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Abstract

This thesis discusses multihomogeneous spaces and their relation with T-varieties and
toric varieties. Firstly, we study multihomogeneous spaces corresponding to Z

n-graded
algebras over an algebraically closed field of characteristic 0. A multihomogeneous space
is a scheme associated with a graded ring where the graded group is an abelian group of
finite rank. Geometrically, it is the geometric quotient of a quasi-open subscheme of the
associated a�ne scheme by the corresponding diagonalisable group scheme. A scheme is
divisorial if and only if it embeds into a multihomogeneous space. We give a criterion
when a multihomogeneous space is normal. Then we mention that one could associate
a sheaf with each graded module over the algebra, via a tilde construction, similar to
the construction of a sheaf associated with a graded module over integer-graded rings.
In doing so, we have a collection of shifted sheaves of modules associated with graded
modules over algebra. As one can expect, this tilde construction is a covariant exact
functor from the category of graded modules to the category of quasi-coherent sheaves of
modules. We identify which shifted sheaves of modules are line bundles in terms of the
graded group.

An a�ne T-variety is an a�ne scheme with an e�ective action of a torus. Such a�ne
varieties can be represented by a proper polyhedral divisor over a semi projective variety.
The semi projective variety is a good quotient of the action. A proper polyhedral divisor
encodes a collection of ample Cartier divisors, some of which are big.

xi



xii Contents

We show that for an a�ne T-variety, the corresponding semi projective variety and
the multihomogeneous space are birational. They are generally not isomorphic due to
the lack of ample divisors on the multihomogeneous space.

A toric variety is a T-variety such that the torus occurs as a dense open subscheme,
and the action extends the multiplication of the torus. In toric varieties with enough
invariant Cartier divisors, which includes simplicial toric varieties, points correspond to
homogeneous prime ideals of a certain graded ring which Perling shows. His construction,
known as tproj, reconstructs the toric variety from a graded ring where the graded group is
the Picard group of the toric variety. We show that the construction of multihomogeneous
space is similar to tproj; in fact, tproj, which is isomorphic to the toric variety, is an open
subscheme of the multihomogeneous space associated with that graded ring. We give a
criterion when a simplicial toric variety is a multihomogeneous space, and using this
criterion, we classify all simplicial toric surfaces that are multihomogeneous spaces.
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Introduction

In this chapter, we give an introduction to schemes with algebraic group actions. Toric
varieties, T-varieties, and some multihomogeneous spaces are the ones we are most in-
terested in. First, we give a short tour of the history of the above schemes and then
describe our main results.

1.1 History of group actions on varieties

A normal variety with an equivariant torus embedding is called a toric prevariety. When
it is separated it is called a toric variety. The category of toric varieties is a subcategory
of the category of toric prevarieties. The category of toric varieties is equivalent to the
category of lattice fans and the category of toric prevarieties is equivalent to the category
of finite collection of compatible fans in lattice vector spaces (see [ANH]). A fan in a
lattice vector space is a collection of cones in that vector space which are compatible in
a certain sense. We refer [Ful], [Oda] and [CLS] for details in toric geometry.

Recall that a projective variety has a graded coordinate ring associated with it. This
gives a correspondence between sheaves on the variety and graded modules on the ring.
In a nice situation, coherent sheaves of modules correspond to finitely generated graded
modules. Although all toric varieties are not projective they can have multiple coordinate
rings attached to them. However, a priori it is not clear which one is the best coordinate

1



2 1.1. History of group actions on varieties

ring. To remedy this Cox [Cox] came up with a coordinate ring, which is intrinsic to
the toric variety, and showed that it is universal, in the sense that any other coordinate
ring admits a morphism into it. In literature, this coordinate ring is known as Cox ring
of the toric variety. He also showed that one can reconstruct a toric variety from its
Cox ring. For example, a simplicial toric variety is a geometric quotient of a quasi-a�ne
toric variety whose ring of global sections is the Cox ring of the original toric variety.
Perling [Per] and Kajiwara [Kaj] separately showed that a toric variety with enough
invariant Cartier divisors is also a geometric quotient of some quasi-a�ne toric variety
generalising Cox’s construction. Therefore we can think of the ring of global sections of
the quasi-a�ne toric variety as a homogeneous coordinate ring of the toric variety. All
these constructions are examples of a more general theory known as quotient presentation
as described in [AHS1]. They classify all the quotient presentations of a toric variety up
to isomorphism.

Given a category C there is the Yoneda embedding from C to PSH(C), category of
presheaves of sets on C, which sends an object X œ Ob(C) to the presheaf Hom(≠, X).
This is a fully faithful embedding and the presheaf Hom(≠, X) uniquely determines the
object X. For a toric variety X the presheaf Hom(≠, X) was studied in [Cox], [Kaj]
and [AHS1]. Eisenbud, Mustata and Stillman in [EMS] used a coordinate ring of a toric
variety to compute cohomology groups of coherent sheaves.

A variety with an action of a torus is called a T-variety. A toric variety is a T-variety.
There is a T-variety such that the action of the torus can not be extended to make the
variety a toric variety (see [IV, example 2.10]). This makes the study of T-varieties more
interesting and important. The category of T-varieties can be defined in a similar fashion
as the category of toric varieties. The category of T-varieties lacks the benefits of pure
combinatorial description as toric varieties due to the di�erence of dimensions of the
variety and the torus. This di�erence is known as the complexity of the torus action. A
toric variety is a T-variety of complexity zero. Pictorially we have the following proper
subcategories

{Toric varieties}

{Toric prevarieties} {T-varieties}
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Altman and Hausen in [AH] establish a correspondence between a�ne T-varieties and
proper polyhedral divisors (in short pp-divisors) over semi-projective varieties. A pp-
divisor over a normal variety is a divisor with coe�cients in the semigroup of polyhedra
with a fixed tail cone. This encodes a collection of Cartier divisors with certain properties.
In [AHS2] there is a way how to glue a�ne T-varieties to get a general T-variety and
how general T-varieties correspond to divisorial fans.

Another object of interest in this thesis is the concept of a multihomogeneous space.
Brenner and Schröer [BS] introduced them as a generalization of projective space where
every divisorial variety embeds. These spaces correspond to multigraded rings, which are
rings graded by a finitely generated abelian group. Brenner and Schröer also proved that
these are simplicial torus embeddings in nice situations. Multigraded rings occur natu-
rally in algebraic geometry, for example, as iterated blow-ups along multiple subschemes.

1.2 Main result

The results described in this thesis constitute the contents of the preprints [MR1] and
[MR2].

1.2.1 T -variety and multihomogeneous space

We establish a birational morphism from a representative of a T-variety to an associated
multihomogeneous space and give an isomorphism criterion. We only work with a�ne
T-varieties over a field we describe below.

Assumption 1.2.1.Let D ≥= Z
r for a natural number r and suppose A = m

dœD Ad be a
multigraded, Noetherian, integral domain such that A0 = k, where k is an algebraically
closed field of characteristic 0. Proj

MH
A is non-empty.

Proj
MH

A is the multihomogeneous space corresponding to the D-grading of A (see
definition 6.1.3).

We use this assumption in the following theorem.

Theorem 1.2.2 (Theorem 7.1.3).Under the assumption 1.2.1, the torus T = Spec k[D]
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acts on X = Spec A giving X a structure of a T -variety which, suppose, is represented
by (Y,D). Then Y and Proj

MH
A are birational.

In the above theorem, Y is a semi-projective variety, i.e. projective over the spectrum
of its ring of global sections and D is a proper polyhedral(pp) divisor on Y .

Note that Y is a semi-projective variety and the multihomogeneous space Proj
MH

A is
not a projective variety in general. Therefore, in order to have an isomorphism between
them, we need the following assumption. In the following assumption Ê is the weight
cone of the grading in 1.2.1 and ⁄ is a cone in the corresponding GIT fan � (see 5.2.7).

Assumption 1.2.3.Suppose ⁄ = Ê, i.e. the GIT fan contains only one full dimensional
cone and its faces. Assume that A is generated by t

uœR Au where R = t
flœ⁄(1) fl.

Proposition 1.2.4 (Proposition 7.2.3).Assume 1.2.1 and 1.2.3. Assume that Ê is sim-
plicial and A is generated by {ffl | fl œ Ê(1)} such that deg ffl œ fl fl D. Then Y and
Proj

MH
A are isomorphic.

1.2.2 Toric variety and multihomogeneous space

Given a toric variety with enough invariant Cartier divisors, there exists a ring graded
by the Picard group of the variety. Then one can take the multihomogeneous space
corresponding to the grading. By doing so we have the following embedding.

Theorem 1.2.5 (Theorem 8.1.5).Let X� be the toric variety with enough invariant
Cartier divisors associated with the fan � and Spec(C[M ]) its torus. Then there is a
Spec(C[M ]) equivariant open embedding µ : tProj A Òæ Proj

MH
A, where A is the algebra

of support functions on � (defined in 4.1.10).

The following definition is important.

Definition 1.2.6. Let � be a simplicial fan in NR and �(1) be the set of rays.

1. A simplicial cone in � is a cone · µ NR generated by S, a linearly independent
subset of �(1).

2. � is said to be simplicially complete if it contains every simplicial cone in �.
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We have the following isomorphism criterion.

Theorem 1.2.7 (Theorem 8.2.5).Let X� be a simplicial toric variety corresponding to
the fan � in NR satisfying 4.1.1 and A be the coordinate ring of the a�ne toric variety
XC (defined in 4.1.10). Then � is simplicially complete if and only if the morphism
µ : tProj A æ Proj

MH
A in 8.1.5 is an isomorphism.

Chapter 2 is a review of combinatorial objects - cones, fans which are used in describ-
ing toric varieties and T-varieties.

Chapter 3 recalls algebraic group actions on varieties/schemes. Here we explain what
an algebraic group action on a scheme means.

Chapter 4 summarises Perling’s t-proj construction: This is a quotient presentation
generalising Cox’s construction. We also briefly talk about Kajiwara’s good cone con-
structions.

Chapter 5 briefly describes a�ne T-variety in terms of proper polyhedral divisors.
Chapter 6 is devoted to multihomogeneous spaces and sheaves on them. We give a

criterion for a shifted module to be a line bundle.
Chapter 7 establishes a relation between a T-variety and a multihomogeneous space

associated with an a�ne scheme with torus action.
Chapter 8 shows how a quotient presentation of a toric variety induces a multihomo-

geneous space and connects it with the toric variety.

Conventions

Unless otherwise stated, we shall be working over an algebraically closed field k of charac-
teristic 0. For us, prevarieties are integral schemes of finite type defined over k. Varieties
are separated prevarieties. Toric varieties and T-varieties are assumed to be varieties in
this sense. A prevariety with a torus as a dense open subscheme is a toric prevariety if
the multiplication of the torus extends to an algebraic action on the prevariety.



2

Combinatorics

In the first part of this chapter, we recall cones and fans in a lattice vector space. Consult
the book [CLS] for further information. Let Ab and VectQ denote the categories of
abelian groups and rational vector spaces respectively. There is a natural functor

Ab ≠æ VectQ

G ≠æ G ¢Z Q.

sending an abelian group to the corresponding rational vector space.

Definition 2.0.1. A lattice N is a free abelian group of finite rank. Given a lattice N ,
the dual lattice of N is the group HomZ(N, Z), which we denote by M .

For a lattice N , we denote the corresponding rational vector space N ¢Z Q by NQ,
and similarly, M ¢Z Q by MQ. For a Z-linear map F : N ≠æ N

Õ of lattices, we use the
same notation F : NQ ≠æ N

Õ
Q for the corresponding linear map of rational vector spaces.

Let N be a lattice and M its dual lattice. There is a natural pairing of the lattices N

and M , which we denote by

M ◊ N ≠æ Z

(u, v) ≠æ Èu, vÍ.

6
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The induced pairing of rational vector spaces is denoted by

MQ ◊ NQ ≠æ Q

(u, v) ≠æ Èu, vÍ.

Definition 2.0.2. Let f : NQ ≠æ Q be a linear functional.

1. A linear half space in NQ is the inverse image of a linear functional f over [0, Œ).

2. An a�ne half space in NQ is the inverse image of a linear functional f over [a, Œ)
for some a œ Q.

Linear and a�ne half spaces are convex and closed in NQ equipped with Euclidean
topology.

Definition 2.0.3. We define the following:

1. A polyhedral cone ‡ in NQ is the intersection of finitely many linear closed half
spaces. Equivalently it can be defined as the common inverse image of finitely
many linear functionals fi over [0, Œ).

2. A polyhedron � in NQ is the intersection of finitely many a�ne closed half spaces.
Equivalently it can be defined as the common inverse image of finitely many linear
functionals fi over [ai, Œ).

From now on, whenever we say a cone, we mean a pointed polyhedral cone. From
definition 2.0.2 it is evident that every cone is a polyhedron, and every polyhedron is
convex and closed. A cone always contains the origin but a polyhedron need not contain
the origin.

Definition 2.0.4. Let ‡ ( resp. �) be a cone (resp. polyhedron) in NQ and f : NQ ≠æ Q

be a linear functional.

1. A face of the cone ‡ is a subset · such that there exists a linear functional f with
f(‡) µ [0, Œ) and · = f

≠1(0) fl ‡.

2. A face of a polyhedron � is a subset · such that there exists a linear functional f

with f(�) µ [a, Œ) and · = f
≠1(a) fl ‡.
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Cone Polyhedron

Figure 2.1: Yellow represents a cone and green represents a polyhedron

3. A cone ‡ is pointed if 0 is a face of it.

Remark 2.0.5.A cone is a face of itself.

Definition 2.0.6. Let ‡ be a cone in NQ. The dual cone of ‡ is

‡
‚ := {m œ MQ | Èm, uÍ Ø 0 ’u œ ‡.}

The dual cone ‡
‚ is again a polyhedral cone. Since the cone ‡ is pointed, the dual cone

‡
‚ is full dimentional. To the dual, we associate a semigroup

S‡ := ‡
‚ fl M.

It is a finitely generated saturated monoid (this follows from Gordon’s lemma [CLS,
proposition 1.2.17]). We denote the algebra associated with S‡ by A‡ and it has the
presentation

A‡ :=
n

mœS‡

k‰
m

with multiplication given by
‰

m · ‰
m

Õ = ‰
m+m

Õ
.

Definition 2.0.7. We define a fan as follows

1. A quasi fan � in NQ is a collection of cones in NQ such that if · is a face of ‡ for
some ‡ œ �, then · œ � and for ‡ and ‡

Õ in �, ‡ fl ‡
Õ is a cone in � and a face of

both, ‡ and ‡
Õ.
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2. A quasi fan � in NQ is called a fan if all cones ‡ œ � are pointed.

3. Support of a quasi fan � in NQ is the union of all cones in �.

‡1‡2

‡3

Fan of projective

plane P
2

‡1

‡2

‡3 ‡4

Fan of Hirzebruch

surface Hn

Figure 2.2: Fans

Definition 2.0.8. We define the following:

1. A rational cone ‡ is called simplicial if it is generated by a linearly independent set
of vectors in NQ.

2. A cone ‡ is smooth if it generated by a Z basis of integral vectors in NQ

3. A fan is called simplicial if each cone in it is simplicial.

4. A fan is called smooth if each cone in it is smooth.

Example 2.0.9.The fans in figure 2.2 are simplicial. While the first fan is smooth, the
second fan is not.

Definition 2.0.10. Let A and B be two subsets of NQ. Minkowski sum of A and B is
the set A + B := {a + b : a œ A, b œ B}.

One can prove that every polyhedron � in NQ can be written as a Minkowski sum
decomposition � = � + ‡ having � µ NQ, a polytope and ‡ µ NQ, a pointed cone.
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In the decomposition, ‡ is called the tail cone of �, and it is unique. In fact, given a
polyhedron � in NQ one computes its tail cone tail(�) as

tail(�) = {v œ NQ; u + av œ � for all u œ �, a œ QØ0}

.

�

Polyhedron

‡

�

Minkowski decomposition

Figure 2.3: Minkowski decomposition of a polyhedron

In the Minkowski decomposition of the polyhedron � on the left, the polytope � is
the line segment joining (1, 0) and (0, 1) and the tail cone ‡ is the first quadrant on the
right figure.

The rest of this chapter is paraphrased from [AH]. For the rest of the chapter, N

denotes a lattice, M its dual. NQ and MQ denote the rational vector spaces associated
with N and M respectively. ‡ denotes a pointed cone in NQ and ‡

‚ its dual in MQ.

Definition 2.0.11. 1. A polyhedron � in NQ is called a ‡≠polyhedron (‡≠tailed
polyhedron) if tail(�) = ‡. Pol+

‡
(NQ) denotes the set of all ‡≠polyhedra in NQ.

2. A polyhedron � œ Pol+
‡

(NQ) is called integral if in the Minkowski sum decomposi-
tion � = � + ‡, the vertices of polytope � consists of lattice points in N . Pol+

‡
(N)

denotes the set of all integral polyhedra in NQ.
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Given �i = �i + ‡ œ Pol+
‡

(NQ), i = 1, 2, their Minkowski sum is

�1 + �2 = (�1 + ‡) + (�2 + ‡)

= (�1 + �2) + ‡

= � + ‡

where � = �1 + �2 is again a polytope in NQ. Further, �i are integral implying their
sum is integral. In fact, �1 + �2 = �2 + �1 and � + ‡ = � for � = � + ‡ œ Pol+

‡
(NQ).

Therefore, with respect to Minkowski sum +, Pol+
‡

(NQ) and Pol+
‡

(N) are abelian monoids
with identity element being ‡.

Clearly the canonical map

Pol+
‡

(N) ≠æ Pol+
‡

(NQ)

� ≠æ �

is an injective monoid homomorphism.

Definition 2.0.12. 1. The Grothendieck group of Pol+
‡

(NQ), which is generated by
{�1 ≠ �2; �i œ Pol+

‡
(NQ)} is called the group of ‡≠polyhedra. Let us denote it by

Pol‡(NQ).

2. The Grothendieck group of Pol+
‡

(N), which is generated by {�1 ≠ �2; �i œ
Pol+

‡
(N)} is called the group of integral ‡≠polyhedra. Let us denote it by Pol‡(N).

The canonical map

Pol‡(N) ≠æ Pol‡(NQ)

� ≠æ �

becomes an injective group homomorphism.
Let NQfan

‡‚(MQ) be the category of normal quasifans in MQ with support ‡
‚. There

is a functor

Pol+
‡

(NQ) ≠æ NQfan
‡‚(MQ)

� ≠æ �(�)
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where faces F ∞ � correspond to cones in ⁄(F ) œ �(�) in reverse order

F ≠æ ⁄(F ) := {u œ MQ; Èu, v ≠ v
ÕÍ Ø 0 for all v œ �, v

Õ œ F}

Lemma 2.0.13.Let � œ Pol+
‡

(NQ). Then Supp(�(�)) = ‡
‚ in MQ.

From lemma 2.0.13 it is clear that maximal cones in �(�) correspond to vertices of
the polyhedron �.

Definition 2.0.14. Let � be a convex set in NQ. The function

h� : MQ ≠æ Q fi {≠Œ}

u ≠æ infvœ�Èu, vÍ

is called the support function of �. The set h
≠1

�
(Q) in MQ is called the domain of the

support function h�.

Lemma 2.0.15.Let h� be the support function associated to � œ Pol+
‡

(NQ).

1. The domain of h� is ‡
‚, and h� is linear on ⁄ for all ⁄ œ �(�).

2. h� is convex: This means the function h� satisfies the following

h�(u) + h�(v) Æ h�(u + v)

for all u, v œ ‡
‚.

Moreover, strict inequality holds if and only if u and v lies in di�erent maximal
cones of �(�).

Definition 2.0.16. Let Ê be a cone in MQ and h : MQ ≠æ Q fi {≠Œ} be a function
with domain Ê. We call h piecewise linear if there exists a quasifan � in MQ such that
following hold

1. Supp(�) = Ê in MQ and

2. h|⁄ : ⁄ ≠æ Q are linear maps for all ⁄ œ �.

Let CPLQ(Ê) denote the set of convex piecewise linear functions on MQ with domain
Ê. Then CPLQ(Ê) is an abelian monoid under pointwise addition.
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Proposition 2.0.17.The map Pol+
‡

(NQ) ≠æ CPLQ(‡‚), which sends � to h� is an
isomorphism of abelian semigroups.

Proposition 2.0.18.The following statements hold:

1. There is a commutative diagram of monoids

Pol+
‡

(N) Pol+
‡

(NQ)

Pol‡(N) Pol‡(NQ)

where all arrows are canonical injective homomorphisms.

2. For each – œ QØ0 and each � œ Pol+
‡

(NQ), define

–� := {–v; v œ �}.

Then this multiplication has unique extension to Pol‡(NQ) and the induced scalar
multiplication

Q ◊ Pol‡(NQ) ≠æ Pol‡(NQ)

makes Pol‡(NQ) a rational vector space.

3. The group Pol‡(N) is free abelian, and we have a canonical isomorphism of rational
vector spaces

Q ¢Z Pol‡(N) ≠æ Pol‡(NQ),

induced by scalar multiplication mentioned in the statement (2).

4. Each u œ ‡
‚ induces a unique linear functional, denoted by evalu : Pol‡(NQ) ≠æ Q

which satisfies the following

evalu(�) = minvœ�Èu, vÍ, if � œ Pol+
‡

(NQ).
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5. Two ‡≠polyhedra �1, �2 œ Pol‡(NQ) are same if and only if

evalu(�1) = evalu(�2), for all u œ ‡
‚
.

6. A ‡≠polyhedron � œ Pol‡(NQ) is integral if and only if all evaluations evalu(�)
are integer for all u œ ‡

‚ fl M .



3

Algebraic group action

In this section, we define algebraic groups and their action on schemes. For a detailed
exposition, see the book [Mil]. We restrict our attention to linear algebraic groups which
are a�ne varieties with group structure given by morphisms of varieties.

Definition 3.0.1. Let G be a variety. Then G is called an algebraic group if there
exist morphisms ‡ : G ◊ G æ G, i : G æ G, and e : Spec k æ G, called multipli-
cation, inversion and identity respectively, of varieties such that following diagrams are
commutative:

G ◊ G ◊ G G ◊ G

G ◊ G G

id◊‡

‡◊id ‡

‡

(3.1)

G G ◊ G G

Spec k G Spec k

id◊i

‡

i◊id

e

e

(3.2)

Spec k ◊ G G ◊ G G ◊ Spec k

G

e◊id

≥= ‡

id◊e

≥=
(3.3)

15
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Remark 3.0.2.Whenever way say G is an algebraic group the associated morphisms are
understood.

Definition 3.0.3. Let G be an algebraic group. Then G is a linear algebraic group if it
is an a�ne variety.

Let G be a linear algebraic group and A(G) := �(G, OG) the algebra of global sections
(global regular functions). Then the groups operations ‡, i, and e in 3.1, 3.2, and 3.3 cor-
respond to algebra homomorphisms ‡

ú
, i

ú and e
ú known as comultiplication, coinversion

and coidentity respectively. They satisfy the following commutative diagrams

A(G) ¢k A(G) ¢k A(G) A(G) ¢k A(G)

A(G) ¢k A(G) A(G)

id¢‡
ú

‡
ú¢id

‡
ú

‡
ú (3.4)

A(G) A(G) ¢k A(G) A(G)

Spec k A(G) Spec k

id¢i
ú

i
ú¢id

e
ú

‡
ú

e
ú

(3.5)

k ¢k A(G) A(G) ¢k A(G) A(G) ¢k k

A(G)

e
ú¢id

id¢e
ú

≥=
‡

ú ≥= (3.6)

Remark 3.0.4.A(G) with ‡
ú
, i

ú, and e
ú forms a Hopf algebra.

Example 3.0.5.Here are some simple and useful algebraic groups defined over k.

1. Gm(k) = k
ú is a linear algebraic group with A(Gm) = k[T ±1].

2. T = (Gm)n(k) known as torus, is a linear algebraic group with A(Gm) =
k[T ±1

1 , . . . , T
±1

n
].

3. G = GLn(k) is a linear algebraic group, where

A(GLn) = k[{Ti,j|1 Æ i, j Æ n} fi {S}]/(S det((Ti,j)) ≠ 1).

Now we define what a morphism between algebraic groups means.
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Definition 3.0.6. Let G1 and G2 be algebraic groups. A group homomorphism is a
morphism fi : G1 æ G2 of varieties such that the following diagram is commutative

G1 ◊ G1 G1

G2 ◊ G2 G2

‡1

fi◊fi fi

‡2

where ‡i : Gi æ Gi are group multiplications.

Algebraic groups form a category where morphisms are group homomorphisms.

Definition 3.0.7. Let G be an algebraic group with group multiplication ‡. G is called
abelian if ‡(g, h) = ‡(h, g) for all g, h œ G.

Definition 3.0.8. Given an algebraic group G, we define the following:

1. The set of group homomorphisms from G to Gm(k) forms a group. It is called the
character group of G and is denoted by ‰(G).

2. The set of group homomorphisms from Gm(k) to G also forms a group. It is called
cocharacter group of G and is denoted by ⁄(G).

Remark 3.0.9.Let G be a torus (see 3.0.5, example 2). Then the groups ‰(G) and ⁄(G)
are finitely generated (see [Ful, section 2.3]).

Definition 3.0.10. A k algebra R is called a Hopf algebra if it is equipped with three
algebra homomorphisms ‡

ú
, i

ú, and e
ú such that all diagrams in equations 3.4, 3.5, and

3.6 commutative.

Now we define group action on a�ne varieties.

Definition 3.0.11. Let G be an algebraic group and X a variety. An algebraic action
of G on X is a morphsim Â : G ◊ X æ X of varieties such that the following diagram is
commutative

G ◊ G ◊ X G ◊ X

G ◊ X X.

id◊Â

Â◊id Â

Â

(3.7)
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Assume G is linear and X = Spec A a�ne. Then the action Â is a morphism of a�ne
varieties and therefore it corresponds to an algebra homomorphism Â

ú : A æ A(G)¢k A.
The ‰(G) grading on A(G) induces an ‰(G) grading on the algebra A(G)¢kA and pulling
it back by Â

ú, we get an ‰(G) grading on A. Therefore we have a decomposition

A =
n

mœ‰(G)

Am

of ‰(G) invariant k vector subspaces.

Definition 3.0.12. Let G be a linear algebraic group and X an a�ne variety. Assume
G acts algebraically on X and A = �(X, OX). For a point x œ X we define the following:

1. The weight monoid S(x) of x is the monoid {m œ ‰(G) : ÷f œ Am such that f(x) ”=
0}.

2. The weight cone Ê(x) of x is the cone generated by S(x) in the vector space ‰(G)Q.

3. The weight cone Ê is the cone generated by {m œ ‰(G) : Am ”= 0} in the vector
space ‰(G)Q.

4. The stabilizer group Gx of x is the subgroup {g œ G : g · x = x} of G.

5. We say the action is e�ective if for some g œ G, g · x = x for all x œ X then g = e,
the identity of G.

There is a relation between e�ective actions and the weight cone.

Fact 3.0.13.Let G be a torus and X an a�ne variety. Assume G acts algebraically on
X. Then the action is e�ective if and only if the weight cone Ê has full dimension in the
vector space ‰(G)Q.

Proposition 3.0.14. [DG, §2, Proposition 1.7] Let G be a linear algebraic group and
X = Spec A an a�ne variety. Then there is a one-one correspondence between G actions
on X and ‰(G)-graded decomposition of the k-algebra A into vector subspaces.
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Toric variety

A toric variety is a normal variety X with an open torus T such that the multiplication
on the torus T extends to an algebraic group action on the variety X. Here, by a
torus, we mean G

n

m
(see example 3.0.5(2)). If ÿ : T æ X denotes the open embedding,

‡T : T ◊ T æ T the group multiplication on the torus, and ‡ : T ◊ X æ X the group
action on the variety X, then we have the following commutative diagram,

T ◊ X X

T ◊ T T

‡

Id◊ÿ

‡T

ÿ

A toric morphism between toric varieties (X1, T1) and (X2, T2) is a morphism f :
X1 æ X2 of varieties which is compatible with the tori actions. That means, f(T1) µ T2

and we denote the restriction morphism T1 æ T2 by the same f . Then we have the
following commutative diagram,

T1 ◊ X1 X1

T2 ◊ X2 X2

‡1

f◊f f

‡2

From now on we suppress the torus, and whenever we say a toric variety the corre-
sponding torus is understood. For toric varieties X and Y , we denote the set of toric

19



20

morphisms from X to Y by HomT (X, Y ), and call it toric hom. The category of toric
varieties consists of toric varieties as objects and morphisms are toric hom sets.

In this chapter, all cones are strongly convex rational polyhedral. Fix a lattice N and
its dual lattice M . Let NR and MR be corresponding real vector spaces associated with
the lattices. Let ‡ be a cone in NR and ‡

‚ its dual cone in MR. Then S‡ = ‡
‚ fl M

is a finitely generated saturated semigroup and the associated algebra A‡ = k[S‡] is an
M -graded k-algebra of finite type. For an element m œ S‡ we denote the corresponding
element in A‡ by ‰

m. Then we have the a�ne scheme U‡ := Spec A‡.

‡  ‡
‚  S‡  A‡  U‡.

Each m œ MR induces a linear map Èm, ·Í : NR æ R. A cone · µ NR is a face of ‡ if
and only if there exists an m œ ‡

‚ such that · = ‡ fl {u œ NR | Èm, uÍ = 0}. We can take
m to be integral, i.e., m œ M . Then we have ·

‚ = ‡
‚ + mZ and S· = S‡ + mZ. This

gives us A· = (A‡)‰m . By taking the prime spectrum we get U· = Spec A· is an open
subscheme of U‡ = Spec A‡. The face 0 of ‡ corresponds to the semigroup S0 = M and
the a�ne scheme U0 = Spec k[M ], which is a torus. By the previous argument, it is an
open subscheme of U‡. Furthermore, we have the commutative diagram of semigroups

S‡ M ü S‡ m (m, m)

M M ü M m (m, m),

satisfying certain properties. It gives rise to the following commutative diagram of k-
algebras

k[M ü S‡]

k[S‡] k[M ] ¢k k[S‡] ‰
m (‰m ¢ ‰

m)

k[M ] k[M ] ¢k k[M ] ‰
m (‰m ¢ ‰

m),

k[M ü M ]
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Which satisfies the properties of a Hopf comultiplication. Therefore, the prime spectrum
of the above diagram gives us an algebraic group action as follows

T ◊ U‡ U‡

T ◊ T T

where T = U0 = Spec k[M ] is a torus. This makes U‡ an a�ne toric variety.
Let � be a fan in NR. For ‡1, ‡2 œ � we have · = ‡1 fl ‡2 œ �. Then U· is an open

subscheme of both U‡1
and U‡2

. By patching the a�ne toric varieties U‡, ‡ œ � along
the open subschemes given by common faces we get the toric variety X�.

4.1 Perling’s construction (tProj)

This section is a review of Perling’s reconstruction [Per] of a toric variety X from a
multigraded ring associated with X via a generalization of the Proj construction, which
he denotes by tProj.

A toric variety X is a normal variety with an action of a dense open torus such that
the torus action on the variety restricts to the multiplication on the torus. The category
of toric varieties is equivalent to the category of pairs (N, �) where N is a lattice (free
abelian group of finite rank) and � is a fan in the real vector space NR. The toric variety
corresponding to � will be denoted by X�. We denote the Z-dual of N by M . See [Ful]
and [CLS] for the results on toric varieties used here.

We have the following assumption on the fans associated with the toric varieties.
Recall that support of a fan is the union of all its cones.

Assumption 4.1.1.The support of � generates the vector space NR.

Define �(1) := {fl œ � : dim(fl) = 1} the set of 1-dimensional cones in � and we
denote nfl the primitive element of fl. For each fl œ �(1), we denote the associated T -
invariant prime Weil divisor on X� by Dfl. CDivT(X�) denotes the free abelian group
generated by T -invariant Cartier divisors on X�. We further assume the following

Assumption 4.1.2.The Picard group Pic(�) of X� is free.
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The Picard group fits into an exact sequence (see [Ful, section 3.4] or [Oda]),

1 ≠æ M
Div≠≠æ CDivT(�) deg≠≠æ Pic(�) ≠æ 1.

Definition 4.1.3. A �-linear support function h is a function from the support |�| to
R such that h is linear on each cone ‡ œ � and sends integral points in |�| to Z.

We denote by SF(�) the free abelian group of finite rank of �-linear support functions.
It is well known (see [Ful, section 3.4]) that such functions correspond to the Cartier
divisors. Therefore CDivT(�) ≥= SF(�) is an isomorphism of abelian groups. Denote the
real vector space of support functions by SF(�)R := SF(�) ¢Z R. There is a split short
exact sequence of abelian groups

1 ≠æ M
Div≠≠æ SF(�) deg≠≠æ Pic(�) æ 1, (4.1)

and a corresponding exact sequence of tori

1 ≠æ G ≠æ T̃ ≠æ T ≠æ 1,

where G := Spec C[Pic(�)], T̃ := Spec C[SF(�)] and T := Spec k[M ].

Definition 4.1.4. For a support function h œ SF(�)R, we define its support as |h| :=
{fl œ �(1) : h(nfl) ”= 0}, where nfl is the primitive element of fl.

For each ray fl œ �(1), the spaces Hfl := {h œ SF(�)R : h(nfl) Ø 0} µ SF(�)R are
half spaces [Per, proposition 3.2] whose boundaries ˆHfl are rational hyperplanes.

Our results, which depend on Perling and Kajiwara’s results, require the condition of
having enough invariant Cartier divisors, which we define now.

Definition 4.1.5. [Per, proposition 3.3] A toric variety X�, corresponding to a fan
� in a lattice N , has enough invariant Cartier divisors if for each ‡ œ � there exists
an e�ective T -invariant Cartier divisor whose support is precisely the union of Dfl for
fl /œ ‡(1).

Remark 4.1.6.For cone ‡, if D is such a Cartier divisor and it corresponds to the
support function h then |h| = �(1) \ ‡(1). This definition agrees with that of Kajiwara
[Kaj, definition 1.5] in terms of good cones.
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Example 4.1.7.Simplicial toric varieties have enough invariant Cartier divisors (see
[Cox, lemma 3.4]).

Assumption 4.1.8.We assume the toric variety X� has enough invariant Cartier divi-
sors.

The set C =
1u

flœ�(1) Hfl

2‚
is a pointed strongly convex rational polyhedral cone in

SF(�)R
‚. For each fl œ �(1), let lfl be the primitive element of the ray orthogonal to Hfl

in SF(�)R
‚ which takes positive values on C. Define ‡̂ to be the cone generated by the

lfl corresponding to the rays in ‡, i.e. È{lfl | fl œ ‡(1)}Í. Then �̂ = {‡̂ | ‡ œ �} is a subfan
of C (see proof of [Per, proposition 3.6]) and the map of fans (SF(�)R

‚
, �̂) ≠æ (NR, �)

is surjective. This induces the following diagram of toric morphisms

X
�̂

XC

X�

„

fi

where „ is an open immersion and fi is a quotient presentation in the sense of [AHS1].

Remark 4.1.9 (cf. remark 3.8 of [Per]).When the fan � is simplicial then the quotient
presentation fi : X

�̂
æ X� is same as described by Cox [Cox]. Further �̂ is simplicial if

and only if � is simplicial.
For further properties of Cox rings consult the book [ADHL].

Notation 4.1.10. The coordinate ring A := C[C‚ fl SF(�)] of the a�ne toric variety
XC is Pic(�)-graded C-algebra given by the homomorphism deg in 4.1. For a support
function h œ SF(�) we denote ‰(h) the corresponding homogeneous element in A. Let
Ê be the corresponding weight cone in the real vector space Pic(�)R.

Recall that X
�̂

= t
‡̂œ�̂

X‡̂. Let B‡ be the defining ideal for XC \ X‡̂ and B :=
q

‡œ� B‡ µ A. Then, B has codimension at least 2 in A and V (B) = XC \ X
�̂

proving
that �(X

�̂
, OX

�̂
) = A. Furthermore, the dual action of G on A induces the isotypical

decomposition
A =

n

–œPic(�)

A–.
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Under the order reversing correspondence between faces of C and faces of C
‚, ‡̂ œ �̂

corresponds to �‡ := C
‚fl‡̂

‹. For each ‡̂ œ �̂, we fix a support function h‡ œ rel int(�‡).
Then

|h‡| = �(1) \ ‡(1).

For each ‡ œ �, let ‰(h‡) œ A be the element corresponding to h‡. Let A(‰(h‡)) be the
subring of degree zero elements in Pic(�)-graded localized ring A‰(h‡). Then we have
A

G

‰(h‡)
≥= A(‰(h‡))

≥= k[‡M ] where ‡M := ‡
‚ fl M for ‡ œ � [Per, lemma 3.10]. Thus,

(X�, fi) is a categorical quotient of the action of G on X
�̂

[Per, proposition 3.11].
As a topological space,

tProj A = {˝ œ X
�̂

| ˝ is a homogeneous prime ideal in A} .

Let i : tProj A ≠æ X
�̂

be the canonical embedding. One constructs a sheaf of rings O
Õ

on XC which for an open set U , is the ring O
Õ(U) consisting of those sections of O(U),

which locally are fractions of homogeneous elements of degree 0. Perling [Per, definition
3.15] defines OtProj A = i

≠1
O

Õ on tProj A. The ringed space tProj A = (tProj A, OtProj A)
is called the toric proj of A, and Perling proves that this is indeed a scheme. He shows
that if · < ‡ in � and h· and h‡ are support functions vanishing on ·(1) and ‡(1),
respectively then we have the following diagram (see [Per, theorem 3.18])

tProj A(‰(h· )) D+(‰(h· )) Spec A(‰(h· )) Spec k[·M ]

tProj A(‰(h‡)) D+(‰(h‡)) Spec A(‰(h‡)) Spec k[‡M ].

≥= ≥= ≥=

≥= ≥= ≥=

(4.2)

This establishes that tProj A is a scheme and is isomorphic to the toric variety. In fact,
it presents X� as a geometric quotient of X

�̂
by G [Per, theorem 3.19].

The advantage of this presentation is that there is an essentially surjective functor
from the category of Pic(�)-graded A-modules to quasi-coherent OtProj-modules. More
explicitly, for a graded A-module F , the Ê( ) construction [Per, definition 3.21] gives a
quasi-coherent OtProj-module ÂF on tProj A. For each – œ Pic (�), we have the graded
A-modules A(–) with decomposition A(–) := ü—œPic(�)A(–)— where — œ Pic(�) and
A(–)— := A–+—. The associated quasi-coherent OtProj-module OtProj A(–) := ˜A(–) is an
invertible sheaf [Kaj, proposition 2.6(1)] for each – œ Pic(�). Like projective spaces, for
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–, — œ Pic(�) we have the isomorphisms OtProj A(– + —) ≥= OtProj A(–) ¢OtProj A OtProj A(—)
[Kaj, corollary 2.8] and ]F (–) ≥= ÂF ¢OtProj A OtProj A(–) for a graded A-module F [Kaj,
corollary 2.9].

On the other hand, for a quasi-coherent OtProj-module F , there is a graded A-module
�ú(tProj A, F ) := m

–œPic(�) �(tProj A, F (–)) where F (–) := F ¢OtProj A OtProj A(–) with
^�ú(tProj A, F ) ≥= F . The functors Ê( ) and �ú(tProj A, ) are adjoint functors while the

former one is left adjoint, and the later one is right adjoint (see [Kaj]).
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T-varieties

In this section, we study varieties equipped with an action of an algebraic group. The
algebraic groups we mostly consider in this section and throughout this thesis are tori,
denoted by T := G

n

m
(k). The k≠algebra of global sections of the torus T is denoted by

L := �(T, OT ), where L means Laurent polynomials.
Now we define a�ne T -varieties.

Definition 5.0.1. An a�ne variety X = Spec A with an e�ective action of a torus T is
called a T -variety.

The number dim(X)≠dim(T ) is called the complexity of the torus action. T -varieties
of complexity zero are toric varieties.

5.1 Varieties associated with proper polyhedral di-
visors

Throughout this chapter Y denotes a normal variety. We fix a lattice N and its dual
lattice M . NQ and MQ denote the associated rational vector spaces. We also fix a strongly
convex rational polyhedral cone ‡ in NQ and its dual cone ‡

‚ in MQ.
Let Div(Y ) and CaDiv(Y ) denote the groups of Weil and Cartier divisors on Y re-

spectively. Also, we denote the rational vector spaces of Weil and Cartier divisors by

26
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DivQ(Y ) and CaDivQ(Y ). Since Y is normal, we have the following commutative diagram
of groups

CaDiv(Y ) Div(Y )

CaDivQ(Y ) DivQ(Y ),

where all morphisms are inclusions.
Let V µ Y be an open subvariety and D œ DivQ(Y ) be a rational Weil divisor on Y .

Then the sheaf of sections OD over V is defined as follows:

�(V, O(D)) := {f œ K(Y ) : div(f)|V + D|V Ø 0} fi {0} = �(V, O(ÂDÊ)) fi {0}.

If f œ �(Y, O(D)) is a global section, then we define the vanishing locus of f as

Z(f) := Supp(div(f) + D)

and non-vanishing locus of f as

Yf := Y \ Z(f).

We use the non-vanishing loci of global sections of Weil divisors to define the following.

Definition 5.1.1. Let D œ CaDivQ(Y ) be a Cartier divisor on Y . Then D is called
semiample if there exists a positive integer n such that the non-vanishing loci Yf , f œ
�(Y, O(nD)), is an open covering of Y .

Definition 5.1.2. Let D œ CaDivQ(Y ) be a Cartier divisor on Y . Then D is called
big if there exists a positive integer n and a section f œ �(Y, O(nD)) such that the
non-vanishing locus Yf is a�ne.

Semi-ample and big divisors are important in defining proper polyhedral divisors or
pp-divisors. We define pp-divisors later.

Definition 5.1.3 ( [AH], definition 2.3). (i) The groups of rational polyhedral Weil
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divisors and rational polyhedral Cartier divisors of Y with respect to ‡ are

DivQ(Y, ‡) := Pol
‡
(NQ) ¢Z Div(Y )

CaDivQ(Y, ‡) := Pol
‡
(NQ) ¢Z CaDiv(Y )

respectively.

(ii) The groups of integral polyhedral Weil divisors and rational polyhedral Cartier
divisors of Y with respect to ‡ are

Div(Y, ‡) := Pol
‡
(NQ) ¢Z Div(Y )

CaDiv(Y, ‡) := Pol
‡
(NQ) ¢Z CaDiv(Y )

respectively.

Whenever we say polyhedral divisors we mean rational polyhedral divisors. Inte-
gral polyhedral divisors will be explicitly expressed. We recall the following important
proposition.

Proposition 5.1.4 ( [AH],proposition 2.4). (i) Div(Y, ‡) and CaDiv(Y, ‡) are free abelian
groups, and DivQ(Y, ‡) and CaDivQ(Y, ‡) are rational vector spaces.

(ii) We have the following commutative diagram

CaDiv(Y, ‡) Div(Y, ‡)

CaDivQ(Y, ‡) DivQ(Y, ‡),

where all morphisms are canonical inclusions. In fact, we have the isomorphisms

DivQ(Y, ‡) ≥= Q ¢Z Div(Y, ‡),

CaDivQ(Y, ‡) ≥= Q ¢Z CaDiv(Y, ‡).
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(iii) For every u œ ‡
‚, there is a linear evaluation functional

DivQ(Y, ‡) ≠æ DivQ(Y ),

D =
ÿ

�i ¢ Di ≠æ D(u) :=
ÿ

evalu(�i)Di,

induced by 2.0.18.

(iv) Two polyhedral divisors D1,D2 œ DivQ(Y, ‡) are same if and only if D1(u) = D2(u)
for all u œ ‡

‚
.

(v) A polyhedral divisor D œ DivQ(Y, ‡) is integral if and only if D(u) are integral
divisors for all u œ ‡

‚ fl M .

(vi) A polyhedral divisor D œ DivQ(Y, ‡) is Cartier if and only if D(u) are Cartier
divisors for all u œ ‡

‚.

Definition 5.1.5 ( [AH], definition 2.5). (i) A polyhedral divisor D œ DivQ(Y, ‡) is
called e�ective if all the evaluations D(u) are e�ective divisors on Y for all u œ ‡

‚.
We write D Ø 0 when D œ DivQ(Y, ‡) is e�ective.

(ii) A polyhedral divisor D œ DivQ(Y, ‡) is called semiample if all the evaluations D(u)
are semiample divisors for all u œ ‡

‚.

Definition 5.1.6 ( [AH], definition 2.7). A proper polyhedral divisor (in short, pp-
divisor) on Y with respect to ‡ is a polyhedral Cartier divisor D œ CaDivQ(Y, ‡) such
that the following hold:

(i) D is semiample,

(ii) D admits a presentation D = q �i ¢ Di with �i œ Pol
‡
(NQ) and Di œ Div(Y )

e�ective,

(iii) for each u œ rel int(‡‚), the evaluation D(u) œ CaDivQ(Y ) is a big Cartier divisor
on Y .

The addition on CaDivQ(Y, ‡) induces a semigroup structure on the set of all pp-
divisors.
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Definition 5.1.7 ( [AH], definition 2.8). PPDivQ(Y, ‡) denotes the semigroup of pp-
divisors on Y with respect to ‡.

The pp-divisors are connected to certain convex piecewise linear maps which we define
now.

Definition 5.1.8 ( [AH], definition 2.9). Let Ê µ MQ be a full dimensional cone. A map
h : Ê ≠æ CaDivQ(Y ) is

(i) convex if h(u) + h(uÕ) Æ h(u + u
Õ) holds for any u, u

Õ œ Ê,

(ii) piecewise linear if there exists a quasifan � in MQ with Supp(�) = Ê such that h

is linear on each cone in �,

(iii) strictly semiample if h(u) is semiample for all u œ Ê, and for all u œ rel int(Ê), h(u)
is big.

Definition 5.1.9. Let Ê µ MQ be a full dimensional cone. A convex, piecewise linear
and strictly semiample map h : Ê ≠æ CaDivQ(Y ) is called integral if h(u) œ CaDiv(Y )
are integral Cartier divisors for all u œ Ê fl M .

The set of all convex, piecewise linear and strictly semiample maps also form a semi-
group under pointwise addition.

Definition 5.1.10 ( [AH], definition 2.10). Let Ê µ MQ be a full dimensional cone. Then
CPLQ(Y, Ê) denotes the semigroup of convex, piecewise linear and strictly semiample
maps h : Ê ≠æ CaDivQ(Y ).

We have the following correspondence.

Proposition 5.1.11 ( [AH], proposition 2.11).The following map

PPDivQ(Y, ‡) ≠æ CPLQ(Y, ‡
‚),

D ≠æ [u æ D(u)]

is a canonical isomorphism of semigroups. This isomorphism sends integral pp-divisors
to integral, convex, piecewise linear and strictly semiample maps.
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5.2 Construction of Y given a variety with torus ac-
tion

We pay our attention to only a�ne T-varieties. We describe how to get the variety Y

together with a pp-divisor on it.
Let A be an integral M -graded k algebra :

A =
n

uœM

Au.

We assume that the weight cone

Ê := Èu œ M |Au ”= 0Í

is full dimensional. Then by ( [Gro], proposition I.4.7.3), the algebraic torus T :=
Spec k[M ] acts on the a�ne space X := Spec A.

Definition 5.2.1. [MFK] Let X and T be as above and L æ X be a line bundle.
A T -linearization of the line bundle L æ X is a fiberwise T -action on L making the
projection map T -equivariant.

When the line bundle L = OX is trivial then the T -action on each fiber is of the form:

t.(x, z) = (t.x, ‰
u(t)z) for (x, z) œ X ◊ A

1

k
≥= L, (5.1)

where ‰
u : T æ Gm(k) is the character associated to the lattice point u œ M . For any

positive integer n, the induced T -linearization on the line bundle L
¢n, which is n≠fold

tensor product is given by ‰
nu

.

To each T -linearization one associates a representation of T on the vector space of
global sections:

t.s(x) := t.(s.(t≠1
.x)), (5.2)

where x œ X and s : X æ L is a section of the projection map L æ X.

Definition 5.2.2. [MFK] Let X and T be as above and L æ X be the T -linearized
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trivial line bundle. The set of semistable points associated with the T -linearized line
bundle is defined as

X
ss(L) := {Xf | f is a T -invariant section of L

¢n for some n}.

The invariant sections corresponding to u œ M in 5.1 are exactly the elements f œ
Anu, n œ N.

Definition 5.2.3. [AH] Let X and T be as above and L æ X be the T -linearized trivial
line bundle. Let u œ M be a lattice point. The set of semistable points corresponding to
u is defined as :

X
ss(u) :=

€

fœAnu,nœN

Xf .

Definition 5.2.4. ( [AH], definition 5.1) Let x be a point in X.

(i) The submonoid S(x) containing all lattice points u œ M such that there exists an
element f œ Au with f(x) ”= 0, is called orbit monoid associated to x.

(ii) The convex cone Ê(x) generated by orbit monoid S(x) is called orbit cone associated
to x.

(iii) The sublattice M(x) generated by the orbit cone Ê(x) is called the orbit lattice
associated to x.

The above combinatorial data carry the following geometric information.

Proposition 5.2.5.( [AH], proposition 5.2) Let x be a point in X.

(i) The orbit lattice M(x) consists of those lattice points u œ M for which there exists
a homogeneous rational function f œ K(X) of degree u and is invertible near x.

(ii) The isotropy group Tx µ T of x œ X is isomorphic to the diagonalizable group
Spec k[M/M(x)].

(iii) The orbit closure T.x is isomorphic to the monoid algebra Spec k[S(x)]; there is a
natural equivarint open embedding of the torus T/Tx = Spec k[M(x)].

(iv) The normalization of the T.x is an a�ne toric variety and it corresponds to cone
Ê(x)‚ in lattice Hom(M(x), Z).
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The set of semistable points X
ss(u) corresponding to lattice point u œ M can be

described as follows:
X

ss(u) = {x œ X : u œ Ê(x)}.

Definition 5.2.6. ( [AH], definition 5.3) Let u œ M be a lattice point in the weight cone
Ê and we define the cone

⁄(u) :=
‹

xœX;uœÊ(x)

Ê(x).

Then ⁄(u) is a polyhedral cone and we call it the GIT cone associated with u.

Theorem 5.2.7.( [AH], theorem 5.4) Let M be a lattice and A be an M-graded integral
a�ne algebra. Then we have the following statements for the action of the torus T :=
Spec k[M ] on the a�ne scheme X := Spec A:

(i) The GIT cones ⁄(u), u œ M , form a quasi-fan � in MQ.

(ii) The support Supp(�) = Ê in MQ.

(iii) For lattice points u1, u2 œ M , the sets of semistable points correspond to GIT cones
in reverse order i.e.

X
ss(u1) µ X

ss(u2) … ⁄(u1) ∏ ⁄(u2).

Altmann and Hausen prove the following theorem. Recall that, a variety Y is semipro-
jective if it is projective over Spec(�(Y, OY )).

Theorem 5.2.8 (AH08, Theorem 3.1 and 3.4).Given a normal, semiprojective variety Y ,
a lattice N , the dual lattice M , a pointed cone ‡ µ NQ, a pp-divisor D œ PPDivQ(Y, ‡),
the a�ne scheme associated to (Y,D) is described as

X = Spec �
Q

aY,
n

uœ‡‚flM

OY (D(u))
R

b .

Then X is a normal T -variety where T = Spec k[M ]. Moreover given any normal a�ne
T -variety X = Spec A with weight cone Ê œ MQ, there exists a normal semiprojective
variety Y and a pp-divisor D œ PPDivQ(Y, Ê

‚) such that the T -variety associated to
(Y,D) is X.
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Remark 5.2.9.Suppose Y and D are as in the first part of the theorem 5.2.8. Let
A = m

mœ‡‚ Am where Am = OY (D(m)). Then, one can also consider the relative
spectrum X̃ = Spec

Y
A. Then A = �(Y,A). The scheme X̃ is a normal algebraic variety

with an e�ective T action such that fi : X̃ ≠æ Y is a good quotient. Furthermore there
is a contraction morphism r : X̃ ≠æ X which is proper, birational and T -equivariant.

Given a normal variety X = Spec A = Spec m
mœM Am with an e�ective torus action,

theorem 5.2.8 above ensures the existence of (Y,D). We recall the description of Y , as it
will be useful in chapter 7. According to the theory in [BH, section 2], Xss(m) = Xss(mÕ)
for m, m

Õ belonging to the relative interior of a GIT cone ⁄ of the GIT fan �. Let
X⁄ := Xss(m) for some m œ rel int ⁄. Then one also has that Ym = Xss(m)//T =
Proj m

rœZ Arm. Thus, Ym’s also depend only on the fan ⁄ such that m œ rel int ⁄, and
hence are denoted by Y⁄. If “ ∞ ⁄, then one has a birational morphism Ï“⁄ : Y⁄ ≠æ Y“.
Putting everything together compatibly one has the following diagram which also defines
Y (see [AH, section 6]):

X
Õ

X⁄ X“ X

Y Y
Õ

Y⁄ Y“

Normal(image(X Õ)) Y0

(5.3)

where X
Õ = limΩ≠ X⁄, Y

Õ = limΩ≠ Y⁄ and Y0 := Spec(A0). It is also known that Y is a good
quotient of the torus action on X.

In the previous paragraph, we constructed the Y in the pair (Y,D) describing a�ne
variety X with an e�ective action of the torus. The construction of the pp-divisor D is
not relevant to this paper.



6
Multihomogeneous spaces

Projective varieties which are associated with Z-graded rings have been studied exten-
sively and found to be useful in studying varieties. Here we extend this class to the
category of rings graded by finitely generated abelian groups. To each such graded ring,
we associate a scheme, called, multihomogeneous space. It is a generalization of usual
projective spaces (see [Sta, §2 27.8]). Zanchetta ( [Zan]) shows that every quasi-compact
and quasi-separated scheme of finite type over a ring R is a closed subscheme of a smooth
open subscheme of a multihomogeneous space.

6.1 Definition and basic properties

Definition 6.1.1. [BS, §2] Let D be a finitely generated abelian group and

A =
n

dœD

Ad

be a D-graded ring. One says that A is periodic if D
Õ = {d œ D | ÷f œ Ad fl A

◊}, the
subgroup of D consisting of degrees of all the homogeneous invertible elements in A,
is a finite index subgroup. A homogeneous element f in a D-graded ring A is said to
be relevant if Af is periodic. For a relevant element f , note that the localization Af

is D-graded. We shall denote the degree 0 part as A(f). For a relevant element f , Df

denotes the subgroup of degrees of units in Af .

35
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Lemma 6.1.2. [BS, lemma 2.1] Let D be a finitely generated abelian group and

A =
n

dœD

Ad

be a D-graded periodic ring. Then the projection Spec A ≠æ Spec(A0) is a geometric
quotient in the GIT sense.

Definition 6.1.3. [BS, definition 2.2] For D and A as in definition 6.1.1, the grading
on A correspond to an action of the diagonalizable group scheme Spec A0[D] on Spec A

( [Gro], proposition I.4.7.3). Let Q be the quotient in the category of ringed spaces. Now
for a relevant element f , consider the inclusion

D+(f) = Spec A(f) µ Q.

One defines
Proj

MH
A =

€

fœA

f is relevant

D+(f) µ Q.

Let A+ µ A be the ideal generated by all relevant elements f œ A. Then we
call the invariant closed subscheme V (A+), the irrelevant subscheme and the invari-
ant open subscheme Spec A \ V (A+), the relevant locus. Then the projection map
Spec A \ V (A+) ≠æ Proj

MH
A is a geometric quotient for induced action of the diag-

onalizable group scheme Spec(A0[D]) (see [BS]).

Remark 6.1.4.The points in a multihomogeneous projective space Proj
MH

A of a D-
graded ring A correspond to homogeneous ideals in A which may not be prime (see [BS,
remark 2.3]). However, these ideals have the property that all the homogeneous elements
in the complement form a multiplicatively closed set.

Remark 6.1.5.By lemma 6.1.2, the inclusion A(f) Òæ Af induces map Spec Af ≠æ
Spec A(f), which is a geometric quotient.

By definition, The collection {D+(f) | f œ A is homogeneous and relevant} covers
Proj

MH
A. We state the following easy fact for subsequent use.

Lemma 6.1.6.With the notation as above, D+(f) fl D+(g) = D+(fg) µ Proj
MH

A.
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Proof. This is implicit in [BS, propostion 3.1]. Note that for relevant elements f and g

in A, Spec Afg = Spec Af fl Spec Ag as subschemes of Spec A. Now Spec A(fg), Spec A(f)

and Spec A(g) are geometric quotients (see remark 6.1.5) under the action of Spec A0[D]
and hence Spec A(fg) = Spec A(f) fl Spec A(g) considered as subschemes of Proj

MH
A.

Remark 6.1.7.The following example clarifies why we consider only relevant elements
instead of homogeneous elements. Take the Z

2-graded ring A = k[x, y, z, w] with deg(x) =
deg(y) = (1, 0) and deg(z) = deg(w) = (0, 1). Then A(x) = k[ y

x
] and A(xz) = k[ y

x
,

w

z
]. One

would expect inclusion of a�ne spaces Spec A(xz) Òæ Spec A(x). But this is not possible
since the former has dimension 2 and the later has dimension 1. The reason this fails to
hold is that the element x is not relevant.

The gradation on a ring has an enormous e�ect on the structure of the corresponding
multihomogeneous space.

Example 6.1.8.Consider the ring A = k[x, y, z]

1. Any gradation by Z
n
, n Ø 4 on A induces Proj

MH
A = ÿ since there are no relevant

elements.

2. For any gradation by Z
3 on A there are two possibilities; case 1: degree of x, y and

z are linearly independent, in this case Proj
MH

A = Spec k; Case 2: degrees of x, y

and z are linearly dependent, then Proj
MH

A = ÿ.

3. Consider the Z
2 gradation on A as follows: deg(x) = (1, 0), deg(y) = (0, 1) and

deg(z) = (a, 0), a > 0. Then Proj
MH

A = P
1 for all a > 0. In fact, there are infinitely

many structures of multihomogeneous spaces corresponding to Z
2 gradation on A.

4. Set deg(x) = a, deg(y) = b, deg(z) = c and a, b, c > 0, gcd(a, b, c) = 1 as Z gradation
on A, we have Proj

MH
A = P(a, b, c) weighted projective spaces.

We give a criterion (see lemma 6.3.4) to check when the multihomogeneous space is
non-empty.

Example 6.1.9.(Proj construction) Consider a D = Z-graded ring A which is generated
by homogeneous elements x1, . . . , xn over A0. Then each xi is relevant since Dxi is a
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nontrivial subgroup of Z, and therefore has finite index. Then

Proj
MH

A =
n€

i=1

D+(xi) = Proj A

is the usual projective variety over Spec A0.

Example 6.1.10.(Non-separated multihomogeneous space) Consider the ring A =
k[X, Y, Z] and give it Z

2-gradation as deg(X) = (1, 1), deg(Y ) = (1, 0), and deg(Z) =
(0, 1). Then the relevant monomials are XY, XZ, and Y Z with A(XY ) = k[Y Z

X
], A(XZ) =

k[Y Z

X
], A(Y Z) = k[ X

Y Z
], and A(XY Z) = k[ X

Y Z
,

Y Z

X
]. Now Spec A(XY ) and Spec A(XZ) glue

along open subscheme Spec A(XY Z) and give us A
1

k
with double origin. When we patch

it with Spec A(Y Z) we get the multihomogeneous space P
1

k
with double origin. It is a

nonseparated scheme since A
1

k
with double origin, an open subscheme, is nonseparated.

Example 6.1.11.(Non-separated multihomogeneous space) Consider the free abelian
group D = Z

2 and D-graded polynomial ring A = k[x1, x2, x3, x4] with deg x1 =
(4, 0), deg x2 = (3, 0), deg x3 = (0, 1) and deg x4 = (12, ≠1). The relevant elements are
x1x3, x1x4, x2x3, x2x4, and x3x4. Then the multihomogeneous space is

Proj
MH

A =
€

f=xixj relevant

D+(f)

= D+(x3x4) fi D+(x1x3) fi D+(x2x3) fi D+(x1x4) fi D+(x2x4)

From example 7.2.6 we have that

P
2 ≥= D+(x3x4) fi D+(x1x3) fi D+(x2x3)

≥= D+(x3x4) fi D+(x1x4) fi D+(x2x4).

Therefore the multihomogeneous space Proj
MH

A is the union of two copies of P
2

glued along the a�ne open subscheme D+(x3x4). This is an example of a non-separated
multihomogeneous space.

Example 6.1.12.(non-projective multihomogeneous space) [BS, example 3.9]
Take the ring A = k[X1, X2, X3, X4, Y1, Y2, Y3, Y4, Z] and give it a Z

2 grading as deg(Xi) =
(1, 0) and deg(Yi) = (0, 1) and deg(Z) = (1, 1). Now the elements g = X1Y1Z + X

2

2
Y

2

1
+
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X
2

1
Y

2

2
and f = X1Y1Z + X

2

2
Y

2

1
+ X

2

1
Y

2

2
+ X3X4Y3Y4 are homogeneous of degree (2, 2).

Consider the ring A
Õ = A/(f) and let P = Proj

MH
A, P

Õ = Proj
MH

A
Õ. Take the open

subscheme U = D+(X1Z) fi D+(Y1Z) and set U
Õ = U fl P

Õ. Then U
Õ is a separated

open subscheme of P
Õ. However, it is not quasi-projective since there exist points x œ

V+(X1, X2, X3, X4) fl U
Õ and y œ V+(Y1, Y2, Y3, Y4) fl U

Õ that do not admit common a�ne
neighbourhood. Suppose there exists a common a�ne neighbourhood W µ U

Õ then the
preimage V µ Spec A

Õ is a�ne. Since the ring A
Õ is factorial, one can write V =

D(h) where h is a homogeneous element in the ideal (X1Z, Y1Z) µ A. Then one has
h = pX1Z + qY1Z with deg(h) = (a, b) and without loss of generality one can further
assume a Ø b. Since deg(Y1Z) = (1, 2), q is divisible by atleast one Xi. Then q œ
(X1, X2, X3, X4). This implies h(x) = 0, a contradiction. Therefore, U

Õ is separated but
not quasi-projective, and hence Proj

MH
A

Õ is not projective.

6.2 Known results

For later, we record two results of Brenner and Schröer regarding finiteness.

Lemma 6.2.1. [BS, lemma 2.4] For a finitely generated abelian group D and a D-graded
ring A, the following are equivalent:

(i) The ring A is Noetherian.

(ii) A0 is Noetherian and A is an A0-algebra of finite type.

Proposition 6.2.2. [BS, proposition 2.5] Suppose A is a Noetherian ring graded by a
finitely generated abelian group D. Then the morphism Ï : Proj

MH
A ≠æ Spec A0 is

universally closed (see [Har] for definition) and of finite type.

Lemma 6.2.3. [BS, lemma 2.7] Let D be a finitely generated abelian group, A = m
dœD Ad

be a D≠graded ring and let A0 ≠æ B0 be a ring map. Let

A0 A

B0 B = A ¢A0
B0
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be the base change diagram. Then rad(B+) = rad((A+)B), where rad((A+)B) is the
extended ideal.

Proposition 6.2.4. [BS, proposition 3.1] Let D be a finitely generated abelian group
and A = m

dœD Ad be a D≠graded ring. Then the diagonal embedding Proj
MH

A ≠æ
Proj

MH
A ◊Spec A0

Proj
MH

A of a multihomogeneous space is a�ne.

Here is a separation criterion.

Proposition 6.2.5. [BS, proposition 3.2] With the above hypothesis, if every pair of
points x, y œ Proj

MH
A admits a common a�ne neighbourhood D+(f) for some relevant

element f œ A, then Proj
MH

A is separated.

Let f œ A be a homogeneous element and Hf be the set of homogeneous divisors
g|fn

, n Ø 0. Let Cf µ D ¢ R be the cone generated by deg(g), g œ Hf . Then we have f

is relevant if and only if Cf has non-empty interior (see [BS]).

Proposition 6.2.6. [BS, proposition 3.3] Assume the above hypothesis. Let F be a
collection of relevant elements such that for every pair fi, fj œ F , the set Cfi fl Cfj µ
D ¢ R admits non-empty interior. Then t

fiœF D+(fi) µ Proj
MH

A is a separated open
subscheme.

Definition 6.2.7. [BS, page 10] Let R be a ring, M be a free abelian group of finite rank,
and N := Hom(M, Z) be the dual of M . Let X be an R≠scheme and T := Spec R[M ] be
the torus. A simplicial torus embedding of torus T is T≠equivariant open map T Òæ X

locally given by semigroup algebra homomorphisms R[‡‚ fl M ] æ R[M ], where ‡ is a
strongly convex, simplicial cone in N .

Remark 6.2.8.If X is a simplicial toric variety with torus T , then X is a simplicial
torus embedding of the torus T . There are other schemes which are simplicial torus
embeddings of some torus. The homogeneous spectrum of multigraded polynomial algebras
are examples of this type.

Let D be an abelian group of finite rank and A = k[x1, . . . , xn] be a D≠graded
polynomial k≠algebra. Suppose the grading is given by a linear map P : Z

n æ D with
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finite co-kernel. Then we have the following sequence of abelian groups

0 æ M æ Z
n æ D,

where M is the kernel of P .

Proposition 6.2.9. [BS, proposition 3.4] Assume the above setting. Then Proj
MH

A is
a simplicial torus embedding of the torus Spec k[M ].

Remark 6.2.10. [BS, remark 3.7] Again we assume the above setting. Let I = {1, . . . , n}
be an index set and N := Hom(M, Z) the dual of M . Let pr

i
: Z

n æ Z, i œ I be
projections. We associate each subset J µ I to cone ‡J µ NR generated by pr

i
|M , i œ J .

Then we have a correspondence between subsets J of I with r
iœJ xi relevant, and strongly

convex, simplicial cones ‡I\J µ NR.

6.3 Some results about Multihomogenous spaces

Proposition 6.3.1.Suppose D is a free finitely generated Z-module and suppose A =
m

dœD Ad be a D-graded ring. Assume that we have a collection of relevant elements F

such that
Proj

MH
A =

€

fœF

Spec A(f)

and for each f œ F ,
Ó
d œ D

--- d = deg g for some g œ A
◊
f

Ô
= D. Then every point p œ

Proj
MH

A corresponds to a homogeneous prime in A.

Proof. Suppose p œ Spec A(f) for some relevant element f œ A. Then Af is periodic and

D
Õ =

Ó
d œ D

--- d = deg g for some g œ A
◊
f

Ô

is a free subgroup of D of finite index. Define

A
Õ
f

=
n

dœDÕ
(Af )d.

It is easy to see that in this case, A
Õ
f

= A(f)[T ±1

1 , . . . , T
±1

r
] where r = rank D

Õ.
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Note the primes P œ A(f) correspond to the primes P [T ±1

1 , . . . , T
±1

r
] µ A

Õ
f
. Now

consider the diagram
A

A(f) A
Õ
f

Af

It is easy to see that if A
Õ
f

= Af , then the primes in A(f) would correspond to homoge-
neous primes in A which do not contain f . The condition A

Õ
f

= Af holds whenever the
hypothesis of the proposition is satisfied.

Corollary 6.3.2.Under the hypothesis of proposition 6.3.1, the points in D+(f) µ
Proj

MH
A correspond to all homogeneous primes in A which do not contain f .

Proof. This was mentioned in the proof of proposition 6.3.1 after the diagram.

Corollary 6.3.3.The hypothesis of the proposition 6.3.1 holds in the following cases and
hence in these cases points in the multihomogeneous space will correspond to prime ideals
in the graded ring.

• Proj of Z-graded rings.
• Proj

MH
A where D is a free abelian group and A is a D-graded algebra generated over

A0 by a set { a1, . . . , an } of homogeneous elements such that { deg a1, . . . , deg an }
contain a basis for D.

A criterion for non-emptiness of multihomogeneous space.

Lemma 6.3.4.Suppose D is a finitely generated abelian group and A = m
dœD Ad be a

D-graded ring which is finitely generated by homogeneous elements x1, . . . , xr œ A over
the ring A0. Then Proj

MH
A is non-empty if and only if {deg xi | 1 Æ i Æ r} generates a

finite index subgroup of D.

The functor Proj
MH

commutes with the product.

Theorem 6.3.5.Let Xi = Proj
MH

Ai, i = 1, . . . , n be a finite set of multihomogeneous
spaces over k. Then the product r

n

i=1
Xi is the multihomogeneous space Proj

MH

1
¢n

i=1
Ai

2
.

Proof. Let the diagonalizable groups Spec k[Di] act on the a�ne spaces Spec Ai inducing
Xi as quotients. Then the diagonalizable group r

n

i=1
Spec k[Di] which is Spec

1
¢n

i=1
k[Di]

2
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acts on the a�ne space Spec
1

¢n

i=1
Ai

2
component wise. Then the quotient is the product

of the quotient of each component. And we have r
n

i=1
Xi = Proj

MH

1
¢n

i=1
Ai

2
.

One can see that whenever A is integral the multihomogeneous space Proj
MH

A is
integral. In fact, We can say the same thing for normality also.

Proposition 6.3.6.Suppose A is a Noetherian normal ring satisfying the above hypoth-
esis. Then Proj

MH
A is a normal scheme.

Proof. It is enough to check normality over an a�ne cover {D+(fi)} of Proj
MH

A. Let f

be a relevant element of A, H be the set of nonzero homogeneous elements in Af , k(Af )
and k(A(f)) be function fields of Af and A(f) respectively. Then H

≠1(Af ) is a graded ring
and Af Òæ H

≠1(Af ) is a graded monomorphism. Furthermore, we have the inclusion of
the 0-th component of the grading: k(A(f)) µ

1
H

≠1(Af )
2

0
.

k(Af )

Af (Af )H

A(f) k(A(f))

Since A is normal, we have Af is normal in k(Af ) and therefore integrally closed in (Af )H .
We want to show that A(f) is normal. Let a œ k(A(f)) be integral over A(f). Then a is
integral over Af and hence a œ (Af )0 = A(f) since a œ

1
H

≠1(Af )
2

0
.

6.4 Sheaves associated with multigraded modules

Consider a finitely generated abelian group D and let A be a D-graded ring. Suppose
M = m

dœD Md is a D-graded A-module. Just as in the case of quasi-coherent modules
over Proj of a N-graded ring [Har, definition before proposition 5.11, page 116], we can
construct ÊM . We sketch some details to fix the notation and show the similarities between
the two set-ups.

In the construction of Proj of a Z-graded module over a N-graded ring, by the def-
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inition of Proj A the points corresponding to homogeneous prime ideals in the defining
graded ring which do not contain the whole of the irrelevant ideal. However, this is no
longer true for a multihomogeneous space and a point P may correspond to an ideal
which is not a prime.

One can associate a sheaf ÊM on Proj A, on an N-graded ring A, for example as
done in [Har, definition preceding proposition 5.11, pg 116]. Now to describe sheaves of
multihomogeneous spaces, we mimic this construction. Let A be a D-graded ring and M

be a D-graded coherent sheaf on A with the usual condition that AdMdÕ µ Md+dÕ . Since
the points p in Proj

MH
A correspond to graded ideals Ip in A such that the homogeneous

elements in the complement A \ Ip form a multiplicatiely closed set. It is still true that
the stalk of the structure sheaf at p is given by A(Ip) (see remark 6.1.4). One can now
define ÊM in the same way by associating to U µ Proj

MH
A, the OProj

MH
A(U)-module of

sections s : U æ ‡
pœU M(Ip) satisfying the usual condition that locally such s should be

defined by a single element of the form m/a with m œ M and a œ A but not in any of
the ideals Ip. These modules are coherent under some mild conditions, as we state below.
Note that, given a D-graded A-module M = m

dœD Md and an e œ D, one can define a
graded module M(e) whereas A-modules M(e) = M , but M(e)d = Md+e ’d œ D.

Lemma 6.4.1.Suppose D is a finitely generated abelian group and A be a D-graded
integral Noetherian ring. Then for X = Proj

MH
A, the following hold

(a) ÂA = OX . This allows us to define

OX(d) := ]A(d).

OX(d) is a coherent sheaf.
(b) For a D-graded A-module M , ÊM is quasi-coherent and ÊM

---
D+(f)

≥= ÁM(f) for any

relevant element f œ A, where ÁM(f) is the sheaf of modules over Spec A(f) cor-
responding to the module M(f), the degree zero elements in Mf . Moreover, ÊM is
coherent whenever M is finitely generated.

(c) The functor M æ ÊM is a covariant additive exact functor from the category of
D-graded A-modules to the category of quasi-coherent OX-modules, and commutes
with direct limits and direct sums.

The proof is similar to the proof of [Har, proposition 5.11]. Note that, for an open
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subscheme U µ D+(f), where f œ A is relevant, the sections of ÊM |D+(f)(U) and ÁMf (U)
agree. This proves (b) and hence (a) and (c).

The proof of the next lemma is also evident. We will see later the functor Ê( ) is
essentially surjective.

Lemma 6.4.2.Suppose D is a finitely generated abelian group and A be a D-graded
algebra such that A = A0[x1, . . . , xr], where xi œ Adi are homogeneous. Then
{d œ D | Ad ”= 0} generate a finite index subgroup of D if and only if {di | 1 Æ i Æ r}
does.

This lemma provides a way to ensure one of the points of the hypothesis in the
theorem below.

Theorem 6.4.3.Suppose D is a free finitely generated abelian group and A = m
dœD Ad

is a D-graded integral domain which is finitely generated by homogeneous elements
x1, . . . , xr œ A over the ring A0. Also assume that for all k, 1 Æ k Æ r, the set
{deg xi | 1 Æ i Æ r, i ”= k} generates a finite index subgroup of D. Let X = Proj

MH
A.

Then �(X, OX(d)) ≥= Ad. Furthermore, OX(d) is a reflexive sheaf.

Before proving the theorem we observe a fact.

Lemma 6.4.4.Under the hypothesis of theorem 6.4.3,

X = Proj
MH

A =
€

f : is relevant and

is a monomial in x1,...,xr

D+(f).

Proof. We shall prove this for each D+(f) for every relevant f and the lemma will follow.
Suppose f = m1 + · · · + mt is the homogeneous decomposition, where each mi is a
monomial. This means deg f is the same as deg mi for each 1 Æ i Æ t. Let {deg gj, 1 Æ j Æ
l} generates Df (see definition 6.1.1). Then for some positive integer N , each gj divides
f

N and hence gjk
divides m

N

i
where gjk

appears in the homogeneous decomposition of
gj. Now the fact that deg gj is the same as deg gjk

implies mi is relevant.

Under the given hypothesis, corollary 6.3.2 implies that for any relevant g, D+(g)
corresponds to all homogeneous prime ideals in A which do not contain g. In particular,
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if the set of homogeneous primes in A is denoted by H,

D+(f) = {P œ H | f /œ P} µ
t€

i=1

{P œ H | mi /œ P} =
t€

i=1

D+(mi)

as was to be proved.

Now we return to the proof of the theorem.

Proof of theorem 6.4.3. Giving an element t œ �(X, OX(d)) is the same as giving a col-
lection tf œ D+(f) = Spec A(f) for each relevant monomial f such that they agree on the
pairwise intersections: D+(f) fl D+(g) = D+(fg) (see lemma 6.1.6).

Suppose t œ �(X, OX(d)). For each relevant monomial f œ A (which are enough to
consider by lemma 6.4.4),

t|
D+(f)

œ OX(d)
A

D+(f)
B

=
A

Âf (d)
B

(0)

(D+(f)) = (Af )d,

the d-th component of the D-graded ring Af . Thus, for each such f write

t|
D+(f)

= pf

fkf

where deg pf ≠ kf deg f = d. Now since A is a domain, each Af µ Ax1···xr , and since the
expression of t match over the intersections, t is of the form x

–1

1 · · · x
–r
r

f
Õ with f

Õ œ A.
Since for each i, x1 · · · x̂i · · · xr is relevant, x

–1

1 · · · x
–r
r

f
Õ œ Ax1···x̂i···xr implies that –i Ø 0.

This proves that t œ A and therefore, t œ Ad.
Fix a relevant element f œ A and an element d œ D. Then D+(f) = Spec A(f).

Note that A(d) as an A-module is generated by 1 œ A(d) which has degree ≠d œ D.

Therefore, the map HomA(A(d), A) æ A(≠d), which sends „ æ „(1), gives a graded
isomorphism of graded A-modules, where e œ D graded part, HomA(A(d), A)e con-
sists of all „ œ HomA(A(d), A) such that „(1) œ A(e≠d). This in turn gives a
graded isomorphism HomAf

(A(d)f , Af ) ≥= A(≠d)f of graded Af -modules. Now tak-
ing the invariant part, we get HomA(f)

(A(d)(f), A(f)) ≥= A(≠d)(f) as A(f)-modules or
HomOX (OX(d), OX)|D+(f)

≥= OX(≠d)|D+(f). The compatibility of these local isomor-
phisms gives an isomorphism HomOX (OX(d), OX) ≥= OX(≠d) for all d œ D. This proves
the reflexivity of OX(d).
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Theorem 6.4.5.Assume the hypothesis as in theorem 6.4.3. If M is a D-graded A-
module then �(X, ]M(d)) ≥= Md for each d œ D.

Proof. In the proof of theorem 6.4.3, replace OX(d), Af and f
Õ œ A with ]M(d), Mf and

f
Õ œ M respectively.

Example 6.4.6.The hypothesis of the above theorem 6.4.3 is necessary. For example,
consider the ring A = C[X, Y, Z] with Z

2-grading given by

deg X = (0, 1) deg Y = (1, 0) = deg Z

The scheme Proj
MH

A is covered by two a�nes D+(XY ) and D+(XZ). Now con-
sider the module M = A(2, ≠1). Consider the section Y Z/X which is defined over
both ÊM(D+(XY )) and ÊM(D+(XZ)). Therefore, Y Z/X œ �(Proj

MH
A, ÊM), whereas

A(2,≠1) = 0.

6.5 Line bundles on Multihomogeneous spaces

The reflexive coherent sheaves OX(d) will not be line bundles for every d œ D. We give
a criterion for these to be line bundles generalizing the well-known similar results for
weighted projective spaces. Before that, we prove a short lemma.

Lemma 6.5.1.Suppose A is a D-graded ring for a finitely generated free abelian group
D, generated as an A0-algebra by homogeneous elements x1, . . . , xr. Assume that f is a
relevant monomial in A. Suppose d œ Df , where Df is the sublattice of D generated by

Ó
deg a

--- a divides f
N for some N > 0

Ô
.

Then there is a monomial m in x1, . . . , xr and k œ N fi { 0 } such that deg(m/f
k) = d

and m | f
N for some N > 0.

Proof. Suppose f = x
–1

i1
· · · x

–s
is

and that dik
= deg(xik

) for 1 Æ k Æ s. Then Df is
generated by { di1

, . . . , dis }. Then for d œ Df , there exists integers a1, . . . , as such that
d = q

s

j=1
ajdij . Consider the element a = x

a1

i1
· · · x

as
is

. Let I = {k | 1 Æ k Æ s, ak < 0}.
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Note that r
jœI x

≠aj

ij
|fM for some M > 0. Let b œ A be such that

Ÿ

jœI

x
≠aj

ij
b = f

M

Then
a =

r
j /œI x

aj

ij
b

fM
.

This completes the proof by taking m = r
j /œI x

aj

ij
b, N = M .

Theorem 6.5.2.Suppose X = Proj
MH

A is a multihomogeneous space defined for a D-
graded integral domain A = m

dœD Ad generated by homogeneous elements x1, . . . , xr such
that {di = deg xi | 1 Æ i Æ r} generates D. Moreover, assume that A0 is a field. Let
d œ D be such that

d œ Df =
Ó
deg a

--- a œ A
◊
f

Ô

for every relevant element f œ A. Then OX(d) is a line bundle.

Proof. By lemma 6.4.4, we can consider an open cover of X given by relevant monomials.
Fix a d such that d œ Df for all relevant f . And fix an f which is a relevant monomial.
On D+(f),

OX(d)|
D+(f)

= Âf (d)(0) = ^1
A(d)

2

(f)
.

by lemma 6.4.1(b). We claim that A(d)(f)
≥= A(f). Note that 1 œ A(d) has degree ≠d,

which belongs to Df by hypothesis. Thus by lemma 6.5.1, we can find an m such that
m | f

N for some N and deg(m/f
k) = ≠d for some k. This implies m/f

k is invertible in
Af and deg f

k
/m = d. Now it is evident that for any element of the form r

r

i=1
x

ai
i

/f
‹ in

A(d)(f),

deg
A(d)

r
r

i=1
x

ai
i

f ‹
= 0 ≈∆ deg

A

r
r

i=1
x

a1

i

f ‹
= d ≈∆ deg

A

r
r

i=1
x

a1

i

f ‹

m

fk
= 0

and thus
rr

i=1
x

a1

i

f‹
m

fk œ A(f). Since m/f
k is invertible in Af , this gives an isomorphism of

A(f)-modules. This proves that OX(d) is a line bundle.

Example 6.5.3.In case of a weighted projective space, P = Proj C[x0, . . . , xn] with
deg xi = di, theorem 6.5.2 reduces to saying OP (d) is a line bundle i� d is divisible
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by each of the di’s. This is well known (see [Del, remark 1.8]).

Definition 6.5.4. Let X = Proj
MH

A be the multihomogeneous space associated with a
D-graded ring A. For a quasi-coherent OX-module F, we define a D-graded A-module

�ú(X,F) :=
n

dœD

�(X,F(d)),

where F(d) = F ¢OX OX(d), d œ D.

Remark 6.5.5.With the hypothesis as in theorem 6.4.3 one has A ≥= �ú(X, OX).

�ú(X, ) is a covariant additive functor from the category of quasi-coherent OX-
modules to the category of D-graded A-modules. However, it is not exact.

Proposition 6.5.6.Assume X as in theorem 6.4.3. Let F be a quasi-coherent OX-
module. Then the homomorphism µ : ^�ú(X,F) æ F is an isomorphism. In fact, every
quasi-coherent OX-module is of the form ÂF for some D-graded A-module F .

Proof. The proof is similar to the proof of [Cox, theorem 3.2] which itself is a general-
ization of [Har, proposition II.5.15].

Proposition 6.5.7.Let D be a finitely generated free abelian group and A a D-graded
ring. Let X = Proj

MH
A be the corresponding multihomogeneous space. Then the functor

Ê( ) from the category of D-graded A-modules to the category of quasi-coherent sheaves of
OX-modules is essentially surjective.

Proof. It follows from the previous proposition.



7

Relation between multihomogeneous space and
T-variety

7.1 Birationality

To study the relationship, we need a couple of assumptions. We shall explore them one
by one.

Assumption 7.1.1.Let D ≥= Z
r for a natural number r and suppose A = m

dœD Ad be a
multigraded, Noetherian, normal domain such that A0 = k, where k is an algebraically
closed field of characteristic 0. Proj

MH
A is non-empty.

Lemma 7.1.2.Suppose � is the GIT fan (see 5.2.7) associated to the T = Spec k[D]
action on X = Spec A induced by the D-grading. Suppose ⁄ is a full-dimensional cone in
the quasi-fan �. Then there exists u œ rel int ⁄ such that Au contains a relevant element.

Proof. By the definition of a quasi-fan, each of the rays fl œ ⁄(1) is also an orbit cone
and hence there exists an ufl œ fl fl D such that Aufl ”= { 0 }.

Since ⁄ is full dimensional, |⁄(1)| Ø dim ⁄ and hence (⁄ be a strongly convex polyhe-
dral cone) {ufl | fl œ ⁄(1)} is a spanning set of D over Q. Choose a homogeneous ffl œ Aufl

for each fl and consider f = r
flœ⁄(1) ffl.

50
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We claim that f is relevant. This follows as once f is inverted, the degrees of units
in Af contains {±ufl | fl œ ⁄(1)} and hence [D : Df ] < Œ, where Df is defined in the
statement of theorem 6.5.2.

Theorem 7.1.3.Under the assumption 7.1.1, the torus T = Spec k[D] acts on X =
Spec A giving X a structure of a T -variety which, suppose, is represented by (Y,D).
Then Y and Proj

MH
A are birational.

Proof. Let � be the GIT fan and ⁄ be a cone of maximal dimension. Choose a relevant f

using lemma 7.1.2 such that deg f œ rel int ⁄. Suppose u = deg f . Note that Spec Af Òæ
Spec A is a T -equivariant embedding. On the other hand, consider Xss(u) µ Spec A.
Being open irreducible subsets of Spec A, Xss(u) and Spec Af are birational. Now the
result follows from the following commutative diagram:

Xss(u) Spec Af X = Spec A

Y Y⁄ U Proj
MH

A

where the two vertical maps are geometric quotients (by the remark 6.1.5) under the
action of T . The birational map Xss(u) 99K Spec Af is T -equivariant. Hence, Y⁄ and U ,
the geometric quotients of Xss(u) and Spec Af by T , are also birational. By construction
of multihomogeneous spaces, U is an open subset of Proj

MH
A. The fact that Y ≠æ

Y⁄ is birational follows from [AH, lemma 6.1]. This proves that Y and Proj
MH

A are
birational.

7.2 Conditions for isomorphism

In the rest of this section, we shall explore the conditions under which they become
isomorphic.

Assumption 7.2.1.Suppose ⁄ = Ê, i.e. the GIT fan contains only one full dimensional
cone and its faces. Assume that A is generated by t

uœR Au where R = t
flœ⁄(1) fl.

Proposition 7.2.2.Assume 7.1.1 and 7.2.1. Assume that Ê is simplicial and A is gen-
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erated by {ffl | fl œ Ê(1)} such that deg ffl œ fl fl D. Then Proj
MH

A is projective.

Proof. One can see that each relevant f is of the form r
flœÊ(1) ffl. Then cone Cf associated

to f is Ê for all relevant f . Therefore by 6.2.2 and 6.2.6, Proj
MH

A is projective.

Proposition 7.2.3.Assume 7.1.1 and 7.2.1. Assume that Ê is simplicial and A is gen-
erated by {ffl | fl œ Ê(1)} such that deg ffl œ flflD. Then Y and Proj

MH
A are isomorphic.

Proof. Under the given conditions, there exists a collection of relevant monomials
r

flœÊ(1) ffl which have degree u = nu
Õ where u

Õ = q
fl ufl, n œ N and

Proj
MH

A =
€

D+

Q

a
Ÿ

flœÊ(1)

ffl

R

b

Consider A(u) = m
nØ0 Anu. It is generated by Au = (A(u))1. Therefore, Proj

MH
A =

Proj A(u)
≥= Y (see [AH, 6.1]).

Remark 7.2.4.In the special case when A = k[X1, . . . , Xn] with deg Xi œ Z
d, the a�ne

space becomes a T -variety with the action of a d-dimensional torus. Assume that this
action is e�ective. Then we know that the Y one gets from the description of the T -
variety is normal and projective. It is di�cult to characterize these further.

Example 7.2.5.The hypothesis in proposition 7.2.3 is satisfied for products of projective
and weighted projective spaces. This is because, in the case of projective spaces and
weighted projective spaces, the weight cone is the only full dimensional cone in the GIT
fan. Also, if X and Y are varieties where the weight cones are the only full dimensional
cones in their GIT fans, then the same is true for X ◊ Y .

We can not weaken the hypothesis of the above proposition. Here is an example
of an a�ne toric variety X and a subtorus T such that corresponding varieties Y and
Proj

MH
A, where A is the algebra of global sections of X, are not isomorphic.

Example 7.2.6 ( [AH], example 11.1).Take the a�ne toric variety X = k
4 associated to

the canonical cone ” := (ZØ0)4 in NX = Z
4 and consider the subtorus T := k

ú2 action on
X given in standard coordinates by the embedding t = (t1, t2) æ (t4

1
, t

3

1
, t2, t

12

1
t
≠1

2 ). Then
we have the following short exact sequence of lattices:
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0 ≠æ NT

F≠æ NX

P≠æ NY ≠æ 0,

where NT is the lattice of one parameter subgroups of T and NY := NX/NT is the quotient
lattice. The linear maps F and P are given by

S

WWWWWWU

4 0
3 0
0 1
12 ≠1

T

XXXXXXV
and

S

U3 0 ≠1 ≠1
0 4 ≠1 ≠1

T

V

Let �Y be the coarsest fan in (NY )Q generated by P (”0) where ”0 are faces of ”. The
maximal cones of �Y are given by

‡1 = È(1, 0), (0, 1)Í, ‡2 = È(0, 1), (≠1, ≠1)Í and ‡3 = È(≠1, ≠1), (1, 0)Í.

Then the toric variety Y is P
2 and there exists a pp-divisor D over Y = P

2 such that the
t-variety (X, T ) is represented by the pair (Y,D).

Now the algebra of global sections A = k[x1, x2, x3, x4] of X has a gradation by MT =
Z

2 given by the deg map in the following short exact sequence

0 ≠æ MY

P̃≠æ MX

F̃≠æ MT ≠æ 0

The linear maps P̃ and F̃ are given by
S

WWWWWWU

3 0
0 4

≠1 ≠1
≠1 ≠1

T

XXXXXXV
and

S

U4 3 0 12
0 0 1 ≠1

T

V

Let I = {1, 2, 3, 4} be an index set. Then deg x1 = (4, 0), deg x2 = (3, 0), deg x3 =
(0, 1) and deg x4 = (12, ≠1) in MT . Let pr

i
: MX æ Z, i œ I be the projections and fli :=

pr
i
|MY œ NY . Then we have four rays fl1 = (1, 0)R, fl2 = (0, 1)R and fl3 = fl4 = (≠1, ≠1)R

generated by primitive vectors. Then by remark 6.2.10, a monomial f = xixj œ A where
i, j œ I is relevant if and only if the cone ‡f = Èfli : i œ I and xi - fÍ is simplicial.
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Therefore, One can compute that

Proj
MH

A =
€

f=xixj relevant

D+(f)

= D+(x3x4) fi D+(x1x3) fi D+(x2x3) fi D+(x1x4) fi D+(x2x4)

Note that

Y = P
2 = D+(x3x4) fi D+(x1x3) fi D+(x2x3)

= D+(x3x4) fi D+(x1x4) fi D+(x2x4)

Therefore the multihomogeneous space Proj
MH

A is a union of two copies of P
2 glued

along open subscheme D+(x3x4). However the canonical map in 7.1.3 identifies Y with
either D+(x3x4)fiD+(x1x3)fiD+(x2x3) or D+(x3x4)fiD+(x1x4)fiD+(x2x4) in Proj

MH
A.

And hence the map in 7.1.3 is not an isomorphism. The weight cone Ê, generated by
(0, 1) and (12, ≠1), is simplicial. The isomorphism fails to hold because the cone Ê is not
a GIT cone.
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Relation between multihomogeneous space and toric
variety

8.1 An open embedding

Let X� be a toric variety associated to the fan � in NR satisfying assumptions 4.1.1
and 4.1.2, i.e. the fan does not lie in a lower dimensional subspace and the Picard group
Pic(�) of X is free. Further, assume that X� has enough invariant Cartier divisors (see
4.1.5).

Lemma 8.1.1.The weight cone Ê (described in 4.1.10) is a full dimensional pointed
strictly convex rational polyhedral cone in Pic(�)R.

Proof. It is clear from the fact that (4.1) is split exact sequence and C
‚ surjects onto

Ê.

Definition 8.1.2 (cf. definition 1.3(2) in [Kaj]). For each ‡ œ �, SF(‡̌) denotes the
group of integral support functions on � with support precisely ‡̌ := �(1) \ ‡(1).

Lemma 8.1.3 (cf. lemma 1.7(2) in [Kaj]).Let ‡ œ �. Then deg(SF(‡̌)) = Pic(�).

Proof. The proof follows from computing the rank of the following short exact sequence

1 ≠æ M fl ‡
‹ Div≠≠æ SF(‡̌) deg≠≠æ Pic(�) æ 1,

55
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induced from 4.1.

Proposition 8.1.4.Let X� be the toric variety associated with the fan � in NR. Then
‰(h‡) is a relevant element in A, the algebra of support functions (defined in §2), with
respect to Pic(�)-grading for all ‡ œ �.

Proof. For the Pic(�)-graded C-algebra A‰(h‡), the subgroup generated by degrees of
units D

Õ = deg(SF(‡̌)) = Pic(�) by lemma 8.1.3. Therefore ‰(h‡) is a relevant element
in A by definition 6.1.1 for all cones ‡ œ �.

Theorem 8.1.5.Let X� be the toric variety with enough invariant Cartier divisors asso-
ciated with the fan � and Spec(C[M ]) its torus. Then there is a Spec(C[M ]) equivariant
open embedding µ : tProj A Òæ Proj

MH
A, where A is the algebra of support functions on

� (defined in 4.1.10).

Proof. Recall that Proj
MH

A := t
f : f is relevant in A Spec A(f) and ‰(h‡) is relevant for all

‡ œ �. For each ‡ œ �, we have U‡
≥= Spec k[‡M ] ≥= Spec(A(‰(h‡))) by [Per, lemma 3.10]

and for · ∞ ‡, we have the following commutative diagram:

tProj(A(‰(h· ))) Spec(k[·M ]) Spec(A(‰(h· )))

tProj(A(‰(h‡))) Spec(k[‡M ]) Spec(A(‰(h‡))).

≥= ≥=

≥= ≥=

(8.1)

It follows from the above diagram that X� is isomorphic to tProj A. Moreover, the
morphism µ, which is the composition of the following morphisms,

tProj A ≥=
€

‡œ�

tProj(A(‰(h‡))) ≥=
€

‡œ�

Spec(A(‰(h‡))) Òæ Proj
MH

A (8.2)

is an open embedding. Note that the morphisms in 8.1 are Spec(C[M ]) equivariant. This
makes µ a Spec(C[M ]) equivariant open embedding.

8.2 Criterion for isomorphism

In this section, we give a criterion for the open embedding to be an isomorphism.
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Let X� be a simplicial toric variety associated to the fan � in NR satisfying assump-
tions 4.1.1 and 4.1.2, i.e. the fan does not lie in a lower dimensional subspace and the
Picard group Pic(�) of X is free. Then we have the short exact sequence 4.1.

Keeping in mind remark 6.2.10, we define the following:

Definition 8.2.1. Let � be a simplicial fan in NR and �(1) be the set of rays.

1. A simplicial cone in � is a cone · µ NR generated by S, a linearly independent
subset of �(1).

2. � is said to be simplicially complete if it contains every simplicial cone in �.

Example 8.2.2.The fans of projective and weighted projective spaces are simplicially
complete but the fans of Hirzebruch surface Hr, r Ø 1 are not.

‡1‡2

‡3

Fan of P
2

‡1

‡2

‡3 ‡4

Fan of Hn

Figure 8.1: Examples of simplicially complete and simplicially incomplete fans

Let � be a simplicial fan in NR. For each ray fl œ �(1), we define an integral support
function which takes the following values on the rays

Kfl : |�| æ R, Kfl(nflÕ) =

Y
_]

_[

⁄fl, if fl
Õ = fl

0, if fl
Õ ”= fl.

(8.3)

We choose ⁄fl œ ZØ0 in a way such that Kfl are primitive element in the lattice SF(�).
Furthermore, Kfl are linearly independent and are contained in C

‚ fl SF(�). For a fan
� (not necessarily simplicial) in NR we define the map � : SF(�)R æ R

�(1) by sending a
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support function h to (h(nfl))flœ�(1). Then � is an injective linear map and the following
diagram commutes

SF(�) Z
�(1)

SF(�)R R
�(1)

.

�

�

(8.4)

� has finite cokernel whenever � is simplicial.

Lemma 8.2.3.Let X� be a toric variety corresponding to the fan � in NR satisfying 4.1.1
and A be the coordinate ring of the a�ne toric variety XC (defined in 4.1.10). Then �
is simplicial if and only if A is a polynomial C-algebra of Krull dimension dim(SF(�)R).

Proof. Assume � is simplicial. Note that {Kfl}flœ�(1) forms a basis of SF(�). If h œ
SF(�) and �(h) = (cfl)flœ�(1) œ �(SF(�)) fl (ZØ0)�(1), then cfl = h(nfl) = afl⁄fl implying
h = q

flœ�(1) aflKfl. Therefore ÈKfl : fl œ �(1)Í = C
‚ fl SF(�) = �(SF(�)) fl (ZØ0)�(1)

which implies A = C[C‚ fl SF(�)] is a polynomial C-algebra. It is clear that Krull
dimension of A is dim(SF(�)R).

On the other hand, assume that A is a polynomial C-algebra of Krull dimension
dim(SF(�)R). It is then clear that there exists a basis for the semigroup C

‚ fl SF(�)
which makes C

‚ a simplicial cone. Therefore the cone C and its faces ‡̂, where ‡ œ �,
are simplicial. Finally remark 4.1.9 implies the cones ‡ œ � are simplicial.

Remark 8.2.4.When � is simplicial the C-algebra A = C[‰(Kfl) : fl œ �(1)]. For each
‡ œ � we can take h‡ = q

flœ‡(1) Kfl and therefore ‰(h‡) = r
flœ‡(1) ‰(Kfl).

Theorem 8.2.5.Let X� be a simplicial toric variety corresponding to the fan � in NR

satisfying 4.1.1 and A be the coordinate ring of the a�ne toric variety XC (defined in
4.1.10). Then � is simplicially complete if and only if the morphism µ : tProj A æ
Proj

MH
A in 8.1.5 is an isomorphism.

Proof. Note that B := {Kfl}flœ�(1) is a basis of SF(�) and for each fl, {KflÕ}fl ”=flÕœ�(1) is
a basis of the boundary ˆHfl. With respect to B, the projections in 6.2.10 are given
by prfl = rflK

ú
fl

= lfl œ SF(�)‚
, fl œ �(1) where rfl œ R>0 and K

ú
fl

œ SF(�)R
‚ with

K
ú
fl
(Kfl) = 1. Then the restrictions prfl|M = image(lfl) = nfl œ N . Let S be a set
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of relevant monomials such that Proj
MH

A = fifœSD+(f). Then by remark 6.2.10 each
f œ S corresponds to the simplicial cone

‡f = Èprfl : fl œ �(1) \ |f |Í

= Ènfl : fl œ �(1) \ |f |Í

over �, and since � is simplicially complete, we have ‡f = ‡ for some ‡ œ �. Therefore
f = ‰(h‡) for each f œ S and hence tProj A = fi‡œ�D+(‰(h‡)) = Proj

MH
A.

Now assume µ is an isomorphism. Then we have tProj A ≥= fi‡œ�D+(‰(h‡)) ≥=
Proj

MH
A. Suppose � is not simplicially complete and ‡ is a simplicial cone over �, not

contained in �. Then ‡ corresponds to the relevant monomial f = r
flœ�(1)\‡(1) ‰(Kfl).

The homogeneous prime ideal P = (‰(Kfl) : fl œ ‡(1)) is contained in Spec A(f). For
any · œ � the corresponding relevant monomial g = r

flœ�(1)\·(1) ‰(Kfl) takes zero at the
point P and therefore P ”œ Spec A(g). Hence we get P œ Spec A(f) µ Proj

MH
A and

P ”œ fi‡œ�D+(‰(h‡)) = Proj
MH

A, a contradiction. Therefore � is simplicially complete.

The following are some easy implications of the preceding theorem 8.2.5.

Corollary 8.2.6.Let X be a simplicial toric surface associated to � in NR satisfying
4.1.1. Then the morphism µ : X æ Proj

MH
A in 8.1.5 is not an isomorphism if and

only if there exists a simplicial cone · over �, not contained in �, with ‡ µ · for some
‡ œ �.

Proof. µ not being an isomorphism means � is not simplicially complete. In the forward
direction, we can take ‡ to be a one-dimensional cone. The opposite direction is obvious.

Corollary 8.2.7.Let X be a simplicial toric surface associated to � in NR satisfying
4.1.1. If rank(Pic(�)) Ø 3 then the morphism µ : X æ Proj

MH
A in theorem 8.1.5 is not

an isomorphism.

Proof. The hypothesis implies cardinality of �(1) is at least 5. Note that each cone in
� is generated by at most 2 one-dimensional cones. There are 3 one-dimensional cones
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in less than 180¶. This says � is not simplicially complete, in other words, µ is not an
isomorphism.

Remark 8.2.8.Let X be a simplicial toric surface associated to � in NR satisfying 4.1.1.
One can show that the condition rank(Pic(�)) Ø 3 is equivalent to the condition that the
fan � has at least 5 one-dimensional cones.

Recall that, all complete nonsingular toric surfaces are gotten by successive blow-ups
of either P

2 or Hirzebruch surfaces Hr, r Ø 0.

Corollary 8.2.9.Let X be a complete nonsingular toric surface corresponding to fan �,
A be the C-algebra of support functions on � and Proj

MH
A the associated multihomoge-

neous space.

(i) X = P
2 : Theorem 8.2.5 implies µ : X æ Proj

MH
A is an isomorphism since the

fan is simplicially complete.

(ii) X = H0 = P
1 ◊ P

1 : Same argument as in (i).

(iii) X = Hr, r Ø 1 : It is obvious to see that the fan of X is not simplicially complete,
so by theorem 8.2.5 µ : X æ Proj

MH
A is not an isomorphism.

(iv) X is a (successive) blowup of P
2 or Hr, r Ø 0 : Recall that blowup at a torus

invariant subset corresponds to a refinement of the fan. Therefore, by statement
(iii), the refinement is also simplicially incomplete and then theorem 8.2.5 says
µ : X æ Proj

MH
A is not an isomorphism.
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