can be written as

=
1√
2

∫
∞

−∞

f (x̃) x̃ g(x̃)−g(x̃)
d
dx̃

f (x̃)dx̃+ f (x̃)g(x̃)
∣∣∣∣∞
−∞

.

Since f (x̃) and g(x̃) ∈ S 2(R), the last term goes to 0 and rearranging,

=
1√
2

∫
∞

−∞

(
x̃− d

dx̃

)
f (x̃) g(x̃)dx̃

Now since x̃ ∈ R,

=
1√
2

∫
∞

−∞

(
x̃− d

dx̃

)
f (x̃) g(x̃)dx̃ = ⟨a† f ,g⟩.

This proves that the adjoint of the operator a is a† in S 2(R). Since S 2(R) is
dense in L2(R) the proof is complete.
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2.3 The eigenvalues of the number operator

The number operator a†a acting on L2(R) is self-adjoint. Since a self-adjoint op-
erator has atleast one eigenvector, let that eigenvector be ψ and the corresponding
eigenvalue be λ . The eigenvalues of this operator are also non-negative because:

λ ⟨ψ,ψ⟩= ⟨ψ,a†aψ⟩= ⟨aψ,aψ⟩ ≥ 0. (2.6)

To compute the eigenvalues of the number operator, we first need to derive
some more commutation relations.

Proposition 2.3.1. The following commutation relations hold between the opera-
tors a and a† and the number operator a†a

[a,a†a] = a (2.7)

[a†,a†a] =−a†. (2.8)

Proof. Using Proposition 2.2.1,

[a,a†a] = aa†a−a†aa = (aa† −a†a)a = [a,a†]a = Ia = a.

Similarly using Proposition 2.2.1 again,

[a†,a†a] = a†a†a−a†aa† = a†(a†a−a†a) = a†(−[a,a†]) = a†(−I) =−a†.

The operator a is called the lowering operator and the operator a† is called the
raising operator since they lower and raise the eigenvalue of the eigenvectors of
a†a by 1 respectively. The following Proposition helps us compute the eigenvalue
of a†a and also justifies the names raising the lowering operator.

Proposition 2.3.2. Suppose that ψ is an eigenvector for the number operator a†a
with eigenvalue λ . Then,

a†a(aψ) = (λ −1)aψ. (2.9)

Either aψ is 0 or aψ is an eigenvector of a†a with eigenvalue λ −1
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a†a(a†
ψ) = (λ +1)a†

ψ. (2.10)

Similarly, either a†ψ is 0 or a†ψ is an eigenvector of a†a with eigenvalue λ +1

Proof. Using equation (2.7), we can prove the Proposition in equation (2.8) by
algebraic manipulation as follows

a†a(aψ) = (aa†a−a)ψ

= (a(a†a)−a)ψ
= (λ −1)aψ.

and similarly for the raising operator a† using equation (2.8)

a†a(a†
ψ) = (a†a†a+a†)ψ

= (a†(a†a)+a†)ψ

= (λ +1)a†
ψ.

Since a lowers the eigenvalue of ψ , we must get zero at some point if we ap-
ply a repeatedly to ψ . This is because if anψ were always non-zero, for some
large value of n, the eigenvalue of anψ would be negative, which is not possible
as observed in equation 2.6.

Therefore, there exists some ψ0 such that aψ0 equals 0. This implies that
a†aψ0 = 0 and ψ0 is an eigenvector of a†a with eigenvalue 0. Now let,

an
ψ = aψ0 = 0.

Since lowering the eigenvalue of ψ repeatedly n times gives the eigenvector with
eigenvalue 0, the eigenvalue of the original eigenvector ψ is n.

This implies that given an eigenvector ψ of a†a, we can find an eigenvector
ψ0 of a†a with eigenvalue 0. The other eigenvectors of a†a can be derived from
ψ0 by repeatedly applying the a† (raising) operator. ψ0 can be considered as the
”ground state” of a†a.
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2.3.1 Some identities involving a and a†

The action of the operators a and a† on ψi are also important to the evaluation of
the spectrum of the JC-Hamiltonian since they also occur in the JC-Hamiltonian
separately from the number operator. Let ψ0 be the ground state of the number
operator as denoted earlier. Let us define

Definition 2.3.1. The eigenvectors ψn of the number operator a†a can be defined
using a ground state of the number operator ψ0 and the raising operator a† in the
following way

ψn := (a†)n
ψ0.

Proposition 2.3.3. The vectors ψn have the following properties:

1. a†ψn = ψn+1

2. a†aψn = nψn

3. ⟨ψn,ψm⟩= n!δn,m

4. aψn+1 = (n+1)ψn.

Here δn,m is defined as

δn,m = 1 if n = m
= 0 if n ̸= m.

Proof. (Proof of 1)

Using definition 2.3.1 it can be shown that

a†
ψn = (a†)n+1

ψ0 = ψn+1.

(Proof of 2)
We will show this by induction. We know that

a†aψ0 = 0.
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Now let the induction hypothesis be

a†aψk = kψk.

The induction step can be written as

a†aψk+1 = a†aa†
ψk

= (a†a†a+a†)ψk (Using equation 2.8)

= ka†
ψk +a†

ψk (Using the induction hypothesis)

= (k+1)a†
ψk (Using equation 1)

= (k+1)ψk+1.

This completes the induction argument.

(Proof of 3)
If n = m, we prove this by induction. For n=0, ⟨ψ0,ψ0⟩= 1 is assumed.
Next we assume

⟨ψn,ψn⟩= n!

and compute ⟨ψn+1,ψn+1⟩

⟨ψn+1,ψn+1⟩= ⟨a†
ψn,a†

ψn⟩
= ⟨ψn,aa†

ψn⟩
Using Proposition 2.2.1,

= ⟨ψn,(a†a+1)ψn⟩
= (n+1)⟨ψn,ψn⟩
= (n+1)!.

This completes the induction step.

For the case of n ̸= m, without loss of generality, let n > m

⟨ψn,ψm⟩= ⟨a†m+1
ψn−m−1,ψm⟩

= ⟨ψn−m−1,am+1
ψm⟩= 0.

Since, n > m, n−m−1 ≥ 0.
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(Proof of 4) Using Proposition 2.2.1,

aψn+1 = aa†
ψn

= (a†a+1)ψn

and using equation 1,
= (n+1)ψn.

Equation 2 demonstrates that the number operator has the non-negative inte-
gers as eigenvalues. It can also be shown that ψ ′

ns, the eigenvectors of a†a form
an orthogonal basis for L2(R). This ensures that all the domain conditions for all
the operators are met.

These identities derived in this chapter can be used to compute the spectrum
of the Jaynes-Cummings Hamiltonian. For a more detailed discussion on the op-
erators mentioned here, refer to [6]. The following section will deal with deriving
the spectrum and eigenvectors of the Jaynes-Cummings Hamiltonian.
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Chapter 3

The Jaynes-Cummings model

The Jaynes-Cummings model is a quantum optics model describing the interac-
tion between a two-level atom and a quantized electromagnetic field. In this chap-
ter, the Jaynes-Cummings Hamiltonian and its spectral properties are reviewed.

3.1 The Jaynes-Cummings Hamiltonian
The Jaynes-Cummings Hamiltonian [10] is given by

HJC = ωa†a+
g
2
(σ+a+a†

σ−)+
ω0

2
σz,

where
σ± = (σx ± ı̇σy)/2

and σx,σy and σz are the Pauli matrices given by

σx =

[
0 1
1 0

]
,σy =

[
0 −ı̇
ı̇ 0

]
,σz =

[
1 0
0 −1

]
.

Here ω,g and ω0 are constants related to the physical system. The constants ω is
the angular frequency of the electromagnetic field, ω0 is the atom frequency and
g can be interpreted as the coupling strength between the atom and the field. In
the following section, we discuss the relation between the Quantum Rabi model
Hamiltonian and the Jaynes-Cummings Hamiltonian.
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3.1.1 QRM and derivation of HJC from QRM Hamiltonian
The Quantum Rabi Model (QRM) is a fundamental model of light-matter interac-
tion. This model was considered in its fully quantized version in 1963 by Jaynes
and Cummings. The Jaynes-Cummings model Hamiltonian can be derived from
the QRM Hamiltonian by ignoring some terms from the Hint part of the QRM
Hamiltonian. This approximation is called as the rotating wave approximation
(RWA). This approximation experimentally holds in certain parameter regimes,
specifically when the coupling strength is weak ( g

ω
small).[4]

HRabi = ωa†a+
ω0

2
σz +

g
2

σx(a† +a)

= ωa†a+
ω0

2
σz +

g
2
(σ++σ−)(a† +a),

This can be expanded as

= ωa†a+
ω0

2
σz +

g
2
(σ+a† +σ+a+σ−a† +σ−a).

The RWA amounts to ignoring the terms σ+a† and σ−a which gives us the
final form of the Jaynes-Cummings Hamiltonian as follows

HJC = ωa†a+
ω0

2
σz +

g
2
(σ+a+a†

σ−). (3.1)

In the following section, we establish one of the commutators of the Jaynes-
Cummings Hamiltonian. This, in turn, will be used to derive the spectrum of
HJC.

3.2 Commuting operator to HJC

The Jaynes-Cummings Hamiltonian can be separated into two commuting parts
as follows

HJC = HI +HII,

where,

HI = ω(a†a+
σz

2
)

HII = (ω0 −ω)
σz

2
+

g
2
(aσ++a†

σ−).

13



Let ∆ := ω0 −ω for ease of computation in the following sections.

Also, note the fact

the matrices σz,σ+ and σ− commute with the operators a,a†. (3.2)

To show, HI and HII commute:

H1H11 =

[
ω

(
a†a+

σz

2

)][
∆

σz

2
+

g
2
(aσ++a†

σ−)

]
= ωa†a∆

σz

2
+ωa†a

g
2

aσ++ωa†a
g
2

a†
σ−+ω∆

σz
2

4
+ω

σzg
4

aσ++ω
σzg
4

a†
σ−.

Using (3.2) and rearranging the terms,

= ω∆a†a
σz

2
+ω

g
2

σ+a†aa+ω
g
2

σ−a†aa† +
ω∆

4
σz

2 +
ωg
4

σzaσ++
ωg
4

σzσ−a†.

H11H1 =

[
∆

σz

2
+

g
2
(aσ++a†

σ−)

] [
ω(a†a+

σz

2
)

]

= ∆
σz

2
ωa†a+∆ω

σz
2

4
+

g
2

aσ+ωa†a+
g
2

aσ+ω
σz

2
+

g
2

a†
σ−ωa†a+

g
2

a†
σ−ω

σz

2
.

Using (3.2) and rearranging the terms,

H11H1 =ω∆a†a
σz

2
+ω

g
2

σ+aa†a+ω
g
2

σ−a†a†a+
ω∆

4
σz

2+
ωg
4

aσ+σz+
ωg
4

a†
σ−σz.

Therefore the commutator is

[H1,H11] =−ω
g
2

σ+[a,a†]a+ω
g
2

σ−a†[a,a†]+
ωg
4

a[σz,σ+]+
ωg
4

a†[σz,σ−].

Since from Proposition 2.2.1, [a,a†] = 1, and also

[σz,σ+] = 2σ+ and [σz,σ−] =−2σ−,

14



[H1,H11] =−ω
g
2

σ+a+ω
g
2

σ−a† +
ωg
4

a(2σ+)+
ωg
4

a†(−2σ−)

=−ω
g
2

σ+a−ω
g
2

σ+a+ω
g
2

σ−a† −ω
g
2

σ−a†

= 0.

Therefore, H1 can be shown to be a commuting operator to HJC as follows

[H1,HJC] = [H1,H1 +H11] = [H1,H1]+ [H1,H11] = 0. (3.3)

Therefore,

[H1,HJC] = 0

3.3 The spectrum of the JC-Hamiltonian
The commuting operator to HJC, H1 can be used to find the spectrum of HJC by
applying the following well known result

Proposition 3.3.1. If two operators A and B commute, every eigenspace of A is B
invariant. [17]

To apply this result, first, we compute the eigenvectors and eigenvalues of H1.
We have to find ψ such that

H1ψ = λψ,

that is,

ω

(
a†a+

σz

2

)
ψ = λψ.

15



Considering ψi, the eigenvectors of the number operator, this implies

λ

ψn

ψm

= ω

a†a+ 1
2 0

0 a†a− 1
2

ψn

ψm

 (3.4)

= ω

 (n+ 1
2)ψn

(m− 1
2)ψm

 . (3.5)

From (3.5), to factor out the eigenvalue λ , the following must be true

ω

(
n+

1
2

)
= ω

(
m− 1

2

)
,

n+1 = m.

Therefore, the eigenvectors of H1 are of the form[
ψn

ψn+1

]
,

[
0

ψn+1

]
and

[
ψn
0

]

for the eigenvalue ω

(
n+

1
2

)
for n = 0,1,2...

Additionally, the vector
[

0
ψ0

]
is an eigenvector of H1 with the eigenvalue

−ω

2
.

Therefore, H1 has an eigenbasis given by

L2(R)⊗C2 =V0
⊕
n∈N

Vn,

where

V0 =

[
0

ψ0

]
and Vn = span

{[
ψn
0

]
,

[
0

ψn+1

]}
.

By Proposition 3.3.1, since HJC and H1 commute, HJC is invariant on each of
the Vi’s. Therefore we can write HJC in the basis of each of the subspaces Vi as

16



follows

HJC

[
ψn
0

]
=

(
nω +

ω0

2

)[
ψn
0

]
+

g
2

[
0

ψn+1

]
HJC

[
0

ψn+1

]
= (n+1)

[
ψn
0

]
+

(
(n+1)ω − ω0

2

)[
0

ψn+1

]
.

Therefore, denoting the action of HJC on Vn as H(n)
JC,

H(n)
JC =


(

nω +
ω0

2

)
g(n+1)

2
g
2

(
(n+1)ω − ω0

2

)
 .

To find the eigenvalues of the Jaynes-Cummings Hamiltonian, we now need to
solve

Det(H(n)
JC −λ I) = 0.

Expanding this, ∣∣∣∣∣∣∣∣
(

nω +
ω0

2

)
−λ

g(n+1)
2

g
2

(
(n+1)ω − ω0

2

)
−λ

∣∣∣∣∣∣∣∣= 0.

Now let ∆ = ω0 −ω ,∣∣∣∣∣∣∣∣
(

n+
1
2

)
ω +

∆

2
−λ

g(n+1)
2

g
2

(
n+

1
2

)
ω − ∆

2
−λ

∣∣∣∣∣∣∣∣= 0.
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Solving this we get,

λ =

(
n+

1
2

)
ω ±

√
∆2

4
+

g2(n+1)
4

=

(
n+

1
2

)
ω ±

√
(ω0 −ω)2

4
+

g2(n+1)
4

.

The following notation for the eigenvales of HJC will be followed in the re-
mainder of this thesis.

En
+ =

(
n+

1
2

)
ω +

√
(ω0 −ω)2

4
+

g2(n+1)
4

and

En
− =

(
n+

1
2

)
ω −

√
(ω0 −ω)2

4
+

g2(n+1)
4

.

The Hamiltonian of the JC model, HJC, is a self-adjoint operator with a discrete
spectrum of eigenvalues bounded from below. This result follows from the general
theory of differential equations. In particular, a theorem in [15] implies that since
HJC is elliptic and has real symbol and positive principal symbol, the properties
of its spectrum can be concluded.

3.4 The eigenvectors of the JC-Hamiltonian
In this section, we compute the eigenvectors of HJC for completeness. To deter-
mine the eigenvectors of HJC, we have to solve the following eigenvalue equation

H(n)
JC

(
α

[
ψn
0

]
+β

[
0

ψn+1

])
= En

+

(
α

[
ψn
0

]
+β

[
0

ψn+1

])
.

Replacing the matrix H(n)
JC , it is of the following form
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(

nω +
ω0

2

)
g(n+1)

2
g
2

(
(n+1)ω − ω0

2

)

 αψn

βψn+1

= En
+

 αψn

βψn+1

 .
The two equations obtained from this are

αωnψn +
g
2

β (n+1)ψn +
ω0

2
αψn = En

+
αψn

βω(n+1)ψn+1 +
g
2

αψn+1 −
ω0

2
βψn+1 = En

+
βψn+1.

Equating the coefficients on both sides,

αωn+
g
2

β (n+1)+
ω0

2
α = En

+
α (3.6)

βω(n+1)+
g
2

α − ω0

2
β = En

+
β . (3.7)

Rearranging equation (3.7),

g
2

α =

(
En

+−ω(n+1)+
ω0

2

)
β .

Therefore, if

β =
g
2

then, α = En
+−ω(n+1)+

ω0

2
.

Similarly for En
−,

β =
g
2

and α = En
−−ω(n+1)+

ω0

2
.

Note 1. Additionally, the vector
[

0
ψ0

]
is the ground state of the Jaynes-Cummings

Hamiltonian with an eigenvalue of
−ω0

2
.

This chapter concludes the discussion of the spectrum of the Jaynes-Cummings
Hamiltonian. In the following chapters, the spectral zeta function associated with
the JC-Hamiltonian will be discussed.
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Chapter 4

Spectral zeta functions

This chapter deals with the spectral zeta function of operators, specifically the
spectral zeta functions of hamiltonians of models closely related to the JC model.
The chapter ends with a definition of the JC spectral zeta function and the proof
of its convergence in Re(s)> 1. The majority of this chapter is a review with the
exception of section 4.3, which is a computation done during the course of this
thesis.

4.1 Definition of spectral zeta function
Let O be a self-adjoint operator on a complex Hilbert space with discrete spectrum
given by

0 < λ0 ≤ λ1 ≤ ...≤ λk ≤ ...→ ∞

(eigenvalues are being counted with multiplicity). Then, the spectral zeta function
of O is given by

ζO(s) =
∞

∑
k=0

1
λk

s , (4.1)

for Re(s)> 0 sufficiently large.

4.1.1 The spectral zeta function of the Quantum Harmonic Os-
cillator

Using point 2 from Proposition 2.3.3 and the definition of the Quantum Harmonic
Oscillator (QHO) Hamiltonian given in (2.5), the spectrum of the Quantum Har-
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monic Oscillator Hamiltonian H acting on L2(R) is given by

Spec(H) = {
(

n+
1
2

)
ω : n = 0,1,2,3...}

Now, for Re(s)> 1, the spectral zeta function of the QHO hamiltonian is given by

ζH(s) =
1

ωs

(
1

(1
2)

s +
1

(3
2)

s +
1

(5
2)

s + ...

)
=

2s −1
ωs ζ (s),

where ζ (s) is the Riemann zeta function.

This illustrates that there is an intersection between the study of spectral zeta
functions of physical systems and number theory. Similar to this, the spectral zeta
functions of two other physical systems related to the Jaynes-Cummings model
which also have a rich arithmetic structure are described in the following section.

4.2 Brief discussion of the spectral zeta functions of
NcHO and QRM

The non-commutative harmonic oscillator (NcHO) was defined by M. Wakayama
and A. Permeggiani [14] as a non-commutative extension to the QHO and its
spectral zeta function has been shown to have rich arithmetic properties. The non-
commutative harmonic oscillator (NcHO) is defined by the Hamiltonian acting on
L2(R)⊗C2 given by

Q := A
(
−1

2
d2

dx2 +
1
2

x2
)
+ J
(

x
d
dx

+
1
2

)
, (4.2)

for two parameter α,β ∈ R and where

A =

[
α 0
0 β

]
, J =

[
0 −1
1 0

]
.

The analytic continuation of the spectral zeta function of the NcHO to the
whole complex plane has been shown [7] and some of its special values has been
explored. The special value of the NcHO spectral zeta function at s = 2 has been
shown to have a strong connection with a solution of a singly confluent Heun’s
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ordinary differential equation [8]. Additionally, sequences of Apery-like numbers
were found in the study of these spectral zeta functions and they show interesting
congruence relations [11].

The spectral zeta function of the Quantum Rabi model (QRM) described ear-
lier in this thesis has also been studied. The meromorphic continuation of the
spectral zeta function of the QRM has been shown by two different methods ([19],
[18]). Interestingly, there is a relation between the NcHO and the QRM Hamilto-
nian through a confluence process applied to the Heun differential equation [21].

Since in the case of the QRM and the NcHO the eigenvalues cannot be explic-
itly computed, the analytic continuation of the spectral zeta function was shown
using the following methods:

1. At first the trace of the heat kernel of the operator is considered. Then
its Mellin transform is taken to obtain the integral form of the spectral zeta
function which in turn helps in proving the analytic continuation of the spec-
tral zeta function.

2. The other method to show the analytic continuation of the spectral zeta func-
tion is through the asymptotic expression of the action of the heat operator
e−tH (where H is the operator) on a smooth, compact, real-valued function.

The analytic continuation of the spectral zeta function of the QRM was proved
through both these methods and that for the NcHO was proved through the second
method. In the case of the Jaynes-Cummings Hamiltonian, since the eigenvalues
are explicitly known, another more elementary way of obtaining the analytic con-
tinuation of the JC spectral zeta function is possible through the application of
summation formulas.

4.3 Definition of ζJC(s,a)

The spectral zeta function of the Jaynes-Cummings model is defined as:

ζJC(s,a) =
∞

∑
n=0

1
(En

++a)s +
∞

∑
n=0

1
(En

−+a)s +
1

(−ω0
2 +a)

s (4.3)
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where, En
± = (n+ 1

2)ω ± 1
2

√
g2(n+1)+(ω0 −ω)2,a ̸=−En

±, a,ω > 0 and the
following condition on a must also hold.

a >
g2

16ω2 +
∆2ω

g2 +
ω

2
. (4.4)

This condition is introduced such that λ +a> 0 for all λ , where λ is an eigenvalue
of the JC Hamiltonian. Introducing the constant a defines a Hurwitz-type spec-
tral zeta function. This condition arises from the fact that the minimum possible
eigenvalue of the JC Hamiltonian is given by

− g2

16ω2 −
∆2ω

g2 − ω

2
.

This can be calculated by finding the minima of the function

f (t) =
(

t +
1
2

)
ω − 1

2

√
g2(t +1)+(ω0 −ω)2.

This condition is necessary because say there is an eigenvalue λ which is
negative, then,

λ
−s = e−slogλ .

If λ is negative, logλ is not defined for λ ∈ R. To avoid this problem in the
definition of the spectral zeta function, the spectral zeta function is defined using
the term (λ +a)−s where a is chosen such that λ +a > 0 for all λ .

4.3.1 Convergence of ζJC(s,a) in the region Re(s)> 1

The domain of absolute convergence of ζJC(s,a) is discussed in this section. The
proof is completed in two parts, by showing each of the two subseries involving
the the En

+ and the En
− eigenvalues converges absolutely in the region Re(s)> 1.

Proposition 4.3.1. The domain of absolute convergence of the subseries

∞

∑
n=0

1
(En

++a)s and
∞

∑
n=0

1
(En

−+a)s

is given by
Re(s)> 1,

provided ω > 0.
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Proof. For the subseries
∞

∑
n=0

1
(En

++a)s ,

let
s = σ + iτ,

where
σ = Re(s) and τ = Im(s).

We use the comparison test for convergence. Let

an =

∣∣∣∣ 1
(En

++a)s

∣∣∣∣= 1
|En

++a|σ

and

bn =
1

|nω|σ

Now, since a > 0 and ω > 0, and replacing the value of En
+,

1∣∣∣∣(n+ 1
2

)
ω + 1

2

√
g2(n+1)+(ω0 −ω)2 +a

∣∣∣∣σ ≤ 1
|nω|σ

.

This implies
an ≤ bn.

By the comparison test for convergence of series, this implies if ∑
∞
n=0 bn converges

then ∑
∞
n=0 an will converge. The series ∑

∞
n=0 bn converges by the p-series test if

Re(s) > 1. This implies that the series ∑
∞
n=0

1
(En

++a)s converges absolutely for
Re(s)> 1.

For the subseries ∑
∞
n=0

1
(En

−+a)s , the limit comparison test is used. Suppose
there exists series ∑

∞
n=0 an and ∑

∞
n=0 bn such that an ≥ 0 and bn > 0 for all n. Then

the limit comparison test states that if

lim
n→∞

an

bn

exists and is positive then, the two series converge and diverge together.[20]
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For this proof, let

an =

∣∣∣∣ 1
(En

−+a)s

∣∣∣∣= 1
|En

−+a|σ

and

bn =
1

|n|σ
.

Then we have,

lim
n→∞

an

bn
=

1
ωσ

.

Since ω > 0 this limit exists and is positive.

Therefore, the absolute convergence of ζJC(s,a) in the region Re(s)> 1 can be
concluded. The following section deals with analytically continuing the spectral
zeta function ζJC(s,a) defined above.
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Chapter 5

Analytic continuation of ζJC(s,a)

This chapter focuses on the proof of the analytic continuation of ζJC(s,a). The
chapter consists of four sections the first of which deals with the proof of the
analytic continuation of the Riemann zeta function using elementary summation
formulas to illustrate the method used for the analytic continuation of ζJC(s,a).In
section 5.2, the proof of the analytic continuation of ζJC(s,a) to Re(s)> 0 begins,
following the first section of the proof involving ζ (s). The hypergeometric func-
tions obtained in section 5.2 are elaborated upon in section 5.3 and the proof end
here. The final section, section 5.4 contains the proof of the analytic continuation
of ζJC(s,a) to the whole of C.

The first section of this chapter is a review of the analytic continuation of the
Riemann zeta function. The remaining three sections are original work carried out
during this project.

5.1 Analytic continuation of ζ (s) using the Euler-
Mauclaurin summation formula

The Riemann zeta function ζ (s) is defined for Re(s)> 1 as

ζ (s) =
∞

∑
n=1

1
ns . (5.1)

Lemma 5.1.1. The series in equation (5.1) converges absolutely and uniformly in
the half-plane Re(s)≥ 1+ ε for all ε > 0.[9]
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Proof. Since for Re(s)≥ 1+ ε ,

|n−s| ≤ n−1−ε

Since the term on the right-hand side does not depend on s and the series ∑
∞
n=1 n−1−ε

converges, this series is uniformly convergent on Re(s)≥ 1+ε for all ε > 0. This
implies that it is also absolutely convergent in the same region.

First, the analytic continuation of ζ (s) to Re(s)> 0 will be demonstrated since
it utilizes a simpler special case of the general summation formula used in the
proof. The plan for the proof of the analytic continuation of ζ (s) to Re(s) > 0 is
as follows:

1. Since ζ (s) converges in Re(s) > 1, we show that ζ (s) is equal to a function
in the region Re(s)> 1 and that function is analytic in the region Re(s)> 0.
2. Conclude that ζ (s) is analytic in the region Re(s)> 0.

5.1.1 Euler summation formula

The Euler summation formula [2] is applied to the series ∑
∞
n=1 n−s to show the

first part of the proof of the analytic continuation of ζ (s).

Proposition 5.1.1. If f has a continuous derivative f ′ on the interval [y,x], where
0 < y < x, then

∑
y<n≤x

f (n) =
∫ x

y
f (t)dt+

∫ x

y
(t− [t]) f ′(t)dt+ f (x)(x− [x])+ f (y)(y− [y]). (5.2)

Applying this formula to the series ∑
∞
n=1 n−s, for x > 1,

1+ ∑
1<n≤x

n−s = 1+
∫ x

1
t−s dt + s

∫ x

1
([t]− t)t−s−1 dt +(x− [x])x−s.

This form of the series can be used to prove the following Proposition.

Proposition 5.1.2. ζ (s) can be analytically continued to Re(s)> 0.
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Proof. This proof closely follows the proof given in [2]. Using the summation
formula,

= 1+
∫ x

1
t−s dt + s

∫ x

1
([t]− t)t−s−1 dt +(x− [x])x−s

=
s

s−1
− x1−s

s−1
+ s
∫ x

1
([t]− t)t−s−1 dt +O(x1−σ ),

where σ = Re(s). If σ > 1 and x → ∞, this can be written as

ζ (s) =
s

s−1
+ s
∫

∞

1
([t]− t)t−s−1 dt.

Now let A be a compact set in Re(s)> 0. Since |[t]− t| ≤ 1, for σ > 0,∣∣∣∣s∫ ∞

1
([t]− t)t−s−1 dt

∣∣∣∣≤ 1

This implies that the integral is uniformly convergent in the region Re(s) > 0.
Therefore, this expression provides the analytic continuation of ζ (s) to Re(s)> 0
with its only pole for σ > 0 being at s=1.

5.1.2 The Euler-Maclaurin summation formula
The Euler-Maclaurin summation formula, a generalization of the Euler summa-
tion formula, is used to prove the analytic continuation of ζ (s) to the rest of the
complex plane. The Euler-Maclaurin summation formula [2] is given by the fol-
lowing

∑
a≤k≤b

f (k) =
∫ b

a
f (t)dt +

1
2
( f (a))+ f (b))+

n

∑
m=1

B2m

(2m)!
( f (2m−1)(b)− f (2m−1)(a))

+
∫ b

a
P2n+1(t) f (2n+1)(t)dt. (5.3)

Here n ≥ 0 is a fixed integer, f (x) ∈ C2n+1[a,b], Bm is the mth Bernoulli number,
and Pm is the mth periodic Bernoulli function defined by Pm(x) = Bm(x − [x]),
where Bm(x) is the mth Bernoulli polynomial defined by

zexz

ez −1
=

∞

∑
m=0

Bm(x)zm

m!
. (|z|< 2π)
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Proposition 5.1.3. ζ (s) is analytic in the whole complex plane except for a pole
at s = 1.

Proof. Applying the Euler-Maclaurin formula to the series ∑
∞
n=1 n−s,

ζ (s) =
1

1− s
+

1
2
+

n

∑
m=1

B2mΓ(s+2m−1)
(2m)!Γ(s)

+
Γ(s+2n+1)

Γ(s)

∫
∞

1
P2n+1(t)t−s−2n−1 dt. (5.4)

Since P2n+1(t) = O(1), to bound the last integral we need,

σ +2n > 0.

Since n is arbitrary, the Proposition is proved.

5.2 Euler summation formula applied to ζJC(s,a)

In this section, the analytic continuation of ζJC(s,a) to Re(s) > 0 will be dis-
cussed, following the same method as for ζ (s) in the previous section. The Euler
summation formula is a special case of the Euler-Maclaurin summation formula
which is later used to prove the analytic continuation of ζJC(s,a) to the entire
complex plane. We proceed by first applying the Euler summation formula and
proving the analytic continuation of ζJC(s,a) to Re(s) > 0 in order to introduce
the various components such as the hypergeometric functions that appear in the
final proof.

To recall, the spectral zeta function of the JC model is given by

ζJC(s,a) = lim
x→∞

[
x

∑
n=0

1
(En

++a)s +
x

∑
n=0

1
(En

−+a)s +
1

(−ω0
2 )

s

]

where, En
± = (n+ 1

2)ω ± 1
2

√
g2(n+1)+(ω0 −ω)2,a ̸=−En

± and a,ω > 0. the
following condition on a must also hold as discussed in the previous chapter.

a >
g2

16ω2 +
∆2ω

g2 +
ω

2
. (5.5)

The three summation terms within the ζJC(s,a) will be evaluated separately using
the Euler summation formula as follows.
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5.2.1 The En
+ eigenvalue part

The expression involving the En
+ eigenvalues can be written using the Euler sum-

mation formula (equation 5.2) as

lim
x→∞

x

∑
n=1

1
(En

++a)s = lim
x→∞

[∫ x

1

[
(t +

1
2
)ω +

1
2

√
g2(t +1)+∆2 +a

]−s

dt

+ s
∫ x

1
(t − [t])

[
(t +

1
2
)ω +

1
2

√
g2(t +1)+∆2 +a

]−s−1

(ω +
1
4
(g2(t +1)+∆

2)
−1
2 g2)dt

+(x− [x])
[
(x+

1
2
)ω +

1
2

√
g2(x+1)+∆2 +a

]−s
]
. (5.6)

The first term of the subseries involving the En
+ eigenvalues,

1
(E0

++a)s is

not included in the analysis involving the Euler summation formula. Instead, we
can argue that since it is a power function of s it is analytic in any open set in its
domain which in this case is C.

Out of the three summands in equation (5.6), the third summand can be easily
estimated by considering the order of the power of x in the term. Therefore it can
be written as

(x− [x])
[
(x+

1
2
)ω +

1
2

√
g2(x+1)+∆2 +a

]−s
]
= O(x1−s).

For Re(s)> 1, and taking x → ∞, this term evaluates to 0.

Now we evaluate the second summand. Taking the limit x → ∞ the integral
becomes

s
∫

∞

1
(t − [t])

[
(t +

1
2
)ω +

1
2

√
g2(t +1)+∆2 +a

]−s−1

dt.

Let A be a compact set in the region Re(s) > 0. We will try to show that the
absolute value of the integral in the second summand can be bounded by a term
not depending on s for s ∈ A. Now
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∣∣∣∣s∫ ∞

1
(t − [t])

[
(t +

1
2
)ω +

1
2

√
g2(t +1)+∆2 +a

]−s−1

(ω +
1
4
(g2(t +1)+∆

2)−
1
2 g2)dt

∣∣∣∣
≤ |s|

∫
∞

1

[
(t +

1
2
)ω +

1
2

√
g2(t +1)+∆2 +a

]−σ−1

(ω +
1
4
(g2(t +1)+∆

2)−
1
2 g2)dt.

Now, since t ≥ 1,

ω +
1
4
(g2(t +1)+∆

2)−
1
2 g2 ≤ ω +

1
4
(2g2 +∆

2)−
1
2 g2.

For simplifying calculations let,

k = ω +
1
4
(2g2 +∆

2)
− 1

2 g2.

The bound now becomes,

|s|
∫

∞

1

[
(t +

1
2
)ω +

1
2

√
g2(t +1)+∆2 +a

]−σ−1

(ω +
1
4
(g2(t +1)+∆

2)−
1
2 g2)dt

≤ |s|k
∫

∞

1

[
(t +

1
2
)ω +

1
2

√
g2(t +1)+∆2 +a

]−σ−1

dt.

To simplify the integral, we increase the bound further. Since t ≥ 1 we have,

1
2

√
g2(t +1)+∆2 +a ≥ 1

2

√
2g2 +∆2 +a.

This implies for σ > 0, the term inside the integral in the last bound can be
bounded as[
(t +

1
2
)ω +

1
2

√
g2(t +1)+∆2 +a

]−σ−1

≤
[
(t +

1
2
)ω +

1
2

√
2g2 +∆2 +a

]−σ−1

.

Therefore, the bound changes to

|s|k
∫

∞

0

[
(t +

1
2
)ω +

1
2

√
g2(t +1)+∆2 +a

]−σ−1

dt ≤ |s|k
∫

∞

0

[
(t +

1
2
)ω +

1
2

√
2g2 +∆2 +a

]−σ−1

dt.

Again for simplifying calculations let

c =
ω

2
+

1
2

√
2g2 +∆2 +a.
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Then the integral within the final bound is

|s|k
∫

∞

1

[
(t +

1
2
)ω +

1
2

√
g2 +∆2 +a

]−σ−1

dt = |s|k
∫

∞

1
(ωt + c)−σ−1 dt.

Therefore the integral is

−|s|k
ω

lim
b→∞

(
1

(ω +b)σ − 1
(ω + c)σ

)
=

|s|k
ω(ω + c)σ ≤ |s∗|k

ω(ω + c)σ∗ ,

where
σ
∗ = inf

s∈A
Re(s),

and
|s∗|= sup

s∈A
|s|

σ∗ and |s∗| exist by the extreme value theorem for function from compact spaces
to real numbers. To summarise, absolute value of the second summand can be
bounded as∣∣∣∣s∫ ∞

1
(t − [t])

[
(t +

1
2
)ω +

1
2

√
g2(t +1)+∆2 +a

]−s−1

(ω +
1
4
(g2(t +1)+∆

2)−
1
2 g2)dt

∣∣∣∣
≤ |s|k

(ω + c)σ ≤ |s∗|k
(ω + c)σ∗ .

where, k,c are constants involving ω,g,∆ and a.

σ = Re(s), σ
∗ = inf

s∈A
Re(s), and |s∗|= sup

s∈A
|s|.

This concludes that this summand is uniformly convergent in any compact set
in the region Re(s) > 0 and therefore it represents an analytic function in the re-
gion Re(s)> 0.

Now, since the third summand has been shown to evaluate to zero and the sec-
ond summand is analytic in the region Re(s)> 0, we evaluate the first summand.
The first summand evaluates to some Gaussian hypergeometric functions whose
derivation and analyticity will be discussed in detail in the next section.

In the remaining part of this section we discuss along the same lines the Euler
summation formula applied to the En

− eigenvalue part.
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5.2.2 The En
− eigenvalue part

Similar to the term in ζJC(s,a) involving the En
+ eigenvalues, the term involving

En
− eigenvalues can be expanded using the Euler summation formula as follows

lim
x→∞

x

∑
n=1

1
(En

−+a)s = lim
x→∞

[∫ x

1

[
(t +

1
2
)ω − 1

2

√
g2(t +1)+∆2 +a

]−s

dt

+ s
∫ x

1
(t − [t])

[
(t +

1
2
)ω − 1

2

√
g2(t +1)+∆2 +a

]−s−1

(ω − 1
4
(g2(t +1)+∆

2)
−1
2 g2)dt

+(x− [x])
[
(x+

1
2
)ω − 1

2

√
g2(x+1)+∆2 +a

]−s
]
. (5.7)

Similar to the En
+ subseries, the term

1
(E0

−+a)s is evaluated separately and it is

analytic in C since it is a power function of s.

The third summand in this case also evaluates to zero in the following way

(x− [x])
[
(x+

1
2
)ω − 1

2

√
g2(x+1)+∆2 +a

]−s
]
= O(x1−s).

For Re(s)> 1, and taking x → ∞, this term evaluates to 0.

Evaluating the second summand, after taking the limit, the expression is

s
∫

∞

1
(t − [t])

[
(t +

1
2
)ω − 1

2

√
g2(t +1)+∆2 +a

]−s−1

dt

Let A be a compact set in the region Re(s) > 0. Then we will show that the
following integral can be bounded by a term not depending on s for s ∈ A. The
integral can first be bounded by∣∣∣∣s∫ ∞

1
(t − [t])

[
(t +

1
2
)ω − 1

2

√
g2(t +1)+∆2 +a

]−s−1

(ω − 1
4
(g2(t +1)+∆

2)−
1
2 g2)dt

∣∣∣∣
≤ |s|

∫
∞

1

∣∣∣∣(t + 1
2
)ω − 1

2

√
g2(t +1)+∆2 +a

∣∣∣∣−σ−1∣∣∣∣ω − 1
4
(g2(t +1)+∆

2)−
1
2 g2
∣∣∣∣dt.

33



Now if t > 1,
1
2

√
g2(t +1)+∆2 ≥ 1

2

√
2g2 +∆2.

Using the above inequality and triangle inequality we can say that∣∣∣∣ω− 1
4
(g2(t +1)+∆

2)−
1
2 g2
∣∣∣∣≤ω+

1
4
(g2(t +1)+∆

2)−
1
2 g2 ≤ (ω+

1
4
(2g2 +∆

2)−
1
2 g2).

Therefore the bound now becomes

|s|
∫

∞

1

∣∣∣∣(t + 1
2
)ω − 1

2

√
g2(t +1)+∆2 +a

∣∣∣∣−σ−1∣∣∣∣ω − 1
4
(g2(t +1)+∆

2)−
1
2 g2
∣∣∣∣dt

≤ |s|(ω +
1
4
(2g2 +∆

2)−
1
2 g2)

∫
∞

1

∣∣∣∣(t + 1
2
)ω − 1

2

√
g2(t +1)+∆2 +a

∣∣∣∣−σ−1

dt.

In order to work with the absolute value on the term inside the integral, we use the
reverse triangle inequality stated as follows. For real numbers x and y,

||x|− |y|| ≤ |x− y|,

which implies,
|x|− |y| ≤ |x− y|.

Therefore we have,∣∣∣∣(t + 1
2
)ω − 1

2

√
g2(t +1)+∆2 +a

∣∣∣∣≥ (t +
1
2
)ω +a− 1

2

√
g2(t +1)+∆2.

The right hand side of the previous inequality is positive due to the condition on
the parameter given by equation (4.4). Therefore the bound is,

|s|(ω +
1
4
(2g2 +∆

2)−
1
2 g2)

∫
∞

1

[(
t +

1
2

)
ω − 1

2

√
g2(t +1)+∆2 +a

]−σ−1

dt.

This final bound and the first summand in Re(s) > 0, involves hypergeometric
functions and will be discussed in the following section.
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5.3 The hypergeometric functions
This section discusses the Gaussian hypergeometric functions which arise while
evaluating the integral in the first summand of the Euler summation formula. The
Gaussian hypergeometric function is the solution of a homogeneous second-order
linear differential equation with some special properties (refer to [3] for details).
For |z| < 1,z ∈ C, and c in positive integers and the Gaussian hypergeometric
function is defined as[3]

2F1 =
∞

∑
n=0

(a)n(b)n

(c)n

zn

n!
,

where (a)n is the pochammer symbol defined by

(a)n =
Γ(a+n)

Γ(a)
and n = 1,2,3...

The following section elaborates on the derivation of the hypergeometric functions
from the first summand. Some computation using Wolfram Alpha was initially
done to guess the solution to the integral in the first term of the right side of
equation (5.6) hence the derivation proceeds in a way so that this integral can be
modified into one of the integral forms of the Gaussian hypergeometric function
given as follows

2F1(a,b;c;1− z) =
Γ(c)

Γ(b)Γ(c−b)

∫
∞

0
sb−1(1+ s)a−c(1+ sz)−a ds. (5.8)

This holds true for Re(c)> Re(b).[3]

5.3.1 The En
+ eigenvalue part

The first summand can be integrated as follows

lim
x→∞

∫ x

1

[
(t +

1
2
)ω +

1
2

√
g2(t +1)+∆2 +a

]−s

dt.

We use the following change of variable. Let

q =
√

g2(t +1)+∆2,
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and so,

dt =
2q
g2 dq.

Replacing this in the integral,

=
2
g2 lim

x→∞

∫ √
g2(x+1)+∆2

√
2g2+∆2

q
[

q2ω

g2 +
q
2
− ∆2ω

g2 − ω

2
+a
]−s

dq.

The term within the integral can be factorised into linear factors of q as follows,
let for ease of calculations,

m =

√
g2

4
−4ωa+

4∆2ω2

g2 +2ω2.

Then the integral can be written as

=
2
g2

(
ω

g2

)−s

lim
x→∞

∫ √
g2(x+1)+∆2

√
2g2+∆2

q
(

q+
g2

4ω
+

mg
2ω

)−s(
q+

g2

4ω
− mg

2ω

)−s

dq

In order to modify this integral into one of the integral forms of the Gaussian
hypergeometric function, the lower limit of the integral should be 0. To achieve
this we do the following change of variable

r = q−
√

2g2 +∆2.

Therefore the integral becomes

=
2
g2

(
ω

g2

)−s

lim
x→∞

∫ √
g2(x+1)+∆2−

√
2g2+∆2

0
(r+

√
2g2 +∆2)

(
r+
√

2g2 +∆2 +
g2

4ω
+

mg
2ω

)−s

(
r+
√

2g2 +∆2 +
g2

4ω
− mg

2ω

)−s

dr.

36



This integral then needs to be split into two integrals so that the powers on the
factors are in the required form

=
2
g2

(
ω

g2

)−s

lim
x→∞

∫ √
g2(x+1)+∆2−

√
2g2+∆2

0
r
(

r+
√

2g2 +∆2 +
g2

4ω
+

mg
2ω

)−s

(
r+
√

2g2 +∆2 +
g2

4ω
− mg

2ω

)−s

dr

+
2
g2

(
ω

g2

)−s√
2g2 +∆2 lim

x→∞

∫ √
g2(x+1)+∆2−

√
2g2+∆2

0

(
r+
√

2g2 +∆2 +
g2

4ω
+

mg
2ω

)−s

(
r+
√

2g2 +∆2 +
g2

4ω
− mg

2ω

)−s

dr.

For ease of calculation the constants would be grouped together and named as
follows. Let,

k1 =
√

2g2 +∆2 +
g2

4ω
+

mg
2ω

and n1 =
√

2g2 +∆2 +
g2

4ω
− mg

2ω

Replacing these constants,

=
2
g2

(
ω

g2

)−s

lim
x→∞

∫ √
g2(x+1)+∆2−

√
2g2+∆2

0
r(r+ k1)

−s(r+n1)
−s dr

+
2
g2

(
ω

g2

)−s√
2g2 +∆2 lim

x→∞

∫ √
g2(x+1)+∆2−

√
2g2+∆2

0
(r+ k1)

−s(r+n1)
−s dr.

Now the terms inside the integral will be divided and multiplied by k1 and n1
respectively in order to make them in the form of (1+variable)

=
2
g2

(
ω

g2

)−s

k1
−sn1

−s lim
x→∞

∫ √
g2(x+1)+∆2−

√
2g2+∆2

0
r
(

1+
r
k1

)−s(
1+

r
n1

)−s

dr

+
2
g2

(
ω

g2

)−s√
2g2 +∆2 k1

−sn1
−s lim

x→∞

∫ √
g2(x+1)+∆2−

√
2g2+∆2

0

(
1+

r
k1

)−s

(1+
r

n1

)−s

dr.

Now let,
p =

r
k1
.
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Taking the limit and changing the variable,

=
2
g2

(
ω

g2

)−s

k1
−s+2n1

−s
∫

∞

0
p(1+ p)−s

(
1+

pk1

n1

)−s

d p

+
2
g2

(
ω

g2

)−s√
2g2 +∆2 k1

−s+1n1
−s
∫

∞

0
(1+ p)−s

(
1+

pk1

n1

)−s

d p.

Comparing these two integrals with the integral form of the gaussian hypergeo-
metric function in equation (5.8) the integrals are equal to, for Re(s) > 1 (since
Re(c)> Re(b))

=
c1

+

2(s−1)(2s−1)2F1(s,2;2s;1− k1

n1
)+

c2
+

2s−12F1(s,1;2s;1− k1

n1
), (5.9)

where,

c1
+ =

2
g2

(
ω

g2

)−s

k1
−s+2n1

−s

=
2
g2

(
ω

g2

)−s(√
2g2 +∆2 +

g2

4ω
+

mg
2ω

)−s+2(√
2g2 +∆2 +

g2

4ω
− mg

2ω

)−s

,

c2
+ =

2
g2

√
2g2 +∆2

(
ω

g2

)−s

k1
−s+1n1

−s

=
2
g2

(
ω

g2

)−s√
2g2 +∆2

(√
2g2 +∆2 +

g2

4ω
+

mg
2ω

)−s+1(√
2g2 +∆2 +

g2

4ω
− mg

2ω

)−s

,

and,

m =

√
g2

4
−4ωa+

4∆2ω2

g2 +2ω2.

5.3.2 The En
− eigenvalue part

To recall, the first summand for the En
− eigenvalue part is given as follows

lim
x→∞

∫ x

1

[
(t +

1
2
)ω − 1

2

√
g2(t +1)+∆2

]−s

dt.
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Similar to the En
+ part, we do a change of variable. Let

q =
√

g2(t +1)+∆2, and dt =
2q
g2 dq.

Therefore, the integral can now be written as

=
2
g2 lim

x→∞

∫ √
g2(x+1)+∆2

√
2g2+∆2

q
[

q2ω

g2 − q
2
− ∆2ω

g2 − ω

2
+a
]−s

dq.

Again, to factorise this expression, let

m =

√
g2

4
−4ωa+

4∆2ω2

g2 +2ω2.

Note that this m is the same as that in the En
+ eigenvalue part. Therefore upon

factorising the integral is

=
2
g2

(
ω

g2

)−s

lim
x→∞

∫ √
g2(x+1)+∆2

√
2g2+∆2

q
(

q− g2

4ω
− mg

2ω

)−s(
q− g2

4ω
+

mg
2ω

)−s

dq.

The next change of variable is done to make the lower bound of the integral 0. Let

r = q−
√

2g2 +∆2.

The integral becomes

=
2
g2

(
ω

g2

)−s

lim
x→∞

∫ √
g2(x+1)+∆2−

√
g2+∆2

0
(r+

√
2g2 +∆2)

(
r+
√

2g2 +∆2 − g2

4ω
− mg

2ω

)−s

(
r+
√

2g2 +∆2 − g2

4ω
+

mg
2ω

)−s

dr.

Splitting the integral in a way similar to the last section,

=
2
g2

(
ω

g2

)−s

lim
x→∞

∫ √
g2(x+1)+∆2−

√
2g2+∆2

0
r
(

r+
√

2g2 +∆2 − g2

4ω
− mg

2ω

)−s

(
r+
√

2g2 +∆2 − g2

4ω
+

mg
2ω

)−s

dr

+
2
g2

(
ω

g2

)−s√
2g2 +∆2 lim

x→∞

∫ √
g2(x+1)+∆2−

√
2g2+∆2

0

(
r+
√

2g2 +∆2 − g2

4ω
− mg

2ω

)−s

(
r+
√

2g2 +∆2 − g2

4ω
+

mg
2ω

)−s

dr.
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The constants are grouped together and named as follows. Let,

k2 =
√

2g2 +∆2 − g2

4ω
+

mg
2ω

and n2 =
√

2g2 +∆2 − g2

4ω
− mg

2ω

Replacing these constants we get,

=
2
g2

(
ω

g2

)−s

lim
x→∞

∫ √
g2(x+1)+∆2−

√
2g2+∆2

0
r(r+n2)

−s(r+ k2)
−s dr

+
2
g2

(
ω

g2

)−s√
2g2 +∆2 lim

x→∞

∫ √
g2(x+1)+∆2−

√
2g2+∆2

0
(r+n2)

−s(r+ k2)
−s dr.

Now the terms inside the integral will be divided and multiplied by n2 and k2
respectively in order to make them in the form of (1+variable)

=
2
g2

(
ω

g2

)−s

k2
−sn2

−s lim
x→∞

∫ √
g2(x+1)+∆2−

√
2g2+∆2

0
r
(

1+
r

n2

)−s(
1+

r
k2

)−s

dr

+
2
g2

(
ω

g2

)−s√
2g2 +∆2 k2

−sn2
−s lim

x→∞

∫ √
g2(x+1)+∆2−

√
2g2+∆2

0

(
1+

r
n2

)−s

(1+
r
k2

)−s

dr.

Now let,
p =

r
k2
.

Taking the limit and changing the variable,

=
2
g2

(
ω

g2

)−s

k2
−s+2n2

−s
∫

∞

0
p(1+ p)−s

(
1+

pk2

n2

)−s

d p

+
2
g2

(
ω

g2

)−s√
2g2 +∆2 k2

−s+1n2
−s
∫

∞

0
(1+ p)−s

(
1+

pk2

n2

)−s

d p.

As before, we compare these two integrals with the integral form of the gaussian
hypergeometric function in equation (5.8). Therefore, the integrals are equal to,
for Re(s)> 1 (since Re(c)> Re(b))

=
c1

−

2(s−1)(2s−1)2F1(s,2;2s;1− k2

n2
)+

c2
−

2s−12F1(s,1;2s;1− k2

n2
), (5.10)
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where,

c1
− =

2
g2

(
ω

g2

)−s

k2
−s+2n2

−s

=
2
g2

(
ω

g2

)−s(√
2g2 +∆2 − g2

4ω
+

mg
2ω

)−s+2(√
2g2 +∆2 − g2

4ω
− mg

2ω

)−s

,

c2
− =

2
g2

√
2g2 +∆2

(
ω

g2

)−s

k2
−s+1n2

−s

=
2
g2

(
ω

g2

)−s√
g2 +∆2

(√
2g2 +∆2 − g2

4ω
+

mg
2ω

)−s+1(√
2g2 +∆2 − g2

4ω
− mg

2ω

)−s

,

and,

m =

√
g2

4
−4ωa+

4∆2ω2

g2 +2ω2.

5.3.3 Analyticity of the hypergeometric functions

To show the analyticity of the first summand of both the En
+ and En

− parts we
will use the known results on the analyticity of the hypergeometric function as a
function of its parameters. To do this we first use the following transformation for-
mula to transform the hypergeometric functions so that only one of the parameters
contains the variable s

F(a,b;2b;z) =
(

1− 1
2

z
)−a

F
(

a
2
,
1
2
+

a
2

;b+
1
2

; [z/(2− z)]2
)
.

For the hypergeometric function in the En
+ case (equation 5.9), it transforms as

2F1

(
s,2;2s;1− k1

n1

)
= 2F1

(
2,s;2s;1− k1

n1

)
=

4n1
2

(n1 + k1)
2 2F1

(
1,

3
2

;s+
1
2

;
(n1 − k1)

2

(n1 + k1)
2

)
.

Now, we refer to the following Proposition from [3].

Proposition 5.3.1. 2F1(a,b;c;z0)/Γ(c) is an entire analytic function of a,b,c, if
z0 is fixed and |z0|< 1.
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According to Proposition 5.3.1, we need to check the condition on |z0|. This
is given by

(n1 − k1)
2

(n1 + k1)
2 < 1.

Replacing the value of n1 and k1 in terms of g,ω,∆ and m, this is equal to

a >−
√

2g2 +∆2

2
− 3ω

2
.

This condition holds by the condition on a given by equation (4.4). This is because
this is equivalent to

E1
++a > 0.

For the hypergeometric function involving the En
− eigenvalues, the hypergeomet-

ric function transforms as

2F1

(
s,2;2s;1− k2

n2

)
= 2F1

(
2,s;2s;1− k2

n2

)
=

4n1
2

(n2 + k2)
2 2F1

(
1,

3
2

;s+
1
2

;
(n2 − k2)

2

(n2 + k2)
2

)
. (5.11)

Then the analyticity condition is given by

a >

√
2g2 +∆2

2
− 3ω

2
.

This condition also holds by equation (4.4) since this condition is equivalent to

E1
−+a > 0.

The Γ(c) mentioned in Proposition 5.3.1 is also included in the expressions 5.9
and 5.10. Now, since we have the analyticity of the hypergeometric functions,
we need to complete the argument for the second summand in equation 5.7. The
second summand could be bounded by

σ(ω +
1
4
(g2 +∆

2)−
1
2 g2)

∫
∞

1

[
(t +

1
2
)ω − 1

2

√
g2(t +1)+∆2 +a

]−σ−1

dt.

This integral was derived to be the hypergeometric function given by 5.11. There-
fore, for a compact set A in the region Re(s)> 0, and the hypergeometric function
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is defined for any s in that region since it was shown to be analytic for all s in C.
We take σ∗ = s for s ∈ A such that the value of the hypergeometric function given
by 5.11 is the maximum. The value of the hypergeometric function at σ∗ is the
bound for this function.

5.3.4 Poles and residues
From the expression involving the hypergeometric functions, it seems the poles
of ζJC(s,a) are at s = 1

2 and s = 1. To verify this, we first calculate the residue of
ζJC(s,a) at s = 1

2 . Putting s = 1
2 in equation (5.9) gives the following term in the

numerator of 2s−1

c1
+

2 2F1

(
1
2
,2;1;1− k1

n1

)
+ c2

+
2F1

(
1
2
,1;1;1− k1

n1

)
. (5.12)

Similarly, putting s = 1
2 in equation (5.10) gives the following term in the numer-

ator of 2s−1

c1
−

2 2F1

(
1
2
,2;1;1− k1

n1

)
+ c2

−
2F1

(
1
2
,1;1;1− k1

n1

)
. (5.13)

The hypergeometric functions at specific values of the parameters were computed
from [1] and [22] and are given by

2F1

(
1
2
,2;1;1−a

)
=

a+1

2a
2
3
,

and

2F1

(
1
2
,1;1;1−a

)
=

1√
a
.

Therefore the term in equation (5.12) becomes (after replacing k1 and n1),

−1
g
√

ω

(
2
√

2g2 +∆2 +
g2

2ω

)
+

2
g
√

ω

√
2g2 +∆2, (5.14)

and the term in equation (5.13) becomes

−1
g
√

ω

(
2
√

2g2 +∆2 − g2

2ω

)
+

2
g
√

ω

√
2g2 +∆2. (5.15)
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Adding equation (5.14) and (5.15) gives the residue at s = 1
2 as 0. This implies

that ζJC(s,a) does not have a pole at s = 1
2 .

The residue of ζJC(s,a) at s = 1 can also be computed using the following
value of the hypergeometric function

2F1

(
1,2;2;1−a

)
=

1
a
.

Therefore the residue is

c1
+

2

(
n1

k1

)
+

c1
−

2

(
n2

k2

)
.

This is equal to

1
2

(
2k1

ωn1

)(
n1

k1

)
+

1
2

(
2k2

ωn2

)(
n2

k2

)
=

2
ω
.

Therefore ζJC(s,a) has a pole at s = 1 with a residue of 2
ω

.

5.3.5 Analytic continuation of ζJC(s,a) to Re(s)> 0

In this subsection, the proof for the analytic continuation of ζJC(s,a) to Re(s)> 0
will be discussed by summarizing the techniques discussed in the previous sub-
section of chapter 5.

Proposition 5.3.2. The spectral zeta function of the JC-Hamiltonian, ζJC(s,a)
can be analytically continued to Re(s)> 0 except for a simple pole at s = 1.

Proof. We know

ζJC(s,a) = lim
x→∞

[
x

∑
n=0

1
(En

++a)s +
x

∑
n=0

1
(En

−+a)s +
1

(−ω0
2 )

s

]

where, En
± = (n+ 1

2)ω ± 1
2

√
g2(n+1)+(ω0 −ω)2 and assuming the necessary

conditions on a and ω . The terms (−ω0
2 )

−s, (E0
++a)−s and (E0

−+a)−s are con-
sidered separately as mentioned in subsection 5.2.1.
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Now, the Euler summation formula while applied to the subseries involving
the En

+ eigenvalues (except for the first term (E0
++a)−s) gives the following

terms

lim
x→∞

x

∑
n=1

1
(En

++a)s = lim
x→∞

[∫ x

1

[
(t +

1
2
)ω +

1
2

√
g2(t +1)+∆2 +a

]−s

dt

+ s
∫ x

1
(t − [t])

[
(t +

1
2
)ω +

1
2

√
g2(t +1)+∆2 +a

]−s−1(
ω +

1
4
(g2(t +1)+∆

2)
−1
2 g2
)

dt

+(x− [x])
[
(x+

1
2
)ω +

1
2

√
g2(x+1)+∆2 +a

]−s
]
.

Among these terms, the first term evaluates to the hypergeometric functions which
are derived in subsection 5.3.1. These functions are analytic in the whole complex
plane as shown in subsection 5.3.3.

The second integral term can be shown to be uniformly convergent and hence
analytic in the region Re(s)> 0 as elaborated in subsection 5.2.1. The third term
evaluates to 0 upon taking the limit x → ∞.

Similarly, applying the Euler summation formula to the subseries involving
the En

− eigenvalues (except for the first term (E0
−+a)−s) gives the following

terms

lim
x→∞

x

∑
n=1

1
(En

−+a)s = lim
x→∞

[∫ x

1

[
(t +

1
2
)ω − 1

2

√
g2(t +1)+∆2 +a

]−s

dt

+ s
∫ x

1
(t − [t])

[
(t +

1
2
)ω − 1

2

√
g2(t +1)+∆2 +a

]−s−1(
ω − 1

4
(g2(t +1)+∆

2)
−1
2 g2
)

dt

+(x− [x])
[
(x+

1
2
)ω − 1

2

√
g2(x+1)+∆2 +a

]−s
]
.

In this case too the first term evaluates to hypergeometric functions detailed in
subsection 5.3.2. The analyticity of these hypergeometric functions to the entire
complex plane is discussed in subsection 5.3.3.

The second integral can be shown to be uniformly convergent and hence ana-
lytic in the region Re(s)> 0. This is shown in two parts, the first part of which is
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showing that the absolute value of the integral can be bounded by a term as shown
in subsection 5.2.2. This bound is then shown to be equal to a hypergeometric
function which does not depend on s for s belonging to a compact set in the region
Re(s) > 0, as given in subsection 5.3.3. The remaining third term evaluates to 0
after taking the limit x → ∞.

This concludes the proof of the analytic continuation of ζJC(s,a) to Re(s)> 0.
The hypergeometric functions in subsections 5.3.1 and 5.3.2 indicate that ζJC(s,a)
might contain poles at s = 1 and s = 1

2 . Upon calculating the residues (discussed
in subsection5.3.4), we can conclude that ζJC(s,a) has a simple pole at s = 1.

5.4 Analytic continuation of ζJC(s,a) to whole of C

5.4.1 The Euler-Maclaurin summation formula applied to ζJC(s,a)

To show the analytic continuation of ζJC(s,a) to the rest of the complex plane, the
Euler-Maclaurin summation formula is used which is given as follows [9]

∑
a≤k≤b

f (k) =
∫ b

a
f (t)dt +

1
2
( f (a))+ f (b))

+
n

∑
m=1

B2m

(2m)!
( f (2m−1)(b)− f (2m−1)(a))+

∫ b

a
P2n+1(t) f (2n+1)(t)dt.

Here n ≥ 0 is a fixed integer, f (x) ∈ C2n+1[a,b], Bm is the mth Bernoulli number,
and Pm is the mth periodic Bernoulli function defined by Pm(x) = Bm(x − [x]),
where Bm(x) is the mth Bernoulli polynomial defined by

zexz

ez −1
=

∞

∑
m=0

Bm(x)zm

m!
(|z|< 2π).

Applying the Euler-Maclaurin summation formula to the subseries

∞

∑
n=1

1
(En

++a)s

we have,

f (t) =
[
(t +

1
2
)ω +

1
2

√
g2(t +1)+∆2 +a

]−s

.

46



and,

∞

∑
k=1

1
(Ek

++a)s =
1
2

(
3ω

2
+

1
2

√
2g2 +∆2 +a

)−s

+
∫

∞

1

[
(t +

1
2
)ω +

1
2

√
g2(t +1)+∆2 +a

]−s

dt

+
n

∑
m=1

B2m

(2m)!
( lim

b→∞
f (2m−1)(b))− f (2m−1)(1)+

∫
∞

1
P2n+1(t) f (2n+1)(t)dt.

(5.16)

The term (E0
++a)−s will be added separately to the sum after this evaluation.

The first term in this sum is a power function of s and is hence analytic for all s
in its domain that is all s ∈C. The second term gives the hypergeometric function
and is analytic for all s ∈ C.
Now, applying the Euler-Maclaurin summation formula to the subseries

∞

∑
k=0

1
(Ek

−+a)s

We have,

∞

∑
k=1

1
(Ek

−+a)s =
1
2

(
3ω

2
− 1

2

√
g2 +∆2 +a

)−s

+
∫

∞

1

[
(t +

1
2
)ω − 1

2

√
g2(t +1)+∆2 +a

]−s

dt

+
n

∑
m=1

B2m

(2m)!
( lim

b→∞
f (2m−1)(b))− f (2m−1)(1)+

∫
∞

1
P2n+1(t) f (2n+1)(t)dt.

Similarly to the En
+ eigenvalues, the first term is an elementary function of s so

it is analytic for all s in C. Here too, the term (E0
−+a)−s is added separately

later to the final formula. The second term is the hypergeometric function whose
analyticity for all s ∈C was shown in section 5.3.3. We discuss the remaining two
terms in the next section.

5.4.2 The Bernoulli number term and the residual term

For the other two terms in the case of En
+, f (n)(t) needs to be estimated. By

induction arguments, the following Proposition can be shown that

Proposition 5.4.1. The nth derivative of f (t) where

f (t) =
[(

t +
1
2

)
ω +

1
2

√
g2(t +1)+∆2 +a

]−s

,
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is given by

f (n)(t) =
h(u(t))
(g(t))s+n .

Here,

u(t) = (g2(t +1)+∆
2)

− 1
2 ,

and, h(u(t)) is a polynomial in u(t) with the highest power of u(t) in h(u(t)) as
2n−1. The polynomial in the denominator is given by

g(t) =
(

t +
1
2

)
ω +

1
2

√
g2(t +1)+∆2 +a.

The polynomial h(t) also has g(t) as coefficients with the highest power of g(t) as
n−1.

Proof. Let the induction hypothesis be the same as the Proposition.
For n=1,

f (1)(t) =
d
dt

[(
t +

1
2

)
ω +

1
2

√
g2(t +1)+∆2 +a

]−s

=−s
[(

t +
1
2

)
ω +

1
2

√
g2(t +1)+∆2 +a

]−s−1

(ω +
1
4
(g2(t +1)+∆

2)
−1
2 g2).

This satisfies the induction hypothesis since this is in the form of

h(u(t))

(g(t))s+1 ,

where h(u(t)) is a polynomial in (g2(t +1)+∆2)
−1
2 with its highest power as 1.

Now for n = k let,

f (k)(t) =
h(u(t))

(g(t))s+k .

The polynomial h(u(t)) is of degree (2k − 1) has g(t) as coefficients with the
highest power of g(t) being k−1.
Now for n = k+1,

f (k+1)(t) =
(−s− k)h(u(t))

(g(t))s+k+1 +
g(t)h(1)(u(t))

(g(t))s+k+1 . (5.17)
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We need to check the highest power of u(t) and g(t) in h(1)(u(t)) in order to
complete the induction argument. For this, it is enough to consider the term in
h(u(t)) with the highest possible power of u(t) and g(t). Now, the term with the
highest possible power of g(t) and u(t) in h(u(t)) is,

g(t)(k−1)u(t)(2k−1) = g(t)(k−1)(g2(t +1)+∆
2)−

(2k−1)
2 .

Therefore after computing h(1)(u(t)) this term will be,

g(t)k−2(g2(t +1)+∆
2)−

(2k−1)
2

(
ω +

1
4
(g2(t +1)+∆

2)
−1
2 g2
)

− (2k−1)
2

g(t)k−1(g2(t +1)+∆
2)−

(2(k+1)−1)
2 .

Multiplying this by g(t) as in the second term of equation (5.17), this becomes

g(t)k−1(g2(t +1)+∆
2)−

(2k−1)
2

(
ω +

1
4
(g2(t +1)+∆

2)
−1
2 g2
)

− (2k−1)
2

g(t)k(g2(t +1)+∆
2)−

(2(k+1)−1)
2 .

Therefore, f (k+1) satisfies the induction hypothesis. This completes the induction
argument.

Now for the second last term in equation (5.16), lim
b→∞

f (2m−1)(b) can be esti-

mated by finding the order of t in f (2m−1)(t) using Proposition 5.4.1.

The highest power of t in the numerator of f (2m−1)(t) is

−((2m−1)−1)
2

+(2m−1−1) = m−3,

and
(lowest power of t in the denominator)− s = 2m−1.

Therefore,

f (2m−1)(t) =
c1tm−3 + f1(t)

c2ts+2m−1 + f2(t)
.
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Here f1(t) and f2(t) are polynomials and the degree of f1(t) is less than m− 3
while deg( f2)− s is higher than 2m−1. Let deg( f2)− s−2m+1 = k and k > 0
by the previous assertion.
Now, multiplying the numerator and denominator by t−s−2m+1,

f (2m−1)(t) =
c3t−s−m−2 + f3(t)

ck+4tk + ...+ c4t + c5
.

Here, f3(t) is a polynomial and deg( f3)+s is less than −m−2. Therefore, for the
second last term in (5.16),

lim
b→∞

f (2m−1)(b) = lim
b→∞

c3

c2
b−s−m−2 + lim

b→∞
f3(b) lim

b→∞

(
1

ck+4tk + ...+ c5t + c4

)
.

Since the leading term goes to zero for Re(s)>−m−2, and the deg( f3)+s is less
than −m−2,

lim
b→∞

f3(b) = 0

The term multiplied to this second term is,

lim
b→∞

1
ck+4bk + ...+ c5b+ c4

=
1
c4
.

The above is true since k > 0. Therefore,

lim
b→∞

f (2m−1)(b) = 0.

Evaluating f (2m−1)(t) at 1,

f (2m−1)(1) =
h(u(1))

(g(1))s+2m−1 .

The only case where this term would not be finite is if

g(1) =
3ω

2
+a+

√
2g2 +∆2

2
= 0

This is not possible due to the condition assumed on a in equation (4.4). There-
fore, f (2m−1)(1) is a power function of s that is analytic in C.

Proposition 5.4.2. The integral
∫

∞

1 P2n+1(t) f (2n+1)(t)dt converges uniformly and
is analytic for Re(s)>−n.
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Proof. The polynomial
P2n+1(t) = O(1),

The term f (2n+1)(t) can be approximated using Proposition 5.4.1 as

f (2n+1)(t) =
c1t−s−n−1 + f2(t)

ck+2tk + ...+ c3t + c2

Where f2(t) is a polynomial with deg( f2)+ s less than (−n−1). Substituting the
value of f (2n+1)(t) in the integral gives∫

∞

1
P2n+1(t) f (2n+1)(t)dt =

∫
∞

1
P2n+1(t)

(
c1t−s−n−1 + f2(t)

ck+2tk + ...+ c3t + c2

)
dt.

Now since P2n+1(t) = O(1),∣∣∣∣∫ ∞

1
P2n+1(t)

(
c1t−s−n−1 + f2(t)

ck+2tk + ...+ c3t + c2

)
dt
∣∣∣∣≤ c1

c2

∫
∞

1
t−σ−n−1 dt +

1
c2

∫
∞

1
| f2(t)|dt

(5.18)
Therefore for uniform convergence of the first integral in the bound of (5.18) we
need,

σ >−n

where Re(s) = σ . For the other integral in the bound in equation (5.18), since
deg( f2) + s is less than (−n− 1), the uniform convergence of that integral can
also be concluded by the same condition on σ .

Therefore for the last term in the Euler-Maclaurin summation of the subseries
given by (5.16), using Proposition 5.4.2, a suitable n is chosen such that

Re(s)>−n.

This concludes the analyticity of equation (5.16) for such suitable n.
For the En

− eigenvalues, the Proposition 5.4.1 stays the same and only the defini-
tion of f (t) becomes

f (t) =
[
(t +

1
2
)ω − 1

2

√
g2(t +1)+∆2 +a

]−s

.

The rest of the analysis involving the powers of t is the same and the analytic
continuation of ζJC(s,a) follows.
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5.4.3 The analytic formula for ζJC(s,a)

Proposition 5.4.3. The spectral zeta function of the Jaynes-Cummings model can
be given by (using suitable n as in Proposition 5.4.2 and except for the pole at
s = 1)

ζJC(s,a) =
1
2

(
ω

2
+

1
2

√
g2 +∆2 +a

)−s

+
1
2

(
3ω

2
+

1
2

√
2g2 +∆2 +a

)−s

+
n

∑
m=1

B2m

(2m)!
f (2m−1)(1)+

∫
∞

1
P2n+1(t) f (2n+1)(t)dt

+
c1

+

2(s−1)(2s−1)2F1(s,2;2s;1− k1

n1
)+

c2
+

2s−12F1(s,1;2s;1− k1

n1
)

+
1
2

(
ω

2
− 1

2

√
g2 +∆2 +a

)−s

+
1
2

(
3ω

2
− 1

2

√
2g2 +∆2 +a

)−s

+
n

∑
m=1

B2m

(2m)!
g(2m−1)(1)+

∫
∞

1
P2n+1(t)g(2n+1)(t)dt

+
c1

−

2(s−1)(2s−1)2F1(s,2;2s;1− k2

n2
)+

c2
−

2s−12F1(s,1;2s;1− k2

n2
).

(5.19)

where

f (t) =
[
(t +

1
2
)ω − 1

2

√
g2(t +1)+∆2 +a

]−s

,

and,

g(t) =
[
(t +

1
2
)ω − 1

2

√
g2(t +1)+∆2 +a

]−s

.

The constants c1
+,c2

+,k1,n1,c1
−,c2

−,k2 and n2 are given by

1.

c1
+ =

2
g2

(
ω

g2

)−s(√
g2 +∆2 +

g2

4ω
+

mg
2ω

)−s+2(√
g2 +∆2 +

g2

4ω
− mg

2ω

)−s

,

c2
+ =

2
g2

(
ω

g2

)−s√
g2 +∆2

(√
g2 +∆2 +

g2

4ω
+

mg
2ω

)−s+1(√
g2 +∆2 +

g2

4ω
− mg

2ω

)−s

,
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2.

k1 =
√

g2 +∆2 +
g2

4ω
+

mg
2ω

,

n1 =
√

g2 +∆2 +
g2

4ω
− mg

2ω
,

3.

c1
− =

2
g2

(
ω

g2

)−s(√
g2 +∆2 − g2

4ω
+

mg
2ω

)−s+2(√
g2 +∆2 − g2

4ω
− mg

2ω

)−s

,

c2
− =

2
g2

(
ω

g2

)−s√
g2 +∆2

(√
g2 +∆2 − g2

4ω
+

mg
2ω

)−s+2(√
g2 +∆2 − g2

4ω
− mg

2ω

)−s

,

4.

k2 =
√

g2 +∆2 − g2

4ω
+

mg
2ω

,

n2 =
√

g2 +∆2 − g2

4ω
− mg

2ω
,

5.

m =

√
g2

4
−4ωa+

4∆2ω2

g2 +2ω2.
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Chapter 6

Conclusions

The previous chapters conclude the proof of the analytic continuation of the spec-
tral zeta function of the Jaynes-Cummings model. The following topics may be
pursued in the future in this direction:

1. Finding the negative integer values of ζJC(s,a) in a way similar to that done
for the Riemann zeta function using the Euler-Maclaurin summation for-
mula.

2. The partition function which is given by the inverse Mellin transform of
ζJC(s,a) may be explicitly computed.

Incidentally, the recent work of Marcello Malagutti [13] also proves the analytic
continuation of the Jaynes-Cummings spectral zeta function through the devel-
opment and application of another method similar to the method of Ichinose-
Wakayama[7] and Sugiyama[19].
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