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ABSTRACT

Strongly-coupled Quantum Field Theories (QFT) do not admit a perturbative expansion

in the coupling and a Lagrangian formulation is not suitable for such theories. This forces

us to rely on non-perturbative techniques like bootstrap, and duality where symmetries

(global and broken) play an important role in computing observables like correlation

functions. A class of such strongly-coupled QFTs admits conformal invariance, hence,

called Conformal Field Theories (CFT ), which completely constrains the two-point and

three-point correlations. Conformal bootstrap has led to interesting developments in

the study of CFT s and is applicable at strong or weak coupling. These studies are

restricted mostly to position space and Mellin space. Recently, momentum-space CFT

is gaining attention due to its connection to cosmology, flat-space scattering amplitudes,

and theories where perturbation theory is amenable. However, momentum-space CFT

has not undergone much development compared to position-space CFT .

In this work, I will mostly focus on 3D CFT correlation functions in momentum-

space and show new results even at the level three-point function that was not discovered

in position space. I will discuss the existence of substructures within the three-point

correlation functions which will help us demonstrate double-copy and a correspondence

to flat-space scattering amplitude. In this thesis, a systematic way to compute three-point

functions of arbitrary spins in momentum space is also discussed. In the cosmological

correlator context, these momentum space CFT correlation functions play an important

role. In particular, in this thesis, it is shown how the α-vacua correlation function in dS

space can be understood in terms of the CFT correlation function in momentum space

if we relax OPE consistency.

A special class of CFT s called the Chern-Simons Matter Theories is also discussed.

This class of CFT s, admits a strong-weak duality and a Vasiliev dual in one higher

dimension. We use analytical bootstrap tools and duality to compute the four-point

functions of the scalar operator in the Supersymmetric Chern-Simons Matter theories

and an all-loop conjecture for the anomalous dimension of the scalar operators in Chern-

Simons theories which is not possible to compute via the Higher-Spin symmetry. We

justify our calculations via various checks.
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INTRODUCTION

Quantum Field Theory (QFT) is one of the most successful theoretical framework that

explains a wide range of physical phenomena especially the Standard Model (SM) of Par-

ticle Physics. QFT as a theoretical framework combines Classical Field Theory, Special

relativity, and Quantum Mechanics. This was motivated by the need to explain various

quantum mechanical phenomena like the atomic and black body spectra. This requires a

self-consistent framework that combined Quantum Mechanics and Classical Field Theory.

The fundamental constituents of a QFT are quantum fields which are more fundamental

than particles. A QFT is characterized by a Poincare-invariant action which consists

of Poincare-invariant products of these quantum fields as interactions [1]. For a small

enough coupling, the interactions are represented by Feynman diagrams perturbatively.

This eventually led to identifying the correct g-factor [2] for the electron which was useful

in computing the fine structure of the hydrogen atom and derive the relativistic Comp-

ton scattering. It also led to the prediction of antiparticles. One of the most important

predictions of QFT is the W and Z bosons which were confirmed by experiments at the

LHC [3]. The Higgs mechanism is another prediction that was confirmed by the LHC. It

has also made predictions in relation to condensed matter systems as well. These series

of predictions for high-energy particles made by the QFT together form the basis of the

Standard Model (SM) of particle physics. The SM unified three of the four fundamental

forces - the strong, weak, and electromagnetic forces into a single theoretical framework

and accounted for the existence of all the known elementary particles.

One of the fundamental tools in QFT is perturbation theory. However, this perturbation

theory breaks down at strong coupling. Even at weak coupling higher-order perturbative

calculations of observables always result in infinities. These divergences are sourced by

Feynman diagrams having closed loops of virtual particles. Virtual particles are parti-

cles that obey momentum conservation but do not satisfy the dispersion relation. These

particles are said to be off-shell. Divergences in Feynman integrals are of two kinds -

Ultraviolet (UV) and Infrared (IR) [4]. UV divergences come from the high energy limit

of the Feynman integrals and these divergences require a renormalization procedure to

be removed. The renormalization is usually implemented by picking a fixed momenta

value (or an energy scale) to define the renormalized parameter and the observables are
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then computed as a perturbative expansion in the renormalized parameter. Appropriate

counter-terms are added to the action to cancel the divergences. This leads to a renor-

malization of the fields and the couplings in the theory. This procedure, however, makes

the coupling run with the energy scale. For example, the effective coupling in Quantum

Electrodynamics (QED) as a function of energy scale µ looks like [1, 4]

e2
eff

(
p2
)

= e2
R

1 − e2
R

12π2 ln p2

µ2

(1)

This result is obtained after the summation of 1-loop 1PI integrals. One can see that at

p = µ one obtains the renormalized coupling. The renormalized coupling is something

that is measured by experiments at a particular energy scale. On the other hand, the IR

divergences arise due to the low momenta limit of the Feynmann integrals. There is no

renormalization procedure to remove these divergences. Instead, these divergences cancel

by summing various physical processes [4, 5].

QFT armed with this renormalization procedure has been confirmed with various high-

energy physics experiments. The SM was also crucial in validating the renormalization

procedure and reinforced the role of gauge and global symmetries in the computation

of scattering amplitudes and other observables. An important quantity related to the

running coupling is called the beta function that is defined as [4]

β(eeff) ≡ µ
deeff

dµ
(2)

The beta function tells how the theory flows in the parameter space. It can also tell

where the theory might break down. These points are called Landau poles. They are also

important in determining fixed-points of the renormalization group (RG) flow [6] where

the beta function vanishes. At these fixed-points, new symmetries arise requiring a new

prescription for the theory. This new symmetry is scale invariance. This scale invariance

is actually part of a larger symmetry called the conformal invariance. QFTs having these

symmetries are called Conformal Field Theories (CFT s). QFTs with only scale invariance

but no conformal invariance are rare [7, 8]. Any UV complete QFT can be thought of

as an RG flow between CFT s, hence, studying CFT s helps understand the space of

QFTs. These CFT s are especially important because, despite the tremendous success of
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perturbative QFT, many areas of physics are still beyond its reach. For instance, there

is no renormalizable QFT for gravity. A theory is said to be non-renormalizable if it

cannot be renormalized with a finite number of counter-terms. However, a perturbative

prescription of quantum gravity is possible via the AdS/CFT correspondence. Also,

due to the perturbative nature of the renormalizable QFT, non-perturbative and strong

coupling regimes of the theory remain inaccessible. As an example, one can look at the

massive ϕ4 theory in 3D [9]

S =
∫
d3x

(1
2(∂ϕ)2 + 1

2m
2ϕ2 + 1

4!gϕ
4
)

(3)

In the UV, this is a free theory, hence, naturally a CFT . In the IR, the theory is

massive. For a particular ratio of m2/g, the beta function vanishes and the theory

becomes a CFT again. This IR CFT cannot be studied by naive perturbative expansion

in Feynmann diagrams. However, there are multiple QFTs or rather microscopic systems

that give the same IR CFT . For instance, the 3D Ising model for a specific value

of the interaction coefficient gives the same IR CFT as the ϕ4 theory. Such theories

with the same IR CFT are called IR equivalent theories. They are also called dualities

in the context of high-energy physics. This phenomenon of IR equivalences is called

critical universality [9]. Critical universality implies that 3D ϕ4 theory can be studied

via the 3D Ising model and vice-versa. This is a very powerful tool to simplify the

study of various microscopic systems. However, one can do better by exploiting the

emergent conformal symmetries through the conformal bootstrap. Eventually, through

the bootstrap programme one aims to provide a fully non-perturbative formulation of

QFT without a Lagrangian prescription.

Conformal Bootstrap

Through conformal bootstrap, one aims to simply focus on the CFT s and use the con-

formal symmetry to constrain or completely solve the theory. It must be noted that in

some cases bootstrap is the only known strategy for understanding a theory completely

as a Lagrangian description doesn’t exist. There are many well-known techniques to solve

these CFT s like the ϵ-expansion where one works in D = 4 − ϵ and looks at the observ-

ables in the orders of ϵ. By setting ϵ = 1, one tries to recover the behvaiour of theories in

3D. Another well-known technique is the Exact Renormalization Group (ERG) where,
xx



for example, one starts from a scalar theory and add potentially an infinite number of

local operators [10]

(∂ϕ)2 +
∑
i

ciΛD−∆Oi (4)

After putting the above in the RG flow equation, one looks for its fixed points. This

technique helps us find the whole critical surface in the RG space and look for a UV fixed

point of the theory. However, this technique is difficult to apply to gauge theories. ERG

works best when a fixed point is known. The reliability of this method in finding new

fixed points or finding fixed points that do not have a local description is questionable.

Also, RG-based techniques to solve theories at fixed points are against the spirit of boot-

strap. For the purposes of implementing the bootstrap and solving the theories at the

fixed point directly, an axiomatic framework is essential.

All such fixed point theories or CFT s are invariant under conformal symmetry, the gen-

erators of which form the conformal algebra.

[Mµν , Pρ] = δνρPµ − δµρPν

[Mµν , Kρ] = δνρKµ − δµρKν

[Mµν ,Mρσ] = δνρMµσ − δµρMνσ + δνσMρµ − δµσMρν

[D,Pµ] = Pµ

[D,Kµ] = −Kµ

[Kµ, Pν ] = 2δµνD − 2Mµν (5)

Sometimes it is convenient to think about the action of the above in terms of Rd+1,1

instead of Rd as a CFTd algebra is isomorphic to SO(d+ 1, 1) algebra. This is called the

“embedding space formalism” [11–14]. These theories are characterized by local operators

called primaries that are defined by

[Kκ,O(0)] = 0 [D,O(0)] = ∆OO(0) (6)
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Using the operator O, one can define a corresponding state |O⟩ ≡ O(0)|0⟩ which satisfy

Kκ|O⟩ = 0 D|O⟩ = ∆O|O⟩ (7)

which is a direct consequence of 6. This is called state-operator correspondence. This

correspondence means a state of the form |Ψ⟩ ≡ O1(x)O2(0)|0⟩ will have the following

expansion [10,15]

O1(x)O2(0)|0⟩ =
∑

O primaries
λ12OCO (x, ∂y) O(y)|y=0|0⟩ (8)

This is called the operator product expansion (OPE) and λ12O is the OPE coefficient.

The OPE is the most important result in this axiomatic framework as it allows one to

decompose the product of two primaries at short distances into a sum of primaries with

known scaling dimensions and OPE coefficients. The bootstrap program involves using

the OPE to derive constraints on the scaling dimensions and OPE coefficients of the

primaries. This involves looking at the four-point function of four primaries and using

the OPE to expand the product of two of the operators at small distances. This leads

to an expansion of the form 8 which is used to constrain the values of these variables.

The four-point function can now be written in terms of the scaling dimensions and OPE

coefficients, along with the conformal symmetry relating the terms in the expansion. This

leads to the bootstrap equations that can be solved to constrain the values of the scaling

dimensions and operator product coefficients. In short, the non-perturbative axiomatic

framework that characterizes the theories at the fixed point of RG flows has the following

ingredients [16]

• Spectrum of primary operators

• Conformal invariance

• State-Operator correspondence =⇒ OPE

The aim of this framework is to solve the theory by constraining the scaling dimension

of the primaries and the OPE coefficients. This is in essence the conformal bootstrap.

It is interesting to note that conformal invariance fixes the two-point and the three-point
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function entirely. Given the following conformal ward identities

0 =
 n∑
j=1

∆j +
n∑
j=1

xαj
∂

∂xαj

 ⟨O1 (x1) . . .On (xn)⟩ (9)

0 =
 n∑
j=1

(
2∆jx

κ
j + 2xκjxαj

∂

∂xαj
− x2

j

∂

∂xjκ

) ⟨O1 (x1) . . .On (xn)⟩ (10)

One can see that for n = 2, 3, one can find the following solutions

⟨O1 (x1) O2 (x2)⟩ = Cδ∆1∆2

x2∆1
12

(11)

⟨O1 (x1) O2 (x2) O3 (x3)⟩ = λ123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

(12)

upto some constant coefficients [17]. For n = 4, we find that [9]

⟨O1 (x1) O2 (x2) O3 (x3) O4 (x4)⟩ =
(
x2

24
x2

14

) 1
2 (∆1−∆2) (

x2
14
x2

13

) 1
2 (∆3−∆4)

G(u, v)
(x2

12)
1
2 (∆1+∆2) (x2

34)
1
2 (∆3+∆4)

(13)

the solution can only be determined up to a function of conformally invariant cross-ratios

u, v given by

u = x2
12x

2
34

x2
13x

2
24

v = x2
14x

2
23

x2
13x

2
24

(14)

One can compute arbitrary n-point functions in terms of the (n−1)-point functions using

the OPE as follows

⟨O1 (x1) O2 (x2) · · · On (xn)⟩ =
∑
k

C12k (x12, ∂2) ⟨O2 (x2) · · · On (xn)⟩ (15)

The OPE expansion allows us to compute arbitrary correlation function in terms of the

conformal scaling dimensions of the external primaries ∆i and OPE coefficients λijk.

(∆i, λijk) together forms the CFT data. However, depending on how one performs the

OPE, one can obtain a different expansion in terms of the CFT data. These expansions

must agree and this is called OPE associativity and this leads to the following crossing
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symmetry equation [18,19]

⟨O1 O2 O3 O4⟩ = ⟨O1 O2 O3 O4⟩

where

Oi Oj

means an OPE has been made. This is often diagrammatically represented as [9]

(16)

The crossing equation requires various numerical and analytical techniques to be solved

or at least constrain the CFT data.

Momentum-space CFT

While CFT s are well-studied in position space and Mellin space, they are relatively

less studied in momentum space which is surprising as momentum space CFT s find

applications in inflationary cosmology [20–32]. Also, from the perspective of perturbative

field theory which is naturally formulated in momentum space, it is of interest to study

CFT s in the same setting. Flat-space scattering amplitudes are, via AdS/CFT , directly

related to the flat space limit of CFT correlators in momentum space [33] 1. Studying

momentum space CFT correlators can therefore shed light on the structure of flat-space

amplitudes. Interestingly, evidence for the double copy structure - which exists for flat

space amplitudes - was seen directly in momentum space CFT 3-point correlators in

[39,40]. The momentum space CFT just like the position space CFT is characterised by

1There are analogous, though somewhat less straightforward relations in Mellin space [34, 35] and
position space [36–38].
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the momentum space conformal ward identities [41]

0 =
 n∑
j=1

∆j − (n− 1)d−
n−1∑
j=1

pαj
∂

∂pαj

 ⟨O1 (p1) . . .On (pn)⟩ (17)

0 =
n−1∑
j=1

(
2 (∆j − d) ∂

∂pκj
− 2pαj

∂

∂pαj

∂

∂pκj
+ (pj)κ

∂

∂pαj

∂

∂pjα

) ⟨O1 (p1) . . .On (pn)⟩ (18)

The solutions to these conformal ward identities for n = 3 can be written in the basis of

triple-K integrals [41]

Iα{β1,β2,β3}(p1, p2, p3) =
∫ ∞

0
dxxα

3∏
j=1

p
βj

j Kβj
(pjx) (19)

where

α = d

2 − 1 +N, βj = ∆j − d

2 + kj, j = 1, 2, 3. (20)

Unlike the position-space, however, momentum-space analogues for spinning three-point

functions are quite complicated. They involve various combinations of the triple-K inte-

grals shown above [41]. A careful treatment also requires the regularisation and renor-

malization of these divergences [41,42] 2. The triple-K integral only converges when

α + 1 > |β1| + |β2| + |β3| p1, p2, p3 > 0 (21)

Beyond this range, the triple-K integral is defined through a unique analytical continua-

tion. In fact, it is convenient to consider the triple-K integral to be a maximally extended

analytic function that in its domain of convergence agrees with 19. In spite of this, the

triple-K integral exhibits singularities for

α + 1 ± β1 ± β2 ± β3 = −2n n = 0, 1, 2, · · · (22)

Therefore, the triple-K integrals are regulated via

α → α̃ = α + uϵ βj → β̃j = βj + vjϵ (23)

2In position space one could get rid of divergences by working at non-coincident points, but in
momentum-space, one cannot do this and this leads to UV divergences.
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Depending on the divergences, counter terms are added to the CFT action in order to

remove the divergences and obtain the renormalized correlator

⟨⟨O1 (p1) O2 (p2) O3 (p3)⟩⟩ren = lim
ϵ→0

[
⟨⟨O1 (p1) O2 (p2) O3 (p3)⟩⟩reg + ⟨⟨O1 (p1) O2 (p2) O3 (p3)⟩⟩ct

]
(24)

where ‘reg’ stands for regulated correlator and ‘ct’ stands for the contribution of the

counter-term to the correlation. The story of spinning correlators is even more compli-

cated [41, 43–45], especially the study of spinning parity-odd correlators in momentum

space which is limited [43] and there is no known systematic methodology to compute

correlations of arbitrary spin. In this thesis, this issue is discussed in detail and resolved

by using spinor-helicity variables in chapter 1.

When it comes to the four-point functions there are multiple representations one can

work with. For example, we have the simplex representation of the four-point function

proposed in [46,47]

⟨⟨O∆1 (p1) O∆2 (p2) O∆3 (p3) O∆4 (p4)⟩⟩ =
∫ ddq1

(2π)d
ddq2

(2π)d
ddq3

(2π)d
f̂(û, v̂)

Den3 (qj,pk)
(25)

where

Den3 (qj,pk) = q2δ12+d
3 q2δ13+d

2 q2δ23+d
1 |p1 + q2 − q3|2δ14+d |p2 + q3 − q1|2δ24+d |p3 + q1 − q2|2δ34+d

(26)

The integrand is a function of momentum-dependent cross-ratios very much like the

position space four-point function

û = q2
1 |p1 + q2 − q3|2

q2
2 |p2 + q3 − q1|2

, v̂ = q2
2 |p2 + q3 − q1|2

q2
3 |p3 + q1 − q2|2

(27)

These cross-ratios make the crossing symmetry manifest in the momentum space represen-

tation. However, further study is required to gauge its utility in momentum-space boot-

strap. Also, its generalization to higher spin and relation to scattering amplitudes is not

very clear. One can also simply construct the four-point functions using the momentum-

space three-point functions in a relatively straightforward manner [48]. To see that, one
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can use the momentum-space OPE expansion given by [49]

ϕ1(p1)ϕ2(p2)|0⟩ = λO12C̃
µ1···µl
O12 (p1, p1 + p2)Oµ1···µl(p1 + p2)|0⟩ (28)

where

C̃µ1···µl
O12 (p, 0) = il2d−∆1−∆2+∆O+1π(d+2)/2

Γ
(

∆1+∆2−∆O+l
2

)
Γ
(

∆1+∆2−∆O−l−d+2
2

)
×(−p2)(∆1+∆2−∆O−l−d)/2[pµ1 · · · pµl + trace terms] (29)

to write the momentum-space four-point function as

⟨0 |[ϕ1 (p1)ϕ2 (p2)] [ϕ3 (p3)ϕ4 (p4)]| 0⟩ ≡ (2π)dδd (p1 + p2 + p3 + p4)G (p1, p2, p3) (30)

where

G (p1, p2, p3) = s(∆1+∆2+∆3+∆4−3d)/2∑
O
λ12OλO34G∆,ℓ (p1, p2, p3) (31)

and G∆,ℓ can be written as a product of vertex functions

G∆,ℓ (p1, p2, p3) =
ℓ∑

m=0
C∆,ℓ,mC(d−3)/2

m (cos θ)V [12]
∆,ℓ,m

(
p2

1
s
,
p2

2
s

)
V

[34]
∆,ℓ,m

(
p2

3
s
,
p2

4
s

)
(32)

where

〈〈
[ϕ1 (p1)ϕ2 (p2)] O(ℓ,m) (p | q12)

〉〉
≡ λ12Os

(∆1+∆2+∆−2d)/2V
[12]

∆,ℓ,m

(
p2

1
s
,
p2

2
s

)
(33)

C∆,ℓ,m =
22∆−ℓ+1(m!)2(ℓ−m)!(d− 2 + 2m)ℓ−mΓ

(
∆ − d−2

2

)
Γ(∆ + ℓ)

(4π)(d+2)/2ℓ!
(
d−2

2 +m
)
ℓ−m

(
d−3

2

)
m

(∆ − 1)m(∆ − ℓ− d+ 2)ℓ−m
(34)

The four-point function in momentum space is again determined upto the OPE coeffi-

cients or the CFT data. However, in its current form, the momentum space crossing

equation is not very tractable to determine or constrain the CFT data. The above has

singularities and branch cuts whose physical significance is largely unknown. However,

one can use unitarity and analyticity in the spirit of S-matrix bootstrap to constrain the

CFT data.
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Cosmological Correlations

One of the immediate applications of momentum-space CFT is in the study of infla-

tionary cosmology [20–32]. During the inflationary period, both quantum mechanics and

gravity played an essential role where small quantum fluctuations were stretched out in

a correlated fashion which we today see as the Cosmic Microwave Background (CMB).

These correlations can provide insights into their origins and the conditions in which

they were formed. These correlations can be traced back to the beginning of the hot Big

Bang which was preceded by the inflationary epoch where the quantum fluctuations were

created. Therefore, these correlations exist on the past boundary of the big bang space-

time or the future boundary of the inflationary spacetime. Now, one only has to follow

the evolution of these correlations through the entirety of the spacetime to reconstruct

the CMB. This makes locality, causality and unitarity completely manifest. This is the

basis of the cosmological bootstrap. In the cosmological bootstrap, the correlations on

the CMB are reconstructed consistently with locality, unitarity and conformal symmetry

requirements. The conformal symmetry requirement arises from the observation that the

inflationary epoch was very close to de Sitter (dS4) space

ds2 = 1
H2η2 (−dη2 + δµνdx

µdxν) (35)

The correlations are computed on the η → 0 boundary of the spacetime the earliest

moment in time the CMB can be traced back to from the present epoch. Since, dS4

spacetime is maximally symmetric space with the following Killing vectors [50]

Pi = ∂i D = −η∂η − xi∂i

Jij = xi∂j − xj∂i Ki = 2xiη∂η +
(
2xjxi + (η2 − x2)δji

)
∂j (36)

At late times, the bulk fields source operators on the η → 0 boundary. For example, the

KG field at late times behaves as

ϕ(x, η → 0) = O+(x)η∆+ + O−(x)η∆− (37)
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where

∆± = d

2 ± iµ µ =
√
d2

4 − m2

H2 (38)

The correlations of the operators O± are precisely the ones that are expected to reproduce

the correlations on the CMB. The correlations are computed via the in-in formalism

⟨vac |φ (k1)φ (k2) · · ·φ (kn)| vac⟩ (η) = ⟨vac |φI (η,k1)φI (η,k2) · · ·φI (η,kn)| vac⟩

− i
∫ η

η0
dη′ 1

(η′H)4

∫ [
n∏
a=1

d3pa
(2π)3

]
(2π)3δ3

(
n∑
a=1

pa

)〈
vac

∣∣∣[φI (η,k1)φI (η,k2) · · ·φI (η,kn) , HI
int(η′)

]∣∣∣ vac
〉

(39)

where η → 0 and η0 → −∞. The vacuum can either be Bunch-Davies or α. Notice that

in the late time limit of η → 0 the 36 reduces to the generators of CFT3 algebra. Hence,

these boundary operators O± form the conformal primaries and the correlations satisfy

the CFT3 ward identities. Due to this spacetime being maximally symmetric it doesn’t

have any dynamics. Hence, it is important that the dS4 generators be broken. This leads

to a Goldstone mode π(η, xi) with an associated perturbation ζ = −Hπ [51, 52]. The

nearly scale-invariant two-point functions of ζ agree with all the current observations and

there are various upper bounds on the higher-point functions. However, it is not very clear

if the dS4 boosts are approximate symmetries of the cosmological correlators as scale and

rotational invariants fix the two-point function or the bispecturm. So, one has a choice,

either one can assume that the dS4 boosts are weakly broken, then one can continue

to reconstruct correlators on CMB requiring full conformal symmetry or one can assume

that the dS4 boosts are not approximate but realized nonlinearly in certain regimes. This

is the premise of boostless cosmological bootstrap [53–56]. In this bootstrap regime, dS4

symmetries are strongly violated by introducing interactions of the scalar fluctuations.

However, since, the symmetry is reduced the problem becomes challenging but one can

use features of the singularity structure or unitarity to constrain these correlations [57].

The dS4 bootstrap has the most phenomenological interest as it is applicable in sev-

eral cases. In this regime, the background and dynamics is considered approximately

invariant under the full dS4 symmetries. Cosmological correlations are required to satisfy
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the full dS4 symmetry. This regime of cosmological bootstrap enables computation that

would otherwise be difficult. Beyond cosmology, this also provides a natural setup to

study momentum space CFT s and provides numerous insights into the relation between

CFT s and scattering amplitudes. This is because the flat-space limits of these cosmo-

logical correlations map onto scattering amplitudes in the flat-space limit. In chapter 3

of this thesis, however, the cosmological correlations are constrained using the CFT side

instead, and the consequences of OPE in constraining the cosmological observables are

also discussed.

Inflationary cosmology serves as a bridge between the large and the small. To make

this understanding precise, one has to understand the connection between IR observables

and UV physics better. This can only be achieved via S-matrix bootstrap where the

known IR physics and the unknown UV physics are related by means of dispersion re-

lations and positivity bounds. This requires an improved understanding of unitarity for

momentum space CFT correlators and an insight into their analytic structures.

Dualities

Another important tool to investigate physics at strong coupling is dualities. Dualities

allow us to compute observables in a CFT , namely correlations, using a simpler field

theory. These dualities are of two kinds - duality amongst field theories and strong-weak

dualities. The earliest known field theory duality that exists is in electromagnetism where

the Maxwell equations are invariant under [58]

E → B B → −E (40)

Also, from Dirac’s quantization of electric and magnetic charge, we have [59]

eg = 2πn (41)

where e is the electric charge and g is the magnetic charge and n is a positive integer.

Now, from the fine structure constant, we know that e =
√

4πϵℏcα, the electric charge

which is also the coupling in the QED is very small. Therefore, the magnetic charge is

going to be very large which will be the QED coupling in the magnetic frame. Hence, we
xxx



may rewrite the Dirac’s quantization rule as

estrongeweak = 2πn (42)

This is the electromagnetic strong-weak duality where a theory at strong coupling is dual

to a theory at weak coupling. This kind of duality also exists for N = 4 Super-Yang-Mills

theory as well. Dualities also exist in other areas of physics namely string theory, which

is basically a 2D CFT , for instance, mirror symmetry and T-duality [60].

AdS/CFT correspondence

A class of dualities that help compute observables in CFT s is strong-weak dualities. The

most famous strong-weak dualities go by the name of the AdS/CFT correspondence or

the Maldacena conjecture [61]. The Maldacena conjecture states that for every theory

in the AdSd+1, there exists a CFTd on its boundary. This doesn’t necessarily mean

that every CFTd will have an AdSd+1 gravity dual. This correspondence provides a way

to compute quantum effects in a QFT at strong coupling using classical gravitational

theories. Even though the name suggests that it works for CFT s, this correspondence

can be extended to non-conformal theories and has numerous applications in confinement,

chiral symmetry breaking, non-equilibrium phenomena, and condensed matter systems.

The statement of the AdS/CFT correspondence is as follows [62]

〈
exp

(∫
ddxOϕ(0)

)〉
CFTd

= ZAdSd+1

∣∣∣∣∣
limz→0(ϕ(z,x)z∆−d)=ϕ(0)(x)

≈ e−Sclassical

∣∣∣∣∣
limz→0(ϕ(z,x)z∆−d)=ϕ(0)(x)

(43)

where ϕ is called the bulk field as it resides in the AdSd+1 bulk. The bulk field sources a

primary operator O in the boundary CFTd. The boundary resides at z = 0 where z is

the spacelike coordinate for the AdSd+1 metric given by

ds2 = L2

z2 (dz2 + ηµνdx
µdxν) (44)

The AdS/CFT correspondence provides a unique dictionary between the primary oper-

ator in the boundary CFTd and bulk field in the AdSd+1. Unlike the duality amongst

field theories, AdS/CFT dualities are unique. Also, the operators and observables have
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a clear distinction and interpretation in this duality. The CFT correlation functions can

be computed using the correspondence as follows [62]

⟨O(x1) · · · O(xn)⟩ = δ

δϕ0(x1)
· · · δ

δϕ0(xn)ZAdSd+1

∣∣∣∣∣
ϕ0=0

(45)

AdS/CFT , therefore, allows us to understand quantum gravity via CFT s. This is the

essence of the holographic principle which states that the information in a space can

be encoded on its boundary. This is motivated by the Bekenstein bound which states

that the maximum entropy in a stored volume Vd+1 is given by S = Ad

4G . The theory of

quantum gravity is defined on an AdS × X type of manifold where X is some compact

space. As an example, one can look a the most well-known application of the AdS/CFT

correspondence. It states that N = 4 Super Yang-Mills (SYM) theory with SU(N) gauge

group and coupling gYM given by [61–63]

L = Tr
(

− 1
2g2

YM
FµνF

µν + ϑ

16π2FµνF̃
µν − iλ̄aσ̄µDµλa

−
∑
i

Dµϕ
iDµϕi + gYM

∑
a,b,i

Cab
i iλa

[
ϕi, λb

]

+gYM
∑
a,b,i

C̄iabλ̄
a
[
ϕi, λ̄b

]
+ g2

YM
2

∑
i,j

[
ϕi, ϕj

]2 ,
(46)

is dynamically equivalent to a type IIB superstring theory with string length ls defined

as ls =
√
α′ and coupling gs on AdS5 × S5 with a radius of curvature L and N units of

F(5) flux on S5. The AdS/CFT dictionary relates the free parameters of both theories

as [62]

g2
YM = 2πgs 2g2

YMN = L4

α′2 (47)

The ϕi’s transform under the fundamental SO(6) representation while Aµ transforms

under the adjoint SU(4) respresentation. The C’s are the Clebsh-Gordon coefficients.

The AdS/CFT correspondence can be established using various tests [64–66], one of

them involving computing correlations of one-half BPS operators in N = 4 SYM theory

at large N [67] using both the N = 4 SYM action and its dual supergravity action [62,67].

AdS/CFT has also made some predictions concerning the properties of strongly-coupled
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Figure 1: Duality between Chern-Simons Critical Fermionic (CF) and Chern-Simons
Critical Bosonic (CB) theory where g is the coupling. Checks: Exact partition function
and exact 2 ↔ 2 scattering.

theories that may not be easy to infer using field-theoretic means. For instance, con-

finement in QCD is attributed to strings in the AdS bulk. The endpoints of the strings

are the quarks or gluons, so their confinement is related to the behaviour of the strings

in the AdS geometry. Another prediction of AdS/CFT is that the quark-gluon plasma

has a black hole dual in the AdS bulk and their behaviour is directly linked to the ther-

modynamical properties of the bulk black hole [68, 69]. AdS/CFT correspondence also

maps solitons and instanton solutions in bulk to non-local operators in the CFT . Hence,

predicting an important role for CFT s that violate locality.

Dualities in Chern-Simons matter theories

However, some of the most intricate dualities that exist amongst CFT s are in Chern-

Simons matter theories [70–155] and this will be one of the theories covered in this thesis.

The Chern-Simon matter theories are defined by

S[A,Φ] =
∫
d3x[iϵµνρ κ4πtr(Aµ∂νAρ − 2i

3 AµAνAρ)] + Sm[A,Φ] (48)

where Aµ is a gauge field in the adjoint representation of some gauge group and Φ is

some matter field (fermionic or bosonic) in the fundamental representation of the gauge

group with the following actions

Sf (Aµ, ψ) = −i
∫
d3xψ̄γµDµψ Sb (Aµ, ϕ) =

∫
d3xDµϕ̄Dµϕ (49)

The gauge group is usually SU(N), U(N), SO(N) or O(N) [111,140]. An important

parameter called the t’Hooft parameter defined as λ = N/κ becomes important when

discussing strong coupling limit of these theories. Chern-Simons matter theories have

applications in condensed matter systems [78, 101, 133, 151] and they are also important
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field theoretic models to study the Hall effect [104, 156, 157]. These theories also have

higher-spin Vasiliev theory as a gravity dual. Some of the well-known dualities satisfied

by Chern-Simons matter theories are as follows [137]

• SU(N) regular fermion (RF) theories at (Yang-Mills regulated) level k are dual to

type 2 U(|k| + 1
2) critical boson (CB) theories at level −sgn(k)N

• Type 2 U(N) RF theories at (Yang-Mills regulated) level k are dual to type 2

SU(|k| + 1
2) CB theories at level −sgn(k)N

• Type 1 U(N) RF theories at (Yang-Mills regulated) level k are dual to Type 1

U(|k| + 1
2) CB theories at level −sgn(k)N

The fermionic theories have the scalar operator JF0 ≡ ψ̄ψ in their spectrum and the

bosonic theories have the scalar operator J̃0 ≡ ϕ̄ϕ. These dualities satisfy various checks,

for instance, all the momentum-space correlations of scalar operators in these theories

are identical up to contact terms [137]

〈
JF0 (q1) JF0 (q2)

〉
RF

=
〈
J̃0 (q1) J̃0 (q2)

〉
CB〈

JF0 (q1) JF0 (q2) JF0 (q3)
〉
RF

=
〈
J̃0 (q1) J̃0 (q2) J̃0 (q3)

〉
CB〈

JF0 (q1) JF0 (q2) JF0 (q3) JF0 (q4)
〉
RF

=
〈
J̃0 (q1) J̃0 (q2) J̃0 (q3) J̃0 (q4)

〉
CB

(50)

Observe how these dualities map observables from one theory to observables of the other.

These dualities also lead to a map between the sourced partition functions of the theories.

Since these theories exist at some fixed points in the RG flow, the mass-deformed version

of these theories flow away from these fixed points. But due to the duality of the fixed

point theories, the mass-deformed theories [146] are also dual to each other for a specific

value of the masses used in the deformation. Also, the duality between RF and CB

theories imply a relationship between their partition functions [137]

∫
DϕDσe

−Scb(ϕ,σ)+
∫
J0(x)ζ(x)− (2π)2

κ2
B

(
1+O

(
1

κB

))∫
ζ3(x)

=
∫
Dψe−Srf (ψ)+

∫
JF

0 (x)ζ(x) (51)

One can also look at supersymmetric (SUSY) versions of Chern-Simons matter theories
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Figure 2: Gravity duals of Chern-Simons matter theories

(T ) [76, 93,122,158–161]. For instance N = 2 SUSY U(N) Chern-Simons theories [125]

ST
k,N (Aµ, φ, ψ) = ik

4πSCS (Aµ) + Sb (Aµ, φ) + Sf (Aµ, ψ) + Sbf (φ, ψ)

Sbf (φ, ψ) =
∫
d3x

[
−4πi

k
(φ̄φ)(ψ̄ψ) + 4π2

k2 (φ̄φ)3 − 2πi
k

(ψ̄φ)(φ̄ψ)
] (52)

exhibit strong-weak self-duality i.e.

Tk,N ↔ T−k,|k|−N+ 1
2

k ∈ Z + 1
2 (53)

This self-duality of the SUSY theory leads to non-SUSY bosonization dualities which

were described above [96]. In chapter 2, these dualities will be used to compute SUSY

observables in terms of non-SUSY observables, in particular, the four-point function.

Duality between Vasiliev theories and Chern-Simons matter

theories

Free bosonic and free fermionic theories are dual to Vasiliev-type 4D higher spin gravity

[162–172] and Chern-Simons matter theory interpolates between them on the field theory

side while on the dual side, they are interpolated by the θ-parameter, see Figure 2. Free

theories have a tower of primary operators or currents defined by

J bs ≡
s∑
r=0

(−1)r2sC2r∂
rϕ̄∂s−rϕ (54)

Jfs ≡ yαyβ
s−1∑
r=0

(−1)r+12sC2r+1∂
rψ̄∂s−r−1ψβ (55)
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These currents generate a higher spin symmetry. However, due to interactions in the

Chern-Simons matter theories, the higher spin symmetry gets weakly broken and the

higher spin currents with s > 2 becomes non-conserved. For example, one may have

∂µJ
µ
−−− = a2

(
∂−j̃0j2 − 2

5 j̃0∂−j2

)
(56)

where a2 ∝ λ. The three-point correlations of these currents have been shown to satisfy

[74]

⟨Js1Js2Js3⟩ = f bs1s2s3⟨Js1Js2Js3⟩bos + f fs1s2s3⟨Js1Js2Js3⟩fer + f odds1s2s3⟨Js1Js2Js3⟩odd (57)

These currents are exactly conserved in free theories. But in interacting theories due

to 56 the three-point functions of these higher-spin currents also become non-conserved.

Using the the higher-spin currents one can define the following charges

Qs =
∫
d3x∂µJsµ−···− (58)

These charges lead to the following transformation law for the currents

[Qs, js′ ] =
s′+s−1∑

s′′=max[s′−s+1,0]
αs,s′,s′′∂s

′+s−1−s′′
js′′ (59)

Both 59 and 56 can be used together to compute correlation functions for CFT s with

slightly-broken higher-spin symmetries and compute the coefficients fs1s2s3 in 57. These

weakly broken symmetries can also be used to compute anomalous dimensions for higher

spin currents for s > 2. In chapter 2, a method will be presented to compute the anoma-

lous dimension of the scalar operator without the higher spin algebra. The constraints

of higher spin are strong enough to determine the correlation functions at all orders of

1/N provided the AdS/CFT correspondence holds, i.e. provided one can show that a

Vasiliev-type theory exists as a gravity dual to the Chern-Simons matter theory under

consideration [74].
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Thesis Summary

In this thesis, we resolve a number of unsolved issues. In chapter 1, a systematic formalism

is presented to compute CFT three-point correlators of arbitrary spin. We then use the

results of these computations to show that these correlations satisfy double copy relations

very similar to the double copy relations in three-point scattering flat-space amplitudes

of gluons and gravitons. We explore this similarity between flat-space amplitudes and

CFT correlators in a bit more detail as well. In chapter 2, we look at the Chern-Simons

matter theories where we make use of duality to compute four-point correlations in a

N = 2 SUSY Chern-Simons matter theory in terms of non-SUSY observables. We also

conjecture the anomalous dimension of the scalar operator in Chern-Simons matter theory

which was previously unknown. Finally, in chapter 3, we make use of momentum-space

CFT techniques to provide an interpretation for the α-vacua correlations in inflationary

cosmology.
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Chapter 1

Momentum-space 3-point functions

in CFT3

This chapter is largely based on the following papers written with my collaborators

• S. Jain, R. R. John, A. Mehta, A. A. Nizami, A. Suresh (2021) Momentum space parity-

odd CFT 3-point functions, JHEP 08 (2021) 089, arXiv: 2101.11635 [hep-th]

• S. Jain, R. R. John, A. Mehta, A. A. Nizami, A. Suresh (2021) Double copy structure of

parity-violating CFT correlators, JHEP 07 (2021) 033, arXiv: 2104.12803 [hep-th]

• S. Jain, R. R. John, A. Mehta, A. A. Nizami, A. Suresh (2021) Higher spin 3-point func-

tions in 3d CFT using spinor-helicity variables, JHEP 09 (2021) 041, arXiv: 2106.00016

[hep-th]

• S. Jain, A. Mehta (2023) 4D flat-space scattering amplitude/CFT3 correlator correspon-

dence revisited, Nucl. Phys. B (2023) 991 p. 116193, arXiv: 2201.07248 [hep-th]

CFT s occur as endpoints of a UV-complete QFT . These CFT s are connected by the

renormalization group (RG) flow. Thus, studying CFT s is crucial in understanding

the space of QFT s [9]. Most of these fixed points are inaccessible to usual pertur-

bative techniques and hence, non-perturbative techniques like duality, symmetry, and

bootstrapping are essential. Various techniques have been developed over the years to

compute observables in a CFT . However, most of these techniques are developed in

position or Mellin space [9, 10, 173–175]. Considering the resemblance of momentum-

space CFT correlators with scattering amplitudes and its application in inflationary

cosmology [21–27, 31, 50, 176–180] in the computation of non-gaussianities, the study
1



Chapter 1. Momentum-space 3-point functions in CFT3

of momentum-space CFT and development of momentum-space CFT bootstrap be-

comes essential. However, limited development is made in this direction even at the

level of a three-point function given the complexities of the momentum-space ward iden-

tities [41, 150, 152, 181–188]. In this chapter, we present a systematic and standardized

approach to computing any three-point correlators of arbitrary spin and parity. CFT 3-

point functions are determined using three complementary approaches. The first method

is the more direct one and involves solving momentum-space Ward identities which were

developed and used for the parity-even sector in [41]. The second approach utilizes spin-

raising and weight-shifting operators. These have been used in the conformal bootstrap

literature [14, 189, 190]. Parity-odd spin-raising and weight-shifting operators in mo-

mentum space is constructed and used on scalar seed correlators to generate parity-odd

spinning correlators.

Despite the great utility of these approaches the finer structures of the correlations

are better understood by an alternative approach. For instance, in ⟨TTT ⟩, there is a

high degree of degeneracy in the tensor structures in 3d, both in the parity-even and

the parity-odd sector, which makes it difficult to choose an appropriate basis to write an

ansatz for the correlator. This also means that there is no unique way to write correlators

in momentum-space. The problem becomes even more complicated if we want to calcu-

late a correlator involving higher spin conserved currents (Js with s > 2) both for the

parity-even and parity-odd case. In this chapter, this problem is overcome using the third

approach i.e. working in the spinor-helicity formalism where the degeneracy is automati-

cally taken care of and the correlations in the spinor-helicity are represented uniquely. We

solve the CWIs in these variables and then convert the results back to momentum space.

Through this analysis, it is shown that the correlation function has two independent

sub-structures, homogeneous and non-homogeneous. Moreover, for divergent correlation

functions which require regularization and renormalization but in spinor-helicity variables

they turn out to give directly the finite part without any renormalization. Some of the

results are verified using weight-shifting operators.

An important feature of the momentum-space correlators is their resemblance to the

scattering amplitudes. One of the interesting relationships that exist for flat space scatter-

ing amplitudes is the double-copy relation between gauge theory and gravity amplitudes,

and the associated color-kinematics duality [191–193]. This means that amplitudes in-
2



1.1. Chapter summary

volving gravitons can be built out from those involving gluons. The double copy relation

was first observed in Einstein gravity and pure Yang-Mills theory, and later it was ex-

tended to a whole host of theories including higher derivative conformal gravity, higher

derivative gauge theories and bi-adjoint scalar theories [194–196]. The analyses in these

works were for the parity-even sector in the flat-space limit. Double copy relations for the

CFT correlators were only studied for the parity-even sector in the flat-space limit [39].

In this chapter, we have demonstrated that the double copy relations hold for the three-

point correlation functions for arbitrary spins. This close resemblance to the scattering

amplitudes is very suggestive of an amplitude/correlator correspondence which will also

be explored in detail in this chapter.

1.1 Chapter summary

The rest of this chapter is organized as follows. In Section 1.2, besides setting up the

notation and terminology, we outline the three different techniques that we use in this

chapter to determine parity-odd 3-point functions. We outline how to derive parity-odd

correlations using both the conformal ward identity and spin-raising operators, discussed

in detail in [150]. For example, the following holds

⟨TTO2⟩odd = (k1k2)3P
(2)
1 P

(2)
2 H12D̃12⟨O1(k1)O2(k2)O2(k3)⟩ (1.1)

where appropriate spin-raising and dimension-raising operators have been used in the

RHS. We also briefly discuss the divergences that arise, and their regularisation [150].

Finding these methods tedious for arbitrary spins due to degeneracies and Schouten iden-

tities, we present a systematic formalism to derive any correlation of arbitrary spins via

spinor-helicity. In Section 1.3 the basic idea of expressing conformal correlators in terms

of spinor-helicity variables is introduced and the preliminary case of 2-point functions is

discussed which is based on [187]. We show that any correlator can be written as two

independent sub-structures

⟨Js1Js2Js3⟩ = ⟨Js1Js2Js3⟩h + ⟨Js1Js2Js3⟩nh (1.2)

3



Chapter 1. Momentum-space 3-point functions in CFT3

These structures behave differently under the Special Conformal Ward Identities [187].

Consider the example of ⟨TTT ⟩

⟨T−T−T−⟩even =
(
c1
c123

E6 + cT
E3 − Eb123 − c123

c2
123

)
⟨12⟩2⟨23⟩2⟨31⟩2 (1.3)

where the leading singularity in E = k1 + k2 + k3 is identified with the homogenous

sub-structure and the sub-leading term with the non-homogenous sub-structure. Section

1.4 has the results of various 3-point correlators of spinning conserved currents and scalar

operators in spinor-helicity variables. In Section 1.5, these results are translated to mo-

mentum space after carefully taking the degeneracies into account and Section 1.6 has

a discussion of the renormalization of some of these correlators which have divergences.

Section 1.7 contains a discussion of momentum space higher-spin conserved current cor-

relators expressed in terms of 3-point momentum space invariants. The homogenous part

of any arbitrary spinning correlator looks like

⟨Js1Js2Js3⟩even = ks1−1
1 ks2−1

2 ks3−1
3 Q

1
2 (s1+s2−s3)
12 Q

1
2 (s2+s3−s1)
23 Q

1
2 (s1+s3−s2)
13

⟨Js1Js2Js3⟩odd = ks1−1
1 ks2−1

2 ks3−1
3 S12Q

1
2 (s1+s2−s3−2)
12 Q

1
2 (s2+s3−s1)
23 Q

1
2 (s1+s3−s2)
13

+ cyclic perm. (1.4)

where Qij and Sij are the momentum space invariants. In Section 1.8 we make some

important observations, including the connection between the parity-even and parity-

odd parts of a correlator. We show that in spinor helicity they are only distinguished by

a factor of i as can be seen in the following simple example.

⟨J−J−O4⟩even = c1(k1k2)I 5
2 ,{

1
2 ,

1
2 ,

5
2 } (1.5)

⟨J−J−O4⟩odd = i c2(k1k2)I 5
2 ,{

1
2 ,

1
2 ,

5
2 } (1.6)

Section 1.9 discusses the double copy relations amongst the three-point CFT3 correla-

tors which are detailed in [187]. To establish our claim, we see that it is convenient

to work with the sub-structures of the CFT correlators. In particular, we show that

under double copy relations, the homogeneous part maps to a homogeneous part, and

the non-homogeneous part maps to a non-homogeneous part. Let us illustrate this point

4



1.1. Chapter summary

by considering ⟨TTT ⟩, the 3-point function of the stress tensor, and ⟨JJJ⟩, the 3-point

function of the conserved spin-1 current. The correlators can be written as :

⟨JJJ⟩ = ⟨JJJ⟩homogeneous + ⟨JJJ⟩non-homogeneous

⟨TTT ⟩ = ⟨TTT ⟩homogeneous + ⟨TTT ⟩non-homogeneous

(1.7)

The double copy relation is then given by :

⟨TTT ⟩homogeneous ∝ (⟨JJJ⟩homogeneous)2

⟨TTT ⟩non-homogeneous ∝ (⟨JJJ⟩non-homogeneous)2
(1.8)

where the proportionality factor is momentum dependent and is different for the two

cases. It is given explicitly in Section 1.9.3. In Section 1.10, we discuss the correspondence

between 4D flat-space amplitudes and CFT3 correlators in detail, which is based on the

discussion in [183]. We introduce the ϵ-transformation that allows us to go from parity-

even to parity-odd structures for covariant vertex while preserving gauge-invariance. A

differential operator implements the ϵ-transformation

[Oϵ]I = 1
kI
ϵ(zIkI

∂

∂zI
) (1.9)

which acts on parity-even gauge-invariant structures to give parity-odd gauge invariant

structures and vice-versa i.e

Oϵ : Mm,e → Mm,o

Oϵ : Mnm,e → Mnm,o. (1.10)

where M is a gauge-invariant amplitude structure. Eventually, we make use of the ep-

silon transformation to propose a new CFT structure that in the flat-space limit gives

the extra parity-odd amplitude and discuss some examples. In the end, we have a num-

ber of appendices supplementing the main text and providing various technical details.

Appendix A.4 outlines our spinor-helicity notation. In Appendix A.5 we describe in

detail our terminology of homogeneous and non-homogeneous contributions to a corre-

lator and discuss how they differ from the usual splitting of a correlation function into

transverse and longitudinal pieces. Appendix A.6 has the technical details of solutions of

5



Chapter 1. Momentum-space 3-point functions in CFT3

various conformal Ward identities quoted in Section 1.4. Appendix A.7 contains useful

triple-K integral identities and Appendix A.8 lists the momentum space form of various

3-point correlators of conserved currents. In Appendix A.9, we highlight some parity-odd

spin-raising and weight-shifting operators. In Appendix A.10, we discuss some explicit

examples of flat-space amplitudes. In Appendix A.11, we discuss various identities which

are useful in the main text.

1.2 Three approaches to determining momentum space corre-

lators

Determining correlation functions is a significantly harder task in momentum space than

in position space. For parity-odd correlators this gets even more tedious. We will now

discuss three different approaches to determining momentum space correlators. We also

discuss certain subtleties and limitations associated with the two approaches.

1.2.1 Using Conformal Ward identity : Strategy

In the first approach, following [41,197] and [42,44,45,198,199] where parity-even 3-point

functions were determined, we start with an ansatz of the form ∑
mAm(ki)Tm for the

correlator. Here Tm are all possible tensor structures that are allowed by symmetry and

Am are form factors that are functions of the momenta magnitudes (ki). The form factors

are constrained by permutation symmetries (if any) of the correlator and by momentum

space Ward identities. The latter lead to partial differential equations which can then

be solved to determine the form factors, up to undetermined constants that depend on

the specific theory. An excellent mathematica package that we found useful in these

computations is [200].

Let us now describe the momentum space Ward identities associated with dilatation

symmetry and special conformal transformations.

1.2.2 Dilatation and Special Conformal Ward identities

We will denote the n-point Euclidean correlation function of primary operators O1, . . . ,On

by ⟨O1(k1) . . .On(kn)⟩. We suppress the Lorentz indices of the operators for brevity. The

correlator with the momentum conserving delta function stripped off is denoted as :

⟨ O1(k1) . . . On(kn) ⟩ ≡ (2π)dδ(3)(k1 + . . .+ kn)⟨⟨ O1(k1) . . . On(kn) ⟩⟩ . (1.11)

6



1.2. Three approaches to determining momentum space correlators

An n-point correlator with scalar or spinning operator insertions satisfies the following

dilatation Ward identity [41] :

0 =
−(n− 1)d+

n∑
j=1

∆j −
n−1∑
j=1

kαj
∂

∂kαj

 ⟨⟨ O1(k1) . . . On(kn) ⟩⟩ . (1.12)

This constrains the correlator to have the following scaling behaviour :

⟨⟨ O1(λk1) . . . On(λkn) ⟩⟩ = λ−[(n−1)d−
∑n

i=1 ∆i]⟨⟨ O1(k1) . . . On(kn) ⟩⟩ . (1.13)

The special conformal Ward identity on an n-point correlator with both scalar and

spinning operators is [41] :

0 =
n−1∑
j=1

[
2(∆j − d) ∂

∂kκj
− 2kαj

∂

∂kαj

∂

∂kκj
+ kκj

∂

∂kαj

∂

∂kjα

]
⟨⟨ O1(k1) . . . On(kn) ⟩⟩

+ 2
n−1∑
j=1

nj∑
k=1

δµjkκ
∂

∂k
αjk

j

− δκαjk

∂

∂kjµjk

 ⟨⟨ Oµ11...µ1r1
1 (k1) . . .O

µj1...αjk...µjrj

j (kj) . . .Oµn1...µnrn
n (kn) ⟩⟩

(1.14)

In the second line of the RHS of the above equation, the indices of the generator mix

with the spin indices of the correlator. In principle, one can solve this equation and get

the desired correlator [41]. However, for parity-odd structures in three-dimensions, the

computation gets complicated and has not yet been done.

We will always be working with correlation functions with the momentum conserving

delta function stripped off. From here on we will drop the double angular brackets

notation to avoid clutter and use single angular brackets everywhere.

We will also use the terminology of primary and secondary conformal Ward identities

[41]. A 3-point momentum space correlator can be expanded as ∑AiTi where the Ai are

the (scalar) form factors, whereas Ti give a basis for tensor structures. When one considers

the action of the special conformal generator Kκ on these correlators, it naturally results

in PDEs for the form factors.

In brief, a primary Ward identity is a second-order PDE for the form factor arising
7



Chapter 1. Momentum-space 3-point functions in CFT3

from terms containing kκ1 , kκ2 in the conformal Ward identity Kκ⟨...⟩=0. The remaining

PDEs are secondary Ward identities and are first order. See section 5 of [41] for further

details and properties.

1.2.2.1 Divergences

Triple-K integrals arise as solutions to primary conformal Ward identities which are

second-order differential equations [41]. Along with the three momenta, they are ex-

pressed in terms of four other parameters :

Iα{β1β2β3}(k1, k2, k3) ≡
∫ ∞

0
dx xα

3∏
j=1

k
βj

j Kβj
(kjx) (1.15)

where Kβj
is a modified Bessel function of the second kind. While the integral is well-

behaved at its upper limit, it is convergent at x = 0 only if [41,44] :

α + 1 − |β1| − |β2| − |β3| > 0 (1.16)

When the integral is divergent one can regulate it using two parameters u and v [41,44] :

Iα{β1β2β3} → Iα+uϵ{β1+vϵ,β2+vϵ,β3+vϵ} (1.17)

The regularised triple-K integral is convergent except when [41,44] :

α + 1 ± β1 ± β2 ± β3 = −2n, n ∈ Z≥0 (1.18)

for any choice of signs. When (1.18) is satisfied, the integral is singular in the regulator

ϵ and we will denote the divergence by the choice of signs (± ± ±) for which (1.18) is

satisfied.

Divergences of the type (− − −) are called ultra-local and they occur when all the

three operators are co-incident in position space. In momentum space, this manifests as

the divergent term being analytic in all three momenta squared. Such divergences must,

in general, be removed using counter-terms that are cubic in the sources, and they give

rise to conformal anomalies.

Divergences of the type (−−+) and its permutations are called semi-local divergences.
8



1.2. Three approaches to determining momentum space correlators

In position space, this is a divergence that occurs when two of the operators in the

correlator are at co-incident points. In momentum space, the divergence is said to be

semi-local when the O(1/ϵ) term is analytic in any two of the three momenta squared.

In general, these divergences must be removed by counter-terms that have two sources

and an operator. Such terms lead to non-trivial beta functions.

Divergences of the kind (+ + +) and (+ + −) are non-local and they occur even when

all three operators are at separated points in position space. In momentum space, such

a divergence is analytic in at most one of the momenta squared. This is not a physical

divergence and arises because the triple-K integral representation of the correlator is sin-

gular. In this case no counter-term exists and the divergence is removed by imposing the

condition that the constant multiplying the triple-K integral vanishes as an appropriate

power of ϵ.

1.2.2.2 Counter-terms

As we discussed above, divergences of the kind (− − +) and (− − −) that correspond to

ultra-local and semi-local divergences are removed using suitable counter-terms. In the

case of parity-even correlators, this has been extensively studied in [41, 42, 44, 45]. We

will now list a few potential counter-terms that could turn out to be useful in our study

of parity-odd correlators. For ultra-local divergences, for example, we have :

∫
d3xF3(A)□nϕ,

∫
d3xCµν R

µν □nϕ,
∫
d3xCµν R∇µ ∇ν □nϕ (1.19)

and for semi-local divergences :

∫
d3x ϵµνλ Fµν Jλ□

nϕ,
∫
d3xAµ Jµ□

nϕ,
∫
d3xF µνJµDνϕ,

∫
d3xCµν T

µν □nϕ

(1.20)

where F3(A) is the Chern-Simons form in three-dimensions given by,

F3(A) = ϵµνλ

(
Aµa∂

νAλa + 2
3f

abcAµaA
ν
bA

λ
c

)
, (1.21)

Cµν is the Cotton-York tensor given by,

Cµν = ∇ρ
(
Rσ
µ − 1

4Rg
σ
µ

)
ϵρσν , (1.22)

9



Chapter 1. Momentum-space 3-point functions in CFT3

and Rµν and R are the Ricci tensor and the Ricci scalar respectively. In the above

list of possible counter-terms (1.20) we have included certain parity-even terms such as∫
d3xAµ Jµ□nϕ and

∫
d3xF µνJµDνϕ. These counter-terms could give rise to the 2-point

function of currents, which has a parity-odd contribution ⟨Jµ(p)Jν(−p)⟩ ∝ ϵµνρpρ.

1.2.2.3 Example: ⟨JµJνO⟩odd

Here we will consider the parity-odd part of the correlator ⟨JµJνO⟩. We start with the

following ansatz for the correlator

⟨Jµ(k1) Jν(k2)O(k3)⟩odd = πµα(k1)πνβ(k2)
[
Ã(k1, k2, k3)ϵαk1k2kβ1 + B̃(k1, k2, k3)ϵβk1k2kα2

]
(1.23)

where the orthogonal projector πµν (p) is given by :

πνµ(p) ≡ δνµ − pν pµ
p2 . (1.24)

The ansatz (1.23) is chosen such that the correlator is transverse with respect to kµ1 and

kν2 . Demanding symmetry under the exchange : (k1, µ) ↔ (k2, ν) gives the following

relation between the form factors :

Ã(k1, k2, k3) = −B̃(k2, k1, k3) (1.25)

Using the definition of projectors (1.24), the ansatz (1.23) expands to the following :

⟨Jµ(k1) Jν(k2)O(k3)⟩odd = Ã(k1, k2, k3)ϵµk1k3

[
(kν1 + kν3)(k2

1 + k1 · k3)
k2

2
− kν1

]

+ B̃(k1, k2, k3)ϵνk1k3

[
(kµ1 + kµ3 ) − kµ1 (k2

1 + k1 · k3)
k2

1

]
(1.26)

where we have used momentum conservation to choose k1 and k3 as the independent

momenta. We now use Schouten identities (A.11) and (A.12) to get rid of the ϵµk1k2

tensor structure and re-express the ansatz in (1.26) as :

⟨Jµ(k1) Jν(k2)O(k3)⟩odd = −ϵνk1k3 (Akµ1 −Bkµ1 −Bkµ3 ) −
(
ϵµνk1 + ϵµνk3

) (
Ak2

1 +B(k1 · k2)
)

(1.27)
10



1.2. Three approaches to determining momentum space correlators

where the new form factors A(k1, k2, k3) and B(k1, k2, k3) are given in terms of Ã(k1, k2, k3)

and B̃(k1, k2, k3) as follows :

A(k1, k2, k3) = Ã(k1, k2, k3) + B̃(k1, k2, k3) + B̃(k1, k2, k3)
k1 · k3

k2
1

B(k1, k2, k3) = B̃(k1, k2, k3) − Ã(k1, k2, k3)
k1 · k2

k2
2

(1.28)

Note that the exchange symmetry (1.25) continues to hold between A and B:

A(k1, k2, k3) = −B(k2, k1, k3) (1.29)

We will now obtain the primary and secondary Ward identities that A(k1, k2, k3) and

B(k1, k2, k3) satisfy, by letting the generator of special conformal transformations Kκ

(1.14) act on the ansatz (1.160) :

Kκ⟨Jµ(k1)Jν(k3)O(k2)⟩odd =
[

− 2 ∂

∂kκ1
− 2kα1

∂

∂kα1

∂

∂kκ1
+ k1,κ

∂

∂kα1

∂

∂k1α

+ 2(∆3 − 3) ∂

∂kκ3
− 2kα3

∂

∂kα3

∂

∂kκ3
+ k3,κ

∂

∂kα3

∂

∂k3α

]
⟨Jµ(k1)Jν(k2)O(k3)⟩

+ 2
(
δµκ

∂

∂kα1
− δκα

∂

∂k1,µ

)
⟨Jα(k1)Jν(k2)O(k3)⟩ (1.30)

Note that by choosing k1 and k3 as the independent momenta, we got rid of one set of

terms in the generator Kκ that mixes with the index structure of the correlator. The

primary Ward identities satisfied by A(k1, k2, k3) are given by :

∂2A

∂k2
1

+ ∂2A

∂k2
3

+ 2k1

k3

∂2A

∂k1 ∂k3
+ 2k2

k3

∂2A

∂k2 ∂k3
+ 2
k1

∂A

∂k1
+ 8
k3

∂A

∂k3
= 0

∂2A

∂k2
3

+ ∂2A

∂k2
2

+ 2k1

k3

∂2A

∂k1 ∂k3
+ 2k2

k3

∂2A

∂k2 ∂k3
+ 8
k3

∂A

∂k3
= 0 (1.31)

Similarly, the equations for B(k1, k2, k3) are given by :

∂2B

∂k2
2

+ ∂2B

∂k2
3

+ 2k1

k3

∂2B

∂k1 ∂k3
+ 2k2

k3

∂2B

∂k2 ∂k3
+ 2
k2

∂B

∂k2
+ 8
k3

∂B

∂k3
= 0

∂2B

∂k2
3

+ ∂2B

∂k2
1

+ 2k1

k3

∂2B

∂k1 ∂k3
+ 2k2

k3

∂2B

∂k2 ∂k3
+ 8
k3

∂B

∂k3
= 0 (1.32)

11



Chapter 1. Momentum-space 3-point functions in CFT3

The general solution to both the primary Ward identities can be found in terms of triple-

K integrals (1.15). We solve for β1, β2, β3 by substituting the triple-K integral into the

primary Ward identities, and obtain :

A ∝ Iα {− 1
2 ,

1
2 ,∆3− 3

2 }

B ∝ Iα { 1
2 ,−

1
2 ,∆3− 3

2 } (1.33)

The unknown α is determined using the dilatation Ward identity. The action of the

dilatation Ward identity on the ansatz gives the degree of the form factors :

deg(A) = 1 + ∆3 −NA

deg(B) = 1 + ∆3 −NB (1.34)

where NA and NB are the tensorial dimensions of A and B, defined as the number of

momenta that multiply the form factor in the ansatz. We see from (1.160) and (1.23)

that NA = NB = 3. Similarly, we impose the dilatation Ward identity on the triple-K

integral and get :

deg(Iα{βj}) = β1 + β2 + β3 − α− 1 (1.35)

This must equal the degree of the form factors A and B (1.34) giving us :

α = 1 − ∆3 +
3∑
i=1

βi (1.36)

Thus we obtain :

A = c1 I− 1
2 {− 1

2 ,
1
2 ,∆3− 3

2 }

B = c2 I− 1
2 { 1

2 ,−
1
2 ,∆3− 3

2 }

(1.37)

where c1 and c2 are undetermined constants. We now present the explicit expressions for

the two form factors for a few values of the scaling dimension of the scalar operator O.
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1.2. Three approaches to determining momentum space correlators

When the scalar operator has ∆3 = 1, we have,

A(k1, k2, k3) = c1

√
π3

8
1

k1k3 (k1 + k2 + k3)2 ,

B(k1, k2, k3) = c2

√
π3

8
1

k2k3 (k1 + k2 + k3)2

(1.38)

For ∆3 = 2 :

A(k1, k2, k3) = c1

√
π3

8
1

k1 (k1 + k2 + k3)2 ,

B(k1, k2, k3) = c2

√
π3

8
1

k2 (k1 + k2 + k3)2 .

(1.39)

When ∆3 = 3 :

A(k1, k2, k3) = c1

√
π3

8
k1 + k2 + 2k3

k1 (k1 + k2 + k3)2

B(k1, k2, k3) = c2

√
π3

8
k1 + k2 + 2k3

k2 (k1 + k2 + k3)2 .

(1.40)

We will now look at the secondary Ward identities to fix the undetermined constants c1

and c2 in (1.37). There is one independent secondary Ward identity in this case which

leaves just one independent, undetermined constant. The identity is given by :

k2
1
k2

∂A

∂k2
+ k1

∂B

∂k1
= 0 (1.41)

Substituting the solutions for the form factors from (1.37) in this equation we get:

c2 = −c1 (1.42)

which is exactly what is expected from symmetry considerations.

1.2.2.3.1 Divergences and Renormalization

We saw in equations (1.38), (1.39) and (1.40) that the triple-K integral is convergent for

∆ = 1, 2, 3. For ∆3 > 3, the integral is singular in the regulator and in some cases, we

will require counter-terms to remove this divergence.
13
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The generating functional for the theory is defined as :

Z =
∫
Dϕ exp

(
−
∫
d3x (Sϕ[Aµ, gµν ] + √

gOϕ+ JµAµ)
)

(1.43)

where ϕ and Aµ are sources of the scalar operator and the conserved spin-one current

respectively. For certain classes of divergences, the generating functional is modified

by counter-terms. We classify the values of ∆3 into two classes based on the kinds of

divergences that occur. ∆3 = 4 + 2n where n ∈ Z≥0 : When ∆3 = 4, i.e. n = 0, (1.18)

is satisfied for the choice of signs given by (+ − −). When n > 0, it is satisfied for the

choice of signs (+ − −) and (− + −). We choose to work in a convenient regularisation

scheme where we shift ∆3 as ∆3 → ∆3 + ϵ and keep the dimension d of the space-time

and the conformal dimensions ∆1 and ∆2 as in the unregulated theory. To remove this

singularity, we look at the following parity-odd counter-term from (1.20)

Sct = a(ϵ)
∫
d3x µϵ ϵµνλ Fµν Jλ□

nϕ (1.44)

where µ is the renormalization scale. After taking suitable functional derivatives, the

contribution to the correlator from this counter-term is given by

⟨Jµ(x1)Jν(x2)O(x3)⟩ct = −a(ϵ)
[
□n

(
δ3(x2 − x3)ϵρνλ∂2ρ⟨Jλ(x1)Jµ(x3)⟩

)
− □n

(
δ3(x1 − x3)ϵρµλ∂1ρ⟨Jλ(x3)Jν(x2)⟩

) ]
(1.45)

A Fourier transform of the above gives :

⟨Jµ(k1)Jν(k2)O(k3)⟩ct = −a(ϵ)
(
k2n

2 ϵνk2λπµλ(k1) k1 − k2n
1 ϵµk1λπνλ(k2) k2

)

= −a(ϵ)
[
k2n

2 k1

(
ϵµνk2 + ϵνk1k2kµ1

k2
1

)
− k2n

1 k2

(
ϵµνk1 + ϵµk1k2kν2

k2
2

)]
µ−ϵ

(1.46)

where we used the following 2-point function 1 :

⟨Jµ(k)Jν(−k)⟩ = πµν (k) k (1.47)

1The counter-term that we used (1.211) could also contribute to the parity-even part of ⟨JJO⟩ since
the ⟨JJ⟩ 2-point-function has a parity-odd contribution.
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Using Schouten identities (A.11) and (A.12), the ansatz for the correlator can be written

as

⟨Jµ(k1)Jν(k2)O(k3)⟩ = A1
(
ϵµνk2k2

1 + ϵνk1k2kµ1
)

+ A2
(
ϵµνk1k2

2 + ϵµk1k2kν2
)

(1.48)

When ∆3 = 4 the singular part of the regularised form factors are given by

A1(k1, k2, k3) = 1
k1ϵ

, A2(k1, k2, k3) = − 1
k2ϵ

(1.49)

The contribution of the counter-term (1.46) to the correlator in this case (∆3 = 4, or

equivalently n = 0) is given by :

⟨Jµ(k1)Jν(k2)O(k3)⟩ct = −a(ϵ)
[
k1

(
ϵµνk2 + ϵνk1k2kµ1

k2
1

)
− k2

(
ϵµνk1 + ϵµk1k2kν2

k2
2

)]
µ−ϵ

(1.50)

Comparing (1.50) and (1.48) along with (1.49) we see that choosing a(ϵ) = 1/ϵ cancels

the singular part of the correlator. After removing the divergences, the resulting form

factor is given by :

A1(k1, k2, k3) = c1
3
k1

log
(
k1 + k2 + k3

µ

)
− c1

k2
3 + 3k3(k1 + k2 + k3)
k1(k1 + k2 + k3)2 (1.51)

The second form factor is obtained by the following exchange :

A2(k1, k2, k3) = −A1(k2, k1, k3) (1.52)

The anomalous dilatation Ward identity takes the form :

µ
∂A1

∂µ
= − c1

k1
(1.53)

∆3 = 5+ 2n where n ∈ Z≥0 : In this case, (1.18) is satisfied for the choice of signs given

by (−−−) and (++−). Although we have both an ultra-local and a non-local divergence

here, the term at O(1/ϵ) is non-local in the momenta and therefore the divergence can

be cancelled by multiplying with a constant of O(ϵ) and then taking the limit ϵ → 0. In
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particular, when ∆3 = 5, the divergent term can be calculated to be :

A1(k1, k2, k3) = c1(ϵ)
k1 + k2

k1ϵ
+O(ϵ0) (1.54)

Choosing c1 to be O(ϵ), the resulting form factor is :

A1(k1, k2, k3) = c
(1)
1
k1 + k2

k1
(1.55)

where c
(1)
1 is O(0) in ϵ. It can be easily checked that this form factor satisfies non-

anomalous Ward identities and that scale invariance is not broken.

1.2.3 Using Weight-shifting and Spin-raising operators

The second method of computing correlation functions in momentum space hinges on the

technique of weight-shifting and spin-raising operators. In position space, this technique

was initiated in [189] and extensively developed in [190]. In this approach, starting

from certain seed correlators, the action of conformally covariant weight-shifting and

spin-raising operators generates the desired correlator. To describe this method in some

detail, let us consider a spinning correlator ⟨Js1Js2Js3⟩. The first step is to count the

number of independent tensor structures associated with this correlator. For parity-even

correlators this number in position space is given by [14] :

N+
3d(l1, l2, l3) = 2l1l2 + l1 + l2 + 1 − p(p+ 1)

2 (1.56)

where p = max(0, l1 + l2 − l3). The second step is to consider a seed correlator of

the form ⟨O∆1O∆2Js3⟩ and find out N+
3d(l1, l2, l3) ways to reach ⟨Js1Js2Js3⟩. This involves

acting upon the seed correlator with various spin-raising and weight-shifting operators. In

momentum space, we are constrained in our choice of seed correlators because correlators

of the form ⟨J (l)O∆1O∆2⟩, where J (l) is a spin-l conserved current, are non-zero only when

∆1 = ∆2. A more convenient approach was recently advocated in [50, 180] to compute

(parity-even) spinning cosmological correlators where instead of starting from the seed

⟨O∆1O∆2Js3⟩, one starts from ⟨O∆1O∆2O∆3⟩, and apply spin-raising and weight-shifting

operators such that the resulting correlator satisfies the Ward-Takahashi identity. See

Section 4.2.2 of [180] for an example.
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1.2.3.1 Subtleties with the weight-shifting and spin-raising operator approach

In momentum space, one must consider the types of divergences in the seed and target

correlators. It is not always possible to reach a target correlator starting from a seed

correlator although a naive application of the spin-raising and weight-shifting operators

might suggest so. This is most easily understood in the case of scalar correlators. As

a concrete example of such a situation, consider the following two correlators in three-

dimensions :

⟨O1(k1)O1(k2)O2(k3)⟩ = 1
k1k2

(1.57)

⟨O2(k1)O2(k2)O2(k3)⟩ = −log
(
k1 + k2 + k3

µ

)
(1.58)

where µ is the renormalisation scale. Although it might seem like we can use the weight-

shifting operator W++
12 (defined in (A.20)) to go from the first correlator to the second,

this is clearly not possible as ⟨O2(k1)O2(k2)O2(k3)⟩ violates scale invariance whereas the

seed correlator ⟨O1(k1)O1(k2)O2(k3)⟩ does not, i.e.

W++
12 ⟨O1(k1)O1(k2)O2(k3)⟩ ≠ ⟨O2(k1)O2(k2)O2(k3)⟩ (1.59)

The above example tells us that weight-shifting operators fail to reproduce the correct

correlators when the divergence type changes from non-local to semi-local or ultra-local.

The conditions for various types of divergences, in terms of scaling dimensions of the

operator insertions, are given by :

(− − −) ∆1 + ∆2 + ∆3 = 2d+ 2k1

(− − +) ∆1 + ∆2 − ∆3 = d+ 2k2

(+ + −) −∆1 − ∆2 + ∆3 = 2k3

(+ + +) ∆1 + ∆2 + ∆3 = d− 2k4

17



Chapter 1. Momentum-space 3-point functions in CFT3

where k1, k2, k3, k4 ≥ 0. We can see that the only time the divergence structure changes

is when ki = 0. For the non-local cases in three-dimensions, these correspond to the

following for the seed correlator :

∆3 = ∆1 + ∆2 (+ + −) (1.60)

∆3 = 3 − ∆1 − ∆2 (+ + +) (1.61)

When either of these conditions is satisfied by the seed correlator, the action of W++
12

does not reproduce the correct result. However, W−−
12 works as it can be checked that it

does not change the type of divergence.

1.2.3.1.1 Example: ⟨TTO2⟩odd

In this section we compute the odd part of ⟨TTO2⟩ using spin-raising and weight-shifting

operators. We start from the renormalised scalar-seed correlator ⟨O1(k1)O2(k2)O2(k3)⟩

given by :

⟨O1(k1)O2(k2)O2(k3)⟩ = 1
k1

log
[
k1 + k2 + k3

µ

]
(1.62)

where µ is the renormalization scale. We obtain ⟨TTO2⟩odd from ⟨O1O2O2⟩ as follows

:

⟨TTO2⟩odd = (k1k2)3P
(2)
1 P

(2)
2 H12D̃12⟨O1(k1)O2(k2)O2(k3)⟩ (1.63)

After making use of Schouten identities this takes the following explicit form

⟨TTO2⟩odd = k2
1k

2
2(k2 · z1)(k1 · z2)

k1(k2 · z1)ϵk1k2z2 − k2(k1 · z2)ϵk1k2z1

(k1 + k2 + k3)4(k2
1 − 2k1k2 + k2

2 − k2
3)2 (1.64)

We can easily check that the expression obtained for the correlator from the free fermion

(FF) theory computation precisely matches the above expression for the correlator up to

an additional contact term
18



1.3. Conformal correlators in spinor-helicity variables

⟨T µ1ν1T µ2ν2O2⟩odd = ⟨T µ1ν1T µ2ν2O2⟩FF + 32
〈
δT µ1ν1

δgµ2ν2

(k1, k2)O2(−k3)
〉

(1.65)

To arrive at (1.65) we have made repeated use of Schouten identities given in Appendix

A.2. It can be easily checked going to position space that this additional term is a

contact term. This difference can be accounted for through a suitable redefinition of the

correlation function as was done in [44], see appendix A.3 of the same paper for more

details.

1.3 Conformal correlators in spinor-helicity variables

In this section, we compute 3-point CFT correlators in spinor-helicity variables. It turns

out that solving for CFT correlators in spinor-helicity variables is a lot simpler than doing

so in momentum space. The reader may wish to refer to Appendix A.4 at this point to

get familiar with our notation and convention regarding spinor-helicity variables.

We start with an ansatz for the correlator in spinor-helicity variables. To do so,

we use the fact that a Lorentz transformation of the momentum k⃗ corresponds to a

scale transformation of the spinors. Therefore, a Lorentz-covariant structure in spinor-

helicity variables is a structure that has the correct scaling based on the helicities of the

operators. An operator O with helicity h transforms in the following way under a scale

transformation of spinors :

Oh(tλ, t−1λ̄) = t−2hO(λ, λ̄) (1.66)

Therefore, the ansatz for a general correlator is given by

⟨Oh1(k1)Oh2(k2)Oh3(k3)⟩ = (c1 F1(k1, k2, k3) + i c2 F2(k1, k2, k3))

⟨12⟩h3−h1−h2⟨23⟩h1−h2−h3⟨31⟩h2−h3−h1 (1.67)

where F1(k1, k2, k3) and F2(k1, k2, k3) are form-factors that we will determine by impos-

ing dilatation and special conformal invariance. For parity-even correlators c2 = 0 and

for parity-odd correlators c1 = 0, and for the latter the ’i’ ensures that the correlator

changes sign under conjugation since conjugation corresponds to a parity transformation
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Chapter 1. Momentum-space 3-point functions in CFT3

for spinors.

1.3.1 Conformal generators

The conformal Ward identities are differential equations determined by the action of the

special conformal generator on a conformal correlator. The special conformal generator

in spinor-helicity variables takes the form [201] :

K̃κ = 2
n∑
i=1

(σκ) β
α

∂2

∂λiα∂λ̄
β
i

(1.68)

The action of K̃ on a scalar with ∆ = 2 is given by [180] :

K̃κO2 = −KκO2 (1.69)

where

Kκ = −2∂kκ − 2kα∂kα∂kκ + kκ∂kα∂kα (1.70)

The action of K̃ on a scalar with ∆ ̸= 2 is given by [180] :

K̃κ
(
O∆

k∆−2

)
= − 1

k∆−2K
κO∆ + O∆

k∆ k
κ(∆ − 1)(∆ − 2) (1.71)

Similarly, the action of K̃ on spin-one and spin-two conserved currents is as follows [180]

:

K̃κJ± =
(

−zα±Kκ + 2zκ±
kα

k2

)
Jα

K̃κ

(
T±

k

)
=
−1

k
z

(α
± z

β)
± K

κ + 12zκ±
z

(α
± k

β)

k3

Tαβ
(1.72)

where J+ = z+
µ J

µ and T+ = z+
µ z

+
ν T

µν . In (1.70) and (1.72), Kκ corresponds to the

special conformal generator in momentum space with ∆ = 2. Its action on a conformally

invariant correlator is zero. Therefore, the action of K̃κ on a correlator in which all the

operators have ∆ = 2 will just have a part proportional to the R.H.S. of the Ward-

Takahashi identity of the correlator. When the correlator has operators with scaling

dimensions other than 2, it is convenient to divide them by appropriate powers of k so
20



1.3. Conformal correlators in spinor-helicity variables

that the insertion has ∆ = 2. For a derivation, see [28].

1.3.2 Two-point functions

In this section we present the expressions for a few two-point correlators in spinor-helicity

variables. These will later turn out to be useful when dealing with transverse Ward

identities associated to spinning three-point correlators. For conserved currents of generic

integer spin s we have the following two-point functions:

⟨Js−(k1)Js−(k2)⟩ =
(
cJs + i c′

Js

) ⟨12⟩2s

2sk2
,

⟨Js+(k1)Js+(k2)⟩ =
(
cJs − i c′

Js

) ⟨1̄2̄⟩2s

2sk2
,

⟨Js+(k1)Js−(k2)⟩ =
(
cJs + i c′

Js

) ⟨1̄2⟩2s

2sk2

⟨Js−(k1)Js+(k2)⟩ =
(
cJs − i c′

Js

) ⟨12̄⟩2s

2sk2

(1.73)

where cJs and c′
Js

are the two-point function coefficients of the spin-s current for the even

and odd cases respectively.

1.3.3 Three-point functions: General discussion

We will now consider three-point functions with spinning operator insertions. The parity

odd sector of a few correlators such as ⟨JJO⟩, ⟨JJJ⟩, and ⟨TTO⟩ have been studied in

momentum space by solving conformal Ward identities, using spin-raising and weight-

shifting operators and using higher spin equations [150,152,188]. In extending our analysis

to more complicated three-point correlators we faced some difficulties as described in the

beginning of this section. However, working in spinor-helicity variables, we are able to

circumvent this problem and get expressions for more complicated 3-point correlators as

described in detail below. We will first introduce the terminology of homogeneous and

non-homogeneous solutions to conformal Ward identities which we will use throughout

this paper.

1.3.3.1 Homogeneous and non-homogeneous solutions

The action of the special conformal generator in spinor-helicity variables on a generic

3-point correlator takes the following form :

K̃κ

〈
Js1

ks1−1
1

Js2

ks2−1
2

Js3

ks3−1
3

〉
= transverse Ward identity terms (1.74)
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Chapter 1. Momentum-space 3-point functions in CFT3

where the R.H.S. contains contact-term contributions and is expressible in terms of 2-

point functions. The explicit form of the generator K̃κ is given in Section 1.3.1.

Being a linear differential equation, the general solution of the above is expressible as

the sum of homogeneous and non-homogeneous solutions :

⟨Js1Js2Js3⟩ = ⟨Js1Js2Js3⟩h + ⟨Js1Js2Js3⟩nh (1.75)

where ⟨Js1Js2Js3⟩h solves:

K̃κ

〈
Js1

ks1−1
1

Js2

ks2−1
2

Js3

ks3−1
3

〉
h

= 0 (1.76)

and ⟨Js1Js2Js3⟩nh is a solution of :

K̃κ

〈
Js1

ks1−1
1

Js2

ks2−1
2

Js3

ks3−1
3

〉
nh

= transverse Ward identity terms (1.77)

This distinction will be important to keep in mind since the homogeneous and non-

homogeneous parts have different structures and properties. One way to distinguish

between the two kinds of solutions in the final answer will be that the non-homogeneous

solution depends on the coefficient of the two-point function. Another way is to make

use of the transverse Ward identities :

⟨k1 · Js1(k1)Js2(k2)Js3(k3)⟩h = 0

⟨k1 · Js1(k1)Js2(k2)Js3(k3)⟩nh = WT identity terms. (1.78)

In other words, while the homogeneous solution is completely transverse, the non-homogeneous

solution gets contribution from both transverse as well as local (or longitudinal) terms.

Since the 3-point correlators can be parity-violating, it will be useful to break up

the homogeneous and non-homogeneous parts further into parity-even and parity-odd

contributions:

⟨Js1Js2Js3⟩ = ⟨Js1Js2Js3⟩h + ⟨Js1Js2Js3⟩nh

⟨Js1Js2Js3⟩h = ⟨Js1Js2Js3⟩h,even + ⟨Js1Js2Js3⟩h,odd

⟨Js1Js2Js3⟩nh = ⟨Js1Js2Js3⟩nh,even + ⟨Js1Js2Js3⟩nh,odd (1.79)

22



1.3. Conformal correlators in spinor-helicity variables

For a detailed discussion on the homogeneous and non-homogeneous contributions to

three-point correlators and their distinction from transverse and longitudinal contribu-

tions see appendix A.5.

1.3.3.2 Degeneracy structure

We denote 4-dimensional Lorentzian momenta and polarisation vectors by kµi and zµi

respectively. Here i is a particle index and µ = 0, 1, 2, 3 is the Lorentz index. For massless

spin 2 particles the polarisation tensor can be written as an outer product zµνi = zµi z
ν
i .

We choose the following gauge to work with null momenta:

kµi = (ki, k⃗i), zµi = (0, z⃗i) (1.80)

where ki = |⃗ki| is the magnitude of the 3-momentum. The 3-dimensional CFT will be

Euclidean and current conservation constraints translate to transversality: ki · zi = 0.

We will also take zi · zi = 0 which in Euclidean signature implies that the components of

z⃗i will be complex. In our computation we will find it useful to introduce the following

notation for various combinations of magnitudes of momenta :

E = k1 + k2 + k3, bij = kikj, b123 = k1k2 + k2k3 + k3k1, c123 = k1k2k3 (1.81)

We also introduce the following notation :

J2 = (k1 + k2 + k3)(−k1 + k2 + k3)(k1 − k2 + k3)(k1 + k2 − k3) (1.82)

We will make use of spinor-helicity notation. The momentum vector pµ for massless

scattering in 4-dimensional flat space-time can be written as pµσµαα̇ = pαα̇ = λαλ̃α̇ where

λ denotes a spinor-helicity variable. Since 4d amplitudes are related to 3d CFT correlators

it will be useful to have a 3d version of this formalism by utilising the time-like vector

τµ = (1, 0, 0, 0), or ταβ̇ = ϵαβ̇ which can be used to go from dotted to undotted indices

(see appendix B of [39] and [40]). We use this to define λ̄α ≡ ταβ̇λ̃β̇.

In three dimensions, there exist degeneracies in tensor structures which complicate

the analysis of correlators. The existence of degeneracy is tied to the simple fact that

not more than three vectors can be linearly independent in three dimensions. The basic
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Chapter 1. Momentum-space 3-point functions in CFT3

problem is that the different tensor structures in the ansatz for a correlator become

linearly dependent due to degeneracies. This affects the analysis of both parity-even

and parity-odd correlators. For the parity-odd correlator, Schouten identities, which

relate various tensor structures involving Levi-Civita tensors, are an additional source

of complication. The main problem is that while solving the conformal Ward identity,

one needs to identify the correct independent set of tensor structures to be able to write

down differential equations for the form-factors. However, this process becomes very

complicated for correlators involving spin-2 or higher spin operators. An example of such

an identity in three dimensions is :

ϵz1z2k1(k1 · k2) + ϵz1k1k2k1 · z2 − ϵz1z2k2k2
1 − ϵz2k1k2k1 · z1 = 0, (1.83)

where we have used the notation2 ϵz2k1k2 = ϵµνρz
µ
2 k

ν
1k

ρ
2 . The structures that appear in the

above equation arise in the ansatz for various parity-odd correlators such as ⟨JJO⟩odd.

The above equation then implies that a term with ϵz1k1k2 in the ansatz can be eliminated

in favour of other structures 3. This, while essential to be taken into account, makes

cumbersome the correct ansatz with a minimal basis of independent structures. Other

than Schouten identities, there are identities such as [41] :

δµν = 4
J2

(
k2
i k

µ
j k

ν
j + k2

jk
µ
i k

ν
i − k⃗i .⃗kj(kµi kνj + kµj k

ν
i ) + nµnν

)
(1.84)

where nµ = ϵµνρkνkρ and i ̸= j = 1, 2, 3. We also have [41] :

Πµν
αβ (kj)nαnβ = −k2

jΠ
µν
αβ (kj) kα(j+1) mod 3k

β
(j+1) mod 3 j = 1, 2, 3 (1.85)

2We will often use this notation in this paper.
3See [188] for details of the complete momentum space analysis of ⟨JJO⟩odd.
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Another example of a degeneracy is [44] :

Πα1
µ1ν1β1(k1)Πα2

µ2ν2β2(k2)4!δβ1
[α1
δβ2
α2k1α2k2α4]k

α3
1 kα4

2

= Πµ1ν1α1β1(k1)Πµ2ν2α2β2(k2)
[
kα1

2 kβ1
2 k

α2
3 kβ2

3

− (k2
1 + k2

2 − k2
3)δβ1β2kα1

2 kα2
3 − J2

4 δ
α1α2δβ1β2

]
= 0 (1.86)

These also allow certain basis structures to be expressed in terms of others. Both parity-

even and parity-odd degeneracies complicate the analysis when computing correlation

functions. One of the advantages of working with spinor-helicity variables is that the

degeneracies become trivial in these variables. For example, the left hand side of both

(1.83) and (1.86) become identically zero in spinor-helicity variables. One can check that

all the Schouten identities and other identities relating various tensor structures also

become trivial in spinor-helicity variables.

1.4 Three-point functions : Explicit solutions in spinor-helicity

variables

In this section, we focus on determining CFT3 3-point correlators in spinor-helicity vari-

ables. In particular, we compute correlators of the form ⟨JsO∆O∆⟩, ⟨JsJsO∆⟩, ⟨JsJsJs⟩

and ⟨Js1JsJs⟩ where Js is a symmetric, traceless, spin-s conserved current with scaling

dimension ∆ = s+ 1, and O∆ is a scalar operator with scaling dimension ∆. In three di-

mensions, 3-point correlators involving only spinning operators are always finite, whereas

those involving a scalar operator require renormalization for large enough values of ∆.

We will observe that splitting the correlator into homogeneous and non-homogeneous

parts in the sense explained in Section 1.3.3.1 is useful. As we demonstrate, when-

ever there exists a homogeneous parity-even solution to the conformal Ward identity in

spinor-helicity variables, there also exists a homogeneous parity-odd solution and the two

are identical up to some signs. Interestingly, in the case of divergent correlators, the

parity-odd and the parity-even correlators continue to match even after renormalization,

although the renormalization procedure for the two differs. Further, it turns out that the

non-homogeneous part is always parity-even. Any parity-odd contribution to the non-

homogeneous part is always a contact term. After the first example in which we present
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all the details, in each case we will give the correlator ansatz and then write down the

form-factors as solutions of the CWIs, relegating the details to Appendix A.6.

Notation

A spin s current has various helicity components such as J−···−
s , J−···+−

s , · · · , J+···+
s . Due

to tracelessness, mixed helicity components vanish. Hence the only nontrivial helicity

components are J−···−
s and J+···+

s which we denote by J−
s and J+

s , respectively.

1.4.1 ⟨JsO∆O∆⟩

In this section, we calculate correlators of the form ⟨JsO∆O∆⟩. The Ward-Takahashi

(WT) identity when the spinning operator is either a spin-one conserved current or the

stress-tensor (i.e. when s = 1 or s = 2) is given by the following [41,180]:

k1µ⟨JµO∆O∆⟩ = ⟨O∆(k3)O∆(−k3)⟩ − ⟨O∆(k2)O∆(−k2)⟩

k1µz1ν⟨T µνO∆O∆⟩ = (k2 · z1) (⟨O∆(k3)O∆(−k3)⟩ − ⟨O∆(k2)O∆(−k2)⟩) (1.87)

where in the second equation we have contracted both sides of the WT identity with null

transverse polarization vectors. It is straightforward to generalize the WT identity to

arbitrary spin-s conserved currents by matching the spin and scaling dimensions on both

sides of the identity. This gives the following :

z1µ2 · · · z1µsk1µ1⟨Jµ1···µsO∆O∆⟩ = (k2 · z1)s−1(⟨O∆(k3)O∆(−k3)⟩ − ⟨O∆(k2)O∆(−k2)⟩)

(1.88)

We will see that the homogeneous part of the correlator is zero. The non-homogeneous

part has the scalar two-point function on the right-hand side4. Consequently, the odd

part of the correlator goes to zero as there is no parity-odd scalar two-point function.

Thus this correlator has only a parity-even non-homogeneous part.

As noted in Section 1.3.1, when the correlator involves operators with scaling dimen-

sions other than 2, it is convenient to divide the insertions by appropriate powers of the

4A correlator comprising one conserved current and two scalar operators with different scaling dimen-
sions also vanishes, i.e.

⟨JsO∆1O∆2⟩ = 0 for ∆1 ̸= ∆2 (1.89)
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corresponding momenta k such that they have ∆ = 2. The correlator itself is obtained at

the end by restoring the powers of k. Keeping this in mind, we start with the following

ansatz for the correlator :

〈
J−
s

ks−1
1

O∆

k∆−2
2

O∆

k∆−2
3

〉
= F (k1, k2, k3)⟨12⟩s⟨2̄1⟩s (1.90)

The action of the generator of special conformal transformations K̃ is then given by (see

Section 1.3.1) :

K̃κ

〈
J−
s

ks−1
1

O∆

k∆−2
2

O∆

k∆−2
3

〉
= 2z−κ

1 cO

k2s−1
1 k∆−2

2 k∆−2
3

(k2∆−3
3 − k2∆−3

2 )

+ (∆ − 1)(∆ − 2)
〈
J−
s

O∆

k∆−2
2

O∆

k∆−2
3

〉(
kκ2
k2

2
− kκ3
k2

3

)
(1.91)

Contracting (1.91) with bκ = (σκ) α
β λ1αλ

β
1 , bκ = (σκ) α

β (λ1αλ
β
2 +λ2αλ

β
1 ) and bκ = (σκ) α

β λ2αλ
β
2

gives the following :

∂2F

∂k2
2

− ∂2F

∂k2
3

= − F

k2
2k

2
3
(∆ − 1)(∆ − 2)(k2

2 − k2
3) (1.92)

k1

2

(
∂2F

∂k2
3

− ∂2F

∂k2
1

)
+ k2

2

(
∂2F

∂k2
2

− ∂2F

∂k2
3

)
− s

∂F

∂k1

= 2(∆ − 1)(∆ − 2)F
k2

2k
2
3

k2(k2
2 + k2

3 − k1k2) (1.93)

1
4(k1 − k2 + k3)(−k1 + k2 + k3)

(
∂2F

∂k2
1

− ∂2F

∂k2
3

)
+ s2F + sk2

(
∂F

∂k1
+ ∂F

∂k2

)

= cO
k2∆−3

3 − k2∆−3
2

k3
1

+ F

k2
3
(∆ − 1)(∆ − 2)(k1 − k2 + k3)(−k1 + k2 + k3) (1.94)

Finally, the dilatation Ward identity is given by :

( 3∑
i=1

ki
∂F

∂ki

)
+ 2sF = 0 (1.95)

The above differential equations (1.92),(1.93), (1.94) and (1.95) can be solved to get :

F = cOk
−∆+2
2 k−∆+2

3 I 1
2 +s{ 1

2 −s,∆− 3
2 ,∆− 3

2 } (1.96)

where the triple-K integral [41] which occurs in the RHS of this equation is defined in
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(1.204). After taking the momentum factors in the denominator of the LHS of (1.90) to

the RHS and using the above result for the form factor we obtain the correlator :

⟨J−
s O∆O∆⟩ = cOk

s−1
1 I 1

2 +s{ 1
2 −s,∆− 3

2 ,∆− 3
2 }⟨12⟩s⟨2̄1⟩s (1.97)

When cO = 0, there is no non-trivial solution to the differential equations and one has :

⟨JsO∆O∆⟩h = 0. (1.98)

1.4.2 ⟨JsJsO∆⟩

In this section, we compute correlators of the form ⟨JsJsO∆⟩ for general spin s. As

discussed in Section 1.3.3.1, we separate out the correlator into homogeneous and non-

homogeneous parts :

⟨JsJsO∆⟩ = ⟨JsJsO∆⟩h + ⟨JsJsO∆⟩nh (1.99)

The correlator ⟨JsJsO∆⟩ is completely transverse :

⟨k1 · Js(k1)Js(k2)O∆(k3)⟩ = ⟨Js(k1)k2 · Js(k2)O∆(k3)⟩ = 0 (1.100)

where k · Js(k) = kµ1J
µ1µ2....µs(k). This implies that the non-homogeneous part of the

correlator is zero :

⟨JsJsO∆⟩nh = 0. (1.101)

We will now compute the explicit form of the correlators for arbitrary ∆. We find that

for ∆ ≥ 4, there is a divergence and we need to regularize and renormalize to obtain

finite correlators. We consider the following ansatz for the correlator : (1.67) :

〈
Js−(k1)
ks−1

1

Js−(k2)
ks−1

2

O∆(k3)
k∆−2

3

〉
= (c1 F1(k1, k2, k3) + i c2 F2(k1, k2, k3)) ⟨12⟩2s

〈
Js+(k1)
ks−1

1

Js+(k2)
ks−1

2

O∆(k3)
k∆−2

3

〉
= (c1 F1(k1, k2, k3) − i c2 F2(k1, k2, k3)) ⟨1̄2̄⟩2s

〈
Js−(k1)
ks−1

1

Js+(k2)
ks−1

2

O∆(k3)
k∆−2

3

〉
= (d1 G1(k1, k2, k3) + i d2 G2(k1, k2, k3)) ⟨12̄⟩2s (1.102)

It is interesting to note that the conformal Ward identity gives identical equations for the

parity-odd and the parity-even parts. The details of these equations and their solution
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are provided in Appendix A.6.2 where we also discuss examples for special values of ∆

and s. Here we give the final form of the solution :

F1(k1, k2, k3) = F2(k1, k2, k3) = k2−∆
3 I( 1

2 +2s){ 1
2 ,

1
2 ,∆− 3

2 }

G1(k1, k2, k3) = G2(k1, k2, k3) = 0. (1.103)

Substituting the form-factor in the ansatz (1.102) we obtain

⟨J−
s J

−
s O∆⟩ = ⟨J−

s J
−
s O∆⟩even + ⟨J−

s J
−
s O∆⟩odd = (c1 + ic2) (k1k2)s−1 I( 1

2 +2s){ 1
2 ,

1
2 ,∆− 3

2 }⟨12⟩2s

⟨J+
s J

+
s O∆⟩ = ⟨J+

s J
+
s O∆⟩even + ⟨J+

s J
+
s O∆⟩odd = (c1 − ic2) (k1k2)s−1 I( 1

2 +2s){ 1
2 ,

1
2 ,∆− 3

2 }⟨1̄2̄⟩2s

⟨J−
s J

+
s O∆⟩ = 0

(1.104)

For ∆ ≥ 4, the above triple-K integrals and thereby the correlators are divergent. A

detailed study of the renormalization of these correlators will be carried out in Section

1.6. We will see that the relationship between the parity-even and the parity-odd parts

of a correlator in spinor-helicity variables continues to hold even after renormalization.

1.4.3 ⟨JsJsJs⟩

In this subsection, we concentrate on the three-point function of a general spin s conserved

current Js 5. Since the correlator ⟨JsJsJs⟩ satisfies a nontrivial transverse WT identity it

has both the homogeneous as well as the non-homogeneous contributions.

Let us split the correlator into the odd and even contributions :

⟨JsJsJs⟩ = ⟨JsJsJs⟩even + ⟨JsJsJs⟩odd.

It will turn out that ⟨JsJsJs⟩even has both the homogeneous and the non-homogeneous

contributions whereas ⟨JsJsJs⟩odd has a non-trivial homogeneous part but the non-homogeneous

part is always a contact term.

1.4.3.1 ⟨JJJ⟩

Let us start our analysis with the 3-point function of the spin-1 current Jµ. As noted

earlier, for this correlator to be non-zero, the currents have to be non-abelian. The WT
5If s is odd then we need to consider a non-abelian current to have a non-trivial correlator
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identity is given by [41,44,180] :

k1µ⟨Jµa(k1)Jνb(k2)Jρc(k2)⟩ =
(
fadc⟨Jρd(k2)Jνb(−k2)⟩ − fabd⟨Jνd(k3)Jρc(−k3)⟩

)
+
[(

kν2
k2

2
fabdk2α⟨Jαd(k3)Jρc(−k3)⟩

)
+ ((k2, ν) ↔ (k3, ρ))

] (1.105)

Let us consider the following ansatz for the two helicity components of the correlator 6 :

⟨J−(k1)J−(k2)J−(k3)⟩ = (F1(k1, k2, k3) + iF2(k1, k2, k3)) ⟨12⟩⟨23⟩⟨31⟩ (1.106)

⟨J−(k1)J−(k2)J+(k3)⟩ = (G1(k1, k2, k3) + iG2(k1, k2, k3)) ⟨12⟩⟨23̄⟩⟨3̄1⟩ (1.107)

The solutions of the conformal Ward identity are given by (see Appendix A.6.3)

F1(k1, k2, k3) = c1

E3 + cJ
k1k2k3

(1.108)

G1(k1, k2, k3) = c2

(k1 + k2 − k3)3 + cJ
E − 2k3

E(k1k2k3)
(1.109)

F2(k1, k2, k3) = c′
1
E3 + c′

J

k1k2k3
(1.110)

G2(k1, k2, k3) = c′
2

(k1 + k2 − k3)3 + c′
J

k1k2k3
(1.111)

where cJ and c′
J are the parity-even and parity-odd coefficients of the two-point function

of conserved currents (see (1.73)). The terms are proportional to c1, c
′
1 and c2, c

′
2 are

the homogeneous solutions to the differential equations and those proportional to cJ , c′
J

are the non-homogeneous solutions. Since G(k1, k2, k3) and G̃(k1, k2, k3) both have an

un-physical pole when k1 + k2 = k3, we set the coefficients of these terms to zero, i.e.

c2 = c′
2 = 0.

Summary of the solution

Taking into account both the parity-even and the parity-odd contributions, we obtain :

⟨J−(k1)J−(k2)J−(k3)⟩ =
(
c1 + ic′

1
E3 + cJ + ic′

J

k1k2k3

)
⟨12⟩⟨23⟩⟨31⟩ (1.112)

⟨J−(k1)J−(k2)J+(k3)⟩ = 1
k1k2k3

(
(cJ + ic′

J) − cJ
2k3

E

)
⟨12⟩⟨23̄⟩⟨3̄1⟩ (1.113)

6We will suppress the color indices which amounts to suppressing an overall factor of fabc.
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In the next section, we will convert these expressions into the momentum space and see

that the non-homogeneous contribution to the parity-odd correlator (term proportional

to c′
J) becomes a contact term.

1.4.3.2 ⟨TTT ⟩

Let us now consider the correlator with three insertions of the stress-tensor operator. The

transverse Ward identity satisfied by the correlator is given by [41,44,180]:

z1µk1ν⟨T µν(k1)T (k2)T (k3)⟩

= −(z1 · k2)⟨T (k1 + k2)T (k3)⟩ + 2(z1 · z2)k2µzν⟨T µν(k1 + k2)T (k3)⟩

− (z1 · k3)⟨T (k1 + k3)T (k2)⟩ + 2(z1 · z3)k3µz3ν⟨T µν(k1 + k3)T (k2)⟩

+ (k1 · z2)z1µz2ν⟨T µν(k1 + k2)T (k3)⟩ + (z1 · z2)k1µz2ν⟨T µν(k1 + k2)T (k3)⟩

+ (k1 · z3)z1µz3ν⟨T µν(k1 + k3)T (k2)⟩ + (z1 · z3)k1µz3ν⟨T µν(k1 + k3)T (k2)⟩

(1.114)

where T (k) ≡ zµzνT
µν(k). Thus the correlator can have both homogeneous and non-

homogeneous solutions for the parity-even and parity-odd correlation functions. The

parity-even solution was already discussed in [41]. The parity-odd homogeneous con-

tribution was computed in [26] using Feynman diagram computations in dS4. Here we

reproduce the same result by solving the conformal Ward identities. We also get a non-

trivial non-homogeneous contribution to the parity-odd correlator which in momentum

space turns out to be a contact term.

⟨TTT ⟩even

The parity-even contribution to the correlator ⟨TTT ⟩even is given by [41,180]

⟨T−T−T−⟩even =
(
c1
c123

E6 + cT
E3 − Eb123 − c123

c2
123

)
⟨12⟩2⟨23⟩2⟨31⟩2

⟨T−T−T+⟩even = cT
(E − 2k3)2(E3 − Eb123 − c123)

E2c2
123

⟨12⟩2⟨23̄⟩2⟨3̄1⟩2 (1.115)

where b123 = (k1k2 + k2k3 + k3k1), c123 = k1k2k3, and cT comes from the parity-even two

point function of the stress tensor (1.73). The terms proportional to c1 and cT are the

homogeneous and the non-homogeneous contributions to the correlator respectively.
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⟨TTT ⟩odd

The parity-odd part of the correlator can be solved analogously (see Appendix A.6.4 for

details). The answer is given by

〈
T−

k1

T−

k2

T−

k3

〉
odd

= i

(
c′

1
1
E6 + c′

T

E3 − E b123 − c123

c3
123

)
⟨12⟩2⟨23⟩2⟨31⟩2 (1.116)

〈
T−

k1

T−

k2

T+

k3

〉
odd

= i

(
c′
T

(E − 2k3)2 − (E − 2k3)(b123 − 2k3 a12) + c123

c3
123

)
⟨12⟩2⟨23̄⟩2⟨3̄1⟩2

(1.117)

where a12 = k1 + k2, b123 = k1k2 + k2k3 + k1k3 and c123 = k1 k2 k3 and c′
T arises in the

parity-odd two point function of the stress tensor (1.73). The terms proportional to c′
1

and c′
T are the homogeneous and the non-homogeneous contributions to the correlator

respectively.

Summary of the solution

Taking into account both the parity-even and the parity-odd contributions, we obtain :

⟨T−(k1)T−(k2)T−(k3)⟩ =
[
(c1 + ic′

1)
c123

E6 + (cT + ic′
T ) E

3 − Eb123 − c123

c2
123

]
⟨12⟩2⟨23⟩2⟨31⟩2

(1.118)

⟨T−(k1)T−(k2)T+(k3)⟩ =
[
cT

(E − 2k3)2(E3 − Eb123 − c123)
E2c2

123
+

ic′
T

(E − 2k3)2 − (E − 2k3)(b123 − 2k3 a12) + c123

c3
123

]
⟨12⟩2⟨23̄⟩2⟨3̄1⟩2

(1.119)

The other helicity components of the correlator can be obtained by complex conjugating

the above results.

In the next section, we will show that the non-homogeneous contribution to the parity

odd correlator (the term proportional to c′
T in (1.118)) is a contact term. Thus the only

non-trivial contribution to the non-homogeneous piece in the correlator comes from the

parity-even part.
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1.4.3.3 ⟨JsJsJs⟩ for general spin: The homogeneous part

In this subsection, we generalize the above discussion to the three-point function ⟨JsJsJs⟩

of arbitrary spin s conserved current. We first split the correlator into homogeneous and

non-homogeneous pieces, and then separate them into their parity-even and parity-odd

parts as indicated in (1.79). The non-homogeneous piece ⟨JsJsJs⟩nh requires us to know

the WT identity which for general spin is quite complicated. However, on general grounds

we can argue that the parity-odd part of this term, ⟨JsJsJs⟩nh,odd, is a contact term for

general spin s. We refer the reader to Section 1.8.1 for details. In the rest of this

subsection, we focus on obtaining the homogeneous part of the correlator which does not

require the WT identity.

Homogeneous solution

For the homogeneous solution, the parity-even and the parity-odd contributions are again

the same in spinor-helicity variables. We start with the following ansatz for ⟨JsJsJs⟩h :

〈
J−
s

ks−1
1

J−
s

ks−1
2

J−
s

ks−1
3

〉
h

= F (k1, k2, k3)⟨12⟩s⟨23⟩s⟨31⟩s (1.120)

〈
J−
s

ks−1
1

J−
s

ks−1
2

J+
s

ks−1
3

〉
h

= G(k1, k2, k3)⟨12⟩s⟨23̄⟩s⟨3̄1⟩s. (1.121)

Since we are focusing on the homogeneous part, the action of the conformal generator is

given by :

K̃κ

〈
J−
s

ks−1
1

J−
s

ks−1
2

J−
s

ks−1
3

〉
h

= 0, K̃κ

〈
J−
s

ks−1
1

J−
s

ks−1
2

J+
s

ks−1
3

〉
h

= 0. (1.122)

The action of K̃κ on the ansatz, after dotting with bκ = (σκ) α
β (λ2αλ

β
3 + λ3αλ

β
2 ), becomes

2s
(
∂F

∂k2
− ∂F

∂k3

)
+ k3

(
∂2F

∂k2
2

− ∂2F

∂k2
3

)
− k2

(
∂2F

∂k2
1

− ∂2F

∂k2
2

)
= 0 (1.123)

2s
(
∂G

∂k2
+ ∂G

∂k3

)
− k3

(
∂2G

∂k2
2

− ∂2G

∂k2
3

)
− k2

(
∂2G

∂k2
1

− ∂2G

∂k2
2

)
= 0 (1.124)

The dilatation Ward identity is given by :

( 3∑
i=1

ki
∂F

∂ki

)
+ 3sF = 0,

( 3∑
i=1

ki
∂G

∂ki

)
+ 3sG = 0 (1.125)
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The solutions for F and G are then given (see appendix A.6) by

F (k1, k2, k3) = c1

E3s (1.126)

G(k1, k2, k3) = 0 (1.127)

Summary of result

Considering the parity-even and the parity-odd contributions we obtain the homogeneous

part of the correlator :

〈
J−
s J

−
s J

−
s

〉
h

= (c1 + ic2)ks−1
1 ks−1

2 ks−1
3

1
E3s ⟨12⟩s⟨23⟩s⟨31⟩s,

〈
J−
s J

−
s J

+
s

〉
h

= 0 (1.128)

The other helicity components can be obtained by a simple complex conjugation.

1.4.4 ⟨Js1JsJs⟩

In this subsection we generalize the above discussion to three-point correlators of the kind

⟨Js1JsJs⟩ for arbitrary spins s and s1. We again find it convenient to split the correlator

into various parts as in (1.79). The WT identity for ⟨Js1JsJs⟩ for general spins s and s1 is

quite complicated. However, as discussed in Section 1.8.1, we can argue that the parity-

odd contribution to the non-homogeneous part, ⟨JsJsJs⟩nh,odd, is a contact term. In

the following we will calculate the homogeneous and the non-homogeneous contribution

to the correlator ⟨TJJ⟩. For general spins s and s1, we present only the homogeneous

solution.

1.4.4.1 ⟨TJJ⟩

Let us consider the correlator with a single insertion of the stress-tensor operator and

two insertions of the spin-one current operator. The transverse WT identity is given by

: [41, 44]

k1µ⟨T µν(k1)Jρ(k2)Jσ(k3)⟩ = k3µδ
νσ⟨Jµ(k1 + k3)Jρ(k2)⟩ + k2µδ

νρ⟨Jµ(k1 + k2)Jσ(k3)⟩

− k3ν⟨Jσ(k1 + k3)Jρ(k2)⟩ − k2ν⟨Jρ(k1 + k2)Jσ(k3)⟩

k2ρ⟨T µν(k1)Jρ(k2)Jσ(k3)⟩ = 0.

(1.129)
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Since the WT identity is not trivial, the correlator can have both homogeneous and

non-homogeneous solutions for the parity-even and the parity-odd correlation functions.

⟨TJJ⟩even

The even part of the correlator was calculated in [41, 44] in momentum space and it is

straightforward to convert that into spinor-helicity variables :

⟨T−J−J−⟩ = c1
k1

E4 ⟨12⟩2⟨13⟩2

⟨T+J−J−⟩ = 0

⟨T−J−J+⟩ = cJ
E + k1

k2
1E

2 ⟨12⟩2⟨13̄⟩2 (1.130)

where the term proportional to c1 is the homogeneous term and the term proportional

to cJ is the non-homogeneous term.

⟨TJJ⟩odd

Let us now consider the parity-odd contribution to the correlator. In the parity-odd case

the transverse WT identity (1.129) gives :

k1µ⟨T µν(k1)Jρ(k2)Jσ(k3)⟩odd = c′
J

(
k2νϵ

ρσk3 + k3νϵ
σρk2 − δνρϵσk3k2 − δνσϵρk2k3

)
(1.131)

where we have used ⟨Jα(k1 + k2)Jβ(k3)⟩ = −c′
Jϵ
αβk3 . Interestingly it turns out that the

R.H.S. of the above equation vanishes upon using a Schouten identity. Thus, in addition

to the trivial transverse WT identities w.r.t kρ2 and kσ3 , we have the following trivial

transverse WT identity :

k1µ⟨T µν(k1)Jρ(k2)Jσ(k3)⟩odd = 0 (1.132)

This immediately implies that the parity odd part of the non-homogeneous part of the

correlator is zero :

⟨T µν(k1)Jρ(k2)Jσ(k3)⟩nh,odd = 0. (1.133)
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We now turn our attention to computing the homogeneous contribution. Let us start

with the following ansatz for ⟨TJJ⟩odd :

〈
T−

k1
J−J−

〉
odd

= i F (k1, k2, k3)⟨12⟩2⟨13⟩2,〈
T−

k1
J−J+

〉
odd

= i G(k1, k2, k3)⟨12⟩2⟨13̄⟩2

〈
T+

k1
J−J−

〉
odd

= iH(k1, k2, k3)⟨1̄2⟩2⟨1̄3⟩2 (1.134)

The solutions to the resulting CWIs are given (see appendix A.6) by :

F (k1, k2, k3) = c′
1
E4 , G(k1, k2, k3) = c′

2
E4(k2 + k3 − k1)2 , H(k1, k2, k3) = 0. (1.135)

Since the solution for G has an unphysical pole, we set its coefficient c′
2 = 0. Substituting

the above form-factors in the ansatz (1.134), we obtain the following:

⟨T−J−J−⟩odd = i c′
1
k1

E4 ⟨12⟩2⟨13⟩2 (1.136)

⟨T+J+J+⟩odd = −i c′
1
k1

E4 ⟨1̄2̄⟩2⟨1̄3̄⟩2 (1.137)

The other helicity components of the correlator are zero.

Summary of Homogeneous contribution to ⟨TJJ⟩

Adding up the contribution coming from the parity-even and parity-odd parts we obtain

⟨T−J−J−⟩h = (c1 + i c′
1)
k1

E4 ⟨12⟩2⟨13⟩2 (1.138)

⟨T+J+J+⟩h = (c1 − i c′
1)
k1

E4 ⟨1̄2̄⟩2⟨1̄3̄⟩2 (1.139)

with all other components being zero.

Summary of non-homogeneous contribution to ⟨TJJ⟩

As discussed above, the parity-odd contribution to the non-homogeneous part of the

correlator vanishes. Thus from (1.130) we have the following for the non-homogeneous
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part of the correlator :

⟨T−J−J+⟩nh = cJ
E + k1

k2
1E

2 ⟨12⟩2⟨13̄⟩2 (1.140)

with all other components zero except the one obtained from complex conjugating (1.140).

1.4.4.2 ⟨Js1JsJs⟩ for general spin: The homogeneous part

Homogeneous solution

We start with the following ansatz for ⟨Js1JsJs⟩ :

〈
J−
s1

ks1−1
1

J−
s

ks−1
2

J−
s

ks−1
3

〉
h

= F (k1, k2, k3)⟨12⟩s1⟨23⟩2s−s1⟨31⟩s1

〈
J−
s1

ks1−1
1

J−
s

ks−1
2

J+
s

ks−1
3

〉
h

= G(k1, k2, k3)⟨12⟩s1⟨23̄⟩2s−s1⟨3̄1⟩s1

〈
J+
s1

ks1−1
1

J−
s

ks−1
2

J−
s

ks−1
3

〉
h

= H(k1, k2, k3)⟨12⟩s1⟨23̄⟩2s−s1⟨3̄1⟩s1 (1.141)

In our analysis, we assume that 2s > s1. The action of the conformal generator on the

homogeneous part is given by :

K̃κ

〈
J−
s1

ks1−1
1

J−
s

ks−1
2

J−
s

ks−1
3

〉
h

= K̃κ

〈
J+
s1

ks1−1
1

J−
s

ks−1
2

J−
s

ks−1
3

〉
h

= K̃κ

〈
J−
s1

ks1−1
1

J−
s

ks−1
2

J+
s

ks−1
3

〉
h

= 0.

(1.142)

The solutions for F , G and H are given (see appendix A.6) by:

F (k1, k2, k3) = 1
E2s+s1

, G(k1, k2, k3) = 0, H(k1, k2, k3) = 0. (1.143)

We will now summarise the results for the homogeneous solution.

Summary of Homogeneous contribution to ⟨Js1JsJs⟩

⟨J−
s1J

−
s J

−
s ⟩h = (c1 + ic′

1)
ks1−1

1 ks−1
2 ks−1

3
E2s+s1

⟨12⟩s1⟨23⟩2s−s1⟨31⟩s1 (1.144)

⟨J+
s1J

−
s J

−
s ⟩h = 0 (1.145)

⟨J−
s1J

−
s J

+
s ⟩h = 0 (1.146)
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while other components can be obtained by complex conjugating the result in (1.144).

1.5 Conformal correlators in momentum space

In this section we present the results for higher spin CFT3 correlators in momentum

space. As explained in Section 1.3.3.2 a direct computation of parity-odd correlators

in momentum space becomes complicated due to the large amount of degeneracy in 3d.

Rather than solving the CWIs directly in momentum space, we convert our expressions for

the correlators in spinor-helicity variables obtained in the previous section to momentum

space. The simplest way to do this is to write down the ansatz for the correlator in

momentum space and convert it to spinor-helicity variables. One can then compare it

to the explicit results in spinor-helicity variables and solve for the form factors. For

correlators involving higher spins, this procedure also becomes complicated, and in such

cases we make use of transverse polarization tensors to represent the answers.

1.5.1 Two point function

Two-point functions of various conserved currents are as follows :

⟨Jµ(k)Jν(−k)⟩odd = c′
Jϵ
µνk

⟨T µν(k)T ρσ(−k)⟩odd = c′
T∆µνρσ(k)k2

⟨Jµ(k)Jν(−k)⟩even = cJπ
µν(k)k

⟨T µν(k)T ρσ(−k)⟩even = cTΠµνρσ(k)k3
(1.147)

where

∆µνρσ(k) = ϵµρkπνσ(k) + ϵµσkπνρ(k) + ϵνσkπµρ(k) + ϵνρkπµσ(k) (1.148)

Πµνρσ(k) = 1
2 (πµρ(k)πνσ(k) + πµσ(k)πνρ(k) − πµν(k)πρσ(k)) (1.149)

πµν(k) = δµν − kµkν

k2 (1.150)

For arbitrary spin s, we have the following expression for the two-point function after

contracting with polarization vectors :

⟨Js(k)Js(−k)⟩odd = c′
sϵ
z1z2k (z1 · z2)s−1k2(s−1)

⟨Js(k)Js(−k)⟩even = cs(z1 · z2)sk2s−1
(1.151)
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1.5. Conformal correlators in momentum space

From (1.151), it is clear the the parity-odd two-point function for a spin-s current is a

contact term as it is analytic in k2.

1.5.2 Three point function

In this section, we convert the spinor-helicity expressions in the previous section to mo-

mentum space expressions and obtain parity-even as well as parity-odd three point cor-

relators comprising generic spin s conserved currents and scalar operators of arbitrary

scaling dimensions.

1.5.2.1 ⟨JsO∆O∆⟩

In this section we give the momentum space expression for correlators of the form

⟨JsO∆O∆⟩. As discussed earlier, the parity-odd part is zero. The parity-even part is

straightforward to write down from the spinor-helicity expressions. For general spin-s, it

is given by :

⟨JsO∆O∆⟩even = c1k
2s−1
1 I 1

2 +s,{ 1
2 −s,∆− 3

2 ,∆− 3
2 }(k2 · z1)s (1.152)

Let us now consider the correlator for some specific values of s and ∆.

⟨JsO2O2⟩

For ∆ = 2, we have

⟨JsO2O2⟩even = c1k
2s−1
1 I 1

2 +s,{ 1
2 −s, 1

2 ,
1
2 }(k2 · z1)s (1.153)

For s = 1, s = 2 and s = 3, we have

⟨JO2O2⟩even = c1
1

(k1 + k2 + k3)
(k2 · z1)

⟨TO2O2⟩even = c1
2k1 + k2 + k3

(k1 + k2 + k3)2 (k2 · z1)2

⟨J3O2O2⟩even = c1
8k2

1 + 9k1(k2 + k3) + 3(k2 + k3)2

(k1 + k2 + k3)3 (k2 · z1)3

(1.154)
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⟨TO3O3⟩

For s = 2 and ∆ = 3, we have

⟨TO3O3⟩even = c1
k3

1 + k3
2 + k3

3 + 2(k2
1 + k2k3)(k2 + k3) + 2k1(k2

2 + k2k3 + k2
3)

(k1 + k2 + k3)2 (k2 · z1)2

(1.155)

Let us now consider the three-point correlator with two insertions of the spin-s conserved

current and a scalar operator of scaling dimension ∆.

1.5.2.2 ⟨JsJsO∆⟩

In this section we determine the momentum space expression for correlators of the kind

⟨JsJsO∆⟩. We first discuss the s = 1 and s = 2 cases in detail. We then present the final

result for the general spin case expressed in terms of a transverse polarization tensor.

⟨JJO∆⟩

The correlator is purely transverse and the even part of it takes the following form in

momentum space [45]:

⟨Jµ(k1)Jν(k2)O∆⟩even = A1(k1, k2, k3)πµα(k1)πνβ(k2)
[
kα2 k

β
3 − χδαβ

]
(1.156)

where the form factor A(k1, k2, k3) is given by :

A1(k1, k2, k3) = I 5
2 ,{

1
2 ,

1
2 ,∆− 3

2 } (1.157)

and

χ = 1
2(k1 + k2 + k3)(k1 + k2 − k3) (1.158)

As an example let us consider the case when the scaling dimension of the scalar operator

is ∆ = 2. In this case, after evaluating the integral (1.157) we obtain the form factor in

the ansatz (1.156) to take the form :
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1.5. Conformal correlators in momentum space

A1(k1, k2, k3) = 1
(k1 + k2 + k3)2 (1.159)

Let us now consider the parity-odd sector. In [187] we computed ⟨JJO∆⟩odd by imposing

conformal invariance and obtained :

⟨Jµ(k1) Jν(k2)O(k3)⟩odd = πµα(k1)πνβ(k2)
[
A(k1, k2, k3)ϵαk1k2kβ1 +B(k1, k2, k3)ϵβk1k2kα2

]
(1.160)

where

A(k1, k2, k3) = k2
2(I1k

2
1 + I2k1 · k2)

k2
1k

2
2 − (k1 · k2)2

B(k1, k2, k3) = k2
1(I2k

2
2 + I1k1 · k2)

k2
1k

2
2 − (k1 · k2)2 (1.161)

where I1 and I2 are the following two triple-K integrals respectively :

I1 = c1 I 5
2 {− 1

2 ,
1
2 ,∆− 3

2 } (1.162)

I2 = −c1 I 5
2 { 1

2 ,−
1
2 ,∆− 3

2 } (1.163)

We further verified our results by computing the correlator for ∆ = 1, . . . , 5 using weight-

shifting operators and matching with the results obtained above.

Again, when ∆ = 2, after evaluating the above triple-K integrals we obtain the form

factors in (1.160) to be :

A(k1, k2, k3) = − k2

(k1 + k2 + k3)2 ((k1 − k2)2 − k2
3)

B(k1, k2, k3) = k1

(k1 + k2 + k3)2 ((k1 − k2)2 − k2
3) (1.164)

Note that, as expected there is a total energy singularity when E = k1 + k2 + k3 → 0.

It seems from the above expression that there is also an apparent collinear divergence

when any two momentum vectors are proportional to each other. In this case, momentum

conservation implies that all 3 momenta are along a line and it is easy to check that the
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Chapter 1. Momentum-space 3-point functions in CFT3

((k1 − k2)2 − k2
3) factor in the denominator above vanishes. However, in this case the

numerator of the full correlator also vanishes appropriately, leaving the correlator finite.

Hence as expected the correlator has no singularities other than the E → 0 singularity 7.

⟨TTO∆⟩

The transverse and traceless part of the correlator in three dimensions is given by [45]:

⟨Tµ1ν1Tµ2ν2O∆⟩even = −2k2
1k

2
2A1Πµ1ν1αβ1(k1)Πµ2ν2αβ2(k2)(kβ1

2 k
β2
3 − χ δβ1β2) (1.165)

where

A1(k1, k2, k3) = c1 I 9
2 ,{

1
2 ,

1
2 ,∆− 3

2 } (1.166)

and χ is defined in (1.158). For the case when ∆ = 2 one obtains the following :

A1(k1, k2, k3) = 1
(k1 + k2 + k3)4 (1.167)

Let us now consider the parity odd contribution to the correlator. In [188] we obtained

the momentum space expressions for ⟨TTO1⟩odd and ⟨TTO2⟩odd using spin-raising and

weight-shifting operators. We will now use the expressions we obtained in spinor-helicity

variables for ⟨TTO∆⟩, for a generic ∆, to obtain a momentum space expression for the

same. We start with the following ansatz in momentum space :

⟨Tµ1ν1Tµ2ν2O∆⟩odd = Πα1β1
µ1ν1 (k1)Πα2β2

µ2ν2

(
A1ϵ

µ1µ2k1δν1ν2 + A2ϵ
µ1µ2k2δν1ν2

)
(1.168)

Symmetry considerations tell us that :

A2 = −A1(k1 ↔ k2) (1.169)

Dotting with transverse, null polarization vectors, we get

⟨TTO∆⟩odd = A1ϵ
k1z1z2z1 · z2 − A1(k1 ↔ k2)ϵk2z1z2z1 · z2 (1.170)

7There is also an alternative form of this correlator (see eq. 5.16 of [188]) using which it is easy to
see that there are no collinear divergences.
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1.5. Conformal correlators in momentum space

Converting into spinor-helicity variables we get :

⟨T−T+O∆⟩odd = A1k1 − A1(k1 ↔ k2)k2

4k2
1k

2
2

⟨12̄⟩4

⟨T−T−O∆⟩odd = A1k1 + A1(k1 ↔ k2)k2

4k2
1k

2
2

⟨12⟩4
(1.171)

Comparing (1.171) and (A.60), we get the following for the form factor :

A1 = 2c1k
2
1k

3
2I 9

2 { 1
2 ,

1
2 ,∆− 3

2 } (1.172)

which matches the form factor (1.166) that appears in the even part of the same correlator.

Let us now come to the case where the spinning operator in the correlator is a generic

spin s conserved current.

⟨JsJsO∆⟩

As mentioned in the introduction to this section, for correlators involving higher spin op-

erators, it is convenient to introduce transverse polarization tensors. It is straightforward

to write down the momentum space expression for these correlators from their expression

in spinor-helicity variables. This can be done upon observing that

[
k2 ϵ

k1z1z2 − k1 ϵ
k2z1z2

]
7→ i⟨12⟩2

[
(z⃗1 · k⃗2)(z⃗2 · k⃗1) + 1

2E(E − 2k3)z⃗1 · z⃗2

]
7→ ⟨12⟩2

(1.173)

We then have

⟨JsJsO∆⟩even = (k1k2)s−1I 1
2 +2s{ 1

2 ,
1
2 ,∆− 3

2 }

[
2(z⃗1 · k⃗2)(z⃗2 · k⃗1) + E(E − 2k3)z⃗1 · z⃗2

]s
(1.174)

⟨JsJsO∆⟩odd = (k1k2)s−1I 1
2 +2s{ 1

2 ,
1
2 ,∆− 3

2 }

[
k2 ϵ

k1z1z2 − k1 ϵ
k2z1z2

]
×
[
2(z⃗1 · k⃗2)(z⃗2 · k⃗1) + E(E − 2k3)z⃗1 · z⃗2

]s−1
(1.175)

Let us now look at this correlator for specific values of the scaling dimension of the scalar

operator.
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⟨JsJsO1⟩

For ∆ = 1, the correlator is given by :

⟨JsJsO1⟩odd = (k1k2)s−1 1
k3E2s

[
k2 ϵ

k1z1z2 − k1 ϵ
k2z1z2

]
×
[
2(z⃗1 · k⃗2)(z⃗2 · k⃗1) + E(E − 2k3)z⃗1 · z⃗2

]s−1
(1.176)

⟨JsJsO2⟩

For ∆ = 2, the correlator is given by :

⟨JsJsO2⟩odd = (k1k2)s−1 1
E2s

[
k2 ϵ

k1z1z2 − k1 ϵ
k2z1z2

]
×
[
2(z⃗1 · k⃗2)(z⃗2 · k⃗1) + E(E − 2k3)z⃗1 · z⃗2

]s−1
(1.177)

⟨JsJsO3⟩

For ∆ = 3, the correlator is given by :

⟨JsJsO3⟩odd = (k1k2)s−1 (E + (2s− 1)k3)
E2s

[
k2 ϵ

k1z1z2 − k1 ϵ
k2z1z2

]
×
[
2(z⃗1 · k⃗2)(z⃗2 · k⃗1) + E(E − 2k3)z⃗1 · z⃗2

]s−1
(1.178)

1.5.2.3 ⟨JsJsJs⟩

We will now determine the correlator ⟨JsJsJs⟩ in momentum space. We first discuss

the s = 1 and s = 2 cases in detail. For the case of general spin, we present only the

final result expressed in terms of transverse polarization tensor. For this, we restrict

our attention to the homogeneous part. For the parity-odd part of the correlator, the

non-homogeneous contribution is always a contact term.
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1.5. Conformal correlators in momentum space

⟨JJJ⟩

Unlike ⟨JsJsO∆⟩ the correlator ⟨JJJ⟩ is not purely transverse and it has a local term

given by [44]:

⟨JµaJνbJρc⟩local =
[
kµ1
k2

1

(
fadc⟨Jρd(k2)Jνb(−k2)⟩ − fabd⟨Jνd(k3)Jρc(−k3)⟩

)

+ ((k1, µ) ↔ (k2, ν)) + ((k1, µ) ↔ (k3, ρ))
]

+
[(

kµ1 k
ν
2

k2
1k

2
2
fabdk2α⟨Jαd(k3)Jρc(−k3)⟩

)

+ ((k1, µ) ↔ (k3, ρ)) + ((k2, ν) ↔ (k3, ρ))
]

(1.179)

The transverse part of the even part of the correlator denoted by ⟨jµ1a1jµ2a2jµ3a3⟩even was

computed in [44] :

⟨jµ1a1jµ2a2jµ3a3⟩even = πµ1
α1(k1)πµ2

α2(k2)πµ3
α3(k3)[A1k

α1
2 kα2

3 kα3
1 + A2δ

α1α2kα3
1

+ A2(k3, k1, k2)δα1α3kα2
3 + A2(k2, k3, k1)δα2α3kα1

2 ] (1.180)

where the form factors are given by :

A1 = 2c1

(k1 + k2 + k3)3

A2 = c1
k3

(k1 + k2 + k3)2 − 2cJ
(k1 + k2 + k3)

(1.181)

Here and in the following we suppress the color indices for brevity. After dotting with

transverse, null polarization vectors, the correlator can be separated into homogeneous

and non-homogeneous parts as follows :

⟨JJJ⟩even,h = c1

(k1 + k2 + k3)2

[
2(k2 · z1)(k3 · z2)(k1 · z3)

(k1 + k2 + k3)
+ (k3(z1 · z2)(k1 · z3) + cyclic perm.)

]

⟨JJJ⟩even,nh = − 2cJ
(k1 + k2 + k3)

((z1 · z2)(k1 · z3) + cyclic perm.)

(1.182)

In [188] we computed the odd part of ⟨JJJ⟩ using the action of spin-raising and weight-

shifting operators on a scalar seed correlator. The correlator is given by the sum of its
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local terms (1.179) and transverse parts. The latter is given by :

⟨jµajνbjρc⟩odd = πµα(k1)πνβ(k2)πργ(k3)Xαβγ (1.183)

where

Xαβγ = A1ϵ
k1k2αkγ1k

β
3 + A2ϵ

k1k2αδβγ + A3ϵ
k1αβkγ1 + A4ϵ

k1αγkβ3 + cyclic perm. (1.184)

where

A1 = − 2
k1(k1 + k2 + k3)3 , A2 = − 1

(k1 + k2 + k3)2

A3 = k1 + k2 + 2 k3

k1(k1 + k2 + k3)2 , A4 = k1 + 2 k2 + k3

k1(k1 + k2 + k3)2 (1.185)

After dotting with transverse polarization vectors, the correlator can be rewritten in the

following form using Schouten identities :

⟨JJJ⟩odd,h = c′
1
E3

[{
(k⃗1 · z⃗3)

(
ϵk3z1z2k1 − ϵk1z1z2k3

)
+ (k⃗3 · z⃗2)

(
ϵk1z1z3k2 − ϵk2z1z3k1

)

−(z⃗2 · z⃗3)ϵk1k2z1E + k1

2 ϵ
z1z2z3E(E − 2k1)

}
+ cyclic perm

]

⟨JJJ⟩odd,nh = c′
Jϵ
z1z2z3 (1.186)

We see that the non-homogeneous part of the parity-odd part of the correlator is a contact

term. This term can be explained from the dS4 perspective by considering the three-point

tree-level amplitude arising from the interaction term FF̃ .

In the rest of this section we obtain the momentum space expressions for the corre-

lators ⟨TJJ⟩ and ⟨TTT ⟩. As described in Section 1.3.3.2, a direct computation of these

correlators by solving the conformal Ward identities in momentum space is quite difficult.

⟨TTT ⟩

The momentum space expression for the even part of the correlator ⟨TTT ⟩ was obtained

in [44] and it was shown to have two structures. We will now obtain the momentum space

expression for the odd part of the correlator.

In (1.116) we obtained the following result for the parity odd part of the correlator
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⟨TTT ⟩ in spinor-helicity variables :

⟨T−T−T−⟩odd =
(
c′

1
c123

E6 + c′
T

E3 − Eb123 − c123

c2
123

)
⟨12⟩2⟨23⟩2⟨31⟩2

⟨T−T−T+⟩odd = c′
T

(E − 2k3)3 − (E − 2k3)(b123 − 2k3a12) + c123

c2
123

⟨12⟩2⟨23̄⟩2⟨3̄1⟩2

(1.187)

Let us consider the following ansatz for the transverse part of the correlator :

⟨T µ1ν1T µ2ν2T µ3ν3⟩odd = Πµ1ν1
α1β1(k1)Πµ2ν2

α2β2(k2)Πµ3ν3
α3β3(k3)

(
A1ϵ

k1k2α1ϵk1k2α2ϵk1k2α3kβ3
1 k

β1
2 k

β2
3

+ A2ϵ
k1k2α3kβ3

1 k
α2
3 kβ2

3 k
α1
2 kβ1

2 + A2(k2 ↔ k3)ϵk2k3α2kβ2
3 k

α3
1 kβ3

1 k
α1
2 kβ1

2

+ A2(k1 ↔ k3)ϵk1k2α1kβ1
2 k

α2
3 kβ2

3 k
α3
1 kβ3

1

)
(1.188)

One could have started with a more general ansatz with many more tensor structures

than exhibited by (1.188). However, it turns out that there are several Schouten identities

that relate those tensor structures and upon using them one ends up with the minimal

(and complete) ansatz in (1.188) 8.

Contracting with null and transverse polarization vectors, we get

⟨TTT ⟩odd = A1ϵ
k3k1z1ϵk1k2z2ϵk2k3z3(k2 · z1)(k3 · z2)(k1 · z3) + A2ϵ

k2k3z3(k1 · z3)(k3 · z2)2(k2 · z1)2

+ A2(k2 ↔ k3)ϵk1k2z2(k1 · z3)2(k3 · z2)(k2 · z1)2 + A2(k1 ↔ k3)ϵk3k1z1(k1 · z3)2(k3 · z2)2(k2 · z1)

(1.189)

Converting this into spinor-helicity variables, we get

⟨T−T−T+⟩ = ⟨12⟩2⟨23̄⟩2⟨3̄1⟩2J
4 (A1c123 + A2k3 − A2(k2 ↔ k3)k2 − A2(k1 ↔ k3)k1)

(E − 2k3)2c2
123

⟨T−T−T−⟩ = −⟨12⟩2⟨23⟩2⟨31⟩2J
4 (A1c123 + A2k3 + A2(k2 ↔ k3)k2 + A2(k1 ↔ k3)k1)

E2c2
123

(1.190)

Comparing (1.187) and (1.190) and solving for the momentum space form factors we get
8Schouten identities that turn out to be useful are given in Appendix C of [188].
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:

A1 = c′
1
c2

123
2J4E4 − c′

T

12(k2
1 + k2

2 + k2
3)

J4 (1.191)

A2 = −c′
1
b12c

2
123

2J4E4 + c′
T

(k4
3 + 7k2

3(k2
1 + k2

2) + 4(k4
1 + 4k2

1k
2
2 + k4

2))
J4 (1.192)

Naively it might look like there are two contributions to the parity-odd correlation func-

tion. However, as will be shown below the term proportional to c′
T is a contact term.

Contact term in parity-odd ⟨TTT ⟩

The fact that the term proportional to cT is a contact term can be seen more explicitly

by switching to a basis where the factor of J4 in the denominator disappears. One such

basis is given by9:

⟨TTT ⟩ =
[
B1ϵ

k1z1z2(z1 · z2)(k1 · z3)2 −B1(k1 ↔ k2)ϵk2z1z2(z1 · z2)(k1 · z3)2

+B2ϵ
k1z1z2(z1 · z3)(z2 · z3) −B2(k1 ↔ k2)ϵk2z1z2(z1 · z3)(z2 · z3)

]
+ cyclic perm.

(1.193)

The ansatz in (1.193) is related to (1.189) by Schouten identities. Converting (1.193) into

spinor-helicity variables and comparing with (1.190), we can solve for B1 and B2. We get

the solutions for the terms proportional to c′
T to be :

B1 = c′
T

1
24 ,

B2 = c′
T

1
12

(
k2

1 + 7
4k

2
2 + 7

4k
2
3

)
(1.194)

The fact that B1 is a constant and B2 is dependent on k2 implies that if we evaluate

⟨TTT ⟩ in the basis (1.193) and convert it to position space, we will get delta functions

or derivatives on delta functions which are nothing but contact terms. Since the odd

non-homogeneous part is a contact term, the full ⟨TTT ⟩ correlator has only 3 non-trivial

contributions, 2 parity-even and 1 parity-odd conformally invariant structures. This

9This choice of basis is not unique. One can find several other bases in which un-physical poles do
not appear. To do this, we start with the most general ansatz for ⟨TTT ⟩ containing all possible tensor
structures. We then solve for the form-factors in this most general ansatz by relating it to the known
answer for the correlator. Not all the form-factors in the ansatz are fixed this way and those that are
not fixed can be set to zero. Which of them are set to zero is a choice made while solving and different
choices lead to different bases.
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agrees with the analysis of [73].

From the dS4 perspective this contribution to the correlator can be understood to

arise from the WW̃ interaction. The WW̃ interaction also reproduces the parity-odd

two-point function of the stress tensor.

⟨JsJsJs⟩

For general spin s it is easy to write down the homogeneous part of ⟨JsJsJs⟩ in momentum

space using the transverse polarization. The answer is given by :

⟨JsJsJs⟩even,h = (k1k2k3)s−1
[ 1
E3

{
2 (z⃗1 · k⃗2) (z⃗2 · k⃗3) (z⃗3 · k⃗1) + E{k3 (z⃗1 · z⃗2) (z⃗3 · k⃗1) + cyclic}

}]s
⟨JsJsJs⟩odd,h = (k1k2k3)s−1 1

E3

[{
(k⃗1 · z⃗3)

(
ϵk3z1z2k1 − ϵk1z1z2k3

)
+ (k⃗3 · z⃗2)

(
ϵk1z1z3k2 − ϵk2z1z3k1

)

−(z⃗2 · z⃗3)ϵk1k2z1E + k1

2 ϵ
z1z2z3E(E − 2k1)

}
+ cyclic perm

]

×
[ 1
E3

{
2 (z⃗1 · k⃗2) (z⃗2 · k⃗3) (z⃗3 · k⃗1) + E{k3 (z⃗1 · z⃗2) (z⃗3 · k⃗1) + cyclic}

}]s−1

(1.195)

The parity-odd contribution to the non-homogeneous piece is just a contact term.

1.5.2.4 ⟨J2sJsJs⟩

We will now look at correlators of the form ⟨J2sJsJs⟩. We focus the discussion on the

⟨TJJ⟩ correlator and also give the results for the ⟨J4TT ⟩ correlator.

⟨TJJ⟩

We saw in (1.129) and (1.132) that the odd part of the correlator ⟨TJJ⟩ satisfies trivial

transverse Ward identities 10. We also note that in three-dimensions the trace Ward

identity obeyed by this correlator is trivial. Taking these into account we write down the

10As a result the non-homogeneous part of this parity-odd correlator is zero. One can understand
this from the dS4 perspective by the following argument. The only interaction term that could possibly
have contributed to this correlator is FF̃ . However, since this term is independent of the metric the
contribution from it to ⟨TJJ⟩ is zero. In fact, there is no interaction term that one can have from the
gravity side that contributes to the non-homogeneous parity-odd part of ⟨TJJ⟩.
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Chapter 1. Momentum-space 3-point functions in CFT3

following ansatz for the correlator in momentum space :

⟨T µ1ν1(k1)Jµ2(k2)Jµ3(k3)⟩odd = Πµ1ν1
α1β1(k1)πµ2

α2(k2)πµ3
α3(k3)

(
A1k

α1
2 kα2

3 ϵβ1α3k1

+A2k
α1
2 kα2

3 ϵβ1α3k3 + A3δ
α1α2ϵβ1α3k1 + A4δ

α1α2ϵβ1α3k3
)

(1.196)

Let us now contract this with polarization vectors and this gives :

⟨TJJ⟩odd = A1(k2 · z1)(k3 · z2)ϵk1z1z3+A2(k2 · z1)(k3 · z2)ϵk3z1z3

+ A3(z1 · z2)ϵk1z1z3 + A4(z1 · z2)ϵk3z1z3 (1.197)

We now convert this expression into spinor-helicity variables to obtain :

〈
T−J−J−

〉
odd

= ⟨12⟩2⟨13⟩2

8k2
1k2k3

(2A3k1 − 2A4k3 + (k1 − k2 − k3)(k1 − k2 + k3)(A1k1 − A2k3))

〈
T+J−J−

〉
odd

= ⟨12⟩2⟨13⟩2

8k2
1k2k3

(2A3k1 + 2A4k3 + (k1 + k2 + k3)(k1 + k2 − k3)(A1k1 + A2k3))

〈
T−J−J+

〉
odd

= ⟨12⟩2⟨13⟩2

8k2
1k2k3

(2A3k1 + 2A4k3 + (k1 − k2 − k3)(k1 − k2 + k3)(A1k1 + A2k3))

〈
T−J+J−

〉
odd

= ⟨12⟩2⟨13⟩2

8k2
1k2k3

(2A3k1 − 2A4k3 + (k1 + k2 − k3)(k1 + k2 + k3)(A1k1 − A2k3))

(1.198)

We obtained the following explicit results for these correlators in (1.136) :

⟨T−J−J−⟩odd = c′
1
k1

E4 ⟨12⟩2⟨13⟩2

⟨T−J−J+⟩odd = 0

⟨T+J−J−⟩odd = 0

⟨T−J+J−⟩odd = 0
(1.199)

Comparing (1.199) and (1.198), we get the following solutions for the form factors :

A1 = −c′
1
k1k3

E4

A2 = c′
1
k2

1
E4

A3 = c′
1
k1k3(k1 + k2 − k3)

2E3

A4 = −c′
1
k2

1(k1 + k2 − k3)
2E3

(1.200)
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1.5. Conformal correlators in momentum space

Plugging back the solution (1.200) in (1.197) we obtain :

⟨TJJ⟩odd = k1

4E4 (−2(k3 · z2)(k2 · z1) + E(E − 2k3)(z1 · z2))
(
k1ϵ

z1z3k3 − k3ϵ
k1z1z3

)
(1.201)

which matches the result in [187] obtained by computing a tree level dS4 amplitude.

The solution (1.201) is not manifestly symmetric under a (2 ↔ 3) exchange in this

basis. However, we can use Schouten identities to convert the ansatz (1.197) to the

following form where it is manifestly symmetric under a (2 ↔ 3) exchange :

⟨TJJ⟩odd = B1ϵ
k1k2z1(k1 · z1)(k1 · z3)(k3 · z2) +B2ϵ

k1k2z1(k2 · z1)2(k1 · z3)

+B3ϵ
k1k2z3(k2 · z1)2(k3 · z2) +B4ϵ

k1k2z1(k2 · z1)(z2 · z3) (1.202)

The relation between the form-factors in the two bases (1.197) and (1.202) is given by :

B1 = 16
J4

(
4A4((k2

1 − k2
2)2 + 2(k2

1 + k2
2)k2

3 − 3k4
3) − 2(A1(k2

1 − k2
2) + (A1 − 2A2)k2

3)

× ((k2
1 − k2

2)2 − 2(k2
1 + k2

2)k2
3 + k4

3) + 4A3(−3k4
1 + (k2

2 − k2
3)2 + 2k2

1(k2
2 + k2

3)
)

B2 = −128
J4

(
k2

1(−2A4k
2
3 + A3(k2

1 + k2
3 − k2

2)
)

B3 = −16
J4

(
− 8A3k

2
1(k2

1 + k2
2 − k2

3) + 4A4(k4
1 − 2(k2

2 − k2
3)2) − 8(2A1k

2
1 − A2(k2

1 − k2
2 + k2

3))J2
)

B4 = 8
J2

(
− 2A3k

2
1 + A4(k2

1 − k2
2 + k2

3)
)

For the case s1 = 4 and s = 2, the momentum space expression that we get after

converting the answer in spinor-helicity variables given in Section 1.4.4.2 is the following

:

⟨J4TT ⟩odd =c′
1
k3

1k2k3

E8

[
(2(k2 · z1)(k3 · z2) − (z1 · z2) (E − 2k3)E)

(
k1ϵ

z1z3k3 − k3ϵ
z1z3k1

) ]

×
[ (

(k3 · z2)(k2 · z1) − 1
2E(E − 2k3)(z1 · z2)

)(
(k1 · z3)(k2 · z1) − 1

2E(E − 2k2)(z1 · z3)
) ]

(1.203)

The parity-odd contribution to the non-homogeneous part is again a contact term.
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1.6 Renormalisation

In Sections 1.4 and 1.5 we saw that CFT correlators in spinor-helicity variables and

momentum space are given by triple-K integrals of the kind :

Iα{β1,β2,β3}(k1, k2, k3) =
∫ ∞

0
dx xα

3∏
j=1

k
βj

j Kβj
(kj x) (1.204)

where Kν is a modified Bessel function of the second kind and α and βi are discrete

parameters that depend on the dimension of space and the conformal dimensions of the

operators. The integral is convergent except when the following equality is satisfied for

any (or many) choice of signs [41, 42,44,45] :

α + 1 ± β1 ± β2 ± β3 = −2n, n ∈ Z≥0 (1.205)

When the integral is divergent, one regulates it by shifting the dimension of the space

and the conformal dimensions [41,42,44,45] :

d → d̃ = d+ 2uϵ

∆i → ∆̃i = ∆i + (u+ vi)ϵ (1.206)

where u and vi are four real parameters. This results in a shift in the discrete parameters

of the triple-K integral indicated as follows :

Iα{β1,β2,β3} → I
α̃{β̃1,β̃2,β̃3} = Iα+uϵ{β1+v1ϵ,β2+v2ϵ,β3+v3ϵ} (1.207)

Here we note that when one deals with parity odd contributions to a correlator one has

to set u = 0 as the Levi-Civita tensors are defined in the original dimensions and not in

the shifted dimensions and hence one cannot use dimensional regularisation.

For cases where the divergence condition (1.205) is satisfied for the choice of signs

(−−−) or (−−+) or its permutations, one gets rid of the singularities in the regularised

correlator by adding suitable counter-terms to the CFT action. For cases where the

equality (1.205) is satisfied for the choice of signs (−++) and its permutations or (+++)

there are no appropriate counter-terms that one can add to the action. These correspond

to cases where it is the triple-K representation of the correlator itself that is singular
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[42,44,45].

In the following, we will show using the example of the ⟨JJO∆⟩ correlator that in the

spinor-helicity variables the relation between the parity-even and the parity-odd parts

continues to hold even after renormalization. To renormalize the correlators, we first

convert our answers in the spinor-helicity variables to momentum space expressions, cure

the divergences and obtain finite answers in momentum space. We then convert the

resulting correlators back to spinor-helicity variables.

1.6.1 ⟨JJO∆⟩

The momentum space expression for the even part of the correlator was given in (1.156). It

can be checked that the discrete parameters in the triple-K integral satisfy the divergence

condition (1.205) when ∆ ≥ 4. When ∆ = 4, the divergence condition (1.205) is satisfied

for the choice of signs given by (−−−). A convenient scheme of regularisation is choosing

v3 ̸= 0 and u = v1 = v2 = 0 [45]. The divergence terms are removed by adding the

counter-term with three sources [45]:

Sct = a(ϵ)
∫
d3xµv3ϵ FµνF

µνϕ (1.208)

where µ is the renormalization scale. After removing the divergence by choosing an

appropriate a(ϵ) such that the singular term in the regularised correlator is canceled, we

get the following finite renormalized form factor :

Areno
1 (k1, k2, k3) = 3 c1log

(
k1 + k2 + k3

µ

)
− c1

k2
3 + 3k3(k1 + k2 + k3)

(k1 + k2 + k3)2 (1.209)

In spinor-helicity variables, the renormalized correlator takes the following form :

⟨J−J−O4⟩even = Areno
1 (k1, k2, k3)⟨12⟩4 (1.210)

Let us now discuss the parity odd part of ⟨JJO∆⟩. The momentum space expression for

the correlator takes the form in (1.160). For ∆ = 4, the two triple-K integrals are singular

for the choice of signs (+ − −) and (− + −) respectively. To remove the singularity, we

add the following parity-odd counter-term with two sources and one operator :

Sct = a(ϵ)
∫
d3x µ−ϵ ϵµνλ Fµν Jλ ϕ (1.211)
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After removing the divergences, the resulting form factor is given by :

Breno
1 (k1, k2, k3) = c1

3
k1

log
(
k1 + k2 + k3

µ

)
− c1

k2
3 + 3k3(k1 + k2 + k3)
k1(k1 + k2 + k3)2 (1.212)

Note that the form factorBreno
1 (k1, k2, k3) is related to the one in the even caseAreno

1 (k1, k2, k3)

by the following simple relation :

Breno
1 (k1, k2, k3) = 1

k1
Areno

1 (k1, k2, k3) (1.213)

In spinor-helicity variables, the correlator again takes the same form as in the parity even

case :

⟨J−J−O4⟩odd = i Areno
1 (k1, k2, k3)⟨12⟩4 (1.214)

Thus we have illustrated following the case of ⟨JJO4⟩ that the parity-even and the parity-

odd parts of the correlator are given by the same form factor even after renormalization.

1.6.2 ⟨TTO∆⟩

Let us now consider the ⟨TTO∆⟩ correlator. The transverse and traceless part of the

even part of the correlator is given by [45] :

⟨Tµ1ν1(k1)Tµ2ν2(k2)O(k3)⟩even

= Πµ1ν1α1β1(k1)Πµ2ν2α2β2(k2)
[
A1 k

α1
2 kβ1

2 k
α2
3 kβ2

3 + A2δ
α1α2kβ1

2 k
β2
3 + A3δ

α1α2δβ1β2
]

(1.215)

In d = 3, the solutions of the primary Ward identities were obtained to be [45] :

A1 = c1I 9
2 { 3

2 ,
3
2 ,∆− 3

2 }

A2 = 4c1I 7
2 { 3

2 ,
3
2 ,∆− 1

2 } + c2I 5
2 { 3

2 ,
3
2 ,∆− 3

2 }

A3 = 2c1I 5
2 { 3

2 ,
3
2 ,∆+ 1

2 } + c2I 3
2 { 3

2 ,
3
2 ,∆− 1

2 } + c3I 1
2 { 3

2 ,
3
2 ,∆− 3

2 } (1.216)

One can easily check that for ∆ = 1, ∆ = 2, ∆ = 3 a subset of the triple-K integrals

that appear in the form-factors above are divergent. A convenient regularisation scheme

to work with is u = v1 = v2 and v3 ̸= u. For ∆ = 1, 2, 3 one does not have counter-
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terms to remove the divergences. It turns out that the divergences that appear in these

cases are exactly cancelled by the primary constants determined by the secondary Ward

identities [45].

1.6.2.1 ⟨TTO4⟩

⟨TTO4⟩ deserves special discussion as this is the first case where a type-A anomaly could

occur [45]. It was noticed in [45] that in the regularised correlator the pole in the regulator

ϵ multiplies a degenerate combination of form factors in the numerator and hence the

divergent form factors amount to a finite anomalous contribution to the correlator. Thus

counter-terms are not essential to remove such divergences. It was also shown in [45] that

the divergences in the regularised correlator and the anomaly can be removed using an

appropriate counter-term with suitable coefficients. The form-factors of the renormalized

correlator takes the following form (we present only the scheme-independent part) :

A1 = c1

E4 E1

A2 = c1

E3 (−E1(k1 + k2 − k3) + 2E2k1k2)

A3 = c1(k1 + k2 − k3)
4E2 (E1(k1 + k2 − k3) − 4E2k1k2) (1.217)

where

E1 = (k1 + k2)2((k1 + k2)2 + 12k1k2) + 16(k1 + k2)((k1 + k2)2 + 3k1k2)k3

+ 6(7(k1 + k2)2 + 10k1k2)k2
3 + 32(k1 + k2)k3

3 + 5k4
3

E2 = (k1 + k2)3 + 15(k1 + k2)2k3 + 27(k1 + k2)k2
3 + 5k3

3 (1.218)

We now convert this result in momentum space to the spinor-helicity variables and obtain

:

⟨T−T−O4⟩ = k1 k2
(k1 + k2)2 + 4(k1 + k2)k3 + 5k2

3
(k1 + k2 + k3)4 ⟨12⟩4 (1.219)

This precisely matches the result that we obtained for the correlator by directly solving

the conformal Ward identities in spinor-helicity variables (1.104). For ∆ = 4 (or more

generally ∆ ≤ 5) the triple-K integral in (1.104) is convergent and we get finite results

for the correlator without any renormalization. For ∆ ≥ 6 the above triple-K integral is
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singular and one needs to regularise and renormalize appropriately.

1.7 CFT correlators in terms of momentum space invariants

The aim of this section is to write down CFT correlators derived in previous sections in

terms of a few conformal invariant momentum space structures. Let us define

Q12 = 1
E2

[
2
(
z⃗1 · k⃗2

) (
z⃗2 · k⃗1

)
+ E (E − 2k3) z⃗1 · z⃗2

]
(1.220)

S12 = 1
E2

[
k2ϵ

k1z1z2 − k1ϵ
k2z1z2

]
(1.221)

P123 = 1
E3

[
2
(
z⃗1 · k⃗2

) (
z⃗2 · k⃗3

) (
z⃗3 · k⃗1

)
+ E

(
k3 (z⃗1 · z⃗2)

(
z⃗3 · k⃗1

)
+ cyclic

)]
(1.222)

R123 = 1
E3

[{
(k⃗1 · z⃗3)

(
ϵk3z1z2k1 − ϵk1z1z2k3

)
+ (k⃗3 · z⃗2)

(
ϵk1z1z3k2 − ϵk2z1z3k1

)

−(z⃗2 · z⃗3)ϵk1k2z1E + k1

2 ϵ
z1z2z3E(E − 2k1)

}
+ cyclic perm

]
(1.223)

These can be used as building blocks for writing down momentum space 3-point conserved

correlators since they arise naturally in the expressions for such correlators 11. There are

some interesting relations among the above defined quantities. For example

S2
ij = Q2

ij, R2
ijk = P 2

ijk, P 2
123 = Q12Q23Q31, SijSjk = QijQjk

P123R123 = S12Q23Q31 + cyclic perm. (1.224)

up-to degeneracies.

Homogeneous contribution

From the summary in A.109, we may now write the momentum space three-point func-

tions in a compact manner using the above invariants. Let us note that we are concerned

only with correlators which satisfy triangle inequality. To do this we divide the correlator

into two different classes.

11That they are conformal invariants follows from (1.226) - (1.229). If we put s = 1, in each case a
structure is equal to a particular correlator which is of course, by definition, conformally invariant.
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s1 + s2 + s3 = 2n (n ∈ Z)

For this class of correlators we only require Qij and Sij. Consider ⟨Js1Js2Js3⟩ such that

s1 ≥ s2 ≥ s3, s1 ≤ s2 + s3. Then, we have

⟨Js1Js2Js3⟩even = ks1−1
1 ks2−1

2 ks3−1
3 Q

1
2 (s1+s2−s3)
12 Q

1
2 (s2+s3−s1)
23 Q

1
2 (s1+s3−s2)
13

⟨Js1Js2Js3⟩odd = ks1−1
1 ks2−1

2 ks3−1
3 S12Q

1
2 (s1+s2−s3−2)
12 Q

1
2 (s2+s3−s1)
23 Q

1
2 (s1+s3−s2)
13

+ cyclic perm. (1.225)

Correlators involving scalar operators can also be written this way,

⟨JsJsO2⟩even,h = bs−1
12 Qs

12 (1.226)

⟨JsJsO2⟩odd,h = bs−1
12 S12Q

s−1
12 (1.227)

where bij = kikj and c123 = k1k2k3. The 3-point function involving ∆ = 1 is obtained by

shadow transforming (1.226). One can also write the correlator involving a generic scalar

operator dimension δ but we do not reproduce this here.

s1 + s2 + s3 = 2n+ 1 (n ∈ Z)

We require P123 and R123 as well when the sum of the spins is odd. For example, when s

is odd, we have

⟨JsJsJs⟩even,h = cs−1
123 P

s
123 (1.228)

⟨JsJsJs⟩odd,h = cs−1
123 R123P

s−1
123 (1.229)

When s is odd, these are the only structures using which ⟨JsJsJs⟩ can be written. One

can use (1.224) to substitute even powers of P123 in terms of Qij’s. Other correlators with

s1 + s2 + s3 = odd can also be considered similarly.

Non-Homogeneous contribution

We have discussed homogeneous contributions so far. The story for the non-homogeneous

contribution is more complicated. We do not have a generic form of the WT identity to
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evaluate three-point functions involving operators of arbitrary spin. For example, if we

consider the solutions for ⟨JsO2O2⟩ as given in (1.154), there is no discernible underlying

structure to these expressions. The numerator becomes increasingly complicated as we

consider higher values of s and one cannot write these as the power of some simple

structure. We can similarly identify some structures based on the answers for ⟨JJJ⟩,

⟨JJT ⟩ and ⟨TTT ⟩ however those relations are not illuminating as in the case of the

homogeneous part, (see (1.226)) and we do not present them here.

1.8 Some interesting observations

In this section we collect a few interesting observations about the correlators discussed

so far. For the purposes of this discussion, it will be useful to write the correlators as in

(1.79).

1.8.1 Contact terms

To properly understand correlators in momentum space it is very important to understand

the contact terms which arise in both parity-odd and parity-even cases. For example,

⟨JJJ⟩ correlation function has a contact term which is parity odd and is given by (1.186).

Fourier transforming this to position space will give us a term of the form

⟨JaµJ bνJ cρ⟩contact ∝ c′
Jf

abcϵµνρδ
3(x1 − x2)δ3(x2 − x3). (1.230)

Another example of a correlation function where both parity even and parity odd part

has contact term, let us consider ⟨TTT ⟩. The parity even contact term is given by [39]

⟨TTT ⟩even ∝ cT
(
k3

1 + k3
2 + k3

3

)
z1 · z2z2 · z3z3 · z1 (1.231)

which when converted to position space gives contact term of the form

⟨TTT ⟩contact ∝ cT
(
f(x1)δ3(x2 − x3) + f(x2)δ3(x3 − x1) + f(x3)δ3(x1 − x2)

)
. (1.232)

58



1.8. Some interesting observations

Parity odd contact term is given12 by (1.193) which becomes

⟨TTT ⟩contact ∝ c′
T ϵz1z2z3δ

3(x1 − x2)δ3(x2 − x3) + · · · (1.233)

where z are polarization tensors. Once again we have not mentioned the exact form of the

contact term. Interestingly, for both parity even and parity odd parts, the contact term

arises in the non-homogeneous contribution. One way to understand parity odd case is

to look at (1.77). The right-hand side of this equation for parity odd case is always a

contact term for the correlator we have considered. For example, the transverse Ward

identity for ⟨JJJ⟩ takes the form (1.105)

k1µ⟨Jµa(k1)Jνb(k2)Jρc(k2)⟩ = fadc⟨Jρd(k2)Jνb(−k2)⟩ − fabd⟨Jνd(k3)Jρc(−k3)⟩

= fabcϵνρk1

which is a contact term. One can check the same explicitly for ⟨TTT ⟩ as well as

other correlators computed in previous sections. We expect on general grounds that

⟨Js1Js2Js3⟩odd,nh is a contact term. To conclude, we observe that

A. Contribution to the contact term comes from the non-homogeneous part of both

parity-even and parity-odd correlator. For parity-even it was observed in ⟨TTT ⟩ only.

B. Parity-odd non-homogeneous piece of the CFT correlator is always a contact term.

⟨Js1Js2Js3⟩nh,odd = contact term. (1.234)

However parity-even non-homogeneous piece can be nontrivial as is discussed in previous

sections. The reader is referred to appendix 1.8.1 for a detailed discussion regarding

whether the contact parity-odd terms can be set to zero by field redefinitions.

1.8.2 Relation between parity-even and parity-odd solutions

If we look at the correlator in momentum space, see section 1.5, there seems to exist no

clear relationship between the parity odd and parity even part of the correlator. However,

12Let us note that, we have neglected the precise functional dependence. We have just indicated the
form of the delta function that arises.
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as is seen in section 1.3 and 1.4, there exists a remarkable relationship between them in

spinor-helicity variables, namely

⟨Js1Js2Js3⟩h,odd = ⟨Js1Js2Js3⟩h,even (In spinor helicity variables) (1.235)

up-to some signs and factors of i. Let us explain this in terms of some concrete equations.

To start, let us consider the ansatz

⟨J−
s1J

−
s2J

−
s3⟩ = (F1(k1, k2, k3) + iF2(k1, k2, k3))⟨12⟩s1+s2−s3⟨23⟩−s1+s2+s3⟨31⟩s1−s2+s3

⟨J−
s1J

−
s2J

+
s3⟩ = (G1(k1, k2, k3) + iG2(k1, k2, k3))⟨12⟩s1+s2−s3⟨23⟩−s1+s2+s3⟨31⟩s1−s2+s3

(1.236)

where F1, G1 and F2, G2 are form-factors for the parity-even and parity-odd parts of the

correlator. Both F1 and F2 satisfy the same non-homogeneous equation, see for example

(A.74), (A.83). However, the form factors G1 and G2 satisfy a different non-homogeneous

equation, see for example (A.75), (A.84) in appendix A.6. This difference is coming due

to the different contribution of WT identity to parity-even and parity-odd parts for −−+

helicity component13. This implies that non-homogeneous contributions to parity-even

and odd cases generally differ, whereas the homogeneous solution is always the same.

This relation becomes even more nontrivial in cases where there is a divergence in the

correlator. For example, for ⟨JJO4⟩ the solution of the conformal Ward identity is given

by

⟨J−J−O4⟩even = c1(k1k2)I 5
2 ,{

1
2 ,

1
2 ,

5
2 } (1.237)

⟨J−J−O4⟩odd = i c2(k1k2)I 5
2 ,{

1
2 ,

1
2 ,

5
2 } (1.238)

However, the triple-K integral is divergent and one needs to regularise and renormalize the

correlator. To do so we go to momentum space (see section 1.6). The renormalization

procedure for even and odd parts is also completely different and we required quite

different kinds of counter-terms. However, converting back the renormalized results in

spinor-helicity variables, we remarkably obtained the same result again. This happens

to all other correlators having divergences and it would be interesting to have a better

13For − − − helicity the WT identity contributes the same for parity even and odd case.
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understanding of this observation.

1.8.3 Manifest locality test

In the context of the cosmological bootstrap, a manifestly local test (MLT) was derived

for wavefunctions of scalars of dimension 3 and gravitons in any manifestly local, unitary

theory [57]. MLT imposes the following condition on such wavefunctions [57] :

lim
kc→0

∂

∂kc
ψn(k1, . . . , kc, . . . , kn) = 0 (1.239)

In the following we discuss how this analysis can be used for calculating CFT correlator

⟨TO3O3⟩. Based on the symmetries of the correlator we write down the following ansatz

for the correlator :

⟨Tµν(k1)O3(k2)O3(k3)⟩ = Πµναβ(k1)A1(k1, k2, k3) kα2 k
β
2 (1.240)

where we take the following ansatz for the form factor :

A1(k1, k2, k3) = 1
(k1 + k2 + k3)2

[
c1k

3
1 + c2k

2
1(k2 + k3) + c3k1k2k3

+c4k1(k2 + k3)2 + c5(k2 + k3)k2k3 + c6(k2 + k3)3
]

(1.241)

where the pole in k1 + k2 + k3 = 0 can be argued on general grounds and the power of

the pole is fixed by dilatation Ward identity. We will now fix the coefficients that appear

in the ansatz by imposing manifest locality. With respect to one of the scalar operators

we have :

lim
k2→0

∂

∂k2
⟨T (k1)O3(k2)O3(k3)⟩ = 0 (1.242)

This gives the following relation between the coefficients :

c2 = 2c1, c4 = 2c1 − c3

2 , c6 = −c5, c3 = 2c5 (1.243)

61



Chapter 1. Momentum-space 3-point functions in CFT3

We can easily check that with these conditions, MLT with respect to the second scalar

operator is also satisfied, i.e. :

lim
k3→0

∂

∂k3
⟨T (k1)O3(k2)O3(k3)⟩ = 0. (1.244)

Let us now impose manifest locality with respect to the stress-tensor operator :

lim
k1→0

∂

∂k1
⟨T (k1)O3(k2)O3(k3)⟩ = 0 (1.245)

This gives the following constraint c5 = −c1. We now substitute the coefficients back

into the ansatz to get :

A(k1, k2, k3) = c1

(k1 + k2 + k3)2

[
k3

1 + k3
2 + k3

3 + 2(k2
1 + k2k3)(k2 + k3) + 2k1(k2

2 + k2k3 + k2
3)
]

(1.246)

Notice that the form factor in (1.246) matches explicitly with the form factor presented

in (1.155). We hope to come back to this in the future for a better understanding of other

3-point functions.

1.8.4 A comparison between position and momentum space in-

variants

It is interesting to compare momentum space invariants discussed in section 1.7 and

position space invariants introduced in [14,202]. To illustrate this, let us consider ⟨JJT ⟩

even part. This is given by

⟨T (x1)J(x2)J(x3)⟩even = 1
|x12||x23||x31|

(
a1P

2
1Q

2
1 + a2P

2
2P

2
3 + a3Q

2
1Q2Q3 + a4P1P2P3Q1

)
,

(1.247)

We refer the reader to [202] for details about the notation. We see that there are 4

structures. Demanding conservation equation for currents, we get two relation a2 =

−4a1, a3 = −5
2a1 which leaves two independent structures

⟨T (x1)J(x2)J(x3)⟩even = 1
|x12||x23||x31|

[
a1

(
P 2

1Q
2
1 − 4P 2

2P
2
3 − 5

2Q
2
1Q2Q3

)
+ a4P1P2P3Q1

]
(1.248)
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Furthermore, using WT identity we get a relation between a4, a1 and the two-point func-

tion coefficient cj. Eliminating a4 we obtain

⟨T (x1)J(x2)J(x3)⟩even = 1
|x12||x23||x31|

[
a1

(
P 2

1Q
2
1 − 4P 2

2P
2
3 − 5

2Q
2
1Q2Q3 − 2P1P2P3Q1

)
+ 3

8cjP1P2P3Q1

]
(1.249)

where cj appears in two point function of Jµ. Let us emphasize that, (1.247) is built out

of conformal invariant structures whereas (1.249) is built out of conformally invariant

conserved structures14. In (1.249), we can identify the term proportional to a1 as ho-

mogeneous and the term proportional to cj as the non-homogeneous contribution. Let

us note that, for a generic correlator involving arbitrary spin-s currents, in general, it

is quite complicated to arrive at the analogue of (1.249) starting from more the readily

obtainable expression (1.247). Moreover, finding the non-homogeneous term in position

space is equally complicated. However, in momentum-space, we naturally obtain the

analogue of (1.249) directly. In other words, in momentum space we naturally divide

the answer into homogeneous and non-homogeneous contributions, and the conformal

invariant conserved structure is naturally built in.

1.9 Double copy structure of CFT correlators

In this section, we discuss the double copy structure of CFT 3-point correlation functions

in momentum space. For the homogeneous piece, we have in the spinor-helicity variables

⟨Js1Js2Js3⟩h,e ∝ ⟨Js1Js2Js3⟩h,o. (1.250)

Using such properties it is easy to establish in momentum space [187]

⟨J2s1J2s2J2s3⟩h,e ∝ (⟨Js1Js2Js3⟩even,h)2 ∝ (⟨Js1Js2Js3⟩h,o)2

⟨J2s1J2s2J2s3⟩h,o ∝ ⟨Js1Js2Js3⟩h,e⟨Js1Js2Js3⟩h,o (1.251)

14It is quite difficult to build conformally invariant conserved structures directly without first writing
conformal invariants and then demanding conservation. Free theory generating functions defined in [202]
might be of help, however, it will be difficult to separate out the homogeneous and non-homogeneous
contributions. However, in momentum-space, we directly get the conformal invariant conserved struc-
tures, and getting conformal invariant structures without the WT identity constraint would be a more
challenging task.
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using which we get

⟨J2s1J2s2J2s3⟩h,o + ⟨J2s1J2s2J2s3⟩o,h ∝ (⟨Js1Js2Js3⟩h,e + ⟨Js1Js2Js3⟩h,o)2 . (1.252)

It was also shown that non-homogeneous structures separately satisfy double copy relation

⟨J2s1J2s2J2s3⟩nh,e ∝ (⟨Js1Js2Js3⟩nh,e)2 (1.253)

As discussed in the main text, even for non-homogeneous parity-odd and even pieces

defined in (1.291) we have analogue of (1.250) in spinor helicity variables

⟨Js1Js2Js3⟩nh,e ∝ ⟨Js1Js2Js3⟩nh,o. (1.254)

This again implies [187]

⟨J2s1J2s2J2s3⟩nh,e ∝ (⟨Js1Js2Js3⟩nh,e)2 ∝ (⟨Js1Js2Js3⟩nh,o)2

⟨J2s1J2s2J2s3⟩nh,o ∝ ⟨Js1Js2Js3⟩nh,e⟨Js1Js2Js3⟩nh,o (1.255)

using which we get

⟨J2s1J2s2J2s3⟩nh,e + ⟨J2s1J2s2J2s3⟩nh,o ∝ (⟨Js1Js2Js3⟩nh,e + ⟨Js1Js2Js3⟩nh,o)2 . (1.256)

We will now look at some specific examples.

1.9.1 Example: s3 = 0

The following double copy structure of ⟨TTO3⟩even was established in [39] :

⟨TTO3⟩even,h = (E + 3k3)k1k2

(E + k3)2 ⟨JJO3⟩even,h⟨JJO3⟩even,h (1.257)

From the explicit expressions for the correlators, we notice that the double copy relations

extend to the parity-odd sector :

⟨TTO3⟩odd,h = (E + 3k3)k1k2

(E + k3)2 ⟨JJO3⟩odd,h⟨JJO3⟩even,h (1.258)
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Remarkably, ⟨TTO3⟩even is also given by the square of ⟨JJO3⟩odd

⟨TTO3⟩even,h = (E + 3k3)k1k2

(E + k3)2 ⟨JJO3⟩odd,h⟨JJO3⟩odd,h (1.259)

The above double copy relations for ⟨TTO3⟩even and ⟨TTO3⟩odd immediately imply the

following double copy structure for the complete correlator :

⟨TTO3⟩even,h + ⟨TTO3⟩odd,h = (E + 3k3)k1k2

(E + k3)2 (⟨JJO3⟩even,h + ⟨JJO3⟩odd,h)2

=⇒ ⟨TTO3⟩h = (E + 3k3)k1k2

(E + k3)2 ⟨JJO3⟩2
h (1.260)

In writing the above double copy relation it is crucial that we have the following relation

between ⟨JJO3⟩even and ⟨JJO3⟩odd :

⟨JJO3⟩2
even,h = c⟨JJO3⟩2

odd,h (1.261)

where c is some constant. For correlators such as ⟨TTO3⟩ and ⟨JJO3⟩ the conformal Ward

identity (in spinor helicity variables) does not have a non-homogeneous term. Hence the

double copy structure that we obtained above is purely for correlators that satisfy the

homogeneous conformal Ward identity.

1.9.2 Example: s1, s2 > 2

We will now extend our analysis of the double copy structure of ⟨TTO3⟩ to higher spin

correlators of the form ⟨JsJsO3⟩. One can show that the higher spin correlators take the

following form :

⟨J4J4O3⟩even,h = k1k2
(E + 7k3)
(E + 3k3)2 ⟨J2J2O3⟩2

even

⟨J3J3O3⟩even,h = k1k2
(E + 5k3)

(E + k3)(E + 3k3)
⟨J2J2O3⟩even⟨J1J1O3⟩even.

(1.262)

Calculating the parity-odd contribution to these three point functions is difficult due to

the high amount of degeneracy [188]. However, in spinor helicity variables the computa-

tion becomes easier. In these variables one has the following remarkable relation between
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the parity-even and parity-odd contributions [?] :

⟨Js−Js
−O3⟩even,h = i⟨Js−Js

−O3⟩odd,h, ⟨Js+Js
+O3⟩even,h = −i⟨Js+Js

+O3⟩odd,h (1.263)

for any s and all the other spinor helicity components are zero. Using this one can

generalize (1.262) to include the parity-odd sector. The double copy relation (1.262)

then becomes

⟨J4J4O3⟩even,h + ⟨J4J4O3⟩odd,h = k1k2(E + 7k3)
(E + 3k3)2 (⟨J2J2O3⟩even,h + ⟨J2J2O3⟩odd,h)2

=⇒ ⟨J4J4O3⟩h = k1k2(E + 7k3)
(E + 3k3)2 ⟨J2J2O3⟩2

h

⟨J3J3O3⟩even,h + ⟨J3J3O3⟩odd,h = k1k2(E + 5k3)
(E + k3)(E + 3k3)

(⟨J2J2O3⟩even,h + ⟨J2J2O3⟩odd,h)

× (⟨J1J1O3⟩even,h + ⟨J1J1O3⟩odd,h)

=⇒ ⟨J3J3O3⟩h = k1k2(E + 5k3)
(E + k3)(E + 3k3)

⟨J2J2O3⟩h⟨J1J1O3⟩h

To write down the above double copy relations it is crucial that we have the following

relation between the parity-odd and parity-even parts of the correlators :

⟨J2J2O3⟩2
even,h = ⟨J2J2O3⟩2

odd,h

⟨J2J2O3⟩even,h⟨J1J1O3⟩even,h = ⟨J2J2O3⟩odd,h⟨J1J1O3⟩odd,h (1.264)

As we noted in the case of the double copy structure of ⟨TTO3⟩ in terms of ⟨JJO3⟩,

the conformal Ward identity for correlators of the form ⟨JsJsO3⟩ does not have a non-

homogeneous term. Hence the double copy relations that we arrived at here are purely

for the homogeneous terms.

1.9.3 Example: s1 = s2 = s3

The double copy relation between ⟨JJJ⟩ and ⟨TTT ⟩ is more subtle than those for corre-

lators with a scalar operator insertion. Unlike ⟨TTO3⟩ or ⟨JJO3⟩ these correlators have

a non-homogeneous term as well and we will see that the double copy structures map

homogeneous terms to homogeneous terms and non-homogeneous terms get mapped to

non-homogeneous terms.
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Homogeneous terms

The following double copy structure was noticed in [39] for the homogeneous term in the

even part of ⟨TTT ⟩ :

⟨TTT ⟩even,h = k1k2k3⟨JJJ⟩even,h⟨JJJ⟩even,h (1.265)

From the explicit expressions for the correlators, we notice :

⟨TTT ⟩odd,h = k1k2k3⟨JJJ⟩odd,h⟨JJJ⟩even,h (1.266)

We also have the remarkable relationship that the parity-even part of the homogeneous

term is given by the square of the odd part of the homogeneous term in ⟨JJJ⟩ :

⟨TTT ⟩even,h = k1k2k3⟨JJJ⟩odd,h⟨JJJ⟩odd,h (1.267)

Combining these relations we obtain the following double copy relation for the complete

homogeneous term of the ⟨TTT ⟩ correlator :

⟨TTT ⟩even,h + ⟨TTT ⟩odd,h = k1k2k3(⟨JJJ⟩even,h + ⟨JJJ⟩odd,h)2

=⇒ ⟨TTT ⟩h = k1k2k3 ⟨JJJ⟩2
h (1.268)

Non-homogeneous terms

⟨JJJ⟩even and ⟨TTT ⟩even also have non-trivial non-homogeneous parts between which

there exists the following double copy relation :

⟨TTT ⟩even,nh = (E3 − E(k1k2 + k2k3 + k1k3) − k1k2k3)⟨JJJ⟩2
even,nh (1.269)

This relation is independent of the double copy of the homogeneous part as the pre-factor

is different. The non-homogeneous parts of ⟨TTT ⟩odd and ⟨JJJ⟩odd are trivial as they

are contact terms.
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1.9.4 Spin s current correlator as s copies of the spin one current

correlator

In this sub-section, we note that we can write correlators of the form ⟨JsJsO3⟩ and

⟨JsJsJs⟩ as s copies of correlators of the spin-one current. Using the double copy relations

recursively we notice that :

⟨JsJsO⟩h = (k1k2)s−1 E + (2s− 1)k3

(E + k3)s
(⟨JJO⟩h)s (1.270)

Similarly, using the double copy relations recursively we notice that :

⟨JsJsJs⟩h = (k1k2k3)s−1 (⟨JJJ⟩h)s (1.271)

1.10 4D Flat-space scattering amplitude /CFT3 correlator cor-

respondence revisited

In this section, we look at the correspondence between flat-space amplitudes and CFT

correlators. Momentum-space correlators not only resemble scattering amplitudes due to

nontrivial double-copy relations but they also reproduce flat-space scattering amplitudes

in appropriate limits. A remarkable feature of the momentum space CFT correlation

function is its connection to flat-space amplitude [33,34]. Any d-dimensional three-point

CFT correlator can be shown to give rise to d + 1-dimensional three-point flat-space

amplitude in the flat-space limit. In the previous chapter, this was shown to hold true

for d = 3.

Any three-point CFT correlator of conserved current has a maximum of three struc-

tures, two parity-even and one parity-odd structure [74,202]. Two parity-even structures

can be obtained from free bosonic or free fermionic theory whereas the parity-odd struc-

tures can also be obtained from local Lagrangian such as Chern-Simons matter theo-

ries [71, 72]. On the other hand, there are two parity-even amplitude structures and two

parity-odd covariant amplitude structures [203,204]. This is summarised in the following

table.

The table immediately makes it clear that there is a gross mismatch in number of

independent structures of amplitude in flat space and CFT correlator. As can be seen
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Three-point

4D Flat-space

Amplitudes
3D CFT correlator

two parity-even

two parity-odd

two parity-even

one parity-odd

1 missing

Table 1.1: The amplitudes are of massless, arbitrary spin s gauge fields and the CFT
correlations are for conserved, arbitrary spin s currents.

in the table 1.1, the number of CFT correlators is less than the number of flat space

covariant amplitudes or the flat space spinor helicity amplitude. This immediately raises

the question on validity of the flat space amplitude/ CFT correlator correspondence.

Let us concentrate on the case of15 s3 ≤ s1 + s2. In this case as is well known,

see [14, 202], three are total three structures for CFT correlators of conserved currents

two parity even and one parity odd 16. This implies, in this case, we see there is one

less parity odd structure in CFT as compared to the covariant vertex. Interestingly,

we point out a CFT structure that in the flat space limit reproduces the missing flat

space amplitude. To do this we first show that parity odd flat space covariant amplitude

can be constructed starting from parity even flat space covariant amplitude by what we

call an epsilon transformation. We show that by using the same epsilon transform on

some combination of parity even free fermion and free boson CFT correlator of conserved

currents, we can construct a new parity odd CFT correlator which in the flat space limit

reproduces the correct flat space covariant parity odd vertex. Even though this new parity

odd CFT correlator is constructed out of epsilon transform of correlation of conserved

current, the resulting correlator is not that of conserved current, as will be discussed.

15For outside the triangle s3 > s1 + s2, see table 1.1 for counting. In this case, if we consider slightly
broken HS currents, then one gets one parity odd structure, which is still a mismatch with flat space
amplitude.

16However, if we allow for non-conserved currents then there are more allowed structures [14,205,206].
The point of interest of this paper is three-point function of conserved currents for which how the counting
works for flat space amplitude and CFT correlators is not discussed in these papers.
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1.10.1 Brief review of flat-space covariant vertex

In this section, we review known results for flat-space amplitude in four dimensions for

massless particles. We follow closely the notation and discussion in [204].

1.10.1.1 Covariant vertex

Consider a generic action of the form

S(3) =
∫
d4xC(∂xI

, ∂uI
)ϕ1(x1, u1)ϕ2(x2, u2)ϕ3(x3, u3)

∣∣∣∣∣
uI=0,xI=x

(1.272)

where

ϕ(x, u) = ϕµ1···µs(x)uµ1 · · ·uµs (1.273)

are higher spin fields and uI are some some auxiliary variables and C is some operator

which makes the higher-spin fields contract with each other with various derivatives

forming a cubic interaction. Under higher spin symmetry and gauge invariance, C can

be made up of only certain parity-even and parity-odd structures namely

Flat-space amplitudes Building blocks

Parity Position space Momentum space

Even
YI = ∂uI

.∂xI+1

ZI = ∂uI+1 .∂uI−1

YI = zI .pI+1

ZI = zI+1.zI−1

Odd
VI = ϵµνρσ∂uµ

I+1
∂xν

I+1
∂uρ

I−1
∂xσ

I−1

WI = ϵµνρσ∂uµ
1
∂uν

2
∂uρ

3
∂xσ

I

VI = ϵ(zI+1pI+1zI−1pI−1)

WI = ϵ(z1z2z3pI)

Table 1.2: Building blocks for flat-space amplitude in 4d. ϵ is 4D totally antisymmetric
tensor and the notation ϵ(xyzw) = ϵµνρσx

µyνzρwσ.

The gauge symmetry and higher spin symmetry constrain the possible amplitudes to

be

with G = Y1Z1 + Y2Z2 + Y3Z3. We have also assumed that s3 > s2, s1 with out

loss of generality. The minimal and non-minimal distinction comes from the number of
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Flat-space amplitudes

Parity Minimal Non-Minimal

parity-even gm,eG
s1Y s2−s1

2 Y s3−s1
3 gnm,eY

s1
1 Y s2

2 Y s3
3

parity-odd gm,oV1G
s1
1 Y

s2−s1−1
2 Y s3−s1−1

3 gnm,oV1Y
s1

1 Y s2−1
2 Y s3−1

3

Table 1.3: Amplitudes in 4d. The subscript "m" means minimal, "nm" means non-
minimal, "e" means parity even, "o" means parity odd.

derivatives or the number of momentum factors present in the amplitudes. Notice that for

the odd case, there is an issue when spins are coincident i.e. si = sj, one obtains negative

powers of derivatives which is not possible due to locality. For the case of s1 = s2 < s3,

one may use the identity

V1G
s1Y −1

2 Y s3−s1−1
3 ≈ 1

2 [V1Z2 − V2Z1 + (W2 −W1)Y3]Gs1−1Y s3−s1−1
3 (1.274)

to remove the negative powers. Such identities are derived using Schouten identities

and momentum conservation. For the case of coincidence of s1 = s2 < s3, notice that

(1.274) is anti-symmetric under the 1 ↔ 2 exchange. This implies for parity odd minimal

amplitude to be non-zero for this case, we do require the Chan-Paton factor which is

antisymmetric in exchange of 1 ↔ 2 indices. Together with the Chan-Paton factor and

(1.274), the amplitude becomes symmetric. For the case s1 = s2 = s3, it can be shown

that the negative powers for parity odd minimal amplitude cannot be removed [204]. In

this case, the cubic vertices with negative powers are simply dropped. The final results

for special cases are summarized below in the table. Let us note that, the discussion

involving scalar is simpler and can be obtained from results in Table 1.3. Some explicit

examples are worked in detail in the appendix A.10. In the next section, we show an

interesting relation between the parity even and parity odd part of the covariant vertex

discussed till now.

1.10.1.2 ϵ-transformation

In this section, we introduce what we call ϵ-transform which maps parity-even amplitude

to parity-odd amplitude and vice-versa. In 4D one may work with the following choice
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parity-odd flat-space amplitudes: special cases

Configuration Minimal Non-Minimal

s1 = s2 < s3 gm,o (V1Z2 − V2Z1 + (W2 −W1)Y3)Gs1−1Y s3−s1−1
3 gnm,oV1Y

s1
1 Y s1−1

2 Y s3−1
3

s1 = s2 = s3 × gnm,oV1Y
s1

1 Y s1−1
2 Y s1−1

3

Table 1.4: parity-odd special cases of amplitudes in 4d. The parity-even part of the
amplitude is as given in Table 1.3.

of momenta and polarization

pµ = (k, ki) zµ = (0, zi) (1.275)

with this choice the momentum space expressions in Table 1.2 take the form

VI = ϵ(zI+1zI−1kI−1)kI+1 − ϵ(zI+1zI−1kI+1)kI−1, YI = zI .kI+1

ZI = zI+1.zI−1, pI .pJ = −kIkJ + kI .kJ = 0 (1.276)

where we have used three-dimensional epsilon in the last expression, more precisely

ϵ0µνρ = ϵµνρ where index 0 is time direction. Let us define an ϵ-transformation [185]

which is given by

zi → ϵzki

k
(1.277)

The ϵ-transformation can also be implemented by a differential operator

[Oϵ]I = 1
kI
ϵ(zIkI

∂

∂zI
) (1.278)

which acts on parity-even gauge-invariant structures to give parity-odd gauge invariant

structures i.e

Oϵ : Mm,e → Mm,o

Oϵ : Mnm,e → Mnm,o. (1.279)
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We show this explicitly below. Consider the ϵ-transformation of the even minimal ampli-

tude

[Oϵ]2Mm,e = s1G
s1−1Y s2−s1

2 Y s3−s1
3 [Oϵ]2G+ (s2 − s1)Gs1Y s2−s1−1

2 Y s3−s1
3 [Oϵ]2Y2 (1.280)

Now, it can be shown 17 that

Y2Y3[Oϵ]2G = −GV1 (1.281)

Y3[Oϵ]2Y2 = −V1 (1.282)

which when used in (1.280) gives

[Oϵ]2Mm,e = −s2V1G
s1Y s2−s1−1

2 Y s3−s1−1
3 = Mm,o (1.283)

which is precisely the odd minimal amplitude. Similarly, for the even non-minimal am-

plitude, we have

[Oϵ]2Mnm,e = s2Y
s1

1 Y s2−1
2 Y s3

3 [Oϵ]2Y2 = −s2V1Y
s1

1 Y s2−1
2 Y s3−1

3 = Mnm,o (1.284)

where in the second equality (1.282) was used and we have precisely obtained the odd non-

minimal amplitude given in 1.3. Let us now consider some special examples to illustrate

this.

All equal spin: s1 = s2 = s3

Notice when s1 = s2 = s3 = s for minimal even amplitude, from (1.283) we get

[Oϵ]2Msss
m,e = −sGs−1Y −1

2 Y −1
3 (1.285)

These negative powers cannot be removed by any Schouten identities or degeneracies,

therefore, we conclude that parity odd minimal gauge-invariant vertex does not exist.

17Refer to Appendix C for its derivation.
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This is consistent with table 1.4. For the case of s1 = s2 = s3 = 2, we have

M222
m = gm,eG

2

M222
nm = gnm,eY

2
1 Y

2
2 Y

2
3 + gnm,oV1Y

2
1 Y2Y3 (1.286)

It is easy to show that non-minimal parity even and parity odd terms are related by

ϵ-transform. However, if we look at the ϵ-transform of the minimal even amplitude we

get

[M′]222 = ([Oϵ]1 + [Oϵ]2 + [Oϵ]3)G2 = − G

k1k2k3
(k2k3ϵ(z1k1k2)z2.z3 + cyclic terms)

(1.287)

which cannot be rewritten as a 4D Lorentz invariant structure. Hence it is not a valid

covariant amplitude. This is consistent with the fact that there can not exist any parity

odd minimal covariant vertex for an equal spin case.

Two equal spin: s1 = s2 ̸= s3

Another coincidence point of concern is s1 = s2 = s, where we obtain

[Oϵ]2Msss3
m,e = −sV1GY

−1
2 Y s3−s−1

3 (1.288)

These negative powers can be removed by using the Schouten identities [188] and re-write

them as

[Oϵ]2Msss3
m,e = −s1

2 [V1Z2 − V2Z1 + (W2 −W1)Y3]Gs−1Y s3−s−1
3 (1.289)

Due to the nature of the Schouten identities in 4D momentum space, an anti-symmetrization

in ϵ-transforms at 1, 2 was not necessary to derive the above, but one can in principle

still use anti-symmetrization and obtain the same result using (A.134)

([Oϵ]1 − [Oϵ]2)Msss3
m,e = s [V1Z2 − V2Z1 + (W2 −W1)Y3]Gs−1Y s3−s−1

3 (1.290)

However, as we will see later, this anti-symmetrization of the ϵ-transforms is necessary at

the level of the CFT correlator because not all Schouten identities in 4D momentum space
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carry on to the 3D momentum space. The ϵ-transform can be done at any operator in

the correlator, however, for the case of s1 = s2, some care needs to be taken. Notice that

(1.289) is anti-symmetric under 1 ↔ 2 while its minimal even counterpart is symmetric

under the exchange. This is due to the presence of Chan-Paton factors for the case of

s1 = s2. Therefore, an ϵ-transform of minimal even for s3 will give zero. Hence, when

Chan-Paton factors are involved, the ϵ-transform of s3 must be avoided.

1.10.2 CFT Correlator/ covariant vertex correspondence: A

new parity-odd CFT correlation function

In this section, we construct a parity-odd CFT correlation function which in the flat-

space limit goes over to parity-odd minimal amplitude listed in section 1.10.1. In the

case of flat-space amplitude, we explicitly showed in section 1.10.1.2 that the parity-

odd minimal amplitude is obtained from parity-even minimal amplitude by doing what is

called ϵ-transform. Our proposal for the CFT correlation function is exactly the analogue

of the amplitude case. We propose

⟨Js1Js2Js3⟩nh,o = [Oϵ]⟨Js1Js2Js3⟩nh,e = [Oϵ]
⟨Js1Js2Js3⟩FB + ⟨Js1Js2Js3⟩FF

2 (1.291)

which by construction produces the correct flat-space minimal parity-odd amplitude18.

Since this is non-homogeneous, this CFT correlator satisfies Ward-Takahashi (WT) iden-

tity and is given by

WT [⟨Js1Js2Js3⟩nh,o] = [Oϵ]
WTFB +WTFF

2 . (1.292)

When the spins satisfy triangle inequality si ≤ sj + sk, we have WTFB = WTFF [184]

which gives

WT [⟨Js1Js2Js3⟩nh,o] = [Oϵ]WTFB. (1.293)

For correlators with spin that violate the triangle inequality, we have WTFB ̸= WTFF ,

and hence we have to use (1.291). The explicit form of WT identity for general spins can

be very complicated. Below we work out a few simple examples of this correlator (1.291)
18In spinor helicity variables, the parity even non-homogeneous term used in (1.291) and parity odd

term defined in the same equation (1.291) are identical upto imaginary factor of i.
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and their flat-space limit. We also discuss the WT identity (1.292).

1.10.2.1 Example: ⟨JJT ⟩

Let us consider the simplest example of two spin-1 and one spin-2 operators. The parity

even part of the CFT correlator is given by [41,186]

⟨J(z1, k1)J(z2, k2)T (z3, k3)⟩e = ⟨J(z1, k1)J(z2, k2)T (z3, k3)⟩h,e + ⟨J(z1, k1)J(z2, k2)T (z3, k3)⟩nh,e

= 2(3k3 + E)
E4 (z3.k2)2(z2.k3)(z1.k3) +

[
2k2

3
E3 − cJ

2(k3 + E)
E2

]
(z3.k2)2(z1.z2)

+
[

1
E3 (−2k2

3 − k2
2 + k2

1 − 3k3k2 + 3k3k1) − cJ
2(k3 + E)

E2

]
(z3.z2)(z3.k2)(z1.k3)

+
[

1
E3 (−2k2

3 − k2
1 + k2

2 − 3k3k1 + 3k3k2) − cJ
2(k3 + E)

E2

]
(z1.z3)(z3.k2)(z2.k1)

+
[

(k3 + E)(k2
3 − (k2 + k1)2 + 4k2k1)

2E2 + cJ(2k2
3

E
− k2 − k1)

]
(z1.z3)(z3.z2) (1.294)

where term proportional to cJ is non-homogeneous parity even part and rest is parity

even homogeneous contribution. In the flat-space limit we get

lim
E→0

⟨J(z1, k1)J(z2, k2)T (z3, k3)⟩ = 6k3

E4 (z3.k2)2(z2.k3)(z1.k2) +O( 1
E3 )

+ cJ
2k2

3
E3 (z1.z2z3.k1 + z2.z3z1.k2 + z3.z1z2.k3)(z3.k2) + cJ O( 1

E2 ) (1.295)

which perfectly match with parity even minimal and non-minimal vertices

Mnm,e = (z3.k1)2(z2.k3)(z1.k2) Mm,e = (z1.z2z3.k1 + z2.z3z1.k2 + z3.z1z2.k3)(z3.k2).

(1.296)

The non-minimal parity odd amplitude is obtained by taking the flat space limit of parity

odd homogeneous contribution. The parity odd CFT correlator can be found in [186]. It

is easy to show that in the flat space limit,

lim
E→0

⟨JJT ⟩h,o → Mnm,o. (1.297)

However as it is clear, there is no analogue of the CFT correlator which in the flat space

limit reproduces correct flat space minimal parity odd amplitude. We now show using

definition (1.291) we get a CFT correlator which in the flat space reproduces correct
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parity odd minimal amplitude. As was discussed below (1.289), in this case also we need

to introduce Chan-Paton factors and anti-symmetric with respect to two spin-1 currents

to get parity-odd non-homogeneous results. Using the proposal (1.291), we see that for

⟨TJJ⟩nh,odd, we get

⟨JJT ⟩nh,o = ([Oϵ]2 − [Oϵ]1)⟨JJT ⟩nh,e

= ([Oϵ]2 − [Oϵ]1)
⟨JJT ⟩FB + ⟨JJT ⟩FF

2
= A(k1, k2, k3)z3.k1z3.z2ϵ(z1k1k3) +B(k1, k2, k3)z3.z2ϵ(z1k1z3)

+ C(k1, k2, k3)z3.k1z2.k3ϵ(z1k1z3) +D(k1, k2, k3)(z3.k1)2ϵ(z1k1z2)

− (2 ↔ 1) (1.298)

where

D = C = −A = E + k3

k2E2 B = − 1
2k2

(
−k2 − k1 + 2k2

3
E

)
. (1.299)

This new parity odd CFT correlator has a pole only in the total energy E. The ward

identity can be obtained using the proposal (1.292)

⟨JJk3.T ⟩nh,o = ([Oϵ]2 − [Oϵ]1)⟨JJk3.T ⟩nh,e

= −z1.z3ϵ(z2k2k3) + k1

k2
[(z1.k2)ϵ(z2k2z3) − (z3.k2)ϵ(z2k2z1)] − z3.k1ϵ(z2k2z1)

− (2 ↔ 1) (1.300)

One can confirm that (1.298) and (1.300) are consistent with each other by going to

Spinor-Helicity variables and checking conformal ward identity.

In the flat-space limit, we obtain

lim
E→0

⟨JJT ⟩nh,o ∼ 1
E2 (− (ϵ (z2z3k2) k3 − ϵ (z2z3k3) k2) (z3 · z1) + ϵ (z1z2z3) k2 (z3 · k1)) + O( 1

E
)

(1.301)

which matches with minimal odd amplitude in (A.119) and converting it in 4D notation

we obtain amplitude given in (A.117). Even though the correlator that has been con-

structed has a nice behaviour that it has only total energy singularity, it also has some
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other unusual properties which become clear in position space.

1.10.2.1.1 In position space

In position space, the ϵ-transform is given by

[Oϵ]I : ⟨O1(x1) · · ·Oµ1···µi···µI (xI) · · ·On(xn)⟩ → ϵµi
σα

∫ d3yI
|xI − yI |2

∂σxI
⟨O1(x1) · · ·Oµ1···α···µI (yI) · · ·O(xn)⟩

(1.302)

From the above, it is clear that the transformation is not so straightforward in position

space, unlike the momentum space. Let us look into the simplest example ⟨TJJ⟩. To

start with, let us consider the ϵ-transform of ward identity. The ward identity for ⟨TJJ⟩

in position space is given by

∂µ3 ⟨Jρ(x1)Jσ(x2)Tµν(x3)⟩ = ∂3νδ
(3)(x3 − x2)⟨Jσ(x3)Jρ(x1)⟩ − ∂3µδ

(3)(x3 − x2)δνσ⟨Jµ(x3)Jρ(x1)⟩

+ ∂νδ
(3)(x1 − x3)⟨Jσ(x2)Jρ(x3)⟩ − ∂µδ

(3)(x1 − x3)δνρ⟨Jσ(x2)Jµ(x1)⟩

(1.303)

Using (1.302) in the above equation, we get

∂µ3 ⟨Jρ(x1)Jσ(x2)Tµν(x3)⟩nh,o = ([Oϵ]2 − [Oϵ]1)∂µ3 ⟨Jρ(x1)Jσ(x2)Tµν(x3)⟩

= ϵσατ∂2ν∂
α
2

1
|x2 − x3|2

⟨Jτ (x3)Jρ(x1)⟩ − ϵσαν∂2µ∂
α
2

1
|x2 − x3|2

⟨Jµ(x3)Jρ(x1)⟩

+ ∂3νδ
(3)(x1 − x3)⟨Jσ(x2)Jρ(x3)⟩o − ∂1µδ

(3)(x1 − x3)δνρ⟨Jσ(x2)Jµ(x3)⟩o

− [(2, σ) ↔ (1, ρ)] (1.304)

In the first line, we made use of the properties of the delta function and we also have

made use of

⟨Jµ(x)Jν(y)⟩o = ϵµσα

∫ d3x1

|x− x1|2
∂σx1 ⟨Jα (x1) Jν(y)⟩e (1.305)
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in the second line. The RHS of (1.304) gives

∂µ3 ⟨Jρ(x1)Jσ(x2)Tµν(x3)⟩nh,o

= ϵσατ

(
−2δαν
x4

32
+ 8xα32xν32

x6
32

)(
δτρ
x4

13
− 2xτ13x13ρ

x6
13

)
− ϵσαν

(
−

2δαµ
x4

32
+ 8xα32xµ32

x6
32

)(
δµρ
x4

13
− 2xµ13x13ρ

x6
13

)

+ ∂1νδ
(3)(x1 − x3)ϵσρτ∂τ2 δ(3)(x2 − x3) − ∂1µδ

(3)(x1 − x3)δνρϵσµτ∂τ2 δ(3)(x2 − x3)

− [(2, σ) ↔ (1, ρ)]

≡ ϵσατ

(
−2δαν
x4

32
+ 8xα32xν32

x6
32

)(
δτρ
x4

13
− 2xτ13x13ρ

x6
13

)
− ϵσαν

(
−

2δαµ
x4

32
+ 8xα32xµ32

x6
32

)(
δµρ
x4

13
− 2xµ13x13ρ

x6
13

)

− [(2, σ) ↔ (1, ρ)] (1.306)

where in the last line we have removed contact terms. These contact terms will give rise

to a contact term in correlation function, see [186] for similar discussion. However, it

is important to note that, unlike in (1.303), no delta function appears in (1.306). This

implies that spin-2 current is not conserved even away from coincident points. This

implies we can’t identify this spin-2 current as a stress tensor. This is as expected as for

exactly conserved current we can’t have more than three structures.

WT identity for ⟨JTJ3⟩

The fact that Ward-Takahashi identity is non zero even away from contact points, is

a universal fact for non-homogeneous parity-odd terms, which can be checked easily.

Consider now the ward identity for ⟨J1J2J3⟩

∂γ3 ⟨J1µ(x1)Tνρ(x2)J3αβγ(x3)⟩ ∼ ∂3µδ
(3)(x3 − x1)⟨Tαβ(x3)Tνρ(x2)⟩ + ∂3(αδ

(3)(x3 − x1)⟨Tβ)µ(x3)Tνρ(x2)⟩

+ (3∂3α∂3β − δαβ□3)∂3(νδ
(3)(x3 − x2)⟨Jρ)(x3)J1µ(x1)⟩ + (3∂3ν∂3ρ − δνρ□3)∂3(αδ

(3)(x3 − x2)⟨Jβ)(x3)J1µ(x1)⟩

(1.307)

After an ϵ-transform we get

[Oϵ]1∂γ3 ⟨J1µ(x1)Tνρ(x2)J3αβγ(x3)⟩ ∼ ∂1µ
1

|x13|2
⟨Tαβ(x3)Tνρ(x2)⟩ + ∂1(α

1
|x13|2

⟨Tβ)µ(x3)Tνρ(x2)⟩

+ (3∂3α∂3β − δαβ□3)∂3(νδ
(3)(x3 − x2)⟨Jρ)(x3)J1µ(x1)⟩o + (3∂3ν∂3ρ − δνρ□3)∂3(αδ

(3)(x3 − x2)⟨Jβ)(x3)J1µ(x1)⟩o
(1.308)
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where

⟨Jα)(x1)J1β(x2)⟩o = ϵαβλ∂
λ
1 δ

(3)(x1 − x2) (1.309)

Just like ⟨JJT ⟩, we see that an ϵ-transform at x1 gives rise to contact terms in the second

line of (1.308) and is therefore dropped. We also get terms that do not vanish at non-

coincident points. Hence, we see that the ϵ-transform of conserved current correlations

gives rise to correlations that are not conserved. Let us consider another example, all

equal spin ⟨TTT ⟩.

1.10.2.1.2 Example: ⟨TTT ⟩

Consider now the ⟨TTT ⟩e correlator in momentum space

⟨T (z1, k1)T (z2, k2)T (z3, k3)⟩e = c1
k1k2k3

E6 [2z1.k2z2.k3z3.k1 + E(k3z1.z2z3.k1 + k1z2.z3z1.k2 + k2z3.z1z2.k3)]

+ cT

(
k1k2k3

E2 + k1k2 + k2k3 + k3k1

E
− E

)
(z1.z2z3.k1 + z2.z3z1.k2 + z3.z1z2.k3)2 (1.310)

which in the flat-space limit gives

lim
E→0

⟨T (z1, k1)T (z2, k2)T (z3, k3)⟩e = c1
k1k2k3

E6 [2z1.k2z2.k3z3.k1] +O( 1
E5 )

+ cT
k1k2k3

E2 (z1.z2z3.k1 + z2.z3z1.k2 + z3.z1z2.k3)2 + cTO( 1
E

) (1.311)
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which perfectly matches the minimal and non-minimal parity even vertices in (1.286).

For parity-odd case 19, we have

⟨T (z1, k1)T (z2, k2)T (z3, k3)⟩h,o

= (k1k2k3)
1
E3

[{(
k⃗1 · z⃗3

) (
ϵk3z1z2k1 − ϵk1z1z2k3

)
+
(
k⃗3 · z⃗2

) (
ϵk1z1z3k2 − ϵk2z1z3k1

)
− (z⃗2 · z⃗3) ϵk1k2z1E + k1

2 ϵ
z1z2z3E (E − 2k1)

}
+ cyclic perm

]

×
[ 1
E3

{
2
(
z⃗1 · k⃗2

) (
z⃗2 · k⃗3

) (
z⃗3 · k⃗1

)
+ E

{
k3 (z⃗1 · z⃗2)

(
z⃗3 · k⃗1

)
+ cyclic

}}]
(1.313)

In the flat-space limit, which becomes

lim
E→0

⟨TTT ⟩h,o = k1k2k3

E6

[(
k⃗1 · z⃗3

) (
ϵk3z1z2k1 − ϵk1z1z2k3

)
+ cyclic perm

] (
z⃗1 · k⃗2

) (
z⃗2 · k⃗3

) (
z⃗3 · k⃗1

)
(1.314)

which is precisely the non-minimal parity-odd cubic vertex mentioned in (1.286). Since

the three-point function of conserved currents at maximum can only have three structures,

we see that just like cubic vertex we do not have any analogue of parity odd-minimal

amplitude at the level CFT correlation function. However, let us define another parity-

odd structure namely

⟨TTT ⟩′
o = ([Oϵ]1 + [Oϵ]2 + [Oϵ]3)⟨TTT ⟩nh,e

= E3 − E (k1k2 + k2k3 + k3k1) − k1k2k3

E2k1k2k3
(z1.k2z2.z3 + z1.z2z3.k1 + z2.k3z3.z1)

[k2k3z2.z3ϵ(z1k1k2) + cyclic terms − k1k2k3Eϵ(z1z2z3)] (1.315)

which in the flat-space limit gives

lim
E→0

⟨TTT ⟩′
o ∼ −c123

E2 [V ′]222 + O( 1
E

) (1.316)

19Following [186], one can write parity-odd non-homogeneous piece as follows

⟨TTT ⟩nh,o = 1
24[ϵ(z1z2k1)(z1.z2)(z3.k1)2 − ϵ(z1z2k2)(z1.z3)(z2.z3)]

+ 1
12 [(z1.z3)(z2.z3)ϵ(z1z2k1)(k2

1 + 7
4k

2
2 + 7

4k
2
3) − (z1.z2)(z3.k1)2ϵ(z1z2k2)(k2

2 + 7
4k

2
1 + 7

4k
2
3)] + cyclic terms

(1.312)

However, one can see that ⟨TTT ⟩nh,o is just a contact term. This does not correspond to any cubic
vertex.
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Chapter 1. Momentum-space 3-point functions in CFT3

which is precisely what we computed in (1.287). As mentioned before, this flat-space

limit cannot be recast as a 4D flat-space amplitude. It is easy to show that, spin two

current that appears in (1.315) is not conserved. To show this we work in position space.

1.10.2.1.3 ϵ-transform WT identity of ⟨TTT ⟩ in position space

Consider the ⟨TTT ⟩ ward identity in position space

∂µ⟨Tµν(x)Tσρ(y)Tαβ⟩ = ∂νδ
(3)(x− y)⟨Tσρ(x)Tαβ(z)⟩ +

{
∂σ(δ(3)(x− y)⟨Tρν(x)Tαβ(z)⟩) + σ ↔ ρ

}
+ ∂νδ

(3)(x− z)⟨Tσρ(y)Tαβ(x)⟩ +
{
∂α(δ(3)(x− z)⟨Tβν(x)Tσρ(y)⟩) + α ↔ β

}
(1.317)

where we now perform an ϵ-transform and just like for the case of ⟨JJT ⟩ we find that

[Oϵ]y∂µ⟨Tµν(x)Tσρ(y)Tαβ⟩

∼ ϵσηζ∂
ζ∂ν

1
|x− y|2

⟨Tηρ(x)Tαβ(z)⟩ + ∂ρ(ϵσηζ∂ζ
1

|x− y|2
⟨Tην(x)Tαβ(z)⟩)

+ ϵσηζ∂
ζ 1
|x− y|2

∂η⟨Tρν(x)Tαβ(z)⟩ + +ϵσηζ∂ζ
1

|x− y|2
∂ρ⟨Tην(x)Tαβ(z)⟩

+ ∂νδ
(3)(x− z)⟨Tσρ(y)Tαβ(x)⟩odd +

{
∂α(δ(3)(x− z)⟨Tβν(x)Tσρ(y)⟩odd) + α ↔ β

}
∼ ϵσηζ∂

ζ∂ν
1

|x− y|2
⟨Tηρ(x)Tαβ(z)⟩ + ∂ρ(ϵσηζ∂ζ

1
|x− y|2

⟨Tην(x)Tαβ(z)⟩)

+ ϵσηζ∂
ζ 1
|x− y|2

∂η⟨Tρν(x)Tαβ(z)⟩ + ϵσηζ∂
ζ 1
|x− y|2

∂ρ⟨Tην(x)Tαβ(z)⟩ (1.318)

Again, the Ward identity has terms that survive at non-coincident points and therefore,

show that the ϵ-transform leads to a non-conserved spin-2 current.

1.11 Summary and Discussion

To summarize, we have systematically solved for 3-point CFT correlators involving higher

spin conserved currents and scalar operators in three dimensions. Spinor-helicity formal-

ism simplifies considerably the CWI-based analysis of correlators. It solves the problems

associated with degeneracy which makes direct computation in momentum space difficult.

In these variables, we found that the homogeneous part of the correlator gets an identical

contribution from the parity-even and parity-odd parts. We were also able to write down

momentum space correlators in terms of conserved conformally invariant structures. For

some correlators which are divergent in momentum space, a careful renormalization anal-
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ysis is required. However, in spinor-helicity variables, we observed that it turns out we

directly get the finite part of the correlator which does not require any renormalization.

We also verified some of the results using weight-shifting operators. We also established

various double copy relations for parity-violating CFT3 momentum space 3-point cor-

relators. The double copy structure is a very special property of CFT correlators in

momentum space, the analogue of which does not exist in position space. To understand

this structure, we divided the momentum space CFT correlation function into two parts,

which we called homogeneous and non-homogeneous pieces. It was crucial for our analy-

sis that the homogeneous part consists of two pieces of conformally invariant structures,

namely one parity-even and one parity-odd structure whereas the non-homogeneous part

has only one parity-even conformally invariant piece - all other contributions are con-

tact terms. Squaring the homogeneous piece could in principle generate three structures.

However, interestingly it turns out that squaring the parity-odd and even part produces

exactly the same structure, whereas the cross-term which is generated by multiplying

the parity-odd and parity-even part gives rise to the needed parity-odd structure. It was

also shown that in the flat-space limit, the three-point correlators reproduce the flat-

space three-point amplitudes in 4D. The flat-space limits of the double copy relations

also reproduce the double copy relations known for flat-space three-point amplitudes in

4D. This is very suggestive of a correspondence that may exist between correlators and

amplitudes. We focused in particular on the connection between the three-point CFT3

correlation function of conserved currents with flat space three-point amplitude of mass-

less gauge fields. In particular, we show the following map

⟨Js1Js2Js3⟩nh,e → M s1s2s3
m,e

⟨Js1Js2Js3⟩h,e → M s1s2s3
nm,e

⟨Js1Js2Js3⟩h,o → M s1s2s3
nm,o . (1.319)

This map indicates that the number of CFT correlation functions of conserved currents

are always less than the number of allowed structures for flat space amplitude. To generate

the missing parity-odd CFT3 structure, we demonstrated the existence of the ϵ-transform

that exists in the flat-space amplitudes. This ϵ-transform relates parity-even and parity-

odd amplitudes in momentum space. We simply generated the extra parity-odd CFT
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Chapter 1. Momentum-space 3-point functions in CFT3

structure using this transform. However, we showed that this extra parity odd CFT

correlator can not be constructed out of conserved currents. Interestingly, this extra CFT

correlator is consistent with the position space OPE limit. One of the obvious future

directions one can pursue is solving the momentum space four-point conformal ward

identities. It is already well-known that conformal blocks for scalar four-point functions

are given by the product of momentum space three-point functions as in . However,

a simpler expression in terms of momentum space structures is desired to demonstrate

double copy for the spinning four-point correlations. This will be the first step toward

establishing an amplitude/correlator correspondence for the four-point function. Such a

correspondence can shed some light on the parallels between the S-matrix and the CFT

bootstrap.
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Chapter 2

Chern-Simons Matter Theories

This chapter is largely based on the following papers written with my collaborators

• S. Jain, V. Malvimat, A. Mehta, S. Prakash, N. Sudhir (2020) All order exact result for

the anomalous dimension of the scalar primary in Chern-Simons vector models, Phys.

Rev. D 101 (2020) 12, 126017, arXiv: 1906.06342 [hep-th]

• K. Inbasekar, S. Jain, V. Malvimat, A. Mehta, P. Nayak (2020) Correlation functions in

N = 2 Supersymmetric vector matter Chern-Simons theory, JHEP 04 (2020) 207, arXiv:

1907.11722 [hep-th]

Three-dimensional free fermion and free boson theories are some of the simplest CFTs.

One of the examples of the interacting non-supersymmetric theory is boson or fermion

coupled to the Chern-Simons gauge field. If the matter is in fundamental representation,

these theories are called Chern-Simons matter theories [70–155]. The supersymmetric ex-

tensions of these theories exist [76,93,122,158–161]. In this chapter, we will be making use

of some techniques of conformal bootstrap, namely the Inversion Formula [207] to com-

pute the four-point function of scalar multiplets in N = 2 supersymmetric Chern-Simons

theories. This was first done for quasi-fermionic and quasi-bosonic theories in [208]. One

of the most well-known examples of Chern-Simons matter theory in N = 6 ABJM the-

ory where the matter is adjoint [158]. In this chapter, we will focus on the matter in

fundamental representation. Chern-Simons matter theories are interesting for various

reasons, see Figure 2.1. Chern-Simons matter theories are one of the simplest CFTs

that are exactly solvable in the large-N limit and there exists a lot of dualities amongst

various Chern-Simons theories [71–74, 77]. They also provide the simplest example for
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Chapter 2. Chern-Simons Matter Theories

Figure 2.1: Properties of Chern-Simons matter theories

non-SUSY gauge/gravity duality and field theory dualities [72]. They have a higher-

spin gravity dual called Vasiliev-type theories and have applications in condensed matter

physics where they are useful in understanding the Quantum Hall Effect [104, 156, 157].

Another important property of these theories is that they display anyonic behaviour [209].

Free bosonic and fermionic field theories along with the conformal symmetry enjoy higher-

spin symmetry which gets slightly broken when coupled to the Chern-Simons gauge field.

This also causes the operators in these theories to acquire anomalous dimensions which

can be easily computed using the slightly-broken higher-spin symmetry for s > 2 [109].

However, the anomalous dimension for the scalar operator cannot be ascertained using

this method and hence, remains unknown. In this chapter, we conjecture an all-loop

anomalous dimension of the scalar operator and justify it using loop calculations and

other checks. There are five types of Chern-Simons matter theories that are of interest

in this chapter. They are explicitly as follows

• The N = 2 supersymmetric (S) Chern-Simons-matter theory with a single chiral
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multiplet in the fundamental representation:

SS
N =2(ϕ, ψ) =

∫
d3x

[
iεµνρ

κ

4π Tr
(
Aµ∂νAρ − 2i

3 AµAνAρ
)

+Dµϕ̄D
µϕ+ ψ̄γµDµψ

+4π2

κ2 (ϕ̄ϕ)3 + 4π
κ

(ψ̄ψ)(ϕ̄ϕ) + 2π
κ

(ψ̄ϕ)(ϕ̄ψ)
]
.

(2.1)

• The critical bosonic (CB) theory

SCB (ϕ, σB) =
∫
d3x

[
iεµνρ

κB
4π Tr

(
Aµ∂νAρ − 2i

3 AµAνAρ
)

+Dµϕ̄D
µϕ+ σBϕ̄ϕ

]
(2.2)

• The regular fermion (RF) theory

SRF (ψ) =
∫
d3x

[
iεµνρ

κF
4π Tr

(
Aµ∂νAρ − 2i

3 AµAνAρ
)

+ ψ̄γµD
µψ
]

(2.3)

• The regular boson (RB) theory

SRB(ϕ) =
∫
d3x

[
iεµνρ

κB
4π Tr

(
Aµ∂νAρ − 2i

3 AµAνAρ
)

+Dµϕ̄D
µϕ+ (2π)2

κ2
B

(
xB6 + 1

)
(ϕ̄ϕ)3

]
(2.4)

• The critical fermion (CF) theory

SCF (ψ, σF ) =
∫
d3x

[
iεµνρ

κF
4π Tr

(
Aµ∂νAρ − 2i

3 AµAνAρ
)

+ ψ̄γµD
µψ − 4π

κF
ζψ̄ψ + (2π)2

κ2
F

xF6 ζ
3
]

(2.5)

The RF and CB theories are together called ‘quasi-fermionic’ theories while the RB and

CF theories were referred to as ‘quasi-bosonic’ theories. We will employ this nomenclature

in the rest of this chapter. Let us carefully review the theories under study and their

relations via RG flow and bosonization duality. The quasi-bosonic family of theories

flows to the quasi-fermionic family of theories under RG flow. In [210], the quasi-bosonic

family is described by three parameters1 λ̃QB, ÑQB and λ̃6,QB; and the quasi-fermionic
1The analysis of [210] is valid for theories with only even spins, e.g. O(N) vector models. For the

U(N) vector models we study here, the analysis of [210] has not been carried out, and there may be an
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Chapter 2. Chern-Simons Matter Theories

family is described by two parameters λ̃QF and ÑQF . The parameter Ñ is defined via the

two-point function of the stress-energy tensor, and is a measure of the number of degrees

of freedom of each theory – we will only be interested in the large Ñ limit and the first

non-trivial 1/Ñ corrections. In this limit, the spectrum is independent of the parameter

λ̃6,QB so we will ignore it in the discussion that follows.

The celebrated bosonization duality states that each family of theories has two very

different-looking descriptions. The quasi-bosonic family can be described as a theory of

Nb complex bosons transforming in the fundamental representation of U(Nb), coupled to

a level-κb Chern-Simons gauge field. It can also be described as a theory of Nf Dirac

“critical” fermions, in the fundamental representation of U(Nf ) coupled to a level κf
Chern-Simons gauge field. The quasi-fermionic family can be described as a theory of Nb

critical complex bosons transforming in the fundamental representation of U(Nb), coupled

to a level-κb Chern-Simons gauge field. It can also be described as a theory of Nf Dirac

fermions, in the fundamental representation of U(Nf ) coupled to a level κf Chern-Simons

gauge field. This duality is well-tested in the large Nb/f limit, with λb/f ≡ Nb/f

kb/f
held fixed.

In this limit we have the following relation between the parameters:

ÑQB = 2Nb
sin(πλb)
πλb

= 2Nf
sin(πλf )
πλf

ÑQF = 2Nb
sin(πλb)
πλb

= 2Nf
sin(πλf )
πλf

(2.6)

λ̃QB = tan
(
πλb
2

)
= cot

(
πλf

2

)

λ̃QF = cot
(
πλb
2

)
= tan

(
πλf

2

)

Because Nb/f and κb/f are integers (or half-integers), the parameters λb/f and Nb/f do not

run under RG flow from quasi-bosonic theory to quasi-fermionic theory. Under RG flow,

the quasi-bosonic theory defined by λ̃QB and ÑQB flows to the quasi-fermionic theory

described by:

λ̃QF = 1
λ̃QB

(2.7)

ÑQF = ÑQB. (2.8)

additional parameter, corresponding to the strength of an additional Chern-Simons U(1) Chern-Simons
field that could couple to the spin-1 conserved current, which we assume is turned off here.
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2.1. Chapter summary

We henceforth use Ñ without any subscript.

2.1 Chapter summary

This chapter is structured as follows. In section 2.2, the problem with computing the

anomalous dimension of scalar operator is explained along with our two-loop correction

computed for the critical boson and regular boson theories in 2.30 and 2.33. The details

of the Feynman integrals are also given. In section 2.3, the all loop conjecture is presented

for quasi-fermion and quasi-boson, respectively

γ̃0 = − 32
3π2

λ̃2
QF

1 + λ̃2
QF

1
Ñ

γ0 = − 32
3π2

λ̃2
QB

1 + λ̃2
QB

1
Ñ
. (2.9)

The conjecture is consistent with the two-loop computations and other all loops check

which are discussed in successive sections. This discussion is taken from [144]. In section

2.5, we review the N = 2 theory and its operator spectrum in some detail. In section

2.6, we determine the scalar multiplet 2 and 3-point functions via a direct computation.

In section 2.7, we determine the 4-point function of the bosonic and the fermionic scalar

operators in this theory using the double discontinuity technique developed in [208]. One

may refer to [145] for more details. We show that

⟨J b0(x1)J b0(x2)J b0(x3)J b0(x4)⟩ = disc+ 1
x2

13x
2
24
F (u, v) (2.10)

⟨Jf0 (x1)Jf0 (x2)Jf0 (x3)Jf0 (x4)⟩ = disc+ 1
x4

13x
4
24

G(u, v) (2.11)

where

F (u, v) = 1 + λ̃4

Ñ(1 + λ̃2)2
ffb(u, v) − 8

Ñ

2λ̃2

π5/2(1 + λ̃2)2

[
D̄11 1

2
1
2
(u, v) + D̄11 1

2
1
2
(v, u) + 1

u
D̄11 1

2
1
2
( 1
u
,
v

u
)
]

+ a1D̄1111(u, v) + c̃1G
AdS
ϕ4 + c2G

AdS
(∂ϕ)4 + c3G

AdS
ϕ2(∂3ϕ)2 (2.12)

G(u, v) = 1 + λ̃4

Ñ(1 + λ̃2)2
fff (u, v) + c̄1G

AdS
ϕ4 + c̄2G

AdS
(∂ϕ)4 + c̄3G

AdS
ϕ2(∂3ϕ)2 (2.13)

Finally, in section 2.8, we summarize our results and outline related open questions and

future directions. In various appendices, we collect our notation and conventions, some

technical details of the results in the main text of the paper and briefly summarize our

attempt at the direct computation of the 4-point function.
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Chapter 2. Chern-Simons Matter Theories

2.2 Anomalous dimension of operators with spin s > 0

Due to interactions in the Chern-Simons matter theories, the higher-spin symmetry is

broken and the infinite tower of higher-spin conserved currents becomes non-conserved.

These currents then obey a non-conservation equation of the form

∂ · Js = Ks−1 (2.14)

where Ks−1 is a multitrace primary operator. Assuming that the scaling dimension of Js
is given by s+ 1 + γs, one can then look at

⟨∂ · Js(x, z1)∂ · Js(0, z2)⟩ = ⟨Ks−1(x, z1)Ks−1(0, z2)⟩ (2.15)

By equating the divergence both sides one obtains the following formula for the anomalous

dimension

γs = − 1
s2
(
s2 − 1

4

) (z · x)2 ⟨Ks−1(x, z)Ks−1(0, z)⟩0
⟨js(x, z)js(0, z)⟩0

(2.16)

where the subscript ‘0’ stands for the free theory correlation. This formula eventually

leads to the expressions in 2.37 taken from [109]. Notice how this method cannot be used

for computing anomalous dimension of scalar operators as a non-conversation equation

for s = 0 doesn’t make sense. Therefore, in the coming sections, we will try to conjecture

the anomalous dimension of scalar operators and justify it via loop calculations and other

checks. Let us denote the scaling dimension of the scalar primary j0 in the quasi-bosonic

theory as ∆0, and the scaling dimension of j̃0 in the QF theory as ∆̃0. We define the

anomalous dimension as:

∆0 = 1 + γ0, ∆̃0 = 2 + γ̃0 (2.17)

2.2.1 Anomalous Dimension of j0 at Two Loops

In this subsection, we calculate the anomalous dimension of the operator j0 at two loops.

The diagrams which we need to evaluate are given in figure 2.2,2.3,2.4. The Feynmann

rules for these diagrams are listed in Appendix B.6 The logarithmic divergences arising
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Figure 2.2: Diagrams (B1)-(B4) depict loop corrections to the propagator. Diagrams
(V1) and (V2) are loop corrections to the vertex.

due to the loop correction of the propagators depicted in the diagrams (B1)-(B4) of the

figure 2.2 are given by

(B1) = 2
3k2C2C3 log[Λ] = 1 −N2

3k2 log[Λ] (2.18)

(B2) = 2
3k2 (C2

3 + C2C3

4 ) log[Λ] = N4 − 3N2 + 2
12k2N2 log[Λ] (2.19)

(B3) = 8
3k2 (C2

3 + C2C3

2 ) log[Λ] = 2
3k2 ( 1

N2 − 1) log[Λ] (2.20)

(B4) = 4
3k2C1C3 log[Λ] = 1

3k2

(
N − 1

N

)
log[Λ] (2.21)

The logarithmic divergences arising from the corrections to the vertex depicted in figure

2.2 are given by

(V 1) = 4
k2 (C2

3 + C2C3

4 ) log[Λ] = N4 − 3N2 + 2
2 k2N2 log[Λ] (2.22)

(V 2) = 8
k2C1C3 log[Λ] = 2

k2

(
N − 1

N

)
log[Λ]. (2.23)
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Following [86], we use these results, to compute the O( 1
N

) logarithmic divergence of the

two-point function ⟨j0j0⟩ to be:

2(B1 +B2 +B3 +B4) + V 1 + V 2 = 8
3
λ2

N
log[Λ] +O( 1

N2 ), (2.24)

where we have used re-expressed the result in terms of λ ≡ N
k

. Note that the U(N)

result is just the larg-N limit of the SU(N) result. Note that the loop corrections to the

propagator should be taken on each of the two legs of the vertex diagrams (B1)-(B4)

depicted in figure 2.2 and hence they contribute twice to the two-point function. The

two-point correlation function of the scalars in a d-dimensional CFT in momentum space

is given by

⟨j0(p)j0(0)⟩ = c

p2∆−d . (2.25)

Now we briefly describe how to obtain the anomalous dimension of operator j0 from two

point function of the same operator.The two-point correlation function of the scalars in

a d-dimensional CFT in momentum space is given by

⟨j0(p)j0(0)⟩ = c

p2∆−d . (2.26)

The scaling dimension ∆ can be expressed in 1
N

expansion as

∆ = ∆0 + γ0

N
+ O( 1

N2 ) (2.27)

where ∆0 is classical scaling dimension, γ0 is anomalous dimension to order 1
N

. Plugging

(2.27) in (2.26) and expanding ot leading order we obtain

⟨j0(p)j0(0)⟩ = 1
p2∆0−d (1 − 2γ0

N
log p)] (2.28)

Hence the anomalous dimension is given by −1/2 times the logarithmic divergence we

obtained earlier. Keeping corrections in the anomalous dimension upto O[ 1
N

], this leads

us to the following expression for the anomalous dimension at O[λ2]

γ0 = −4
3λ

2. (2.29)
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2.2. Anomalous dimension of operators with spin s > 0

Note that expression obtained for anomalous dimension in Eq.(2.29) is same as that

we obtain from perturbative expansion of our conjectured answer in (2.49).

UV Finite diagrams

Apart from the diagrams depicted in fig.2.2 there are other two-loop diagrams that do

not contribute to the anomalous dimension at order 1/N . They are depicted in Figure 2.3.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.3: All the diagrams appearing in this figure do not contribute to the anomalous
dimension at 1/N .

2.2.2 Quasi-Fermionic Theory

The leading order 1/N anomalous dimension for the critical bosonic theory appears in

[211] (see also [212, 213]). From the calculation of the order-λ2
b correction carried out

above, we get

γ̃0 = 1
Nb

(
− 16

3π2 + 4
9λ

2
b +O(λ4

b)
)
. (2.30)
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Figure 2.4: Diagram with a ghost loop which cancels diagram (i).

To order λ2
f , the anomalous dimension in the regular fermionic theory appears in [86,109]:

γ̃0 = −4
3λ

2
f

1
Nf

+O(λ4
f ). (2.31)

2.2.3 Quasi-Bosonic Theory

The order λ2
f correction anomalous dimension in the critical fermionic theory can be

calculated following [109,214] to be:

γ0 = 1
Nf

(
− 16

3π2 + 4
9λ

2
f +O(λ4

f )
)
. (2.32)

To order λ2
b , from the calculation carried out above the anomalous dimension in the

regular bosonic theory is

γ0 = −4
3λ

2
b

1
Nb

+O(λ4
b). (2.33)

The contributing two-loop Feynmann diagrams are given in 2.2.

2.2.4 Relation between the critical and non-critical theories

Equation (3.24) of [137], derives the following relation between γ̃0 and γ0:

γ̃0 + γ0 = − 16λb
3π sin πλb

1
Nb

= − 16λf
3π sin πλf

1
Nf

= − 32
3π2

1
Ñ
, (2.34)

Equation (2.34) is explicitly satisfied by the two-loop results above. However, it is a

non-trivial constraint that must be satisfied to all orders in λ by our conjecture below.
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2.2. Anomalous dimension of operators with spin s > 0

2.2.5 Higher-Spin Results

The 1/N higher-spin spectrum for the quasi-fermionic theory, which is known to all orders

in λ̃QF , is given by [109] :

γQFs = 1
Ñ

(
aQFs

λ̃2
QF

1 + λ̃2
QF

+ bQB
s

λ̃2
QF

(1 + λ̃2
QF )2

)
+O( 1

N2 ) . (2.35)

Here γQFs = ∆s − (s + 1) is the anomalous dimension of the spin-s primary. A similar

expression holds for the quasi-bosonic theory. The expressions for the spin-dependent

constants turn out to be identical2 for both the quasi-bosonic and quasi-fermionic theories

and is:

as =


16

3π2
s−2
2s−1 , for even s ,

32
3π2

s2−1
4s2−1 , for odd s ,

(2.36)

bs =


2

3π2

(
3

s∑
n=1

1
n− 1/2 + −38s4 + 24s3 + 34s2 − 24s− 32

4s4 − 5s2 + 1

)
, for even s ,

2
3π2

(
3

s∑
n=1

1
n− 1/2 + 20 − 38s2

4s2 − 1

)
, for odd s .

(2.37)

While this result does not apply to the case of spin-0, it serves as an inspiration for

our conjecture. One might be tempted to “analytically continue” the expressions for as
and bs in [109], to s = 0, using

s∑
n=1

1
n− 1/2 = γ − ψ(s) + 2ψ(2s) = Hs−1/2 + 2 ln 2 (2.38)

resulting in

aAC0 → 32
3π2 , bAC0 → − 64

3π2 . (2.39)

While this so-called “analytic continuation” gives the correct answer for the value of γ0

obtained from the two-loop calculation in the regular fermionic (bosonic) theory, it leads

to an incorrect prediction for γ0 and γ̃0 in the critical bosonic (fermionic) theories at

λ̃ → ∞.

2This is an unexplained coincidence at present, and is not true at order 1/N2, as can be seen from
[215,216].
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2.3 Our conjecture

Here, we conjecture that the anomalous dimension of the scalar still takes the form given

by equation (2.35) for s = 0, and we attempt to determine constants a0 and b0 that

satisfy the results listed in section 2.2.

2.3.1 Conjecture in Quasi-Fermionic theory: The γ̃0

We can determine a0 and b0 in the quasi-fermionic theory, by first expanding around

λ̃QF = ∞:

γ̃0 = 1
Ñ

(
aQF0 + bQF0 − aQF0

λ̃2
QF

+O( 1
λ̃4
QF

)
)
. (2.40)

We can now compare this to the two-loop result from the critical bosonic theory (2.30).

This yields:

aQF0 = − 32
3π2 (2.41)

bQF0 = 0. (2.42)

We thus obtain the following expression for γ̃0:

γ̃0 = − 32
3π2

λ̃2
QF

1 + λ̃2
QF

1
Ñ

(2.43)

Making a perturbative expansion around λ̃ = 0, we find

γ̃0 = − 32
3π2 λ̃

2
QF

1
Ñ

(2.44)

which precisely reproduces the two-loop result in the regular fermionic theory (2.31), thus

providing us a non-trivial test of our conjecture.

2.3.2 Conjecture in Quasi-Bosonic theory: The γ0

Repeating this procedure in the quasi-bosonic theory, we again find that

aQB0 = − 32
3π2 (2.45)

bQB0 = 0. (2.46)
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so

γ0 = − 32
3π2

λ̃2
QB

1 + λ̃2
QB

1
Ñ
. (2.47)

2.3.3 All loop check of our conjecture

As a final non-trivial check of our conjecture we note that, using our expressions for γ0

and γ̃0, we obtain

γ̃0 + γ0 = − 16λb
3π sin πλb

1
Nb

= − 16λf
3π sin πλf

1
Nf

= − 32
3π2

1
Ñ
, (2.48)

which is exactly equation (2.34) and is satisfied to all orders in λ̃.

2.3.4 Anomalus dimension interms of λb and λf variables

Let us conclude by presenting the expression for γ̃0 and γ0 in terms of variables λb and

λf variables. Using (2.6), we have:

γ̃0 = − 8λb
3πNb

cot
(
πλb
2

)
= − 8λf

3πNf

tan
(
πλf

2

)
(2.49)

and

γ0 = − 8λb
3πNb

tan
(
πλb
2

)
= − 8λf

3πNf

cot
(
πλf

2

)
. (2.50)

Note that our conjecture also reproduces the all the known results reported in section

2.2.

2.4 Two-sided Padé approximation

Let us also observe that our conjecture can be thought of as a two-sided Padé approxi-

mation. In this sense, even if our conjecture turns out to be incorrect, it provides a good

estimate for the anomalous dimension of the scalar primary that takes into account all

known weak-coupling and strong-coupling calculations. Consider making an (m,n)-Padé

approximation of γ0 as follows:

γ
(m,n)
0 =

A0 + A2λ̃
2
QB + . . .+ Amλ̃

m
QB

1 +B2λ̃2
QB + . . .+Bnλ̃n

. (2.51)

We only include even powers of λ̃ as the anomalous dimension must be parity-invariant.

The (2, 2) Padé approximation has three unknowns. We have four perturbative data
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to constrain it:

• The fact that γ0 vanishes when λ̃QB = 0.

• A two-loop calculation γ0 in the regular-bosonic theory.

• The value of γ0 in the critical fermionic theory at λb = 0.

• A two-loop (order λ2
b) calculation of γ0 in the critical fermionic theory.

Hence the Padé-approximation is overconstrained. Nevertheless, it is possible to fit all

four results with following choice of three coefficients.

A0 = 0, A2 = − 32
3π2 , B2 = 1. (2.52)

Repeating the calculation to obtain a (2, 2) Padé approximation for the quasi-fermionic

theory, we obtain the same coefficients. However, we also have to impose the extra con-

straint of equation (2.34), which turns out to be automatically satisfied. Hence, the

simplest Padé approximation to the perturbative data we have seems to work very well.

Of course, it is possible to obtain higher-order Padé approximations that satisfy all these

constraints, so our answer is not uniquely determined by this procedure. But, it is an

interesting observation that, for a variety of physical quantities, such as planar three-

point functions [210], planar four-point function of the scalar primary [208], and the 1/N

higher-spin spectrum [109], a relatively simple Padé approximation defined using the

variables λ̃ and Ñ , happens to coincide with the exact answer.

2.5 N = 2 theory and its Operator Spectrum

In this section, we are interested in N = 2 U(N) Chern-Simons theory coupled to single

chiral multiplet, Φ ≡ (ϕ, ψ), in the fundamental representation of the gauge group. The

position space Lagrangian for the theory is given in 2.2. The theory has two parameters

: the rank of the gauge group, N , and the Chern-Simons level, κ, which is quantized to

take only integer values [217]. κ−1 controls the strength of gauge interactions and the

theory is perturbative for large values of κ at any finite N . This theory is conjectured to

be self-dual under a strong-weak type duality, [70]. In the ’t Hooft like large N limit

κ → ∞, N → ∞ with λ = N

κ
fixed (2.53)
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of interest in this paper, the duality transformation is

κ → −κ, λ → λ− sgn(λ). (2.54)

Apart from the matching of many of the supersymmetric observables which can be

computed at finite N and κ using supersymmetric localization techniques, recent ex-

act computation of many non-supersymmetric observables, e.g. the thermal partition

function, in the large N limit [71, 72, 77, 79, 83, 85] has provided ample evidence for this

conjectured duality.

The theory is quantum mechanically (super) conformal for all values of κ and N . In

the ’t Hooft limit, one can focus on the single trace superconformal primary operator

spectrum of the theory. Though our theory has N = 2 superconformal symmetry, in this

paper we will work in the N = 1 superspace formulation to allow us to use the relevant

results of [93] for our computations. In the N = 1 language, the operator spectrum of

the theory consists of a set of supercurrent operators [218]

J (s) =
2s∑
r=0

(−1)
r(r+1)

2


2s

r


∇rΦ̄∇2s−rΦ , (2.55)

which are written in terms of the superfields,

Φ = ϕ+ θψ − θ2F, Φ̄ = ϕ̄+ θψ̄ − θ2F̄ .

and the superscript s in(2.55) takes values in {0, 1
2 , 1,

3
2 , . . .}. Here, we have also defined

(2.56)using the auxiliary commuting polarisation spinors, λαi , which keep track of

the spin; and ∇αi
are the standard supersymmetry invariant gauge-covariant derivatives.
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Their action on the matter superfields of our theory is given by,

∇αΦ =DαΦ − iΓαΦ

∇αΦ̄ =DαΦ̄ + iΓαΦ̄ (2.57)

The explicit expressions for the spin 0 operator and the first few spin-s currents are,

J0 = Φ̄Φ

Jα = Φ̄∇αΦ − ∇αΦ̄Φ = Φ̄DαΦ −DαΦ̄Φ − 2iΦ̄ΓαΦ

Jαβ = Φ̄∇α∇βΦ − 2∇αΦ̄∇βΦ + ∇α∇βΦ̄Φ

Jαβγ = Φ̄∇α∇β∇γΦ − 3∇αΦ̄∇β∇γΦ − 3∇α∇βΦ̄∇γΦ + ∇α∇β∇γΦ̄Φ

(2.58)

In the free limit of the theory i.e. λ → 0, each of these supercurrents, J (s) with s ̸= 0,

satisfies the conservation equation

Dα

(
∂

∂λα
J (s)

)
= 0 (2.59)

and constitutes two component conserved current operators {J (s), J (s+ 1
2 )} in its θ expan-

sion [218]. At finite λ, the conservation equation (2.59) is violated at order 1
N

by double

trace operators for s ≥ 2 [71,218]. Here, we are interested in the scalar operator J0(θ, x).

There is no conservation equation associated with this operator and it constitutes 2 scalar

and 1 spin half operator as follows

J (0)(θ, x) = J b0(x) + θαΨα(x) − θ2Jf0 (x) (2.60)

where

J b0(x) = ϕ̄ϕ(x), Ψα(x) = (ϕ̄ψα + ψ̄αϕ)(x), Jf0 (x) = ψ̄ψ(x). (2.61)

In the subsequent sections, we compute the 2 and 3-point functions of the J (0) operator

and two component of the 4-point function.

2.6 Correlation functions

In this section, we compute the two and three-point correlation function of the J0(θ, p)

operator in momemtum space. Two of the main ingredients for these computations are
100



2.6. Correlation functions

the exact propagator (2.63) and the renormalized four point vertex for the fundamental

superfield Φ(θ, p) (ν4 in 2.64). These were computed in [93] for a more general class

of theories with N = 1 supersymmetry which can be thought of as one parameter3

deformation of the N = 2 theory of interest in this paper. Below, we list these results

for our N = 2 theory, conveniently stated in term of the exact quantum effective action

S = S2 + S4 ,

S2 =
∫ d3p

(2π)3d
2θ1d

2θ2

[
Φ̄(θ1,−p)e−θα

1 pαβθ
β
2 Φ(θ2, p)

]
,

S4 = 1
2

∫ d2p

(2π)3
d2q

(2π)3
d2k

(2π)3d
2θ1d

2θ2d
2θ3d

2θ4[
ν4(θ1, θ2, θ3, θ4; p, q, k)Φi(θ1,−(p+ q))Φ̄i(θ2, p)Φ̄j(θ3, k + q)Φj(θ4,−k)

]
(2.62)

The quadratic part of the effective action receives no quantum corrections at large N in

the N = 2 theory. The propagator is thus tree-level exact and given by

⟨Φ̄(θ1, p1)Φ(θ2, p2)⟩ = (2π)3δ3(p1 + p2)P(θ1, θ2; p1)

= (2π)3δ3(p1 + p2)
e−θα

1 θ
β
2 (p1)αβ

p2
1

.
(2.63)

The quartic superspace vertex, ν4, does receive quantum corrections and takes the fol-

lowing form

ν4(θ1, θ2, θ3, θ4; p, q, k) = e
1
4X.(p.θ12+q.θ13+k.θ43)F4(θ12, θ13, θ43; p, q, k),

with F4 = θ+
12θ

+
43

[
A(p, q, k)θ−

12θ
−
43θ

+
13θ

−
13 + C(p, q, k)θ−

12θ
+
13

+D(p, q, k)θ+
13θ

−
43

] (2.64)

Here, we have used the following notation for the sum and the difference of Grassmann

variables to avoid clutter,

Xα =
n∑
i=1

θαi , θαin = θαi − θαn . (2.65)

3Quartic superpotential term : − π(ω−1)
κ

∫
d3x d2θ (Φ̄Φ)2. ω = 1 is the N = 2 point.
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θ1

θ2

θ3

θ4

p + q

p

k + q

k

Figure 2.5: Diagrammatic representation of the exact four point vertex, ν4 in (2.64).

The overall exponential factor is determined by supersymmetric Ward identity (2.69),

while the coefficient functions A, C, and D require explicit computation and are given

by [93]

A(p, q, k) = −2πi
κ
e

2iλ
[

tan−1
(

2ks
q3

)
−tan−1

(
2ps
q3

)]
,

C(p, q, k) = D(p, q, k) = 2A(p, q, k)
(k − p)−

.

(2.66)

Note that the vertex ν4 was computed in a special momentum configuration, namely

q+ = q− = 0. (2.67)

while the momenta p and k are arbitrary 4. For this reason, our computation of correlation

functions will also be a restricted configuration in which the momentum of J0 operators

are restricted to lie only in the 3-direction. Diagrammatically, the exact four-point vertex

will be represented as in Figure 2.5.

2.6.1 Constraints on correlation functions from supersymmetry

To begin with, let us study the constraints on an arbitrary correlation function due to

supersymmetry. As stated earlier, although our theory has N = 2 supersymmetry, we

will be working in N = 1 superspace following [93]. A general n-point correlation function

of N = 1 scalar superfield is constrained by supersymmetry and translation invariance

4We refer the reader to appendix B.1 for conventions for labeling momenta.
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to take the following form [93]

⟨O1(θ1, p1) . . .On(θn, pn)⟩

= (2π)3δ3
(

n∑
i=1

pi

)
exp

[(
1
n

n∑
i=1

θi

)
.

(
n∑
i=1

pi.θi

)]
Fn({θin}; {pi}).

(2.68)

The δ3(∑i pi) follows from translation invariance while the overall Grassmann exponential

factor follows from invariance under N = 1 supersymmetry. Note that the function Fn

above only depend on the differences of the Grassmann coordinates. Following [93], the

form is easily derived as follows

0 =
[
n∑
i=1

Q(i)
α

]
⟨O1(θ1, p1) . . .On(θn, pn)⟩

=
[
n∑
i=1

(
∂

∂θαi
− (pi)αβθβi

)]
⟨O1(θ1, p1) . . .On(θn, pn)⟩

=
(
n

∂

∂Xα
−

n−1∑
i=1

(pi)αβθβin
)

⟨O1(θ1, p1) . . .On(θn, pn)⟩.

(2.69)

In the last line above, we used momentum conservation to replace pn with ∑n−1
i=1 (−pi).

The factorized form in (2.68) follows as the solution to the last equation in (2.69).

2.6.2 J0 vertex

Before proceeding to the computation of correlation functions, it would be useful to com-

pute an intermediate quantity, the J0-vertex. It is defined by stripping of the propagators

from ⟨J0ΦΦ̄⟩ as follows

⟨J0(θ1, p1)Φ(θ2, p2)Φ̄(θ3, p3)⟩ =∫ d3p′
2

(2π)3
d3p′

3
(2π)3d

2θ′
2d

2θ′
3

[
⟨J0(θ1, p1)Φ(θ′

2, p
′
2)Φ̄(θ′

3, p
′
3)⟩verP(θ′

2, θ2; −p2)P(θ′
3, θ3; p3)

]
(2.70)

and satisfies the same Ward identity as a three-point function (2.68). The vertex receives

contribution both from the free propagation of the fundamental field as well as from the

interaction vertices in the theory. The free part vertex is simply proportional to the

momentum and the Grassmannian δ-functions while the interacting part of the vertex

can be computed from the exact ν4 vertex. Figure (2.6) shows the relevant diagrams.
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(θ1, p)

θa

θb

θ2

θ3

p + s

s

p + q

q

= +(θ1, p)

θ2

θ3

p + s

s

(θ1, p)

s

p + s

θ2

θ3

Figure 2.6: Solid circle on the LHS represents the full exact J0 vertex and the first dia-
gram on RHS is the free vertex. The second diagram on RHS includes all the interactions
which are accounted by insertion of exact 4 point vertex (2.64) connected to the external
J (0) operator using the exact propagator.

⟨J0(θ1, p)Φ(θ2, r)Φ̄(θ3, s)⟩ver = ⟨J0(θ1, p)Φ(θ2, r)Φ̄(θ3, s)⟩ver,free + ⟨J0(θ1, p)Φ(θ2, r)Φ̄(θ3, s)⟩ver,int

where ⟨J0(θ1, p)Φ(θ2, r)Φ̄(θ3, s)⟩ver,free = (2π)3δ3(p+ r + s) ν3,free(θ12, θ32; p, s)

= (2π)3δ3(p+ r + s)θ+
32θ

−
32θ

+
12θ

−
12

and ⟨J0(θ1, p)Φ(θ2, r)Φ̄(θ3, s)⟩ver,int

= (2π)3δ3(p+ r + s)
[∫ d3q

(2π3)d
2θad

2θb P(θ1, θa; q + p)P(θb, θ1; q)ν4(θa, θb, θ2, θ3; q, p, s)
]

= (2π)3δ3(p+ r + s)e 1
3 θ123.(p.θ12+s.θ32)ν3,int(θ12, θ32, p, s)

(2.71)

Explicit computation of the above integral, with constraint p+ = p− = 0 following from

the (2.67), leads to the following result for the full J0-vertex factor

ν3 = (ν3,free + ν3,int) (θ12, θ32, p, s)

= 1
2s+

[
1 − e

2iλ tan−1( 2ss
p3

)
]
θ+

32θ
+
12 + 1

2p3

(
e

2iλ tan−1( 2ss
p3

)−iπλsgn(p3) − 1
)
θ+

32θ
−
32

+
(

1 + 1
6(−4 + e

2iλ tan−1( 2ss
p3

) + 3e2iλ tan−1( 2ss
p3

)−iπλsgn(p3))
)
θ+

32θ
−
32θ

+
12θ

−
12

(2.72)

The J0-vertex computed above will be useful in further computations of 2 and 3-point

functions of the J0 operator.
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(θ1, p) (θ2, − p − s)

(θ3, s)

p + q

q −s + q

θa

θb θc

θd

θeθf

(θ3, s) (θ2, − p − s)

(θ1, p)

p + s

q −p + q

θa

θb θc

θd

θeθf

(θ1, p) ↔ (θ3, s)

(A) (B)

Figure 2.7: The full J0 3 point function is obtained by connecting three exact J0-vertices
with exact propagators. There are two such diagrams, as shown above, which turn out
to be equal.

θa

θb

(θ1, p)

p + q

q

(θ2, − p)

θ2

θ2

Figure 2.8: The full J0 2 point function is obtained by connecting the exact J0-vertex
(solid circle) to the free vertex (cross) with exact propagators (thick line).

2.6.3 ⟨J0J0⟩ correlation function

The two-point function can be straightforwardly computed from the J0-vertex determined

in the previous section by combining the exact vertex on one side with the free vertex on

the other side. Figure (2.8) shows the relevant diagram which when computed leads to

the following non-vanishing component of the correlators

⟨J b0(p)J b0(−p)⟩ = N

8|p|
sin(πλ)
πλ

⟨Jf0 (p)Jf0 (−p)⟩ = −N |p|
8

sin(πλ)
πλ

⟨Ψα(p)Ψβ(−p)⟩ = N

8

(
pαβ
|p|

sin(πλ)
πλ

+ Cαβ
1 − cos(πλ)

πλ

)

⟨J b0(p)Jf0 (−p)⟩ = −N

8
(1 − cos(πλ))

πλ

(2.73)
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Let us compare the above two-point functions with the corresponding two-point func-

tions in the regular fermionic and regular bosonic theories studied in [77] and [79] respec-

tively. Note that as opposed to the regular bosonic and regular fermionic theories studied

in [77] and [79], the λ dependence of the two-point function of J b0 and Jf0 operators is the

same as that of the higher spin currents in the non-supersymmetric cases. Further, using

the double trace factorization argument of [96] relating the two-point function of current

operators in the supersymmetric and the above-mentioned non-supersymmetric theories,

we know that the two-point function of all the current operators in our supersymmetric

theory is exactly the same as those of the corresponding regular boson/fermion theory.

Thus, we see that in our theory the two-point function of scalar operators is the same as

that for the higher spin current operators. The reason for this is supersymmetry. Though

we are working in N = 1 superspace language, our theory has underlying N = 2 super-

symmetry under which the scalar operators J b0 , J
f
0 belong to the same supersymmetry

multiplet as the spin 1 conserved current and thus the two-point function of the two are

thus related by supersymmetry.

2.6.4 ⟨J0J0J0⟩ correlation function

The full 3-point function can be constructed by combining three J0 vertices with exact

propagators. There are two such diagrams shown in figure (2.7). Each of these two

diagrams can easily be shown to be cyclically symmetric and related to each other by

pair-exchange of any two J0 insertions. An explicit computation of the diagram shows

that each of the diagrams is completely symmetric (cyclic as well as under pair-exchange)

by itself and the two diagrams are equal. The full 3 point function is then just twice the

contribution of the first diagram from which the non-zero components of the three-point

function can be extracted
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⟨J b0(p3)J b0(s3)J b0(−p3 − s3)⟩ = sin(2πλ)
2πλ

N

8|p3s3(p3 + s3)|

⟨Jf0 (p3)Jf0 (s3)Jf0 (−p3 − s3)⟩ = −iN
8

(sin(πλ))2

πλ

⟨J b0(p3)J b0(s3)Jf0 (−p3 − s3)⟩ = (sin(πλ))2

πλ

(−iN)
8|p3s3|

⟨Jf0 (p3)Jf0 (s3)J b0(−p3 − s3)⟩ = sin(2πλ)
2πλ

N

16|p3 + s3|

⟨Ψ+(p3)Ψ−(s3)J b0(−p3 − s3)⟩ = N

16pss3(p3 + s3)

(
sin(2πλ)

2πλ
(
|p3| − |s3| − (p3 − s3)sgn(p3 + s3)

)
− i

(sin(πλ))2

πλ
sgn(p3 + s3)(|p3 + s3| − |p3| + |s3|)

)

⟨Ψ+(p3)Ψ−(s3)Jf0 (−p3 − s3)⟩ = N

16pss3

(
sin(2πλ)

2πλ
(
|p3 + s3| − |p3| − |s3|

)
+ i

(sin(πλ))2

πλ
sgn(p3 + s3)

(
(p3 − s3)|p3 + s3| − |p3| + |s3|

))
(2.74)

Notice that in the above result for 3 point functions, two different functional forms

of λ dependences appear, namely sin(2πλ)
2πλ and sin2 πλ

πλ
. The two of them differ in a crucial

way. The first one has a finite λ → 0 limit and is invariant under parity under which λ

is odd. The second is odd under parity and vanishes in λ → 0 limit. This result thus

provides some support for the conjecture made in [218] that the three-point functions in

N = 1 superconformal theories with higher spin symmetry have exactly one parity even

and one parity odd structure.

2.7 Four point functions

In the previous section, we evaluated the 3-point functions involving the J0 operator in

the N = 2 supersymmetric theory by computing the required vertex. However, the direct

computation of the four-point function of J0 operator following the same technique has

proven to be intractable in our attempt till now. We describe our attempt to evaluate this

four-point function in momentum space through the required vertices in the Appendix

(B.4).

In this section, we determine the four-point correlators of the J b0 and Jf0 operators

using a novel method developed in [208], which we briefly review below. Note that we
107



Chapter 2. Chern-Simons Matter Theories

will be evaluating the 4-point correlation function in the position space as in [208].

Consider the position space four-point correlator of the identical external operators

with conformal dimensions ∆. The function A which is known as the reduced correlator

is defined as follows

⟨O(x1)O(x2)O(x3)O(x4)⟩ = 1
x2∆

12

1
x2∆

34
A(u, v) = 1

x2∆
13

1
x2∆

24

A(u, v)
u∆ . (2.75)

Here, u, v are the standard cross-ratios:

u =
(

|x12||x34|
|x13||x24|

)2

, v =
(

|x14||x23|
|x13||x24|

)2

.

The conformal block expansion expressed in terms of the reduced correlator A(u, v) is

given as

A(u, v)
u∆ = 1

u∆

∑
k

C2
OOOk

G∆k,Jk
(u, v) (2.76)

where G∆k,Jk
(u, v) is known as the conformal block corresponding to the operator Ok

with scaling dimension ∆k and spin Jk.

Figure 2.9: Schematic for the conformal block expansion

In the supersymmetric four point functions of J0 operators, the relevant exchanges

are schematically shown below

2.7.1 Review of the double discontinuity technique

In [208], the authors determine the four-point correlation functions of the scalar operator

in the non-supersymmetric scalar/fermion coupled to Chern Simons gauge field i.e. quasi-

bosonic and quasi-fermionic theory respectively. In order to obtain the required four-point
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2.7. Four point functions

Figure 2.10: Schematic for the exchanges relevant in the supersymmetric scalar corre-
lators

functions, the authors utilize the inversion formula which relates the double discontinuity

to the OPE coefficients [207]. The authors first prove an interesting theorem that in the

large-N limit of a CFTd, the double discontinuity constrains the four-point correlator

up to three contact terms in AdSd+1. Suppose there are two solutions G1 and G2 to the

crossing equation with the same double discontinuity then they are related by the contact

interactions in the AdS as follows

G1 = G2 + c1G
AdS
ϕ4 + c2G

AdS
(∂ϕ)4 + c2G

AdS
ϕ2(∂3ϕ)2 (2.77)

Furthermore, the authors showed5 that for the four-point function of single trace scalar

operator in Chern-Simons coupled fundamental scalar/fermion theories these AdS4 con-

tact terms do not contribute and hence the double discontinuity completely determines

the four-point functions.

Consider the normalized three-point functions of the operators Oi(i = 1, 2, 3).6 In

[73, 74, 208], it was noticed that the square of these normalized coefficients in the quasi-

fermionic theories (C2
s,qf ) is related to that of a single free Majorana fermion (C2

s,ff ) as

follows

C2
s,qf = 1

Ñ
C2
s,ff (2.78)

where Ñ is related to the the rank of the gauge group N and coupling λqf by,

Ñ = 2N sin(πλqf )
πλqf

. (2.79)

5via explicit numerical computation
6For the conventions of normalization correlation functions please refer to appendix B.3.
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Note that the normalized coefficients of quasi-fermionic theory and free fermionic theory

are proportional to each other as given in (2.78). Hence, the double discontinuity of

the scalar four-point function in the free fermionic theory is the same as that of the

quasi-fermionic theories up to an overall factor that depends only on N and λqf .

On the other hand, the square of the normalized coefficients of the quasi-bosonic

theories (C2
s,qb) is related to the theory of a free real boson (C2

s,fb) as follows

C2
s,qb = 1

Ñ
C2
s,fb s > 0, (2.80)

C2
0,qb = 1

Ñ

1
(1 + λ̃2

qb)
C2

0,fb = 1
Ñ
C2

0,fb − 1
Ñ

λ̃2
qb

(1 + λ̃2
qb)
C2

0,fb. (2.81)

where Ñ and λ̃ are related to N and coupling λqb as

Ñ = 2N sin(πλqb)
πλqb

, (2.82)

λ̃qb = tan
(
πλqb

2

)
. (2.83)

Note that, unlike the normalized coefficients of the quasi-fermionic theories, in the quasi-

bosonic theories, the spin s = 0 and s ̸= 0 coefficients given above have different factors

in front of their free bosonic counterparts. In order to account for the second term on

the RHS of (2.81) one needs to add a conformal partial wave with spin-0 exchange which

is given by the well-known D̄-function with the correct pre-factor [208]. We now proceed

to employ this technique for the supersymmetric case.

2.7.2 Double discontinuity and the supersymmetric correlators

Here, we utilize the technique described above to compute the four-point correlators

for spin-0 operators J b0 and Jf0 in our supersymmetric theory. Since we are considering

correlators of identical external operators7, only even spin operators will contribute to

the block expansion.

7Although we have all the three-point correlators required, we do not compute mixed correlators such
as ⟨Jb

0J
b
0J

f
0 J

f
0 ⟩ here, currently a free theory analogue for such correlators is not clear. We reserve this

issue for future investigations.
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2.7. Four point functions

2.7.2.1 ⟨J b0(x1)J b0(x2)J b0(x3)J b0(x4)⟩

The four-point function of the J b0 operators is expressed as follows8

⟨J b0(x1)J b0(x2)J b0(x3)J b0(x4)⟩ = disc+ 1
x2

13x
2
24
F (u, v). (2.84)

Here, disc corresponds to the disconnected part given by

disc = 1
x2

12x
2
34

+ 1
x2

13x
2
24

+ 1
x2

14x
2
23

(2.85)

while F (u, v) is given by

F (u, v) = 1
u

∑
k

C2
OOOk

G∆k,Jk
(u, v) (2.86)

In order to determine the double discontinuity and hence the 4-point functions in the

supersymmetric case using the method described above, we need the normalized 3-point

function coefficients for the operators running in OPE of two J b0 operators. For the case

of spin 0 operators, i.e. J b0 , J
f
0 , these normalized coefficients can directly be obtained

from our explicit computations for the 2 and 3-point functions in (2.73),(2.74). For the

contribution of higher spin operators (J bs , Jfs ), these coefficients can be computed by

relating to them to the regular boson (fermion) theories using the large N double trace

factorization (see e.g. [96]) of correlation functions. We relegate the computation of these

to appendix (B.3) and only collect the final result here.

For scalar operators J b,f0 , we have

C
2(BBB)
0,susy = 1

Ñ

(1 − λ̃2)2

(1 + λ̃2)2
C2

0,fb,

C
2(BBF )
0,susy = 8

π2
λ̃2

Ñ(1 + λ̃2)2
C2

0,fb.

For the higher spin operators, J b,fs (s ∈ (2, 4, 6, . . .)), we get

C2(BBB)
s,susy = 1

Ñ(1 + λ̃2)2
C2
s,fb s > 0,

C2(BBF )
s,susy = λ̃4

Ñ(1 + λ̃2)2
C2
s,fb s > 0.

(2.87)

8Note that, it is useful to redefine operators such that the normalization is fixed to be ⟨J0J0⟩ = x−2∆

[208]. We work with this normalization in this section.

111



Chapter 2. Chern-Simons Matter Theories

Note that we may re-express the spin 0 coefficient C2(BBB)
0,susy above as follows

C
2(BBB)
0,susy = 1

Ñ(1 + λ̃2)2
C2

0,fb + λ̃4 − 2λ̃2

Ñ(1 + λ̃2)2
C2

0,fb,

(2.88)

Observe that C2(BBB)
s,susy in (2.87) and the first term of C2(BBB)

0,susy in (2.88) have the same

pre-factor. This is similar to the case of the quasibosnic case given in (2.80) and (2.81)

reviewed earlier. Consider, now, the double discontinuity of the conformal blocks

dDisc[G∆,J(1 − z, 1 − z̄)] = sin2(π2 (∆ − J − 2∆ϕ))G∆,J(1 − z, 1 − z̄) (2.89)

where ∆ϕ being the conformal dimension of the external operator. Notice that for ∆ =

2∆ϕ+J+2m, the double-discontinuity vanishes. Therefore, for the double-trace exchange,

the double-discontinuity vanishes. That is why the OPE of single-trace operators are

sufficient to construct a function that has a double-discontinutiy equal to the four-point

correlator. However, notice that the single-trace exchange JFF0 with quantum numbers

(∆, J) = (2, 0) also vanish. Coincidently, the double-trace operator [J b0 , J b0 ]0,0 also has

the same quantum numbers.9 By inspection, we can see that the function below has the

right double-discontinuity

F (u, v) = 1 + λ̃4

Ñ(1 + λ̃2)2
ffb(u, v) − 8

Ñ

2λ̃2

π5/2(1 + λ̃2)2

[
D̄11 1

2
1
2
(u, v) + D̄11 1

2
1
2
(v, u) + 1

u
D̄11 1

2
1
2
( 1
u
,
v

u
)
]

+ c1G
AdS
ϕ4 + c2G

AdS
(∂ϕ)4 + c3G

AdS
ϕ2(∂3ϕ)2 (2.90)

where, the function ffb(u, v) is the free bosonic part given by.10

ffb(u, v) = 41 + u1/2 + v1/2

u1/2v1/2 (2.91)

9[O,O]n,l = O□n∂µ1∂µ2 · · · ∂µl
O − traces where O is a single-trace operator.

10Note that we may have used two separate tree-level ϕ3 exchange Witten diagrams corresponding
to ∆ = 1 and ∆ = 2 bulk exchange with arbitrary coefficients instead [219]. But Witten diagrams
themselves admitting an expansion in contact terms would compound the problem. The D̄-functions,
therefore, represent the choice with the least number of contact terms and the right double-discontinuity.
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2.7. Four point functions

The contact terms are explicitly provided in B.46. Note that c1 contains contributions

from both single-trace and double-trace operators which we have separated in the follow-

ing equation as a1 and c̃1

F (u, v) = 1 + λ̃4

Ñ(1 + λ̃2)2
ffb(u, v) − 8

Ñ

2λ̃2

π5/2(1 + λ̃2)2

[
D̄11 1

2
1
2
(u, v) + D̄11 1

2
1
2
(v, u) + 1

u
D̄11 1

2
1
2
( 1
u
,
v

u
)
]

+ a1D̄1111(u, v) + c̃1G
AdS
ϕ4 + c2G

AdS
(∂ϕ)4 + c3G

AdS
ϕ2(∂3ϕ)2 (2.92)

To determine a1 we take the OPE limit. In the OPE limit11 the conformal blocks behave

as follow [220]

G∆,J(u, v) ≈ J !
2J(h− 1)J

u∆/2Ch−1
J

(
v − 1
2
√
u

) (
here h = d

2 = 3
2

)
(2.93)

For (∆, J) = (2, 0) i.e. for Jf0 exchange, we have G2,0(u, v) ≈ u in the OPE limit. Since

we are interested in the single-trace operator Jf0 , hence, we have

F (u, v) ≈ C
2(BBF )
0,susy (2.94)

In the OPE limit, we have for ϕ4 contact term

D̄1111(u, v) ≈ 2 (2.95)

By only looking at the single-trace contributions we obtain

a1 =
C

2(BBF )
0,susy

2 (2.96)

Now, we focus our attention on double-trace operators. Coefficient c̃1 can now be de-

termined by looking at the double-trace trace operator [J b0J b0 ]0,0. Since, (∆, J) = (2, 0)

for the double-trace is the same as that of the single-trace operator Jf0 , we use the same

method to obtain c̃1. 12

11OPE limit: u → 0, v → 1,with (v − 1)/u1/2 fixed
12The procedure above thus determines the coefficient c̃1 of the first AdS4 contact Witten diagram in

term of the contribution of operators Jf
0 and [Jb

0J
b
0 ]0,0. We collect the formal relation below and leave

the explicit computation of these OPE coefficients for future work.

c̃1 = 1
2

(
[C2(BBB)

0,susy ](Jb
0 )2 − 1

Ñ

4λ̃2

(1 + λ̃2)2π2
C2

0,fb − 1 + λ̃4

Ñ(1 + λ̃2)2
[C2

0,fb](Jb
0 )2

)
(2.97)
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Chapter 2. Chern-Simons Matter Theories

2.7.2.2 ⟨Jf0 (x1)Jf0 (x2)Jf0 (x3)Jf0 (x4)⟩

The four-point function of Jf0 is given by the following expression

⟨Jf0 (x1)Jf0 (x2)Jf0 (x3)Jf0 (x4)⟩ = disc+ 1
x4

13x
4
24

G(u, v) (2.98)

where disc denotes the disconnected piece given by

disc = 1
x4

12x
4
34

+ 1
x4

13x
4
24

+ 1
x4

14x
4
23

(2.99)

while F (u, v) is given by

G(u, v) = 1
u

∑
k

C2
OOOk

G∆k,Jk
(u, v) (2.100)

We now proceed to determine the four-point function Jf0 using the same technique as

above. The relevant normalized 3-point function coefficient squared are collected below13

(see appendix (B.3) for details)

C2(FFF )
s,susy = 1

Ñ(1 + λ̃2)2
C2
s,ff , (2.101)

C2(FFB)
s,susy = λ̃4

Ñ(1 + λ̃2)2
C2
s,ff , (2.102)

where C2
s,ff is the normalized three-point functions for free fermionic theory. Note that the

3-point functions of the spin-0 exchanges given by C2(FFF )
0,susy and C2(FFB)

0,susy are contact terms

in this case which, therefore, may be set to zero. This implies that the above relation is

trivially satisfied for the spin s = 0 case as the free fermionic coeffcient C2
0,ff = 0. Hence,

both the s = 0 and s ̸= 0 coefficients in this case come with the same pre-factor. This

implies that the function which has the correct double discontinuity is given by

G(u, v) = 1 + λ̃4

Ñ(1 + λ̃2)2
fff (u, v) + c̄1G

AdS
ϕ4 + c̄2G

AdS
(∂ϕ)4 + c̄3G

AdS
ϕ2(∂3ϕ)2 , (2.103)

Note that computationally [C̃2(BBB)
0,susy ](Jb

0 )2 = ⟨Jb
0 Jb

0 (Jb
0 )2⟩

⟨Jb
0 Jb

0 ⟩
√

⟨(Jb
0 )2(Jb

0 )2⟩
, the OPE coefficient involving double

trace operator (Jb
0)2 is as difficult as computing 4-point function. However, it may be of use to write

contact term coefficients in terms of these OPE coefficients.
13Note that CF F F

s,susy = ⟨Jf
0 Jf

0 Jf
s ⟩

⟨Jf
0 Jf

0 ⟩
√

⟨Jf
s Jf

s ⟩
and CF F B

s,susy = ⟨Jf
0 Jf

0 Jb
s ⟩

⟨Jf
0 Jf

0 ⟩
√

⟨Jb
s Jb

s ⟩
.
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where fff (u, v) is the free fermionic part given by

fff (u, v) = 1 + u5/2 + v5/2 − u3/2(1 + v) − v3/2(1 + u) − u− v

u3/2v3/2 (2.104)

The coefficients c̄i can be related to OPE coefficients involving double trace operator

as discussed in the previous section. We leave this for future work14.

2.8 Summary and Discussion

To summarize, we have proposed a conjecture for the leading 1/N anomalous dimen-

sion of the scalar primary operator in U(N)k Chern-Simons theories coupled to a single

fundamental field, to all orders in λ = N/k. We demonstrated that our conjecture is con-

sistent with all the existing two-loop perturbative results. We also performed a two-loop

calculation of the anomalous dimension of the scalar primary j0 in the bosonic theory,

which provides an additional test of our conjecture. Furthermore, we showed that our

conjectured expression for the leading 1/N anomalous dimension for the quasi-bosonic

and quasi-fermionic theories satisfies an all-loop relation that was previously derived in

the literature. This non-trivial consistency check gives further evidence for our proposal.

We also focused our attention on the N = 2 U(N) Chern Simons theory coupled with

a single fundamental chiral multiplet in the ’t Hooft large N limit and presented the

computations for the exact 2 and 3-point functions for the scalar supermultiplet. The

result are invariant under duality transformation (2.54) and can be seen as an independent

confirmation of the duality. For the case of 4-point function, though we are not able to

perform the direct computation for the full scalar supermultiplet, we are able to use a

combination of techniques from conformal bootstrap, factorization of 3-point functions via

double trace interactions along with the self-duality of our theory to determine two of the

component 4 point function, namely ⟨J b0J b0J b0J b0⟩ and ⟨Jf0 J
f
0 J

f
0 J

f
0 ⟩, up to 3 undetermined

coefficients. These undetermined coefficients can be fixed in terms of the OPE coefficients

involving specific double trace operators. The approach used is following [208], to compute

the J b0 and Jf0 4-point functions relies crucially on the fact that the double discontinuity of

14The coefficient c̄1 can be evaluated easily and is given by

c̄1 = 3π1/2

8P (2)
1 (0, 0)

(
[C̃2(F F F )

0,susy ](Jf
0 )2 − 1 + λ̃4

Ñ(1 + λ̃2)2
[C̃2

0,ff ](Jf
0 )2

)
(2.105)

where P (2)
1 (0, 0) is defined in appendix B.5.2
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the 4-point function in the interacting theory is almost the same as that of the free theory.

We could thus write down the full interacting 4-point function in terms of the free 4-point

function. An obvious future direction one can pursue is to compute mixed scalar four-

point functions or perhaps higher spin four-point functions in the SUSY Chern-Simons

model. An interesting direction, however, would be to generalize these analytical tools

like double-discontinuity and the inversion formula for momentum space CFT s.
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Chapter 3

A CFT interpretation of

cosmological correlation functions in

α-vacua in de-Sitter space

This chapter is largely based on the following paper written with my collaborators

• S. Jain, N. Kundu, S. Kundu, A. Mehta, S. K. Sake (2022) A CFT interpretation of

cosmological correlation functions in α-vacua in de-Sitter space, arXiv: 2206.08395 [hep-

th], To be published (JHEP)

Inflation is the most elegant solution proposed to solve the issues in the standard

Big Bang, for instance, the flatness and the horizon problem. These problems are easily

remedied by adding an inflationary phase preceding the Big Bang characterized by the

de-Sitter spacetime. The future late-time boundary of the de-Sitter signifies the end of

inflation and the beginning of the standard Big Bang. In fact, the Cosmic Microwave

Background (CMB) is characterized by the spatial correlations on this future boundary of

the de-Sitter metric. Since the isometries of the future boundary of the de-Sitter metric

are generated by CFT3 algebra, these spatial correlations should also satisfy the confor-

mal symmetry making the cosmological correlations amenable to the tools of CFT boot-

strap. This provides an efficient way to calculate the cosmological correlation functions

[21–32,176,221,222], for recent exciting development see [9, 50,55–57,177–180,223–225].

The correlations in the CMB were created prior to the Big Bang and currently only

the two-point correlations on the CMB have been measured and they are shown to be
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de-Sitter space

Figure 3.1: Inflationary cosmology (Image credit: NASA)

approximately scale-invariant. However, more precise measurements can reveal higher

point correlations in the CMB which is known as non-gaussianity [20,26,226]. Any small

deviation in the initial conditions is of great interest and will lead to cosmological non-

gaussianity. These higher-point correlations must satisfy additional symmetries beyond

scale invariance. The best possible extension of scale invariance is conformal invariance,

as mentioned previously, a de Sitter expansion preceding the standard Big Bang can

solve the Horizon problem etc. As the late-time symmetries of the de Sitter expansion

are conformal symmetries, therefore, it is the best possible extension of the scale invari-

ance in order to compute the non-gaussianities. These correlation functions are mostly

computed in Bunch-Davies (BD) vacuum. dS space in general allows for a more general

class of vacua [227,228] which are related to BD vacuum by Bogoliubov transformation.

Parametrized by a single parameter α, they are, therefore, called the α-vacua. Their

phenomenological significance has been discussed and they are very relevant from an ob-

servational perspective [229–231]. In this chapter, we show that the momentum space

CFT correlation function plays a very important role in understanding the correlations

in α−vacua. We compute these correlation functions at the late time slice of a nearly

dS4 background in the slow-roll approximation. We demonstrate that the correlation

functions in α-vacua can also be understood in terms of CFT correlation functions with
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3.1. Chapter summary

relaxed OPE consistency and we further show that the correlations in α-vacua are re-

lated to the correlations in the Bunch-Davies vacuum by some simple sign changes of the

momentum scalar.

3.1 Chapter summary

The rest of the chapter is organized as follows and is based on [232]. In section 3.2 we

review basic facts about α−vacua and then calculate the scalar and spinning three-point

function using in-in formalism. Unlike in flat-space QFT, where the transition amplitudes

are specified by the inner product between states defined on a far-past time slice and a

far-future time slice, in cosmology it is not possible to define or distinguish states like

that. Also, a single observer cannot access an entire time slice in de Sitter, so a transition

amplitude has no meaning. Therefore, the best way to compute observables is via the

in-in formalism as follows

⟨ϕint(x1, t)ϕint(x2, t) · · ·ϕint(xn, t)⟩

=
⟨T̄

(
exp

(
i
∫ t

−∞(1+iϵ) dt
′H int

I

)) ∏n
i=1 ϕ

int(xi, t) T
(
exp

(
−i
∫ t

−∞(1−iϵ) dt
′H int

I

))
⟩

⟨T̄
(
exp

(
i
∫ t

−∞(1+iϵ) dt
′H int

I

))
T
(
exp

(
−i
∫ t

−∞(1−iϵ) dt
′H int

I

))
⟩

(3.1)

where
n∏
i=1

ϕint(xi, t) = ϕint(x1, t)ϕint(x2, t) · · ·ϕint(xn, t) . (3.2)

In section 3.3 we demonstrate how the results obtained in α−vacua can be obtained

from the CFT perspective. In section 3.4 we show that conformal ward identity allows for

a more general class of solutions. We also discuss their relation to correlation functions

in generalized α−vacua. In section 3.5 we discuss how to obtain parity odd correlation

function contribution for α−vacua using CFT results only. Next, in section 3.6 we show

that correlation functions in α−vacua can be expressed in terms of the same answer in

BD vacuum. In other words, we will show that given the structure in BD vacuum, we can

obtain the corresponding expression for the correlator in α−vacuum. In section 3.7 we

summarise the findings. In Appendices, we collect some useful background details which

are helpful in the main draft.
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3.2 Cosmological correlation function in α−vacua

The aim of this section is to use the in-in formalism to calculate cosmological correlation

functions. We first start with a brief review of α−vacua. We then use in-in formalism to

calculate scalar and spinning three-point functions. We work in Poincare coordinate in

dS. The metric is given by

ds2 = 1
H2η2

(
−dη2 + dxidxi

)
(3.3)

with −∞ < η ≤ 0 where H is the Hubble parameter, which we set to unity in this paper.

Let us consider free scalar field theory

S = −1
2

∫
d3xdη

√
−ggµν∂µφ∂νφ. (3.4)

Mode expansion of the scalar field in the Bunch-Davies vacuum is given by

φ(x, η) =
∫ d3k

(2π)3

(
akvk(η) + a†

−kv
∗
k(η)

)
eik.x (3.5)

where vk(η) = 1√
2k3 (1 + ikη) e−ikη. The Bunch-Davies vacuum is defined by

ak|0⟩ = 0 ∀ k (3.6)

For dS space, one can define two real parameter sets of general vacuum |α, β⟩ [228]. The

mode expansion of massless scalar field (3.4) φ is given by

φ(η,x) =
∫ d3k

(2π)3

[
bkuk(η) + b†

−ku
∗
k(η)

]
eik·x (3.7)

and

uk(η) = 1√
2k3

{
A(1 − ikη)eikη +B(1 + ikη)e−ikη

}
(3.8)

where A,B are arbitrary complex numbers that satisfy

|A|2 − |B|2 = 1. (3.9)
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One choice of parameters is

A = cosh (α) , B = −ieiβ sinh (α) . (3.10)

The |α, β⟩ vacuum is defined by

bk|α, β⟩ = 0 ∀ k (3.11)

Let us note that BD vacuum is a special case α = 0 of this general vacuum. One can

write down the following relation

|α, β⟩ =
∏
k

1√
|B|

exp
(
A∗

2B∗a
†
ka

†
−k

)
|0⟩. (3.12)

Mode expansion for metric fluctuations

We take the mode expansion in α−vacua for the metric fluctuation to be given by

γµν(x, η) =
∫ d3k

(2π)3

(
aku

µν
k (η) + a†

−ku
∗µν
k (η)

)
eik.x (3.13)

with

uµν(k, η) = zµzν√
2k3

[eikη(1 − ikη)C + e−ikη(1 + ikη)D] (3.14)

where zµ, zν are polarization tensors satisfying the conditions

zµ = (0, z⃗), where z2 = 0, z · k = 0, (3.15)

and C,D are some complex numbers satisfying |C|2 − |D|2 = 1

C = cosh (α̃) , D = −ieiβ̃ sinh (α̃) . (3.16)

The |α̃, β̃⟩ vacuum is defined by

ak|α̃, β̃⟩ = 0. (3.17)

We now use these mode expansions to calculate the correlation function in α−vacua.
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To calculate the cosmological correlation function we are going to use in-in formalism

which gives the correlation function

⟨ϕint(x1, t)ϕint(x2, t) · · ·ϕint(xn, t)⟩

=
⟨T̄

(
exp

(
i
∫ t

−∞(1+iϵ) dt
′H int

I

)) ∏n
i=1 ϕ

int(xi, t) T
(
exp

(
−i
∫ t

−∞(1−iϵ) dt
′H int

I

))
⟩

⟨T̄
(
exp

(
i
∫ t

−∞(1+iϵ) dt
′H int

I

))
T
(
exp

(
−i
∫ t

−∞(1−iϵ) dt
′H int

I

))
⟩

(3.18)

where
n∏
i=1

ϕint(xi, t) = ϕint(x1, t)ϕint(x2, t) · · ·ϕint(xn, t) . (3.19)

In (3.18) ϕint(xi, t) are the fields written in the interaction picture, and H int
I is the inter-

acting Hamiltonian in the interaction picture1.

In the following sub-sections, we will use (3.18) to compute two and three-point func-

tions involving scalar and tensor fields. For that, we will transform the time coordinate

to conformal time variable η. Once we know the explicit form of H int
I relevant for the

particular correlation function, the RHS of (3.18) will be determined perturbatively by

bringing down factors of H int
I from the exponential. Next, one needs to substitute mode

expansions for the fields given in (3.7) and (3.13). Finally, one needs to use the desired

vacuum given in (3.17). Once all these are taken care of, ultimately, we will be left with

an integration over the conformal time η along a chosen contour from η = −∞ to η = 0

(see [26]). In the following sections, we will look into various cases and will perform this

η-integration.

These correlation functions can be interpreted as correlation functions of some appro-

priate operators in three-dimensional Euclidean CFT, for details see [26]. For example, a

conformally coupled scalar field (denoted by φ) with mass m2 = 2H2 in dS4, will corre-

spond to an operator O∆ with scaling dimension ∆ = 2 in CFT3. Similarly, for a massless

scalar field ϕ in dS4, we will have O∆ with ∆ = 3. Also, for a massless vector field Aµ in

dS4, we will get a conserved spin one current Ji (with ∆ = 2), and a spin two graviton

γµν in dS4 will correspond to a conserved spin two current Tij (with ∆ = 3) in CFT3

2. Performing the calculation on the RHS of (3.18), we will obtain correlation functions

1We will drop the subscripts and the superscripts on the fields in the following discussions to avoid
the clutter of notations.

2It should be emphasized that we are not assuming any kind of dS/CFT correspondence here. These
statements follow just from the fact that the asymptotic isometry of dS4 (as η → 0) is the same as the
symmetry group of 3-dimensional Euclidean CFT.
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involving late time values of the fields φ, Aµ, γµν . Next, following the steps outlined in

appendix C.2 we can translate them to correlators involving the operators O, J, T in

CFT.

3.2.1 Two-point function

In this section, we calculate the two-point function of scalar and graviton field in rigid

dS background using in-in formalism.

3.2.1.1 ⟨φφ⟩

In this case, the two-point function is given by

⟨φ(k2)φ(−k2)⟩ = (A+B)(Ā+ B̄)
2k3

2
(3.20)

where the mode expansion eq.(3.7) is used in obtaining the above result. After the shadow

transform, discussed in appendix C.2 , gives the following correlator

⟨O(k2)O(−k2)⟩ = 2k3
2

(A+B)(Ā+ B̄)
(3.21)

where in the last line we have used |A|2 − |B|2 = 1. Now using (3.10) we have

⟨O(k2)O(−k2)⟩ = k3
2

(cosh 2α + sin β sinh 2α) (3.22)

and when β = 0 we get

⟨O(k2)O(−k2)⟩ = 1
cosh 2αk

3
2. (3.23)

We now compute a two-point function of the graviton.

3.2.1.2 ⟨TT ⟩

We recalculate ⟨TT ⟩ in a general vacuum using the mode expansion for the graviton given

by (3.14). The ⟨γγ⟩ can be computed to be

⟨γ(k1)γ(k2)⟩ = (z1 · z2)2 (C +D)(C̄ + D̄)
2k3

1
. (3.24)
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After the shadow transform, we have

⟨T (z1, k1)T (z2, k2)⟩ = (z1 · z2)2 2k3
1

(C +D)(C̄ + D̄)
. (3.25)

Now using (3.16) we get

⟨T (z1, k1)T (z2, k2)⟩ = (z1 · z2)2 1
(cosh 2α̃ + sin β̃ sinh 2α̃)

k3
2 (3.26)

and when β̃ = 0 we get

⟨T (z1, k1)T (z2, k2)⟩ = (z1 · z2)2 1
cosh 2α̃k

3
2. (3.27)

3.2.2 Three-point function

We now turn our attention to calculating the three-point functions. We start with the

simplest case of scalars and then move on to spinning fields.

3.2.2.1 ⟨OOO⟩

We recalculate ⟨OOO⟩ in a general vacua characterized by the mode expansion (3.7).

Using the mode expansion in (3.18), with

Hint =
∫
d4x

√
−g ϕ3 (3.28)

we obtain the following time integral

6 Im
[ ∫ 0

−∞

dη

η4

(
[−fk3(A,B)ūk3(η) + f̄k3(A,B)uk3(η)]fk1(A,B)fk2(A,B)ūk1(η)ūk2(η)

+ [−fk2(A,B)ūk2(η) + f̄k2(A,B)uk2(η)fk1(A,B)f̄k3(A,B)ūk1(η)uk3(η) + [−fk1(A,B)ūk1(η)

+ f̄k1(A,B)uk1(η)]f̄k2(A,B)f̄k3(A,B)uk2(η)uk3(η)
)]

(3.29)

where fk(A,B) and uk(η) have been defined previously in (3.8) and eq.(C.7). The integral

once computed, after the shadow transform, leads to

⟨OOO⟩ = aR1 + b (R2 +R3 +R4) (3.30)
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where

a = 1
2N 3(A,B) [(2A2 + 3AB + 3B2)(Ā2 + B̄2 + ĀB̄) + (A−B)B̄(|A|2 + |B|2 + AB̄)]

b = 1
2N 3(A,B) [(A2 + 6AB +B2)ĀB̄ + AB̄2(−A+B) + (A−B)BĀ2]

N (A,B) = (A+B)
(
Ā+ B̄

)
(3.31)

and

R1 = R(k1, k2, k3) R2 = R(k1, k2,−k3) R3 = R(k1,−k2, k3) R4 = R(−k1, k2, k3)

(3.32)

with

R(k1, k2, k3) = −4
9
∑
a

k3
a − 1

3
∑
a̸=b

k2
akb + 1

3k1k2k3 + 3
∑
a

k3
a logE (3.33)

where E = k1 + k2 + k3. Notice the bulk computation automatically forces exchange

symmetry. Also, note that a, b is real i.e. under A ↔ Ā, B ↔ B̄ the coefficients a, b are

invariant meaning a∗ = a, b∗ = b. Using the parameterization as in (3.10) we have

⟨OOO⟩ = aR1 + b (R2 +R3 +R4) (3.34)

where

a = 5 + 3 cosh 4α− 6 cos 2β sinh2 2α + 6 sin β sinh 4α
8(cosh 2α + sin β sinh 2α)3

b = [cosh 2α sin β + (3 + cos 2β) coshα sinhα] sinh 2α
2(cosh 2α + sin β sinh 2α)3 (3.35)

For the special case of β = 0 we have

a = 1
cosh3 2α

b = sinh2 α

cosh3 2α
(3.36)
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which gives

⟨OOO⟩ = 1
cosh3 2α

[R1 + sinh2 2α (R2 +R3 +R4)]. (3.37)

The results in (3.37) are the same as those that appears in [233].

Spinning correlator

For this case we need to define the vacuum suitably. We have characterized the vacuum

for scalar mode in (3.11) and for tensor mode in (3.17). In general when we consider

correlation function involving both graviton and scalar we can consider most general

vacuum defined of the form |α, β, α̃, β̃⟩. However to start with let us take a simpler

situation when we have A = C,B = D which implies α = α̃ and β = β̃.

3.2.2.2 ⟨TOO⟩

To compute two scalars and one graviton amplitude we need to consider

Hint =
∫
d4x

√
−g gµν∂µϕ∂νϕ (3.38)

Here we just provide the final results, the computational details of which are provided in

Appendix C.3.1. The correlation function is given by

⟨TO3O3⟩ = a⟨TO3O3⟩R1 + b (⟨TO3O3⟩R2 + ⟨TO3O3⟩R3 + ⟨TO3O3⟩R4) (3.39)

where the form of a, b is same as that appears in (3.31) and

⟨TO3O3⟩R1 =
[
k1 + k2 + k3 − k1k2 + k2k3 + k3k1

k1 + k2 + k3
− k1k2k3

(k1 + k2 + k3)2

]
(z1.k2)2

⟨TO3O3⟩R2 =
[
−k1 + k2 + k3 − −k1k2 + k2k3 − k3k1

−k1 + k2 + k3
+ k1k2k3

(−k1 + k2 + k3)2

]
(z1.k2)2

⟨TO3O3⟩R3 =
[
k1 − k2 + k3 − −k1k2 − k2k3 + k3k1

k1 − k2 + k3
+ k1k2k3

(k1 − k2 + k3)2

]
(z1.k2)2

⟨TO3O3⟩R4 =
[
k1 + k2 − k3 − k1k2 − k2k3 − k3k1

k1 + k2 − k3
+ k1k2k3

(k1 + k2 − k3)2

]
(z1.k2)2 (3.40)
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3.2.2.3 ⟨TTO3⟩

To calculate two gravitons and one scalar amplitude we consider the following interaction term

Hint =
∫
d4x

√
−gφWρσαβWρσαβ (3.41)

Here we write down the final result, details of the computation are provided in appendix C.3.2.

The correlation function is given by

⟨TTO3⟩α = a⟨TTO3⟩R1 + b (⟨TTO3⟩R4 + ⟨TTO3⟩R2 + ⟨TTO3⟩R3) . (3.42)

where the form of a, b is same as that appears in (3.31). The explicit expressions for ⟨TTO3⟩Ri

are complicated. They are best written in spinor helicity variables. We give their explicit forms

in section 3.3.3.

3.2.2.4 ⟨TTT ⟩

The three graviton amplitude can get contributions from two different sources, the Einstein

Hilbert term, and the Weyl3 term. Let us start with the Weyl tensor contribution.

Weyl3 contribution

To calculate the three graviton amplitude we need to consider the following interaction

S
(3)
γ,W3 =

∫
d4x

√
−g W3. (3.43)

where Wabcd is the Weyl tensor. We provide computational details in appendix C.3.3. The

correlation functions are given by

⟨TTT ⟩W3,α = a⟨TTT ⟩W3,1 + b(⟨TTT ⟩W3,2 + ⟨TTT ⟩W3,3 + ⟨TTT ⟩W3,4) (3.44)

where a, b are same as that appears in (3.31). We also have

⟨TTT ⟩W3,i = ⟨TTT ⟩h,Ri
(3.45)

where ⟨TTT ⟩h,Ri
appear in (3.119), (3.120).
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Two-derivative interaction the Einstein-Hilbert contribution

Consider now the interaction 3

S
(3)
γ,EG =

∫
d4x

√
−g R (3.46)

Again details are provided in Appendix C.3.3. The correlation function in this case is given by

⟨TTT ⟩EG,α = a⟨TTT ⟩EG,1 + b(⟨TTT ⟩EG,2 + ⟨TTT ⟩EG,3 + ⟨TTT ⟩EG,4) (3.47)

where a, b are precisely given again by (3.31) and

⟨TTT ⟩EG,i = ⟨TTT ⟩nh,Ri
i = 1, 2, 3, 4 (3.48)

where ⟨TTT ⟩nh,Ri
’s appear in (3.123).

3.2.3 Spinning correlator in general vacuum

In this subsection we consider more spinning correlator of the form ⟨TOO⟩ and ⟨TTO⟩. In

earlier section we consider this correlation function for the special case when A = C,B = D

which implies α = α̃ and β = β̃. We now consider the case when A ̸= C,B ̸= D which implies

α ̸= α̃ and β ̸= β̃. For this case the general vacuum is denoted by |α, β, α̃, β̃⟩. For this case as

well calculation is straightforward and is given in Appendix C.3.1 and C.3.2. The ⟨TOO⟩ is

then obtained to be

⟨TO3O3⟩ = c1⟨TO3O3⟩R1 + c2⟨TO3O3⟩R2 + c3 (⟨TO3O3⟩R3 + ⟨TO3O3⟩R4) (3.49)

where ci are given in (C.10). Let us note that as compared to (3.39) where the correlator was

parameterized by two parameters, here we have an extra parameter. The Ward-Takahashi(WT)

identity is given by

kµ1 z
ν⟨TµνO3O3⟩ = (c1 + c2)(z1.k2)(k3

2 − k3
3). (3.50)

For the case of ⟨TTO3⟩ we have

⟨TTO3⟩α = d1⟨TTO3⟩R1 + d2⟨TTO3⟩R4 + d3(⟨TTO3⟩R2 + ⟨TTO3⟩R3) (3.51)

3Before we put our paper on arXiv, [231] appeared which computes this correlation function and
discusses its phenomenological implications.
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where di are given in (C.24). Again, let us note that as compared to (3.42) where the cor-

relator was parameterized by two parameters, here we have an extra parameter and is thus

parameterized by three parameters.

3.3 Spinning CFT correlators using weight shifting and spin

raising operator

In this section, we discuss how to understand the results obtained in the previous section from

a CFT perspective. Let us start our discussion with a two-point function.

We shall be using the notation k ≡ |⃗k| in the following. We also choose to work with null

and transverse polarization tensors such that zi.ki = 0, z2
i = 0.

3.3.1 Two-point function

Consider the following two-point functions of stress tensor and scalar operator O3

⟨T (z1, k1)T (z2, k2)⟩ = CT (z1.z2)2k3
1 (3.52)

⟨O3(k1)O3(k2)⟩ = COk
3
3 (3.53)

Comparing this result with general α−vacuum answer (3.25) and (C.17) one can obtain CO, CT .

3.3.2 Three-point function

We now turn our attention to computing the three-point function. We start with the scalar

three-point function. The momentum space result for the three-point function is much richer

than the position space counterpart. For scalar three-point function, there are four different

solutions to conformal ward identity [41]. If we impose consistency with OPE limit, only

one particular combination of four solutions survives, which matches with the cosmological

correlation function computed in the Bunch-Davies (BD) vacuum and is also can be thought

of as a Fourier transform of position space answer. As will be shown in this section, the

cosmological correlation function in general α−vacua requires us to consider even the solutions

which are not consistent with OPE limit. As will be shown below, this is true even for correlation

functions with spinning operators.
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3.3.2.1 ⟨O3O3O3⟩

For the case of a scalar three-point function, we have four solutions to conformal ward identity.

These are given by [41]

R1 = A(k1, k2, k3) R2 = A(k1, k2,−k3) R3 = A(k1,−k2, k3) R4 = A(−k1, k2, k3) (3.54)

where

A(k1, k2, k3) = −4
9
∑
a

k3
a − 1

3
∑
a̸=b

k2
akb + 1

3k1k2k3 + 3
∑
a

k3
a logE (3.55)

where E = k1 + k2 + k3. The most general answer to the three-point function is given by

⟨O3(k1)O3(k2)O3(k3)⟩ = c1R1 + c2R2 + c3R3 + c4R4. (3.56)

Consistency with OPE limit sets c2 = c3 = c3 = 0 and gives the Bunch-Davies (BD) vacuum

answer

⟨O3(k1)O3(k2)O3(k3)⟩BD = −4
9
∑
a

k3
a − 1

3
∑
a̸=b

k2
akb + 1

3k1k2k3 + 3
∑
a

k3
a logE. (3.57)

However, if we don’t demand consistency with OPE, we obtain the most general answer given

in (3.56). The exchange symmetry 1 ↔ 2 ↔ 3 requires c2 = c3 = c4 which gives

⟨O3(k1)O3(k2)O3(k3)⟩ = c1R1 + c2(R2 +R3 +R4). (3.58)

Let us note that, c1 and c2 are real numbers because the correlator is real. Comparing with

general α−vacua result (3.30),(3.31) we obtain values of parameter c1, c2

c1 = a, c2 = b (3.59)

Having discussed the scalar three-point function case, let us consider the spinning correlator.

The story here is much richer than the scalar case. Let us start with the simplest of the spinning

correlation function ⟨TO3O3⟩.

3.3.2.2 ⟨TO3O3⟩

The easiest way to get to the result is to use the spin and dimension raising operator starting

from ⟨O3O3O3⟩. The spin and dimension raising operator is reviewed in the appendix ??. The
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correlator ⟨TO3O3⟩ can be obtained by

⟨TO3O3⟩ = D13D12W++
23 ⟨O3O3O3⟩ (3.60)

which in the momentum space is given by

⟨TO3O3⟩α = a⟨TO3O3⟩R1 + b(⟨TO3O3⟩R2 + ⟨TO3O3⟩R3 + ⟨TO3O3⟩R4) (3.61)

where a, b are precisely as given in (3.31) and ⟨TO3O3⟩Ri is same as that appears in (3.40).

This also satisfies Ward identity given by

kµ1 z
ν⟨TµνO3O3⟩ = (a+ b)(z1.k2)(k3

2 − k3
3)

= (z1.k2)(⟨O3(k2)O3(−k2)⟩ − ⟨O2(k3)O2(−k3)⟩) (3.62)

where we have identified a + b = C∆=3. We would like to understand the results from the

perspective of solutions of conformal ward identity as we did for the case of the scalar correlator

in the previous subsection. We do this in the next section.

3.3.2.3 ⟨JJO3⟩

Let us now consider ⟨JJO3⟩. The correlator ⟨JJO3⟩ may be computed from ⟨O3O3O3⟩ using

spin raising and weight shifting operators as follows

⟨JJO3⟩ = k1k2H12W−−
12 ⟨O3O3O3⟩ (3.63)

which in momentum space is given by

⟨JJO3⟩ = a⟨JJO3⟩R1 + b(⟨JJO3⟩R2 + ⟨JJO3⟩R3 + ⟨JJO3⟩R4) (3.64)

where

⟨JJO3⟩R1 = 12(k1 + k2 + 2k3)
(k1 + k2 + k3)2 [(k1 + k2 + k3)(k1 + k2 − k3)(z1.z2) + 2z1.k2z2.k1]

⟨JJO3⟩R2 = 12(−k1 + k2 + 2k3)
(k2 + k3 − k1)2 [(k1 − k2 − k3)(k1 + k3 − k2)(z1.z2) + 2z1.k2z2.k1]

⟨JJO3⟩R3 = 12(k1 − k2 + 2k3)
(k1 − k2 + k3)2 [(k1 − k2 + k3)(k1 − k3 − k2)(z1.z2) + 2z1.k2z2.k1]

⟨JJO3⟩R4 = 12(k1 + k2 − 2k3)
(k1 + k2 − k3)2 [(k1 + k2 + k3)(k1 + k2 − k3)(z1.z2) + 2z1.k2z2.k1] (3.65)
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Again demanding consistency with OPE limit would give

⟨JJO3⟩ = ⟨JJO3⟩R1 (3.66)

which is precisely the correlation function obtained in the Bunch-Davies vacuum. In spinor

helicity variables, results look much simpler and take the following form

⟨J−J−O3⟩R1 = 12(k1 + k2 + 2k3)
(k1 + k2 + k3)2 ⟨12⟩2 ⟨J−J−O3⟩R4 = 12(k1 + k2 − 2k3)

(k1 + k2 − k3)2 ⟨12⟩2 (3.67)

⟨J−J−O3⟩R2 = ⟨J−J−O3⟩R3 = 0 (3.68)

⟨J−J+O3⟩R1 = ⟨J−J+O3⟩R4 = 0

⟨J−J+O3⟩R2 = 12(−k1 + k2 + 2k3)
E2(k2 + k3 − k1)2 ⟨31⟩2⟨2̄3̄⟩2 ⟨J−J+O3⟩R3 = 12(k1 − k2 + 2k3)

E2(k1 − k2 + k3)2 ⟨31⟩2⟨2̄3̄⟩2

(3.69)

and its complex conjugates. One can check that this result is consistent with the calculation in

dS space if we consider ∫
φFµνF

µν . (3.70)

The relation between the correlators in general α−vacua and BD vacuum can be written as

⟨JJO3⟩α − (a+ b)⟨JJO3⟩BD = −b[⟨JJO3⟩R1 − ⟨JJO3⟩R2 − ⟨JJO3⟩R3 − ⟨JJO3⟩R3 ]. (3.71)

3.3.3 ⟨TTO3⟩

Similarly, correlator ⟨TTO3⟩ may be computed from ⟨O3O3O3⟩ using

⟨TTO3⟩ = k3
1k

3
2H

2
12W−−

12 ⟨O3O3O3⟩ (3.72)

which again in momentum space becomes

⟨TTO3⟩ = a⟨TTO3⟩R1 + b(⟨TTO3⟩R2 + ⟨TTO3⟩R3 + ⟨TTO3⟩R4) (3.73)
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In momentum space ⟨TTO3⟩ is complicated, however, in spinor helicity variables they take a

simple form and are given by

⟨T−T−O3⟩R1 = 48k1k2(k1 + k2 + 4k3)
(k1 + k2 + k3)4 ⟨12⟩4 ⟨T−T−O3⟩R4 = 48k1k2(k1 + k2 − 4k3)

(k1 + k2 − k3)4 ⟨12⟩4

⟨T−T−O3⟩R2 = ⟨T−T−O3⟩R3 = 0. (3.74)

For the mixed helicity, we have

⟨T−T+O3⟩R1 = ⟨T−T+O3⟩R4 = 0

⟨T−T+O3⟩R2 = 48k1k2(−k1 + k2 + 4k3)
E4(k2 + k3 − k1)4 ⟨31⟩4⟨2̄3̄⟩4 ⟨T−T+O3⟩R3 = 48k1k2(k1 − k2 + 4k3)

E4(k1 − k2 + k3)4 ⟨31⟩4⟨2̄3̄⟩4.

(3.75)

In general vacua, we have

⟨TTO3⟩α − (a+ b)⟨TTO3⟩BD = −b[⟨TTO3⟩R1 − ⟨TTO3⟩R2 − ⟨TTO3⟩R3 − ⟨TTO3⟩R4 ] (3.76)

In spinor-helicity variables, the independent components are

⟨T−T−O3⟩α − (a+ b)⟨T−T−O3⟩BD = −b(⟨T−T−O3⟩R1 − ⟨T−T−O3⟩R4) (3.77)

⟨T−T+O3⟩α − (a+ b)⟨T−T+O3⟩BD = −b(⟨T−T+O3⟩R2 + ⟨T−T+O3⟩R3) (3.78)

3.3.4 ⟨TTT ⟩

Let us now turn our attention to ⟨TTT ⟩. The Ward-Takahashi identity is given by

kµ1 z
ν
1 ⟨TµνT (z2, k2)T (z3, k3)⟩ = − (z1.k2) zi2z

j
2⟨T ij

k⃗2+k⃗1
T
k⃗3

⟩ + 2 (z1.z2) zj2ki2⟨T ij
k⃗2+k⃗1

T
k⃗3

⟩

− (z1 · k3) zi3z
j
3⟨T

k⃗2
T ij
k⃗3+k⃗1

⟩ + 2(z1.z3)zj3ki3⟨T
k⃗2
T ij
k⃗3+k⃗1

⟩

+ (z2.k1)zi1z
j
2⟨T ij

k⃗2+k⃗1
T
k⃗3

⟩ + (z1.z2)ki1z
j
2⟨T ij

k⃗2+k⃗1
T
k⃗3

⟩

+ (z3.k1)zi1z
j
3⟨T

k⃗2
T ij
k⃗1+k⃗3

⟩ + (z1.z3)ki1z
j
3⟨T

k⃗2
T ij
k⃗1+k⃗3

⟩. (3.79)

So the solution for ⟨TTT ⟩ is given by [186]

⟨TTT ⟩ = ⟨TTT ⟩h + ⟨TTT ⟩nh. (3.80)
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3.3.4.1 Homogenous part of ⟨TTT ⟩

The homogenous part of ⟨TTT ⟩ may be computed from ⟨O3O3O3⟩ using spin-raising and weight

shifting operators as follows [50,180],

⟨TTT ⟩ = k3
3k

3
2(W−−

23 )2(S++
23 )2D13D12⟨O3O3O3⟩ (3.81)

which gives

⟨TTT ⟩ = a⟨TTT ⟩h,R1 + b(⟨TTT ⟩h,R2 + ⟨TTT ⟩h,R3 + ⟨TTT ⟩h,R4) (3.82)

In the spinor helicity variables, we have

⟨T−T−T−⟩h,R1 = k1k2k3
(k1 + k2 + k3)6 ⟨12⟩2⟨23⟩2⟨31⟩2 (3.83)

⟨T−T−T−⟩h,R2 = ⟨T−T−T−⟩h,R3 = ⟨T−T−T−⟩h,R4 = 0 (3.84)

⟨T−T−T+⟩h,R4 = k1k2k3
(k1 + k2 − k3)6 ⟨12⟩2⟨23̄⟩2⟨3̄1⟩2 (3.85)

⟨T−T−T+⟩h,R2 = ⟨T−T−T+⟩h,R3 = ⟨T−T−T+⟩h,R1 = 0 (3.86)

⟨T+T−T−⟩h,R2 = k1k2k3
(k2 + k3 − k1)6 ⟨1̄2⟩2⟨23⟩2⟨31̄⟩2 (3.87)

⟨T+T−T−⟩h,R4 = ⟨T+T−T−⟩h,R3 = ⟨T+T−T−⟩h,R1 = 0 (3.88)

⟨T−T+T−⟩h,R3 = k1k2k3
(k1 + k3 − k2)6 ⟨12̄⟩2⟨2̄3⟩2⟨31⟩2 (3.89)

⟨T−T+T−⟩h,R2 = ⟨T−T+T−⟩h,R4 = ⟨T−T+T−⟩h,R1 = 0 (3.90)

The results ⟨TTT ⟩h,Ri
are precisely same as that appear in (C.37). This implies that the

homogeneous part is same as that obtained from Weyl term (C.37) W 3 in dS space [187]. Again
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the following interesting relation between general α−vacua and Bunch-Davies vacuum holds,

⟨TTT ⟩h,α − (a+ b)⟨TTT ⟩h,BD = −b(⟨TTT ⟩h,R1 − ⟨TTT ⟩h,R2 − ⟨TTT ⟩h,R3 − ⟨TTT ⟩h,R4).

(3.91)

3.3.4.2 Non-homogeneous solution

The non-homogeneous part of ⟨TTT ⟩ is computed as follows using the weight shifting and spin

raising operators [50,180]

⟨TTT ⟩Ai = S++
31 S++

23 S++
12 Ri(k1, k2, k3) (3.92)

⟨TTT ⟩Bi =
(
S++

23

)2
W++

23 D13D12Ri(k1, k2, k3) + perms. (3.93)

⟨TTT ⟩Ci = D13D12
(
S++

23

)2
W++

23 Ri(k1, k2, k3) + perms. (3.94)

There is also a contact term that is added

⟨TTT ⟩Di = (s1ik
3
1 + s2ik

3
2 + s3ik

3
3)z1.z2z2.z3z3.z1 (3.95)

where si = ± depending on the basis we are working with. The full ⟨TTT ⟩ is given by

⟨TTT ⟩nh,Ri
= 1

4⟨TTT ⟩Ai − 7
108⟨TTT ⟩Bi − 1

135⟨TTT ⟩Ci − 36
5 ⟨TTT ⟩Di (3.96)

where ⟨TTT ⟩nh,Ri
are given by

⟨TTT ⟩nh,R1 = A1(k1, k2, k3)(z3.k1z1.z2 + z1.k2z2.z3 + z2.k3z3.z1)2 (3.97)
4∑
i=2

⟨TTT ⟩nh,Ri
= A2(k1, k2, k3)(z3.k1z1.z2 + z1.k2z2.z3 + z2.k3z3.z1)2 (3.98)

where

A2(k1, k2, k3) = A1(−k1, k2, k3) +A1(k1,−k2, k3) +A1(k1, k2,−k3) (3.99)

A1(k1, k2, k3) = E3 + (k2
1 + k2

2 + k2
3)E − 2k1k2k3

2E2 (3.100)

The full non-homogeneous answer is given by

⟨TTT ⟩nh = a⟨TTT ⟩nh,R1 + b(⟨TTT ⟩nh,R2 + ⟨TTT ⟩nh,R3 + ⟨TTT ⟩nh,R4). (3.101)
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Let us note that this is precisely same as that obtained from Einstein-term in dS space, see

(3.47). For the general vacua, we have

⟨TTT ⟩nh,α − (a+ b)⟨TTT ⟩nh,BD = −b(⟨TTT ⟩nh,R1 − ⟨TTT ⟩nh,R2 − ⟨TTT ⟩nh,R3 − ⟨TTT ⟩nh,R4)

(3.102)

To summarize this section, we have shown that the scalar correlation function in |α, β⟩

vacuum can be obtained in three-dimensional CFT by taking a linear combination of four

solutions of conformal ward identity and imposing permutation invariance. For the spinning

correlator, we have shown that by acting with spin and dimension-raising operators on this scalar

correlator we can obtain the correlation function that was obtained in α−vacua. However, it is

important to note that, spin and dimension-raising operators do not reproduce the correlation

functions in the generalized vacuum discussed in section 3.2.3.

3.4 Spinning correlator in α−vacua by solving conformal ward

identity

The aim of this section is two-fold. First, we want to understand the results previous section

about spinning correlator starting from a solution of conformal ward identity, and second, we

would like to understand the correlation function in a more generalized vacuum |α, β, α̃, β̃⟩ that

appeared in section 3.2.3. Let us start our discussion with the simplest example of ⟨TO3O3⟩.

3.4.1 ⟨TO3O3⟩

Ward identity for ⟨TO3O3⟩ is given by

⟨k1,µT
µν(k1)O(k2)O(k3)⟩ ∝ k2,ν (⟨O(k2)O(−k2)⟩ − ⟨O(k3)O(−k3)⟩) . (3.103)

We can now solve conformal ward identity in spinor-helicity variables. Let us split the solution

into homogeneous and non-homogeneous parts as follows

⟨TO3O3⟩ = ⟨TO3O3⟩h + ⟨TO3O3⟩nh. (3.104)

One can show that there are two homogeneous solutions and are given by

⟨TO3O3⟩h1 = k1(k2
1 − k2

2 − 4k2k3 − k2
3)

E2

(⟨12⟩⟨13⟩
⟨23⟩

)2

⟨TO3O3⟩h2 = k1(E − 2k1)2(−k2
1 + k2

2 − 4k2k3 + k2
3)

(E − 2k3)2(E − 2k2)2

(⟨12⟩⟨13⟩
⟨23⟩

)2
(3.105)
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and the non-homogeneous solution is given by

⟨TO3O3⟩nh = (k1 + k3 − k1)2

k2
1

[
k1 + k2 + k3 − k1k2 + k2k3 + k3k1

k1 + k2 + k3
− k1k2k3

(k1 + k2 + k3)2

](⟨12⟩⟨13⟩
⟨23⟩

)2

(3.106)

The most general solution is given by

⟨TO3O3⟩α = a1⟨TO3O3⟩nh + a2⟨TO3O3⟩h1 + a3⟨TO3O3⟩h2 . (3.107)

We would like compare this with (3.49). Consistency with WT identity 4 of (3.49) and (3.107)

implies a1 = c1 +c2. However the coefficient a2, a3 in (3.107) remains undetermined. Let us note

here that, if we demand consistency with OPE limit we need to set a2 = a3 = 0, see [184] for

details. This is consistent with the fact that in the BD vacuum, we only have a non-homogeneous

solution. However, if we relax the consistency with OPE limit we see that both a2 and a3 are

non-zero. One can determine both a2, a3 by comparing (3.107) with (3.49), (C.10). One can

also identify 5

⟨TO3O3⟩h1 = 2 (⟨TO3O3⟩R1 − ⟨TO3O3⟩R2)

⟨TO3O3⟩h2 = −2 (⟨TO3O3⟩R3 + ⟨TO3O3⟩R4) . (3.109)

which gives a1 = c1 + c2, a2 = − c2
2 , a3 = − c3

2 .

3.4.2 ⟨JJO3⟩

The WT identity for ⟨JJO3⟩ is given by

k1,µ⟨Jµ(k1)Jν(k2)O3(k3)⟩ = 0. (3.110)

This implies that only homogeneous solutions exist for conformal ward identity.

4

kµ
1 z

ν⟨TµνO3O3⟩ = (c1 + c2)(z1.k2)(k3
2 − k3

3). (3.108)

5It is interesting to note that the homogeneous solutions (3.109) satisfies MLT test [57] even though
they are disallowed by OPE consistency condition.
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The solution to the homogeneous spinor-helicity ward identities is given by

⟨J−J−O3⟩ = 12(k1 + k2 + 2k3)
(k1 + k2 + k3)2 ⟨12⟩2 ⟨J−J−O3⟩ = 12(k1 + k2 − 2k3)

(k1 + k2 − k3)2 ⟨12⟩2 (3.111)

⟨J−J+O3⟩ = 12(−k1 + k2 + 2k3)
E2(k2 + k3 − k1)2 ⟨31⟩2⟨2̄3̄⟩2 ⟨J−J+O3⟩ = 12(k1 − k2 + 2k3)

E2(k1 − k2 + k3)2 ⟨31⟩2⟨2̄3̄⟩2

(3.112)

Notice the homogeneous solutions and their complex conjugates are reproduced in various com-

ponents of (3.65). This shows that each of (3.65) satisfies the homogeneous ward identity. This

implies that we have four homogeneous solutions which are given by

⟨JJO3⟩hi
= ⟨JJO3⟩Ri (3.113)

with i = 1 to 4 and ⟨JJO3⟩Ri are given in (3.65).

The most general solution is then given by

⟨JJO3⟩ =
4∑
i=1

ai⟨JJO3⟩hi
. (3.114)

By demanding permutation symmetry between 1 and 2 we only get a2 = a3 that is

⟨JJO3⟩ = a1⟨JJO3⟩h1 + a4⟨JJO3⟩h4 + a2 (⟨JJO3⟩h2 + ⟨JJO3⟩h3) (3.115)

Let us note that, this is a more general result than (3.64). To obtain this from dS computation

one needs to do similar computation as was done in section 3.2.3.

3.4.3 ⟨TTO3⟩

The discussion for ⟨TTO3⟩ is precisely the same as for ⟨JJO3⟩. Again one can show that for

⟨TTO3⟩ we get four homogeneous solutions. By demanding 1 ↔ 2 exchange symmetry we

obtain

⟨TTO3⟩ = a1⟨TTO3⟩h1 + a4⟨TTO3⟩h4 + a2 (⟨TTO3⟩h2 + ⟨TTO3⟩h3) . (3.116)

By comparing (3.116) and (3.51) we obtain values of a1, a2, a4 in terms of α− vacua parameter.

Let us note that as compared to results in section 3.3.3 we have more general results. In the

special case, results in this section reduce to the results of the section 3.3.3.
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3.4.4 ⟨TTT ⟩

Let us now turn our attention to the three-point function of the stress tensor. The WT identity

is given by (3.79). The three-point function can be written as

⟨TTT ⟩ = ⟨TTT ⟩h + ⟨TTT ⟩nh. (3.117)

In spinor helicity variables the homogeneous solution for ⟨TTT ⟩ is given by

⟨T h1T h2T h3⟩h = fh1,h2,h3 (k1, k2, k3) ⟨12⟩h3−h1−h2⟨23⟩h1−h2−h3⟨31⟩h2−h3−h1 (3.118)

with

f
(1)
h1,h2,h3

(k1, k2, k3) = k1k2k3
Eh1s1+h2s2+h3s3

∣∣∣∣
s1=s2=s3=2

f
(2)
h1,h2,h3

(k1, k2, k3)

= k1k2k3 (k1 + k2 − k3)h1s1+h2s2−h3s3 (k2 + k3 − k1)h3s3+h2s2−h1s1 (k1 + k3 − k2)h1s1+h3s3−h2s2

∣∣∣∣
s1=s2=s3=2

(3.119)

By choosing hi = ± one can obtain various helicity components.

3.4.5 Homogeneous solution: Matching CFT answer with W3

contribution

In this subsection we show how to obtain correlation function coming from W3 term (C.37). It

is interesting to note that, not all the homogeneous solution in (3.119) is required to reproduce

(3.82). The solutions that are required by the α−vacua correlator (3.82) are as follows

⟨T−T−T−⟩h,R1 = f
(1)
−−−⟨12⟩2⟨23⟩2⟨31⟩2

⟨T−T−T+⟩h,R4 = f
(2)
−−+

⟨12⟩6

⟨31⟩2⟨23⟩2

⟨T−T+T−⟩h,R3 = f
(2)
−+−

⟨31⟩6

⟨23⟩2⟨12⟩2

⟨T+T−T−⟩h,R2 = f
(2)
+−−

⟨23⟩6

⟨12⟩2⟨13⟩2 (3.120)
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By demanding permutation invariance we get 6

⟨TTT ⟩h = a⟨TTT ⟩h,R1 + b (⟨TTT ⟩h,R2 + ⟨TTT ⟩h,R3 + ⟨TTT ⟩h,R4) (3.122)

Again we would like to point out, the α−vacua solution is just a special combination of the

most general solutions that are allowed. In spinor helicity variables, it may look like we have a

total of eight independent homogeneous solutions in (3.119), however all of them do not have a

good corresponding momentum space representation which is permutation invariant.

3.4.5.1 Non-homogeneous solutions: Matching contribution due to Einstein

term

The non-homogeneous solution to conformal ward identity has to satisfy the Ward-Takahashi

identity given in (3.79), it can only differ from the BD vacuum by some homogeneous solution.

This is simply because the BD vacuum answer saturates the WT identity by itself. Since the

α−vacua answer contains the BD answer as well as some additional pieces, these additional

pieces must satisfy homogeneous ward identity. Let us check this expectation explicitly.

In the previous subsection, the homogeneous solutions which did not play any role, in

general, α−vacua are given by

⟨T−T−T−⟩G1 = k1k2k3
(k1 + k2 − k3)2(k1 − k2 + k3)2(−k1 + k2 + k3)2 ⟨12⟩2⟨23⟩2⟨31⟩2 = f

(2)
−−−⟨12⟩2⟨23⟩2⟨31⟩2

⟨T−T−T+⟩G4 = k1k2k3
(k1 + k2 + k3)2

⟨12⟩6

⟨23⟩2⟨31⟩2 = f
(1)
−−+

⟨12⟩6

⟨23⟩2⟨31⟩2

⟨T+T−T−⟩G2 = k1k2k3
(k1 + k2 + k3)2

⟨23⟩6

⟨13⟩2⟨21⟩2 = f
(1)
+−−

⟨23⟩6

⟨13⟩2⟨21⟩2

⟨T−T+T−⟩G3 = k1k2k3
(k1 + k2 + k3)2

⟨13⟩6

⟨23⟩2⟨21⟩2 = f
(1)
−+−

⟨13⟩6

⟨23⟩2⟨21⟩2 (3.123)

We now show that these solutions play an important role in determining a non-homogeneous

solution for the stress tensor three-point function.

6The BD answer is given by

⟨TTT ⟩h,R1 = ⟨TTT ⟩h,BD = F (k1, k2, k3).

The alpha vacuum answer should contain all BD vacuum answers as well as other solutions as follows

F (−k1, k2, k3), F (k1,−k2, k3), F (k1, k2,−k3). (3.121)

The permutation invariance then fixes the correlator to take the form in (3.122).
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For the general vacuum, we have (3.102), (3.47)

⟨TTT ⟩nh,α − (c1 + c2)⟨TTT ⟩nh,BD = −c2(⟨TTT ⟩nh,R1 − ⟨TTT ⟩nh,R2 − ⟨TTT ⟩nh,R3 − ⟨TTT ⟩nh,R4)

(3.124)

where ⟨TTT ⟩nh,Ri
appears explicitly in (3.96). In the spinor helicity variables, we can check it

gives

⟨T−T−T−⟩α − (c1 + c2)⟨T−T−T−⟩BD = −96c2⟨T−T−T−⟩G1

⟨T−T−T+⟩α − (c1 + c2)⟨T−T−T+⟩BD = −96c2⟨T−T−T+⟩G4

⟨T+T−T−⟩α − (c1 + c2)⟨T+T−T−⟩BD = −96c2⟨T+T−T−⟩G2

⟨T−T+T−⟩α − (c1 + c2)⟨T−T+T−⟩BD = −96c2⟨T−T+T−⟩G3 (3.125)

which are precisely the homogeneous solutions that were left out in (3.119) and are summarised

in (3.123). We conclude that (3.125) precisely matches our expectations.

3.5 Parity odd contribution to cosmological correlation function

in α− vacuum

Parity odd contribution to non-gaussianity might also play an important role. In general, one

can use the in-in formalism to calculate them just like the parity even case [26, 187]. For CFT

one can also use spin raising and dimension raising operators to calculate them [188]. However,

very recently it was understood that parity odd CFT three-point function can be obtained by

doing epsilon transformation [185,234] starting from parity even CFT correlation function. Let

us illustrate this in more detail with examples.

⟨JJO3⟩

To calculate the parity odd part of ⟨JJO3⟩ we need to consider

∫
φFµνFρσdx

µ ∧ dxν ∧ dxρ ∧ dxσ (3.126)

in dS4 space. However, as was shown in [185] the result is given by

⟨Jµ(k1)Jν(k2)O3(k3)⟩odd = 1
k1
ϵµαβk

β
1 ⟨JαJνO3⟩even. (3.127)

To obtain the parity odd contribution for α−vacua, all we have to do is just plug ⟨JαJνO3⟩even

that appears in (3.64).
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⟨TTO3⟩

For ⟨TTO3⟩ the story is the same. To calculate the parity odd part of ⟨TTO3⟩ we need to

consider ∫
φWαβ

µν Wρσαβdx
µ ∧ dxν ∧ dxρ ∧ dxσ (3.128)

in dS4 space. However, as was shown in [185] the result is given by

⟨Tµν(k1)Tρσ(k2)O3(k3)⟩odd = 1
k1
ϵ(µαβk

β
1 ⟨Tαν)(k1)Tρσ(k2)O3(k3)⟩even. (3.129)

where we have symmetrized appropriately.

⟨TTT ⟩

To calculate the parity odd part of ⟨TTT ⟩ we need to consider

∫
W2W̃ (3.130)

in dS4 space where W is the Weyl tensor, W̃ is the Hodge-dual of the Weyl tensor . However

as was shown in [185] the result is given by

⟨Tµν(k1)Tρσ(k2)Tγδ(k3)⟩odd = 1
k1
ϵ(µαβk

β
1 ⟨Tαν)(k1)Tρσ(k2)Tγδ(k3)⟩even,h. (3.131)

General discussion on parity odd contribution in α− vacuum

From the CFT perspective, it is very interesting to understand the general structure of parity

odd correlation functions in α−vacua. In [202], it was shown via some examples that for

correlation function of conserved currents, when the triangle inequality is violated si + sj < sk

for i, j, k taking value 1, 2, 3, the parity odd contribution is zero. In [109] a more detailed proof

of this statement was provided in position space. For example, ⟨TOO⟩ can not have parity

odd contribution as it violates the triangle inequality. In [184] a much simpler and intuitive

proof was provided and it was shown using momentum space analysis that consistency with

OPE forbids parity odd contribution outside the triangle. However, as explained the α−vacua

correlators need not be consistent with OPE expansion. This implies one can allow for parity

odd contribution even for correlation functions outside the triangle such as ⟨TOO⟩. However,

these correlators are not present as there are no suitable interactions from the dS4 perspective.
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3.6 α−vacua correlator in terms of BD vacuum correlator

In this section, we express results in α−vacua, in terms of BD vacuum answers. Let us start with

the simplest of cases namely the correlation function in |α, β⟩ vacua. For this case, the spinning

as well as scalar fields of the modes in α−vacua are defined by the same α, β parameters. See

section 3.2.2 and 3.3 for explicit results. Let us start our discussion with the case of the scalar

three-point function. In this case it is easy to see that

⟨O(k1)O(k2)O(k3)⟩BD = F (k1, k2, k3)

⟨O(k1)O(k2)O(k3)⟩α = a F (k1, k2, k3) + b (F (−k1, k2, k3) + F (k1,−k2, k3) + F (k1, k2,−k3))

(3.132)

where a, b are given in (3.35), (3.36). For any spinning correlator, the relation is the same. The

relation can be summarised as follows. Let us define the correlator in BD vacuum to be given

by

∑
i

( distinct tensor structure )iAi(k1, k2, k3) (3.133)

then the answer in α−vacua takes the following form

∑
i

( distinct tensor structure )i [a Ai(k1, k2, k3) + b (Ai(−k1, k2, k3) +Ai(k1,−k2, k3) +Ai(k1, k2,−k3))]

(3.134)

where Ai(k1, k2, k3) are the form factors. This can be checked to be true for all the correlators

discussed in 3.2.2 and 3.3 which includes ⟨TOO⟩, ⟨TTO⟩, ⟨TTT ⟩.

Now let us consider more general case when we have α−vacua defined as |α, β, α̃, β̃⟩, see

section 3.2.3 for results. For simplicity, we focus on ⟨TOO⟩ and ⟨TTO⟩. Any other correlators

can also be discussed similarly. For ⟨TOO⟩ we have

⟨TOO⟩BD = (z1.k2)2AT (k1, k2, k3) (3.135)

where the form factor AT can be found in (3.40). For general α−vacua we have

⟨TOO⟩α = (z1.k2)2 (c1AT (k1, k2, k3) + c2AT (−k1, k2, k3) + c3 (AT (k1,−k2, k3) +AT (k1, k2,−k3)))

(3.136)

where ci are as same as in (3.49). Let us note that (3.136) is consistent with 2 ↔ 3 exchange
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symmetry. Now let us consider the case of ⟨TTO⟩. For the BD vacuum we have

⟨TTO⟩BD =
∑
i

( distinct tensor structure )iBi(k1, k2, k3) (3.137)

where Bi are form factors. The correlator in α−vacua in terms of BD vacua is given by

⟨TTO⟩α =
∑
i

( distinct tensor structure )i
[
d1 Bi(k1, k2, k3) + d2Bi(k1, k2,−k3)

+ d3 (Bi(−k1, k2, k3) +Bi(k1,−k2, k3))
] (3.138)

which is consistent with (3.51). Let us note that (3.138) is consistent with 1 ↔ 2 exchange

symmetry.

To conclude, we have shown that given answers in BD vacuum, it is straightforward to

obtain correlation function in α−vacua.

3.7 Summary and Discussion

In this chapter, we have discussed the cosmological correlation function in general α-vacua in

rigid dS space. One of the main purposes of this paper is to understand how to construct these

cosmological correlation functions from a CFT perspective. We showed that for this purpose

we need to consider CFT correlators that are not consistent with OPE limit. Interestingly,

conformal ward identity in momentum space allows for such solutions. For example, solving

conformal ward identity for the three-point function of the scalar operator gives in general

four different solutions. Out of these four different solutions, only one of them is consistent

with OPE and coincides with the correlation function in the Bunch-Davies vacuum as well as

consistent with the position space correlation function. However, for α−vacua all four solutions

are important and the most general solution is a linear combination of all these four solutions

consistent with permutation symmetry. For the spinning correlator, we then used spin and

dimension raising operators as well as a solution of conformal ward identity in momentum/spinor

helicity variables. Based on our computation we summarise the result as follows

• BD vacuum answers =⇒ Imposing consistency with OPE limit and permutation invari-

ance on a solution to conformal ward identity in momentum space.

• α−vacua answer =⇒ Relaxing consistency with OPE limit however keeping consistency

with permutation invariance on the solution to conformal ward identity in momentum

space.

There are several important aspects of these analyses that we plan to explore in the future.
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3.7. Summary and Discussion

Inflationary correlation function

We have mostly focused on the calculation of the three-point function in rigid dS space. It

would be interesting to calculate the correlation function for the inflationary case. For the rigid

de-Sitter case we have shown how to obtain correlation function in α−vacua given correlation

function BD vacuum, see 3.6. It will be interesting to check if the same relation continues

to hold in the inflationary scenario. This will also provide an easy way to obtain answers in

α−vacua given the plethora of results already known in the BD vacuum.

Observational significance

We have not studied any phenomenological implication of the α−vacua. It is well known that

signal for the α−vacua can be significantly enhanced as compared to BD vacuum, see [231] for

a recent discussion on this issue. We have also not studied the issue of consistency of α−vacua.

One of the problems with α−vacua is that the stress tensor expectation value of the probe scalar

field is divergent and as a result, its back-reaction can invalidate the rigid dS approximation. To

renormalize one needs non-local and α−dependent counter-term. This seems to be problematic,

however, it was argued in [235] that α−parameter-dependent counter-terms are fine. We would

like to come back to this issue in the future.
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CONCLUSION

In this thesis, we have looked at various aspects of physics at strong coupling. Perturba-

tion theory has already made significant contributions to physics, but to understand physics at

strong coupling one needs to go beyond perturbation theory. In this study, we have looked into

various possibilities such as the use of symmetry, bootstrap, and duality. In duality, we pre-

dominantly worked with field theory-field theory duality, and more specifically, we explored the

aspects of non-SUSY and SUSY duality. Not all theories have these dualities and Chern-Simons

matter theories are the simplest theories that have them. Apart from dualities among field the-

ories, Chern-Simons matter theories also have an AdS higher-spin gravity dual. AdS/CFT is

a special kind of duality that allows us to study CFT s non-perturbatively via weakly coupled

gravitational theories and vice-versa i.e. to study perturbative quantum corrections in grav-

ity via CFT . However, dualities such as these are theory-dependent. Therefore, it would be

interesting to find a general prescription for dualities in CFT s. In this study, we also looked

into momentum-space CFT s due to their applications in cosmology and connection to S-matrix

bootstrap. We were able to derive interesting results even at the level of three-point functions.

Namely, we were able to establish a relation between parity-even and parity-odd correlations

and show double-copy relations for the correlators. We also developed a standardized method-

ology to compute three-point correlations of arbitrary spin and saw a nice connection to the

S-matrix. It would be interesting to explore the connection between CFT correlations at the

level of four and higher-point functions. Establishing such a connection would allow us to

formulate a CFT analogue of S-matrix BCFW recurrence relations and unitarity conditions.

Finally, we used the momentum-space CFT techniques we developed in cosmology to compute

CMB non-gaussianity. We demonstrated the role of OPE-consistency of CFT correlators in the

selection of the vacuum. This is an important application of CFT and given the observational

significance of these results, it will be interesting to look forward to what the future has to offer.

Strong coupling is an interesting area of physics to understand and we believe this will

lead to interesting developments in the future. An important aspect is duality and its further

investigation will play an important role in understanding physics at strong coupling. Looking

at ways to understand these dualities and how they may help us better understand CFT s and to

find ways to derive these dualities are some of the aspects that need to be looked into. It would

be interesting to look for a duality-invariant formalism for CFT s. Connecting in momentum-

space CFT bootstrap with the S-matrix bootstrap will help us understand the correspondence

between amplitudes and CFT correlators better. I hope to explore these issues in the future.
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Appendix A

A.1 Parity-odd two-point functions
As is well known, scale invariance completely fixes CFT two-point functions. parity-odd struc-
tures can exist for two-point functions of spinning operators.

A.1.1 Four and Higher dimensions
In four or higher dimensions, it is not possible to have any parity-odd two-point function of
either spin-one or any other spinning symmetric spinning correlator. This is because a parity-
odd correlator must necessarily involve the ϵ tensor and it is simple to show that it is impossible
to have any parity-odd 2-point function of a spin-1 or any symmetric tensor operator.

A.1.2 Three-dimensions
In three-dimensions parity-odd two-point functions exist. These come from purely contact terms
1. We will look at the parity-odd 2-point functions of spin-one and spin two conserved currents.

⟨JµJν⟩odd
The general ansatz for the correlator is given by

⟨Jµ(k)Jν(−k)⟩odd = A(k)ϵµνk (A.1)

The ansatz guarantees that the correlator is transverse to the momentum. Imposing scale
invariance gives the following differential equation for the form factor A(k) :

k
∂

∂k
A(k) = 0 (A.2)

This implies that the form factor is just a constant in this case and we have :

⟨Jµ(k)Jν(−k)⟩odd = cJϵ
µνk (A.3)

We will now consider the parity-odd 2-point function of the stress-tensor.

⟨T µνT ρσ⟩odd
We consider the following ansatz for this correlator :

⟨Tµν(k)T ρσ(−k)⟩odd = B(k)∆µνρσ(k) (A.4)

where ∆µνρσ(k) is a parity-odd, transverse-traceless projector given by :

∆µνρσ(k) = ϵµρkπνσ(k) + ϵµσkπνρ(k) + ϵνσkπµρ(k) + ϵνρkπµσ(k) (A.5)

1In this case, the corresponding position space correlator with separated points vanishes.
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where πµν (k) is the same projector used in previous sections. The ansatz guarantees that the
correlator is transverse and traceless.

The dilatation Ward identity gives the following equation for the form factor B(k) :(
k
∂

∂k
− 2

)
B(k) = 0 (A.6)

This can be easily solved to get
B(k) = cTk

2 (A.7)

Therefore, the correlator is given by

⟨Tµν(k)T ρσ(−k)⟩odd = cT∆µνρσ(k)k2 (A.8)

A.2 Schouten Identities

Here, we list the Schouten identities used in our calculations in the main text. The most general
form of a Schouten identity in d-dimensions is

ϵ[µ1µ2...µd δ ν]ρ = 0 (A.9)

In three-dimensions, this translates to

ϵµ1µ2µ3δνρ − ϵµ2µ3νδµ1ρ + ϵµ3νµ1δµ2ρ − ϵνµ1µ2δµ3ρ = 0 (A.10)

Dotting the indices in (A.10) with momenta lets us relate different epsilon structures that occur
in the correlation functions calculated earlier. Dotting with k1µ3 , k1ρ and k2ν gives

ϵµ1µ2k1(k1 · k2) + ϵµ1k1k2kµ2
1 = ϵµ1µ2k2k2

1 + ϵµ2k1k2kµ1
1 (A.11)

Similarly, dotting with k1µ3 , k2ρ and k2ν

ϵµ1µ2k2(k1 · k2) + ϵµ2k1k2kµ1
2 = ϵµ1µ2k1k2

2 + ϵµ1k1k2kµ2
2 (A.12)

(A.11) and (A.12) were useful in rewriting the ⟨JJO⟩ ansatz. One can also derive these two
identities by considering the contraction of three Levi-Civita tensors.

ϵµ1αk1ϵβk2µ2ϵβρα = ϵµ1µ2k1k2ρ + ϵµ1k1k2δµ2
ρ

ϵβk2µ2ϵαk1µ1ϵαβρ = ϵµ1µ2k2k1ρ + ϵµ2k1k2δµ1
ρ (A.13)

Equating the RHS of the two equations after dotting them with kρ1 and kρ2 respectively, we get
back (A.11) and (A.12). Similarly, while checking the transverse identity for ⟨JJJ⟩, we used
the following Schouten identities

ϵk1k2µ3kµ2
2 = ϵk2µ3µ2(k1 · k2) + ϵµ2µ3k1k2

2 + ϵk1k2µ2kµ3
2 (A.14)

ϵk1k2µ3kµ2
3 = ϵk2µ3µ2(k1 · k3) + ϵµ2µ3k1(k2 · k3) + ϵµ3k1k2kµ3

3 (A.15)

In four-dimensions, we use the following identities to rewrite the ansatz for ⟨JJJ⟩.

(k1 · k2)ϵµ1µ2µ3k1 − k1µ1ϵk2µ2µ3k1 − k1µ2ϵµ1k2µ3k1 − k1µ3ϵµ1µ2k2k1 − k2
1ϵµ1µ2µ3k2 = 0

(k1 · k2)ϵµ1µ2µ3k2 − k2µ1ϵk2µ2µ3k2 − k2µ2ϵµ1k1µ3k2 − k2µ3ϵµ1µ2k1k2 − k2
2ϵµ1µ2µ3k1 = 0 (A.16)
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A.3. Parity-even spin-raising and weight-shifting operators

A.3 Parity-even spin-raising and weight-shifting operators

In this section we list out all the parity-even weight-shifting operators used in the main text of
the paper [50,180].

The operator that decreases the scaling dimension of operators at points 1 and 2 is :

W−−
12 = 1

2K⃗
−
12 · K⃗−

12 (A.17)

where

K−µ
12 = ∂k1µ − ∂k2µ (A.18)

We also use

K+µ
12 = ∂k1µ + ∂k2µ (A.19)

We can also define an operator that increases the scaling dimension at 2-points. Although this
has a very complicated expression, it simplifies when acting on scalar operators and is given by
:

W++
12 =(k1k2)2W−−

12 − (d− 2 ∆1)(d− 2 ∆2)k1 · k2

+
(
k2

2(d− 2 ∆1)(d− 1 − ∆1 + k1 ·K12) + (1 ↔ 2)
) (A.20)

D11 raises the spin of the operator at point 1 and simultaneously lowers its weight. This was
used in the construction of both ⟨TTO⟩ and ⟨JJJ⟩ :

D11 =(∆2 − 3 + k⃗2 · K⃗12)z⃗1 · K⃗12 − (k⃗2 · z⃗1)W−−
12 − (z⃗2 · K⃗12) (z⃗1 · ∂z⃗2) + (z⃗1 · z⃗2)∂z⃗2 · K⃗12

(A.21)

We can similarly define D22 and D33 by doing cyclic permutations of the momenta and polar-
ization vectors in (A.21). For example,

D22 ((k1, z1), (k2, z2), (k3, z3)) = D11 ((k3, z3), (k1, z1), (k2, z2)) (A.22)

S++
12 raises the spin at points 1 and 2 :

S++
12 =(s1 + ∆1 − 1)(s2 + ∆2 − 1)z1 · z2 − (z1 · k1)(z2 · k2)W−−

12

+ [(s1 + ∆1 − 1)(k2 · z2)(z1 ·K12) + (1 ↔ 2)]
(A.23)

S++
23 and S++

13 are once again defined by cyclic permutations of (A.23).

The operator H12 which raises the spin at points 1 and 2 and also lowers the weight at both
the points is given by :

H12 = 2 (z1 ·K12)(z2 ·K12) − 2 (z1 · z2)W−−
12 (A.24)

The operator that raises the spin at point 1 and simulataneously lowers the weight at point 2
is given by :

D12 = (∆1 + s1 − 1)z1 ·K12 − (z1 · k1)W−−
12 (A.25)

A (1 ↔ 2) exchange in this operator gives D21. Both of these were used in the construction of
⟨TTO⟩.
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A.4 Spinor-helicity notation

In this appendix we will quickly summarise the spinor-helicity variables for 3d CFTs. For more
details see [28,39] . We first embed the Euclidean 3-momentum k⃗ into a null momentum vector
kµ in 3+1 dimensions :

kµ = (k, k⃗) (A.26)

such that k = |⃗k|. Given the 4-momentum we express it in spinor notation as :

kαα̇ = kµσ
µ
α̇α = λαλ̃α̇ (A.27)

where α and α̇ are SL(2,C) transform under inequivalent (conjugate) representations of SL(2,C).
However, in 3 dimensions one has an identification between the dotted and undotted indices.
To see this let us consider the vector τµ = (1, 0, 0, 0). In spinor-helicity variables :

ταα̇ = τµ(σµ)αα̇ = −Iαα̇ (A.28)

We can now convert dotted indices to undotted indices using the following tensor :

τ α̇α = −ϵα̇β̇Iβ̇α (A.29)

We also introduce the barred spinors as follows :

λ̄α ≡ λ̃α̇τ
α̇
α (A.30)

We then have the following relations between the 3-momentum and the spinors.

λαλ̄β = ki
(
σ̂i
)
αβ

+ kϵαβ (A.31)

ki = 1
2
(
σi
)α
β
λαλ̄

β (A.32)

Since ϵαβ is an SL(2,C) invariant, we can use it to define dot products between spinors.

⟨ij⟩ = ϵαβλiαλ
j
β

⟨ij⟩ = ϵαβλ̄iαλ̄
j
β

⟨ij̄⟩ = ϵαβλiαλ̄
j
β

(A.33)

It can be also be used to raise and lower indices on the spinors for which we will use the following
convention.

λβ = ϵαβλ
α (A.34)

The reader is referred to appendix B of [39] or appendix C in [180] which contains a set of
useful relations between spinor brackets that will be used throughout the main text. Finally,
we also define the following polarization vectors which when dotted with the momentum space
expression of a correlator, gives its expression in spinor-helicity variables.

z−
αβ = λαλβ

2k z+
αβ = λ̄αλ̄β

2k (A.35)
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A.5. Homogeneous & non-homogeneous vs transverse & longitudinal contributions

A.5 Homogeneous & non-homogeneous vs transverse & longi-
tudinal contributions

While computing momentum space correlation functions one often splits the correlator into its
transverse and longitudinal parts [41]. In this paper we find it more useful to split correlators
into their homogeneous and non-homogeneous parts as defined in sec. 1.3.3.1. In this appendix
we emphasise and illustrate through examples that the transverse and homogeneous parts of a
correlator are not identical, and also that the longitudinal and non-homogeneous parts are not
identical. In particular, we will show that while the homogeneous part of a correlator is always
transverse, the non-homogeneous part in general contains both transverse and longitudinal
contributions and is proportional to 2-point function coefficients.

As an example consider ⟨TOO⟩. The correlator is given by [41]

⟨TOO⟩ = ⟨TOO⟩transverse + ⟨TOO⟩longitudinal (A.36)

where the transverse part is given by

⟨TOO⟩transverse = Πµ1ν1
α1β1

(k1)A1k
α1
2 kβ1

2 (A.37)

For example when the scalar operator O has scaling dimension ∆ = 1 the form factor is given
by [41]

A1 = cO
2k1 + k2 + k3

k2k3(k1 + k2 + k3)2 . (A.38)

The form-factor is proportional to the coefficient of the scalar two-point function cO

⟨O(k)O(−k)⟩∆=1 = cO
1
k
.

The longitudinal part of the correlator for ∆ = 1 is

⟨TOO⟩longitudinal =
[
kα2 Iµ1ν1

α (k1) − 1
2π

µ1ν1(k1)
]
cO

1
k2

+ k2 ↔ k3 (A.39)

where

Iµνα (k) = 1
k2

[
2p(µδν)

α − kα
2

(
δµν + kµkν

k2

)]
. (A.40)

We see that the full correlator is proportional to the two-point function coefficient cO. Thus in
our terminology the full answer is non-homogeneous and there is no homogeneous contribution
to it. To summarize we have

⟨TOO⟩ = ⟨TOO⟩transverse + ⟨TOO⟩longitudinal

= ⟨TOO⟩nh (A.41)

Let us now consider the case of ⟨TTT ⟩. The full answer in the terminology of [41] is given
by

⟨TTT ⟩ = ⟨TTT ⟩transverse + ⟨TTT ⟩longitudinal (A.42)
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which can as well be split into homogeneous and non-homogeneous pieces as follows

⟨TTT ⟩ = ⟨TTT ⟩transverse + ⟨TTT ⟩longitudinal

= ⟨TTT ⟩transverse,h + ⟨TTT ⟩transverse,nh + ⟨TTT ⟩longitudinal

= ⟨TTT ⟩h + ⟨TTT ⟩nh (A.43)

where we made the following identification

⟨TTT ⟩h = ⟨TTT ⟩transverse,h

⟨TTT ⟩nh = ⟨TTT ⟩transverse,nh + ⟨TTT ⟩longitudinal (A.44)

We now give explicit identification of the homogeneous and non-homogeneous contribution. To
simplify the discussion, we make use of transverse, null polarization vectors that are contracted
with the free indices of the correlator. The longitudinal term drops out and what remains are
the transverse pieces. For convenience we reproduce it here [39,187]

⟨TTT ⟩even = C1c123
E6 MW 3 + 2CTT

(
c123
E2 + b123

E
− E

)
MEG (A.45)

where CTT is defined by the two-point function

⟨T (k)T (−k)⟩ = CTT (z1 · z2)2k3 (A.46)

In the transverse correlator (A.45), the term proportional to CTT is non-homogeneous and
the rest of it (the term proportional to C1) is homogeneous. To summarize, the term that is
dependent on the two-point function coefficient (fixed by secondary conformal Ward identity
in the language of [41]) is the non-homogeneous contribution. From the dS4 perspective the
interpretation is that the term getting contribution from W 3 (term proportional to C1) is
homogeneous and the term getting contribution from Einstein-gravity √

gR (term proportional
to CTT ) is non-homogeneous.

To conclude, the non-homogeneous part of the correlator can contain both transverse as
well as longitudinal parts. From the dS4 perspective as well, the origins of the homogeneous
and non-homogeneous contributions are distinct.

A.6 Details of solutions of CWIs for various correlators
In this appendix we provide details of the calculations related to solving conformal Ward iden-
tities (CWIs) in spinor-helicity variables.

A.6.1 ⟨JsO∆O∆⟩
The details of the conformal Ward identities for this case were already given in Section 1.4.1.
Here we consider a few examples. The s = 1 and the s = 2 cases have already been computed
in [41].

Example - Spin one current: ⟨JµO∆O∆⟩
Setting s = 1 in (1.97) we obtain :

⟨J−O∆O∆⟩ = cOI 3
2 {− 1

2 ,∆− 3
2 ,∆− 3

2 }⟨12⟩⟨2̄1⟩

= cOI 3
2 {− 1

2 ,∆− 3
2 ,∆− 3

2 }
⟨12⟩⟨13⟩

⟨23⟩
(k2 + k3 − k1)

(A.47)
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We see that the correlator gets a minus sign under a (2 ↔ 3) exchange. Therefore, this correlator
is non-zero only when all the three operators have non-abelian indices. The non-abelian indices
add an extra factor of fabc to the correlator which results in a plus sign under a (2 ↔ 3)
exchange. This result holds for any ⟨JsO∆O∆⟩ whenever s is odd. For the specific case of
∆ = 2, the correlator is given by

⟨J−O2O2⟩ = cO
1
k1E

⟨12⟩⟨2̄1⟩ (A.48)

The correlator is divergent for ∆ ≥ 3 and needs to be renormalized for higher scaling dimensions.

Example - Spin two current: ⟨TµνO∆O∆⟩

Setting s = 2 and ∆ = 2 in (1.97) we obtain :

⟨T−O2O2⟩ = cO
E + k1
k2

1E
2 ⟨12⟩2⟨2̄1⟩2 (A.49)

Setting s = 2 and ∆ = 3 in (1.97) we obtain :

⟨T−O3O3⟩ = cO
k2

1(E + k2 + k3) + (E + k1)(k2
2 + k2k3 + k2

3)
k2

1E
2 ⟨12⟩2⟨2̄1⟩2 (A.50)

For ∆ > 3, the correlator is divergent and needs to renormalized.

A.6.2 ⟨JsJsO∆⟩

From the action of the special conformal generator on the scalar operator and conserved spin-s
currents (1.71) and (1.72), we get the following :

K̃κ

〈
Js−

ks−1
1

Js−

ks−1
2

O∆

k∆−2
3

〉
= 2

[
z−κ

1
ks+1

1 ks−1
2 k∆−2

3
⟨k1 · Js(k1)J−

s (k2)O(k3)⟩

+ z−κ
2

ks−1
1 ks+1

2 k∆−2
3

⟨J−
s (k1)k2 · Js(k2)O(k3)⟩ + kκ3 (∆ − 2)(∆ − 1)

ks−1
1 ks−1

2 k∆
3

⟨J−
s J

−
s O∆⟩

]
(A.51)

Making use of the trivial transverse Ward identity (1.100), the first and the second terms
on the RHS of the above equation drop out and we obtain :

K̃κ

〈
Js−

ks−1
1

Js−

ks−1
2

O∆

k∆−2
3

〉
= kκ3
ks−1

1 ks−1
2 k∆

3
(∆ − 2)(∆ − 1)⟨J−

s J
−
s O∆⟩ (A.52)

Contracting (A.52) with k1z
−κ
1 and with k2z

−κ
2 we get the following equations for the parity
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even part of the correlator (1.102) 2 :(
∂2F1
∂k2

2
− ∂2F1

∂k2
3

)
= −F1

k2
3

(∆ − 1)(∆ − 2)(
∂2F1
∂k2

3
− ∂2F1

∂k2
1

)
= −F1

k2
3

(∆ − 1)(∆ − 2) (A.53)

(k2 + k3 − k1)
4

(
∂2G1
∂k2

2
− ∂2G1

∂k2
3

)
+ s

∂G1
∂k2

= −G1
k2

3
(∆ − 1)(∆ − 2)(k2 + k3 − k1)

(k1 + k3 − k2)
4

(
∂2G1
∂k2

3
− ∂2G1

∂k2
1

)
− s

∂G1
∂k1

= −G1
k2

3
(∆ − 1)(∆ − 2)(k1 + k3 − k2) (A.54)

From the form of the ansatz for the correlator in (1.102) and since the conformal Ward
identity takes the form in (A.52), the equations satisfied by the odd parts F2 and G2 of the
correlator (1.102) are identical to those for the even parts F1 and G1 respectively.

We note that the equation for F1 (and F2) is independent of the spin s. The dependence
on the spin comes through the dilation Ward identity and is given by :( 3∑

i=1
ki
∂F1
∂ki

)
− (∆ − 2(s+ 1))F1 = 0 (A.55)

The same equation is satisfied by F2 as well. The equations (A.54) for G1 (and G2) do not have
a non-trivial solution. Solving (A.53) and (A.55) we obtain the result in (1.103).

Examples

In the following we consider a few examples of the correlator ⟨JsJsO∆⟩ for specific values of s
and ∆.

Spin one current: ⟨JµJνO∆⟩

Setting s = 1 in the expression for the generic correlator (1.104) we obtain :

⟨J−J+O∆⟩ = 0
⟨J−J−O∆⟩ = ⟨J−J−O∆⟩even + ⟨J−J−O∆⟩odd = (c1 + ic2) I 5

2 { 1
2 ,

1
2 ,∆− 3

2 }⟨12⟩2

⟨J+J+O∆⟩ = ⟨J+J+O∆⟩even + ⟨J+J+O∆⟩odd = (c1 − ic2) I 5
2 { 1

2 ,
1
2 ,∆− 3

2 }⟨1̄2̄⟩2
(A.56)

Example: ∆ = 1

When ∆ = 1 we have :

⟨J−J−O1⟩even = c1
1

k3(k1 + k2 + k3)2 ⟨12⟩2

⟨J−J−O1⟩odd = ic′
1

1
k3(k1 + k2 + k3)2 ⟨12⟩2

⟨J−J+O1⟩even = 0

⟨J−J+O1⟩odd = 0
(A.57)

2z−κ
1 = (σκ)αβλ1αλ1β

2k1
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Example: ∆ = 2

When ∆ = 2 we have :

⟨J−J−O2⟩even = c1
1

(k1 + k2 + k3)2 ⟨12⟩2

⟨J−J−O2⟩odd = ic′
1

1
(k1 + k2 + k3)2 ⟨12⟩2

⟨J−J+O2⟩even = 0

⟨J−J+O2⟩odd = 0
(A.58)

Example: ∆ = 3

When ∆ = 3 we have :

⟨J−J−O3⟩even = c1
k1 + k2 + 2k3

(k1 + k2 + k3)2 ⟨12⟩2

⟨J−J−O3⟩odd = ic′
1
k1 + k2 + 2k3

(k1 + k2 + k3)2 ⟨12⟩2

⟨J−J+O3⟩even = 0

⟨J−J+O3⟩odd = 0
(A.59)

We see that the solution for ∆ = 1 is just the shadow transform of the ∆ = 2 solution. In
Section 1.5 we convert this answer to momentum space and check that it matches the known
answer previously computed in [188].

Spin Two current : ⟨TTO∆⟩

Setting s = 2 in the expression for the generic correlator (1.104) we obtain :

⟨T−T+O∆⟩ = 0
⟨T−T−O∆⟩ = ⟨T−T−O∆⟩even + ⟨T−T−O∆⟩odd = (c1 + ic2) k1k2I 9

2 { 1
2 ,

1
2 ,∆− 3

2 }⟨12⟩4

⟨T+T+O∆⟩ = ⟨T+T+O∆⟩even + ⟨T+T+O∆⟩odd = (c1 − ic2) k1k2I 9
2 { 1

2 ,
1
2 ,∆− 3

2 }⟨1̄2̄⟩4
(A.60)

Example: ∆ = 1

When ∆ = 1 we have :

⟨T−T−O1⟩even = c1k1k2
1

k3(k1 + k2 + k3)4 ⟨12⟩4

⟨T−T−O1⟩odd = ic′
1k1k2

1
k3(k1 + k2 + k3)4 ⟨12⟩4

⟨T−T+O1⟩even = 0

⟨T−T+O1⟩odd = 0
(A.61)

Example: ∆ = 2

When ∆ = 2 we have :

⟨T−T−O2⟩even = c1k1k2
1

(k1 + k2 + k3)4 ⟨12⟩4

⟨T−T−O2⟩odd = ic′
1k1k2

1
(k1 + k2 + k3)4 ⟨12⟩4

⟨T−T+O2⟩even = 0

⟨T−T+O2⟩odd = 0
(A.62)
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Example: ∆ = 3
When ∆ = 3 we have :

⟨T−T−O3⟩even = c1k1k2
k1 + k2 + 4k3

(k1 + k2 + k3)4 ⟨12⟩4

⟨T−T−O3⟩odd = ic′
1k1k2

k1 + k2 + 4k3
(k1 + k2 + k3)4 ⟨12⟩4

⟨T−T+O3⟩even = 0

⟨T−T+O3⟩odd = 0
(A.63)

Again, we see that the ∆ = 1 solution and the ∆ = 2 solution are just shadow transforms of
each other. For ∆ ≥ 6, the triple-K integrals show a divergence and the correlators need to be
renormalized.

Higher spin example
Let us now discuss a few correlators involving higher spin conserved currents. When the scalar
operator O∆ has scaling dimension ∆ = 3 and the conserved current operator Js has spin s = 3,
we have from (1.104) :

⟨J3−J3−O3⟩ = (c1 + i c2)(k1k2)2I 13
2 { 1

2 ,
1
2 ,

3
2 }

= (c1 + i c2)(k1k2)2E + 5k3
E6 ⟨12⟩6 (A.64)

When the scalar operator O∆ has scaling dimension ∆ = 3 and the conserved current operator
Js has spin s = 4, we have from (1.104) :

⟨J4−J4−O3⟩ = (c1 + i c2)(k1k2)4I 17
2 { 1

2 ,
1
2 ,

3
2 }⟨12⟩8

= (c1 + i c2)(k1k2)4E + 7k3
E8 ⟨12⟩8 (A.65)

We can also get the parity even part of the above two results using weight-shifting and spin-
raising operators in momentum space [50, 188] and then converting the answer into spinor-
helicity variables :

⟨J3J3O3⟩ = (k1k2)2P
(3)
1 P

(3)
2 H3

12⟨O2O2O3⟩ (A.66)

⟨J4J4O3⟩ = (k1k2)3P
(4)
1 P

(4)
2 H4

12⟨O2O2O3⟩ (A.67)

where P (s)
i are spin-s projectors transverse to ki and H12 is a bilocal operator that raises the

spin of the operators at insertions 1 and 2. It can be verified that the answers obtained this
way match the answers in (A.64) and (A.65).

A.6.3 ⟨JJJ⟩
The ansatz for the correlator is given in (1.106). We will analyze the parity-odd and the parity-
even parts separately here as they have different WT identities.

⟨JJJ⟩even

⟨J−(k1)J−(k2)J−(k3)⟩even = F1(k1, k2, k3)⟨12⟩⟨23⟩⟨31⟩ (A.68)
⟨J−(k1)J−(k2)J+(k3)⟩even = G1(k1, k2, k3)⟨12⟩⟨23̄⟩⟨3̄1⟩ (A.69)
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The action of the conformal generator is given by :

K̃κ⟨J−J−J−⟩ = 2
(
z−κ

1
k1µ
k2

1
⟨JµJ−J−⟩ + z−κ

2
k2µ
k2

2
⟨J−JµJ−⟩ + z−κ

3
k3µ
k2

3
⟨J−J−Jµ⟩

)

K̃κ⟨J−J−J+⟩ = 2
(
z−κ

1
k1µ
k2

1
⟨JµJ−J+⟩ + z−κ

2
k2µ
k2

2
⟨J−JµJ+⟩ + z+κ

3
k3µ
k2

3
⟨J−J−Jµ⟩

)
(A.70)

The transverse Ward identities of ⟨JJJ⟩ [44] are non-trivial :

k1µ
k2

1
⟨JµJ−J−⟩even = cJ

1
k2

1k2k3
⟨23⟩2(k3 − k2)

k1µ
k2

1
⟨JµJ−J+⟩even = cJ

1
k2

1k2k3
⟨23̄⟩2(k3 − k2) (A.71)

Using (A.71) in the R.H.S. of (A.70) we obtain :

K̃κ⟨J−J−J−⟩even = z−κ
1 cJ

⟨23⟩2

k2
1k2k3

(k2 − k3) + cyclic perm. (A.72)

K̃κ⟨J−J−J+⟩even = z−κ
1 cJ

⟨23̄⟩2

k2
1k2k3

(k2 − k3) + cyclic perm. (A.73)

Expanding out the left hand side and dotting with (σκ)βα(λα2λ3β +λ2βλ
α
3 ) gives us the following

equations for the form factors :

2
(
∂F1
∂k2

− ∂F1
∂k3

)
+ k2

(
∂2F1
∂k2

2
− ∂2F1

∂k2
1

)
+ k3

(
∂2F1
∂k2

1
− ∂2F1

∂k2
3

)
= 2cJ

(k3 − k2)
k3

1k2k3
(A.74)

2
(
∂G1
∂k2

+ ∂G1
∂k3

)
+ k2

(
∂2G1
∂k2

2
− ∂2G1

∂k2
1

)
− k3

(
∂2G1
∂k2

1
− ∂2G1

∂k2
3

)
= 2cJ

(k3 − k2)
k3

1k2k3
(A.75)

Similarly, dotting with (σκ)βα(λα1λ3β + λ1βλ
α
3 ) gives :

2
(
∂F1
∂k1

− ∂F1
∂k3

)
− k1

(
∂2F1
∂k2

2
− ∂2F1

∂k2
1

)
+ k3

(
∂2F1
∂k2

2
− ∂2F1

∂k2
3

)
= 2cJ

(k3 − k1)
k1k3

2k3
(A.76)

2
(
∂G1
∂k1

+ ∂G1
∂k3

)
− k1

(
∂2G1
∂k2

2
− ∂2G1

∂k2
1

)
− k3

(
∂2G1
∂k2

2
− ∂2G1

∂k2
3

)
= 2cJ

(k3 − k1)
k1k3

2k3
(A.77)

The dilatation Ward identity is given by( 3∑
i=1

ki
∂F1
∂ki

)
+ 3F1 = 0,

( 3∑
i=1

ki
∂G1
∂ki

)
+ 3G1 = 0 (A.78)

Solving these equations we obtain F1(k1, k2, k3) and G1(k1, k2, k3) in (1.111).

⟨JJJ⟩odd

We now turn our attention to the odd part of the correlator. The ansatz is given by

⟨J−(k1)J−(k2)J−(k3)⟩odd = iF2(k1, k2, k3)⟨12⟩⟨23⟩⟨31⟩ (A.79)
⟨J−(k1)J−(k2)J+(k3)⟩odd = iG2(k1, k2, k3)⟨12⟩⟨23̄⟩⟨3̄1⟩ (A.80)
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The transverse WT identity in this case is given by :

k1µ
k2

1
⟨JµJ−J−⟩odd = c′

J

1
k2

1k2k3
⟨23⟩2(k3 − k2)

k1µ
k2

1
⟨JµJ−J+⟩odd = c′

J

1
k2

1k2k3
⟨23̄⟩2(k3 + k2) (A.81)

Substituting (A.81) into the right hand side of the conformal identity (A.70), we get :

K̃κ⟨J−J−J−⟩odd = z−κ
1 i c′

J

⟨23⟩2

k2
1k2k3

(k2 − k3) + cyclic perm.

K̃κ⟨J−J−J+⟩odd = z−κ
1 i c′

J

⟨23̄⟩2

k2
1k2k3

(k2 + k3) + cyclic perm.
(A.82)

Following the same procedure as in the parity-even case, we get :

2
(
∂F2
∂k2

− ∂F2
∂k3

)
+ k2

(
∂2F2
∂k2

2
− ∂2F2

∂k2
1

)
+ k3

(
∂2F2
∂k2

1
− ∂2F2

∂k2
3

)
= 2c′

J

(k3 − k2)
k3

1k2k3
(A.83)

2
(
∂G2
∂k2

+ ∂G2
∂k3

)
+ k2

(
∂2G2
∂k2

2
− ∂2G2

∂k2
1

)
− k3

(
∂2G2
∂k2

1
− ∂2G2

∂k2
3

)
= 2c′

J

(k3 + k2)
k3

1k2k3
(A.84)

and

2
(
∂F2
∂k1

− ∂F2
∂k3

)
− k1

(
∂2F2
∂k2

2
− ∂2F2

∂k2
1

)
+ k3

(
∂2F2
∂k2

2
− ∂2F2

∂k2
3

)
= 2c′

J

(k3 − k1)
k1k3

2k3
(A.85)

2
(
∂G2
∂k1

+ ∂G2
∂k3

)
− k1

(
∂2G2
∂k2

2
− ∂2G2

∂k2
1

)
− k3

(
∂2G2
∂k2

2
− ∂2G2

∂k2
3

)
= 2c′

J

(k3 + k1)
k1k3

2k3
(A.86)

Let us note that (A.83), (A.85) are exactly identical to (A.74), (A.76), whereas comparing
(A.84), (A.86) with (A.75), (A.77), we see that the r.h.s. of the equations are different. Solving
these equations we obtain F2(k1, k2, k3) and G2(k1, k2, k3) in (1.111).

A.6.4 ⟨TTT ⟩

The even part of this correlator was obtained earlier in [41,180]. We focus on obtaining the odd
part.

⟨TTT ⟩odd

We start with the following ansatz for ⟨TTT ⟩odd :〈
T−

k1

T−

k2

T−

k3

〉
odd

= i F (k1, k2, k3)⟨12⟩2⟨23⟩2⟨31⟩2 (A.87)

〈
T−

k1

T−

k2

T+

k3

〉
odd

= iG(k1, k2, k3)⟨12⟩2⟨23̄⟩2⟨3̄1⟩2 (A.88)
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The action of the conformal generator is given by :

K̃κ

〈
T−

k1

T−

k2

T−

k3

〉
= 12z−

1κ
k(1µz

−
1ν)

k3
1

〈
Tµν

T−

k2

T−

k3

〉
+ 12z−

2κ
k(2µz

−
2ν)

k3
2

〈
T−

k1
Tµν

T−

k3

〉

+ 12z−
3κ
k(3µz

−
3ν)

k3
3

〈
T−

k1

T−

k2
Tµν

〉

K̃κ

〈
T−

k1

T−

k2

T+

k3

〉
= 12z−

1κ
k(1µz

−
1ν)

k3
1

〈
Tµν

T−

k2

T+

k3

〉
+ 12z−

2κ
k(2µz

−
2ν)

k3
2

〈
T−

k1
Tµν

T+

k3

〉

+ 12z+
3κ
k(3µz

+
3ν)

k3
3

〈
T−

k1

T−

k2
Tµν

〉
(A.89)

Using (1.114) we find for parity odd contribution

k(1µz
−
1ν)

k3
1

〈
Tµν

T−

k2

T−

k3

〉
= E

⟨12⟩⟨23⟩3⟨31⟩
k4

1k
3
2k

3
3

(k3
3 − k3

2)

k(1µz
−
1ν)

k3
1

〈
Tµν

T−

k2

T+

k3

〉
= (E − 2k3)⟨12⟩⟨23̄⟩3⟨3̄1⟩

k4
1k

3
2k

3
3

(k3
3 + k3

2) (A.90)

The action of K̃κ on the ansatz, after dotting with bκ = (σκ)βα(λα2λ3β + λ2βλ
α
3 ), becomes

4
(
∂F

∂k2
− ∂F

∂k3

)
+ k3

(
∂2F

∂k2
1

− ∂2F

∂k2
3

)
− k2

(
∂2F

∂k2
1

− ∂2F

∂k2
2

)
= c′

T

E(k3
2 − k3

3)
k2

1(k1k2k3)3 (A.91)

4
(
∂G

∂k2
+ ∂G

∂k3

)
− k3

(
∂2G

∂k2
1

− ∂2G

∂k2
3

)
− k2

(
∂2G

∂k2
1

− ∂2G

∂k2
2

)
= c′

T

(E − 2k3)(k3
2 + k3

3)
k2

1(k1k2k3)3 (A.92)

The dilatation Ward identity is given by( 3∑
i=1

ki
∂F

∂ki

)
+ 6F = 0,

( 3∑
i=1

ki
∂G

∂ki

)
+ 6G = 0 (A.93)

The solutions for F and G are then given by :

F (k1, k2, k3) = c′
1
E6 + c′

T

E3 − E b123 − c123
c3

123
(A.94)

G(k1, k2, k3) = c′
T

(E − 2k3)3 − (E − 2k3)(b123 − 2k3 a12) + c123
c3

123
(A.95)

where a12 = k1 + k2, b123 = k1k2 + k2k3 + k1k3 and c123 = k1 k2 k3.

A.6.5 ⟨TJJ⟩

We once again focus on only the odd part of the correlator. Since we have shown that the
transverse WT identities are trivial in (1.129)and (1.132), the action of K̃κ on the ansatz
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(1.134) becomes :

K̃κ

〈
T−

k1
J−J−

〉
odd

= 0

K̃κ

〈
T−

k1
J−J+

〉
odd

= 0. (A.96)

Expanding out the l.h.s. and dotting with an appropriate bκ = (σκ)βα(λα2λ3β + λ2βλ
α
3 ), we get

k3

(
∂2F

∂k2
1

− ∂2F

∂k2
3

)
− k2

(
∂2F

∂k2
1

− ∂2F

∂k2
2

)
+ 2

(
∂F

∂k2
− ∂F

∂k3

)
= 0 (A.97)

k3

(
∂2G

∂k2
1

− ∂2G

∂k2
3

)
− k2

(
∂2G

∂k2
1

− ∂2G

∂k2
2

)
+ 2

(
∂G

∂k2
+ ∂G

∂k3
− 2 ∂G

∂k1

)
= 0 (A.98)

The solutions to these are given by (1.135).

A.6.6 ⟨Js1JsJs⟩

Dotting (1.142) with bκ = (σκ)λ1αλ
β

1 , we get :

(−k1 + k2 + k3)
(
∂2F

∂k2
2

− ∂2F

∂k2
3

)
+ 2(2s− s1)

(
∂F

∂k2
− ∂F

∂k3

)
= 0

(−k1 + k2 − k3)
(
∂2H

∂k2
2

− ∂2H

∂k2
3

)
+ 2(2s− s1)

(
∂H

∂k2
+ ∂H

∂k3

)
= 0 (A.99)

Similarly, dotting (1.142) with bκ = (σκ)λ2αλ
β

2 , we get :

(k1 − k2 + k3)
(
∂2F

∂k2
3

− ∂2F

∂k2
1

)
+ 2s1

(
∂F

∂k3
− ∂F

∂k1

)
= 0

(k3 − k2 − k1)
(
∂2G

∂k2
3

− ∂2G

∂k2
1

)
+ 2s1

(
∂G

∂k3
+ ∂G

∂k1

)
= 0 (A.100)

The dilatation Ward identity is given by( 3∑
i=1

ki
∂F

∂ki

)
+ (2s+ s1)F = 0

( 3∑
i=1

ki
∂G

∂ki

)
+ (2s+ s1)G = 0

( 3∑
i=1

ki
∂H

∂ki

)
+ (2s+ s1)H = 0 (A.101)

We have considered only one equation for G and H as these by themselves imply that there is
no homogeneous solution for the two form factors. The solutions for F , G and H are then given
by (1.144).
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A.7 Identities involving Triple-K integrals

In this section we obtain non-trivial identities involving triple-K integrals by matching our
results obtained for the correlator in spinor-helicity variables to the results obtained for the
same in momentum space after converting to spinor-helicity variables.

Let us first consider the correlator ⟨JJO∆⟩. We will work in a convenient regularisation
scheme in which we set u = v1 = v2 = 0 and v3 ̸= 0. The momentum space expression for the
correlator after converting to spinor-helicity variables takes the following form :

⟨J−J−O⟩ = −2A2 +A1
[
(k1 − k2)2 − k2

3
]

4k1k2
⟨12⟩2 (A.102)

where [45] :

A1 = c1I 5
2 ,{

1
2 ,

1
2 ,∆− 3

2 +v3ϵ}

A2 = c1I 3
2 ,{

1
2 ,

1
2 ,∆− 1

2 +v3ϵ} + c1
∆
2 (1 − ∆) I 1

2 ,{
1
2 ,

1
2 ,∆− 3

2 +v3ϵ} (A.103)

Comparing with our results for the same correlator obtained by solving the conformal Ward
identities directly in spinor-helicity variables (A.56) we get the following identity involving
triple−K integrals which we have verified to O(1) in the regulator the following relation :

−2A2 +A1
[
(k1 − k2)2 − k2

3
]

4k1k2
= c1I 5

2 ,{
1
2 ,

1
2 ,∆− 3

2 +v3ϵ} (A.104)

Let us now consider the correlator ⟨TTO∆⟩. The momentum space expression for the correlator
after converting to spinor-helicity variables takes the following form :

⟨T−T−O⟩ = 4A3 +
[
(k1 − k2)2 − k2

3
] [

2A2 +A1((k1 − k2)2 − k2
3)
]

16k2
1k

2
2

⟨12⟩4 (A.105)

We will continue to work in the scheme where u = v1 = v2 = 0 and only v3 is non-zero and in
this scheme the form factors are given by [45] :

A1 = c1 I 9
2 ,{

3
2 ,

3
2 ,∆− 3

2 +v3ϵ}

A2 = 4c1 I 7
2 ,{

3
2 ,

3
2 ,∆− 1

2 +v3ϵ} + c2 I 5
2 ,{

3
2 ,

3
2 ,∆− 3

2 +v3ϵ}

A3 = 2c1 I 5
2 ,{

3
2 ,

3
2 ,∆+ 1

2 +v3ϵ} + c2 I 3
2 ,{

3
2 ,

3
2 ,∆− 1

2 +v3ϵ} + c3 I 1
2 ,{

3
2 ,

3
2 ,∆− 3

2 +v3ϵ} (A.106)

where

c2 = c1(1 − ∆ − v3ϵ)(∆ + 2 + v3ϵ)

c3 = c1
4 (∆ − 3 + v3ϵ)(∆ − 1 + v3ϵ)(∆ + v3ϵ)(∆ + 2 + v3ϵ) (A.107)

Matching with our answers obtained by solving conformal Ward identities in spinor-helicity
variables (A.60) we obtain the following identity for triple-K integrals we have verified to O(1)
in the regulator :

4A3 +
[
(k1 − k2)2 − k2

3

] [
2A2 +A1((k1 − k2)2 − k2

3)
]

= 16c1k
3
1 k

3
2 I 9

2 ,{
1
2 ,

1
2 ,∆− 3

2 +v3ϵ} (A.108)
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A.8 Higher-spin momentum space correlators

In this section we summarise the momentum space expression for the parity-even and parity-odd
homogeneous parts of higher spin correlators using the results of section 1.5, see also Appendix
D of [187].

For ⟨JsJsO2⟩ we have

⟨JsJsO2⟩even,h = (k1k2)s−1
[ 1
E2

{
2(z⃗1 · k⃗2)(z⃗2 · k⃗1) + E(E − 2k3)z⃗1 · z⃗2

}]s
⟨JsJsO2⟩odd,h = (k1k2)s−1 1

E2s

[
k2 ϵ

k1z1z2 − k1 ϵ
k2z1z2

]
×
[
2(z⃗1 · k⃗2)(z⃗2 · k⃗1) + E(E − 2k3)z⃗1 · z⃗2

]s−1
(A.109)

while for ⟨JsJsO3⟩ we get

⟨JsJsO3⟩even,h = (k1k2)s−1(E + (2s− 1)k3)
[ 1
E2

{
2(z⃗1 · k⃗2)(z⃗2 · k⃗1) + E(E − 2k3)z⃗1 · z⃗2

}]s
⟨JsJsO3⟩odd,h = (k1k2)s−1 (E + (2s− 1)k3)

E2s

[
k2 ϵ

k1z1z2 − k1 ϵ
k2z1z2

]
×
[
2(z⃗1 · k⃗2)(z⃗2 · k⃗1) + E(E − 2k3)z⃗1 · z⃗2

]s−1

(A.110)

The homogeneous part of the Js 3-point correlator is

⟨JsJsJs⟩even,h = (k1k2k3)s−1
[ 1
E3

{
2 (z⃗1 · k⃗2) (z⃗2 · k⃗3) (z⃗3 · k⃗1) + E{k3 (z⃗1 · z⃗2) (z⃗3 · k⃗1) + cyclic}

}]s
⟨JsJsJs⟩odd,h = (k1k2k3)s−1 1

E3

[{
(k⃗1 · z⃗3)

(
ϵk3z1z2k1 − ϵk1z1z2k3

)
+ (k⃗3 · z⃗2)

(
ϵk1z1z3k2 − ϵk2z1z3k1

)
−(z⃗2 · z⃗3)ϵk1k2z1E + k1

2 ϵ
z1z2z3E(E − 2k1)

}
+ cyclic perm

]
×
[ 1
E3

{
2 (z⃗1 · k⃗2) (z⃗2 · k⃗3) (z⃗3 · k⃗1) + E{k3 (z⃗1 · z⃗2) (z⃗3 · k⃗1) + cyclic}

}]s−1

(A.111)

whereas for ⟨J2sJsJs⟩ we have

⟨J2sJsJs⟩odd,h = k2s−1
1 (k2k3)s−1

E4s

[(
(k3 · z2)(k2 · z1) − 1

2E(E − 2k3)(z1 · z2)
)(

k1ϵ
z1z3k3 − k3ϵ

z1z3k1
) ]

×
[(

(k3 · z2)(k2 · z1) − 1
2E(E − 2k3)(z1 · z2)

)(
(k1 · z3)(k2 · z1) − 1

2E(E − 2k2)(z1 · z3)
)]s−1

⟨J2sJsJs⟩even,h = k2s−1
1 (k2k3)s−1

E4s

[(
(k3 · z2)(k2 · z1) − 1

2E(E − 2k3)(z1 · z2)
)

×
(

(k1 · z3)(k2 · z1) − 1
2E(E − 2k2)(z1 · z3)

)]s
(A.112)
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A.9 Parity-odd weight-shifting operators

We need the following spin and dimension raising operators [50,180,188],

H12 =2
(
z1 ·K12z2 ·K12 − 2z1 · z2W

−−
12

)
,

D̃12 = − 1
2
[
ϵ(z1z2K

−
12)(∆1 − d− k1 · ∂

∂k1
) + K−

12K
+
12

2 ϵ(k1z1z2) + ϵ(k1K
−
12z1)(z2 · ∂

∂k2
)

+ ϵ(k1z2K
−
12)(z1 · ∂

∂k1
)
]
. (A.113)

where expressions for K12,W
−−
12 can be found in the above mentioned references. The

following sequence of operators reproduces ⟨TJJ⟩odd

⟨T (k1)J(k2)J(k3)⟩odd = P
(2)
1 P

(1)
2 P

(1)
3 H13D̃12⟨O1(k1)O2(k2)O2(k3)⟩ + (2 ↔ 3) (A.114)

where P (s)
i is a spin−s projector. The explicit momentum space expression for the correlator is

given by

⟨TJJ⟩odd =
[
A1ϵ

k1k2z1(k2 · z1)(k3 · z2)(k1 · z3) +A2ϵ
k1k2z1(z2 · z3)(k2 · z1)

+A3ϵ
k1z1z2(k2 · z1)(k1 · z3) +A4ϵ

k2z1z2(k2 · z1)(k1 · z3)
+A5ϵ

k1z1z2(z1 · z3) +A6ϵ
k2z1z2(z1 · z3)

+A7ϵ
k1k2z1(z1 · z2)(k1 · z3) +A8ϵ

z1z2z3(k2 · z1)
]

+ (2 ↔ 3)

(A.115)

where the form factors are given by

A1 = 125k2
1 + 4k1(k2 + k3) + (k2 + k3)2

k2
1(k1 + k2 + k3)4

A2 = 4 k1 + k2 + 3k3
(k1 + k2 + k3)3

A3 = 15k3
1 + 13k2

1(k2 + k3) + 9k1(k2 + k3)2 + 3(k2 + k3)3

k2
1(k1 + k2 + k3)3

A4 = k1 + k2 + 3k3
(k1 + k2 + k3)3

A5 = −3k4
1 + 2k3

1(5k2 − 3k3) + 4k2
1k2(2k2 − k3) + 6k1(k2 − k3)2(k2 + k3) + 3(k2

2 − k2
3)2

2k2
1(k1 + k2 + k3)2

A6 = 4k2(k1 + k2 + 2k3
(k1 + k2 + k3)2

A7 = −3k3
1 − 3(k2 − 3k3)(k2 + k3)2 + k2

1(−9k2 + 23k3) − 9k1(k2
2 − 2k2k3 − 3k2

3))
k2

1(k1 + k2 + k3)3

A8 = −23k2
1 + 2k1(k2 + k3) + (k2 + k3)2

(k1 + k2 + k3)2

(A.116)

Although this expression looks very different from the expression obtained earlier in (1.197),
they are actually the same up to some Schouten identities. This can easily be seen by converting
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both of them to spinor-helicity variables where they match exactly.

A.10 Flat-space amplitudes: Examples
In this section, we give some simple examples of flat-space 4D scattering amplitude. We define
two sets of amplitudes, one that satisfies si ≤ sj + sk is called inside the triangle and one
that violates this is called outside the triangle. This distinction becomes very important for
momentum space CFT correlators as was discussed in [184].

A.10.1 Inside the triangle inequality
We take a simple example of two photon and graviton scattering. The results are given by four
structures, two parity-even and one parity-odd

M112
even =gm,e(z1.p2z2.z3 + z2.p3z3.z1 + z3.p1z1.z2)(z3.p1) + gnm,e(z1.p2)(z2.p3)(z3.p1)2 (A.117)

M112
odd =gm,o[ϵ(z2p2z3p3)(z3.z1) + ϵ(z3p3z1p1)(z2.z3) + (ϵ(z1z2z3p2) − ϵ(z1z2z3p1))(z3.k1)]

+ gnm,oϵ(z2p2z3p3)(z1.p2)(z3.p1) (A.118)

Both the minimal and non-minimal amplitudes are present for both parity-even and parity-
odd cases. Notice that the odd minimal amplitude is antisymmetric under 1 ↔ 2 exchange.
Therefore, one needs to introduce Chan-Paton factors for that amplitude. In fact, it turns out
Chan-Paton factors must be introduced for amplitudes with s1 = s2 < s3 for even s3. We
rewrite the odd amplitude in 3D momentum space variables (1.275)

M112
odd =gm,o[− (ϵ (z2z3k2) k3 − ϵ (z2z3k3) k2) (z1 · z3) + ϵ (z1z2z3) k2 (z3 · k1)]

+ gnm,o[− (ϵ (z2z3k2) k3 − ϵ (z2z3k3) k2)](z1.k2)(z3.k1) (A.119)

It is easy to show under epsilon transform that the parity-even amplitude in (A.117) maps
to parity-odd amplitude (A.119). Let us for completeness show this below explicitly. Consider

[Oϵ]2M112
e = gm,e(z1.k2

ϵ(z2k2z3)
k2

+ z3.z1
ϵ(z2k2k3)

k2
+ z3.k1

ϵ(z2k2z1)
k2

)(z3.k1)

+ gnm,e(z1.k2)ϵ(z2k2k3)
k2

(z3.k1)2 (A.120)

Using the Schouten identities

(z1.k2)ϵ(z2k2z3) = k2
2ϵ(z2z1z3) − z3.k1ϵ(z2k2z1) (A.121)

(z3.k1)ϵ(z2k2k3) = −k2
2ϵ(z2z3k3) − k2k3ϵ(z2k2z3) (A.122)

in the above we exactly get (A.119). We have also made use of kIkJ = kI .kJ in the above. A
more abstract derivation of the same is given in Section 1.10.1.2. From here on-wards, we write
all the flat-space amplitudes in 3D momentum space variables.

Three spin-s amplitude
For general three spin-s amplitude we have

Msss
e = gm,e(z1.k2z2.z3 + z2.k3z3.z1 + z3.k1z1.z2)s + gnm,e(z1.k2)s(z2.k3)s(z3.k1)s

Msss
o = gnm,o[−ϵ(z2z3k2)k3 + ϵ(z2z3k3)k2](z1.k2)s(z2.k1)s−1(z3.k1)s−1 (A.123)

Notice no minimal amplitude present for the parity-odd case. This is as mentioned before in
Table 1.4. The minimal term was dropped as the negative powers appearing due to s1 = s2 = s3.
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For example, three photon amplitude is given by

M111
e = gm,e(z1.k2z2.z3 + z2.k3z3.z1 + z3.k1z1.z2) + gnm,e(z1.k2)(z2.k3)(z3.k1)

M111
o = gnm,o[−ϵ(z2z3k2)k3 + ϵ(z2z3k3)k2](z1.k2) (A.124)

Another simple example is of three graviton scattering where we have

M222
e = gm,e(z1.k2z2.z3 + z2.k3z3.z1 + z3.k1z1.z2)2 + gnm,e(z1.k2)2(z2.k3)2(z3.k1)2

M222
o = gnm,o[−ϵ(z2z3k2)k3 + ϵ(z2z3k3)k2](z1.k2)2(z2.k1)(z3.k1) (A.125)

One scalar two spin-s amplitude

For two photon and one scalar we have only two structures

M011
e = gnm,e(z2.k3)(z3.k1), M011

o = gnm,o[−ϵ(z2z3k2)k3 + ϵ(z2z3k3)k2] (A.126)

this can be generalised to two spin-s and one scalar.

M0ss
e = gnm,e(z2.k3)s(z3.k1)s, M0ss

o = gnm,o[−ϵ(z2z3k2)k3 + ϵ(z2z3k3)k2](z2.z3)s−1 (A.127)

A.10.2 Outside the triangle inequality

Let us consider one spin-s two scalar amplitude

M00s
e = ge(z3.k1)s. (A.128)

This only has parity-even contribution. For one scalar one spin s2 and one spin s3 amplitude
we have

M0s2s3
e = ge(z2.k1)s2(z3.k1)s3 , M0s2s3

o = go[−ϵ(z2z3k2)k3 + ϵ(z2z3k3)k2](z2.k1)s2−1(z3.k1)s3−1

(A.129)

with s3 > s2. As an example let us consider spin-3 spin-1 scalar amplitude which is given by

M013
e = ge(z2.k1)(z3.k1)3, M013

o = go[−ϵ(z2z3k2)k3 + ϵ(z2z3k3)k2](z3.k1)2. (A.130)

Now let us consider two spin-1 and one spin-4 particles which will be useful for our purposes.
We have

M114
e = gm,e(z1.k2z2.z3 + z2.k3z3.z1 + z3.k1z1.z2)(z3.k1)3 + gnm,e(z1.k2)(z2.k3)(z3.k1)3

M114
o =gm,o[− (ϵ (z2z3k2) k3 − ϵ (z2z3k3) k2) (z1 · z3) + ϵ (z1z2z3) k2 (z3 · k1)](z3.k1)2

+ gnm,o[−ϵ(z2z3k2)k3 + ϵ(z2z3k3)k2](z1.k2)(z3.k1)3. (A.131)

A.11 Various-Identities

In this section, we derive

Y2Y3[Oϵ]2G = −GV1 (A.132)
Y3[Oϵ]2Y2 = −V1 (A.133)
Y2Y3[Oϵ]1G = GV1 (A.134)

179



Appendix A.

Consider first

Y2Y3[Oϵ]2G = (z2.k3)(z3.k1)
[
(z1.k2)ϵ(z2k2z3)

k2
+ (z3.z1)ϵ(z2k2k3)

k2
+ (z3.k1)ϵ(z2k2z1)

k2

]
(A.135)

= (z3.k1)
[
(z1.k2)(z2.z3)ϵ(z2k2k3)

k2
+ (z3.z1)(z2.k3)ϵ(z2k2k3)

k2
+ (z3.k1)(z1.z2)ϵ(z2k2k3)

k2

]
(A.136)

where in the second equality we take z2.k3 inside the bracket and make use of the Schouten
identities

ϵ(z2k2z3)Y2 = ϵ(z2k2z3)(z2.k3) = ϵ(z2k2k3)(z2.z3) = ϵ(z2k2k3)Z1 (A.137)
ϵ(z2k2z1)Y2 = ϵ(z2k2z1)(z2.k3) = ϵ(z2k2k3)(z1.z2) = ϵ(z2k2k3)Z3 (A.138)

to obtain

Y2Y3[Oϵ]2G = (z3.k1)ϵ(z2k2k3)
k2

G (A.139)

Now, consider the schouten identity

ϵ(z2k2k3)(z3.k2) = −ϵ(z2z3k2)k2.k3 + ϵ(z2z3k3)k2
2 (A.140)

since, pI .pJ = kIkJ − kI .kJ = 0, the above schouten identity becomes

ϵ(z2k2k3)(z3.k2) = −ϵ(z2z3k2)k2k3 + ϵ(z2z3k3)k2
2 = −k2ϵ(z2z3p2p3) = k2V1 (A.141)

which we now use in (A.139) to get

Y2Y3[Oϵ]2G = −GV1 (A.142)

Similarly one can show

Y2Y3[Oϵ]3G = −GV1 (A.143)

Similarly, we derive (A.133). Consider the epsilon transform of Y2 as follows

Y3[Oϵ]2Y2 = (z3.k1)ϵ(z2k2k3)
k2

(A.144)

Now, by using (A.141) in the above, we immediately see

Y3[Oϵ]2Y2 = −V1 (A.145)

Similarly, one can show

Y2[Oϵ]3Y3 = −V1 (A.146)

To derive (A.134), consider

Y2Y3[Oϵ]2G = (z2.k3)(z3.k1)
[
(z2.z3)ϵ(z1k1k2)

k1
+ (z2.k3)ϵ(z1k1z3)

k1
+ (z3.k1)ϵ(z1k1z2)

k1

]
(A.147)
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Now, we take z3.k1 inside the bracket and use the following Schouten identities

Y3ϵ(z1k1z2) = (z3.k1)ϵ(z1k1z2) = −k2
1ϵ(z1z2z3) − (z2.k3)ϵ(z1k1z3) (A.148)

Y3ϵ(z1k1k2) = (z3.k1)ϵ(z1k1k2) = k2
1ϵ(z1z3k2) + k1k2ϵ(z1k1z3) = −k1V2 (A.149)

to obtain

Y2Y3[Oϵ]1G = −Y2(Z1V2 + Y3W1) (A.150)

Now we use the Schouten identities [204]

W1Y2Y3 + V1(G+ Y1Z1) = 0 V1Y1 = V2Y2 = V3Y3 (A.151)

in (A.150) and simplify to obtain

Y2Y3[Oϵ]1G = GV1. (A.152)
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B.1 Notations and Conventions

Metric : ηµν = diag(−1, 1, 1)
Gamma Matrices : (γµ) β

α = (σ2,−iσ1, iσ3) β
α ⇒ {γµ, γν} = −2ηµνI2

Charge Conjugation : Cαβ = −Cβα =

0 −i

i 0

 = −Cαβ = Cβα

Raising-Lowering : ψα = Cαβψβ ; ψα = −Cαβψβ = ψβCβα

⇒ ψ+ = iψ− ; ψ− = −iψ+

Vector ↔ Bi-spinor : pαβ = pµ(γµ)αβ =

p0 + p1 p3

p3 p0 − p1

 =

p+ p3

p3 −p−


Squared Grassmann variables : θ2 = 1

2θ
αθα, d

2θ = 1
2dθ

αdθα

Superspace integrals :
∫
dθ = 0,

∫
dθ θ = 1∫

d2θ θ2 = −1,
∫
d2θ θαθβ = Cαβ

Grassmann δ-function : δ2(θ) = −θ2

Superfields : Φ = ϕ+ θψ − θ2F, Φ̄ = ϕ̄+ θψ̄ − θ2F̄

Φ̄Φ = ϕ̄ϕ+ θα
(
ϕ̄ψα + ψ̄αϕ

)
− θ2

(
F̄ ϕ+ ϕ̄F + ψ̄ψ

)

(B.1)

B.2 Component 3 point functions

In this appendix, we write down the component 3 functions abstractly in term of the functions
{Ai} appearing in form of full superspace 3 point function determined by supersymmetric Ward
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identity.

⟨Jb0(p)Jb0(−p− s)Jb0(s)⟩ = 2A1

⟨Jf0 (p)Jf0 (−p− s)Jf0 (s)⟩ = 2(A3p
2
3 + s3(−A4p3 −A5p3 +A2s3))

⟨Jb0(p)Jf0 (−p− s)Jb0(s)⟩ = 2(A2 +A3 +A4 +A5)

⟨Jf0 (p)Jb0(−p− s)Jf0 (s)⟩ = 2
9(9A6 + (p3 − s3)(3A4 − 3A5 +A1p3 −A1s3))

⟨Ψ+(p)Jb0(−p− s)Ψ−(s)⟩ = −2
3(3A5 +A1(−p3 + s3))

⟨Ψ+(p)Jb0(−p− s)Ψ−(s)⟩ = −2
9(−9A6 + p3(−3(3A3 +A4 + 2A5) + 2A1p3)

+ (9A2 + 3A4 + 6A5 + 5A1p3)s3 + 2A1s
2
3)

(B.2)

B.3 ⟨J0J0Js⟩Tκ,N
via double trace factorization

In this section, we will derive the expression for normalized 3-point coefficient used in subsection
(2.7.2) in the main text of the paper. The main idea is to use the fact the supersymmetric theory
differs from the regular boson (fermion) theory only via double trace interaction term involving
the scalar and spin half operators. This allows one to use large N factorisation to relate the 2
and 3-point function between the supersymmetric and regular boson (fermion) theory1.

Let us start by writing the action for our N = 2 theory in a way which which makes it
easier to compare it with the regular boson (fermion) theory.

STκ,N
= iκ

4πSCS(A) + Sb(ϕ,A) + Sf (ψ,A) + Sbf (ϕ, ψ)

where SCS(A) =
∫
d3x ϵµνρTr(Aµ∂νAρ − 2i

3 A
µAνAρ)

Sb(ϕ,A) = Dµϕ̄Dµϕ , Sf (ψ,A) = −iψ̄γµDµψ,

Sbf (ϕ, ψ) =
∫
d3x

(
4π2

κ2 (ϕ̄ϕ)3 − 4π
κ

(ϕ̄ϕ)(ψ̄ψ) − 2π
κ

(ψ̄ϕ)(ϕ̄ψ)
)
.

(B.3)

Similarly, the action for regular boson (fermion) theory in term of these building blocks can be
written as follows

SBκ,N
= iκ

4πSCS(A) + Sb(ϕ,A) + λ6
3!N2 (ϕ̄ϕ)3

SFκ,N
= iκ

4πSCS(A) + Sf (ϕ,A).
(B.4)

Note that the regular boson theory above has an extra parameter, λ6. To leading order in
the ’t Hooft large N limit, of interest in this paper, λ6 is exactly marginal while it develops a
non-trivial beta function at subleading orders. The question of beta function and fixed points
structure for this deformations have been studied in details in [137, 140, 142]. The particular
value of λ6 for the regular bosonic theory that will be relevant for us in this paper is the one in
supersymmetric theory, namely

λ6 = 24π2λ2. (B.5)

Henceforth, in this paper ‘regular boson theory’ should be understood as with this values of λ6

1From the diagrammatic point of view one might wonder as to how is possible to derive any such
relation since the supersymmetric theory contain more fields which can run in the internal loops of
Feynman diagrams in supersymmetric theory. It is easy to see that in these Chern-Simons vector models
any diagrams which has gauge boson converting into matter in the loops is suppressed in the large N ’t
Hooft limit of interest in this paper.
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coupling.

For notational convenience, we will use the subscripts Tκ,N ,Bκ,N and Fκ,N to refer to quan-
tities computed in the supersymmetric, regular boson (with (B.5)) and regular fermion theory
respectively.

For later use, let us further define

S(BF)κ,N
= iκ

4πSCS(A) + Sb(ϕ,A) + Sf (ψ,A) + 4π2

κ2

∫
(ϕ̄ϕ)3 . (B.6)

As discussed in section 2.5, our supersymmetric theory consists of a pair of approximately
conserved single trace higher spin operators at each value of half integer spin. At any integers
values ‘s′ of the spin, the two currents can be taken to be the ones existing in theories Bκ,N
and Fκ,N . We will refer to these current operators as Jbs and Jfs respectively. The explicit
expressions for these currents for low value of spins can be found in [71,77,79].

Let us first consider ⟨JbsJb0Jb0⟩Tκ,N
. Taylor expanding the double trace interaction terms in

the action, the path integral expression for the correlator can be written as follows

⟨JbsJb0Jb0⟩Tκ,N

=
∫

[DΦ] e−SBF

(
Jbs(p1)Jb0(p2)Jb0(p3) e

∫
d3q
(

4π
κ
Jb

0(q)Jf
0 (−q)+ 2π

κ
(ψ̄ϕ)(q)(ϕ̄ψ)(−q)

))
=

∞∑
n=0

1
n!

〈
Jbs(p1)Jb0(p2)Jb0(p3)

[∫
d3q

(4π
κ
Jb0(q)Jf0 (−q) + 2π

κ
(ψ̄ϕ)(q)(ϕ̄ψ)(−q)

)]n 〉
(BF)κ,N

≡
∞∑
n=0

1
n!

(4π
κ

)n 〈
Jbs(p1)Jb0(p2)Jb0(p3)

n∏
i=1

(∫
d3qi J

b
0(qi)Jf0 (−qi)

)〉
(BF)κ,N

(B.7)

In the third line above we dropped the fermion double trace terms ((ψ̄ϕ)(ϕψ̄)) since they do
not contribute to the leading order result. The leading O(N) contribution from the last line of
(B.7) can be computed using large N factorization as we outline now. Let’s look at the general
n-th term in the sum〈

Jbs(p1)Jb0(p2)Jb0(p3)
n∏
i=1

(∫
d3qiJ

b
0(qi)Jf0 (−qi)

)〉
(BF)κ,N

(B.8)

The leading O(N) contribution from this term comes from its factorization into a product of
(n+1) correlators, namely n 2-point functions and one 3-point function. Since SBF doesn’t have
any explicit interaction term between fermions and bosons, this can only happen for even values
of n (say n = 2m) in the ’t Hooft limit, in which case the factorized contribution (schematically,
suppressing the argument momenta) looks like

⟨JbsJb0Jb0⟩(BF)κ,N
⟨Jb0Jb0⟩n(BF)κ,N

⟨Jf0 J
f
0 ⟩n(BF)κ,N

More precisely, there are three different type of such factorized contribution which are rep-
resented in figure B.1. The contribution from each of these type of factorization channels is
exactly the same2. Carefully counting the numerical factor for each and summing up gives the

2This is because of the fact that the product ⟨Jb
0(q)Jb

0(−q)⟩⟨Jf
0 (q)Jf

0 (−q)⟩ is independent of the
momenta q.
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(A) (B)

(C)

Jb
0

<latexit sha1_base64="UYa0kMJuhDGip3wqICMGFELVIo4=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0Ip4qmLbQxrLZTtqlm03Y3Qil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777aysrq1vbBa2its7u3v7pYPDhk4yxdBniUhUK6QaBZfoG24EtlKFNA4FNsPhzdRvPqHSPJEPZpRiENO+5BFn1FjJv+u6j2G3VHYr7gxkmXg5KUOOerf01eklLItRGiao1m3PTU0wpspwJnBS7GQaU8qGtI9tSyWNUQfj2bETcmqVHokSZUsaMlN/T4xprPUoDm1nTM1AL3pT8T+vnZnoKhhzmWYGJZsvijJBTEKmn5MeV8iMGFlCmeL2VsIGVFFmbD5FG4K3+PIyaVQr3nmlen9Rrl3ncRTgGE7gDDy4hBrcQh18YMDhGV7hzZHOi/PufMxbV5x85gj+wPn8ATRXjkk=</latexit>

Jf
0

<latexit sha1_base64="SIrgt6mLKyDhrNhPiIGAlRm+cic=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0Ip4qmLbQxrLZTtqlm03Y3Qil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777aysrq1vbBa2its7u3v7pYPDhk4yxdBniUhUK6QaBZfoG24EtlKFNA4FNsPhzdRvPqHSPJEPZpRiENO+5BFn1FjJv+u6j1G3VHYr7gxkmXg5KUOOerf01eklLItRGiao1m3PTU0wpspwJnBS7GQaU8qGtI9tSyWNUQfj2bETcmqVHokSZUsaMlN/T4xprPUoDm1nTM1AL3pT8T+vnZnoKhhzmWYGJZsvijJBTEKmn5MeV8iMGFlCmeL2VsIGVFFmbD5FG4K3+PIyaVQr3nmlen9Rrl3ncRTgGE7gDDy4hBrcQh18YMDhGV7hzZHOi/PufMxbV5x85gj+wPn8ATpnjk0=</latexit>

Jb
s<latexit sha1_base64="lduMQwu8DOPZ8E4IMY6cEEQ9rQk=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0Ip4qmLbQxrLZTtqlm03Y3Qil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777aysrq1vbBa2its7u3v7pYPDhk4yxdBniUhUK6QaBZfoG24EtlKFNA4FNsPhzdRvPqHSPJEPZpRiENO+5BFn1FjJv+vqx7BbKrsVdwayTLyclCFHvVv66vQSlsUoDRNU67bnpiYYU2U4EzgpdjKNKWVD2se2pZLGqIPx7NgJObVKj0SJsiUNmam/J8Y01noUh7YzpmagF72p+J/Xzkx0FYy5TDODks0XRZkgJiHTz0mPK2RGjCyhTHF7K2EDqigzNp+iDcFbfHmZNKoV77xSvb8o167zOApwDCdwBh5cQg1uoQ4+MODwDK/w5kjnxXl3PuatK04+cwR/4Hz+AJppjow=</latexit>

Figure B.1: Schematic representation of 3 type of diagrams contributing to the factor-
ization via the double trace term J b0J

f
0 in the action. The dots (crosses) connected with

solid lines are factorized correlation functions while the grey line connecting a dot with
a cross means the corresponding operators have same momenta.

total contribution to be〈
Jbs(p1)Jb0(p2)Jb0(p3)

n∏
i=1

(∫
d3qiJ

b
0(qi)Jf0 (−qi)

)〉
(BF)κ,N

= (n+ 1)⟨Jbs(p1)Jb0(p2)Jb0(p3)⟩(BF)κ,N

(
⟨Jb0Jb0⟩(BF)κ,N

⟨Jf0 J
f
0 ⟩(BF)κ,N

)n (B.9)

Now we further notice that the absence of explicit interaction terms between bosons and
fermions3 in the action SBF implies the following relations in the large N limit

⟨Jb0(q)Jb0(−q)⟩(BF)κ,N
= ⟨Jb0(q)Jb0(−q)⟩Bκ,N

⟨Jf0 (q)Jf0 (−q)⟩(BF)κ,N
= ⟨Jf0 (q)Jf0 (−q)⟩Fκ,N

⟨Jbs(p1)Jb0(p2)Jb0(p3)⟩(BF)κ,N
= ⟨Jbs(p1)Jb0(p2)Jb0(p3)⟩Bκ,N

(B.10)

Combining (B.7), (B.9) and (B.10) and summing the series over n, we arrive at the following
expression for the supersymmetric correlator

⟨JbsJb0Jb0⟩Tκ,N
= ⟨JbsJb0Jb0⟩Bκ,N

[ ∞∑
n=0

((4π
κ

)2
⟨Jb0Jb0⟩B⟨Jf0 J

f
0 ⟩Fκ,N

)n]2

(B.11)

Further using the relation [96]4

⟨Jb0J
f
0 ⟩Tκ,N

= κ

4π

∞∑
n=1

((4π
κ

)2
⟨Jb0Jb0⟩Bκ,N

⟨Jf0 J
f
0 ⟩Fκ,N

)n
, (B.12)

3i.e. ϕ̄ϕψ̄ψ and ϕ̄ψϕψ̄ terms
4This can also be derived in a very similar fashion using the large N factorization via double trace

(Jb
0J

f
0 ) interaction term in the SUSY lagrangian.
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we can write (B.11) as

⟨Jbs(p1)Jb0(p2)Jb0(p3)⟩Tκ,N
= ⟨Jbs(p1)Jb0(p2)Jb0(p3)⟩Bκ,N

[
1 + 4π

κ
⟨Jb0J

f
0 ⟩Tκ,N

]2
. (B.13)

Following exactly the same procedure, one can also derive the following relation5

⟨Jfs (p1)Jf0 (p2)Jf0 (p3)⟩Tκ,N
= ⟨Jfs (p1)Jf0 (p2)Jf0 (p3)⟩Fκ,N

[
1 + 4π

κ
⟨Jb0J

f
0 ⟩Tκ,N

]2
. (B.14)

The correlators ⟨Jfs (p1)Jf0 (p2)Jf0 (p3)⟩Fκ,N
and ⟨Jbs(p1)Jb0(p2)Jb0(p3)⟩Bκ,N

are known from [74]
where the authors determined the all 3-point correlators of single trace operators in quasi bosonic
and quasi fermionic theories in term of two abstract parameters λ̃ and Ñ using the constraints
of weakly broken higher spin symmetry in these theories. The result for the 2-point and 3-point
functions relevant to our analysis are as follows

⟨J̃0(x1)J̃0(x2)⟩Bκ,N
= Ñ

1 + λ̃2 ⟨J̃0(x1)J̃0(x2)⟩bos

⟨J̃0(x1)J̃0(x2)⟩Fκ,N
= Ñ

1 + λ̃2 ⟨J̃0(x1)J̃0(x2)⟩fer

⟨J̃s(x1)J̃s(x2)⟩Bκ,N
= ⟨J̃s(x1)J̃s(x2)⟩Fκ,N

= Ñ⟨J̃s(x1)J̃s(x2)⟩bos

⟨J̃s(x1)J̃0(x2)J̃0(x3)⟩Bκ,N
= Ñ

1 + λ̃2 ⟨J̃s(x1)J̃0(x2)J̃0(x3)⟩bos

⟨J̃s(x1)J̃0(x2)J̃0(x3)⟩Fκ,N
= Ñ

1 + λ̃2 ⟨J̃s(x1)J̃0(x2)J̃0(x3)⟩fer

(B.15)

Here the subscript bos (fer) refers to the quantity computed in theory of a free single real boson
(Majorana fermion) respectively. Further, in above relation we denote the operators with a tilde
on top to emphasize that the normalization used in [74] is in general different from the usual
normalization used for these operators in Chern Simons vector models.

The exact relation between these operators normalizations and the abstract parameters
(λ̃, Ñ) to the parameter (λ,N) of the regular boson theory (Bκ,N ) were obtained in [77] while
the equivalent relations for the regular fermion theory (Fκ,N ) were obtained in [79] via explicit
computation of 3 point function for some of the low spin operators. These relations are as
follows

Bκ,N : (J̃0, J̃s) =
(

Jb0
1 + λ̃2 , J

b
s

)

Fκ,N : (J̃0, J̃s) =
(

Jf0
1 + λ̃2 , J

f
s

)

where (λ̃, Ñ) =
(

tan
(
πλ

2

)
, 2N sin(πλ)

πλ

)
(B.16)

Combining (B.13),(B.14),(B.15) and (B.16), we get the following expression for our desired
3-point function in supersymmetric theory Tκ,N

⟨Jbs(x1)Jb0(x2)Jb0(x3)⟩Tκ,N
= Ñ

1 + λ̃2 ⟨J̃s(x1)J̃0(x2)J̃0(x3)⟩bos

⟨Jfs (x1)Jf0 (x2)Jf0 (x3)⟩Tκ,N
= Ñ

1 + λ̃2 ⟨J̃s(x1)J̃0(x2)J̃0(x3)⟩fer
(B.17)

5We have difference in signs compared to [96] due to spinor convention difference.
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with λ̃ and Ñ as in (B.16).

Now that we have all the requisite 2 and 3 point functions, we can compute the normalization
independent squared 3-point function coefficients to be

C
2(BBB)
0,susy = (1 − λ̃2)2

Ñ(1 + λ̃2)2C
2
0,fb

C2(BBB)
s,susy = 1

Ñ(1 + λ̃2)2C
2
s,fb s = 2, 4, 6 . . .

(B.18)

where C2
s,fb (C2

s,ff ) denote the corresponding coefficients in a free real scalar (majorana fermion)
theory. The normalized coefficients above and in the rest of the paper can formally be de-
fined as follows. Conformal invariance uniquely fixes the position dependence of all the 2
point functions and the relevant 3 point functions we are interested in, namely of the type
⟨J0(x1)J0(x2)J (s)(x3)⟩. Lets define the normalization N∗ and 3 point function coefficient C∗∗∗
as our operators to be

⟨J (s)(x1, λ1)J (s)(x2, λ2)⟩ = N2
s

P 2s
3

|x12|2
,

⟨J (s)(x1, λ1)J0(x2)J0(x3)⟩ = C̃s00
Qs1

|x12||x23|2∆0−1|x31|
,

where P3 = λ1X12λ
2s
2

|x12|2
, Q1 = λ1X12X23X31λ1

x2
12x

2
31

with X = xiσ
i.

(B.19)

We refer the reader to [202] for further details of the conformally invariant structures involved
in 2 and 3 point functions. The relevant normalized 3-point function coefficient squares we are
interested in are then defined as

C2
ijk =

C̃2
ijk

N2
i N

2
jN

2
k

(B.20)

where the i, j, k are just labels for the operators involved.

The mixed correlators ⟨Jfs Jb0Jb0⟩ and ⟨JbsJ
f
0 J

f
0 ⟩ of our theory cannot directly be related to

correlators of Bκ,N or Fκ,N theories via double trace type factorization used above. We will
instead use the self duality of our theory to determine these correlators. Under the self duality
transformation (2.54) the operators in our theory map in the following way [96]

Jb0 ↔ Jb0 , Jf0 ↔ Jf0 , Jbs ↔ (−1)sJfs . (B.21)

Thus, we have following relations for the mixed 3-point functions

⟨Jb0Jb0Jfs ⟩Tκ,N
= (−1)s⟨JbsJb0Jb0⟩T−κ,|κ|−N

⟨Jf0 J
f
0 J

b
s⟩Tκ,N

= (−1)s⟨Jfs J
f
0 J

f
0 ⟩T−κ,|κ|−N

(B.22)

The 2-point functions are, of course, invariant under the duality while the parameters λ̃ and Ñ
transform as follows

Ñ → Ñ , λ̃ → λ̃−1. (B.23)

Using (B.22), the result of our explicit computation (2.74) for the mixed 3-point function
⟨Jb0Jb0J

f
0 ⟩ and the duality transformation (B.23), we can determine the other 3 point function
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coefficients, C2(BBF )
0,susy and C

2(BBF )
s,susy to be

C
2(BBF )
0,susy = 2

π2
(2λ̃)2

Ñ(1 + λ̃2)2C
2
fb

C2(BBF )
s,susy = λ̃4

Ñ(1 + λ̃2)2C
2
s,fb

(B.24)

Note that since our result for the 2 and 3-point function (2.73) and (2.74) are obtained in the
momentum space, in order to compare C2(BBF )

0,susy with C2
fb (as we have done in the first line

of (B.24)) we need to read out the 3-point function coefficient in position space by taking the
appropriate Fourier transform of our result to go to the position space expression. This can be
implemented in a straightforward manner, e.g. using the Fourier transform result in [41]. This
leads to the extra factor of (2/π2) in the first line of (B.24).

Using the method described above the relevant normalized 3-point function coefficients
required for the Jf0 4-point function can also be computed. We simply quote the results below

C2(FFF )
s,susy = 1

Ñ(1 + λ̃2)2C
2
s,ff

C2(FFB)
s,susy = λ̃4

Ñ(1 + λ̃2)2C
2
s,ff

(B.25)

We do not write down the coefficients C2(FFF )
0,susy and C2(FFB)

0,susy since the corresponding 3-point
functions are contact terms.

B.4 Comments on direct computation of J (0) 4 point function
In this appendix, we describe the relevant diagrams, and corresponding integrals, constructed
using the exact 4 point vertex which contribute to the full J (0) four point function. Figure B.2
shows the exact 4-point vertex used to construct all the relevant diagrams in Figure B.3.

Figure B.2: Convention for the definition of each vertex in the 4-point function. The
‘internal’ Grassmann variables, θ′

i, θ
′′
i that are explicitly shown here are suppressed in Fig-

ure B.3 to avoid clutter. These internal variables are integrated over in the computation
of the correlation functions. The convention of various momenta entering or leaving the
vertex is also demonstrated here.

For diagrams in Figure B.3, note that the exact vertex (2.71) is a function of two internal
grassmann variables (θ′

i, θ
′′
i as depicted in Figure B.2). The internal propagators in figure (B.3)

that emanate from/to the exact vertices connect these internal Grassmann variables, which
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Figure B.3: The contributing diagrams for the four point function of currents. The first
diagram is diagram type (a). The grey blob in (b), (c) , (d) represents the all loop four
point correlator. The remaining diagrams are obtained by permutations of the external
operators.

are integrated over in the computation of the relevant diagrams. In figure (B.3) the value of
diagram (a) is given by

V (A)(q, q′, q′′, θ1, θ2, θ3, θ4)

= N

∫
d3p

(2π)3d
2θ′

1d
2θ′′

1d
2θ′

2d
2θ′′

1d
2θ′

3d
2θ′′

3d
2θ′

4d
2θ′′

4(
P (θ′

1, θ
′′
4 , p+ q)P (θ′

4, θ
′′
3 , p− q′ − q′′)P (θ′

3, θ
′′
2 , p− q′)P (θ′

2, θ
′′
1 , p)

V3(θ1, θ
′
1, θ

′′
1 , q, p)V3(θ2, θ

′
2, θ

′′
2 , q

′, p− q′)V3(θ3, θ
′
3, θ

′′
3 , q

′′, p− q′ − q′′)V3(θ4, θ
′
4, θ

′′
4 ,−q − q′ − q′′, p+ q)

)
(B.26)

There are a total of 6 additional diagrams due to permutations of the operators. and the
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interaction part is given by

V
(B)

4 (q, q′, q′′, θ1, θ2, θ3, θ4)

= N2
∫

d3p

(2π)3
d3k

(2π)3d
2θad

2θbd
2θcd

2θdd
2θ′

1d
2θ′′

1d
2θ′

2d
2θ′′

1d
2θ′

3d
2θ′′

3d
2θ′

4d
2θ′′

4(
P (θ′

1, θ
′′
4 , p+ q)P (θ′

4, θa, p− q′ − q′′)P (θc, θ′′
3 , k − q′ − q′′)P (θ′

3, θ
′′
2 , k − q′)P (θ′

2, θd, k)P (θb, θ′′
1 , p)

V3(θ1, θ
′
1, θ

′′
1 , q, p)V3(θ2, θ

′
2, θ

′′
2 , q

′, k − q′)V3(θ3, θ
′
3, θ

′′
3 , q

′′, k − q′ − q′′)V3(θ4, θ
′
4, θ

′′
4 ,−q − q′ − q′′, p+ q)

V4(θa, θb, θc, θd, p,−q′ − q′′, k)
)

(B.27)

The bosonic and fermionic correlators for the diagram figure (B.3) are given by

⟨Jb0(q)Jb0(q′)Jb0(q′′)Jb0(−q − q′ − q′′)⟩ = V
(1)

4 (q, q′, q′′, θ1, θ2, θ3, θ4)
∣∣∣∣
θ1→0,θ2→0,θ3→0,θ4→0

⟨Jf0 (q)Jf0 (q′)Jf0 (q′′)Jf0 (−q − q′ − q′′)⟩ =
4∏
i=1

∂

∂θαi

∂

∂θαi
V

(1)
4 (q, q′, q′′, θ1, θ2, θ3, θ4) (B.28)

Although we were able to successfully perform the integrals for the components p3, θp and
k3, θk in the expression for V (B)

4 given by (B.27) ks and ps integrals out be intractable analyt-
ically. Due to this difficulty we were not able to obtain a closed form expression for the four
point function of the scalar operatorsJb0 and Jf0 in (B.28).

B.5 AdS Contact diagrams

B.5.1 Closed-form

D̄1111(z, z̄) = 1
z − z̄

[ln(zz̄) ln
(1 − z

1 − z̄

)
+ 2Li2(z) − 2Li2(z̄)]

D̄2222(z, z̄) = 12uv
(z − z̄)5 + 1 + u+ v

(z − z̄)3 [ln(zz̄) ln
(1 − z

1 − z̄

)
+ 2Li2(z) − 2Li2(z̄)]

+ 6
(z − z̄)4

(
(1 + u− v)v ln v + (1 + v − u)u ln u

)
+ 2

(z − z̄)2 (ln uv + 1)

D̄3333(u, v) =(1680u2v2

(z − z̄)9 +
( 240uv

(z − z̄)7 + 24
(z − z̄)5

)
(1 + u+ v) + 4

(z − z̄)3

)
[ln(zz̄) ln

(1 − z

1 − z̄

)
+ 2Li2(z) − 2Li2(z̄)]

+
(( 840u

(z − z̄)8 + 100
(z − z̄)6

)
v2(1 + u− v) + 480uv

(z − z̄)6 + 12(1 + u) + 76v
(z − z̄)4 )

)
ln v + u ↔ v

+ 260uv
(z − z̄)6 + 26

(z − z̄)4 (1 + u+ v) (B.29)

D̄(u, v)3322 = −∂uD̄2222(u, v)
D̄(u, v)4433 = −∂uD̄3333(u, v) (B.30)
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B.5.2 Decomposition in terms of conformal blocks

The contact diagrams may be written as an expansion in conformal blocks [236]

D∆∆∆′∆′(xi) =
∑
m

a∆∆
m α∆′∆′

m W∆m,0(xi) +
∑
n

a∆∆
n α∆′∆′

n W∆n,0(xi) (B.31)

D∆∆∆∆(xi) =
∑
n

2a∆∆
n (

∑
m̸=n

a∆∆
m

m2
n −m2

m

)W∆n,0(xi) +
∑
n

(a∆∆
n )2 ∂

∂m2
n

W∆n,0(xi) (B.32)

where W∆,0 = β∆34β∆12W∆,0. For ∆i = ∆

D∆∆∆∆(xi) =
∑
n

2a∆∆
n η∆∆

n W∆n,0(xi) +
∑
n

(a∆∆
n )2 ∂

∂m2
n

W∆n,0(xi) (B.33)

=
∑
n

[(2a∆∆
n η∆∆

n + (a∆∆
n )2)β2

∆n∆∆ + ∂

∂m2
n

β2
∆n∆∆]W∆n,0(xi)

+
∑
n

(a∆∆
n )2β2

∆n∆∆
∂

∂m2
n

W∆n,0(xi) (B.34)

with

η∆∆
n =

∑
m̸=n

a∆∆
m

m2
n −m2

m

(B.35)

β∆34 ≡
Γ
(

∆+∆34
2

)
Γ
(

∆−∆34
2

)
2Γ(∆) (B.36)

m2
∆k

= ∆k(∆k − d)

a12
m = (−1)m

β∆m12m!
(∆1)m(∆2)m

(∆1 + ∆2 +m− d/2)m
(B.37)

with the anomalous dimension being proportional to the coefficient of the third term which
involves derivative of the conformal block. Writing the above in terms of the D̄ functions

D̄∆∆∆∆(u, v) = 1
u∆ [

∑
n

[(2a∆∆
n η∆∆

n )β2
∆n∆∆ + (a∆∆

n )2 ∂

∂m2
n

β2
∆n∆∆]G∆n,0(u, v)

+
∑
n

(a∆∆
n )2β2

∆n∆∆
∂

∂m2
n

G∆n,0(u, v)] (B.38)

We will re-label

P
(∆)
1 (n, 0) = (2a∆∆

n η∆∆
n + (a∆∆

n )2)β2
∆n∆∆ + ∂

∂m2
n

β2
∆n∆∆

P
(∆)
0 (n, 0)γ(∆)

1 (n, 0) = 2(a∆∆
n )2β2

∆n∆∆ (B.39)

so that

D̄∆∆∆∆(u, v) = 2Γ(∆)4

Γ(2∆ − d/2)
1
u∆

∑
n

[P (∆)
1 (n, 0)G∆n,0(u, v)

+ 1
2P

(∆)
0 (n, 0)γ(∆)

1 (n, 0) ∂

∂m2
n

G∆n,0(u, v)] (B.40)
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satisfying [237]

P
(∆)
1 (n, 0) = 1

2∂n(P (∆)
0 (n, 0)γ(∆)

1 (n, 0)) (B.41)

Similarly, for (141)

D̄∆+1∆+1∆∆(u, v) =2Γ(∆)2Γ(∆ + 1)2

Γ(2∆ + 1 − d/2)
1
u∆

[
∑
m

P̄
(∆)
1 (n, 0)G∆m,0(u, v) + 1

2 P̄
(∆)
0 (n, 0)γ̄(∆)

1 (n, 0) ∂

∂m2
n

G∆n,0(u, v)]

+ β2
2∆a

∆∆
0 η∆+1∆+1

0 G2∆,0(u, v) (B.42)

P̄
(∆)
1 (n, 0) = (a∆+1∆+1

n η∆∆
n + a∆∆

n η∆+1∆+1
n )β2

∆n∆∆ + a∆∆
n a∆+1∆+1

n

∂

∂m2
n

β2
∆n∆∆

P̄
(∆)
0 (n, 0)γ̄(∆)

1 (n, 0) = 2a∆∆
n a∆+1∆+1

n β2
∆n∆∆ (B.43)

B.5.2.1 Examples

D̄1111(u, v) = 2
π1/2u

∑
n

[P (1)
1 (n, 0)G2+2n,0(u, v) + 1

2P
(1)
0 (n, 0)γ(1)

1 (n, 0)∂nG2+2n,0(u, v)
8n+ 2 ]

D̄2222(u, v) = 8
3π1/2u2

∑
n

[P (2)
1 (n, 0)G4+2n,0(u, v) + 1

2P
(2)
0 (n, 0)γ(2)

1 (n, 0)∂nG4+2n,0(u, v)
8n+ 10 ]

D̄3333(u, v) = 256
105π1/2u3

∑
n

[P (3)
1 (n, 0)G6+2n,0(u, v) + 1

2P
(3)
0 (n, 0)γ(3)

1 (n, 0)∂nG6+2n,0(u, v)
8n+ 18 ]

(B.44)

D̄3322(u, v) = 64
15π1/2u3 [

∑
m

P̄
(3)
1 (m, 0)G6+2m,0(u, v) + 1

2 P̄
(3)
0 (m, 0)γ̄(3)

1 (m, 0) ∂

∂m2
n

G6+2m,0(u, v)

+ β2
4a

22
0 η

33
0 G4,0(u, v)]

D̄4433(u, v) = 1024
105

√
πu4 [

∑
m

P̄
(4)
1 (m, 0)G8+2m,0(u, v) + 1

2 P̄
(4)
0 (m, 0)γ̄(4)

1 (m, 0) ∂

∂m2
n

G8+2m,0(u, v)

+ β2
6a

33
0 η

44
0 G6,0(u, v)] (B.45)

Contact terms for bosonic correlator

GAdSϕ4 = D̄1111(u, v)
GAdS(∂ϕ)4 = (1 + u+ v)D̄2222(u, v)

GAdSϕ2(∂3ϕ)2 = 2(u2D̄3322(u, v) + v2D̄3322(v, u) + 1
v3 D̄3322(1/v, u/v)) (B.46)

Contact terms for fermionic correlator

GAdSϕ4 = D̄2222(u, v)
GAdS(∂ϕ)4 = (1 + u+ v)D̄3333(u, v)

GAdSϕ2(∂3ϕ)2 = 2(u2D̄4433(u, v) + v2D̄4433(v, u) + 1
v3 D̄4433(1/v, u/v)) (B.47)
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B.6 Perturbative Computations in the Bosonic Theory

Here, we compute the anomalous dimension of j0 = ϕ̄ϕ in the regular bosonic theory, i.e.,
SU(N)k Chern Simons theory coupled to a single complex scalar field, to two loops. (The
leading 1/N correction to the anomalous dimension is the same whether one considers the U(N)
or SU(N) theories, although subleading corrections may differ.) This provides an additional
check of our conjecture. Our computation closely follows the calculation of the anomalous
dimension of j0 in the O(N) theory carried out in [72]. All our calculations in this appendix
are in the bosonic theory, so we drop the subscript b in what follows. We also refer to related
perturbative computations in Chern-Simons theory is which appear in [159, 238–240]. The
Lagrangian is given by

S = SCS + SRB (B.48)

SRB =
∫
d3x |Dµϕ|2 + λ6

3!N2 (ϕ†ϕ)3 (B.49)

SCS = ik

4π

∫
d3x Tr

(
A ∧ dA+ 2

3A ∧A ∧A

)
(B.50)

= ik

8π

∫
d3x ϵµνλ

[
Aaµ∂νA

a
λ − i

3f
abcAaµA

b
νA

c
λ

]
(B.51)

In expanding the Chern-Simons action, we used Tr
(
T aT b

)
= 1

2δab as our convention for group
generators. We will express all the divergent diagrams that contribute to the anomalous dimen-
sion in terms of C1, C2 and C3 which are defined by following relations

Tr
(
T aT b

)
= δabC1 (B.52)

facdf bcd = δabC2 (B.53)
T aT a = IC3. (B.54)

In the normalization that we have chosen for SU(N) generators,

C1 = 1
2 , C2 = −N, C3 = 1

2(N − 1
N

). (B.55)

If we work in Landau gauge, as in [72], we obtain the following Feynman rules:
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= δij
p2

= Gνµ(p)δab

= (p′ + p)µT aij

= 1
2{T a, T b}ij

= k

24πϵ
µνλfabc

The gluon propagator is given by

Gµν = −4π
k

ϵµνδpδ
p2 . (B.56)

Ghosts do not contribute at this order.
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C.1 Consistency with OPE limit
In this section we follow discussion in section 2.1 of [184]. In momentum space, there are four
solutions to conformal ward identity for scalar three point function. One can show that all these
four solutions can be combined to give most general correlation function to be given by

⟨OOO⟩ = a1f (k1 + k2 + k3) + a2f (−k1 + k2 + k3) + a3f (k1 − k2 + k3) + a4f (k1 + k2 − k3) .
(C.1)

Permutation symmetry implies that a2 = a3 = a4. Let us consider simple case of scalar operator
O with ∆ = 2. For this case we have f(k1 + k2 + k3) = ln(k1 + k2 + k3). The same correlator
in position space in the OPE limit, x23 → 0, goes like ⟨OOO⟩ ∼ 1

x2
23x

4
12

which in momentum
space leads to ⟨OOO⟩ ∼ k1

k3
with k2 ≈ k3 ≫ k1 where k1 → 0. It is easy to check that this can

be only be reproduced by ln(k1 + k2 + k3). Hence, singularity of the form f(ki − kj + kk) is not
consistent with the OPE limit and only singularity structure E = k1 +k2 +k3 → 0 is consistent.
So we conclude that consistency with OPE limit restricts the correlator to only have a total
energy pole that is a pole in E = k1 + k2 + k3.

C.2 Shadow Transform in dS correlator
In dS, correlators for boundary operators are related to the correlators of the bulk field through
shadow transform. Though this is a standard and well-known technique [26,28], we will elabo-
rate with a simple example for completeness.

Consider a bulk field ϕ(x) in dS background and O(x) is the corresponding dual operator
in the ‘boundary CFT’. The wave-function of the universe (using in-in formalism) is written in
terms of this bulk field as

Ψ[ϕ(x)] = exp
(

− 1
2!

∫
d3xd3yϕ(x)ϕ(y)⟨O(x)O(y)⟩ + 1

3!

∫
d3xd3yd3zϕ(x)ϕ(y)ϕ(z)⟨O(x)O(y)O(z)⟩ + · · ·

)
(C.2)

The interpretation of this wave function is that one can access all information about the
dynamics of this bulk field which can be related to boundary operator O(x) with dimension ∆.
This similar fact is also seen in more conventional shadow transform in AdS correlators. One
can calculate various moments of the bulk field using,

⟨ϕ
k⃗1

· · ·ϕ
k⃗n

⟩ =
∫

Dϕ ϕ
k⃗1

· · ·ϕ
k⃗n

|Ψ[ϕ]|2∫
Dϕ|Ψ[ϕ]|2

(C.3)

which reduces to the in-in formalism correlator (eq (3.18)). Using perturbation of the bulk field
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we can obtain series of relations between moments of ϕ(x) and the set of correlators of the
boundary dual insertion O(x). Below we will state the relations

⟨ϕ
k⃗1
ϕ
k⃗2

⟩ = 1
2Re⟨O

k⃗1
O
k⃗2

⟩

⟨ϕ
k⃗1
ϕ
k⃗2
ϕ
k⃗3

⟩ =
Re⟨O

k⃗1
O
k⃗2
O
k⃗3

⟩
2∏3

i=1 Re⟨O
k⃗i
O−k⃗i

⟩

· · ·

(C.4)

The two function above is obtained by doing a standard Gaussian path integral over the bulk
field. On the other hand, the other side is obtained using the expansion of the wave function
up to cubic order and using the standard rules of wick contraction.

Similar kinds of relations can be obtained for higher spin field correlators. Also, the above
relations can be inverted systematically to write boundary correlators in terms of bulk field
correlators.

C.3 Cosmological correlation function

In this Appendix, we compute several cosmological correlation functions which play important
role in the main text.

C.3.1 ⟨TOO⟩

To compute two scalars and one graviton amplitude we need to consider

Hint =
∫
d4x

√
−g gµν∂µϕ∂νϕ. (C.5)

Using the above general vacua mode expansion (3.8),(3.14), along with (3.18) we obtain the
following time integral

(z1.k2)2 Im
[ ∫ 0

−∞

dη

η2

(
− 2fk3(A,B)uk3(η)[f̄k1(C,D)fk2(A,B)γ̄k1(η)ūk2(η)

− 2fk1(C,D)fk2(A,B)γk1(η)uk2(η)]

+ 2f̄k1(C,D)f̄k2(A,B)γ̄k1(η)ūk2(η)[−f̄k3(A,B)ūk3(η) + fk3(A,B)uk3(η)]
)]

(C.6)

where

fk(A,B) = 1√
k3

(A+B) (C.7)

γk(η) = 1√
2k3

[
eikη(1 − ikη)C + e−ikη(1 + ikη)D

]
(C.8)

The ⟨TOO⟩ correlator can be found after computing the time integral and performing the
shadow transform can be shown to be given by

⟨TO3O3⟩ = c1⟨TO3O3⟩1 + c2⟨TO3O3⟩2 + c3 (⟨TO3O3⟩3 + ⟨TO3O3⟩4) (C.9)
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where ci are given by

c1 = Re
{

1
2(C +D)(Ā+ B̄)2

[
Ā2 + B̄2

C̄ + D̄
+ ((2BD +A(C +D))Ā+ (2AC +B(C +D))B̄)

(A+B)2

]}

c2 = Re
{

1
2(C +D)(Ā+ B̄)2

[
−Ā2 + B̄2

C̄ + D̄
+ (2BC +A(C +D))Ā+ (2AD +B(C +D))B̄

(A+B)2

]}

c3 = Re
{

1
2(C +D)(Ā+ B̄)2

[
2ĀB̄
C̄ + D̄

− (−BĀ+AB̄)(C −D)
(A+B)2

]}
(C.10)

For the special case when we consider A = C,B = D we have

⟨TO3O3⟩ = a⟨TO3O3⟩1 + b (⟨TO3O3⟩2 + ⟨TO3O3⟩3 + ⟨TO3O3⟩4) (C.11)

where the form of a, b in (C.11) are given by

a = 1
2N 3(A,B) [(2A2 + 3AB + 3B2)(Ā2 + B̄2 + ĀB̄) + (A−B)B̄(|A|2 + |B|2 +AB̄)]

b = 1
2N 3(A,B) [A(A−B)B(Ā3 + B̄3) + (A3 + 6A2B +B3)(Ā2B̄ − ĀB̄2)] (C.12)

and

⟨TO3O3⟩R1 =
[
k1 + k2 + k3 − k1k2 + k2k3 + k3k1

k1 + k2 + k3
− k1k2k3

(k1 + k2 + k3)2

]
(z1.k2)2

⟨TO3O3⟩R2 =
[
−k1 + k2 + k3 − −k1k2 + k2k3 − k3k1

−k1 + k2 + k3
+ k1k2k3

(−k1 + k2 + k3)2

]
(z1.k2)2

⟨TO3O3⟩R3 =
[
k1 − k2 + k3 − −k1k2 − k2k3 + k3k1

k1 − k2 + k3
+ k1k2k3

(k1 − k2 + k3)2

]
(z1.k2)2

⟨TO3O3⟩R4 =
[
k1 + k2 − k3 − k1k2 − k2k3 − k3k1

k1 + k2 − k3
+ k1k2k3

(k1 + k2 − k3)2

]
(z1.k2)2 (C.13)

The Ward identity for a correlator in the above form is by brute computation can be shown
to be

kµ1 z
ν⟨TµνO3O3⟩ = (a+ b)(z1.k2)(⟨O3(k2)O3(−k2)⟩BD − ⟨O3(k3)O3(−k3)⟩BD)

= 1
(A+B)(Ā+ B̄)

(z1.k2)(⟨O3(k2)O3(−k2)⟩BD − ⟨O3(k3)O3(−k3)⟩BD)

(C.14)

where we have used (C.12) to obtain

a+ b = 1
(A+B)(Ā+ B̄)

(C.15)

Let us note that WT identity should be consistent with

kµ1 z
ν⟨TµνO3O3⟩ = (z1.k2)(⟨O3(k2)O3(−k2)⟩α − ⟨O3(k3)O3(−k3)⟩α)

= 1
(A+B)(Ā+ B̄)

(z1.k2)(⟨O3(k2)O3(−k2)⟩BD − ⟨O3(k3)O3(−k3)⟩BD)

(C.16)
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where in the last line we have used (A.1) i.e.

⟨O(k2)O(−k2)⟩α = 1
(A+B)(Ā+ B̄)

⟨O(k2)O(−k2)⟩BD (C.17)

We observe that (C.16) with (C.14) are identical as should be the case. Alternative one can use
this consistency condition to fix the normalization of A,B to be as given in (3.9) 1.

C.3.2 ⟨TTO3⟩
To calculate two graviton and one scalar amplitude we consider the following interaction term

Hint =
∫
d4x

√
−gφWρσαβWρσαβ (C.21)

Using the mode expansion (3.14) along with (3.8) in (C.21) the following time integral can be
obtained

Im
[ ∫ 0

−∞
dη[2f̄k1(C,D)vαβµνk1

(η)(f̄k2(C,D)vαβµνk2
(η) − fk2(C,D)v̄αβµνk2

(η))

+ (f̄k2(C,D)vαβµνk2
(η) + fk2(C,D)v̄αβµνk2

(η))(f̄k1(C,D)vαβµνk1
(η) − fk1(C,D)v̄αβµνk1

(η))]

(f̄k3(A,B)uk3(η) − fk3(A,B)ūk3(η))
]

(C.22)

where fk and uk(η) has been defined in (C.7)and vαβµνk (η) has been defined in (C.29). See
appendix ?? for details on Weyl tensor in terms of mode expansion. The above gives

⟨TTO3⟩α = d1⟨TTO3⟩R1 + d2⟨TTO3⟩R4 + d3(⟨TTO3⟩R2 + ⟨TTO3⟩R3) (C.23)

where

d1 = Re
[

−|B|2C2(C̄ + D̄)2 + Ā−B|C|4 − 2BCD̄|C|2 + (A(C +D)2 +BD(2C +D)D̄2)]
6(A+B)(C +D)2(Ā+ B̄)(C̄ + D̄)2

]
d2 = a(A ↔ B)

d3 = Re


(
(A−B)CD(Ā+ B̄)(C̄2 + D̄2) + c.c.

)
+ 4|C|2|D|2(|A|2 − |B|2)

6(A+B)(C +D)2(Ā+ B̄)(C̄ + D̄)2

 (C.24)

1Note that the CFT ward identity constraints the A,B. This makes the connection to alpha vacuum
clear from CFT side. In position space, ⟨TOO⟩ is given by (see [17])

⟨Tµν(x2)O∆(x2)O∆(x3)⟩ = 1
xd

12x
2∆−d
23 xd

31

dN∆
(1 − d)Sd

h1
µν(X̂23) (C.18)

where

h1
µν = X̂23µX̂23ν − 1

d
δµν X̂23µ = X23µ

X2
23
, X23 = x21

x2
21

− x31

x2
31

(C.19)

and

⟨O∆(x1)O∆(x2)⟩ = N

x2∆
12

(C.20)

So the three-point function OPE coefficient is determined in terms of the two-point function N. This is
a reflection of the fact that ⟨TOO⟩ is non-homogeneous.
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and ⟨TTO3⟩Ri has been defined in (3.74) and (3.75). Notice, if we put C = A,D = B, then, we
find

d1 = a d2 = d3 = b (C.25)

where a, b are same as that appeard in (3.31). To summarise for this special case we have

⟨TTO3⟩α = c1⟨TTO3⟩R1 + c2 (⟨TTO3⟩R4 + ⟨TTO3⟩R2 + ⟨TTO3⟩R3) . (C.26)

The explicit expressions for ⟨TTO3⟩Ri are complicated. They are best written in spinor helicity
variables. We give their explicit forms in section 3.3.3.

C.3.3 ⟨TTT ⟩
The three graviton amplitude can get contribution from two different sources, the Einstein
Hilbert term, and the Weyl3 term. Let us start with the Weyl tensor contribution.

Weyl3 contribution

To calculate the three graviton amplitude we need to consider the following interaction

S
(3)
γ,W3 =

∫
d4x

√
−g W3. (C.27)

Using the mode expansion (3.14) in (C.21) the following time integral can be obtained

Im
[ ∫

dη η2 (−fk3(C,D)vαβγδk3
(η) + f̄k3(C,D)vαβγδk3

(η)fk2(C,D)fk1(C,D)v̄γδηζk2
(η)v̄ηζαβk1

(η)

+ (−fk2(C,D)v̄αβγδk2
(η) + f̄k2(C,D)vαβγδk2

)(η)|f(C,D)|2v̄γδηζk1
(η)vηζαβk3

(η)

+ (−fk1(C,D)vαβγδk1
(η) + f̄k1(C,D)vαβγδk1

(η))f̄k2(C,D)f̄k3(C,D)vγδηζk2
(η)vηζαβk3

(η)
]

(C.28)

where fk(α) has been defined in (C.7) and vαβγδk (η) is defined in (C.29). See appendix ?? for
details on Weyl tensor in terms of mode expansion. We also have

vαβγδk (η) = 1√
k3

[eikη(−ikη)[W+]αβγδA−Be−ikη(ikη)[W−]αβγδ] (C.29)

[W+]†αβγδ = [W−]αβγδ (C.30)

which when evaluated gives exactly the result in Section 3.3.4. Due to the form of (3.8), the
following contractions of W appear in the time integral

M±±±
W3 = W±

αβγδ(k1)W±
γδηζ(k2)W±

ηζαβ(k3) (C.31)

where

W±
ηζαβ(kµ) ≡ Wηζαβ(±k, k⃗) (C.32)

However, only four of the sign combinations are unique

M−++
W3 = M+−−

W3 ≡ M2
W3 (C.33)

M+−+
W3 = M−+−

W3 ≡ M3
W3 (C.34)

M++−
W3 = M−−+

W3 ≡ M4
W3 (C.35)

M−−−
W3 = M+++

W3 ≡ M1
W3 (C.36)
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The direct computation of the time integral (C.28) along with the shadow tranform gives the
full homogenous part in momentum space,

⟨TTT ⟩h,α = a⟨TTT ⟩h,1 + b(⟨TTT ⟩h,2 + ⟨TTT ⟩h,3 + ⟨TTT ⟩h,4)] (C.37)

where a, b are precisely what we given by

a = 1
3N 3(C,D) [(2C2 + 3CD + 3D2)(C̄2 + D̄2 + C̄D̄) + (C −D)D̄(|C|2 + |D|2 + CD̄)]

b = 1
3N 3(C,D) [(C2 + 6CD +D2)C̄D̄ + CD̄2(−C +D) + (C −D)DC̄2] (C.38)

We also have

⟨TTT ⟩h,i = ⟨TTT ⟩h,Ri
(C.39)

where ⟨TTT ⟩h,Ri
appear in (3.119), (3.120).

Two-derivative interaction the Einstein-Hilbert contribution
Consider now the interaction

S
(3)
γ,EG =

∫
d4x

√
−g R (C.40)

The time integral due to the above interaction is then given by

MEG Im
[ ∫ 0

−∞

dη

η2

(
− 2fk3(C,D)γk3(η)[f̄k1(C,D)f̄k2(C,D)γ̄k1(η)γ̄k2(η) − 2fk1(C,D)fk2(C,D)γk1(η)γk2(η)]

+ 2f̄k1(C,D)f̄k2(C,D)γ̄k1(η)γ̄k2(η)[−f̄k3(C,D)γ̄k3(η) + fk3(C,D)γk3(η)]
)]

(C.41)

where

MEG = (z1.z2z3.k1 + z2.z3z1.k2 + z3.z1z2.k3)2 (C.42)

Therefore, in momentum space, the full non-homogeneous part is then given by

⟨TTT ⟩nh,α = a⟨TTT ⟩nh,1 + b(⟨TTT ⟩nh,2 + ⟨TTT ⟩nh,3 + ⟨TTT ⟩nh,4)] (C.43)

where a, b is precisely given by

a = 1
3N 3(C,D) [(2C2 + 3CD + 3D2)(CC̄3 −DD̄3) + (C3 −D3)(3C̄2D̄ + C̄D̄2)]

b = 1
3N 3(C,D) [(C2 + 6CD +D2)C̄D̄ + CD̄2(−C +D) + (C −D)DC̄2] (C.44)

⟨TTT ⟩nh,i = ⟨TTT ⟩nh,Ri
i = 1, 2, 3, 4 (C.45)

where ⟨TTT ⟩nh,Ri
’s appear in (3.123).
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