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Abstract

The thesis titled “Functorial Knot Theory”, expository in nature, aims to show some recent

connections between Knot theory and Category theory. In the first part we discuss how

the language of categories and functors effectively enhances the development of new knot

invariants such as Jones polynomial and Khovanov homology. The second part demonstrates

the surprising application of knot theory in proving some important coherence theorems in

category theory.
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Introduction

Knot theory studies topological embeddings of S1 in R3, which are called knots. The

central problem in knot theory is to classify all knots upto ambient isotopy. As a result

knot invariants came into the picture. A knot invariant is a rule of attaching certain kind

of mathematical objects to knots in such a way that the attachment is same for equivalent

knots. The mathematics of knot theory is the study of different kinds of knot invariants.

Modern knot theory involves combinatorial, algebraic and topological invariants.

The introduction of category theory has revolutionized mathematics and the way in which

it is percieved. One observation is that, the idea of categories and functors was motivated

by the study of certain algebraic invariants of topological spaces like homology. Later many

invariants of different objects were discovered to possses such special properties. In the

language of categories we call such invariants as functors. Functors could be seen as the

central objects of study in category theory. Definition of a category is chosen in a way which

makes the definition of a functor easier. This opens up a new way of looking at mathematical

objects.

Classical knot theory can be regarded as a study of numerical and polynomial invariants

of knots. Among these, the polynomial invariant constucted by Vaughan Jones, which is

named after him as the Jones polynomial is the most interesting one, mainly because of

its ease of calculation and its beautiful characteristics. There are many different ways of

constructing it. Mikhail Khovanov later introduced a graded (co)homology theory for knots,

which also has its graded euler characteristic as the Jones polynomial. Because of this we

can also regard it as a functorialization of the Jones polynomial. Here the chain groups are

graded and hence the complex and corresponding homology are bigraded. It is called as, the
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Khovanov homology, after him. Whenever the phrase ’homology’ is used it implicitly refers

to the functoriality also. Now one can construct a category where objects are links and an

arrow between two given links is a compact orientable 2-manifold with boundary such that

the boundary is the disjoint union of the two links. Khovanov’s construction also includes

computation of a chain map between the chain complexes of two links corresponding to any

such cobordism between them.

Bringing category theory into knot theory has enhanced the clarity with which the subject

was understood. Surprisingly the converse is also being explored. Certain theorems classified

as coherence theorems can be proved using knot theoremtic techniques. The goal of this

project is to explore most of the topics discussed above in good depth and rigor.
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Chapter 1

Basic Knot theory

Definition 1.0.1. A knot is an ambient isotopy class of an embedding of S1 in S3 or R3.

That is two such embeddings are considered to be the same knot if they are ambient

isotopic in S3. Isotopy classes of embeddings of finitely many copies of S1 are called links.

It is a common convention to refer to the embedding also as knot (link). From now on

the isotopy class and the embedding would be represented by the same word. In light

of the classification theorem for 1 manifolds, a link is a compact orientable 1-dimensional

submanifold of S3. In other words, two links K1 and K2 are considered equivalent iff there

exists and orientation preserving homeomorphism h : S3 → S3 which is isotopic to identity

(homotopy via homeomorphisms) and h(K1) = K2. The set of all links will be denoted

by L . Though we define knots to be any embeddings of S1, we usually consider only the

ones which are atleast C1. The Figure 1.1 shows examples of embeddings which are not C1

which are clearly not “models” of any “real” knot. Such knots are called wild knots . Knots

corresponding to embeddings which are atleast C1 are called tame knots.

Remark 1.0.1. It can be shown that every PL (piecewise linear) embedding is isotopic to

a C1 embedding, and every C1 is equivalent PL embedding. Hence both these are equivalent

knot types.

For different purposes we use different kind of representations. PL representations usually

show up when the combinatorial properties are to be studied.
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Figure 1.1: wild knots

Figure 1.2: A diagram of trefoil knot.

There are many ways to represent a knot. A projection of a knot to some plane in R3 is

said to be regular, it the only transversal double points as singularities.

Definition 1.0.2. A regular projection together with a information of over/under passes at

every double point is called a knot (link) diagram.

And it can be shown that every tame knot has a diagram. Hence all tame knots can be

studied by considering their diagrams. But more than one diagrams can represent the same

knot. Reidemeister solved this problem by introducing a set of three moves on knot diagrams,

such that, two diagrams represent equivalent knots if and only if one can be obtained from

the other by a finite sequence of Reidemeister’s moves. These moves are shown in Figure

1.3.
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Figure 1.3: Reidemeister moves
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Chapter 2

The Jones Polynomial

In 1984, Vaughan Jones discovered a polynomial invariant for knots, which got named after

him as the Jones polynomial. It is one of the most celebrated knot invariants. Later several

ways to arrive at the polynomial was discovered. The construction originally done by Jones

is more algebraic in nature. Louis Kauffman constructed a purely combinatorial model. Here

we will present one algebraic and one combinatorial model of the Jones polynomial.

2.1 Via representations of braid groups over Hecke al-

gebras

This section will contain an algebraic construction of the Jones polynomial. We will start

from a sequence of groups. Each knot type determines some representation of these. And

trace of the representation will correspond to the Jones polynomial.

2.1.1 Braid groups

An embedding of the standard interval I will be refered to as a string connecting its

two boundary points. Consider two parallel lines in 3 − space, and n equidistant points

on each of them. Now consider a disjoint collection of n strings connecting these points
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Figure 2.1: Diagram of a 3-braid.

such that the height function in the direction of the lines is monotonic. The coordinate in

the perpendicular direction of the lines will be called as height coordinate. This condition

ensures that points on one line gets connected only to points on the other line. This whole

collection with a choice of one of the lines as initial, is called an n− braid.

Two of them will be identified if they are isotopic by a map which respects all these

structures. I.e, which sends lines to lines, points to points and strings to strings. Braids

are also represented by diagrams which are generic projections of a braid, which has only

transversal double points as singularities. Then we have a set of moves defined on diagrams

which characterize the isotopy of braids. If we consider the PL version of braids, then the

isotopy is characterized by the rule of replacing one side of a triangle with the union of other

two, called as ∆-move. The inverse of this operation is also regarded as a ∆-move. In the

set of all isotopy classes of n-braids, there is a natural binary operation. Given two classes

choose one representative from each and identify the initial line of the last with final line of

the first, in such a way that the points are also identified in order. Hence after identification

if we remove the line in the middle keeping the points, then this again results in an n-braid.

The isotopy class of this braid is defined to be the product of the two classes.

This binary operation has an identity element which is given by the identity braid. Any

element multiplied with its mirror image is isotopic to the identity braid. Hence every class

is invertible. That is the isotopy classes of n-braids form a group under their natural multi-

plication. This group is called the braid group, denoted by Bn.
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Figure 2.2: Multiplication of braids

It is easy to see that {σ1, σ2, · · · , σn−1} generate Bn since given any braid diagram we can

always deform it through ∆-moves (in the PL-category) in such a way that there is only one

crossing at any given height. And since there are only finitely many crossings, this braid is

evidently written as a product of σi’s. From similar topological arguments it is easily seen

Figure 2.3: The ith generator (σi) of Bn

9



Figure 2.4: Closure of the braid shown in Figure 2.1

that σi’s satisfy the following relations.

σiσj = σjσi, |i− j| ≥ 2

σiσi+1σi = σi+1σiσi+1

These two relations determines the group structure. I.e, we have a presentation,

Bn = 〈{σ1, σ2, · · · , σn−1} | R ∪ S〉

R = {σiσjσ−1
i σ−1

j | |i− j| ≥ 2}

S = {σiσi+1σiσ
−1
i+1σ

−1
i σ−1

i+1 | 0 < i < n− 1}

Note: If T = {σ2
i |∀1 ≤ i ≤ n} then 〈{σ1, σ2, · · · , σn−1} | R ∪ S ∪ T 〉 is a presentation of Sn

where each σi correspond to the transposition (i, i+ 1).

Given any braid the ith point on one line can be connected to the ith point on the other

line by an new (unknotted) string which doesn’t intertwine between any other strings under

consideration. If we connect all the points in this fashion, it gives a link. The link obtained

is said to be the closure of the corresponding braid. For example this operation on the

identity n-braid will result in the unlink with n components.

Alexander proved that every link is isotopic to the closure of some braid. Thus braids also

represent links. But different braids might represent the same link type. So how to determine

whether two braids represent isotopic links? This question was answered by Markov in 1936

through his classic theorem. If we conjugate an n-braid with another n-braid then clearly

both of them will have the same closure. Now given any n-braid attaching a trivial string
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Figure 2.5: Closure after performing a Markov move

at the end and multiplying with either σn or σ−1
n will give an n + 1-braid. This defines a

unary operation on the set of all braids which is called as a Markov move. Some times for

compactness of writing conjugation will also be refered to as a Markov move.

Figure 2.5 depicts the idea of a Markov move. The empty rectangle denotes a general

braid. Clearly by performing the first Riedemeister move on this link, the closure of the

initial braid can be obtained. Two braids β1 and β2 are said to be Markov equivalent iff

there exist a finite sequence β1 = α1, α2, · · · , αn = β2 of braids such that for each i, αi+1 can

be obtained from αi by either conjugation with some braid or a Markov move. This defines

an equivalence relation in the set of all braids. Markov also proved that the equivalence

classes under this relation exactly determines class of all braids with isotopic closures. That

is,

Theorem 2.1.1 (Markov). The closures of two braids are of the link type if and only if they

are Markov equivalent.

Hence if we construct an invariant for braids under Markov moves, then it is equivalent

to constructing a link invariant. Vaughan Jones originally constructed some representations

of braid groups over certain matrix algerbras such that the trace (upto some scaling) is

invariant under Markov moves. Adrian Ocneanu observed that matrix algebra used in Jones’

construction is a quotient of some Hecke algebra and the trace function can be extended to

this bigger algebra. Thereby, he could come up with a model which is easier to study. Here

this invariant will be presented in the language of skein theory.
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Figure 2.6: Skein related diagrams

2.2 Jones polynomial as a skein invariant

Three oriented link diagrams L+, L− and L0 are said to be skein related iff they look the

same outside a ball around a point on the plane and inside the ball they look as shown in

Figure 2.6.

Let R be a commutative ring with 1. Consider three units a+, a− and a0 in R. A map

ψ : L → R is said to be a skein invariant with skein coefficients a+, a− and a0 iff the

following relations hold.

1. ψ(©) = 1

2. For every skein related diagrams L+, L− and L0:

a+ψ(L+) + a−ψ(L−) + a0ψ(L0) = 0

The goal of this section is to construct the Jones polynomial as a skein invariant. Besides

the construction of Jones polynomial, it will also be a quick glimpse to the theory of skein

invariants.

Theorem 2.2.1 (Uniqueness). A skein invariant p : L → R is uniquely determined by its

coefficients. I.e, given an ordered 3-tuple of units in R there is atmost one skein invariant

with these as coefficients.
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Figure 2.7:

Proof: Suppose p : L → R is a skein invariant with coefficients a+, a− and a0. Then by

definition p(©) = 1. Figure 2.7 shows the simplest skein triplets L+, L− and L0. Both L+

and L− are isotopic to the unknot ©. Hence p maps both of them to 1. Also L0 is ©2, the

unlink with 2 components. Then clearly,

p(©2) = −(
a+ + a−
a0

).

By the same trick it is easily shown that,

p(©r) = (−(
a+ + a−
a0

))r−1.

Hence the coefficients completely determine the invariant on all the unlinks. Consider

an oriented link diagram and a point on one of its components. Start moving through the

diagram following the orientation and change all the crossings so that newly visited crossings

are always entered through the lower passing. After this inversion of crossings clearly starting

from the point we can glue the boundary of a disk on to this component. That is it is an

unknot. By this argument it is easy to see that, given any link diagram D, there is a choice

of crossing changes so that the diagram changes to an unlink. And each of these transitions

taken one by one passes through several stages of skein related diagrams. And the final

stage is an unlink. Since p is determined on unlinks, by induction of the same kind as

above the invariant can be calculated for the initial diagram by tracing these steps back.

(The complexity of this process depends on the number of components and crossings of D.

Hence writing a general expression is cumbersome.) Hence p is completely determined by

its coefficients and we are done!

The theorem we just proved has very strong implications and it will prove to be inevitable

in the rest of the theory. Let B = Z[x, x−1, y, y−1, z, z−1] be the ring of Laurent polynomials
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in three variables over Z. Suppose there exist a skein invariant q : L → B with coefficients

x, y and z. Let r : L → R be any skein invariant with coefficients a+, a− and a0. Then there

is a unique natural map φ : B → R given by x 7→ a+, y 7→ a− and z 7→ a0 which makes the

following diagram commutative:

L B

R

q

r
∃!φ

Hence such a q, if it exists, can be treated as a “universal” member in the family of all

skein invariants. Once we construct this invariant then it is trivial to construct any other

skein invariant if the required coefficients are known. Note that here we are strongly using

the uniqueness theorem proved above. There are many ways to construct this invariant. The

following is one of them. For the remaining discussion A will denote the ring Z[l, l−1,m,m−1]

of Laurent polynomials in two variables l and m (for Lickorish and Millet) over Z.

Suppose there exist a skein invariant p : L → A with coefficients l, l−1 and m respectively.

Let K be a link diagram. It can be shown that if lamb is any monomial which appears in the

polynomial p(K)(l,m), then a ≡ b(mod2). This is easily proved by observing it on unlinks

and then proceeding by induction. Thus there exist integers i := a−b
2

, j := −a+b
2

and k := b.

Let q(K)(x, y, z) be the unique polynomial obtained by replacing each monomial lamb in

p(K) by xiyjzk. Now q(K) ∈ B is a homgeneous polynomial of degree 0. Now q defines a

map L → B by composing with p. Note that for any link K,

q(K)(x, y, z) = p(K)((
x

y
)
1
2 , z(xy)−

1
2 ).

Since p is skein invariant, q(©) = 1. Let L+, L− and L0 be three skein related diagrams.

By definition of p as a skein invariant we have:

lp(L+) + l−1p(L−) +mp(L0) = 0

=⇒ (
x

y
)
1
2 q(L+) + (

y

x
)
1
2 q(L−) + z(xy)−

1
2 q(L0) = 0

14



multiplying both sides by (xy)
1
2 we have,

xq(L+) + yq(L−) + zq(L0) = 0.

Again by the uniqueness theorem, q that we constructed out of p is the skein invariant

described above. Hence constructing such a p does the job. From now on, p will be regarded

as the “universal skein invariant”.

2.3 Construction of the universal skein invariant

Let F be a field and q ∈ F be any element. Then the nth Hecke algebra over F associated

to q denoted by H(n, q) can be defined as the unital F -algebra generated by T1, T2, · · · , Tn−1

with the relations:

TiTi+1Ti = Ti+1TiTi+1,∀i
TiTj = TjTi, |i− j| > 1

T 2
i = (q − 1)Ti + q,∀i.

From the presentation of Sn discussed earlier, H(n, 1) is isomorphic to the group algebra

of Sn. It can be shown that H(n, q) is an n!-dimensional vector space over F . Considering

this sometimes H(n, q) is said to be the q-deformation of the group algebra of Sn. If q is

clear from the context, for simplicity, H(n, q) will sometimes be written as Hn. Fix a q ∈ F .

The third relation guarantees that each of Ti’s are invertible. Hence multiplication by Ti is

a vector space automorphism of Hn. By abusing notation this automorphism will also be

denoted as Ti. In this notation Ti ∈ Aut(Hn). From the definition, the inclusion Hn ↪−→ Hn+1

must be clear. And hence Hn+1 is an (Hn, Hn)-bimodule.

Consider Hn⊕ (Hn⊗Hn−1Hn) as an (Hn, Hn) bimodule. Every element of this module has

a form a +
∑

j bj ⊗ cj where a, bj’s and cj’s are elements of Hn. Then there is a bimodule

map

ϕ : Hn ⊕ (Hn ⊗Hn−1 Hn)→ Hn+1

15



defined by

a+
∑
j

bj ⊗ cj 7→ a+
∑
j

bjTncj.

If u ∈ Hn−1 then we know that bu⊗c = b⊗uc. So for ϕ to be a well defined map these two

should have the same image. Since u ∈ Hn−1, it is expressed as product (sum of products)

of T1, T2, · · · , Tn−2. By definition Tn commutes with all of these and hence uTn = Tnu. And

thus ϕ is a well defined map. Infact this indicates the naturality behind replacing the tensor

symbol ⊗Hn−1 with Tn. With some simple calculations [3 ] we can show that:

Theorem 2.3.1 (Structure theorem). ϕ is an isomorphism of bimodules. I.e,

Hn+1
∼= Hn ⊕ (Hn ⊗Hn−1 Hn).

This theorem has many implications. It shows how Hecke algebras of different order are

related. Thereby it provides a way to use induction on the sequence of algebras. In the

following this fact is used extensively in proving existence of a function.

Theorem 2.3.2. Let z ∈ F be any element. Then for every n there exists a map tr : Hn → F

which satisfy:

1. The following diagram commutes:

Hn Hn+1

F

tr
tr

.

2. tr(1) = 1.

3. tr is F -linear and tr(ab) = tr(ba), ∀a, b ∈ Hn.

4. If a, b ∈ Hn then tr(aTnb) = ztr(ab).

This map on Hn will be called the trace corresponding to z.

Proof: Note that H1 = F . The map tr : H1 → F is defined to be the identity map of F .
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Clearly it satisfies the 2 and 3. Now this function can be extended to higher algebras by

induction, in a way such that all the properties are satisfied. Suppose tr is defined on Hn.

By the structure theorem, every element in Hn+1 can be written as a +
∑

j bjTncj for a, bj

and cj are in Hn for each j. Now define tr : Hn+1 → F by:

tr(a+
∑
j

bjTncj) = tr(a) +
∑
j

ztr(bjcj).

Clearly tr satisfies 1, 2 and 4. Also it is F -linear. It remains to show that tr(ab) = tr(ba)

for every a, b ∈ Hn+1. This can be proved case by case by considering whether a or b can be

expressed as a product (sum of products) containing Tn or not[3 ]. Hence tr : Hn+1 → F

satisfies all the required properties and the proof is complete.

Thus there exists a tr : Hn → F for each n. From 1 the following diagram commutes:

· · · Hn−1 Hn Hn+1 · · ·

F

tr
tr

tr

Hence this induces a unique trace map on the direct limit of Hn’s. As discussed earlier each

Ti in Hn is invertible and correspond to an automorphism of Hn. If the third axiom of Hn is

not considered, then clearly the algebra generated, say Gn would be isomorphic to the group

algebra of Bn. There is a canonical representation of Bn on Gn. After quotienting Gn with

the third relation Hn is obtained. Composing the canonical representation with this quotient

map yields a representation of Bn over Hn. Hence the natural group homomorphism:

ρ : Bn → Aut(Hn)

σi 7→ Ti

is a representation of the n-braid group on the nth Hecke algebra. Note that this doesn’t

depend on the underlying field. Since the image of ρ can be identified as a subset of Hn in

a natural way, ρ can be composed with the trace map. Hence each braid is assosiated to an

element in F , called its trace. This is an invariant for braids under isotopy. But our goal is

17



invariance under Markov equivalence. It turns out that for a clever choice of a field F this

works out. For this it is convinient to set the following notations.

Let F ′ = C(q, z) be the field of all rational functions in two variables q and z with

coefficients in C. Let w = 1− q + z and define:

F = F ′(

√
q

zw
)

. Let Hn denote the nth Hecke algebra H(n, q) corresponding to q ∈ F and tr denote the

trace assosiated to z ∈ F . Let ρ be the representation of Bn on Hn. Let e : Bn → Z be the

group homomorphism σi 7→ 1. Let B = qnBn and let n : B → N the unique function such

that n(Bn) = {n}. Now for a braid α define:

Vα(q, z) = (
1

z
)
n(α)+e(α)−1

2 (
q

w
)
n(α)−e(α)−1

2 tr(ρ(α))

This defines a map V : B → F defined by α 7→ Vα(q, z). The variables q and z in

the paranthesis is to indicate that this quantity is an expression written in terms of these

variables.

Theorem 2.3.3. The map V : B → F is an invariant of Markov equivalence classes.

Proof: It is enough to varify invariance under conjugation and Markov moves. Suppose

α, γ ∈ Bn. Let β = γαγ−1. From definition n(α) = n(β) = n and e(α) = e(β) since Z is

abelian.

tr(ρ(β)) = tr(ρ(γ)ρ(α)ρ(γ−1))

= tr(ρ(γ−1)ρ(γ)ρ(α))

= tr(ρ(α))

And hence Vα(q, z) = Vβ(q, z) and V is invariant under conjugation.

By abusing notation let α denote the image of the above α under the canonical injection

Bn ↪−→ Bn+1. Then define δ := ασn and δ′ := ασ−1
n . Clearly δ and δ′ are obtained by

18



performing Markov moves on α ∈ Bn. Note that n(α) = n and thus n(δ) = n(δ′) = n + 1.

Also e(δ) = e+ 1 and e(δ′) = e− 1 where e = e(α).

tr(ρ(δ)) = tr(ρ(α)ρ(σn))

= tr(ρ(α)Tn)

= ztr(ρ(α))

=⇒ Vδ(q, z) = (
1

z
)
n(δ)+e(δ)−1

2 (
q

w
)
n(δ)−e(δ)−1

2 tr(ρ(δ))

= (
1

z
)
n+1+e+1−1

2 (
q

w
)
n+1−e−1−1

2 ztr(ρ(α))

=
1

z
(
1

z
)
n+e−1

2 (
q

w
)
n−e−1

2 ztr(ρ(α))

= (
1

z
)
n+e−1

2 (
q

w
)
n−e−1

2 tr(ρ(α))

= Vα(q, z)

Also observe that T−1
n = 1

q
(Tn + 1− q). Thus:

tr(ρ(δ′)) = tr(ρ(α)ρ(σ−1
n ))

= tr(ρ(α)T−1
n )

= tr(ρ(α)
1

q
(Tn + 1− q))

=
1

q
[ztr(ρ(α)) + (1− q)tr(ρ(α))]

=
1

q
[(1− q + z)tr(ρ(α))]

=
w

q
tr(ρ(α))

=⇒ Vδ′(q, z) = (
1

z
)
n(δ′)+e(δ′)−1

2 (
q

w
)
n(δ′)−e(δ′)−1

2 tr(ρ(δ′))

=
q

w
(
1

z
)
n+e−1

2 (
q

w
)
n−e−1

2
w

q
tr(ρ(α))

= (
1

z
)
n+e−1

2 (
q

w
)
n−e−1

2 tr(ρ(α))

= Vα(q, z)
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This shows that V is invariant under all the Markov moves and hence it is invariant of

Markov equivalence classes. That is V does not depend on the braid but only on the isotopy

class of its closure link. Thus we have constructed a link invariant.

Theorem 2.3.4. Given any link K, there exists a unique Laurent polynomial pK(l,m) ∈ A
such that

pK(i(
z

w
)
1
2 , i(q−

1
2 − q

1
2 )) = Vα(q, z)

whenever α is any braid whose closure is isotopic to K. Morover K 7→ pK(l,m) is a skein

invariant with coefficients l, l−1,m ∈ A.

Proof: Note that pK is well defined since Vα(q, z) doesn’t depend on the choice of α

by the previous theorem. It is easy to see that whenever L+, L− and L0 are three skein

related diagrams, there exist γ, β ∈ Bn such that they are isotopic to closures of the braids

α+ := γσkβ, α− := γσ−1
k β and α0 = γβ respectively. For further discussions it is convenient

to define the map W by:

Wα = (
1

z
)
n(α)+e(α)−1

2 (
q

w
)
n(α)−e(α)−1

2 ρ(α)

which assosiates an element of Hn to a braid α ∈ Bn such that tr(Wα) = Vα(q, z). For

proving this theorem we need the following:

Lemma 2.3.5 (Skein invariance lemma). If α+, α− and α0 as as defined above and l = i( z
w

)
1
2

and m = i(q−
1
2 − q 1

2 ) then:

lWα+ + l−1Wα− +mWα0 = 0

The lemma can be proved by straight forward calculations by substituting all the symbols

in the L.H.S. by their definitions. Hence the proof may be skipped. By taking trace on both

sides of the equation in the lemma, we obtain:

lVα+ + l−1Vα− +mVα0 = 0

=⇒ lpL+ + l−1pL− +mpL0 = 0

If ι is the identity 1-braid (with closure as ©), then it is trivial to check that Vι(q, z) = 1.

As a consequence we have p©(l,m) = 1. Thus K 7→ pK(l,m) is a skein invariant.
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Now it remains to show that for any K, pK(l,m) ∈ A, i.e it is a Laurent polynomial with

integer coefficients. For this we make use of the theory of skein invariants since p is a skein

invariant. As described earlier,

p©r(l,m) =

(
l + l−1

m

)r−1

which clearly has integer coefficients. That is the result is true on all unlinks. Hence by

induction (of the same kind used in skein theory) it follows that pK(l,m) has integer coeffi-

cients. Hence proof of the theorem is complete.

Hence pK(l,m) constructed above is the universal skein invariant.

Definition 2.3.1 (Jones polynomial). The Jones polynomial is the skein invariant V : L →
Z[t

1
2 , t−

1
2 ] with coefficients t,−t−1, (t

1
2 − t− 1

2 ).

By uniqueness of skein invariants, the Jones polynomial is well defined. As discussed

earlier any skein invariant can be obtained from the universal skein invariant. Thus it

follows from the theory of skein invariants that, given a link K, its Jones polynomial is given

by

VK(t) = pK(it, i(t
1
2 − t−

1
2 ))
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Figure 2.8:

Figure 2.9:

2.4 Kauffman bracket polynomial: A combinatorial ap-

proach

Given an unoriented link diagram, which is the image under a generic projection, each of

the double points will be isolated. Every double point has an open ball containing it which

misses all other double points. This ball seen as a copy of R2 is divided into four regions by

the diagram as shown in Figure 2.8. The regions swiped by the overpass when it is rotated

counter-clockwise to match with the underpass is labeled as A and the others are labeled B.

At any crossing we have a pair of both the symbols A and B and any one of them can be

chosen. The choice is represented by adding markers on crossings as shown in Figure 2.9.

Definition 2.4.1. A diagram together with a choice of a marker at every double point is

called a Kauffman state of the diagram.

Sometimes Kauffman states are simply refered to as “states”. Given any link diagram

with n crossings, there are two choices for markers at each crossings. Hence it will have 2n

many states. Once a marker is chosen, the crossing can be “smoothed” out according to the

marker as shown in the following figure.
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Figure 2.10:

Given any state, after performing smoothings at each crossings, we will obtain a disjoint

collection of loops. Thus after smoothings every diagram is a diagram of some unlink. The

number of loops in a given state s will be denoted by |s|. Let a(s) and b(s) denote the number

of A’s and B’s in s respectively. If L is a link diagram, S(L) will denote the set of all states

of L. The symbols A and B can be seen as elements in a ring Z[A,A−1, B,B−1, d, d−1] where

d is another formal symbol which will be given meaning later.

Definition 2.4.2 (Kauffman bracket). Given an unoriented link diagram L, the Kauffman

bracket of L is defined as:

[L] =
∑
s

Aa(s)Bb(s)d|s|−1

Now [L] is a polynomial in three variables. If B is identified with A−1 and d is identified

with −(A2 + A−2) then the bracket polynomial can be composed with the quotient map

Z[A,A−1, B,B−1, d, d−1] → Z[A,A−1] to get a polynomial in one variable. This Laurent

polynomial in A is called bracket polynomial and will also be denoted using [ ].

Theorem 2.4.1. The bracket polynomial [ ] is invariant under Riedemiester move 2 and 3.

Proof is straight forward application of the definitions. But still it is not invariant under

move 1. For resolving this orientation can be made use of. Now consider

fL(A) := A−3w(L)[L]

where w(L) denotes the writhe number of L which is the sum of signs of all crossings. The

polynomial fL(A) is said to be the “normalised” bracket polynomial of L.

Theorem 2.4.2. The normalised bracket polynomial K 7→ fK(A) is a skein invariant with

coefficients A4,−A4, (A2 − A−2) in the ring Z[A,A−1].
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Figure 2.11: 51 and 10132

Clearly w(L) is also invariant under Riedemiester moves 2 and 3 and thus fL(A) will be

invariant under move 2 and 3. Hence if it is invariant under move 1 then we are done. It is

easily seen that independent of the orientation, any twist in the diagram will always have a

sign of −1. Hence while removing it by move 1, the writhe will increase by 1. Substituting

the relations between writhe and brackets of the diagram, before and after move 1 and

calculating, it follows that fL is invariant under move 1 also. Hence it is a link invariant.

Fact that f©(A) = 1 is obvious. The skein invariance is also proved by explicitly calculating.

Hence the theorem follows.

Consider the map g : Z[A,A−1]→ Z[t
1
4 , t−

1
4 ] given by A 7→ t

1
4 . Clearly g◦f is an invariant

which satisfy the same skein relation as the Jones polynomial. Hence by uniqueness of skein

invariants, g ◦ f is the Jones polynomial. That is,

Observation 2.4.3. The normalised bracket polynomial and Jones polynomial are both the

same upto change of variables. Thus the normalised bracket polynomial is another model for

Jones polynomial which can be calculated in combinatorial way.

2.4.1 Some properties of the Jones polynomial

• The polynomial for the mirror image of a link k can be obtained by switching t and

t−1 in the polynomial for k. Thus it readily tells whether the link is chiral or not.

• The polynomials of any two links determines the polynomial of their disjoint unlinked

unions and connected sum. Hence we have some sort of induction techniques on com-

plexity.

• There are many ways to compute it involving algebraic, combinatorial or topological

techniques.
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But yet it is not known whether it detects the unknot. Also there are some inequivalent

couple of knots which share the same Jones polynomial. The pair 51 and 10132 shown in

Figure 2.11 is an example. And also there is no functoriality to this invariant, since there

is no natural way to talk about an arrow between two polynomials.
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Chapter 3

Khovanov Homology

For all discussions of this chapter, R will always denote a fixed commutative ring with 1.

The word “module” will always stand for a module over R.

Definition 3.0.3. Let M be any module over R. A map d : M → Z is called a degree

function on M iff for each n ∈ Z there is a submodule Mn of M with d(Mn) = {n} and

M =
⊕
n∈Z

Mn

The module M together with the map d is called a graded module over R. The graded

dimension (quantum dimension) of M is the formal series:

qdimM :=
∑
n∈Z

rank{Mn} · qn

Note that if M has only finitely many components and each of them are finitely generated,

then the graded dimension is a polynomial in an abstract variable q with integer coefficients.
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Figure 3.1:

3.1 The cube category and Khovanov complex

Let D be a link diagram with n crossings. Then as described before D will have 2n Kauffman

states. Choose a numbering on the crossings so that each state can be represented as an

n-sequence [X1X2 · · ·Xn] where each Xi stands for the symbol A or B. Consider an n

dimensional cube whose vertices are the Kauffman states of D with an arrow directed from

a state to another iff the first changes to second by the change of exactly one A to B. That

is, there is an arrow:

[X1X2 · · ·Xi · · ·Xn]→ [X1X2 · · ·X i · · ·Xn]

whenever Xi is A and X i is B. Thus the Kauffman states of any link diagram forms a cube.

Figure 3.1 shows the cube for a diagram of the trefoil knot.

Definition 3.1.1. By adding exactly the required compositions and identity arrows formally

to this cube, a category (small) can be constructed. This category denoted by C (D) is said to

be the cube category assosiated to the diagram D. Each object in a cube category is a disjoint

(unlinked) union of circles.

28



Let R be a commutative ring with 1. Suppose F : C (D)→ R−mod is a covariant functor.

For each s ∈ C (D) let i(s) denote the number of B smoothings in s. And for any i ∈ Z
define:

Ci(D) :=
⊕

{s|i(s)=i}

F (s)

Let ∂k : [X1 · · ·Xk · · ·Xn] → [X1 · · ·Xk · · ·Xn] denote the unique morphism in C (D)

whenever Xk is A (note that the same notation defines different maps for different states).

And let c(s, k) denote the number of A smoothings before the index k in a state s. For

s = [X1 · · ·Xn] let α(s) := {k|Xk = A}. Consider the map:(
dis :=

∑
k∈α(s)

(−1)c(s,k)F (∂k)

)
: F (s)→ Ci+1(D).

Since Ci(D) is the co-product of F (s)’s, each of the maps of the form dis (for every

compatible s) together defines a map di : Ci → Ci+1 . Now for s = [X1 · · ·Xn] if sk :=

[X1 · · ·Xk · · ·Xn] for each k ∈ α(s) then we have,

di+1di(x) = di+1(
∑
k∈α(s)

(−1)c(s,k)F (∂k)(x))

=
∑
k∈α(s)

(−1)c(s,k)di+1
sk

(F (∂k)(x))

=
∑
k∈α(s)

(−1)c(s,k)
∑

m∈α(sk)

(−1)c(s
k,m)F (∂m ◦ ∂k)(x)

=
∑

(m,k)∈α(s)×α(s)

[
F (∂m ◦ ∂k)− F (∂k ◦ ∂m)

]
(x) ∀x ∈ F (s)

Hence if ∂m ◦ ∂k = ∂k ◦ ∂m in C (D), then we have di+1di = 0 for all i ∈ Z. Which shows,

· · · Ci−1(D) Ci(D) Ci+1(D) · · ·di−1 di di+1
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Figure 3.2: Cylinder: no critical point

is a chain complex. The condition ∂m ◦ ∂k = ∂k ◦ ∂m can be axiomatically demanded

in the definition of the cube category. That is every functor from the cube category of a

diagram to a module category “carries” a chain complex and hence a sequence of homology

modules.

Note: Thus if there was a category C where all the cube categories of all link diagrams are

subcategories, then a functor on C will give a homology theory of link diagrams. If it is

invariant under Reidemeister moves then its a homology theory of links! Khovanov came

up with a functor which gives such a link invariant homology. Also the phrase “homology

theory of links” would also encompass the functoriality of this invariant in an appropriate

sence.

Definition 3.1.2. Define 2-cob to be the category with objects as finite disjoint union of

circles and a morphism between n circles and m circles is a smooth compact orientable

2-manifold with boundary such that the boundary is disjoint union of n+m circles.

Such surfaces are refered to as circle cobordisms. Given a surface Σ1 from m circles to n

circles and another surface Σ2 from n circles to k circles, clearly we can glue them together

at n circles and form a cobordism from m to k circles. This defines a composition operation

in this category. And every collection of circles has its identity arrow given by cylinders

connecting the corresponding circles. It is easy to see that this surface is indeed the identity

of this composition.

Remark 3.1.1. Also there is a natural monoidal structure on this category where tensor-

ing of objects and arrows simply means disjoint union. The empty link (collection of circles)

and empty cobordism from empty link to itself will provide identities for the tensoring oper-

ations.
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Figure 3.3: Birth of a circle: one critical point of index 0

Figure 3.4: Pair of pants: one critical point of index 1

The infamous Morse lemma characterizes the morphisms in this category. On a 2-manifold

there are only three different kinds of non-degenerate critical points corresponding to the

indices 0, 1 and 2 (for the sake of brevity we will drop the phrase “non-degenerate” keeping in

mind that all kinds of critical points that is refered here will be non-degenerate). For index 1

since the tangent space is a direct sum of two one dimensional orthogonal subspaces, there are

two possible surfaces. But they both are topologically equivalent without orientation. And

if there are no critical points on a cobordism then it represent planar isotopy of circles and

hence it is a union of cylinders. All these surfaces are shown in the Figures 3.2, 3.3, 3.4 and

3.5. Hence any morphism in this category can be constructed using these five cobordisms.

Figure 3.5: Death of a circle: one critical point of index 2

31



Figure 3.6:

Figure 3.7: The square which is required to be commutative

Observation 3.1.1. Since each of the states are disjoint collections of circles they are nat-

urally objects in 2 − cob. If a crossing changes from A to B, then in the states either a

circle will split into two or two circles merge and form one circle. This transition is well

represented by a cobordism with exactly one critical point of index 1 as shown in Figure 3.6.

Since the transition does not affect more than two circles, the other circles are connected to

there corresponding copies via cylinders. Thus each of the arrows of the form ∂k in C (D)

can be represented by a cobordism consisting a pair of pants and some cylinders. Every such

arrow correspond to a critical point of index 1. The transitions in which one circle splitting

in two and two circles forming one is naturally represented by the two possibilities of critical

point of index 1. All this makes 2− cob the best place for all the cube categories to live!

Thus every cube category has an “embedding” in 2 − cob. It is easily seen that the

condition ∂m ◦ ∂k = ∂k ◦ ∂m is modeled by the topological equivalence of the corresponding

cobordisms. The diagrams in Figures 3.7 and 3.8 illustrates one of the non-trivial cases
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Figure 3.8: Cobordisms representing both the compositions.

of this. Similarly the other cases are also easily verified. As a consequence, if the cube

categories are defined as subcategories of 2 − cob in the described way, then every functor

F : 2− cob→ R−mod determines a homology theory of link diagrams.

3.2 Definition of Khovanov Homology

This section introduces the co-chain complex corresponding to a link diagram in a form

closer to the original algebraic form given by Khovanov. And then we will introduce Viro’s

interpretation of the complex and enhanced states, which brings in naturality to Khovanov’s

definition.

Before introducing the construction, it is necessary to modify the definition of Kauffman

bracket a bit to suit our purposes. The Kauffman bracket can be defined with a new variable

as the unique map 〈 〉 : L → Z[q, q−1] which satisfies:

〈©〉 = q + q−1

〈D q©〉 = (q + q−1)〈D〉.

The inductive relation for the bracket is given as:

This is an unnormalised form of bracket since 〈©〉 is not 1. But it can be normalized by

dividing each polynomial by the factor 〈©〉 = (q + q−1). Applying the change of variable

A = −q−1 we will get back the usual bracket.
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Let S be a commutative ring with 1 such that there is a monomorphism i : R ↪−→ S such

that 1 7→ 1. Then S has an obvious R-module structure. Hence S can be tensored with

itself over R (in the monoidal category R−mod). Also S ⊗R S is an (S, S)-bimodule. From

now on we will drop the subscript R with the tensor symbols where it is clear, for sake of

compactness of notation. There are natural isomorphisms S → S ⊗R and S → R⊗ S. The

multiplication in the ring S defines a map m : S ⊗ S → S in an obvious way.

Definition 3.2.1. S is called a Frobenious algebra over R if there exist an (S, S)-bimodule

map ∆ : S → S ⊗ S and an R-module map ε : S → R such that the following diagram com-

mutes.

R⊗ S S ⊗ S S ⊗R

S

ε⊗1 1⊗ε

∆

The phrase “Frobenious algebra” will refer to the collection (R, S,m, i,∆, ε). The maps

m, i,∆, and ε are respectively called as the multiplication, unit, co-multiplication and co-

unit.

As an example, consider the ring S = R[x]/(x2) with i as the trivial inclusion. S is

generated by the elements 1 and x as a module over R. Define ∆ : S → S ⊗ S by 1 7→
1⊗ x+ x⊗ 1 and x 7→ x ⊗ x, and ε : S → R by 1 7→ 0 and x 7→ 1. It is easy to verify

that these maps indeed make S to a Frobenious algebra over R. This example will be of

particular interest to us later on.

Remark 3.2.1. As mentioned before, 2− cob is a monoidal category with tensoring induced

by disjoint union. Every object in 2 − cob is a tensor product of finitely many copies of

circle. In a sence, the circle generates the monoid obj(2− cob). As we have seen before, all

cobordisms in this category are generated by just five cobordisms. Hence to define a monoidal

functor on 2− cob it is enough to specify the images of the circle and these five morphisms.

Definition 3.2.2. Any monoidal functor from 2 − cob → R −mod is called a topological

quantum field theory abbreviated as TQFT.
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Let H be a TQFT and let S = F (S1). Since H is a monoidal functor the identity of 2−cob
which is the empty disjoint union of circles should be mapped to the identity of R −mod
which is trivial module R. Also H sends tensor products to tensor products. Thus H maps

n copies of S1 to the module S⊗n which is the tensor product of n copies of S. Now the

fundamental cobordisms of 2 − cob corresponds to certain maps under H. Cylinder being

identity of S1 will correspond to the identity map of S. The “birth of a circle” gives a map

i : R→ S. And the “pair of pants” from two circles to one goes to m : S ⊗ S → S and the

other pair of pants goes to ∆ : S → S ⊗ S. “Death of a circle” gets mapped to a morphism

ε : S → R. Now the above commutative diagram trivially follows because of the topological

equivalence of surfaces which correspond to the required composition of maps. Hence every

TQFT carries a Frobenious algebra. Now by the same token given a Frobenious algebra S,

there is a TQFT which maps the generators of 2 − cob to corresponding components of S.

We just proved:

Theorem 3.2.1. There is a one to one correspondence between TQFT’s and Frobenious

algebras.

Under the light of this theorem, we define:

Definition 3.2.3. The homology theory given by the TQFT corresponding to the Frobenious

algebra R[x]/(x2) is defined as Khovanov homology.

Let H be the TQFT corresponding to the Frobenious algebra S := R[x]/(x2). Note that

S is isomorphic to the free R-module generated by 1 and x. Each of the Kauffman states of

D with k circles are mapped to S⊗k. For an integer i let Ki be the set {s|i(s) = i}. Each

copy of S has two generators 1 and x, thus rank(H (s)) = 2|s|. Hence for the chain group

Ci(D) =
⊕
s∈Ki

H (s)

we have,

rank{Ci(D)} =
∑
s∈Ki

2|s|.

Now the module S can be given a grading by defining degrees of 1 and x as −1 and 1

respectively. As a consequence, S breaks up into direct sum of two rank-1 submodules S+
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and S− of degrees −1 and 1 respectively. Every k-fold tensor product of S will break up as

direct sum of 2k rank-1 modules which individually are tensor product of k rank-1 modules

which are either a copy of S+ or S−. Now the degree of a generator a1 ⊗ a2 ⊗ · · · an (where

ai’s are either 1 or x) of such a module can be defined as the sum of degrees of ai’s. This

gives a grading on every module in the image of H . That is, each of the chain groups will be

graded modules. Hence for any integer j we can define the submodule Ci,j as the component

of Ci of degree j. It can be shown that the differential maps induced by the morphisms in

the cube category also preserves the quantum grading (after certain degree shifts), i.e.

di
(
Ci,j(D)

)
⊂ Ci+1,j(D)

and thus we define di,j : Ci,j(D)→ Ci+1,j(D) as the restriction of di.

Definition 3.2.4. The bigraded complex formed by the chain groups Ci,j(D) and boundaries

di,j for every integers i, j is defined to be the Khovanov complex of D.

...
...

...

· · · Ci−1,j+1(D) Ci,j+1(D) Ci+1,j+1(D) · · ·

⊕ ⊕ ⊕
· · · Ci−1,j(D) Ci,j(D) Ci+1,j(D) · · ·

⊕ ⊕ ⊕
· · · Ci−1,j−1(D) Ci,j−1(D) Ci+1,j−1(D) · · ·

...
...

...
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That is, to the diagram D we have attached a bigraded complex consisting of a chain

group Ci,j(D), and hence a homology module H i,j(D) for every i, j ∈ Z. Now it can be

proved that the homology is independent of the chosen diagram and depends only on the

link represented. Before going into the proof of this, it will be helpful to talk about an

interpretation of the definition of the chain complex. This involves certain combinatorial

ideas which were due to a mathematician Oleg Viro. These will bring in more clarity and

also make the definition resemble the usual definitions of homology in topology.

3.3 Viro’s interpretation

Consider the Kauffman states of a diagram D. A state together with a choice of one

of the symbols + or − to each circle in it is called an (Viro) enhanced state. Enhanced

states were first introduced by a Oleg Viro. Thus each of the Kauffman states s splits

into 2|s| many enhanced states. From now on, unless specified, “state” will always stand

for “enhanced state”. For an enhanced state s we define some state evaluations. The

notations i(s), α(s), c(s, k) and |s| will be used with their previous meanings. Let n+ and n−

denote the number of circles labeled + and − respectively. And define λ(s) = n+ − n− and

j(s) = i(s) + λ(s). Now we can define Ci,j(D) to be the free R module generated over the

set of all enhanced states s of D with i(s) = i and j(s) = j. Note that Ci,j(D) will be trivial

except for finitely many values of i and j since there are only finitely many states.

Then the module,

Ci(D) =
⊕
j∈Z

Ci,j(D)

is a graded R-module (for each i) with the degree of the component Ci,j(D) defined

to be j. Also graded dimension of each one of such modules is a polynomial in q. These

modules naturally look like chain groups of a graded complex with coefficients in R. Inorder

to complete this to a bigraded complex, it is required to construct graded boundary maps

di : Ci(D)→ Ci+1(D). But then the map should preserve the degree j of each submodule.
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Figure 3.9:

Since the differential will increase the homology grading, i by 1, inorder for quantum

grading j = i+ λ to remain unchanged, λ has to decrease by 1.

Consider the case where two circles merge to form one circle. If both had + on them, then

to decrease λ by 1, the only choice is to assign + to the newly formed circle. If one was

+ and the other was −, then the new circle has to be − (note that this doesn’t depend on

which circle carries a particular symbol). But if both circle were −, then none of the signs

on the new circle will reduce λ. Hence we declare the image of such states to be 0.

Now consider the case when one circle splits into two. If the circle had +, then one of

the new circles should be + and the other should be −. But there are two different ways to

do this since the choice is arbitrary. Hence we define the image to be the sum of both this

states. If the circle was −, then clearly both the circles in the image have to be −. Hence

image of every enhanced state under the differential can be easily determined. These are

shown in Figure 3.9.

Observation 3.3.1. Now if merging of circles is compaired as multiplication then the symbols
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+ and − satisfies the same multiplication rule as 1 and x respectively in the ring S. Also

splitting of a circle now clearly represents co-multiplication! This shows the naturality of the

choice of the Frobenious algebra S. The chain groups defined using enhanced states

are isomorphic to the chain groups defined by H in the Khovanov’s definition.

This follows from a comparison of ranks since they are both free.

3.4 Invariance under Reidemeister moves

For a chain complex C and an integer k, we denote by C{k} the complex obtained by

shifting the degree of C by k. Our next aim is to prove that the homology is indeed a link

invariant. For this it is enough to prove:

Theorem 3.4.1. The homology modules H i,j(D) for each i, j ∈ Z is invariant under Reide-

meister moves on D.

For the proof of the theorem we will widely use the following lemma from homological

algebra.

Lemma 3.4.2. Let C be a chain complex and C ′ is a subcomplex of C. If C ′ has no

homology, then for every n, Hn(C) ∼= Hn(C/C ′). If C/C ′ is also acyclic then for all n,

Hn(C) ∼= Hn(C ′).

Proof: There is an exact sequence of complexes:

0 C ′ C C/C ′ 0

which will give an exact sequence of homology groups:

· · · −→ Hn−1(C/C ′) −→ Hn(C ′) −→ Hn(C) −→ Hn(C/C ′) −→ Hn+1(C ′) −→ · · ·

if C ′ is acyclic then by the above exact sequence it follows that Hn(C) ∼= Hn(C/C ′) for all

n. Similarly if C/C ′ is acyclic then Hn(C) ∼= Hn(C ′) for all n.
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3.4.1 Invariance under move-I

Let D be a link diagram with a twist . Two different smoothings at this crossing will

give two diagrams, from A smoothing and from B smoothing. Let C :=
[ ]

,A :=
[ ]

and B :=
[ ]

represent their corresponding complexes. It is enough to show

that C has the same homology as B. Note that in the complex of , the B smoothing

which got already applied on is not counted in the degree. Now by the definition of the

complex it follows that:

[ ]
=
[ ]

⊕
[ ]

{1}.

That is, for every n, Cn = An ⊕ Bn−1, but the boundary maps in the complex of B will

be multiplied by and additional −ve sign when it is considered a subcomplex of C. Also

is equivalent to disjoint union of and a circle. Thus it follows that An = S ⊗Bn. Hence

the multiplication map → gives the diagram:

· · · 0 0 0 · · ·

· · · An−1 An An+1 · · ·

· · · Bn−1 Bn Bn+1 · · ·

· · · 0 0 0 · · ·

m m m

By definition of the cube category the arrows all squares are commutative. Hence the

40



multiplication map induces an isomorphism. Also all the vertical and horizontal sequences

are chain complexes. Hence the above diagram is a bi-complex. By our previous observation

it is easily seen that the complex C is the diagonal sum of this complex. From now on for

the sake of writing we would just denote this bicomplex as:

· · · An−1 An An+1 · · ·

· · · Bn−1 Bn Bn+1 · · ·

m m m

As discussed before S = S+ ⊕ S−, where S+ = 〈1〉 and S− = 〈x〉. Hence

Cn = S+ ⊗Bn ⊕ S− ⊗Bn ⊕Bn−1

for each n. Condider the subcomplex, C ′ defined by

· · · −→ S+ ⊗Bn−1 ⊕Bn−2 −→ S+ ⊗Bn ⊕Bn−1 −→ S+ ⊗Bn+1 ⊕Bn −→ · · ·

The map m restricted to the submodule S+ ⊗ Bn−1 is an isomorphism since S+ generated

by the element 1. Its very easy two see that C ′ is a subcomplex of C and is acyclic. Hence

by our previous lemma, the homology of C and C/C ′ should be isomorphic. The complex

C/C ′ looks like:

· · · −→ S− ⊗Bn−1 −→ S− ⊗Bn −→ S− ⊗Bn+1 −→ · · ·

Since S− ∼= R and hence free, the homology of this sequence is isomorphic to the homology of

B, by the universal coefficient theorem. Hence homology of C is isomorphic to the homology

of B. This proves invariance under move-I.
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3.4.2 invariance under move-II

Let D be a diagram with region which looks like . We will prove that if D′ is a diagram

which resembles D everywhere except this region where it looks like , then D and D′ will

have the same homology. By the same arguments given in proof of invariance of move-I, we

can see that the complex of D is the diagonal sum of the bicomplex:

[ ]
{1}

[ ] [ ]
{2}

[ ]
{1}

m∆

By the arguments of the previous proof, there is an acyclic bi-complex C ′ ,

[ ]
+

0
[ ]

0

m∆

where
[ ]

+
denotes the submodule generated by states with + sign on the extra circle.

Then by the lemma, homology of C is isomorphic to homology of C/C ′ which is the complex:
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[ ]
−{1}

[ ]
0

[ ]
{1}

∆

d

After quotienting with
[ ]

+
it follows that the action of ∆ :

[ ]
→
[ ]

− is just sending

every state of to the corresponding state of with the extra circle is labeled − sign.

Hence ∆ is an isomorphism and hence invertible. Consider the map

τ := d∆−1 :
[ ]

− −→
[ ]

C/C ′ : 0 −→
[ ] d−→

[ ]
−{1} ⊕

[ ]
{1} −→ 0

For every n ∈ Z define T n =

〈
{
(
x, τ(x)

)
|x ∈

[ ]n−1

− }
〉

as a submodule of
[ ]

−{1}
n ⊕[ ]

{1}n. Now consider the subcomplex C ′′ (of the complex C/C ′) given by:

C ′′ : 0 −→
[ ] d−→ T −→ 0

Since d projected to the first component is ∆ which is an isomorphism, ker(d) = 0. For

each x ∈
[ ]n

we have d(x) = τ∆(x), and hence d(x) = (∆(x), τ∆(x)) ∈ T n. Thus we

conclude that im(d) = T . Which means the complex C ′′ is acyclic. Hence again by the

lemma, C has the same homology as:

(C/C ′)/C ′′ : 0 −→
([ ]

−{1} ⊕
[ ]

{1}
)
/T −→ 0

Consider the complex,

A : 0 −→
[ ]

{1} −→ 0
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and the inclusion map

i :
[ ]

{1} −→
([ ]

−{1} ⊕
[ ]

{1}
)
/T

x 7→ (0, x)

Since (0, x) ∈ T will mean that x = 0, i is injective. Now we know that (x, y) = (0, y − τ(x))

and hence i is surjective. I.e. i is an isomorphism. Hence the homology of is isomorphic

to the homology of , proving invariance under move-II.

3.4.3 Invariance under move-III

For invariance under third Reidemeister move, we have to show that the homology of

is isomorphic to that of . Note that the complexes of these diagrams are given by:[ ]
:
[ ]

−→
[ ]

[ ]
:
[ ]

−→
[ ]

But is clearly equivalent to , and can be obtained from by a sequence

of two Reidemeister moves of type II. Hence all these complexes are isomorphic and by the

same techniques used in proof of invariance under move-II, it follows that the homology of

and are isomorphic. Thus Khovanov homology groups are invariant under all three

Reidemeister moves. Hence we have a homology theory of links.

3.5 Euler characteristic

Now for a given link L we will represent its Khovanov bigraded complex by Kh(L). For any

link diagram D we have a complex which looks like:
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...
...

...

· · · Ci−1,j+1(D) Ci,j+1(D) Ci+1,j+1(D) · · ·

⊕ ⊕ ⊕
· · · Ci−1,j(D) Ci,j(D) Ci+1,j(D) · · ·

⊕ ⊕ ⊕
· · · Ci−1,j−1(D) Ci,j−1(D) Ci+1,j−1(D) · · ·

...
...

...

Given such a bigraded complex, the alternating sum of quantum dimensions of Ci’s will

be called as the graded euler characteristic, χ of the homology. Here we wish to study

the graded euler characteristic of Khovanov homology. For the unknot, there is a diagram

with just one circle and hence exactly two states. It is easily seen that, H0,1(©) ∼= R and

H0,−1(©) ∼= R and all the remaining homologies are trivial. Both these are rank 1 over R.

Hence the euler characteristic is:

χ(©) =
∑
i,j

(−1)iqjrank{H i,j(D)}

=q + q−1
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But this is the unnormalised bracket of the unknot. To prove the result which this is

indicating, we observe that for a diagram D,

χ(D) =
∑

all enhanced states e

(−1)i(e)qj(e)

Which readily yields χ(©) = q + q−1. Also the relation

for the euler characteristic, follows diretly by observing that the enhanced states of the two

diagrams obtained after smoothing constitutes the complete family of enhanced states of the

diagram with the crossing. And if K is a link diagram, then the enhanced states of K t©
will be all states of K together with a + signed circle and all states together with a − signed

circle. Thus,

χ(K t©) = qχ(K) + q−1χ(K) = (q + q−1)χ(K)

Hence by uniqueness of the bracket polynomial, we conclude:

Theorem 3.5.1. The graded euler characteristic of Khovanov homology is the unnormalised

Kauffman bracket polynomial.

Thus Khovanov homology also carries the bracket polynomial and hence the Jones poly-

nomial. It is proven that unknot is the only link with its homology. Also the 5 crossing and

10 crossing knot which were sharing the same Jones polynomial, have distinct Khovanov

homologies. Clearly it is stronger than the Jones polynomial. The following section reveals

that Khovanov homology seen in an appropriate way, is functorial.

3.6 Functoriality of Khovanov homology

For talking about functoriality of this invariant, first it is required to construct a category of

links. This can be done by considering link cobordisms as the morphisms with composition

defined by the natural gluing. Khovanov devised a way to construct a chain map between
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the complexes of two links corresponding to each cobordism between them. We would like

to have this chain map to be independent of the embedding of the cobordism, i.e, it should

be invariant under ambient isotopy of the cobordism. But in Khovanov’s construction, this

equivalence of the chain maps corresponding to isotopic surfaces is only achieved upto −ve

sign. That is the desired functoriality is achieved upto a sign. But for most purposes this

is good enough. If the homology is taken over a ring R with 1 = −1, then it is absolutely

functorial. The goal of this section is to give an idea about the functoriality of Khovanov

homology by defining chain maps, Kh(Σ) corresponding to a link cobordism Σ. For all

further discussions a “link cobordism” can be defined as follows:

Definition 3.6.1. A link cobordism from a link L0 to another link L1 is a smooth, compact,

orientable 2-manifold with boundary, Σ embedded in R3 × I such that Σ meets the boundary

of R3 × I orthogonally and such that,

∂Σ = Σ ∩ (R3 × ∂I) = L0 t L1.

Also Σ ∩ (R3 × {0}) should be L0 and thus L0 and L1 will be called source and target of Σ.

The cordinate which is given by the standard interval is usually called time.

Definition 3.6.2. A link cobordism Σ is said to be generic iff the projection to the time

cordinate is a Morse function on Σ with distinct critical values.

For a generic cobordism, the intersection with the constant time hyperplanes will be a

link in R3 except for finitely many values of t. For these values the intersection can have a

transversal double point or it can be a link together with a point disjoint from it. A generic

link cobordism can be projected onto R2× I in the same manner as links. The images under

such projections are called surface diagrams of the cobordism. Again for a generic cobordism,

it is possible to construct generic surface diagrams with the only kind of singularities are

double points, triple points and whitney umbrella points. Just like Reidemeister moves, the

ambient isotopy of the link cobordism can be characterised by surface diagrams under a set

of moves introduced by Roseman, named after him as Roseman moves.

Definition 3.6.3. A surface diagram represented as a one parameter family of the diagrams

Dt, which are intersections with constant time planes R2 × {t}, is called a movie. Each Dt

in a movie is called a still.
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Figure 3.10: Some movie moves (which are Roseman moves)

Carter and Saito came up with a set of moves for movies which characterize the ambient

isotopy of the represented cobordism. They are called movie moves. Some of the movie moves

are shown in Figure 3.10. As mentioned before, the intersection of the surface diagram with

the corresponding plane won’t be a link diagram for only finitely many values of t. These will

be called critical levels. Also note that, between two critical levels the diagram undergoes

planar isotopy. Hence for representing a movie it is enough to consider one still between

each pair of consequent critical levels. Some times for more clarity more still are added. If

the link diagrams just above and below a critical level are considered, then the transition

through this level will either be a Reidemeister move or a Morse modification.

So it is enough to construct maps between complexes of diagrams which differ by a single

Reidemeister move or a Morse modification. Since gluing is the composition in the source

category, the map corresponding to a surface can be obtained as composition of these maps.

The maps for Morse modifications are described as follows:

minimum : 1 7→ ©+

maximum :

©+ 7→ 0

©− 7→ 1

48



For a saddle point the maps are completely described by the Frobenious algebra structure

on signed circles, which will use the multiplication and co-multiplication operations.

In case of Reidemeister moves, we will use some ideas from the proof of invariance. Suppose

D and D′ differ by a move-I or II and WLOG assume D has more crossings. Then from the

proof of invariance given above, it is clear that the complex of D breaks up as:

C(D) = C ′ ⊕ C0

where there is an isomorphism ϕ : C ′ → C(D′) and C0 is contractible. Thus we get a map:

C(D) = C ′ ⊕ C0
π1−→ C ′

ϕ−→ C(D′).

Where π represents projection map. Now suppose D and D′ differ by a move-III. Then from

the proof of invariance we know that C(D) = C1 ⊕ C1
0 and C(D′) = C2 ⊕ C2

0 where both

C1
0 and C2

0 are chain contractible and there is an isomorphism ψ : C1 → C2. Hence we have

the map,

C(D)
π−→ C1 ψ−→ C2 i

↪−→ C(D′)

Thus whenever D and D′ differ by Reidemeister moves, there is chain map between their

complexes C(D) and C(D′).

Thus maps corresponding to each of the cobordisms can be computed from there movies.

The invariance (upto sign) of these maps are easily checked using movie moves. Thus Kh is a

functor! Also Kh is a functorial and it carries the Jones polynomial as its euler characteristic.

In this sence, it is a categorification of the Jones polynomial.

3.7 Coherence theorems and knot theory

The classsical form of coherence theorem was formulated by Mac Lane [8]. Later much

general forms of coherence theorems were discovered. It was a surprising observation that
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coherence theorems can be stated totally in the language of tangles [8][9]. Once they are

characterized by categories of tangles, the study of such categories become very easy. This

section is a quick overview of this unexpected application of knot theory in category theory.

Definition 3.7.1. A monoidal category is a category M together with a functor ⊗ : M×M →
M and an object I ∈M so that there exist natural isomorphisms:

ρA :A⊗ I → A

λA :I ⊗ A→ A

αA,B,C :(A⊗B)⊗ C → A⊗ (B ⊗ C)

for every objects A,B and C in M .

It should be noted that the natural isomorphism are also required to satisfy certain

commutativity conditions such as the usual “pentagonal identity” of assosiativity (for α).

For the sake of brevity such minute details will be neglected in all the coming discussions.

A detailed version of these may be found in [9]. A monoidal category can be seen as a

generalized version of a monoid where the axioms are equivalences (isomorphisms) instead

of equalities. Given a monoidal category M , it is easy to see that, there is a unique 2-

category, M̃ with only one object with objects of M as 1-morphisms and arrows in M as

2-morphisms. Composition of 1-morphisms is defined using the tensoring in M . Hence the

equality of 1-morphisms are achieved upto isomorphisms. Now in the 2-category, it make

sence to choose adjoints (left and right) for objects in M as 1-morphisms. These adjoints

denoted by appending the symbol ∗ to the object, comes with unit and counit maps of the

form

hA :∗A⊗ A→ I

eA :I → A⊗ ∗A

(similar maps ηA and εA can be defined for right adjoints) are forced to satisy the usual

“triangle identities” again upto equivalence. A monoidal category together with a choice

of left and right adjoints for every object is said to be an autonomous category. In an

autonomous category all the natural isomorphism from the monoidal structure and the unit,

counit maps for the adjunctions together will be called “structure maps”.

Definition 3.7.2. Given a small category C, there is a unique way to define a category with

formal tensor products (with a formal identity I) and adjoints of objects and arrows in C
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Figure 3.11: A tangle

(with formal structure maps), axiomatically defined to satisy all the required identities for an

autonomous category. This category is called the free autonomous category generated by

C, is denoted by At(C).

The objects in such a category are just the elements of the free (I,⊗, ∗(), ()∗) algebra. The

arrows are given by the arrows of C and the formal structure maps. Hence for commutativity

of a diagram in such a category is also defined upto equivalence of arrows.

Several categories that arise from knot theory and other branches of mathematics have

the structure of a monoidal category. Some of them have extra structure. Some examples of

such categories are braided autonomous categories, pivotal monoidal categories and sovereign

categories. Each of these will obviously have their “free” versions over a small category C.

For a general small category C it is difficult to characterize the arrows in such free categories

generated over it. Hence it is difficult to detemine the equivalence of two arrows in such free

categories and thus proving commutativity of diagrams becomes hard. Knot theory offers

a solution to this problem through coherence theorems. A brief idea of how a coherence

theorem will look like is described below.

Definition 3.7.3. A tangle is a part of a link diagram enclosed in a rectangular region,

such that all the intersections of the diagram with the boundary rectangle are transversal and

are only on the two horizontal edges.

For our purposes we will only consider PL-tangles. Figure 3.11 shows an example. Equal-

ity of two tangles are defined using isotopies of the plane. Similar to link diagrams these can

also be characterized using moves on the diagrams. A usual isotopy is defined by equivalence
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under all three Reidemeister moves and some additional moves for tangles. Now excluding

the first Reidemeister move, we defined “regular” isotopy of tangles. Two tangles with the

same number of boundary points on one of the edges of the rectangle can be naturally glued

to get another tangle (just like braids). Now for a given small category C and a ring R with

1 we can define (C,R) tangles which are tangles together with labels on them representing

objects and arrows of C and elements in the R. The notion of isotopies can be extended to

(C,R)-tangles with some more moves for the (C,R) structure.

(C,R)-tangles taken upto some isotopy naturally forms a monoidal category. The objects

would be words on the set ob(C)×R and arrows are (C,R)-tangles with these words as their

ends. For different kinds of isotopies of the undelying tangles and for various choices for

the ring R, the corresponding monoidal category will have additional structures. All such

categories will be refered to as tangle categories. For example, if the tangles are considered

upto usual isotopy and the ring is chosen to be Z then the corresponding category is an

autonomous category. Similarly if regular isotopy is considered with the ring Z then the

corresponding will be a braided autonomous category. And for R = Z/2Z we have sovereign

and pivotal structures.

Coherence theorems assert the existence of an isomorphism between free monoidal cate-

gories generated over a small category C and a category of (C,R)-tangles with an appropriate

choice of equivalence of tangles and ring R. As an examples:

Theorem 3.7.1. The category of (C,Z)-tangles upto isotopy is isomorphic to the free au-

tonomous category generated over C.

Theorem 3.7.2. The category of (C,Z/2Z)-tangles upto regular isotopy is isomorphic to

the free sovereign category generated over C.

As a consequence the equivalence of arrows in free categories over C are characterized by

the appropriate isotopy of tangles which are easily verified using the corresponding moves.

Hence this simplifies the problems like determining commutativity of diagrams in such cate-

gories as discussed earlier. Thus it is a way of encoding the structure of a free category into

tangles and then dealing with then using the topological structure of a tangle.
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3.8 Conclusion

The Jones polynomial is not the only knot invariant whose categorification is studied.

There is Floer homology, graph homology and several other homologies which categorifies

different knot polynomials. They arise from representing knots in various forms such as

Kauffman states, grid diagrams, graphs etc. As shown in this thesis there is a universal

skein invariant which gives all the (skein) knot polynomials by change of variables. Thus

a categorification of such an invariant might give rise to a “universal categorification”. It

would be really interesting to work on. Coherence theorems are really surprising. Encoding

all the categorical structure using tangles was such great idea. It is also another interesting

field to consider.
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