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ABSTRACT

Terrestrial ecosystems are one of the major sinks of atmospheric CO2 and play a key

role in climate change mitigation. They also modulate the local climate by exchanging

scalar, energy, and momentum with the atmosphere. On the other hand, the

ecosystem-atmosphere interactions are also modulated by climate variability. For

example, depending on the environmental parameters, plant carbon synthesis and the

allocation of assimilated carbon into its different biomass pools, such as roots, trunks,

leaves, etc. Several studies have focused on understanding the carbon sequestration

processes in terrestrial ecosystems and their response to climate change. Most of these

studies have used the Eddy Covariance (EC) technique to measure the

ecosystem-atmosphere carbon, water and energy fluxes. However, very few of them

address the linkage of tree-ring growth with the ecosystem-atmosphere carbon

exchange. EC has been a fairly advanced technique, and these studies span the last

few decades at the most. Particularly for India, the EC flux records do not extend

beyond the last decade. However, the tree-ring records typically extend up to a few

centuries and may capture long-term climate variability's effects on carbon

sequestration in forest ecosystems. We study the Coupled Climate Carbon Cycle Model

Intercomparison Project (C4MIP) model outputs (a project under CMIP6) for its

165-year-long simulated records of mainly mean monthly gross primary productivity

(GPP) and net primary productivity (NPP) and compare them with the tree-ring growth

indices over the northwestern Himalayan region. Through their correlations with other

climate variables, and their statistical correlation measures, we establish confidence in

tree-ring growth indices as proxies for reconstructing aboveground woody biomass and

estimating ecosystem productivity.
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INTRODUCTION

The prevailing scientific view is that the rise in concentrations of greenhouse gases

(GHGs) and accompanying feedback processes leading to radiative processes are the

main causes of global warming and climate change (IPCC 2013). Of all the

anthropogenic greenhouse gases, the heightened levels of atmospheric carbon are

particularly worrisome as CO2 remains in the atmosphere for an extended period, up to

100 years (IPCC 2013). The sixth assessment report of IPCC (2021), with high

confidence, has stated that Carbon Dioxide Removal (CDR) plays a crucial role in the

scenarios aimed at restricting global warming to 2°C (>67%) or 1.5°C (>50%) by the

year 2100. The report also mentions afforestation as one of the cheapest, readily

available and most efficient CDR methods.

Forest ecosystems function as a carbon (C) sink that offsets ~ 25% of the annual

anthropogenic C emissions, thereby playing an active role in mitigating climate change.

The total C stock in any forest ecosystem is derived from aboveground biomass (AGB)

or leaves, trunk, branches, belowground biomass (BGB) or roots, forest floor litter

biomass (LB) or detritus pool, wood debris, and soil organic matter (SOM) as per IPCC

guidelines. C allocation to these pools is controlled by various factors like climate, forest

management practices, tree age, tree physiology, land use change, forest disturbances,

nutrient and light competitions and intensive seed production (Babst et al., 2013). The

allocation of C to the aboveground wood biomass (AWB) or tree trunks and branches is

the most significant contributor to the storage of C in vegetation over time frames

relevant to the climate (Cabon et al., 2022). Thus, assessing the amount of carbon

stored in various pools, especially in AWB is essential for devising new conservation

policies aimed at carbon sequestration and mitigating the effects of climate change

(Pant and Tiwari, 2014 and Meena et al., 2019).

The C uptake by a forest ecosystem or its carbon sequestration potential can also be

measured in terms of carbon fluxes at the canopy height of the ecosystem (Baldocchi et

al., 2003). The Eddy Covariance (EC) technique can measure three components of the

ecosystem carbon cycle, net ecosystem exchange (NEE), gross primary productivity

10



(GPP) and total ecosystem respiration (TER). Some definitions follow (Chapin et al.,

2006):

NEE: The exchange of carbon (in the form of CO2) between the land biosphere and the

atmosphere over a specified period of time is referred to as the net amount of carbon

exchanged. When the value of NEE is negative, it indicates that the land biosphere has

taken up carbon, whereas a positive value suggests that the land biosphere has

released carbon.

NEP: The Net Ecosystem Productivity (NEP) is the inverse of NEE, which means that

NEP's positive and negative values indicate carbon absorption and release by the

biosphere, respectively.

GPP: This refers to the aggregate quantity of carbon that is transferred between the

Earth's land-based ecosystems and the atmosphere by means of photosynthesis.

NPP: Net primary productivity; GPP - autotrophic respiration which includes growth and

maintenance respiration.

TER: This is a collective term for autotrophic, heterotrophic, microbial, and soil

respiration, represents a portion of the overall carbon absorbed through photosynthesis

that is subsequently released back into the atmosphere.

The following equation relates NPP, GPP and RA by definition:

(1)

Multiple studies have endeavoured to approximate the AWB in forest ecosystems by

utilising allometric models that make use of biometric data such as tree diameter at

breast height (DBH), tree height, tree age, and forest distribution. These biometric data

are gathered as part of national forest inventory programs or surveys, but due to their

resource-intensive nature, such surveys are infrequent and record only five-yearly or

decadal changes in forests (Evans et al., 2022). On the other hand, tree-rings offer a

comprehensive estimate of annual AWB increment as they record tree growth data on

an annual resolution. Trees in temperate regions produce a light-coloured wood,

earlywood, and a dark-coloured wood, latewood, during the distinct growing season

(Robinson et al., 1989). These rings can be easily identified by the naked eye. However,
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identifying annual rings for tropical trees is challenging as they lack distinct growing

seasons. Nevertheless, efforts are being made to incorporate microscopy to distinguish

growth seasons using anatomical features such as vesicles, cell walls, and cell number

density of the cells to identify the tree rings (Nath et al., 2016). Once the annual rings

are identified, their widths are measured, and an annual series is recorded. These

measurements are then standardised, and an annual basal area increment (BAI) index

can be reconstructed. The density of the rings can also vary annually depending on the

climate and tree physiology, and for early and late woods, tree ring density is also

utilised as a tree growth index.

Studies utilising allometric models incorporating tree ring indices and ecosystem

parameters measured by flux towers have gained popularity in estimating AWB (Babst

et al., 2013, Klesse et al., 2018 and Cabon et al., 2020). However, most of these studies

have been limited to temperate zones where there is an abundance of tree-ring data

and flux tower sites. In India, carbon sequestration and AWB estimation studies have

primarily utilised methods such as forest inventories and destructive sampling (Mani and

Parthasarathy, 2007), high-resolution remote sensing data (Watham et al., 2020),

ecosystem modelling (Deb Burman et al., 2017), Eddy covariance ecosystem carbon

flux data (Waltham et al., 2017, Deb Burman et al., 2020, and Rodda et al., 2021), and a

combination of remote sensing, vegetation models, and forest inventory data (Fararoda

et al., 2021). Nevertheless, the potential of tree-ring indices from sub-tropical India as

proxies for estimating ecosystem productivity remains unexplored. Thus, this study aims

to investigate the potential of tree-ring indices in sub-tropical India for estimating

ecosystem productivity.

Dendrochronological proxies have been extensively used to reconstruct climate

variables such as rainfall and temperature over the last 400-500 years (Borgaonkar et

al., 1999). In this study, we aim to investigate the potential of these proxies as indicators

of ecosystem productivity for the recent past (1850-1990) using available records.

Unfortunately, the tree-ring data available did not overlap with the time period for which

remote sensing or observation-based ecosystem productivity data was available over
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the Indian region. However, we took this as an opportunity to test the performance of

the proxy for the longest time period available from models of the sixth phase of the

Coupled Model Intercomparison Project (CMIP6). To this end, we test the following

sub-hypotheses: (1) outputs from historical experiment simulations from selected

CMIP6 models can be used as a record of ecosystem productivity for the historical

period (1850-2014), and (2) tree-ring indices are a good proxy for subtropical forests in

India.

To test hypothesis (1), we compare the model outputs with existing remote sensing and

flux tower records over selected regions in India. To test (2), we compute statistical

measures to indicate a correlation between the indices and model outputs. Furthermore,

the performance of the proxies is tested by studying the relationship between the

ecosystem variables and tree-ring indices in the presence of other climate variables that

affect carbon allocation in trees. It should be noted that the study does not aim to

establish a one-to-one correspondence between tree-ring indices and ecosystem

carbon flux variables.
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Data and Methods:

2.1.1. CMIP6 Model data

This study utilised model outputs from the Coupled Climate Carbon Cycle Model

Intercomparison Project (C4MIP) (Jones et al., 2016), an intercomparison project

endorsed by the Coupled Model Intercomparison Project Phase 6 (CMIP6) (Eyring et

al., 2016) under the World Climate Research Program (WCRP). The model outputs

were obtained from the open-access Earth System Grid Federation (ESGF) website.

They were selected from two CMIP6 models, ACCESS-ESM1-5 and NorESM-LM2,

based on their similar initialisation, forcings, physical parameters, and carbon cycle

model traits for the historical-biogeochemical (hist-bgc) experiment.

Table 2.1 briefly describes the treatment of the carbon cycle, vegetation modelling, and

land use changes for the models (Seland et al., 2020, Lawrence et al., 2019 and Zeihn

et al., 2020). The model output for GPP, NPP, and RA was downloaded for the entire

globe. Still, as these were coupled Earth System Models (ESM), their spatial resolution

was coarse (see Table 2.1). The model outputs needed to be upscaled to a finer

resolution to investigate the association between local tree ring sites and model outputs.

Climate Data Operators (CDO), a public licence software developed at the Max Planck

Institute for Meteorology (MPI-M), Germany (Schulzweida, 2022) was used to regrid

and sub-set the model outputs to the Indian subcontinent region. The CDO function

"remapcon" was used to regrid the model outputs to a 1° x 1° grid, conserving flux

quantities in each grid cell. The data was then subset to a latitude-longitude box of

68°E-95°E and 8.5°N-40.5°N. The model outputs were available as monthly means of

carbon fluxes in the unit of kgC m-2 s-1, which was converted to a daily carbon flux unit of

gC m-2d-1 and then to monthly sums of GPP, NPP, and RA by multiplying by 30 (average

days in a month).
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Model ACCESS-ESM1.5 NorESM2-LM

Resolution latitude x longitude = 1.25o x 1.87o latitude x longitude = 1.89o x 2.5o

Radiative
forcing

In concentration-driven, spatially
constant, using the global mean data of
Meinshausen et al. (2017).
Land use changes are prescribed.
Solar forcing is provided as irradiance
forcing.

In emission-driven experiments (e.g.
esm-piControl), CO2 is an interactive 3D tracer
coupled to terrestrial and marine fluxes and
anthropogenic emissions.

Vegetation Evolves dynamically
Static vegetation coverage - 13 surface
vegetation types/tiles: evergreen
needleleaf, evergreen broadleaf,
deciduous needleleaf, deciduous
broadleaf, shrub, C3 grass, C4 grass,
tundra, crop, wetlands.
Vegetation fractions in each tile vary
with time through prescribed files.
Resolution of dataset 0.5o x 0.5o

Phenology is determined by latitude and
vegetation type.
Leaf carbon pool is a prognostic
variable.

Vegetation distribution is prescribed from land use
datasets, but vegetation state like LAI etc., is
prognostically determined.
All PFTs compete for water and nutrients from the
same soil column.
Vegetation types: evergreen type, for which some
fraction of annual leaf growth persists in the
displayed pool for longer than one year; a
seasonal-deciduous type with a single growing
season per year, controlled mainly by temperature
and day length; and a stress-deciduous type with
the potential for multiple growing seasons per
year, controlled by temperature and soil moisture
conditions.
Phenology is prognostic, responds to soil and air
temperature, soil water, day length and
management practices.

Carbon
cycle

Model - CASA-CNP: Has carbon cycle
integrated with nitrogen and phosphorus
cycles
Prognostic variables: 4 pool cSoil,
Vegetation Fractional coverage, LAI and
Canopy Height on PFTS.
Vegetation carbon pools: Leaf, wood,
root, and labile
Allocation to these pools is determined
by the vegetation type.
No forest stand dynamics have been
defined
No methods specified for maintenance
and growth respiration
No method is specified for the
decomposition of carbon soil.

Model - Carbon cycle in Land model (CLM5):
Prognostic variables: vegetation, litter, soil organic
matter, all carbon fluxes GPP, NPP, all respiration
types, long-term and short-term storage pools.
Number of carbon pools: 23
Allocation to the carbon pools is fixed and
determined by the PFT. Allocation bins: Leaves,
fine roots, coarse roots, stems.
No forest stand dynamics were mentioned.
Maintenance respiration depends on leaf nitrogen
content, PFT and temperature.
Growth respiration is calculated as 0.11 factor of
total carbon allocation to new growth after
allocation to N acquisition.

Table 2.1. Model descriptions of CSIRO’s ACCESS-ESM1.5 and NCAR’s NorESM2-LM

2.1.2. Remote sensing data

The performance of the selected CMIP6 models was evaluated using various sources,

including high-resolution remote sensing data. We used the GPP data with an 8-day
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resolution from the MOD17A2HGF v.061 product, obtained from NASA's Moderate

Resolution Imaging Spectroradiometer (MODIS) project. The data was downloaded

using the Application for Extracting and Exploring Analysis Ready Samples (APPEARS)

tool provided by NASA from 2000-01-01 to 2014-12-31. The data was filtered and then

rescaled and converted to monthly sums of daily mean GPP in units of gC m-2d-1.

The spatial average of the data was calculated to create a time series. The North

Western Himalayan (NWH) region was selected using a box with latitude and longitude

coordinates of 29.5oN to 32.5oN and 77oE to 79oE. The MOD17 product is based on a

remote-sensing driven light use efficiency (LUE) model. However, it is important to note

that LUE-based models have uncertainty in parameterising the environmental scalars

(Waltham et al., 2017).

2.1.3. Eddy Covariance CO2 flux data

Eddy Covariance technique measure CO2 fluxes in real-time and are the closest to

ground observed data available for variables related to ecosystem productivity (Deb

Burman et al., 2021; Sarma et al. 2022). The use of EC technology in India is relatively

recent, with only a few site years being available but almost none of these in the public

domain. In this study, we use the published results by the Indian Space Research

Organisation (ISRO), who analysed the flux data for Betul, a tropical deciduous forest

ecosystem in Madhya Pradesh (Rodda et al., 2021).

The EC tower measures the total vertical canopy flux of CO2 away from the land

surface. This measurement can be considered as the NEE if the inorganic oxidation of

carbon is negligible and there is no lateral advection below the canopy height (Chapin III

et al., 2006). The nighttime measurements are solely due to ecosystem respiration. A

temperature-respiration function is obtained from the nighttime data to estimate daytime

respiration. It is then added to the flux measured during the day to estimate the CO2

flux due to primary productivity.
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2.1.4. Reanalysis data

We used the reanalysis data to examine the association between the annual tree ring

variable and annual aggregates of ecosystem productivity in the presence of other

climate factors which affect tree growth. For this purpose, we used ERA5 reanalysis

climate data (Hersbach et al., 2023) produced by the Copernicus Climate Change

Service(C3S) at the European Centre for Medium-Range Weather Forecasts (ECMWF).

We chose this dataset despite its high root mean square error (RSME) and inability to

capture extreme events because it presented the longest available climate record from

1959 to the present for the sites of interest, and the product captures the distribution of

the climate variables fairly well (Jiang et al., 2020). We used the surface temperature

and specific humidity to calculate vapour pressure deficit (VPD) using the following

equation:

Where SVP - saturation vapour pressure, Tair - surface air temperature, RH - relative humidity,

SH- specific humidity, Pair - atmospheric pressure at surface, AVP - actual vapour pressure

2.1.5. Tree ring data

In this study, we utilised tree ring records of ring width measurements obtained from the

International Tree Ring Data Bank (ITRDB) and downloaded from the World Data

Service for Paleoclimatology, managed by the National Oceanic and Atmospheric

Administration (NOAA). For the Indian subcontinent region, the tree ring width

measurements were mainly obtained from NWH sites (marked on Figure 2.1)

(Borgaonkar et al., 2004). They covered a few hundred years up to the late 20th
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century. Raw ring width measurements for two species from four sites were

downloaded. These data were processed using dplR, a dendrochronological package

(Bunn, 2008) in R Studios (version: 2022.02.2+485), to create representative

chronologies for each site. Details regarding the sites can be found in Table 2.2, and the

geographical locations of the sites are displayed on a map of India in Figure 2.1.

Site name Location Elevation
Dominant
species

no. of
trees

no. of
cores Record length

Ghansali (Ghan) 30.6N, 78.75E 800-1200m
Pinus
roxburghii 17 26 1796-1990

Jageswar (Jag) 29.5N, 79E 2000m
Cedrus
deodara 9 14 1657-1990

Kufri (Kuf) 31N, 77E 2400-2700m
Cedrus
deodara 18 34 1775-1988

Manali (Mnl) 32N, 77E 2000m
Cedrus
deodara 21 42 1676-1988

Table 2.2 Information on the tree ring sites used in the study.

Fig 2.1 Map of northern India showing the tree ring sites used in this study. The boxed region around the
sites shows the NWH region used for the regional analysis. Extending from 29.5N to 32.5N and 77E to
79E.

Intra-annual and annual scale data can be recorded through tree rings; however,

extracting meaningful signals from this data can be challenging. Various factors such as

biological growth effects, tree physiology, external competition, anthropogenic

18
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disturbances near the site, stand distribution and age must be considered. Additionally,

Cook et al. (1995) have described the "segment length curse" associated with the tree

ring series, which suggests that the series can only capture long-term variability whose

wavelengths are smaller than the series. In this study, we focus on the annual growth

and increment of woody biomass of trees, and thus a short series is sufficient.

Appropriate detrending methods are applied to remove the biological and external

effects unique to individual trees from the raw ring width measurements. We evaluated

two kinds of detrending methods; a) smoothing cubic splines, which is a stochastic

method of passing a low-pass filter represented by a 32% N (total number of

observations) cubic spline, it preserves 50% of amplitude variations of 45 years of

wavelength (Dietrich and Anand, 2019), and b) a deterministic method, modified

negative exponential or a straight line with a negative slope (NELR) where, a modified

negative exponential curve is fitted after iterative numerical computation and a straight

line is fitted only when there are numerical instabilities in fitting an exponential curve

(Helama et al., 2004), for their suitability in preserving tree growth patterns. We also

estimated BAI from the raw ring width measurements after standardising them using

NELR or a smoothing spline. Similarly, ring width index (RWI) was obtained by fitting

NELR or a smoothing spline or a combination of the two to all the cores individually and

then standardising the measurements by computing the ratio of the raw measurement

and the fitted detrending curve. A site chronology was created using a biweight robust

mean (Fonti et al., 2004) of all the standardised measurements. We did not use the

more established and frequently used detrending methods to estimate tree-growth

(Peters et al., 2015) regional curve standardisation (Esper et al., 2003) or C-method

(Biondi and Qeadan, 2008) due to a lack of data on biological factors such as DBH at

the time of sampling, distance to pith from the innermost ring, and tree age.

We also recognize that BAI assumes uniform tree growth in concentric circles, which is

not always true, especially for trees growing on elevated steep slopes. So an average

raw ring width was calculated using all the cores available of the same tree before using

the R functions bai.in and bai.out to estimate the BAI. Several chronologies were

constructed a) using the average of two cores, b) using the detrended and standardised

19



values of the average cores, and c) using one core per tree to test their performance.

The formula for calculating BAI given by (Biondi and Qeadan, 2008) is:

This formula can also be presented as

Here wt is the width of the ring at year t in one direction, Rt-1 is the tree's radius at breast

height in the year previous to t.

The calculation of BAI using the function bai.in from the R library dplR also required

information about the distance to pith (d2pith) from the innermost ring for which a

default value of one year distance from the pith to the innermost ring of the tree was

applied by the function.

A regional chronology for NWH was made by first testing the inter-site correlation of

different chronologies. The chronology producing the highest correlation among all three

sites was chosen for NWH chronology and was constructed by taking a mean of the

chronologies made for the three sites.

2.2. METHODS

2.2.1. Pearson correlation

The Pearson correlation coefficient is a statistical measure used to assess the degree of

the linear relationship between two continuous variables over time, and its values range

between -1 (indicating a negative correlation), 0 (no correlation) and 1 (indicating a

perfect positive correlation). The test assumes that the variance of the two datasets is

homoscedastic. However, if either of the datasets contains outliers, the correlation test

results may be skewed, requiring caution in their interpretation. Our study reports test

results along with their significance level. It should be noted that this correlation

coefficient only captures linear relationships between two variables. The Pearsonr
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function from the Scipy package in Python (Virtanen et al., 2020) was used to calculate

the correlation coefficient.

2.2.2. Granger causality test

The Pearson correlation coefficient assesses the strength of the relationship between

two variables, but it does not provide any directional information regarding this

relationship. The Granger causality test has been developed and widely used to

address this limitation in climate studies (McGraws and Barnes, 2018). The test

evaluates whether a variable can be used to predict another variable in a time series

and establishes causality based on the p-value of the F-test, which should be less than

0.05 to indicate significance. We utilised the R-package lmtest (Zeileis and Hothorn,

2002) to perform the Granger causality test. (Granger, 1969 and Xie et al., 2019)

2.2.3. Dominance analysis

The present study employed dominance analysis using climate reanalysis data, tree

ring indices, and CMIP6 model outputs to investigate the strength of the relationship

between ecosystem productivity variables and tree growth indices in the presence of

other climatic factors that also impact tree growth. Several alternative methods for

multiple regression analysis, such as principal component analysis (PCA), structural

equation modelling (SEM), and network analysis (NA), were considered. However, PCA

needed to be more robust in identifying linear relationships between predictors and the

effect variable. It requires a large number of data points for meaningful interpretation.

SEM and NA were not preferred as they necessitated the user to specify a preliminary

model before conducting the analysis. In contrast, dominance analysis measures the

relative importance of predictors in a piecemeal manner without requiring any

predefined association between the factors. The method (Budescu 1993; Azen and

Budescu 2000, 2001) was utilised to rank the predictors by their relative importance by

calculating the incremental pseudo - R2 of each predictor when added to a predictor

model. Unlike its linear analogue, pseudo - R2 is computed by a logistic regression

which maximises the likelihood of the model through multiple sample sizes from the
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observations (Hemmert et al., 2018). It indicates the improvement of the model over the

null model (no dependency on any input parameter).

If there are p number of predictors, the analysis computed incremental R2 for 2p -1

models. Among these, a complete model is one with all the predictors involved in the

regression; all the other models are called subset models. The analysis checks for

different kinds of dominance statistics: individual dominance (variability explained by the

predictor alone), interactional dominance (incremental variability explained by the

predictor in the presence of all other predictors), average partial dominance (the

average impact that a predictor has when it is available in all possible combinations with

other predictors except the combination when all predictors are available); and complete

dominance (summarises the additional contributions of each predictor to all subset

models). A public-domain python code was used for the analysis.

2.3. Graphical tools

2.3.1. Taylor diagram

The present study utilises a graphical visualisation methodology to analyse and contrast

the associations among equivalent data sets, utilising a reference data set as a

benchmark. The graph adopts polar coordinates to represent each data set in the form

of (r, θ). The radial distance r characterises the standard deviation of the test data, while

the azimuth angle θ corresponds to the inverse cosine of the Pearson correlation

coefficient between the test data and the reference data. Moreover, owing to the

geometrical properties of the diagram, the distance between the test and reference data

points represents the mean root-mean-square (RMS) deviation between the

corresponding values of the test and reference data. The diagram was plotted using a

modified version of a public-domain python code (Taylor, 2001).
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Results and Discussion

3.1. CMIP6 model validation
We analysed the regridded CMIP6 model outputs of ecosystem carbon flux, specifically

GPP, RA, and NPP, related to primary producers. The performance of these model

outputs was evaluated by comparing them to available satellite products and

observations. To this end, a Taylor diagram was constructed by plotting the GPP time

series results from ACCESS-ESM1.5 and NorESM2-LM from Mar. 2000 to Dec. 2014.

The monthly summed GPP product of MODIS (MOD17A2HGF v.061) was used as the

reference dataset for this comparison. The GPP time series used for the analysis were

spatially averaged data over the NWH region.

Fig 3.1 Taylor diagram comparing the performance of test datasets of gross primary productivity output

from ACCESS-ESM1.5 and NorESM2-LM with MODIS GPP product as reference dataset.

Figure 3.2 shows the multiyear means of monthly ecosystem carbon flux variables,

plotted to check the seasonality of both models and the relationship between the

variables, NPP, GPP and RA.
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Fig 3.2. Multi-year monthly means from March 2000 to December 2014 for the NWH region of ecosystem

carbon flux variables for a) NorESM2-LM CO2 emissions driven histbgc experiment output, b)

ACCESS-ESM1.5 CO2 concentrations driven histbgc experiment output, c) comparison of ACCESS and

NorESM GPP outputs with MODIS GPP product. The y error bars are the standard deviations of each

month.

Analysis of the results shown in Figure 3.2 a) and b) indicates the growing seasons that

the models simulated. NorESM model outputs suggest that most of the tree growth

occurs during the pre-monsoon season (March to May), while ACCESS model outputs

show two growing seasons - spring or pre-monsoon (Mar-May) and late monsoon (July

to September). In Figure 3.2 c), the performance of the model GPP outputs was tested

against the MODIS GPP product. It was observed that the ACCESS model closely

replicates the seasonality observed in the MODIS product, while the NorESM model
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cannot capture this seasonality. However, it is important to note that there were some

discrepancies in the ACCESS-ESM1.5 output where NPP was greater than GPP in a

few months (Zeihn et al., 2020). Although there is some uncertainty due to the

overlapping standard deviations of NPP, GPP, and RA, it is not physically possible for

NPP to be greater than GPP.

Fig 3.3 Multi-year monthly means of GPP of a forest site in Betul, Madhya Pradesh. (a) GPP data

reported by Rodda, et al. 2021. (b) The GPP output from ACCESS-ESM-1.5, and (c) the same from the

NorESM2-LM output. The model outputs were extracted from the nearest grid point encompassing the

flux tower site.
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To further check the performance of the models, we rely on the longest available record

of EC data for any Indian forest ecosystem published by Rodda et al. (2021). The

authors analysed the carbon sequestration capacity of a mixed-dry deciduous forest in

Betul (21.85oN, 77.42oE), Madhya Pradesh, from November 2011 to December 2019

using the CO2 flux data. Fig 3.3 compares the monthly mean daily GPP of Betul

published by the authors and the daily GPP multi-year mean of the same site from the

model outputs.

The daily GPP simulated by the models was observed to be smaller by one order

compared to the measured EC data. Nonetheless, ACCESS-ESM1.5 outperformed

NorESM2-LM in simulating the GPP of the recent past. The seasonal pattern of GPP

measured by the flux tower at the site closely resembled that simulated by

ACCESS-ESM1.5. The results presented in figures 3.1 to 3.3 instil confidence in the

performance of the ACCESS-ESM1.5 model, which appears to simulate the recent past

more realistically for the Indian region when compared to the NorESM2-LM model. To

check if Equation 1 is balanced, we have examined scatter plots between these two

parameters (GPP-RA vs NPP) obtained from the two models (Figure 3.4)

Fig 3.4. A scatter plot of GPP-RA vs NPP for the model outputs from Jan 2000 to Dec 2014 is shown.

NorESM2-LM adheres to Equation 1 consistently from January 2000 to December

2014, whereas ACCESS output treats NPP differently, possibly independent of the

relationship between GPP and RA. NorESM2-LM is an emission-driven model in which

the carbon model CLM5 prognostically computes all carbon fluxes and the model is also

forced by atmospheric CO2 flux (Lawrence et al., 2019). A flux variable is also
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constrained by the condition that it must be conserved locally for every grid cell of the

model. This may create a circular issue in the computation of some flux variables (NPP

for NorESM in this case). It should be noted that NorESM also fails to model GPP

accurately between 1850-1870 and 1890-1910 for the historical period of 1850-2014.

In the ACCESS model, Leaf Area Index (LAI) and GPP are linked together and are

prognostic variables. The model was improved from its previous version,

ACCESS-ESM1, and the modelling group has modified some parameters in the

calculation of GPP and LAI using estimates from the previous model and global

observation datasets (Ziehn et al., 2020). However, the model still underestimates LAI

and GPP in tropical regions. The carbon model CASA-CNP does not follow Equation 1

for NPP calculation. It uses independent nutrient constraints such as N:C and P:C ratios

of leaves, nitrogen and phosphorus content of the soil to control NPP and NEE (Wang,

2009).

3.2. Tree ring analysis

3.2.1. Effect of detrending on tree growth pattern

We have evaluated the RWI and BAI through various detrending techniques and the

results are presented in Table 3.1. The association of RWI and BAI with annual

accumulations of NPP and GPP from the ACCESS model was analysed for the

Ghansali site.

Series name ACCESS-NPP ACCESS-GPP
BAI 0.423 (0) 0.2559 (0.002)
BAI after removal of AR1 0.168 (0.046) 0.12 (0.07)
BAI detrended 0.486 (0) 0.228 (0.006)
RWI Spline 0.119 (0.157) 0.043 (0.611)

RWI NELR 0.269 (0.001) 0.181 (0.032)

Table 3.1 Performance of various detrended series as a proxy for tree growth tested against annual sums

of NPP and GPP from ACCESS-ESM-1.5, Ghansali site, dominant species – Pinus roxburghii. Pearson

correlation coefficients are reported for each series and their significance level is mentioned in the

brackets.
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Pinus roxburghii is categorised as an open-growth, shade-intolerant tree species, which

indicates that these trees require sufficient sunlight for their growth, and exhibit an

exponential growth phase only during the juvenile period (Borgaonkar et al., 1999).

Therefore, the NELR method was employed to detrend the raw measurements. The

detrended BAI series exhibited a slightly improved correlation with NPP, the NELR

method possibly removes some more biological effects from the BAI index. The BAI

series generated was non-stationary and had high autocorrelation (henceforth, AC), as

expected from its formulation presented in Equation 7. The correlation of the series with

NPP and GPP reduced after the removal of the first-order AC by autoregressive

modelling (AR), but the correlation remained significant. Usually in dendroclimatic

reconstructions, the AC is removed from the series to capture the high frequency

climatic variations (Borgaonkar et al., 1999). However, studies conducted specifically to

address the impact of AC on tree growth and age estimation have affirmed that

including the positive AC improves tree growth and age estimation (Bullock et al., 2004

and Brienen et al., 2006). AC is defined as the correlation of tree growth during two

subsequent time intervals. It can be separated into two components, within-tree AC

(temporal correlation within an individual tree) and among-tree AC (correlation among

trees after removing within-tree AC) (Brienen et al., 2006). Within-tree AC is controlled

by an individual tree’s genetic makeup and environmental influences whereas

among-tree AC is mainly determined by the size distribution and canopy structure of the

forest. Among-tree AC is ecologically meaningful in estimating the stand AWB.

However, a more detailed treatment of AC was not possible in this study due to lack of

information on the size of the sampled trees. Thus all further analysis was done

retaining the autocorrelation in the BAI series.

Cedrus deodara, on the other hand, is a shade-tolerant species, and the growth curve

of each tree is unique to the competition for light they experience (Earle, 2023).

Therefore, these time series were detrended using a cubic spline with a 45-year

wavelength of before further analysis. The statistics of the BAI indices from the study

sites are presented in Table 3.2.
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Site Mean BAI (m2) SD (m2) SE (m2) Avg annual change (m2)
Ghansali 4.6e-4 2.28e-4 1.93e-5 9.17e-5
NWH region 8.28e-4 3.45e-4 2.92e-5 1.71e-4

Table 3.2 BAI statistics from the study sites. Mean, standard deviation (SD), standard error (SE) and

average year to year change in BAI are listed.

3.2.2. Comparison of RWI and BAI as tree growth indicators

Table 3.1 results show that the BAI exhibits strong correlations with variables related to

ecosystem productivity as compared to the RWI. From Equation 7 we see that basal

area increment at year t, BAIt, is dependent on the ring width of that year (wt) and the

overall radial growth till that year, Rt-1. So, BAIt becomes a linear function of tree size Rt-1

when wt is constant. Studies comparing different detrending methods to detect

long-term growth trend in trees confirm that BAI performs better than the conventional

ring width detrending methods stating it is more sensitive and accurate in capturing

long-term growth trends (Peters et al., 2015; Dietrich and Anand, 2019). In this study,

tree growth indices are utilised as proxies for estimating carbon fluxes within the

ecosystem, which are closely related to the volume and mass increment in forest

stands. Studies that used allometric models to estimate AWB have employed

formulations similar to Equation 7, where the AWB depends on the tree’s diameter at

breast height and height (Mani and Parthasarathy, 2007). Several studies have

suggested that BAI is a superior indicator of AWB accumulation, as it minimises

biological growth trends (Dhyani et al. 2022; Pompa-Gracia et al. 2016).
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Fig 3.5. Basal area increment and ring width index plotted for Ghansali. When ring width is small (0.6 to

1.1 mm) BAI remains reasonably constant. Points outside the shaded region, below the trendline

represent the juvenile phase when BAI is less due to small tree size.

3.2.3. Results from Ghansali

Figure 3.6 shows the Z-score standardised values of detrended BAI, RWI, and GPP

from the Ghansali site. The BAI series exhibits a positive trend with a slope of 4.54. It is

worth mentioning that the positive peak at the end of the series is also influenced by the

detrending method, as indicated in Figure 3.7. Nevertheless, a significant peak (from

1960 - 1980) is present in all the Ghansali cores, suggesting a common strong signal

mainly caused by some environmental influence is retained in the chronology. This

contributes to the positive trend observed in the BAI series. The lack of biometric

information, such as distance to pith from the innermost tree ring in the cores, DBH, and

tree age, might have introduced systematic errors in the BAI estimation, which could

also contribute to the positive trend in BAI. We observe a one year lag of GPP when

compared with BAI (i.e., BAI is affected by the previous year GPP as well) which is

further supported by the granger causality test (see Table 3.3). However, this lag is not

visible when GPP is compared with BAI Ar1 where autoregressive modelling removes

the effect of tree size from the series.
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Fig 3.6 a) BAI and annual ACCESS GPP plotted to check overall correlation between the series. b) BAI

residual after autoregressive modelling (BAI Ar1) and annual ACCESS GPP. A one-year lag can be

noticed in (a) but not in (b).

Fig 3.7 Two sample cores from Ghansali showing the increased peak at the end and the standardised

values below. The raw series are overlapped with a blue curve showing the NELR curve fitted for

detrending the series. Detrending by the ratio method leaves an end effect on the index (Helama et al.,

2004).
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In Table 3.1, the NPP from the ACCESS model exhibits a strong positive correlation

with the tree ring chronologies, significantly higher than the GPP. However, it is possible

that this high correlation may be due to erroneous NPP values obtained for the Ghansali

region (refer to Fig 3.8). Zeihn et al. (2020), identified the estimation of carbon fluxes

such as NPP and NEE as one of the limitations of the ACCESS model. The calculation

timescales for ecosystem respiration variables are daily, whereas, for GPP and LAI, it is

hourly, which may lead to inconsistencies in the calculation of NPP and NEE. Therefore,

despite the significant association of NPP with BAI and RWI, only the GPP output from

the ACCESS model is used for comparison with tree ring indices.

Fig 3.8 Multi-year monthly mean of NPP, GPP and RA values from ACCESS-ESM1.5 for Ghansali for the

period 2000-2014.

Further, we conducted a Granger causality test (refer to Table 3.3) to check if there is a

directionality to the association between ecosystem carbon flux and carbon assimilation

by the dominant forest trees. In this study, GPP was a Granger cause for the carbon

assimilation proxies, RWI and BAI, when lagged by one year. However, the association

was more significant for BAI, as expected. The reverse Granger tests did not return

significant results, indicating that the association between GPP and tree growth indices

is unidirectional. Previous studies have also recognised a distinct one-year lag between

net ecosystem productivity and tree biomass increment (Teets et al., 2018 and Cabon et

al., 2020).
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Series Gpp ~ RWI GPP ~ BAI BAI ~ GPP RWI ~ GPP
Lag order 1 1 1 1

F-test 3.62 9.57 1.90 2.58

P-value of F test 0.056 0.002 0.17 0.11
Table 3.3 Granger causality test results for the Ghansali site.

Figure 3.9 illustrates the monthly correlations with GPP values and annual RWI and BAI

of trees. The months that exhibit a significant correlation with the tree ring chronologies

are referred to as the growing season months (shaded region), as the variations in

these months are closely linked to the tree's growth during that year, and hence

considered the peak growing months for the trees. The results suggest that the months

from December to March have a negative impact on the trees' growth. In the model,

GPP is determined by the water availability in a particular month. During periods of

extreme water stress, plant productivity is almost zero, as indicated by the red curve in

Figure 3.9. However, evergreen trees can still assimilate carbon for maintenance during

such periods, which is not accurately captured by the model. Moreover, winter may also

be the wood-producing season for certain woody shrubs such as Ericaceae, Himalayan

Nettle, and Banj Oak, which usually occur with Chir Pine trees. These shrubs flower

during late spring to early summer and hence may have a high productivity phase

during winter, which the model's vegetation tiles may capture (USDA, 2023).

Additionally, shrubs are more sensitive to the availability of soil water, which begins to

replenish due to snow/glacier melt from early spring, and hence they start growing

earlier than Chir Pine trees.

Fig 3.9 Growing season of Pinus roxburghii is indicated by the high positive correlation of the month’s
GPP with the annual tree ring index (BAI or RWI).
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Tree growth is significantly influenced by various climatic factors, such as rainfall,

temperature, shortwave radiation (SWR), soil water, and VPD. Dendrochronology has

been widely used to reconstruct such climate variables for the pre-industrial era

(Borgaonkar et al., 1999). To assess the relative importance of different climatic factors

on tree growth dynamics and their potential impact on estimating ecosystem productivity

from tree-ring indices, we performed a dominance analysis. The results are presented in

Figure 3.10, which shows the overall importance of the variables, and Table 3.4, which

lists the different types of dominance exhibited by the variables.

Fig 3.10 Relative importance of variables in explaining the variance in BAI for Ghansali. The ERA5

reanalysis product from 1959-1990 is used to source climate data. The analysis is done for the period

1959-1990. Temperature, VPD and soil water were computed as annual means, whereas rainfall and

SWR were computed as annual sums.

Variable Interactional
dominance

Individual
dominance

Avg partial
dominance

Total
dominance

Relative
importance (%)

Annual rainfall 0.164 0.1839 0.177 0.176 47.82

GPP 0.072 0.069 0.059 0.063 17.11

Soil water 0.077 0.026 0.063 0.059 16.16

Annual SWR 0.003 0.024 0.034 0.027 7.35

Temperature 0.007 0.053 0.019 0.022 6.15

VPD 0.009 0.046 0.016 0.02 5.4
Table 3.4 Incremental pseudo R2 (% variance explained) values of each variable when added to

regression models. BAI was the target variable. The climate variables and GPP explained 37% of the

variance for BAI.

Pinus roxburghii, also known as Chir Pine, is predominantly limited by water availability

(Earle, 2023). Our findings indicate that the dominant variables for Chir Pine growth,
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apart from GPP, are annual rainfall and average soil water content, which exhibit high

interactional dominance, indicating their interdependence. This suggests that ring

widths and BAI are highly sensitive to the amount of rainfall received, and a lack of

adequate rainfall can significantly impact carbon sequestration by the ecosystem.

Additionally, high rainfall is likely to reduce the frequency of forest fires, which are

otherwise typical in the Ghansali site, given its proximity to human settlements and

susceptibility to fires during dry seasons. The growth of Chir Pine trees is not

particularly sensitive to the amount of SWR received in a year since these trees are

shade-intolerant. The trees grow independent of the excess amount of sunlight after

achieving a threshold amount. The strong influence of rainfall on tree growth patterns

highlights the need to apply appropriate climate statistics to ring indices before

combining records from different sites for regional analysis of tree growth using regional

chronologies (Briffa et al., 1998).

3.2.4. Regional analysis with a different species

To account for the diverse responses of different tree species to climate factors and

their associated growth patterns, we selected three sites in the NWH region where

Cedrus deodara was the dominant species. Dendrochronologists have widely used

Cedrus deodara to reconstruct past climate in the Himalayan region due to their higher

elevation range of 2000m - 3500m, which reduces their susceptibility to anthropogenic

activities and increases their sensitivity to climate change (Borgaonkar et al., 1999). The

inter-site Pearson correlations between the selected sites are presented in Table 3.5

demonstrate a high coherence in tree growth patterns. Consequently, we combined the

sites to construct a regional chronology of BAI and RWI.

Site pair Detrended BAI correlation
Jag - Kuf 0.608 (0)

Kuf - Mnl 0.862 (0)

Mnl - Jag 0.621 (0)
Table 3.5 Inter-site Pearson correlations of the Cedrus deodara trees
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The examination of the output from the ACCESS model for the NWH region (as shown

in Figure 3.2 b) indicates that the model does not exhibit significant inconsistencies in

the calculation of NPP, unlike what is observed in the case of Ghansali. We utilised the

annual NPP series for the NWH region to interpret the results. We determined the

Pearson correlation coefficients between the detrended BAI chronology of the sites and

the NWH region with the annual NPP and GPP series of the sites, which are presented

in Table 3.6.

Site name ACCESS-NPP ACCESS-GPP
Jag 0.414 (0) 0.134 (0.112)

Kuf 0.576 (0) 0.252 (0.002)

Mnl 0.462 (0) 0.241 (0.004)

NWH 0.509 (0) 0.202 (0.02)
Table 3.6 Pearson correlation coefficients of the individual sites with their annual NPP and GPP and of the

NWH region with the regional average of the annual NPP and GPP series. Significance values are

mentioned in the brackets.

Fig 3.11 Pearson correlation of monthly NPP and GPP with annual BAI.

In Figure 3.11, the monthly correlation with annual BAI is presented to identify the

growing season months. A positive correlation indicates that the productivity of that

month contributes to the tree stem growth. Conversely, a negative correlation suggests

that the productivity of that month is utilised in other parts or processes of the tree, or

the ecosystem productivity has a significant microbial contribution, which may not align

with tree growth. For Cedrus deodara, the pre-monsoon season is a critical growth

phase (Dhyani et al., 2022). The monsoon season may increase soil microbial activity,

leading to a decrease in NPP and, hence, a low correlation for July and August.
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Additionally, we observe that the winter months are also critical in the growth of Deodar

trees.

We investigate the influence of various climatic factors on the growth patterns of trees in

the NWH region, particularly in relation to BAI and RWI. We performed dominance

analysis to determine the key climate variables, and a spatial average of the climate

data from the ERA5 reanalysis product was taken over the region. This was done

because of the similarity in climatic conditions among the three sites, which were

situated at an average elevation of 2200m.

Deodar trees are classified as shade-tolerant and prefer deep and well-drained soils.

Their growth is positively affected by high levels of atmospheric moisture, while

extremely low temperatures pose a risk to the growth of young trees (Earle, 2023). BAI

is considered a more reliable growth indicator than RWI, although it may be less

sensitive to variations in climate (Peters et al., 2015).

In Table 3.7 (a), the dominant variables influencing the growth patterns of trees, with

BAI as the target variable, are presented. NPP emerges as the most dominant variable,

possibly due to the loss of common climate signals in the regional average of the BAI

index. However, the climate variables related to moisture, such as precipitation and soil

moisture, rank next in order, indicating the sensitivity of tree growth to moisture

availability.

In Table 3.7 (b), the results of the dominance analysis for the regional RWI as the target

variable are presented, highlighting the climate dependencies of tree growth. The

analysis reveals that tree growth is most sensitive to the average annual VPD and soil

water and is also influenced by temperature, in addition to the ecosystem productivity.

The extremely low dominance of annual rainfall for predicting RWI requires further

investigation with site specific information on proximity to an aquifer or river and

geographic terrain.
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Variable Interactional
dominance

Individual
dominance

Avg partial
dominance

Total
dominance

Relative
importance (%)

NPP 0.20 0.218 0.225 0.22 62.3

Annual rainfall 0.059 0.017 0.046 0.043 12.28

VPD 0.011 0.038 0.046 0.039 11.05

Temperature 0.006 0.023 0.034 0.027 7.78

Annual SWR 0.024 0.002 0.022 0.019 5.35

Soil water 0.006 0.0001 0.005 0.004 1.25
Table 3.7 (a) Incremental pseudo R2 (% variance explained) values of each variable when added to

regression models. BAI was the target variable. The climate variables and NPP explained 35% of the

overall variance for BAI.

Variable Interactional
dominance

Individual
dominance

Avg partial
dominance

Total
dominance

Relative
importance (%)

VPD 0.084 0.097 0.078 0.082 28.94

Temperature 0.059 0.078 0.057 0.061 21.33

Soil water 0.07 0.059 0.053 0.056 19.89

NPP 0.028 0.047 0.058 0.051 17.98

Annual SWR 0.054 0.001 0.026 0.026 9.24

Annual rainfall 0.003 0.005 0.009 0.007 2.61
Table 3.7 (b) Incremental pseudo R2 (% variance explained) values of each variable when added to

regression models. RWI was the target variable. The climate variables and NPP explained 28.38% of the

overall variance for RWI.

Fig 3.12 Relative importance of variables in explaining the variance in BAI (left) and RWI (right) for the

NWH region. The climate data is ERA5 reanalysis data from 1959-1988. The analysis is done for the

period 1959-1988. Temperature, VPD and soil water were computed as annual means whereas rainfall

and SWR were computed as annual sum.
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CONCLUSION AND FUTURE SCOPE

In the present study, we aimed to investigate the potential of tree-ring indices as proxies

for ecosystem productivity for Indian subtropical forests. For this, we tested the

historical simulation output from two CMIP6 models. CSIRO’s ACCESS-ESM1.5

predicted GPP, one of the primary ecosystem carbon fluxes, reasonably well compared

to NCAR’s NorESM2-LM over the NWH region and the central Indian region. The

magnitude of the estimated GPP was low compared to the flux tower observations, but

the ACCESS-ESM1.5 GPP showed a good match in capturing the seasonality.

We tested the performance of tree-ring indices generated using different standardisation

techniques. We found that BAI calculated from the raw ring width measurements was a

better indicator of tree growth compared to conventional tree-ring standardisation

methods. We found a significant correlation between BAI and the ecosystem

productivity variables NPP and GPP for the NWH region and Ghansali, respectively.

Furthermore, we found the correlation between the tree index and GPP or NPP to be

directional, where NPP and GPP were the granger cause for BAI. We also tested the

strength of the association between BAI and NPP or GPP in the presence of other

climate variables which affect tree growth by changing the C-allocation to each carbon

pool. Annual rainfall significantly impacted BAI apart from GPP for the tree species,

Pinus roxburghii at the Ghansali site. The BAI index created for NWH regional analysis

subdued the regional climatic signals. Thus, we tested the regional RWI for the Cedrus

deodara species and found that atmospheric moisture availability (VPD), average soil

moisture in the column, and air temperature significantly impacted RWI.

Future Scope

This study relied on data available on public-domain thus was limited by the availability

of quality tree-ring data suitable for estimating tree-growth and AWB. Detrending

methods have a significant impact on the statistical properties of the tree-ring indices,

including the variance range, spectrum, and trend. Additionally, detrending may
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introduce other notable characteristics, such as end effects and bias in signal trend

(Helama et al., 2004). Thus, testing the performance of tree-ring proxies using better

standardisation methods (Peters et al., 2014) would give more credibility to the use of

the proxy. For this, tree-ring data need to be supplemented by metadata on the forest

distribution, types of trees sampled, tree age, DBH and tree height (Coulthard et al.,

2020). In this study we may have overestimated BAI by considering that all samples

used were complete tree cores. An investigation of the tree core samples or information

on the tree diameter can also help estimate the pith distance and missing rings from

partial increment cores ( Altman et al., 2016). Having access to forest inventory data

would enable us to use allometric models to estimate annual increment in aboveground

biomass. This reconstructed AWB could then be used for a response function analysis

(Borgaonkar et al.,1999) and in understanding the contribution of tree biomass

increment in the total ecosystem productivity of a forest. In this study we assumed that

the tree-ring density remains constant intra-annually and inter-annually. However, this is

not the case, the latewood especially increases in density as the tree matures which

may introduce biases in estimating AWB (Babst et al., 2013). This study also suffered

from poor sample design while collecting tree-ring data. The selective sampling of trees

which would be most sensitive to climate change has been flagged by many studies

lately. Sampling the entire forest site or randomised selection of trees are proven to

produce least biassed estimates of tree growth and forest productivity (Nehrbass-Ahles

et al., 2014).

The reasonably well prediction of ecosystem productivity by the ACCESS-ESM1.5

model establishes that modelling outputs can be used in gaps where observations are

scarce or non-existent. However, an ESM has limitations such as coarse resolution and

incorporation of a limited number of vegetation dynamics and PFTs (Wang et al., 2019

and Zeihn et al., 2020). The ESM outputs can be further enriched using regional models

which downscale ESM outputs to higher resolutions with more observations and

detailed processes (Gutowski Jr, et al., 2016).
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